A Probabilistic Broadcast Mechanism on Random Geometric Graphs

Vinay Kumar B. R.

Joint work with Navin Kashyap and D. Yogeshwaran

Random Networks and Interacting Particle Systems

9th September, 2021

Motivation

Source has n coded packets

$$n=7$$
 packets X_1
 X_2
 X_3
 X_1+X_2
 X_2+X_3
 X_3+X_1
 $X_1+X_2+X_3$

Broadcast information in the network

with minimal number of transmissions

Probabilistic Forwarding with Coding

Coding scheme

- Source has n coded packets.
- Code is such that reception of any k out of the n coded packets by any node, suffices to recover the information from the source.

Probabilistic forwarding of coded packets

- •Source transmits all n coded packets to its one-hop neighbours.
- •Other nodes transmit each packet w.p. p, do nothing w.p. 1-p.
- Each packet is forwarded independently of other packets and other nodes.

n coded packets • k received packets

Packet 1: X Packet 2: Y Packet 3: X+Y

Forwarding probability p = 0.72

Transmissions = 161
Fraction of receivers = 0.861

Formal Problem Statement

Given

- ullet a connected graph with N nodes
- number of coded packets, n
- number of packets to receive for decoding, k
- δ close to 0
- retransmission probability p

Define

```
\mathcal{R}_{k,n} = \{ \text{ nodes that receive at least k out of n coded packets } \}
|\mathcal{R}_{k,n}| = R_{k,n} \text{: number of successful receivers}
```

Want to find

- $p_{k,n,\delta} = \text{minimum p such that } \mathbb{E}_p\left[\frac{R_{k,n}}{N}\right] \geq 1 \delta. \text{ (near broadcast)}$
- $\tau_{k,n,\delta} = \mathbb{E}_{p_{k,n,\delta}}$ [total # transmissions over all N nodes]

On Grids

Probabilistic forwarding on the $m \times m$ grid Γ_m

Probabilistic forwarding on the \mathbb{Z}^2 lattice

We will use the site percolation process on \mathbb{Z}^2 to obtain estimates of $p_{k,n,\delta}$ and $\tau_{k,n,\delta}$

Site percolation on \mathbb{Z}^2 - Transmitters

- Associate each vertex (site) u of \mathbb{Z}^2 with a Ber(p) r.v. X_u . The vertex is open if $X_u = 1$; else closed.
- For two open sites u and v, v is said to be in the component of u ($v \in C_u$), if there is a path of open sites from u to v.

Site percolation on \mathbb{Z}^2 - Transmitters

- Associate each vertex (site) u of \mathbb{Z}^2 with a Ber(p) r.v. X_u . The vertex is open if $X_u = 1$; else closed.
- For two open sites u and v, v is said to be in the component of u $(v \in C_u)$, if there is a path of open sites from u to v.
- Probabilistic forwarding of a single packet over \mathbb{Z}^2 is modelled by site percolation on \mathbb{Z}^2 conditioned on the origin **0** being open.
- Nodes transmitting the jth packet (for fixed $j \in [n]$) may be viewed as open sites in the component of the origin. Call this cluster of nodes as $C_{0,j}$.
- The total number of transmissions is simply $\sum_{j=1}^{n} |C_{\mathbf{0},j}|$.

Site percolation on \mathbb{Z}^2 - Receivers

- Probabilistic forwarding of a single packet over \mathbb{Z}^2 is modelled by site percolation on \mathbb{Z}^2 conditioned on the origin **0** being open.
- Nodes transmitting the jth packet (for fixed $j \in [n]$) may be viewed as open sites in the component of the origin. Call this cluster of nodes as $C_{0,j}$.
- The total number of transmissions is simply $\sum_{j=1}^{n} |C_{\mathbf{0},j}|$.
- The boundary, $\partial C_{\mathbf{0},j}$ is the set of all closed sites which are adjacent to a site in $C_{\mathbf{0},j}$.
- The set $C_{0,j}^{\text{ext}} := C_{0,j} \cup \partial C_{0,j}$ is called the **extended cluster** of the origin.

