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Capturability-based Analysis, Optimization and
Control of 3D Bipedal Walking

Stéphane Caron, Adrien Escande, Leonardo Lanari, and Bastien Mallein

Abstract—Capturability analysis of the linear inverted pendu-
lum model (LIPM) enabled walking over even terrains based
on the capture point. We generalize this analysis to the inverted
pendulum model (IPM) and show how it enables 3D walking over
uneven terrains based on capture inputs. Thanks to a tailored
optimization scheme, we can compute these inputs fast enough
for a real-time control loop. We implement this approach as
open-source software and demonstrate it in simulations.

Index Terms—Bipedal walking, Capturability, Uneven terrain

I. INTRODUCTION

Capturability quantifies the ability of a system to come to
a stop at a given location. For a humanoid walking in the
linear inverted pendulum mode (LIPM), it is embodied by the
capture point, the point on the ground where the robot should
step in order to bring itself to a stop [1]. More generally, the
robot may stop at a given location after N steps, in which
case we say that its current state is N-step capturable [2].
In recent years, one of the main lines of research in LIPM-
based walking has explored the question of walking from N -
step capturable states by feedforward planning and feedback
control of the capture point [2], [3], [13], [4], [5], [6].

The LIPM owes its tractability to two strong assumptions:
the absence of angular-momentum variation around the center
of mass, and a holonomic constraint on the height of the center
of mass. As a consequence of the latter, a majority of LIPM-
based walking controllers assume a flat terrain. Removing
this holonomic constraint from the LIPM yields the inverted
pendulum model (IPM), for which our understanding is at
an earlier stage. Previous study on the capturability of the
IPM [7], [8], [9] focused on zero-step capturability for planar
motions (sagittal and vertical, non-lateral), a stage that is
sufficient for balance control but not for walking.1

In the present study, we extend capturability of the IPM to
3D motions and take it to the stage of bipedal walking. This
advance is grounded in three developments:
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• Analysis: a mathematical characterization of IPM cap-
turability into capture inputs (Section II)

• Optimization: a numerical method tailored to the com-
putation of these capture inputs (Section IV)

• Control: the combination of zero-step (Section III) and
one-step (Section V) capture inputs to realize bipedal
walking over uneven terrains (Section VI)

We reserve for Section VII a broader discussion on related
and future works.

II. ANALYSIS OF THE INVERTED PENDULUM MODEL

TODO: start from Newton equation
The inverted pendulum model retains the LIPM assumption

of no angular-momentum variation around the center of mass
(CoM), but strips away the holonomic constraint on CoM
height. Its equation of motion is:

c̈(t) = λ(t)(c(t)− r(t)) + g (1)

where c is the center of mass of the robot and g is the gravity
vector, also written g = −gez with g the gravitational constant
and ez the vertical of the inertial frame. The two control
inputs of the system are the center of pressure (CoP) r and
the stiffness λ.

TODO: figure where IPM = plant, so that controller outputs
= IPM inputs = (CoP, stiffness) becomes clear (pre-print
readers mentioned this was confusing)

TODO: cite Kamioka’s paper on LTVIP

A. Feasibility conditions

To be feasible, the CoP r must belong to the contact area C
under the supporting foot. This area is also time-varying but
changes only a finite number of times, i.e. C(t) = C0 for t ∈
[0, t1), C1 for t ∈ [t1, t2), ..., and CN for t ≥ tN . The transition
from one contact to the next is called a contact switch. A
trajectory whose contact sequence C(t) contains N switches
is called an N -step trajectory.

We assume that all contact areas are planar and polygonal.
Let us denote by o the center of the area C and by n its
normal. The CoP r belongs to the plane of contact if and
only if (r − o) · n = 0. The height of the CoM c above the
contact area is the algebraic distance z̄(c) such that c− z̄(c)ez
belongs to the contact plane. It is readily computed as:

z̄(c)
def
=

(c− o) · n
(ez · n)

(2)

Note how, when walking on a horizontal floor, ez and n are
aligned and z̄ is simply the z-coordinate of the center of mass.
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To be feasible, the stiffness λ must be non-negative by
unilaterality of contact. We furthermore impose that λ ∈
[λmin, λmax] to account for two phenomena: a minimum pres-
sure λmin > 0 below which contact is uncertain, and a
maximum achievable contact force. Note that we do not
model Coulomb friction conditions here: having found in a
previous work that CoP feasibility constraints are usually more
stringent than friction constraints when walking over uneven
terrains [11], we assume sufficient friction in the present study.

An input function t 7→ (λ(t), r(t)) is feasible when both
λ(t) and r(t) are feasible at all time t. A general control
problem is to find a feasible input function such that the
resulting output trajectory c(t) has certain properties. For the
locomotion problem of “getting somewhere”, we will focus
on the property of converging to a desired location.

B. N -step capturability

A natural choice of the IPM state consists of its CoM
position and velocity x =

[
c ċ

]
.

Definition 1 (Static equilibrium). A state is a static equi-
librium when its velocity is zero and can remain zero with
suitable constant controls.

Static equilibria, sometimes called capture states [1], are
the asymptotic targets of capturability analysis, the desired
locations that the CoM should converge to. A static equi-
librium is characterized by its CoM position cf and the
stationary contact Cf upon which it is realized. Let us use
the shorthand z̄f

def
= z̄(cf) for the static CoM height above Cf .

The only control input λf , rf that maintains the system in this
equilibrium is such that cf = rf − g/λf , that is:

λf(cf) =
g

z̄f
rf(cf) = cf − z̄fez (3)

Given an N -step contact sequence C(t) from C0 to CN ,
we say that a state xi is (N -step) capturable when there
exists a feasible input function λ(t), r(t) such that applying
Equation (1) from xi brings the system asymptotically to an
equilibrium xf . We will call such functions capture inputs of
the capturable state xi, and denote their set by Ixi,xf

. We will
call capture trajectory the CoM trajectory c(t) resulting from
a capture input. In what follows, we will use the subscript �i

to denote the “initial” or instantaneous state of the system, and
the subscript �f for its “final” or asymptotic state.

By definition, xi is capturable if and only if there exists xf

such that Ix,xf
6= ∅. The set Ix,xf

is however rather large and
contains mathematical oddities. In what follows, we restrict it
to inputs that converge asymptotically:

Icxi,xf
=

{
(λ(t), r(t)) ∈ Ixi,xf

:
limt→∞ λ(t) = λf

limt→∞ r(t) = rf

}
(4)

The following property shows that this simplification does not
affect capturability.

Property 1. For every pair of states xi and xf , Ixi,xf
is non-

empty if and only if Icxi,xf
is non-empty.

In other words, if there exists a capture input λ(t), r(t)
steering an initial state xi to a static equilibrium xf , then

there exists another input λc(t), rc(t) accomplishing the same
while also converging. A proof of this property following
from controllability of the inverted pendulum is given in
Appendix A.

C. Dichotomy of the components of motion

We can rewrite the IPM equation of motion (1) equivalently
as a first-order linear time-variant system:[

ċ
c̈

]
=

[
0 I
λI 0

] [
c
ċ

]
+

[
0

g − λr

]
(5)

where I is the 3×3 identity matrix. This equation has the form
ẋ = A(t)x+b(t) where the system matrix A depends on the
stiffness input λ, while the forcing term b varies with both
inputs λ and r. In the present analysis, we focus on open-loop
control rather than feedback, thus stressing the linear time-
variant rather than nonlinear aspect of Equation (1).

Let us now decouple x into its convergent and divergent
components of motion [12]. First, apply the time-varying
change of coordinates x = Sz with:

S =
1

γ + ω

[
I I
−ωI γI

]
⇐⇒ S−1 =

[
γI −I
ωI +I

]
(6)

Here, we assume that γ(t) and ω(t) are positive functions of
time, of class C1. We will refer to them as pendulum dampings
in accordance with their physical unit. The new state vector z
consists of two components ζ and ξ defined by:

ζ = γc− ċ (7)
ξ = ωc+ ċ (8)

and is subject to ż = Ãz + b̃ where:

Ã = S−1(AS− Ṡ) (9)

b̃ = S−1b (10)

While the calculation of b̃ is straightforward, developping that
of Ã yields:

Ã =
1

γ + ω

[
(γ̇ − γω − λ)I (γ̇ + γ2 − λ)I
(ω̇ − ω2 + λ)I (ω̇ + ωγ + λ)I

]
(11)

We eliminate non-diagonal terms in this state matrix by
imposing Riccati equations on the two damping factors:

γ̇ = λ− γ2 (12)

ω̇ = ω2 − λ (13)

This results in the following dynamics for the state z:

ż =

[
ζ̇

ξ̇

]
=

[
−γI 0
0 ωI

] [
ζ
ξ

]
+

[
λr − g
g − λr

]
(14)

Therefore, the system can now be decoupled into two linearly
independent components ζ and ξ that evolve according to their
own dynamics, provided that there exists two C1 positive finite
solutions to (12) and (13).
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D. Solutions to the Riccati equations

In this subsection, we verify the existence of damping
solutions and exhibit some of their properties that will prove
useful to characterize those that don’t diverge.

Property 2. Assume that we are given λ such that λ(t) ∈
[λmin, λmax] at all times t. Then, there exists a unique ωi > 0
such that the solution ω of (13) with ω(0) = ωi is non-negative
and finite at all times. Moreover, this solution is such that:

∀t > 0, ω(t) ∈ [
√
λmin,

√
λmax] (15)

In other words, there is a one-to-one mapping between
the stiffness function λ(t) and its non-diverging filtered
damping ω(t). This property is cornerstone to our following
development, as our solutions to (1), and henceforth N -
step capturability conditions, will be written in terms of ω.
Using Property 2, these equations can be translated into their
counterparts in the physically relevant quantity λ.

Proof. Consider first the case of a constant input λ. One
can note that the differential equation ẏ = y2 − λ has two
equilibrium points: one stable −

√
λ and one unstable

√
λ.

More precisely, given y0 ∈ R, the only solution of this
equation satisfying y(0) = y0 is given by

y(t) =



√
λ
e−2
√
λt y0+

√
λ

y0−
√
λ

+1

e−2
√
λt y0+

√
λ

y0−
√
λ
−1

if y0 6∈ [−
√
λ,
√
λ]

√
λ
e−2
√
λt y0+

√
λ

y0−
√
λ
−1

e−2
√
λt y0+

√
λ

y0−
√
λ

+1
if y0 ∈ (−

√
λ,
√
λ)

y0 if y0 = ±
√
λ.

(16)

The initial condition y0 settles the behavior of the solution at
all times. Define the time T = 1

2
√
λ

log y0+
√
λ

y0−
√
λ

, then:

• If 0 ≤ y0 <
√
λ, then limt→∞ y(t) = −

√
λ and the

solution y becomes negative after time T .
• If y0 =

√
λ, then y(t) =

√
λ for all t > 0.

