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Abstract
Tight estimates on the exit/containment probabilities of stochastic

processes are of particular importance in many control problems. Yet,
estimating the exit/containment probabilities is non-trivial: even for lin-
ear systems (Ornstein-Uhlenbeck processes), the containment probability
can be computed exactly for only some particular values of the system
parameters. In this paper, we derive tight bounds on the containment
probability for a class of nonlinear stochastic systems. The core idea is
to compare the “pull strength” (how hard the deterministic part of the
system dynamics pulls towards the origin) experienced by the nonlinear
system at hand with that of a well-chosen process for which tight esti-
mates of the containment probability are known or can be numerically
obtained (e.g. an Ornstein-Uhlenbeck process). Specifically, the main
technical contribution of this paper is to define a suitable dominance rela-
tionship between the pull strengths of two systems and to prove that this
dominance relationship implies an order relationship between their con-
tainment probabilities. We also discuss the link with contraction theory
and suggest some examples of applications.

1 Introduction
Consider a nonlinear, multi-dimensional, Stochastic Differential Equation (SDE)
of the form

dXt = f(Xt)dt+ σdBt,

where f a smooth function and σ a positive constant.
Given a ball of radius R and a time instant T , the exit probability from the

ball by time T is defined as [6]

Pexit := P(sup
t≤T
‖Xt‖ > R).

Equivalently, one may consider the containment probability, which is 1-Pexit,
or, in other words

Pcont := P(sup
t≤T
‖Xt‖ ≤ R).
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The exit/containment probabilities are of particular importance in many
control problems, including tracking, filtering [6], optical manipulation [11],
etc. The main reason is that, in such applications, the validity of the system
description by the SDE at hand is guaranteed to be valid only within some
region of space, for example, a ball of radius R – once the system exits from
the validity region, nothing can be said anymore about it, see Fig. 1 for an
illustration. Tight estimates of the exit/containment probability are therefore
crucial: one can then reason on the system behavior conditioned on the event
that the system is contained within the validity region at all time up to T . Note
that, stochastic stability in the mean-square sense and associated probability
estimates based on concentration inequalities, which are more commonly found
in the literature, cannot account for such observation, as further detailed in
Section 2.1.
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Figure 1: Simulation of a particle trapped by a laser. Within the laser beam
(red circle), the particle is subject to two phenomena: (i) a trapping force that
pulls the particle towards the center of the beam and (ii) random Brownian
perturbations. Outside of the laser beam, the trapping force vanishes very
quickly and can be considered as zero [11]. Two sample trajectories for t ∈ [0, T ]
are shown in blue and green. The green trajectory leaves the beam at some time
t < T , after which one has essentially lost all control authority over it. It is
therefore crucial, in any probability calculations, to consider the event that the
particle is contained within the beam for all t ∈ [0, T ].

Yet, estimating the exit/containment probability is non-trivial: even for
linear, uni-dimensional, systems of the following form (also known as Ornstein-
Uhlenbeck processes)

dXt = −λXtdt+ σdBt,

the containment probability can be computed exactly for only some particular
values of λ, σ,R, T [3]. Kushner’s classic book on stochastic control [6] provides
some bounds on the containment probability for nonlinear systems (within the
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topic of “finite-time stability”) but, as we shall see in Section 2.2, those bounds
are too loose for many practical applications.

In this paper, we derive tight bounds on the containment probability for
a class of nonlinear stochastic systems. The core idea is to compare the “pull
strength” (how hard the deterministic part of the system dynamics pulls towards
the origin) experienced by the nonlinear system at hand with that of a well-
chosen process for which tight estimates of the containment probability are
known or can be numerically obtained (e.g. an Ornstein-Uhlenbeck process).
However, a stronger pull everywhere does not always imply a larger containment
probability, as made clear in Section 2.3. The main technical contribution of
this paper is thus to define a suitable dominance relationship between the pull
strengths of two systems and to prove that this dominance relationship implies
an order relationship between their containment probabilities.

The remainder of this paper is organized as follows. Section 2 provides the
theoretical and practical contexts of the problem at hand. Section 3 presents
the main comparison results in dimensions d = 1 and d ≥ 2. Section 4 examines
these results in the context of contraction theory [8]. Finally, Section 5 concludes
by sketching future research directions.

2 Theoretical and practical contexts
2.1 Containment probability vs mean-square stability
The stability of nonlinear stochastic systems is an active research area with
important applications ranging from observer and controller design for nonlinear
noisy systems [4], to synchronization in networks of noisy oscillators [9, 10], etc.

