On the asymptotics for the minimal distance between extreme vertices in a generalised Barak - Erdős graph

Pavel Tesemnikov
Sobolev Institute of Mathematics, Novosibirsk State University and MCA, Russia

September 10, 2021

Presentation Outline

1 Generalised Barak - Erdő́s graph (GBE)

2 Examples and Research Directions

3 Goal and Conditions

4 Results

On the asymptotics for the minimal distance between extreme vertices in a generalised Barak - Erdős graph
-Generalised Barak - Erdös graph (GBE)

Presentation Outline

1 Generalised Barak - Erdő́s graph (GBE)

2 Examples and Research Directions

3 Goal and Conditions

4 Results

On the asymptotics for the minimal distance between extreme vertices in a generalised Barak - Erdős graph

-Generalised Barak - Erdös graph (GBE)

Simple Erdős - Rényi Graph

On the asymptotics for the minimal distance between extreme vertices in a generalised Barak - Erdős graph

-Generalised Barak - Erdös graph (GBE)

Simple Erdős - Rényi Graph

\square

On the asymptotics for the minimal distance between extreme vertices in a generalised Barak - Erdős graph

-Generalised Barak - Erdös graph (GBE)

Simple Erdős - Rényi Graph

\square

$\stackrel{\bullet}{5}$
6

On the asymptotics for the minimal distance between extreme vertices in a generalised Barak - Erdős graph

-Generalised Barak - Erdös graph (GBE)

Simple Erdős - Rényi Graph

$\stackrel{\bullet}{5}$
6

Simple Erdős - Rényi Graph

On the asymptotics for the minimal distance between extreme vertices in a generalised Barak - Erdős graph
-Generalised Barak - Erdős graph (GBE)

Simple Erdős - Rényi Graph

Simple Erdős - Rényi Graph

Simple Erdős－Rényi Graph

Key assumptions：

Simple Erdős－Rényi Graph

Key assumptions：

－Edges are presented independently of each other．

Simple Erdős－Rényi Graph

Key assumptions：

－Edges are presented independently of each other．
－p is the fixed number．

Simple Barak－Erdős Graph

Key assumptions：

■ Edges are presented independently of each other．
－p is the fixed number．

Simple Barak－Erdős Graph

Key assumptions：

－Oriented edges from smaller vertices to bigger are presented independently of each other．
－p is the fixed number．

Generalised Barak－Erdős Graph

Key assumptions：
－Oriented edges from smaller vertices to bigger are presented independently of each other．
－p is the fixed number．

Generalised Barak - Erdős Graph

$$
\mathcal{G}_{n}=\left(\mathcal{V}_{n}, \mathcal{E}_{n}\right) \text {, where } \mathbb{P}\left((i, j) \in \mathcal{E}_{n}\right)=p_{j-i}(n) \in[0,1] \text { for } i<j
$$

Key assumptions:

- Oriented edges from smaller vertices to bigger are presented independently of each other.
- $p_{m}(n)$ is the function of n and m.

Presentation Outline

1. Generalised Barak - Erdős graph (GBE)

2 Examples and Research Directions

3 Goal and Conditions

4 Results

On the asymptotics for the minimal distance between extreme vertices in a generalised Barak - Erdós graph
$L_{\text {Examples and Research Directions }}$

Example: Homogeneous Case

Example：Homogeneous Case

$$
p_{m}(n)=p(n) \text { does not depend on } m \text {. }
$$

Example：Homogeneous Case

$$
p_{m}(n)=p(n) \text { does not depend on } m
$$

－A．B．Barak and P．Erdős（1984）introduced the model and obtained the asymptotics for the cardinality of strongly independent subset as $n \rightarrow \infty$ ．

Example：Homogeneous Case

$$
p_{m}(n)=p(n) \text { does not depend on } m
$$

－A．B．Barak and P．Erdős（1984）introduced the model and obtained the asymptotics for the cardinality of strongly independent subset as $n \rightarrow \infty$ ．
－C．M．Newman et al．$(1986,1992,1994)$ applied the model to the problems and mathematical biology and theory of parallel computing．

Example：Homogeneous Case

$$
p_{m}(n)=p(n) \text { does not depend on } m
$$

－A．B．Barak and P．Erdôs（1984）introduced the model and obtained the asymptotics for the cardinality of strongly independent subset as $n \rightarrow \infty$ ．

■ C．M．Newman et al．$(1986,1992,1994)$ applied the model to the problems and mathematical biology and theory of parallel computing．
－S．Foss and T．Konstantopoulos（2003）obtained LLN and FCLT for the maximal path distance between extreme vertices．

On the asymptotics for the minimal distance between extreme vertices in a generalised Barak - Erdős graph
$\square_{\text {Examples and Research Directions }}$

Example: Strong Inhomogeneous Case

Example：Strong Inhomogeneous Case

$$
p_{m}(n)=p_{m} \text { does not depend on } n \text {. }
$$

Example：Strong Inhomogeneous Case

$$
p_{m}(n)=p_{m} \text { does not depend on } n \text {. }
$$

－D．Denisov，S．Foss，T．Konstantopoulos（2012）first considered the model，established LLN and FCLT for the maximal distance between extreme vertices and found the regenerative structure of the graph．