• If y0 >
√
λ, then limt→T y(t) = +∞: the solution

explodes in finite time.
Let us move now to the general case where λ(t) is time-

varying, and denote by ω a non-negative, non-explosive so-
lution to (13). If ω(t0) >

√
λmax at some time t0 > 0,

then choosing y as the solution to ẏ = y2 − λmax with
y(t0) = ω(t0), we observe that, as long as 0 ≤ y(t) ≤ ω(t),

ω̇(t)− ẏ(t) = ω2(t)− y2(t) + λmax − λ(t) ≥ 0 (17)

Therefore, ω − y is nondecreasing, and y(t) ≤ ω(t) holds
until the explosion time T of y. This shows that ω explodes
in finite time, in contradiction with the hypothesis. Similarly,
if ω(t0) <

√
λmin for some t0 > 0, we can bound from above

ω(t) by a solution to ẏ = y2 − λmin that becomes negative
in finite time, contradicting once again the hypothesis. The
bounds (15) must therefore hold.

We now prove the uniqueness of the non-negative non-
exploding solution of (13). Suppose that one could find two
such solutions, ω1 and ω2. As observed above, these functions
remain in the interval [

√
λmin,

√
λmax]. Consider w.l.o.g. that

ω1(0) > ω2(0). Then, as long as ω1(t) > ω2(t),

ω̇1 − ω̇2 = (ω1 − ω2)(ω1 + ω2) ≥ 2
√
λmin(ω1 − ω2) (18)

As a consequence, ω1(t) − ω2(t) ≥ (ω1(0) − ω2(0))e2
√
λmint

at all times, showing that the two function cannot be bounded
at the same time.

To finally prove the existence of the solution, we observe
there exists a unique ω(0) ∈ [

√
λmin,

√
λmax] such that for

all t > 0, we have yt(0) > ω(0) > y
t
(0) where yt and y

t
are the solutions of (13) with conditions yt(t) =

√
λmax and

y
t
(t) =

√
λmin. The solution ω starting from this value ω(0)

remains within bounds by construction (the time it crosses√
λmin or

√
λmax is greater than any finite time t).

Let us now turn to the other damping γ. While there is a
unique solution ω corresponding to a given λ, there are many
different non-negative finite functions γ that satisfy (12). As
a matter of fact, each choice of γ(0) > 0 yields an admissible
solution:

Property 3. Assume that we are given λ such that λ(t) ∈
[λmin, λmax] at all times t. For all γ(0) > 0, the solution γ of
(12) is non-negative and finite at all times. Moreover:√

λmin ≤ lim inf
t→∞

γ(t) ≤ lim sup
t→∞

γ(t) ≤
√
λmax (19)

Proof. The existence and the uniqueness of the solution on
a maximal interval are consequences of the Cauchy-Lipschitz
theorem. As in the previous proof, we can compare γ with the
functions y and y, respectively solutions to ẏ = λmin− y2 and
ẏ = λmax−y2 with y(0) = y(0) = γ(0). Then, y(t) ≤ γ(t) ≤
y(t) at all times t, and the rest of the proof is a consequence
of limt→∞ y(t) =

√
λmin and limt→∞ y(t) =

√
λmax.

An interesting consequence of these two properties is the
following asymptotic behavior:

Corollary 4. If limt→∞ λ(t) = λf , then

lim
t→∞

ω(t) = lim
t→∞

γ(t) =
√
λf . (20)

Proof. We only consider the case of ω, the proof for γ
following the same derivation. By definition of the limit, for
any ε > 0, there exists t0 > 0 large enough so that ∀t >
t0, |λ(t)−λf | < ε. Next, remark that the time-shifted function
ω̃(t)

def
= ω(t+t0) is solution of the equation ˙̃ω(t) = ω̃(t)2−λ̃,

where ∀t > 0, λ̃(t) = λ(t+ t0) ∈ [λf − ε, λf + ε]. Property 2
then shows that ω(t+ t0) ∈ [

√
λf − ε,

√
λf + ε] for all t > 0.

As a consequence, for any ε > 0:√
λf − ε ≤ lim inf

t→∞
ω(t) ≤ lim sup

t→∞
ω(t) ≤

√
λf + ε (21)

Taking arbitrary small ε→ 0, we conclude that the limit of ω
as t→∞ exists and is equal to

√
λf .

We conclude from the above properties that the solutions ζ
and ξ to Equation (14) are well-defined, and we now study
their properties.

E. Convergent component of motion

The component ζ corresponding to the damping γ is subject
to the differential equation:

ζ̇ = −γζ + (λr − g) (22)
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The general solution to this equation is given by:

ζ(t) =

(
ζ(0) +

∫ t

0

eΓ(τ)(λ(τ)r(τ)− g)dτ

)
e−Γ(t) (23)

where Γ is the antiderivative of γ such that Γ(0) = 0,
i.e. Γ(t) =

∫ t
0
γ(t)dt. It satisfies the following two identities:

deΓ

dt
= γeΓ d2eΓ

dt2
= (γ̇ + γ2)eΓ = λeΓ (24)

The asymptotic behavior of ζ is tied to that of the two inputs
λ and r of the inverted pendulum:

Property 5. Consider an input function λ(t), r(t) such that
limt→∞ λ(t) = λf and limt→∞ r(t) = rf , and let γ denote
any solution to (12). Then, the solution ζ of (22) satisfies:

lim
t→∞

ζ(t) =
√
λf

(
rf −

g

λf

)
=
√
λfcf (25)

Proof. By Corollary 4, limt→∞ γ(t) =
√
λf , therefore its

antiderivative satisfies limt→∞ Γ(t)/t =
√
λf as well. In

particular, Γ(t) diverges to ∞, so that:

ζ(t) ∼
t→∞

e−Γ(t)

∫ t

0

eΓ(τ)(λ(τ)r(τ)− g)dτ (26)

Applying l’Hôpital’s rule, we conclude that:

lim
t→∞

ζ(t) = lim
t→∞

∫ t
0
eΓ(τ)(λ(τ)r(τ)− g)dτ

eΓ(t)
(27)

= lim
t→∞

eΓ(t)(λ(t)r(t)− g)

γ(t)eΓ(t)
=

(λfrf − g)√
λf

This property warrants the name convergent component of
motion [13] given to ζ: regardless of the state of the system,
any input function that converges will make ζ converge as
well. From a control perspective, this component does not
require as much attention as its divergent counterpart.

F. Divergent component of motion

The component ξ corresponding to the damping ω is subject
to the differential equation:

ξ̇ = ωξ + g − λr (28)

The general solution to this equation is given by:

ξ(t) =

(
ξ(0) +

∫ t

0

e−Ω(τ)(g − λ(τ)r(τ))dτ

)
eΩ(t) (29)

where Ω is the antiderivative of ω such that Ω(0) = 0,
i.e. Ω(t) =

∫ t
0
ω(t)dt. It satisfies the following two identities

de−Ω

dt
= −ωe−Ω d2e−Ω

dt2
= (ω2 − ω̇)e−Ω = λe−Ω (30)

Note how ω ∈ [
√
λmin,

√
λmax] implies that Ω grows at least

linearly. Therefore, as long as λ and r remain bounded, the
integral

∫∞
0
e−Ω(τ)(g−λ(τ)r(τ))dτ is well-defined and finite.

In general, set aside the particular condition that we are about

to discuss, the function ξ(t) diverges as t→∞, owning ξ its
name of divergent component of motion (DCM) [13].2

Similarly to what we saw in Property 2 for the damping
function ω(t), a careful choice of the initial condition ξ(0) can
guarantee that ξ(t) converges as well. This choice is known
as the boundedness condition [14]:

Property 6 (Boundedness condition). Consider an input
function λ(t), r(t) such that limt→∞ λ(t) = λf and
limt→∞ r(t) = rf , and let ω denote the non-negative finite
solution of (13). Then, there exists a unique ξi such that the
solution ξ of (28) with ξ(0) = ξi remains finite at all times.
Moreover, this initial condition is given by:

ξi =

∫ ∞
0

e−Ω(t)(λ(t)r(t)− g)dt (31)

Then, the solution ξ of (28) satisfies:

lim
t→∞

ξ(t) =
√
λf

(
rf −

g

λf

)
=
√
λfcf (32)

Proof. The proof is very similar to that of Property 5. The
solution (29) with ξ(0) = ξi from Equation (31) becomes:

ξ(t) = eΩ(t)

∫ ∞
t

e−Ω(τ)(λ(τ)r(τ)− g)dτ (33)

Applying l’Hôpital’s rule, we conclude by Corollary 4 that:

lim
t→∞

ξ(t) = lim
t→∞

e−Ω(t)(λ(t)r(t)− g)

ω(t)e−Ω(t)
=
λfrf − g√

λf

Recalling from Equation (8) that ξ = ωc+ ċ, we note how
Equation (31) is another condition (distinct from Proposition
2) that the initial damping value ωi must satisfy so that ξ(t)
remains bounded:

ωici + ċi =

∫ ∞
0

e−Ω(t)(λ(t)r(t)− g)dt (34)

The left-hand side of this equation involves the instantaneous
state of the system, whereas its right-hand side involves all its
future inputs λ and r.

In the familiar setting where the LIPM is used for constant-
height locomotion over a flat floor, ez = n and λ is kept equal
to a constant ω2

c . Assuming a constant CoP rc, Equation (36)
boils down to:

ωcci + ċi =

∫ ∞
0

(ω2
crc − g)e−ωctdt = ωcrc −

g

ωc
(35)

Over the x and y coordinates, this equation implies that rxyc =
cxyi + ċxyi /ωc, i.e. the CoP is located at the capture point.
Over the z coordinate, it yields ωc =

√
g/z̄i, the well-known

expression of the natural frequency of the LIPM.

2 More specifically, our analysis considers a time-varying divergent com-
ponent of motion [38]. While previous works such as [13], [5], [38] chose
to write their DCMs as positions c + ċ/ω, we cast them as velocities here
to simplify calculations (consider the derivative of a product uv compared to
that of a ratio u/v). The formula of the DCM itself is not a crucial design
choice, as we will discuss at the end of this Section.
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G. Characterization of capture states and capture inputs

We can now state the main result of this Section: a practical
characterization of the set Icxi,xf

of capture inputs.

Property 7. Let xi =
[
ci ċi

]
denote a capturable state and

xf =
[
cf 0

]
a static equilibrium. Then, t 7→ λ(t), r(t) is a

capture input from xi to xf if and only if:
(i) its values λ(t) and r(t) are feasible for all t ≥ 0,

(ii) limt→∞ λ(t) = λf(cf) and limt→∞ r(t) = rf(cf),
(iii) it satisfies the boundedness condition:∫ ∞

0

(λ(t)r(t)− g)e−Ω(t)dt = ωici + ċi (36)

where ωi is the initial value of the unique bounded solution ω
associated with λ (Property 2) and Ω is the antiderivative of
ω such that Ω(0) = 0.

This property is at once a characterization of both capturable
states and their capture inputs: by Property 1, a state is
capturable if and only if there exists a target equilibrium xf

and an input function that satisfies (i)–(iii).