Most of the existing stochastic stability results are in the “mean-square”
sense, typically of the form [9, 4]

∀t ≥ 0, E(‖Xt‖2) ≤ C1 + C2e
−2λt, (1)

where C1, C2 are two positive constants. While such results are certainly useful
to understand the system behavior on average, they are not relevant when it
comes to behaviors that depend on individual system trajectories. Consider for
instance a microscopic particle that is trapped by a laser tweezer [1] and subject
to Brownian perturbations [11]. The motion of the particle is well described by
a Stochastic Differential Equation (SDE), but the validity of that description
breaks down when the particle escapes from the laser trapping region, see Fig. 1.
Mean-square stability results that do not account for this phenomenon will not
provide an accurate understanding of the system.

Note that it is possible to use concentration inequalities to derive, from
mean-square bounds (1), probabilities of the form

P
(
‖Xt‖2 ≥ (C1 + C2e

−2λt)β(δ)
)
≤ e−δ,

see e.g. [4]. However, to be relevant, such probabilities, as the mean-square
bounds mentioned previously, must be conditioned upon the containment event.

It is therefore crucial to consider the containment probability of the form

P(sup
t≤T
‖Xt‖2 ≤ R2) ≥ 1− ε,
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where R is the laser trapping radius and ε a small constant. One can then
reason on the particle behavior conditioned upon the above probability that the
particle remains confined within the trapping region at all time until time T .

Another important example concerns the analysis of the Extended Kalman
Filter (EKF) [4]. The SDE describing the EKF is obtained by linearizing the
system dynamics around a reference trajectory, and is therefore guaranteed to
be valid only within some radius R around that trajectory. One thus needs
to condition upon the probability that the system trajectory remains within a
radius R from the reference trajectory up to some time horizon T . The reader is
referred to Chapter III of [6] for an extensive discussion of the relative merits of
mean-square stability versus exit/containment probabilities in control theory.

2.2 Looseness of existing containment probability estimates
In the literature, the main result on exit probability for nonlinear systems was
derived in Chapter III of Kushner’s book [6], based on a stochastic Lyapunov
analysis. However, the bound provided is too loose to be useful in many practical
applications. Consider again the laser trapping application [11]. The estimates
of the containment probability can be used to calculate the maximum velocity
of the laser beam such that the particle remains trapped with high probability.
In [11], it was shown that using Kushner’s estimates yields recommended maxi-
mum beam velocities that are significantly lower than velocities experimentally
found to be safe.

To get a more precise idea, consider the following simple linear, uni-dimensional,
stochastic system (an Ornstein-Uhlenbeck process)

dXt = −Xtdt+
√

2dBt, X0 = 0. (2)

The bound given by Kushner [6] would read

P(sup
t≤T
|Xt| ≤ R) ≥ e−µK(R)T , where (3)

µK(R) = 2
R2 . (4)

On the other hand, a direct, but more technically challenging, analysis of
system (2), gives the following bound (see [3])

P(sup
t≤T
|Xt| ≤ R) ∼T→∞ e−µD(R)T , (5)

where µD(R) is the smallest value ν such that the Sturm-Liouville system{
y′′(x)− xy′(x) = −νy(x)
y(−R) = y(R) = 0

has non-null solutions. Reference [3] then gives some values of µD(R) for 0.7 ≤
R ≤ 3, as well as the asymptotics

µD(R) ∼R→∞
R√
2π
e−

R2
2 . (6)
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Note that the asymptotics of (5) and (6) yield very good approximations as
soon as T ≥ 5 and R ≥ 3.

Fig. 2 compares the decay rate µK given by Kushner and the decay rate µD
obtained by direct analysis. One can observe that µK is tight for R ≤ 2, but
becomes very loose for large values of R.
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Figure 2: Comparison (in log scale) of the decay rate µK given by Kushner
(dashed blue) and the decay rate µD obtained by direct analysis of the Ornstein-
Uhlenbeck process [red stars: exact values; green circles: values obtained by
Monte Carlo simulations with T = 5, cyan plain line: asymptotics for large R
given by (6)]. Note that the asymptotics yield very good approximations as
soon as R ≥ 3.

In [11], it was shown, in a physical laser trapping experiment, that, in con-
trast with Kushner’s estimates (3), the direct estimates (5) yields recommended
maximum beam velocities that agree extremely well with the velocities experi-
mentally found to be safe.