Transmitters \Leftrightarrow open cluster of the origin Receivers \Leftrightarrow extended cluster of the origin

Site percolation

For site percolation on \mathbb{Z}^2 , there exists $p_c \in (0,1)$ s.t. for $p > p_c$,

- There exists a unique infinite open cluster (IOC), C, almost surely. $p_c \approx 0.59$ for site percolation
- Hence, there also exists a unique infinite extended cluster (IEC), C^{ext} a.s.
- $\theta(p) := \text{percolation probability, i.e., } \mathbb{P}(\mathbf{0} \in C)$
- $\theta^{\text{ext}}(p) := \text{extended probability, i.e., } \mathbb{P}(\mathbf{0} \in C^{\text{ext}})$

Lemma:
$$\theta^{\text{ext}}(p) = \frac{\theta(p)}{p}$$

Proof:
$$\{\mathbf{0} \in C\} = \{\mathbf{0} \in C^{\text{ext}} \text{ and } \mathbf{0} \text{ is open}\}$$

Site percolation

For site percolation on \mathbb{Z}^2 , there exists $p_c \in (0,1)$ s.t. for $p > p_c$,

- There exists a unique infinite open cluster (IOC), C, almost surely. $p_c \approx 0.59$ for site percolation
- Hence, there also exists a unique infinite extended cluster (IEC), C^{ext} a.s.
- $\theta(p) := \text{percolation probability, i.e., } \mathbb{P}(\mathbf{0} \in C)$
- $\theta^{\text{ext}}(p) := \text{extended probability, i.e., } \mathbb{P}(\mathbf{0} \in C^{\text{ext}})$

Ergodic theorems

•
$$\lim_{m \to \infty} \frac{|C \cap \Gamma_m|}{m^2} = \theta(p)$$
 a.s. and in L^1

•
$$\lim_{m \to \infty} \frac{|C^{\text{ext}} \cap \Gamma_m|}{m^2} = \theta^{\text{ext}}(p)$$
 a.s. and in L^1

Lemma:
$$\theta^{\text{ext}}(p) = \frac{\theta(p)}{p}$$

Proof:
$$\{\mathbf{0} \in C\} = \{\mathbf{0} \in C^{\text{ext}} \text{ and } \mathbf{0} \text{ is open}\}$$

Site Percolation and Probabilistic Forwarding

- Prob. forwarding of a single packet over \mathbb{Z}^2 is modelled using site percolation on \mathbb{Z}^2 conditioned on the origin **0** being open.
- n packets $\leftrightarrow n$ independent site percolation with 0 open in all.
- $\mathcal{R}_{k,n}(\Gamma_m) := \{ \text{sites in } \Gamma_m \text{ that receive at least } k \text{ out of } n \text{ pkts} \}$
- We are interested in finding

$$p_{k,n,\delta} = \min \left\{ p \mid \mathbb{E}_p \left[\frac{1}{m^2} \middle| \mathcal{R}_{k,n}(\Gamma_m) \middle| \right] \ge 1 - \delta \right\}$$

Theorem

For $p > p_c$, we have

$$\lim_{m \to \infty} \mathbb{E}\left[\frac{1}{m^2} \Big| \mathcal{R}_{k,n}(\Gamma_m) \Big|\right] = \mathbb{P}(Y \ge k),$$
where $Y \sim \text{Bin}\left(n, (\theta^{\text{ext}}(p))^2\right)$

Site Percolation and Probabilistic Forwarding

- Prob. forwarding of a single packet over \mathbb{Z}^2 is modelled using site percolation on \mathbb{Z}^2 conditioned on the origin **0** being open.
- n packets $\leftrightarrow n$ independent site percolation with 0 open in all.
- $\mathcal{R}_{k,n}(\Gamma_m) := \{ \text{sites in } \Gamma_m \text{ that receive at least } k \text{ out of } n \text{ pkts} \}$
- We are interested in finding

$$p_{k,n,\delta} = \min \left\{ p \mid \mathbb{E}_p \left[\frac{1}{m^2} \middle| \mathcal{R}_{k,n}(\Gamma_m) \middle| \right] \ge 1 - \delta \right\}$$

Theorem

For $p > p_c$, we have

$$\lim_{m \to \infty} \mathbb{E} \left[\frac{1}{m^2} \Big| \mathcal{R}_{k,n}(\Gamma_m) \Big| \right] = \mathbb{P}(Y \ge k),$$
where $Y \sim \text{Bin} \left(n, (\theta^{\text{ext}}(p))^2 \right)$