Proof of the ⇒ implication. Let λ(t), r(t) denote a capture
input from Icxi,xf

, with x(t) the smooth trajectory resulting
from this input via the equation of motion (1). Its boundary
values x(0) = xi and x(∞) = xf being bounded, this
trajectory must be bounded as well. As ζ(t) is always bounded
by Proprety 5, this in turns implies that its the divergent
component ξ(t) is bounded, and must therefore satisfy Equa-
tion (36) by Property 6. Next, let us denote by λf , rf the limits
of λ(t), r(t) as time goes to infinity. Using Properties 5 and
6, the two components converge to:

lim
t→∞

ζ(t) = lim
t→∞

ξ(t) =
√
λf

(
rf −

g

λf

)
(37)

Recalling from Corollary 4 that γ and ω converge to
√
λf , we

can take the limit in the mapping (6)–(8):

lim
t→∞

c(t) = lim
t→∞

ζ(t) + ξ(t)

γ(t) + ω(t)
= rf −

g

λf
= cf (38)

Therefore, λf = λf(cf) and rf = rf(cf).

Proof of the ⇐ implication. Reciprocally, assuming (i)–(iii),
Equation (37) holds again by Properties 5–6 and Corollary 4.
Furthermore,

lim
t→∞

ċ(t) = lim
t→∞

−ω(t)ζ(t) + γ(t)ξ(t)

γ(t) + ω(t)
= 0 (39)

Thus, the pendulum driven by λ(t), r(t) converges to the static
equilibrium xf .

A noteworthy methodological point here is that the expres-
sion of the divergent component of motion is not unique.
Rather, a DCM is chosen by the roboticist. For example,
in [10] we considered a different DCM ξ̃

def
= ω(c−r) + ċ− ṙ

yielding a boundedness condition written:∫ ∞
0

(r̈(τ)− g)e−Ω(τ)dτ = ωici + ċi (40)

This condition is the same as (36), which can be seen by
applying a double integration by parts using Equation (30).

H. Timeless parameterization

The infinite-time integral from condition (iii) of Property 7
raises computational questions. We can however reduce it to
a finite integral by defining the adimensional quantity s(t) =
e−Ω(t). This new variable ranges from s = 1 when t = 0 to
s = 0 when t→∞. Its time derivatives are:

ṡ(t) = −ω(t)s(t) s̈(t) = λ(t)s(t) (41)

Owing to the bijective mapping between t and s, we can define
ω, γ and λ as functions of s rather than as functions of t. This
approach is e.g. common in time-optimal control [15]. Let us
denote by �′ derivation with respect to s, as opposed to �̇
for derivation with respect to t. The Riccati equation (13) of
ω becomes:

λ = ω2 − ω̇ = ω2 − ṡω′ = ω(ω + sω′) = ω(sω)′ (42)

Injecting this expression into the time integral (36) of the
boundedness condition yields:∫ ∞

0

(λ(t)r(t)− g)s(t)dt =

∫ 1

0

(ω(sω)′r(s)− g)
ds

ω
(43)

We can now rephrase our characterization of capture inputs
as functions of s rather than time t.

Property 8. Let xi =
[
ci ċi

]
denote a capturable state and

xf =
[
cf ċf

]
a static equilibrium. Then, s 7→ λ(s), r(s) is

a capture input from xi to xf if and only if:
(i) its values λ(s) and r(s) are feasible for all s ∈ [0, 1],

(ii) lims→0 λ(s) = λf(cf) and lims→0 r(s) = rf(cf),
(iii) it satisfies the boundedness condition:∫ 1

0

r(s)(sω)′ds− g
∫ 1

0

ds

ω(s)
= ωici + ċi (44)

where ωi denotes the initial value (at s = 1) of the unique
bounded solution ω associated with λ (Property 2).

This characterization lays the foundation upon which we
can now compute capture inputs in practical situations.

III. ZERO-STEP CAPTURABILITY OF THE 3D IPM

Let us consider zero-step capturability, where the contact C
is already established, and used to absorb the momentum of
the initial state xi until a static equilibrium xf is reached. This
level of capturability enables push recovery [1], [16], [9] up
to post-impact fall recovery in worst-case scenarios [17], [18].

Taking the dot product of the boundedness condition (44)
with the normal n of the contact area C yields:∫ 1

0

ds

ω(s)
=
ωiz̄i + ˙̄zi

g
(45)

where z̄i
def
= z̄(ci) is the initial CoM height. Meanwhile, the

horizontal components of the condition are:∫ 1

0

rxy(s)(sω)′ds = ωic
xy
i + ċxyi (46)

Condition (45) involves gravity but does not depend on the
CoP input, while its counterpart (46) includes the CoP but
does not depend on gravity.
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A. Example of the fixed-CoP strategy

When the CoP input is stationary, i.e. in a point-foot model,
the Gram determinant G = ((c−r)×ċ)·g becomes invariant.3

There are then two possible outcomes: either G = 0, which
means the three vectors are coplanar and the robot may
stabilize using a 2D strategy [7], [8], [9]; or G 6= 0 and it is
impossible to bring the system to an equilibrium where ċ = 0.
This shows simultaneously two properties: first, that sagittal
2D balance control is the most general solution for point-foot
models, and second, that these models have a very limited
ability to balance, as they need to re-step at the slightest lateral
change in linear momentum. The ability of flat-footed bipeds
to absorb these perturbations (to some extent) without stepping
comes from continuous CoP variations.

For now, let us consider a stationary CoP input r(s) =
rf(cf) and assume that G = 0, i.e. the three vectors ċi,
ci − rf and g are coplanar. The CoP component (46) of the
boundedness condition becomes:

rxyf = cxyf = cxyi +
ċxyi

ωi
(47)

where we recognize the well-know expression of the capture
point, save for the fact that ωi is now the initial value of a
time-varying function. This value is given by:

ωi =
ċxi

cxf − cxi
=

ċyi
cyf − c

y
i

(48)

The right-hand side of Equation (45) is fully determined by the
initial state xi and desired equilibrium cf . In these conditions,
the conditions for 3D capturability given by Property 8 boil
down to 1D conditions over λ:

(i) ∀s ∈ [0, 1], λ(s) ∈ [λmin, λmax]
(ii) lims→0 λ(s) = λf(cf)

(iii) ω(1) = ωi and
∫ 1

0
ds
ω(s) = 1

g (ωiz̄i + ˙̄zi)

where ω is the bounded solution to the Riccati equation (42)
λ = ω(sω)′. We call this problem the 1D capture problem. Its
main difficulty lies in the resolution of the integral equality
constraint over the inverse of ω.

B. Formulation of a first optimization problem

Let us partition the interval [0, 1] into n fixed segments
0 = s0 < s1 < . . . < sn−1 < sn = 1. We compute solutions
to the 1D problem (i)–(iii) where λ(s) is piecewise constant
over this partition, that is, ∀s ∈ (sj , sj+1], λ(s) = λj . Define:

ϕ(s)
def
= s2ω2 δj

def
= s2

j+1 − s2
j (49)

The quantity ϕ represents a squared velocity (41) and is
commonly considered in time-optimal retiming (see e.g. [?]).
Remarking that ϕ′ = 2sλ from the Riccati equation (42), we
can directly compute ϕ(s) for s ∈ [sj , sj+1] as:

ϕ(s) =

j−1∑
k=0

λkδk + λj(s
2 − s2

j ) = ϕ(sj) + λj(s
2 − s2

j ) (50)

3 Short proof: take the cross-product of Equation (1) with c̈, then the scalar
product of the result with g to obtain ((c − r) × c̈) · g = 0. Conclude by
noting that this expression is the time derivative of ((c− r)× ċ) · g.

In what follows, we use the shorthand ϕj
def
= ϕ(sj). The values

λ(s) and ω(s) for s ∈ (sj , sj+1] can be computed back from
ϕ using the two equations above:

λj =
ϕj+1 − ϕj

δj
ω(s) =

1

s

√
ϕj + λj(s2 − s2

j ) (51)

In particular, lims→0 λ(s) = λ1 = ϕ1/δ0. Convergence to
λf thus requires that ϕ1 = δ0λf . In this setting, λf is a
free parameter, i.e. it is not determined by the boundedness
condition. We set it as λf = g/z̄f where z̄f corresponds to
the CoM height of the robot at rest with an extended leg (e.g.
z̄f = 0.8 m is a suitable value for the HRP-4 model).

We can now calculate the left-hand side of the gravity
component of the boundedness condition (45):∫ 1

0

ds

ω(s)
=

n−1∑
j=0

∫ sj+1

sj

sds√
ϕj + λj(s2 − s2

j )
(52)

=
n−1∑
j=0

∫ δj

0

dv

2
√
ϕj + λjv

(53)

=

n−1∑
j=0

1

λj

[√
ϕj + λjδj −

√
ϕj

]
(54)

=

n−1∑
j=0

δj√
ϕj+1 +

√
ϕj

(55)

Altogether, these expressions allow us to formulate all
conditions (i)–(iii) as equality and inequality constraints over
the vector ϕ def

=
[
ϕ1 . . . ϕn

]
. Note that this vector starts from

ϕ1, as ϕ0 = 0 by definition, and that ωi =
√
φn from Equa-

tion (49). Adding a regularizing cost function over variations
of λ to these constraints yields the following optimization
problem:

minimize
ϕ∈Rn

n−1∑
j=1

[
ϕj+1 − ϕj

δj
− ϕj − ϕj−1

δj−1

]2

(56a)

subject to
n−1∑
j=0

δj√
ϕj+1 +

√
ϕj
−
z̄i
√
ϕn + ˙̄zi

g
= 0 (56b)

ϕn = ω2
i (56c)

∀j < n, λminδj ≤ ϕj+1 − ϕj ≤ λmaxδj (56d)
ϕ1 = δ0λf = δ0g/z̄f (56e)

From Property 8, this problem produces capture inputs that
steer the system to the desired static equilibrium at height z̄f

above the fixed CoP. It is “almost” a quadratic program: it
has a quadratic cost function and linear constraints, except for
Equation (56b) which is a nonlinear equality constraint.

C. Time-varying CoP strategy

Let us now turn to time-varying centers of pressure. Equa-
tion (46) admits a simple solution when the CoP input follows
a straight line from ri to rf :

r(s) = rf + (ri − rf)f(sω) (57)

where f denotes any smooth function that satisfies:
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Contact
Area

Fig. 1. Linear time-varying CoP trajectory. Variations of the center
of pressure inside the contact area allow the robot to adjust its divergent
component of motion without re-stepping.

• f(ωi) = 1: the CoP is initially located at ri,
• f(0) = 0: the CoP converges to rf ,
• f is increasing: we exclude solutions where the CoP

would move back and forth along its supporting line,
• f is integrable: let F denote its antiderivative such that
F (0) = 0. It is positive by monotonicity of f .

Figure 1 depicts the linear CoP trajectory resulting from
this choice. Intuitively, the initial CoP ri will be chosen
on the other side of the line ci + Rċi compared to rf in
order to progressively “reorient” ċ(t) toward rf , similarly to
the behavior observed in the LIPM with linear capture-point
feedback control [3], [4], [5].

We should now ensure that our choice of CoP input satisfies
all conditions (i)–(iii) from Property 8. The convergence
condition (ii) is satisfied from the properties we impose on f .
Also, we choose the target CoP rf as the center of the contact
area, i.e. the point furthest away from inequality constraints.

