A Probabilistic Broadcast Mechanism on Random Geometric Graphs Vinay Kumar B. R. Joint work with Navin Kashyap and D. Yogeshwaran Random Networks and Interacting Particle Systems 9th September, 2021 ## Motivation Source has n coded packets $$n=7$$ packets X_1 X_2 X_3 X_1+X_2 X_2+X_3 X_3+X_1 $X_1+X_2+X_3$ # Broadcast information in the network with minimal number of transmissions # Probabilistic Forwarding with Coding ### Coding scheme - Source has n coded packets. - Code is such that reception of any k out of the n coded packets by any node, suffices to recover the information from the source. ### Probabilistic forwarding of coded packets - •Source transmits all n coded packets to its one-hop neighbours. - •Other nodes transmit each packet w.p. p, do nothing w.p. 1-p. - Each packet is forwarded independently of other packets and other nodes. n coded packets • k received packets Packet 1: X Packet 2: Y Packet 3: X+Y Forwarding probability p = 0.72 # Transmissions = 161 Fraction of receivers = 0.861 ## Formal Problem Statement #### Given - ullet a connected graph with N nodes - number of coded packets, n - number of packets to receive for decoding, k - δ close to 0 - retransmission probability p ### Define ``` \mathcal{R}_{k,n} = \{ \text{ nodes that receive at least k out of n coded packets } \} |\mathcal{R}_{k,n}| = R_{k,n} \text{: number of successful receivers} ``` #### Want to find - $p_{k,n,\delta} = \text{minimum p such that } \mathbb{E}_p\left[\frac{R_{k,n}}{N}\right] \geq 1 \delta. \text{ (near broadcast)}$ - $\tau_{k,n,\delta} = \mathbb{E}_{p_{k,n,\delta}}$ [total # transmissions over all N nodes] ## On Grids Probabilistic forwarding on the $m \times m$ grid Γ_m Probabilistic forwarding on the \mathbb{Z}^2 lattice We will use the site percolation process on \mathbb{Z}^2 to obtain estimates of $p_{k,n,\delta}$ and $\tau_{k,n,\delta}$ # Site percolation on \mathbb{Z}^2 - Transmitters - Associate each vertex (site) u of \mathbb{Z}^2 with a Ber(p) r.v. X_u . The vertex is open if $X_u = 1$; else closed. - For two open sites u and v, v is said to be in the component of u ($v \in C_u$), if there is a path of open sites from u to v. # Site percolation on \mathbb{Z}^2 - Transmitters - Associate each vertex (site) u of \mathbb{Z}^2 with a Ber(p) r.v. X_u . The vertex is open if $X_u = 1$; else closed. - For two open sites u and v, v is said to be in the component of u $(v \in C_u)$, if there is a path of open sites from u to v. - Probabilistic forwarding of a single packet over \mathbb{Z}^2 is modelled by site percolation on \mathbb{Z}^2 conditioned on the origin **0** being open. - Nodes transmitting the jth packet (for fixed $j \in [n]$) may be viewed as open sites in the component of the origin. Call this cluster of nodes as $C_{0,j}$. - The total number of transmissions is simply $\sum_{j=1}^{n} |C_{\mathbf{0},j}|$. # Site percolation on \mathbb{Z}^2 - Receivers - Probabilistic forwarding of a single packet over \mathbb{Z}^2 is modelled by site percolation on \mathbb{Z}^2 conditioned on the origin **0** being open. - Nodes