2.3 A stronger pull does not always imply a larger con-
tainment probability

Consider two uni-dimensional systems (one can get rid of σ by adequate nor-
malization)

dXt = f(Xt)dt+ dBt,

dYt = g(Yt)dt+ dB′t.

Suppose that, everywhere, Xt experiences a stronger pull than Yt towards
zero, that is,

∀x ∈ R, sgn(x)f(x) ≤ sgn(x)g(x), (7)
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where the sign function defined by
if x > 0, sgn(x) := 1,
if x = 0, sgn(x) := 0,
if x < 0, sgn(x) := −1.

Then, one would like to say that, for all T,R,
P(sup

t≤T
|Xt| ≤ R) ≥ P(sup

t≤T
|Yt| ≤ R). (8)

However, this is not always true, as shown by the following counter-example.
For a given λ ∈ R, denote by Xλ the strong solution of the SDE

dXt = −Xt1{Xt>0}dt− λXt1{Xt<0} + dBt,

i.e. Xλ is similar to an Ornstein-Uhlenbeck process with pull 1 on the right
half-line, and with pull strength λ on the left half-line. Note that, if λ > λ′,
then Xλ is subject to a pull stronger or equal to that of Xλ′ everywhere.

Given R, T , consider the containment probability

P (λ) := P
(

sup
t≤T
|Xλ

t | ≤ R
)
.

Fig. 3 shows the values of P (λ) for λ ≥ 1, R = 0.5, T = 1. One can
observe that P (λ) is non-monotonic: it increases on the right of λ = 1, reaches
a maximum at λ ' 20, then decreases towards P (1) when λ→∞.

Intuitively, increasing the strength of the pull on the left half-line has two
opposite effects:

1. A stronger pull on the left half-line makes exits by the left boundary more
“difficult”, thereby contributing positively to the containment probability;

2. But, at the same time, increasing the pull strength asymmetrically might
“chase” the diffusion from an area where it is well-controlled towards an
area where the control is not as good, which can, in turn, help the pro-
cess escape. In the limit λ → ∞, the left half-line acts as a solid wall.
Therefore, limλ→∞Xλ = |X1|, which implies that limλ→∞ P (λ) = P (1).

For small values of λ, the first effect dominates, while for large values of λ,
the second effect does, as can be observed in Fig. 3. Thus, for λ large enough,
the containment probability decreases with λ, which contradicts the intuition
of (8).

In the next section, we shall define a suitable dominance relationship between
the pull strengths, that is, one that implies an order relationship between the
containment probabilities.

3 Comparison Theorem under symmetric dom-
inance assumption

3.1 Comparison Theorem in dimension d = 1
To avoid the phenomenon of concentration in “safe havens” where exits are
subsequently easier, one can “symmetrize” the dominance assumption of (7) as
in the following Theorem (see Fig. 4 for illustration).
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Figure 3: A stronger pull does not always imply a larger containment probability.
The red plain line shows the containment probability P (λ) for λ ≥ 1 with
R = 0.5, T = 1 (obtained by Monte Carlo simulation). One can note that the
containment probability increases with the pull strength λ only until λ ' 20,
then it decreases towards P (1) when λ→∞ (dashed blue line).

Figure 4: Symmetrization of the dominance assumption.
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Theorem 1 (Comparison Theorem in dimension 1). Let f, g be continuous
functions satisfying

∀x ∈ [0,K], f(x) ≤ min(g(x),−g(−x))
∀x ∈ [−K, 0], f(x) ≥ max(g(x),−g(−x)), (9)

then, given the SDEs

dXt = f(Xt)dt+ sgn(Xt)dBt
dYt = g(Yt)dt+ sgn(Yt)dBt,

one has almost surely |Xt| ≤ |Yt| for all t ≤ TK := inf{t > 0 : |Yt| = K}. In
particular, one has

∀R ∈ (0,K], ∀T ≥ 0, P(sup
t≤T
|Xt| ≤ R) ≥ P(sup

t≤T
|Yt| ≤ R).

Note that the processes X and Y and defined using the same noise process B
– a technique called coupling [7]. Heuristically, the coupling is as follows

• if Xt and Yt have the same sign, then Xt+dt and Yt+dt are constructed
using the same noise;

• if Xt and Yt have opposite sign, then Xt+dt and Yt+dt are constructed
using opposite noises.

Thus, in both cases, the absolute values of Xt and Yt move in the same direction.
The main difficulty in proving Theorem 1 is the time instants when X and

Y go close to 0. We shall tackle this difficulty by an approximation technique.
Consider the stronger assumptions of the following Lemma.