To fulfill the boundedness condition (iii), the initial CoP
ri must satisfy Equation (46). Its horizontal coordinates are
therefore:

rxyi = rxyf +
ωi(c

xy
i − r

xy
f ) + ċxyi

F (ωi)
(58)

The current state and target equilibrium being given, the only
free variable on the right-hand side is ωi. The complete world
coordinates of ri are readily available from rxyi by vertical
projection:

ri = rxyi − z̄(r
xy
i )ez (59)

To fulfill the feasibility condition (i), we need only ensure
that both ends ri and rf of the CoP segment belong to the
polygonal contact area. The latter does by definition. For the
former, the constraint that ri belongs to the contact polygon
can be described in halfspace-representation by a matrix-vector
inequality Frxyi ≤ p, with F an m × 2 matrix and p an m-
dimensional vector. Representing the contact polygon in the
horizontal plane rather than in the contact frame makes it more
convenient to work with the boundedness condition (58), and
is possible thanks to Equation (59). For example, a rectangular
contact area written in the contact frame (t, b,n) as:

±t · (ri − o) ≤ X (60)
±b · (ri − o) ≤ Y (61)

can be reformulated equivalently in the horizontal plane:

±(b× ez)(rxyi − o
xy) ≤ X(ez · n) (62)

±(t× ez)(rxyi − o
xy) ≤ Y (ez · n) (63)

Capture Problem
Parameters:
• Feasibility bounds (λmin, λmax) and (ωi,min, ωi,max)
• Initial height z̄i, its derivative ˙̄zi, and target height z̄f

• Number of steps n and discretization steps δ1, . . . , δn

minimize
ϕ∈Rn

n−1∑
j=1

[
ϕj+1 − ϕj

δj
− ϕj − ϕj−1

δj−1

]2

(70a)

subject to
n−1∑
j=0

δj√
ϕj+1 +

√
ϕj
−
z̄i
√
ϕn + ˙̄zi

g
= 0 (70b)

ω2
i,min ≤ ϕn ≤ ω2

i,max (70c)

∀j < n, λminδj ≤ ϕj+1 − ϕj ≤ λmaxδj (70d)
ϕ1 = δ0λf = δ0g/z̄f (70e)

Injecting Equation (58) into inequalities Frxyi ≤ p yields:

[F(cxyi − r
xy
f )]ωi + [Frxyf − p]F (ωi) ≤ −Fċxyi (64)

At this stage, the roboticist can explore different CoP
strategies via the choice of a function F . We consider a power
law parameterized by α ∈ (0, 1):

f(sω) =

(
sω

ωi

) α
1−α

=⇒ F (ωi) = (1− α)ωi (65)

With this choice, the horizontal coordinates of ri become:

rxyi = rxyf +
1

1− α

[
cxyi +

ċxyi

ωi
− rxyf

]
(66)

where we recognize, over horizontal coordinates, the same
expression as with capture-point feedback control in the
LIPM [3], [4], [5]. In the present case, this choice has the
advantage of making inequality (64) linear:

[αFrxyf + (1− α)p− Fcxyi ]ωi ≥ Fċi (67)

Each line of this vector inequality uωi ≥ v provides a lower
or upper bound on ωi depending on the sign of the factor in
front of it:

ωi,min = max
(√

λmin, {vj/uj , uj > 0}
)

(68)

ωi,max = min
(√

λmax, {vj/uj , uj < 0}
)

(69)

We can now update our optimization problem to this more
general setting. Inequalities 0 < ωi,min ≤ ωi ≤ ωi,max
yield linear inequality constraints on the last optimization
variable, written as ω2

i,min ≤ ϕn ≤ ω2
i,max. Wrapping up

this development, we obtain the capture problem (70). This
problem embodies all conditions (i)–(iii) from Property 8 and
therefore produces capture inputs that steer the system to the
desired static equilibrium cf = rf + z̄fez .

D. Computation and behavior of CoM capture trajectories

Computing the capture trajectory c(t) corresponding to the
solution ϕ of a capture problem can be done by backward
recursion. This operation won’t be necessary in our model
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Fig. 2. Zero-step capture trajectories for different contact locations.
The horizontal distance d from CoM to contact varies while the initial CoM
position and velocity are kept constant. Red discs indicate the initial CoP
location ri. The regularization cost keeps the trajectory as close as possible to
a LIPM via CoP variations. When there is no linear solution, height variations
are resorted to for additional acceleration or braking.

predictive controller, which only requires the initial control
inputs λi and ri computed from ϕ via Equations (51) and
(66). However, it shows how to recover time functions from
their counterparts in s.

First, let us calculate the times tj = t(sj) where the
stiffness λ switches from one value to the next. Recall how
piecewise constant values of λ are readily computed from ϕ
via Equation (51). On an interval [tj+1, tj) where λ(t) = λj
is constant, we can solve the differential equation (41) with
boundary condition s(tj) = sj to obtain the next switch time
tj = t(sj) as:

t(sj) = tj+1 +
1√
λj

log

(√
ϕj+1 +

√
λjsj+1

√
ϕj +

√
λjsj

)
(71)

This formula allows us to compute iteratively the time partition
0 = tn < tn−1 < . . . < t1 < ∞ of stiffness switches.
Finally, we can compute the CoM trajectory iteratively as well
by applying the constant-stiffness solution to Equation (1) on
each consecutive segment [tj+1, tj ].

As an initial evaluation, we solve the capture prob-
lem (70) using the off-the-shelf nonlinear interior-point solver
IPOPT [21]. Figure 2 depicts the CoM capture trajectories
obtained by applying the above algorithm to optimal capture
solutions ϕ∗. Observe how their behavior is hierarchical: CoP
variations are used first to keep the trajectory as linear as
possible; then, additional CoM height variations are resorted
to when CoP bounds are saturated.

Starting from various capturable states and contact loca-
tions, we observed that the off-the-shelf solver finds solutions
in around 1 to 3 ms on a commercial laptop computer (a
deeper performance investigation will be carried out in Section
IV-F), which is ten times faster than the performance obtained
by the same solver on a direct transcription of centroidal
dynamics [11]. This observation warrants further investigation
into this new optimization problem.

IV. OPTIMIZATION OF CAPTURE PROBLEMS

The ability to compute capture inputs fast is crucial to make
the 3D IPM generalization as “cheap” as possible compared to
its LIPM counterpart. While the capture problem (70) belongs
to the general class of nonconvex optimization, computation
times obtained with the off-the-shelf solver suggest that they
are actually easier to solve than generic nonconvex problems.

We will see that that there are indeed structural properties that
we can leverage into a more efficient resolution scheme.

This section presents a dedicated solver for the capture
problem (70) which is two to three orders of magnitude faster
than a state-of-the-art general-purpose solver. Readers more
interested in walking control can take a look at the timings
in IV-F and skip the rest of this Section.

In what follows, we assume that the reader is already
familiar with common knowledge in numerical optimization,
including the active-set method for quadratic programming
(QP) and the sequential quadratic programming (SQP) method
for nonlinear optimization. An overview of this background is
provided for reference in Appendix B.

A. Problem reformulation

The capture problem (70) has a linear least squares cost,
linear constraints and one 1-dimensional nonlinear equality
constraint. Additionally, the cost and linear constraints have
specific structures that we can leverage to implement an
efficient solver.

Let us start with some notations. The objective (56a) can be
written ‖Jϕ‖2, where ϕ is the vector of optimization variables
ϕ1 to ϕN . Equation (70b) rewrites to b(ϕ) = 0 with:

b(ϕ) =

n−1∑
j=0

δj√
ϕj+1 +

√
ϕj
−
z̄i
√
ϕn + ˙̄zi

g
(72)

where z̄i > 0 and ˙̄zi ∈ R are problem parameters (i.e. constant
during the optimization). In both problems, linear constraints
have the form:

l ≤ Cϕ ≤ u (73)

where l ∈ Rn+1 and u ∈ Rn+1 are also problem-dependent
vectors (set lj = uj to specify an equality). The cost matrix
J is the (n− 1)× n matrix given by:

J =


−d0 − d1 d1

d1 −d1 − d2 d2

. . .
dn−2 −dn−2 − dn−1 dn−1


where dj = δ−1

j . Meanwhile, C is the (n+ 1)× n matrix:

C =

[
CZ

eTn

]
where CZ =


1
−1 1

. . . . . .
−1 1


where en is the last column of the n× n identity matrix.

Solutions to (70) can be approximated by solving:

minimize
ϕ∈Rn

1

2
‖Jϕ‖2 +

µ2

2
‖b(ϕ)‖2 (74a)

subject to l ≤ Cϕ ≤ u (74b)

which presents the advantage of having only linear constraints,
and whose solution tends to the original solution as µ goes to
infinity. This problem can be solved very efficiently.
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B. Applying an SQP approach

We apply the SQP method (Algorithm 4) to problem (74).
We write j def

= ∇ϕb the gradient of the nonlinear constraint,
and index by �k the value of any quantity at iteration k.

Denoting by f(ϕ) the objective (74a), the Lagrangian of
the problem is L(ϕ,λ−,λ+) = f(ϕ) + λT−(l − Cϕ) +
λT+(Cϕ − u), with λ−,λ+ ∈ Rn+1 the corresponding
Lagrange multipliers. The Hessian matrix is then:

∇2
ϕϕLk = JTJ + µ2jkj

T
k + bk∇2

ϕϕbk (75)

We adopt the Gauss-Newton approximation ∇2
ϕϕLk ≈ JTJ+

µ2jkj
T
k , a classical approach for nonlinear least squares that

is particularly well-suited to our case: when b = 0, i.e. when
the boundedness condition is satisfied, ∇2

ϕϕL is exactly equal
to JTJ + µ2jjT . Under this approximation, the problem
corresponding to one iteration of the SQP method is:

minimize
p∈Rn

1

2
‖Jp+ Jϕk‖2 +

µ2

2

∥∥jTk p+ bk
∥∥2

(76a)

subject to l′k ≤ Cp ≤ u′k (76b)

with l′k
def
= l − Cϕk and u′k

def
= u − Cϕk. If ϕk satisfies

constraint (74b), then p = 0 is a feasible point for (76).

C. Solving the least squares sub-problem

The problem (76) solved at each SQP iteration is a linear
least squares with inequality constraints (LSI), a particular
case of QP, that we can solve using the active-set method
(Algorithm 3). Adopting d and j for the step and iteration
number of the QP (keeping p and k for the SQP), an iteration
of Algorithm 3 solves in our case (see problem (108))

minimize
d∈Rn

1

2
‖Jd+ J(pj +ϕk)‖2 +

µ2

2

∥∥jTd+ jTpj + bk
∥∥2

(77a)
subject to CWj

d = 0 (77b)

with W the set of active constraints at the current iteration
and CW the corresponding matrix.

This can be solved in two steps (nullspace approach). First,
compute a matrix NW ∈ Rn−r whose columns form a basis
of the nullspace of CW , r being the rank of CW . The vector
d is then solution of the problem if an only if d = NWz
for some z ∈ Rn−r. The problem can thus be rewritten as an
unconstrained least squares:

minimize
z∈Rn−r

1

2

∥∥∥∥[µjTJ
]
NWz +

[
µ(jTpj + f)
J(pj +ϕ)

]∥∥∥∥2

(78)

Second, solve this unconstrained problem: taking T and u
such that the above objective writes 1

2 ‖Tz + u‖2, compute
the QR decomposition T = QR, and solve QRz = −u. The
latter is equivalent to z = −R−1QTu if R has full rank [22,
Chapter 10]. Both of these steps can be significantly tailored
to the case of capture problems.