transmitting the jth packet (for fixed $j \in [n]$) may be viewed as open sites in the component of the origin. Call this cluster of nodes as $C_{0,j}$. - The total number of transmissions is simply $\sum_{j=1}^{n} |C_{\mathbf{0},j}|$. - The boundary, $\partial C_{\mathbf{0},j}$ is the set of all closed sites which are adjacent to a site in $C_{\mathbf{0},j}$. - The set $C_{0,j}^{\text{ext}} := C_{0,j} \cup \partial C_{0,j}$ is called the **extended cluster** of the origin. Transmitters \Leftrightarrow open cluster of the origin Receivers \Leftrightarrow extended cluster of the origin ## Site percolation For site percolation on \mathbb{Z}^2 , there exists $p_c \in (0,1)$ s.t. for $p > p_c$, - There exists a unique infinite open cluster (IOC), C, almost surely. $p_c \approx 0.59$ for site percolation - Hence, there also exists a unique infinite extended cluster (IEC), C^{ext} a.s. - $\theta(p) := \text{percolation probability, i.e., } \mathbb{P}(\mathbf{0} \in C)$ - $\theta^{\text{ext}}(p) := \text{extended probability, i.e., } \mathbb{P}(\mathbf{0} \in C^{\text{ext}})$ Lemma: $$\theta^{\text{ext}}(p) = \frac{\theta(p)}{p}$$ Proof: $$\{\mathbf{0} \in C\} = \{\mathbf{0} \in C^{\text{ext}} \text{ and } \mathbf{0} \text{ is open}\}$$ ## Site percolation For site percolation on \mathbb{Z}^2 , there exists $p_c \in (0,1)$ s.t. for $p > p_c$, - There exists a unique infinite open cluster (IOC), C, almost surely. $p_c \approx 0.59$ for site percolation - Hence, there also exists a unique infinite extended cluster (IEC), C^{ext} a.s. - $\theta(p) := \text{percolation probability, i.e., } \mathbb{P}(\mathbf{0} \in C)$ - $\theta^{\text{ext}}(p) := \text{extended probability, i.e., } \mathbb{P}(\mathbf{0} \in C^{\text{ext}})$ #### Ergodic theorems • $$\lim_{m \to \infty} \frac{|C \cap \Gamma_m|}{m^2} = \theta(p)$$ a.s. and in L^1 • $$\lim_{m \to \infty} \frac{|C^{\text{ext}} \cap \Gamma_m|}{m^2} = \theta^{\text{ext}}(p)$$ a.s. and in L^1 Lemma: $$\theta^{\text{ext}}(p) = \frac{\theta(p)}{p}$$ Proof: $$\{\mathbf{0} \in C\} = \{\mathbf{0} \in C^{\text{ext}} \text{ and } \mathbf{0} \text{ is open}\}$$ ## Site Percolation and Probabilistic Forwarding - Prob. forwarding of a single packet over \mathbb{Z}^2 is modelled using site percolation on \mathbb{Z}^2 conditioned on the origin **0** being open. - n packets $\leftrightarrow n$ independent site percolation with 0 open in all. - $\mathcal{R}_{k,n}(\Gamma_m) := \{ \text{sites in } \Gamma_m \text{ that receive at least } k \text{ out of } n \text{ pkts} \}$ - We are interested in finding $$p_{k,n,\delta} = \min \left\{ p \mid \mathbb{E}_p \left[\frac{1}{m^2} \middle| \mathcal{R}_{k,n}(\Gamma_m) \middle| \right] \ge 1 - \delta \right\}$$ #### Theorem For $p > p_c$, we have $$\lim_{m \to \infty} \mathbb{E}\left[\frac{1}{m^2} \Big| \mathcal{R}_{k,n}(\Gamma_m) \Big|\right] = \mathbb{P}(Y \ge k),$$ where $Y \sim \text{Bin}\left(n, (\theta^{\text{ext}}(p))^2\right)$ ## Site Percolation and Probabilistic Forwarding - Prob. forwarding of a single packet over \mathbb{Z}^2 is modelled using