Intuition

For
$$k = n = 1$$
, receivers $\Leftrightarrow C_{\mathbf{0}}^{\text{ext}}$

$$(\theta^{\text{ext}}(p))^2 = \theta^{\text{ext}}(p) \times \theta^{\text{ext}}(p)$$

$$\lim_{m \to \infty} \mathbb{E} \left[\frac{|C^{\text{ext}} \cap \Gamma_m|}{m^2} \right] \qquad \mathbb{P}(\mathbf{0} \in C^{\text{ext}})$$

For multiple packets,

$$\mathbb{P}(Y \ge k) = \sum_{t=k}^{n} \sum_{\substack{T \subseteq [n] \\ |T|=t}} \theta_{k,t}^{\text{ext}}(p) \left(\theta^{\text{ext}}(p)\right)^{t} \left(1 - \theta^{\text{ext}}(p)\right)^{n-t}$$

$$\mathbb{P}(\mathbf{0} \in \text{IECs indexed by } T \text{ only})$$

$$\mathbb{P}(\mathbf{0} \in C_{k,t}^{\text{ext}}) = \sum_{j=k}^{t} {t \choose j} \left(\theta^{\text{ext}}(p)\right)^{j} \left(1 - \theta^{\text{ext}}(p)\right)^{t-j}$$

 $C_{k,t}^{\text{ext}} := \{ \text{sites in at least } k \text{ out of the } t \text{ IECs } \}$

Site Percolation and Probabilistic Forwarding

$$p_{k,n,\delta} = \min \left\{ p \mid \mathbb{E}_p \left[\frac{1}{m^2} \middle| \mathcal{R}_{k,n}(\Gamma_m) \middle| \right] \ge 1 - \delta \right\}$$

Theorem

For $p > p_c$, we have

$$\lim_{m \to \infty} \mathbb{E}\left[\frac{1}{m^2} \Big| \mathcal{R}_{k,n}(\Gamma_m) \Big|\right] = \mathbb{P}(Y \ge k),$$

where $Y \sim \text{Bin}\left(n, (\theta^{\text{ext}}(p))^2\right)$

$$\tau_{k,n,\delta} \approx nm^2 \theta(p_{k,n,\delta}) \theta^{\text{ext}}(p_{k,n,\delta})$$

Intuition

For
$$k = n = 1$$
, receivers $\Leftrightarrow C_{\mathbf{0}}^{\text{ext}}$

$$(\theta^{\text{ext}}(p))^2 = \theta^{\text{ext}}(p) \times \theta^{\text{ext}}(p)$$

$$\lim_{m \to \infty} \mathbb{E} \left[\frac{|C^{\text{ext}} \cap \Gamma_m|}{m^2} \right] \qquad \mathbb{P}(\mathbf{0} \in C^{\text{ext}})$$

For multiple packets,

$$\mathbb{P}(Y \ge k) = \sum_{t=k}^{n} \sum_{\substack{T \subseteq [n] \\ |T|=t}} \theta_{k,t}^{\text{ext}}(p) \left(\theta^{\text{ext}}(p)\right)^{t} \left(1 - \theta^{\text{ext}}(p)\right)^{n-t}$$

$$\mathbb{P}(\mathbf{0} \in \text{IECs indexed by } T \text{ only})$$

$$\mathbb{P}(\mathbf{0} \in C_{k,t}^{\text{ext}}) = \sum_{j=k}^{t} {t \choose j} \left(\theta^{\text{ext}}(p)\right)^{j} \left(1 - \theta^{\text{ext}}(p)\right)^{t-j}$$

 $C_{k,t}^{\text{ext}} := \{ \text{sites in at least } k \text{ out of the } t \text{ IECs } \}$

Comparison with simulations

$$p_{k,n,\delta} \approx \min \left\{ p \mid \mathbb{P}(Y \geq k) \geq 1 - \delta \right\}$$
where $Y \sim \text{Bin}\left(n, (\theta^{\text{ext}}(p))^2\right)$

$$\tau_{k,n,\delta} \approx nm^2 \theta(p_{k,n,\delta}) \theta^{\text{ext}}(p_{k,n,\delta})$$

Conclusion: Introducing coded packets with probabilistic forwarding on the grid reduces the expected number of transmissions while ensuring a near-broadcast.

Random Geometric Graphs

What is an RGG?