D. Tailored operations

In the SQP, most of the time is spent in solving the un-
derlying LSI: the computation of NW , the post-multiplication
by NW to obtain T, the QR decomposition of T and the
computation of the Lagrange multipliers are the main opera-
tions, performed each roughly in O(n3) [23], at least for the
first iteration of each LSI.4 We show here how to reduce this
complexity to at most O(n2) for capture problems.

Consider the active set W . Starting at the first constraint,
count the number a0 of consecutive active constraints (possibly
0 if the first constraint is not active), then j1 the number of
following consecutive inactive constraints, a1 the number of
following active constraints, etc. The set W is then fully de-
scribed by the sequence (a0, j1, a1, j2, a2, . . . , jp, ap), where
only a0 and ap can be 0. Note that

∑
k ak +

∑
k jk = n+ 1,

and let us define nW
def
=

∑
k ak. For example, if W =

{1, 2, 6, 9, 10, 11, 13, 14} for n = 15 optimization variables,
we get the sequence (2, 3, 1, 2, 3, 1, 2, 2, 0) and nW = 8. The
constraint matrix CW is then the nW × n matrix:

CW =


C0

0a1,j1−1 C1

0a2,j2−1 C2

. . .
0ap,jp−1 Cp


(79)

where 0m,q is the m × q zero matrix, while C0, Ck (k ∈
[1, p− 1]) and Cp are respectively a0× a0, ak× (ak + 1) and
ap × ap matrices (C0 and Cp can be empty) of the form:

C0=


1
−1 1

. . .
. . .
−1 1

, Ck=

−1 1
. . .

. . .
−1 1

, Cp=


−1 1

. . .
. . .
−1 1

1


(80)

Denoting by 1a the vector of size a filled with ones, the
nullspace projection matrix for the active set W is:

NW =



0a0,i1−1

Ii1−1

1a1+1

Ii2−1

1a2+1

. . .
Iip−1

0ap,ip−1


(81)

Noting that Ck1ak+1 = 0ak,1, we can directly verify that
CWNW = 0. The matrix NW is n by n − nW and full
column rank. It is thus a basis of the nullspace of CW .

Computing the product MNW for a given matrix M does
not actually require to perform any multiplication: multiplying
by 1 amounts simply to the summation of columns of M.
Likewise, NWz just requires to copy the elements of z. It
is thus not necessary to form NW , and T can be obtained

4We could refine these estimates by taking into account the number of
active constraints. Note also that subsequent LSI iterations can perform some
of these operations in O(n2).
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P̃WQ̃T
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→
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0××

0××
0××

0×
0
0
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0
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︸ ︷︷ ︸

RW

Fig. 3. QR decomposition for n = 15 andW = {1, 2, 6, 9, 10, 11, 13, 14}.
Cross symbols × stand for non-zero elements. Left: block structure of JW ,
with one color per block. Middle-left: performing QR decomposition for each
block. Middle-right: permuting all zero rows to the bottom. Right: completing
the QR decomposition.

by
∑
ak = nW vector additions. Taking into account the

tridiagonal structure of J, this can be done in O(n).

The computation of the Lagrange multipliers, needed to
check KKT conditions, relies on the pseudoinverse of CW (see
e.g. Equation (109)). Due to its block structure, expressing the
latter is done by finding the pseudoinverse for each Ck:

C†W =



C−1
0

0i1−1,a1

C†1
0i2−1,a2

C†2
. . .

0ip−1,ap

C−1
p


(82)

where �† denotes the pseudoinverse. It can be verified that

C−1
0 =

1
...

. . .
1 . . . 1

 , C−1
p =


−1 . . . −1 1

. . .
... 1
−1 1

1

 (83)

C†k =
1

ak + 1



−ak −(ak − 1) −(ak − 2) . . . −1
1 −(ak − 1) −(ak − 2) . . . −1
1 2 −(ak − 2) . . . −1

1 2 3
. . .

...
...

. . . −1
1 2 3 . . . ak


(84)

The computation of Lagrange multipliers can thus be done in
O(n2) without forming the pseudoinverse explicitly.

The QR decomposition of T is performed in two steps:
first the QR decomposition JW = QWRW of JW

def
= JNW ,

followed by the QR decomposition
[
µjTNW

RW

]
=
[
qT1
Q2

]
R.

Combining these two yields the sought after T by:[
µjTNW
JNW

]
=

[
1 0
0 QW

] [
µjTNW
RW

]
=

[
1 0
0 QW

] [
qT1
Q2

]
R

=

[
qT1

QWQ2

]
R (85)

The matrix
[
µjTNW

RW

]
is upper Hessenberg, so that its QR

decomposition is computed in O(n2) [23, Chapter 5]. The
decomposition of JW can be achieved in O(n) by taking
advantage of its structure. To avoid going through several
corner cases, we sketch informally how this is done with the
help of the example in Figure 3. More details can be found
in [24]. Because the sum of three non-zero elements on any
row (ignoring the first) of J is zero, a careful study reveals
that JW is made of p tridiagonal blocks, one for each group
of consecutive inactive constraints. Blocks j and j + 1 are
separated by aj − 1 rows of zeros, and the last column of the
first is aligned with the first column of the second (Figure 3,
left). We can perform QR decompositions for each blocks
separately and denote by Q̃W the product of all orthogonal
matrices. All blocks, except possibly the last, have a rank equal
to their row size minus one, so that the triangular factor of the
decomposition has zeros on its last line (Figure 3, middle left).
Multiplying by a permutation matrix PW , all zero rows can
be moved to the bottom, and we get a quasi-tridiagonal matrix
(Figure 3, middle right). The latter can be made triangular with
a last tridiagonal QR decomposition in O(n) (Figure 3, right).

The last point to consider is finding an initial pair (ϕ0,λ0)
for the SQP. While in a classical SQP this is done through a
so-called Phase I which can be almost as costly as running
the main loop of the algorithm itself, here we can leverage
the geometry of our constraints to get such a pair in O(n).
Noting lZ and uZ the bounds corresponding to CZ , the set
Z def

= {ϕ ∈ Rn, lZ ≤ CZϕ ≤ uZ} is a zonotope equal to
LZlZ + Ldiag(uZ − lZ) [0, 1]

n where LZ
def
= C−1

Z is the
n× n lower triangular matrix with all coefficients equal to 1.
Feasible points for the whole problem are those in Z such that
ω2

i,min ≤ ϕn ≤ ω2
i,max. Consider the point:

ϕ(a)
def
= LlZ +

∑
a(ui − li)Li (86)

where Li it the ith column of L. This point is in Z for any
value a ∈ [0, 1]. Its last component ϕn(a) is an increasing
linear function ϕn(a) = sl + asd with sl =

∑
j lj and sd =∑

j(uj − lj) ≥ 0. Let us denote by a− and a+ the two values
such that ϕn(a−) = ω2

i,min and ϕn(a+) = ω2
i,max. The linear

constraints of the capture problem are then feasible if and only
if [a−, a+]∩ [0, 1] 6= ∅. In this case, any a in this intersection
yields a feasible point ϕ(a) for the problem, e.g. the middle
value am

def
= 1

2 (max(a−, 0)+min(a+, 1)). We finally initialize
our SQP with ϕ0 = ϕ(am) and λ0 = 0.

E. Numerical and algorithmic considerations

The implementation of a general-purpose QP or SQP solver
is an extensive work due to the numerous numerical difficulties
that can arise in practice: active-set methods need to perform
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TABLE I
COMPUTATION TIMES OVER 20000 SAMPLE PROBLEMS FROM A WALKING
SIMULATION. AVERAGES AND STANDARD DEVIATIONS ARE GIVEN IN µS.

Solver n = 10 n = 15 n = 20 n = 50

IPOPT5 7.1× 103 9.4× 103 1.1× 104 2.2× 104

SQP + LSSOL 86± 60 130± 86 220± 160 1700± 1700
SQP + cLS 22± 12 33± 18 54± 41 210± 180
SQP + cLS + pre. 18± 10 25± 14 35± 22 –

a careful selection of their active constraints in order to keep
the corresponding matrix well conditioned, while SQPs require
several refinements, some of which imply solving additional
QPs at each iteration [22]. While the tailored operations we
presented reduce the theoretical complexity w.r.t. general-
purpose solvers, there are also a number of features of
Problem (74) that allow us to stick with a simple, textbook
implementation, and contribute to the general speed-up.

On the QP side, the matrix CZ is always full rank and well
conditioned, while the last row eTn of C is a linear combination
of all rows from CZ (en = CT

Z1n). As a consequence, all
matrices CW are full rank and well conditioned, save for the
case where all n+ 1 constraints are active. This case can only
arise if a− or a+ is equal to 0 or 1, what can be easily detected
and avoided by slightly perturbing ωi,min or ωi,max. It is thus
safe to use a basic active-set scheme.

All QR decomposition are performed on matrices with rank
deficiency of at most 1. As a consequence, it is not necessary
to use more involved column-pivoting algorithms, and the rank
deficiency can be detected by simply monitoring the bottom-
right element of the triangular factor. While we don’t prove
that the matrices JW are well conditioned, we verified this
assertion for n ≤ 20 in a systematic way. Even for large values
of µ, the QR decomposition of T is stable as the row with
largest norm appears first [25, p. 169].

It is important to note that the matrices J and C only depend
on the problem size n and partition s0, . . . , sn, which are the
same across all capture problems that we solve for walking. If
n is small enough (say n ≤ 20), we can precompute and store
the QR decompositions of all possible JW (there are 2n+1−1
different setsW: up to n active constraints among n+1). This
can be done in a reasonable amount of time thanks to the above
method, and results in even faster resolution times.

On the SQP side, the odds are very favorable: constraints are
linear and the Gauss-Newton approach offers a good approxi-
mation of the Hessian matrix. As a consequence, we observed
that the method takes full steps (α = 1 in Algorithm 4) 98.5%
of the time in practice, and converges in very few iterations
(4 on average). Since we are starting from a feasible point,
all subsequent iterates are guaranteed to be feasible and the
line search needs only monitor the objective function, in an
unconstrained-optimization fashion.

Passing the nonlinear constraint as an objective with weight
µ is reminiscent of penalty-based methods, where the penalty
parameter µ is adapted during successive iterations. In our
case, we observed that a fixed parameter (typically µ = 106)
was enough to get a precise solution in few iterations.

F. Performance comparison

In [10], Problem (70) was solved with the state-of-the-art
solver IPOPT [21], which is written in Fortran and C. We
compare its performances with our tailored SQP approach,
implemented in C++6. Taking µ = 106, the solutions returned
by both methods are numerically equivalent (within 10−7 of
one another, and |b(ϕ)| ≈ 10−8 in both cases). Computation
times over representative problems produced by walking sim-
ulations are reported in Table I, where our approach is denoted
SQP + cLS (custom Least Squares), and the abbreviation pre.
denotes the use of QR pre-computations for JW .