Example：Strong Inhomogeneous Case

$$
p_{m}(n)=p_{m} \text { does not depend on } n \text {. }
$$

－D．Denisov，S．Foss，T．Konstantopoulos（2012）first considered the model，established LLN and FCLT for the maximal distance between extreme vertices and found the regenerative structure of the graph．
－T．（2018）studied the behaviour of the minimal distance between extreme vertices．

Presentation Outline

1. Generalised Barak - Erdős graph (GBE)

2 Examples and Research Directions

3 Goal and Conditions

4 Results

On the asymptotics for the minimal distance between extreme vertices in a generalised Barak - Erdős graph
Goal and Conditions

Main Goal

On the asymptotics for the minimal distance between extreme vertices in a generalised Barak — Erdös graph
G Goal and Conditions

Main Goal

Let \mathcal{G}_{n} be a GBE.

Main Goal

Let \mathcal{G}_{n} be a GBE．

$$
l_{n}:=\min _{\pi \in \Pi_{0, n}}|\pi| \xrightarrow{d} ?
$$

Here $\Pi_{0, n}$－the set of all paths between 0 and n ．

Main Goal

Let \mathcal{G}_{n} be a GBE．

$$
l_{n}:=\min _{\pi \in \Pi_{0, n}}|\pi| \xrightarrow{d} ?
$$

Here $\Pi_{0, n}$－the set of all paths between 0 and n ．

On the asymptotics for the minimal distance between extreme vertices in a generalised Barak - Erdos graph
Goal and Conditions

Main Condition

Main Condition

Assume that

- $p_{m}(n)$ is non-increasing both in n and in m.

Main Condition

Assume that

－$p_{m}(n)$ is non－increasing both in n and in m ．
■ $\exists \gamma \in[0, \infty]$ and $\theta \in(0, \infty)$ such that

$$
\lim _{n \rightarrow \infty} n^{\gamma} p_{n}(n)=\theta
$$

Main Condition

Assume that

- $p_{m}(n)$ is non-increasing both in n and in m.

■ $\exists \gamma \in[0, \infty]$ and $\theta \in(0, \infty)$ such that

$$
\lim _{n \rightarrow \infty} n^{\gamma} p_{n}(n)=\theta
$$

Example: $\quad p_{m}(n)=\theta n^{-\alpha} m^{-\beta}, n, m \geq 1$, where $\alpha, \beta \geq 0$.

Presentation Outline

1 Generalised Barak - Erdős graph (GBE)

2 Examples and Research Directions

3 Goal and Conditions

4 Results

On the asymptotics for the minimal distance between extreme vertices in a generalised Barak - Erdós graph
Results
Homogeneous Case

Homogeneous Case

$$
p_{m}(n)=p(n)=(1+o(1)) \theta n^{-\gamma} \text { as } n \rightarrow \infty .
$$

Homogeneous Case

$$
p_{m}(n)=p(n)=(1+o(1)) \theta n^{-\gamma} \text { as } n \rightarrow \infty
$$

Theorem (B. Mallein, 2021)

- Let $\gamma \in\left(1-\frac{1}{k-1}, 1-\frac{1}{k}\right)$ for some $k \geq 1$. Then

$$
l_{n} \xrightarrow{p} k
$$

as $n \rightarrow \infty$.

Homogeneous Case

$$
p_{m}(n)=p(n)=(1+o(1)) \theta n^{-\gamma} \text { as } n \rightarrow \infty
$$

Theorem (B. Mallein, 2021)

- Let $\gamma \in\left(1-\frac{1}{k-1}, 1-\frac{1}{k}\right)$ for some $k \geq 1$. Then

$$
l_{n} \xrightarrow{p} k
$$

as $n \rightarrow \infty$.

- Let $\gamma=1-\frac{1}{k}$. Then

$$
l_{n} \xrightarrow{d} l_{\infty},
$$

as $n \rightarrow \infty$, where $\mathbb{P}\left(l_{\infty}=k\right)=1-\mathbb{P}\left(l_{\infty}=k+1\right)=1-\exp \left\{-\frac{\theta^{k}}{(k-1)!}\right\}$

On the asymptotics for the minimal distance between extreme vertices in a generalised Barak - Erdős graph
Results

Strong Inhomogeneous Case

Strong Inhomogeneous Case

$$
p_{m}(n)=p_{m}=(1+o(1)) \theta m^{-\gamma} \text { as } m \rightarrow \infty
$$

Strong Inhomogeneous Case

$$
p_{m}(n)=p_{m}=(1+o(1)) \theta m^{-\gamma} \text { as } m \rightarrow \infty
$$

Theorem (T., 2018)

- Let $\gamma>2$ and $p \neq 1$ for any $k \geq 1$. Then

$$
\mathbb{P}\left(l_{n}=\infty\right) \equiv \mathbb{P}\left(\Pi_{0, n}=\infty\right) \rightarrow 1
$$

as $n \rightarrow \infty$.