Intensity: λ

Generating
$$G_m \sim \text{RGG}(\lambda)$$
 on $\Gamma_m = \left[\frac{-m}{2}, \frac{m}{2}\right]^2$

- Sample the number of points, $N \sim \text{Poi}(\lambda m^2)$.
- Choose points X_1, X_2, \dots, X_N uniformly and independently from Γ_m . These form the points of a Poisson point process, Φ , and constitute the vertex set of the RGG.
- Place an edge between any two vertices which are within unit distance of each other.

Formulation

Where is the source?

- Include source at the origin.
- $\Phi^{\mathbf{0}} = \Phi \cup \{\mathbf{0}\};$ Resulting graph $G_m^{\mathbf{0}}$
- Palm probability $\mathbb{P}^{\mathbf{0}}(\cdot) = \mathbb{P}(\Phi^{\mathbf{0}} \in \cdot)$

Is it always connected?

• Component of the origin, $C_0 \equiv C_0(G_m^0)$.

 $R_{k,n}(G_m^0)$ - Successful receivers within C_0

$$p_{k,n,\delta} = \min \left\{ p \mid \mathbb{E}\left[\frac{R_{k,n}(G_m^0)}{|C_0(G_m^0)|}\right] \ge 1 - \delta \right\}$$

 $\tau_{k,n,\delta} = \mathbb{E} [\text{total } \# \text{ transmissions}]$

Idea for Analysis

Probabilistic forwarding on RGG within Γ_m , i.e., G_m^0

Probabilistic forwarding on RGG over \mathbb{R}^2 , \mathcal{G}^0

We will use ideas from continuum percolation and ergodic theory to obtain estimates of $p_{k,n,\delta}$ and $\tau_{k,n,\delta}$

RGG on the R² plane

- Create a tiling of the \mathbb{R}^2 plane.
- Generate independent Poisson point process of intensity λ on each tile.
- Add a point at the origin.
- Connect nodes within unit distance to obtain $\mathcal{G}^{\mathbf{0}}$.

Continuum percolation

- There exists a critical intensity, λ_c s.t. for $\lambda > \lambda_c$ there exists a unique infinite cluster, C.
- Percolation probability:

$$\theta(\lambda) = \mathbb{P}^{\mathbf{0}}(\mathbf{0} \in C)$$

• Ergodic theorem: For $\lambda > \lambda_c$,

$$\frac{|C \cap \Gamma_m|}{\lambda m^2} \stackrel{m \to \infty}{\longrightarrow} \theta(\lambda)$$
 \mathbb{P}-a.s..

Palm probabilities

- Ergodic theorems: \mathbb{P} a.s. results; \mathbb{P} distribution of Φ
- We need w.r.t. \mathbb{P}^{0} ; distribution of $\Phi^{0} = \Phi \cup \{0\}$

An example: Let $\lambda > \lambda_c$ and $\mathcal{G} \sim \mathrm{RGG}(\lambda)$

 $C(\Phi)$: infinite cluster in \mathcal{G} , $C(\Phi^{\mathbf{0}})$: infinite cluster in $\mathcal{G}^{\mathbf{0}}$

$$\frac{|C(\Phi^{\mathbf{0}}) \cap \Gamma_m|}{\lambda m^2} \ge \frac{|C(\Phi) \cap \Gamma_m|}{\lambda m^2}$$

Case 1:

Case 2:

$$\lim_{m \to \infty} \mathbf{E}^{\mathbf{0}} \left[\frac{|C \cap \Gamma_m|}{\lambda m^2} \right] = \lim_{m \to \infty} \mathbf{E} \left[\frac{|C \cap \Gamma_m|}{\lambda m^2} \right]$$

$$K \leq 6$$
 a.s.

$$\frac{|C(\Phi^{0}) \cap \Gamma_{m}|}{\lambda m^{2}} = \frac{|C(\Phi) \cap \Gamma_{m}|}{\lambda m^{2}} + \sum_{i=1}^{K} \frac{|C_{i} \cap \Gamma_{m}|}{\lambda m^{2}}$$

$$\frac{|C(\Phi^{0}) \cap \Gamma_{m}|}{\lambda m^{2}} = \frac{|C(\Phi) \cap \Gamma_{m}|}{\lambda m^{2}}$$