To break down how much of the speed-up is due to the
problem reformulation and how much is due to our custom
least squares implementation, we also test our SQP method
using the state-of-the-art least squares solver LSSOL [26]. This
variant is denoted by SQP + LSSOL.

Computation times for QR pre-computations range from
2 ms for n = 10, 100 ms for n = 15, to 4.9 s for n = 20. This
is not limiting in practice, as these computations are performed
only once at initialization. The limit rather lies with memory
consumption, which follows an exponential law ranging from
2 MB for n = 10 to 5 GB for n = 20 (a rough upper bound
is given by 2.2n−9 MB). In practice we use n = 10 where
memory consumption is low.

When n ≥ 25, SQP + LSSOL may start to fail (it does
so 25% of the time for n = 50). This suggests that our least
squares solver is more robust, a plausible explanation for this
being that we leverage sparsity patterns of J and C, as well
as the knowledge that elements of C are exactly 1 or −1.
We thus end up with exact computations (most notably for
the nullspace and pseudoinverse of CW ) while LSSOL treats
those matrices as dense and with floating-point coefficients.

V. ONE-STEP CAPTURABILITY OF THE 3D IPM

While zero-step capturability enables push recovery, the
minimum price to pay for bipedal walking is one-step captura-
bility, owing to the fact that stepping consists of two distinct
phases: acceleration (positive work) by pushing on the takeoff
foot, followed by deceleration (negative work) using the land-
ing foot. Fortunately, the significant performance improvement
achieved by the tailored solver opens new perspectives to go
beyond zero-step solutions. Let

C(s) =

{
Ci for sc < s ≤ 1

Cf for 0 < s ≤ sc
(87)

denote a one-step contact sequence with sc ∈ (0, 1). We
consider the piecewise-constant CoP trajectory defined by:

r(s) =

{
ri for sc < s ≤ 1

rf for 0 < s ≤ sc
(88)

5 We only report averages for IPOPT computation times as they lie on a
different scale. These averages are higher than those reported in [10] because
we evaluate both feasible and unfeasible problems (for reasons made clear
in the next section), while all random initial conditions in [10] were zero-
step capturable. For n = 10 and projecting performance statistics on feasible
problems only, IPOPT’s computation times decrease to 1600± 790 µs.

6https://github.com/jrl-umi3218/CaptureProblemSolver

https://github.com/jrl-umi3218/CaptureProblemSolver
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Algorithm 1 Instantiation of {0, 1}-step Capture Problems
Input: α ∈ (0, 1), states (xi,xf), contacts (Ci, Cf)
Output: capture input steering xi to xf , if any

Compute z̄α and ˙̄zi from (Ci,xi,xf) via (92)
Compute the halfspace-representation (F, p) of Ci
Reduce inequalities (94) into ωi,min ≤ ωi ≤ ωi,max
return CAPTUREPROBLEMSOLVER(ωi,min, ωi,max, z̄α, ˙̄zi)

This choice yields the following boundedness condition (44):

riωi + (rf − ri)scω(sc)− g
∫ 1

0

ds

ω(s)
= ωici + ċi (89)

That is to say, in terms of optimization variables ϕ:

gezbω(ϕ) = (ci − ri)
√
ϕn + (ri − rf)

√
ϕ(sc) + ċi (90)

where bω(ϕ) is the function defined by Equation (55), and
ϕ(sc) is a linear combination of ϕj and ϕj+1 when sc ∈
[sj , sj+1] from Equation (50). This equality constraint has a
different form than the one we previously encountered in the
capture problem (70).

A. Reformulation to a capture problem

Let us define an external parameter α ∈ (0, 1) such that√
ϕ(sc) = α

√
ϕn. The boundedness condition becomes:

gezbω(ϕ) = (ci − rα)
√
ϕn + ċi (91)

where rα
def
= αrf + (1− α)ri. Taking the dot product of this

equation with the normal ni of the initial contact Ci yields:

bω(ϕ)−
z̄α
√
ϕn + ˙̄zi

g
= 0 z̄α

def
=

(ci − rα) · ni

(ez · ni)
(92)

This time, the constraint is of the form b(ϕ) = 0 of the capture
problem (72), where the parameter z̄i has been replaced by z̄α.
Meanwhile, the two horizontal components of Equation (91)
are sufficient to characterize ri:

rxyi = rxyf +
1

1− α

[
cxyi +

ċxyi

ωi
− rxyf

]
(93)

Injecting this equation into the inequalities Fri ≤ p of the
contact area Ci yields:

[αFrf + (1− α)p− Fci]ωi ≥ Fċi (94)

We recognize in these last three equations the conditions
found in Section III for zero-step capture: Equation (92) is
of the form used in the capture problem, Equations (66)
and (93) are identical, and so are inequalities (67) and (94).
We can therefore apply our existing solution as summarized
in Algorithm 1. Zero-step capture is solved as a special case
where this function is called with α = 0.5 and Ci = Cf .
We have thus reduced one-step capture to a capture problem
parameterized by α ∈ (0, 1). But how can we interpret this
new parameter?

When the minimum of the regularizing cost function is
attained and ω(s) is constant, α = sc, meaning that the choice
of α is equivalent to that of the contact switch sc. In general,
however, α = scω(sc)/ωi couples sc with variations of ω in a

non-intuitive way. Informally, we can interpret α as an “index”
of zero-step capturability: when feasible solutions exist for
α → 1, rα → rf and ϕ(sc) → ϕn ⇒ sc → 1, meaning that
the initial contact Ci is not used. Conversely, when the largest
feasible α is lower than one, all capture inputs need to use the
first contact and the state is not zero-step capturable.

B. Constraint on the time to contact switch

An important consequence of the parameter α is its effect
on the contact switch index sc, and thus on the time of contact
switch t(sc). Let us denote by tc(α) the contact-switch time
t(sc) of the solution ϕα to the capture problem parameterized
by α. (We can compute tc(α) from ϕα via Equation (71),
replacing sj by sc in the last interval sj ≤ sc < sj+1.) During
bipedal walking, contact switches can only be realized after the
free foot has completed its swing trajectory from a previous
to a new contact. We therefore need to make sure that tc(α)
is greater than the remaining duration tswing of the swing foot
motion. This gives us an additional constraint tc(α) ≥ tswing,
where each evaluation of tc(α) costs the resolution of a full
capture problem.

C. External optimization over the parameter α

Fortunately, computation times achieved by the custom
solver from Section IV allow us to solve several capture
problems per control cycle. Rather than designing a new
solver, we optimize jointly over ϕ and α using a two-level
decomposition: an external optimization over α ∈ (0, 1),
wrapping an internal optimization where α is fixed and a
solution ϕα is computed by Algorithm 1.

A straightforward way to carry out the external optimization
is to test for all values in a partition 0 < α0 < . . . < αm < 1.
Unfortunately, this approach is inefficient in practice as it
produces a large number of unfeasible problems for the
internal optimization.

There are two ways a bad choice of α can yield an
unfeasible capture problem (70):
(a) The two bounds in the inequality constraint (70c) are such

that ωi,min > ωi,max. Recall that both bounds are computed
from the inequalities (94), which involve α.

(b) The intersection between the nonlinear equality con-
straint (70b) and the polytope (70c)–(70d) is empty. The
influence of α on this comes from Equation (92).

(c) The right cylinder given by the linear constraint (70c) does
not interesect the zonotope (70d). The influence of α on
this comes from Equation (94).

Case (c) can be catched efficiently before solving the capture
problem, as discussed in Section IV-D. While anticipating
(b) is still an open question for us, case (a) can be avoided
altogether thanks to a more careful treatment of CoP inequality
constraints.

Let us rewrite the inequality (94) as:

(u− αv)ωi ≥ w (95)

To avoid singling out corner cases, extend the three vectors
u, v and w with two additional lines:
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Algorithm 2 Computation of α feasibility intervals
Input: vectors u,v and w
Output: set I of feasible intervals [αmin, αmax]
I ← ∅
R ← {rj = uj/vj |rj ∈ (0, 1)}
for (r2j , r2j+1) consecutive roots in SORT(R) do

(αmin, αmax, α)← (r2j , r2j+1,
1
2 (r2j + r2j+1))

Compute index sets Amin(α) and Amax(α)
Reduce [αmin, αmax] using (98) with Amin(α), Amax(α)
I ← I ∪ {[αmin, αmax]}

end for
return I

• uj = 1, vj = 0 and wj = ωi,min
• uj = −1, vj = 0 and wj = −ωi,max

Next, note that the two sets Amin(α)
def
= {i, ui−αvi ≥ 0} and

Amax(α)
def
= {i, ui − αvi ≤ 0} are such that:

ωi,min(α) = max

{
wi

ui − αvi
, i ∈ Amin(α)

}
(96)

ωi,max(α) = min

{
wi

ui − αvi
, i ∈ Amax(α)

}
(97)

Similarly to Fourier-Motzkin elimination, a necessary and
sufficient condition for ωi,min ≤ ωi,max is then that, for all
pairs (i, j) ∈ Amin(α)×Amax(α),

uiwj − ujwi ≤ α(viwj − vjwi) (98)

These inequalities are of the form ũα ≥ ṽ and can therefore
be reduced using Equations (68)–(69) into a single interval
[αmin, αmax] on which it is guaranteed that ωi,min ≤ ωi,max.

The subtlety to notice here is that the index sets A�(α)
change when α crosses the roots ui/vi. (Note that there are
few such roots in practice, e.g. at most six with rectangular foot
soles.) We take this phenomenon into account in the overall
Algorithm 2.

TODO: fix consecutive roots: all pairs (j, j+1) in algorithm
below + Thanks to AM for feedback

In practical walking scenarios, it is common to encounter
reunions such as α ∈ [0.1, 0.3] ∪ [0.5, 0.8] consisting of one,
two or three disjoint intervals. The outer optimization can
choose to explore them in any order. We observed empirically
that values of α closer to one usually yield smaller tc(α),
yet via a non-monotonic mapping. In addition, we noted how
using only extremal values α ∈ {αmin, αmax} is not a sound
strategy for global optimization, as lowest values of the cost
function are often attained when α lies well inside its intervals.

VI. WALKING CONTROL

The combination of zero- and one-step capturability enables
walking. Consider a sequence of contacts C0, C1, . . . given
by a contact planner. We will say for short that a contact
C is capturable when there exists a capture trajectory from
the current robot state to the equilibrium cf = o + z̄fez
located at the height z̄f above the center of its area. With this
terminology, we can generate walking from capture trajectories
via a two-state strategy [11], [27]:

Zero-step
Capture

One-step
Capture

Next contact is one-step capturable?

Next contact is zero-step capturable?

switch to 
next contact

The behavior realized by this state machine is conservative:
when reaching a contact Cj in the sequence, the robot starts
slowing down as if it were to stop and balance above Cj
(Zero-step Capture state). This corresponds to the stance phase
(negative work) of walking. While in this phase, the robot
searches for a one-step capture trajectory stepping to the next
contact Cj+1. There are two potential outcomes at this stage:
• The next contact is not capturable from the current robot

state: in this case, the robot simply stops walking and
balances above the current contact.