Strong Inhomogeneous Case

$$
p_{m}(n)=p_{m}=(1+o(1)) \theta m^{-\gamma} \text { as } m \rightarrow \infty
$$

Theorem (T., 2018)

- Let $\gamma>2$ and $p \neq 1$ for any $k \geq 1$. Then

$$
\mathbb{P}\left(l_{n}=\infty\right) \equiv \mathbb{P}\left(\Pi_{0, n}=\infty\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
■ Let $\gamma \in[0,1]$. Then

$$
\mathbb{P}\left(l_{n}=\infty\right) \rightarrow 0
$$

as $n \rightarrow \infty$.

Strong Inhomogeneous Case

$$
p_{m}(n)=p_{m}=(1+o(1)) \theta m^{-\gamma} \text { as } m \rightarrow \infty .
$$

Theorem (T., 2018)

- Let $\gamma \in(0,1)$. Then

$$
\mathbb{P}\left(l_{n}<(1-\gamma)^{-1}\right) \rightarrow 0
$$

as $n \rightarrow \infty$.

Strong Inhomogeneous Case

$$
p_{m}(n)=p_{m}=(1+o(1)) \theta m^{-\gamma} \text { as } m \rightarrow \infty .
$$

Theorem（T．，2018）

－Let $\gamma \in(0,1)$ ．Then

$$
\mathbb{P}\left(l_{n}<(1-\gamma)^{-1}\right) \rightarrow 0
$$

as $n \rightarrow \infty$ ．
■ Let $\gamma \geq 1$（ >1 ）．Then

$$
l_{n} \xrightarrow{p} \infty(\text { a.s. })
$$

as $n \rightarrow \infty$ ．

On the asymptotics for the minimal distance between extreme vertices in a generalised Barak - Erdős graph
$\square_{\text {Results }}$

General Case: Coupling

General Case: Coupling

$\mathcal{G}_{n}^{(1)}$ and $\mathcal{G}_{n}^{(2)}$ - two GBE's such that

$$
p_{m}^{(1)}(n) \leq p_{m}^{(2)}(n)
$$

for any $n, m \geq 0$.

General Case：Coupling

$\mathcal{G}_{n}^{(1)}$ and $\mathcal{G}_{n}^{(2)}$－two GBE＇s such that

$$
p_{m}^{(1)}(n) \leq p_{m}^{(2)}(n)
$$

for any $n, m \geq 0$ ．Then

$$
l_{n}^{(1)} \geq_{S T} l_{n}^{(2)} \text { for any } n \geq 1 .
$$

General Case：Coupling

$\mathcal{G}_{n}^{(1)}$ and $\mathcal{G}_{n}^{(2)}$－two GBE＇s such that

$$
p_{m}^{(1)}(n) \leq p_{m}^{(2)}(n)
$$

for any $n, m \geq 0$ ．Then

$$
l_{n}^{(1)} \geq_{S T} l_{n}^{(2)} \text { for any } n \geq 1 .
$$

From the previous results，coupling consideration and the fact that for any $n, m \geq 1$ ，

$$
p_{n}(n) \leq p_{n}(m) \leq p_{m}(m)
$$

follows the following fact

Results for GBE

Theorem (T., 2021)

Let \mathcal{G}_{n} be a GBE

- Assume that $\gamma \in\left(1-\frac{1}{k-1}, 1-\frac{1}{k}\right)$ for some $k \geq 1$. Then

$$
l_{n} \xrightarrow{p} k
$$

as $n \rightarrow \infty$.

Results for GBE

Theorem（T．，2021）

Let \mathcal{G}_{n} be a GBE
－Assume that $\gamma \in\left(1-\frac{1}{k-1}, 1-\frac{1}{k}\right)$ for some $k \geq 1$ ．Then

$$
l_{n} \xrightarrow{p} k
$$

as $n \rightarrow \infty$ ．
－Assume that $\gamma=1-\frac{1}{k}$ for some $k \geq 1$ ．Then

$$
\mathbb{P}\left(l_{n} \in\{k, k+1\}\right) \rightarrow 1
$$

as $n \rightarrow \infty$ ．

On the asymptotics for the minimal distance between extreme vertices in a generalised Barak - Erdős graph
Results

Open Questions

Open Questions

■ Inhomogeneous Case：if $\gamma \in(1,2)$ ，then $\mathbb{P}\left(l_{n}=\infty\right) \rightarrow$ ？as $n \rightarrow \infty$ ．

Open Questions

－Inhomogeneous Case：if $\gamma \in(1,2)$ ，then $\mathbb{P}\left(l_{n}=\infty\right) \rightarrow$ ？as $n \rightarrow \infty$ ．
－GBE：if $\gamma=1-\frac{1}{k}$ ，then Is there a weak limit for l_{n} and what is its distribution？

Thank you for your time!

Thank you for your time！

Questions？