site percolation on \mathbb{Z}^2 conditioned on the origin **0** being open. - n packets $\leftrightarrow n$ independent site percolation with 0 open in all. - $\mathcal{R}_{k,n}(\Gamma_m) := \{ \text{sites in } \Gamma_m \text{ that receive at least } k \text{ out of } n \text{ pkts} \}$ - We are interested in finding $$p_{k,n,\delta} = \min \left\{ p \mid \mathbb{E}_p \left[\frac{1}{m^2} \middle| \mathcal{R}_{k,n}(\Gamma_m) \middle| \right] \ge 1 - \delta \right\}$$ #### Theorem For $p > p_c$, we have $$\lim_{m \to \infty} \mathbb{E} \left[\frac{1}{m^2} \Big| \mathcal{R}_{k,n}(\Gamma_m) \Big| \right] = \mathbb{P}(Y \ge k),$$ where $Y \sim \text{Bin} \left(n, (\theta^{\text{ext}}(p))^2 \right)$ #### Intuition For $$k = n = 1$$, receivers $\Leftrightarrow C_{\mathbf{0}}^{\text{ext}}$ $$(\theta^{\text{ext}}(p))^2 = \theta^{\text{ext}}(p) \times \theta^{\text{ext}}(p)$$ $$\lim_{m \to \infty} \mathbb{E} \left[\frac{|C^{\text{ext}} \cap \Gamma_m|}{m^2} \right] \qquad \mathbb{P}(\mathbf{0} \in C^{\text{ext}})$$ For multiple packets, $$\mathbb{P}(Y \ge k) = \sum_{t=k}^{n} \sum_{\substack{T \subseteq [n] \\ |T|=t}} \theta_{k,t}^{\text{ext}}(p) \left(\theta^{\text{ext}}(p)\right)^{t} \left(1 - \theta^{\text{ext}}(p)\right)^{n-t}$$ $$\mathbb{P}(\mathbf{0} \in \text{IECs indexed by } T \text{ only})$$ $$\mathbb{P}(\mathbf{0} \in C_{k,t}^{\text{ext}}) = \sum_{j=k}^{t} {t \choose j} \left(\theta^{\text{ext}}(p)\right)^{j} \left(1 - \theta^{\text{ext}}(p)\right)^{t-j}$$ $C_{k,t}^{\text{ext}} := \{ \text{sites in at least } k \text{ out of the } t \text{ IECs } \}$ # Site Percolation and Probabilistic Forwarding $$p_{k,n,\delta} = \min \left\{ p \mid \mathbb{E}_p \left[\frac{1}{m^2} \middle| \mathcal{R}_{k,n}(\Gamma_m) \middle| \right] \ge 1 - \delta \right\}$$ #### Theorem For $p > p_c$, we have $$\lim_{m \to \infty} \mathbb{E}\left[\frac{1}{m^2} \Big| \mathcal{R}_{k,n}(\Gamma_m) \Big|\right] = \mathbb{P}(Y \ge k),$$ where $Y \sim \text{Bin}\left(n, (\theta^{\text{ext}}(p))^2\right)$ $$\tau_{k,n,\delta} \approx nm^2 \theta(p_{k,n,\delta}) \theta^{\text{ext}}(p_{k,n,\delta})$$ #### Intuition For $$k = n = 1$$, receivers $\Leftrightarrow C_{\mathbf{0}}^{\text{ext}}$ $$(\theta^{\text{ext}}(p))^2 = \theta^{\text{ext}}(p) \times \theta^{\text{ext}}(p)$$ $$\lim_{m \to \infty} \mathbb{E} \left[\frac{|C^{\text{ext}} \cap \Gamma_m|}{m^2} \right] \qquad \mathbb{P}(\mathbf{0} \in C^{\text{ext}})$$ For multiple packets, $$\mathbb{P}(Y \ge k) = \sum_{t=k}^{n} \sum_{\substack{T \subseteq [n] \\ |T|=t}} \theta_{k,t}^{\text{ext}}(p) \left(\theta^{\text{ext}}(p)\right)^{t} \left(1 - \theta^{\text{ext}}(p)\right)^{n-t}$$ $$\mathbb{P}(\mathbf{0} \in \text{IECs indexed by } T \text{ only})$$ $$\mathbb{P}(\mathbf{0} \in C_{k,t}^{\text{ext}}) = \sum_{j=k}^{t} {t \choose j} \left(\theta^{\text{ext}}(p)\right)^{j} \left(1 - \theta^{\text{ext}}(p)\right)^{t-j}$$ $C_{k,t}^{\text{ext}} := \{ \text{sites in at least } k \text{ out of the } t \text{ IECs } \}$ ## Comparison with simulations $$p_{k,n,\delta} \approx \min \left\{ p \mid \mathbb{P}(Y \geq k) \geq 1 - \delta \right\}$$ where $Y \sim \text{Bin}\left(n, (\theta^{\text{ext}}(p))^2\right)$ $$\tau_{k,n,\delta} \approx nm^2 \theta(p_{k,n,\delta}) \theta^{\text{ext}}(p_{k,n,\delta})$$ Conclusion: Introducing coded packets with probabilistic forwarding on the grid reduces the expected number of transmissions while ensuring a near-broadcast. ## Random Geometric Graphs #### What is an RGG? Intensity: λ Generating $$G_m \sim \text{RGG}(\lambda)$$ on $\Gamma_m = \left[\frac{-m}{2}, \frac{m}{2}\right]^2$ - Sample the number of points, $N \sim \text{Poi}(\lambda m^2)$. - Choose points X_1, X_2, \dots, X_N uniformly and independently from Γ_m . These form the points of a Poisson point process, Φ , and constitute the vertex set of the RGG. - Place an edge between any two vertices which are within unit distance of each other. ## Formulation #### Where is the source? - Include source at the origin. - $\Phi^{\mathbf{0}} = \Phi \cup \{\mathbf{0}\};$ Resulting graph $G_m^{\mathbf{0}}$ - Palm probability $\mathbb{P}^{\mathbf{0}}(\cdot) = \mathbb{P}(\Phi^{\mathbf{0}} \in \cdot)$ ### Is it always connected? • Component of the origin, $C_0 \equiv C_0(G_m^0)$. $R_{k,n}(G_m^0)$ - Successful receivers within C_0 $$p_{k,n,\delta} = \min \left\{ p \mid \mathbb{E}\left[\frac{R_{k,n}(G_m^0)}{|C_0(G_m^0)|}\right] \ge 1 - \delta \right\}$$ $\tau_{k,n,\delta} = \mathbb{E} [\text{total } \# \text{ transmissions}]$ #### Idea for Analysis Probabilistic forwarding on RGG within Γ_m , i.e., G_m^0 Probabilistic forwarding on RGG over \mathbb{R}^2 , \mathcal{G}^0 We will use ideas from continuum percolation and ergodic theory to obtain estimates of $p_{k,n,\delta}$ and $\tau_{k,n,\delta}$ # RGG on the R² plane - Create a tiling of the \mathbb{R}^2 plane. - Generate independent Poisson point process of intensity λ on each tile. - Add a point at the origin. - Connect nodes within unit distance to obtain $\mathcal{G}^{\mathbf{0}}$. #### Continuum percolation - There exists a critical intensity, λ_c s.t. for $\lambda > \lambda_c$ there exists a unique infinite cluster, C. - Percolation probability: $$\theta(\lambda) = \mathbb{P}^{\mathbf{0}}(\mathbf{0} \in C)$$ • Ergodic theorem: For $\lambda > \lambda_c$, $$\frac{|C \cap \Gamma_m|}{\lambda m^2} \stackrel{m \to \infty}{\longrightarrow} \theta(\lambda)$$ \mathbb{P}-a.s.. ## Palm probabilities - Ergodic theorems: \mathbb{P} a.s. results; \mathbb{P} distribution of Φ - We need w.r.t. \mathbb{P}^{0} ; distribution of $\Phi^{0} = \Phi \cup \{0\}$ An example: Let $\lambda > \lambda_c$ and $\mathcal{G} \sim \mathrm{RGG}(\lambda)$ $C(\Phi)$: infinite cluster in \mathcal{G} , $C(\Phi^{\mathbf{0}})$: infinite cluster in $\mathcal{G}^{\mathbf{0}}$ $$\frac{|C(\Phi^{\mathbf{0}}) \cap \Gamma_m|}{\lambda m^2} \ge \frac{|C(\Phi) \cap \Gamma_m|}{\lambda m^2}$$ Case 1: Case 2: $$\lim_{m \to \infty} \mathbf{E}^{\mathbf{0}} \left[\frac{|C \cap \Gamma_m|}{\lambda m^2} \right] = \lim_{m \to \infty} \mathbf{E} \left[\frac{|C \cap \Gamma_m|}{\lambda m^2} \right]$$ $$K \leq 6$$ a.s. $$\frac{|C(\Phi^{0}) \cap \Gamma_{m}|}{\lambda