• A trajectory is found: the robot then drops its balancing
behavior and switches to the One-step Capture state, cor-
responding to the swing phase of walking (positive work)
where the current contact Cj is used to accelerate toward
Cj+1. The process is continued until Cj+1 becomes zero-
step capturable, whereupon the robot switches back to the
zero-step behavior, and the overall process is repeated.

This combination of zero- and one-step capturability is simple
to implement, yet we will see that it is sufficient to walk across
complex environments.

A. Model predictive control of capture trajectories

We follow model predictive control (MPC) to turn fast
trajectory generation into closed-loop control [29], [?]. At each
control cycle, we compute the optimum ϕ∗ of the capture
problem for the current state and convert it into robot inputs,
extracting its initial stiffness λi and CoP ri via:

λi(ϕ
∗) =

ϕ∗n − ϕ∗n−1

δn−1
ri(ϕ

∗) =

{
(58) for zero-step
(93) for one-step

These references are then sent to the lower-level controllers
of the humanoid (foot force control, CoM position and
angular-momentum minimization at the whole-body level)
to be applied until the next control cycle. In the standard
model-predictive fashion, the rest of the optimal trajectory is
discarded. As a matter of fact, we don’t compute explicitly
the functions ω(s) or λ(s) nor their time counterparts. Only
for one-step capture do we compute the time mapping t(s)
via Equation (71) to make sure that we select values of the
parameter α where contact switches after foot landing.

B. Swing foot trajectory generation

A swing foot trajectory comes under two conflicting imper-
atives: stay close to the ground while avoiding collisions. We
assume here that the terrain is uneven but free from obstacles
(see e.g. [30] for the converse setting of avoiding obstacles on
even terrains). To avoid robot-ground collisions, we enforce
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Fig. 4. Interpolation of swing-foot trajectories. Swing foot trajectories
are interpolated as cubic Hermite curves with boundary positions and tangent
directions. The remaining two curve parameters are optimized by Quadratic
Programming to ensure clearing distances a > amin and b > bmin. Finally, the
swing timing is derived using reachability-based time-optimal retiming [?].

two clearance distances: one at toe level for the takeoff contact
and the other at heel level for the landing contact, as depicted
in Figure 4.

We interpolate swing foot trajectories as cubic Hermite
curves with four boundary constraints: initial and final posi-
tions corresponding to contact centers, and tangent directions
parallel to contact normals. This leaves two free parameters,
corresponding to the norms of the initial and final tangents,
that can be optimized upon. It can be shown that minimiz-
ing these two parameters subject to the clearance conditions
a > amin and b > bmin (notations from Figure 4) is a small
constrained least squares problem. We solve it and apply time-
optimal retiming to the path thus obtained. Retiming allows
us to compute swing timings according to a simplified model
of swing foot dynamics. We model the foot as a free-floating
body under maximum acceleration of 10 m.s−2, and apply
the recent reachability-analysis enhancement of time-optimal
path parameterization (TOPP-RA) [?] for which open-source
software is readily available.7

C. Simulations

We implemented capturability-based 3D walking in sim-
ulation with a model of the HRP-4 humanoid robot. Our
simulations use pymanoid8, an extension of OpenRAVE [31]
for humanoid robotics. Whole-body inverse kinematics is
implemented using a standard quadratic-programming formu-
lation (see e.g. [32, Section 1] for a survey). Tracking of the
inverted pendulum and swing foot trajectories is realized by
the following set of tasks:

Task group Task Weight
Foot tracking Support foot 1
Foot tracking Swing foot 10−3 to 1
IPM tracking Center of mass 1× 10−2

IPM tracking Min. CAM variations 1× 10−4

Regularization Keep upright chest 1× 10−4

Regularization Min. shoulder extension 1× 10−5

Regularization Min. upper-body velocity 5× 10−6

Regularization Reference upright posture 1× 10−6

We consider three scenarios, depicted in Figure 5. The
first one is an elliptic staircase with randomly-tilted foot-
steps (Figure 5a) used to test the ability to adapt to general

7https://github.com/hungpham2511/toppra
8https://github.com/stephane-caron/pymanoid

uneven terrains where the ground may go up, go down or tilt
in arbitrary directions. We also consider a regular staircase
with 15-cm high steps (Figure 5b), where collision avoidance
requires larger swing foot motions, which in turn affect the
timings of the CoM trajectory. Finally, we consider the real-
life scenario provided by Airbus Group depicted in Figure 5c.
It consists of a 1:1 scale model of an A350 aircraft under
construction in a factory environment. To reach its desired
workspace configuration, the humanoid has to walk up an
industrial-grade staircase (first step 19.5 cm, last step 14.5 cm,
all other steps 18 cm high), then across a flat floor area
and finally inside the fuselage where the ground consists of
temporary wooden slabs.

We use the same parameters across all three scenarios. For
capture problems, we used n = 10 discretization steps with
a partition si = i/n. The external optimization for one-step
problems sampled 5 values of alpha per feasibility interval.
For the IPM, we set λmin = 0.1g, λmax = 2g and a target
CoM height z̄f = 0.8 m suitable to HRP-4. For swing foot
trajectories, we use a landing clearance of bmin = 10 cm.
Our only context-dependent parameters are those related to the
takeoff phase: in staircases where contacts are close to each
other, swing foot trajectories start with a backward-leaning
tangent along with a clearance amin equal to the step height.
In all other cases, the contact normal is used as tangent, and
amin = 5 cm.

In all scenarios, the robot starts and ends in double support
(the first one-step capture state is triggered without swing
foot trajectory so that the robot leverages its starting double
support phase to gain some initial momentum). At each
control cycle, the state machine needs to solve both zero-
step and one-step capture problems: once for the current state
and once to evaluate the transition condition. Fortunately,
solving capture problems (70) can be done several times while
staying fast enough for the control loop: on a consumer laptop
computer, zero-step and one-step capture problems are solved
in respectively 0.38 ± 0.13 ms and 2.4 ± 1.1 ms (average
and standard deviations over 10,000 control cycles). Note that
these computation times reflect both calls to the C++ solver
(Section IV) and external instantiation and optimization over
α in Python (Algorithms 1 and 2).

The results of all three simulations are depicted in Figure 5
and in the accompanying video. We release all our source code
for reference, review and reproducibility.9

D. Feedback from whole-body to reduced model

A well-known problem when using a reduced model to
control the higher-dimensional system lies in the feasibility
of the reverse map. Notably, the CoM trajectory output by the
reduced model may not be trackable due to limited kinematic
reachability of the leg. We noticed this problem when walking
down the elliptic staircase (Figure 5a) where the prescribed
stance CoM height of 80 cm conflicts with the need to crouch
for reaching the next footstep. At present, two main strategies
have been proposed to address this issue: a priori estimation of
reachable CoM positions from contact locations [33], [34] or

9https://github.com/stephane-caron/capture-walking

https://github.com/hungpham2511/toppra
https://github.com/stephane-caron/pymanoid
https://github.com/stephane-caron/capture-walking
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(a) Elliptic staircase (b) Regular staircase (c) Aircraft factory

Fig. 5. Simulation scenarios: the elliptic staircase with randomly-tilted footsteps (a) tests the ability to walk over rough terrains, i.e. to adapt to both 3D
translation and 3D orientation variations between contacts. The regular staircase (b) has 15-cm high steps; it assesses the behavior of the solution when contacts
are close to each other and collision avoidance becomes more stringent. Finally, the aircraft scenario (c) provides a real-life use case where the environment
combines flat floors, staircases and uneven-ground areas (inside the fuselage). In all three figures, blue and green trajectories respectively correspond to
center-of-mass and swing-foot trajectories.

more recently a posteriori feedback of the whole-body CoM
position to the reduced model [35]. The former is a planning
strategy, the latter a control one. Given our assumption that the
contact sequence is given by an external (potentially faulty)
contact planner, we only investigated the feedback strategy.
We applied the idea from Sato and Sugihara [35] at the
velocity level, feeding back the whole-body CoM position
via a first-order low-pass filter with cutoff frequency 20 Hz.
This solved reachability issues in all three scenarios with
little implementation cost. Interestingly, we observed as a
consequence of this feedback the emergence of butterfly-
shaped frontal CoM motions [33, Figure 4].

VII. DISCUSSION AND FUTURE WORK

While the present study is coming to an end, our under-
standing of the inverted pendulum model is, hopefully, only
beginning to unfold. What did we understand so far? First,
that capturability of the inverted pendulum is characterized by
three properties of its two inputs: their feasibility, asymptotic
convergence, and the boundedness condition. These properties
can be cast into an optimization problem, the capture problem,
that can be solved orders of magnitude faster than generic
nonlinear problems. This allows us to solve for both zero-
and one-step capturability by breaking them down into one or
several capture problems, all solved at once without exceeding
the time budget of a control loop. With these tools in hand,
walking becomes a matter of closing the loop via model
predictive control.

Our overall discussion draws numerous connections with
the existing literature. To start with, the decomposition of the
nonlinear inverted pendulum into its convergent and divergent
components was proposed in 2004 by J. Hauser et al. [12]
to address a question of motorcycle balance. Its application
to the linear inverted pendulum can be found in the motion
generation framework of the Honda ASIMO humanoid [13].
The LIPM itself has been the focus of a large part of the
recent literature, in the wake of major works such as [28],
[29], [13], [2]. Solutions allowing for CoM height variations

have therefore been the exception more than the rule. They can
be grouped into two categories: pre-planning of CoM height
functions, and 2D sagittal capturability.

When CoM height variations cz(t) are pre-planned [36],
[37], [38], the remainer of the system can be controller in the
2D horizontal plane similarly to the LIPM, yet with a time-
variant rather than time-invariant equation of motion. Two
successful LIPM solutions have been generalized following
this idea: linear model predictive control [29] was extended
into [37], and the time-invariant divergent component of
motion [5] was extended into a time-variant counterpart [38].10

Interestingly, in [38] Hopkins et al. use the Riccati equa-
tion (13) to compute ω(t) from cz(t), while in the present
study we compute c(t) from ω(t). More generally, our strategy
can be seen as mapping the whole problem onto the damping
ω and solving for ω(t), while the underlying strategy behind
those other approaches is to fix ω and map the remainder of the
problem onto cxy . Another noteworthy example of the latter
can be found in the linearized MPC proposed by Brasseur
et al. [33], where ω variations are this time abstracted using
polyhedral bounds rather than a pre-planned height trajectory.

TODO: connect with [?] who identified the time-varying
system and proposed a control law, yet with a-posteriori
enforcement of feasibility constraints

TODO: our approach is trajectory-free; like MPC ap-
proaches

In this regard, our present study is more akin to works on
capturability proposed for the 2D nonlinear inverted pendu-
lum [7], [8], [9]. All of them share a design choice dating back
to the seminal work of Pratt and Drakunov [7]: they interpolate
CoM trajectories in a 2D vertical plane with a fixed center
of pressure (CoP). The key result of [7] is the conservation
of the “orbital energy” of a CoM path, a variational principle

10 Both [37] and [38] use polynomial CoM height functions, which makes
it easy to satisfy boundary conditions but yields non-integrable dynamics.
Terada and Kuniyoshi [36] proposed a symmetric alternative where the system
becomes integrable, yet where enforcing boundary conditions is a nonlinear
root finding problem.
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that we can now interpret as a two-dimensional formulation of
the boundedness condition. This principle was later translated
into a predictive controller in an equally inspirational study by
Koolen et al. [9]. Ramos and Hauser [8] also noticed that the
capture point, interpreted as point where to step, was a function
of the CoM path. They proposed a single-shooting method to
compute what we would now call 2D capture trajectories.

