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Introduction



Setting

What are PA graphs?

Preferential Attachment graphs are growing random graphs that

are used to model real world networks. Introduced by Barabási

and Albert and formalised by Bollobás et.al. in 2001, they were

shown to exhibit a scale free nature.

PA graphs evolve in discrete time, where at every time step, a

newly added vertex attaches m edges to the graph with

probability of attaching one edge to a vertex being proportional

to its degree.
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Formally, the model is defined as follows.

PA law

At t = 0, the graph consists of a root vertex labelled ‘0’. At time

t + 1, an incoming vertex ‘t + 1’ attaches a directed edge from

itself to an existing vertex chosen according to the law of

attachment given by

P((t + 1) → v |Gt) =
g(dv (t)) + f (v)

t∑
u=0

(g(du(t)) + f (u))

(1)

where Gt is the graph realization of time t, du(t) is the indegree

of vertex u, f (u) is the fitness of u and is positive and real

valued, and g is a linear function.

Note that for g of the form g(x) = ax + b,∑t
u=0 g(du(t)) = at + b(t + 1).
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We restrict ourselves to directed Preferential Attachment trees,

that is, at every time step, a new vertex attaches exactly one

directed edge (m = 1) from itself to an existing vertex chosen

according to a preferential attachment law.

0

Figure 1: Illustrating the process
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Background

Existing literature on f ≡ 0 (no fitness):

Our model with f ≡ 0 becomes a directed version of standard

Barabási-Albert model, which has been well studied and analysed

in Hofstad’s “Random Graphs and Complex Networks”.

The work “Random Networks with Sublinear Attachment” of

Dereich and Morters (2008) considers a graph where a new vertex

connects to a random number of vertices with probability g(i)
n for

the i th vertex (g is sublinear). They arrive at the expression

p(k) =
1

1 + g(k)

k−1∏
i=0

g(i)

1 + g(i)
(2)

where p(k) is the asymptotic degree distribution.
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In the work of Troillet, Girorie and Pérennes (2020) for (1) with

f ≡ 0, the following relation between g and p(.) is derived

g(k) =
1

p(k)

∑
i>k

p(i) (3)

We borrow ideas from this for the proofs of our main results.

Krapivsky et.al. study nonlinear preferential attachment. They

study sublinear attachment (2000) for which they show the

existence of a power law, whereas they predict the existence of a

single dominant vertex attracting all future edges for the

superlinear case (2001).
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Literature on Prefential Attachment with fitness:

Why incorporate fitness?

Fitness preserves the identity of the vertex itself, since the degree

of the vertex may not be unique

Chapter 8, section 8.9 of Hofstad’s text briefly defines PA with

fitness. Fitness is usually classified into two broad categories:

additive fitness and multiplicative fitness. It may or may not be

random.
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The work of Garavaglia, Hofstad and Woeginger (2017) considers

aging as well as multiplicative fitness. Using the theory of aging

birth processes, they arrive at an expression very similar to the one

derived by Dereich and Morters. For comparison, the two

equations (as in the papers) are

p(k) =
α∗

α∗ + f (k)L̂g (k, α∗)

k−1∏
i=0

f (i)L̂g (i , α∗)

α∗ + f (i)L̂g (i , α∗)

p(k) =
1

1 + f (k)

k−1∏
i=0

f (i)

1 + f (i)

Note: f here is not the fitness function.

The focus of our work will be on additive fitness. A model similar

to this has been studied by Lodewijks and Ortgiese (2020). For

their model, they consider random additive i.i.d. fitness, for which

they arrive at results for degree distributions and maximal degree.
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Fitness Regimes

We study three regimes for f , defined by Φ(t) =
t∑

u=0
f (u).

� Sublinear: limt→∞
Φ(t)
t = 0

� Linear: limt→∞
Φ(t)
t = CL > 0

� Superlinear: limt→∞
Φ(t)
t = ∞, limt→∞

Φ(t)
tn = CS > 0, n > 1

The fitness function f (.) in our work is a general function, and can

be either deterministic or random. Moreover, our methods are

based on more explicit computations using concentration

inequalities and standard recursions.
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Main Results



Main Results

We state our main results together for the sublinear and linear

regimes, and separately for the superlinear regime. Recall that our

Preferential attachment law in (1) was given by

P((t + 1) → v |Gt) =
g(dv (t)) + f (v)

t∑
u=0

(g(du(t)) + f (u))

Define µg (t) =
∑t

u=0 g(du(t)) and µ := limt→∞
µg (t)

t . Let p(.)

denote the asymptotic degree distribution, that is, p(k) is the

probability that a chosen vertex will asymptotically have indegree

k .
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Sublinear and Linear Regime

Theorem

Consider a Preferential attachment process with the attachment

law as in (1), with g linear. Let Φ(t) be linear, that is,

Φ(t)/t → CL for large t and µ is as defined. Then,

g(k) =
µ+ CL

p(k)

∑
i>k

p(i)− CL

Equivalently,

p(k) =
µ+ CL

µ+ 2CL + g(k)

k∏
i=0

g(i) + CL

g(i) + µ+ 2CL

For CL = 0, the above becomes a statement for the sublinear

regime.
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Remarks

� Given a distribution p(.), one can derive the expression for

g(.) required to obtain the desired distribution from the first

relation.