m^{2}} = \frac{|C(\Phi) \cap \Gamma_{m}|}{\lambda m^{2}} + \sum_{i=1}^{K} \frac{|C_{i} \cap \Gamma_{m}|}{\lambda m^{2}}$$ $$\frac{|C(\Phi^{0}) \cap \Gamma_{m}|}{\lambda m^{2}} = \frac{|C(\Phi) \cap \Gamma_{m}|}{\lambda m^{2}}$$ ## Prob. Forwarding and Marked Point Process ### Marked point processes - Associate each point, X_u , of Φ with a mark $Z(X_u) \in \mathbb{K}$ space of marks - $\mathbb{P}(Z \in \cdot | \Phi)^{\text{iid}} \sim \Pi(\cdot)$ - $\Pi(\cdot)$ Mark distribution ### Single packet probabilistic forwarding - $\mathbb{K} = \{0, 1\}, \Pi \operatorname{Ber}(p)$ - Transmitters $\Leftrightarrow C_0^+$ - Receivers \Leftrightarrow {nodes in Φ^- adjacent to $C_{\mathbf{0}}^+$ } $\cup C_{\mathbf{0}}^+$ ## Prob. Forwarding and Marked Point Process ### Marked point processes - Associate each point, X_u , of Φ with a mark $Z(X_u) \in \mathbb{K}$ space of marks - $\mathbb{P}(Z \in \cdot | \Phi)^{\text{iid}} \sim \Pi(\cdot)$ - $\Pi(\cdot)$ Mark distribution ### Single packet probabilistic forwarding - $\mathbb{K} = \{0, 1\}, \Pi Ber(p)$ - Transmitters $\Leftrightarrow C_0^+$ - Receivers \Leftrightarrow {nodes in Φ^- adjacent to $C_{\mathbf{0}}^+$ } $\cup C_{\mathbf{0}}^+$ Mark: Z=1 PPP: Φ^+ Int.: λp Mark: Z = 0 PPP: Φ^- Int.: $\lambda(1-p)$ ## Prob. Forwarding and Marked Point Process ### Marked point processes - Associate each point, X_u , of Φ with a mark $Z(X_u) \in \mathbb{K}$ space of marks - $\mathbb{P}(Z \in \cdot | \Phi) \stackrel{\text{iid}}{\sim} \Pi(\cdot)$ - $\Pi(\cdot)$ Mark distribution ### Single packet probabilistic forwarding - $\mathbb{K} = \{0, 1\}, \Pi Ber(p)$ - Transmitters $\Leftrightarrow C_0^+$ - Receivers \Leftrightarrow {nodes in Φ^- adjacent to $C_{\mathbf{0}}^+$ } $\cup C_{\mathbf{0}}^+$ Mark: Z=1 Mark: Z = 0 PPP: Φ^+ PPP: Φ^- Int.: λp Int.: $\lambda(1-p)$ Infinite cluster in Φ^+ : C^+ Infinite extended cluster: C^{ext} ### Probabilistic forwarding of n pkts - $\bullet \mathbb{K} = \{0, 1\}^n$ - Marks $\mathbf{Z} = (Z_1, Z_2, \dots, Z_n)$, where $Z_i(\cdot) \stackrel{\text{ind}}{\sim} \text{Ber}(p) \ \forall i$ ### Main results $$p_{k,n,\delta} = \min \left\{ p \mid \mathbb{E}\left[\frac{R_{k,n}(G_m^0)}{|C_0(G_m^0)|}\right] \ge 1 - \delta \right\}$$ #### Define $C_{k,n}^{\text{ext}} = \{ \text{nodes present in at least } k \text{ out of } n \text{ IECs} \}$ Theorem*: For $$\lambda p > \lambda_c$$, $$\lim_{m \to \infty} \mathbb{E}\left[\frac{R_{k,n}(G_m^{\mathbf{0}})}{|C_{\mathbf{0}}(G_m^{\mathbf{0}})|}\right] = \frac{1}{\theta(\lambda)} \sum_{t=k}^n \sum_{\substack{T \subseteq [n] \\ |T|=t}} \theta_{k,t}^{\text{ext}} \mathbb{P}^{\mathbf{0}}(\mathbf{0} \in \text{IECs indexed by } T \text{ only}).$$ where $$\theta_{k,n}^{\text{ext}} \equiv \theta_{k,n}^{\text{ext}}(\lambda, p) = \mathbb{P}^{\mathbf{0}}(\mathbf{0} \in C_{k,n}^{\text{ext}})$$ For $$\lambda p_{k,n,\delta} > \lambda_c$$, $\tau_{k,n,\delta} \approx nm^2 \lambda p_{k,n,\delta} \left(\theta(\lambda p_{k,n,\delta})\right)^2$ = $n\left(\lambda p_{k,n,\delta}m^2\right)\theta(\lambda p_{k,n,\delta}) \times \theta(\lambda p_{k,n,\delta})$ Thank you!!