Prob. Forwarding and Marked Point Process

Marked point processes

- Associate each point, X_u , of Φ with a mark $Z(X_u) \in \mathbb{K}$ space of marks
- $\mathbb{P}(Z \in \cdot | \Phi)^{\text{iid}} \sim \Pi(\cdot)$
- $\Pi(\cdot)$ Mark distribution

Single packet probabilistic forwarding

- $\mathbb{K} = \{0, 1\}, \Pi \operatorname{Ber}(p)$
- Transmitters $\Leftrightarrow C_0^+$
- Receivers \Leftrightarrow {nodes in Φ^- adjacent to $C_{\mathbf{0}}^+$ } $\cup C_{\mathbf{0}}^+$

Prob. Forwarding and Marked Point Process

Marked point processes

- Associate each point, X_u , of Φ with a mark $Z(X_u) \in \mathbb{K}$ space of marks
- $\mathbb{P}(Z \in \cdot | \Phi)^{\text{iid}} \sim \Pi(\cdot)$
- $\Pi(\cdot)$ Mark distribution

Single packet probabilistic forwarding

- $\mathbb{K} = \{0, 1\}, \Pi Ber(p)$
- Transmitters $\Leftrightarrow C_0^+$
- Receivers \Leftrightarrow {nodes in Φ^- adjacent to $C_{\mathbf{0}}^+$ } $\cup C_{\mathbf{0}}^+$

Mark: Z=1

PPP: Φ^+

Int.: λp

Mark: Z = 0

PPP: Φ^-

Int.: $\lambda(1-p)$

Prob. Forwarding and Marked Point Process

Marked point processes

- Associate each point, X_u , of Φ with a mark $Z(X_u) \in \mathbb{K}$ space of marks
- $\mathbb{P}(Z \in \cdot | \Phi) \stackrel{\text{iid}}{\sim} \Pi(\cdot)$
- $\Pi(\cdot)$ Mark distribution

Single packet probabilistic forwarding

- $\mathbb{K} = \{0, 1\}, \Pi Ber(p)$
- Transmitters $\Leftrightarrow C_0^+$
- Receivers \Leftrightarrow {nodes in Φ^- adjacent to $C_{\mathbf{0}}^+$ } $\cup C_{\mathbf{0}}^+$

Mark: Z=1

Mark: Z = 0

PPP: Φ^+

PPP: Φ^-

Int.: λp

Int.: $\lambda(1-p)$

Infinite cluster in Φ^+ : C^+

Infinite extended cluster: C^{ext}

Probabilistic forwarding of n pkts

- $\bullet \mathbb{K} = \{0, 1\}^n$
- Marks $\mathbf{Z} = (Z_1, Z_2, \dots, Z_n)$, where $Z_i(\cdot) \stackrel{\text{ind}}{\sim} \text{Ber}(p) \ \forall i$

Main results

$$p_{k,n,\delta} = \min \left\{ p \mid \mathbb{E}\left[\frac{R_{k,n}(G_m^0)}{|C_0(G_m^0)|}\right] \ge 1 - \delta \right\}$$

Define

 $C_{k,n}^{\text{ext}} = \{ \text{nodes present in at least } k \text{ out of } n \text{ IECs} \}$

Theorem*: For
$$\lambda p > \lambda_c$$
,
$$\lim_{m \to \infty} \mathbb{E}\left[\frac{R_{k,n}(G_m^{\mathbf{0}})}{|C_{\mathbf{0}}(G_m^{\mathbf{0}})|}\right] = \frac{1}{\theta(\lambda)} \sum_{t=k}^n \sum_{\substack{T \subseteq [n] \\ |T|=t}} \theta_{k,t}^{\text{ext}} \mathbb{P}^{\mathbf{0}}(\mathbf{0} \in \text{IECs indexed by } T \text{ only}).$$

where
$$\theta_{k,n}^{\text{ext}} \equiv \theta_{k,n}^{\text{ext}}(\lambda, p) = \mathbb{P}^{\mathbf{0}}(\mathbf{0} \in C_{k,n}^{\text{ext}})$$

For
$$\lambda p_{k,n,\delta} > \lambda_c$$
, $\tau_{k,n,\delta} \approx nm^2 \lambda p_{k,n,\delta} \left(\theta(\lambda p_{k,n,\delta})\right)^2$
= $n\left(\lambda p_{k,n,\delta}m^2\right)\theta(\lambda p_{k,n,\delta}) \times \theta(\lambda p_{k,n,\delta})$

Thank you!!