� When CL = 0, our relations become

g(k) =
µ

p(k)

∑
i>k

p(i)

and

p(k) =
µ

µ+ g(k)

k∏
i=0

g(i)

g(i) + µ

We will show that this is in line with the work of Dereich and

Morters, and will give an explicit computation for µ when g is

linear.
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Superlinear Regime and remarks

Theorem

Consider a Preferential attachment process with the attachment

law as in (1), with g linear. Let Φ(t) be superlinear, that is,

Φ(t)/t → ∞ and Φ(t)/tn → CS for some n > 1 for large t.

Then,

p(k) =
1

2k+1

� p(.) has no dependence on f and g .

� The choice of fitness function does not matter as long as it

lies in the superlinear regime.

� p(.) does not follow a power law.
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Concentration Results and Proofs



Ideas and results from Hofstad’s text

Let Pk(t) be the empirical degree distribution, that is,

Pk(t) =
Nk (t)
t+1 .

Let Mn = E[Nk(t)|Gn]. Then, lemmas 8.5 and 8.6 from the text

show that Mn is a martingale with bounded differences. Since

Mt = Nk(t) = (t + 1)Pk(t) and M0 = ENk(t), one can use

Azuma-Hoeffding to show

P
(
|(t + 1)Pk(t)− ENk(t)| ≥

√
2
√
t log t

)
= O(1/t)

Since intuitively we can define p(k) = limt→∞
ENk (t)

t , one can see

that |Pk(t)− p(k)| ≤ εt → 0 for large t. This can be made more

precise by working along the lines of proposition 8.7 from the text

to show that |ENk(t)− (t + 1)p(k)| < C where p(k) satisfies a

certain recursion.

14 / 26



General Recursion

Let Nk(t) denote the number of vertices of indegree k at time t.
Then, for k = 0 and k > 0, we can write

N0(t + 1) =


N0(t) + 1, w.p. 1−

t∑
u=0

(g(0)+f (u))1{du (t)=0}

t∑
u′=0

g(du′ (t))+f (u′)

N0(t), w.p

t∑
u=0

(g(0)+f (u))1{du (t)=0}

t∑
u′=0

g(du′ (t))+f (u′)

(4)

Nk(t+1) =



Nk(t) + 1, w.p.

t∑
u=0

(g(k−1)+f (u))1{du (t)=k−1}

t∑
u′=0

g(du′ (t))+f (u′)

Nk(t)− 1, w.p

t∑
u=0

(g(k)+f (u))1{du (t)=k}

t∑
u′=0

g(du′ (t))+f (u′)

Nk(t), w.p 1−
t∑

u=0
(g(k−1)+f (u))1{du (t)=k−1}

t∑
u′=0

g(du′ (t))+f (u′)
−

t∑
u=0

(g(k)+f (u))1{du (t)=k}

t∑
u′=0

g(du′ (t))+f (u′)
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Taking expectation of the recurrences (4) and (5), we get

ENk(t + 1) = ENk(t) + 1{k=0} +
g(k − 1)ENk−1(t)− g(k)ENk(t)

µg (t) + Φ(t)

+

t∑
u=0

f (u) (P(du(t) = k − 1)− P(du(t) = k))

µg (t) + Φ(t)

with the convention that g(−1) = 0. We can rewrite the above as

ENk(t + 1) = ENk(t)

(
1− 1

t

tg(k)

µg (t) + Φ(t)

)
+ 1{k=0}

+
g(k − 1)ENk−1(t)

µg (t) + Φ(t)
+

t∑
u=0

f (u) (P(du(t) = k − 1)− P(du(t) = k))

µg (t) + Φ(t)

(6)
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Proof for the linear regime

Let h(k) = g(k)
µ+CL

where µ = limt→∞
µg (t)

t , and

βk = limt→∞
1
t

∑t
u=0 f (u)P(du(t) = k). For k = 0, define bt and

ct as

bt =
tg(0)

µg (t) + Φ(t)

ct = 1−

t∑
u=0

f (u)P(du(t) = 0)

µg (t) + Φ(t)

Then, b = limt→∞ bt = h(0) and c = limt→∞ ct = 1− β0
µ+CL

.
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One can see that (6) is of the form

at+1 = at

(
1− bt

t

)
+ ct

where at = ENk(t), bt =
tg(k)

µg (t)+Φ(t) and

ct = 1{k=0} +
g(k−1)ENk−1(t)

µg (t)+Φ(t) +

t∑
u=0

f (u)(P(du(t)=k−1)−P(du(t)=k))

µg (t)+Φ(t) .

So, we use the following lemma

Lemma

Let {at}t≥0, {bt}t≥0 and {ct}t≥0 be three real sequences such

that at+1 = at
(
1− bt

t

)
+ ct with bt < t such that

limt→∞ bt = b ≥ 0, and limt→∞ ct = c. Then, limt→∞
at
t = c

1+b .