All of these works hinted at key features of 3D capture
trajectories, but applied only to two-dimensional CoM motions
in vertical planes. The key to lift this restriction is the 3D
boundedness condition, which was first formulated in the case
of the LIPM by Lanari et al. [14] and applied to model
predictive control of the LIPM in [?]. This condition can
be more generally applied to different asymptotic behaviors,
including but not restricted to stopping. For instance, infinite
stepping is another option [39]. The exploration of these more
general asymptotic behaviors is an open question.

Another important choice of the present study is to focus
on zero- and one-step capture trajectories. Walking controllers
based on one-step capturability have been proposed for both
even [40], [41], [27] and uneven terrains [42], [11]. The latter
follow a single line of work leading to the present study: [42]
finds rough-terrain (even multi-contact) solutions but tends to
produce conservatively slow trajectories; [11] discovers dy-
namic walking patterns, but suffers from numerical instabilities
when used in a closed control loop. In our understanding, these
instabilities are due to the direct transcription of centroidal
dynamics, which has proved successful for planning [43],
[44] but where closed-loop controllers suffer from frequent
switches between local optima [11]. The optimization of cap-
ture problems provides an alternative transcription for which
we do not observe this numerical sensitivity.

Finally, the last key choice of the present study is the
change of variable from t to s. This choice is one possible
generalization of the seminal idea by Pratt and Drakunov [7]
to make the CoM height a function cz(cx) of the 2D CoM
abscissa: as it turns out, cx(t) and s(t) are proportional in
their 2D setting [10], although that is not the case any more
in 3D. An alternative 3D generalization is to solve for the
remaining lateral motion cy(t) after the sagittal motion has
been computed by the 2D method [45]. Both cases, as noted
in [45] and in the present study, bear a close connection with
time-optimal path parameterization (see e.g. [15] for a survey).
Future works may explore this connection, and perhaps bring
to light computational complexity results regarding the best
case performance one can hope for this kind of problems.

The ability to solve capture problems in tens of microsec-
onds opens new perspectives for motion planning and control.
For instance, planners can leverage this tool for fast evaluation
of contact reachability, while controllers can evaluate several
contact candidates in parallel, adapting their choice to e.g.
external pushes or changes in the desired walking direction.
These extensions are open to future works.
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APPENDIX A
PROOF OF PROPERTY 1

TODO: simpler law with c̈ = k(cf−c)−2
√
kċ that yields

λ = (c̈−g)·n
(c−rf )·n and r = c+ g−c̈

λ
As Icxi,xf

⊂ Ixi,xf
, it is enough to prove that Icxi,xf

is
non-empty as soon as Ixi,xf

is non-empty, i.e. that given a
input function λ(t), r(t) ∈ Ixi,xf

we can find another input
λc(t), rc(t) steering to the same state while converging. To
this end, consider the following state-dependent inputs:√

λ̄(x) = 2

√
g(5z̄ − z̄f) + ˙̄z2 − ˙̄zi

5z̄i − z̄f
(99)

r̄(x) = c+
c− cf

4
+

ċ√
λ̄(x)

+
g

λ̄(x)
(100)

This definition is chosen so that λ̄(x) is the solution of:[
c− o+

c− cf

4

]
· n+

(ċ · n)√
X

+
(g · n)

X
= 0 (101)

As a consequence, (r̄(xi)−o) ·n = 0 and the state-dependent
CoP belongs to the contact area. Moreover, λ̄ and r̄ are
continuous functions of xi in a neighbourhood of xf , and
λ̄(xf) = λf(cf) and r̄(xf) = rf(cf). Hence, as long as x(t)
is close enough to xf , both λ̄(x(t)) and r̄(x(t)) are feasible.

Injecting those inputs into (1) yields the nonlinear differen-
tial equation:

c̈(t) = − λ̄(x(t))

4
(c(t)− cf)−

√
λ̄ċ(t) (102)

It is immediate that xf is an equilibrium for this dynamics.
The linearized system around this equilibrium is:

c̈`(t) = −λf

4
(c`(t)− cf)−

√
λf ċ

`(t) (103)

for which the equilibrium is stable. Therefore the equilibrium
xf of (102) is locally stable: if x(0) is close enough to xf ,
then x(t) remains close to xf and converges toward this limit.

We now consider a generic input function λ(t), r(t) ∈
Ixi,xf

. By definition, the solution of (1) converges to xf as
t → ∞. Then, there exists some time T such that x(T ) is
close enough to xf so that, starting from this position, the
state-dependent control remains feasible and converges to xf .
We conclude by noting that the input function that switches
at time T from λ, r to λ̄, r̄ belongs to Icxi,xf

.

APPENDIX B
BACKGROUND ON NUMERICAL OPTIMIZATION

In this Appendix, we recall terminology and state-of-the-art
algorithms for numerical optimization. We essentially rewrite
treatment from [22] for double-sided inequality constraints.
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A. Definitions and notations

Consider the optimization problem:

minimize
x∈Rn

f(x) (104a)

subject to l ≤ h(x) ≤ u (104b)

where f and h are smooth functions, f being 1-dimensional
and h m-dimensional. Lower and upper bound constraints are
represented by vectors l,u ∈ Rm, with equality constraints
specified by taking lj = uj . A point x is feasible if it satisfies
all constraints. For a given x, we say the jth constraint is
active at its lower (resp. upper) bound when hj(x) = lj (resp.
hj(x) = uj). We denote by:

E def
= {j ∈ [1,m] , lj = uj} (105)

A(x)−
def
= {j /∈ E , hj(x) = lj} (106)

A(x)+ def
= {j /∈ E , hj(x) = uj} (107)

These three sets are disjoint. For a set of indexes S and a
matrix M, we define MS the matrix made of the rows of M
whose indexes are in S (this notation also applies to vectors).

The Lagrangian of the problem is defined as
L(x,λ−,λ+)

def
= f(x) + λ−T (h(x) − l) + λ+T (h(x) − u)

where λ−,λ+ ∈ Rm are the Lagrange multipliers, ∇xg and
∇2

xxg are respectively the gradient and Hessian of a function
g with respect to x. We note λ def

= λ− + λ+. We can work
with it instead of λ− and λ+ (see [46, §4.3.5]).

The Karush–Kuhn–Tucker (KKT) conditions give neces-
sary conditions on x and λ for x to be a minimizer of
Problem (104) (see [22, chap. 12]). They are often use as
termination conditions in solvers.

B. Active-set method for Quadratic Programming

When the objective f is quadratic, f(x) = 1
2x

TQx +
qTx, with Q symmetric positive semidefinite and h linear,
h(x) = Cx for some matrix C, Problem (104) is a (convex)
Quadratic Program with Inequality constraints (QPI). One of
the main approaches to solve it is the active-set method. This
method iteratively discovers the set of constraints active at
the solution11 by solving at each iteration k the following
Quadratic Program with only Equality constraints (QPE):

minimize
p∈Rn

1

2
pTQp+ (Qxk + q)Tp (108a)

subject to CWk
p = 0 (108b)

where Wk is a set of indexes. The solution p∗ to this QPE is
used to determine the next iterate xk+1.

Unlike QPIs, QPEs admit analytical solutions as their KKT
conditions reduce to a linear system. For a given xk, we can
retrieve λ with:

λAk = −C†TAk∇
T
xf(xk), λi = 0,∀i /∈ Ak (109)

where �† denotes the Moore-Penrose pseudo-inverse and
Ak = A(xk)− ∪ A(xk)+ ∪ E is the active set at xk, i.e.
the set of constraints that are active at this point.

11We ignore here for the sake of simplicity a subtlety arising when active
constraints are linearly dependent.

The active-set method for convex QPIs is given in Algo-
rithm 3. See [22, chap. 16] for more details on this method.

Algorithm 3 Active-set algorithm for convex QPI
Given a feasible point x0

Let W−0 = A(x0)−, W+
0 = A(x0)+

for k = 0, 1, 2, . . . do
Compute p from (108) with Wk =W−k ∪W

+
k ∪ E

if p = 0 then
Compute λ using Equation (109)
if x and λ verify the KKT conditions then

return the solution xf = xk
else

Choose j such that λj violates the KKT conditions
xk+1 = xk, W−k+1 =W−k \ {j}, W

+
k+1 =W+

k \ {j}
end if

else
Find the largest α ≤ 1 such that xk + αp is feasible.
xk+1 = xk + αp
if some constraints have been activated doing so then

Let j be the index of one of them
Obtain W−k+1 and W+

k+1 from W−k and W+
k by

adding j to the appropriate set
else
W−k+1 =W−k , W+

k+1 =W+
k .

end if
end if

end for

C. Sequential Quadratic Programming

Sequential quadratic programming (SQP) is an iterative op-
timization technique for solving general constrained problems
such as (104). At each iteration k, a QP approximation of (104)
is formed and solved:

minimize
p∈Rn

f(xk) + ∇xf(xk)Tp+
1

2
pTBkp (110a)

subject to l− h(xk) ≤∇xh(xk)Tp ≤ u− h(xk) (110b)

where Bk is ideally ∇2
xxL(xk,λk) or, for faster computa-

tions, some positive-definite approximation of it.

Algorithm 4 Line search SQP
Given a stepping parameter τ ∈ (0, 1)
Choose (x0,λ0)
while the KKT conditions are not satisfied do

Compute p from (110)
Let λ be the corresponding multiplier and pλ = λ−λk
α = 1
while αp does not yield an acceptable step do
α = τα

end while
xk+1 = xk + αp, λk+1 = λk + αpλ

end while

The outline of the SQP method is given in Algorithm 4.
There are several criteria for assessing whether a step is
acceptable, see [22, chap. 18] for details.


	Introduction
	Analysis of the inverted pendulum model
	Feasibility conditions
	N-step capturability
	Dichotomy of the components of motion
	Solutions to the Riccati equations
	Convergent component of motion
	Divergent component of motion
	Characterization of capture states and capture inputs
	Timeless parameterization

	Zero-step capturability of the 3D IPM
	Example of the fixed-CoP strategy
	Formulation of a first optimization problem
	Time-varying CoP strategy
	Computation and behavior of CoM capture trajectories

	Optimization of capture problems
	Problem reformulation
	Applying an SQP approach
	Solving the least squares sub-problem
	Tailored operations
	Numerical and algorithmic considerations
	Performance comparison

	One-step capturability of the 3D IPM
	Reformulation to a capture problem
	Constraint on the time to contact switch
	External optimization over the parameter alpha

	Walking control
	Model predictive control of capture trajectories
	Swing foot trajectory generation
	Simulations
	Feedback from whole-body to reduced model

	Discussion and future work
	References
	Appendix A: Proof of Property 1
	Appendix B: Background on numerical optimization
	Definitions and notations
	Active-set method for Quadratic Programming
	Sequential Quadratic Programming