Thus, we get p(0) := limt→∞
EN0(t)

t = 1−β0/(µ+CL)
h(0) . Similarly, we

get p(k) =
h(k−1)p(k−1)+

βk−1−βk
µ+CL

1+h(k) for k > 0.
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This implies,

h(k)p(k) = h(k − 1)p(k − 1)− p(k) +
βk−1 − βk
µ+ CL

=
∑
i>k

p(i)− βk
µ+ CL

We know that βk = limt→∞
1
t

t∑
u=0

f (u)P(du(t) = k). Recall that

Pk(t) is the probability that a chosen vertex at time t has indegree

k , and is precisely Nk (t)
t+1 . So, using the fact that for large t,

|Pk(t)− p(k)| → 0|, we have

βk = lim
t→∞

1

t

t∑
u=0

f (u)P(du(t) = k) = lim
t→∞

Pk(t)

t

t∑
u=0

f (u)

= p(k). lim
t→∞

Φ(t)

t
= p(k)CL

Substituting this yields us our desired expressions. For CL = 0, we

obtain the result for the sublinear case.
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Superlinear Regime

We use a similar argument for the superlinear regime. Take

bt =
tg(0)

µg (t) + Φ(t)

Then, b = 0. Take

ct = 1−

t∑
u=0

f (u)P(du(t) = 0)

µg (t) + Φ(t)

which gives us that c = 1− β0
CS

where

βk = limt→∞
1
tn

t∑
u=0

f (u)P(du(t) = k). So, we get βk = p(k)CS .

Using lemma 3 by taking at = EN0(t), we get p(0) = 1/2 and

p(k) = p(k−1)
2 .
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Comparing to the work of Dereich and Morters

Take g(x) = ax + b. We know that µ = limt→∞ µg (t)/t = a+ b.

Let a′ = a/(a+ b) and b′ = b/(a+ b). Taking g ′(k) = g(k)/µ,

we have

p(k) =
1

1 + g ′(k)

k∏
i=0

g ′(i)

1 + g ′(i)
=

1

a′

∏k−1
i=0 i + b′/a′∏k

i=0 i + (b′ + 1)/a′

=
1

a′

Γ
(
k + b′

a′

)
Γ
(
1+b′

a′

)
Γ
(
b′

a′

)
Γ
(
k + 1+b′+a′

a′

) k→∞−−−−−−−−−−→
Stirling’s approx.

1

a′

Γ
(
1+b′

a′

)
Γ
(
b′

a′

) k−(1+
1
a′ )

where a′, b′ ∈ (0, 1], which is in line with example 1 from the

paper. Taking a′ = 1 gives us the power law exponent of ‘-2’.
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What happens when f is random?

Suppose f (u) are independent random variable such that

E[f (u)] = γu and P(f (u) ∈ [a, b]) = 1 ∀i for some a, b ∈ R. Using
Chernoff bound, we get

P

(
|

t∑
u=0

f (u)− γ| ≥ (b − a)
√
t log t

)
≤ O

(
1

t

)
,

where γ =
t∑

u=0
γu. That is, for large t,

Φ(t) =
t∑

u=0
f (u) = γ +O

(√
t log t

)
.
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Let f (u) ∼ Poi(λu) be independent random variables for all u ≥ 0

and g(k) = ak + b. We have Φ(t) =
t∑

i=1
f (i) ∼ Poi(

t∑
i=1

λi ). Then,

we get

P

(∣∣∣∣∣Φ(t)−
t∑

i=0

λi

∣∣∣∣∣ ≥ δ

)
≤ 2 exp

− cδ2

t∑
i=1

λi


Let Λ = supi λi . Then,

t∑
i=1

λi ≤ tΛ. That is, − 1
t∑

i=1
λi

≤ − 1
tΛ .

Taking δ =
√

Λ
c t log t, we get

P

(∣∣∣∣∣Φ(t)−
t∑

i=1

λi

∣∣∣∣∣ ≥
√

Λ

c
t log t

)
= O

(
1

t

)

and thus we can write
t∑

u=0
f (u) =

t∑
u=0

λu +O
(√

t log t
)
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(a) Sublinear case with g(k) = 2k + 3 and f ≡ 0
(b) Linear case with g(k) = 2k + 3 and

f (u) := Xu ∼ Poi(5)

(c) Superlinear cases with g(k) = 2k + 3 and

f (u) = u3 and f (u) = u10

Figure 2: A comparison of simulated and analytical degree distributions
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Working with a general g

The idea is to assume the following:

� g has bounded differences, that is, |g(i + 1)− g(i)| < K

� µg (t) :=
∑

j g(j)ENj(t) is such that µg (t)/t < ∞.

Lemma 4 from [?] shows the following:

Lemma

Suppose the assumption that |g(i +1)− g(i)| < K is true. Then,

P

(∣∣∣∣∣
t∑

u=0

g(du(t))− µg (t)

∣∣∣∣∣ ≥√32K 2t log t

)
= O(1/t4)

The idea is to use this in recursions (4) and (5). However,

computing µ := limt→∞ µg (t)/t is not trivial.
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Thank You!
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