Lemma 1. Let f, g be continuous functions satisfying (9). Assume moreover
that there exists ε > 0 such that

∀|x| ≤ ε, f(x) = g(x). (10)

Then the conclusions of Theorem 1 hold.

Proof. Note first that (10) and (9) together imply that

∀|x| ≤ ε, −f(−x) = f(x) = g(x) = −g(−x).

Let B be a standard Brownian motion, we construct on the same probability
space two processes X and Y satisfying

X0 = Y0 = 0

Xt =
∫ t

0
f(Xs)ds+

∫ t

0
sgn(Xs)dBs (11)

Yt =
∫ t

0
g(Ys)ds+

∫ t

0
sgn(Ys)dBs. (12)

Note that there is no trajectorial uniqueness for this type of stochastic differ-
ential equation. However, there exist solutions, and uniqueness in law holds by
boundedness of f and g on compact intervals.
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Given a solution Y of (12), define a sequence of hitting times as follows. Let
τ (0) := 0 and

υ(k) := inf{t > τ (k) : |Yt| = ε}; τ (k+1) := inf{t > υ(k) : Yt = 0}.

In other words, υ(k) is the first time, after time τ (k), that Y leaves the strip
[−ε, ε], and τ (k+1) is the first time, after time υ(k), that Y hits 0.

We now construct X as follows (see Fig. 5 for sample paths of X and Y )

• For all t ∈ [τ (k), υ(k)], Xt = Yt;

• On [υ(k), τ (k+1)], X is the unique solution of (11) on this interval.
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Figure 5: Sample trajectories for the processes X (green) and Y (red). Here
ε = 0.5 (black dashed lines). The hitting times τ (dashed yellow) and υ (dashed
blue) are also indicated. Note that X = Y in the intervals [yellow, blue] and
|X| ≤ |Y | in the intervals [blue, yellow].

We show, by induction on k ∈ N, the following properties of X

(i) X is a solution of (11) on [τ (k), υ(k)] and [υ(k), τ (k+1)];

(ii) |X| ≤ |Y | in the above intervals;

(iii) Xτ(k+1) = 0.

Initialization: (i) For k = 0, note that, for all t ∈ [τ (0), υ(0)], Xt = Yt ≤ ε.
Thus, by (10), one has f(Xt) = g(Yt) over the whole interval, which in turn
implies that X = Y is a solution of (11) on the interval. The fact that X is a
solution of (11) on [υ(0), τ (1)] is by construction.
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(ii) Next, |Xt| ≤ |Yt| trivially on [τ (0), υ(0)]. On [υ(0), τ (1)], one has, by
Itô-Tanaka formula

|Xt| =
∫ t

0
sgn(Xs)f(Xs)ds+Bt + LXt

|Yt| =
∫ t

0
sgn(Ys)g(Ys)ds+Bt + LYt ,

where LX and LY are the local times at 0 of X and Y respectively. This yields

|Yt| − |Xt| =
∫ t

0
sgn(Ys)g(Ys)− sgn(Xs)f(Xs)ds+ LYt − LXt . (13)

Assume by contradiction that there exists some time t ∈ [υ(0), τ (1)) such that
|Xt| = |Yt|, and |Xt+u| > |Yt+u| > 0 for all u > 0 small enough. As both |Xt+u|
and |Yt+u| are different from 0 for u close enough to 0, one has that LX and LY
are constant in a neighbourhood of t. Therefore, by (13), h : t 7→ |Yt| − |Xt| is
differentiable in a neighborhood of t, and its derivative is, in that neighborhood,

h′(s) = sgn(Ys)g(Ys)− sgn(Xs)f(Xs) ≥ 0,

which contradicts the fact that |Xt+u| > |Yt+u| for u small enough.
We have thus shown that |Xt| ≤ |Yt| on [υ(0), τ (1)). The inequality can be

extended to the closed interval by continuity.
(iii) Since |X| ≤ |Y | on the interval [υ(0), τ (1)] and that Yτ(1) = 0, one has

Xτ(1) = 0.
Induction: By the induction hypothesis, one has Xτ(k) = Yτ(k) = 0. Thus

the proof that |Xs| ≤ |Ys| for s ∈ [τ (k), τ (k+1)] is straightforward by using the
Markov property and adapting the Initialization step.

To complete the proof, note that limk→∞ τ (k) = ∞, which can be obtained
by observing that, by the law of large numbers, one has almost surely

lim
k→∞

1
k

k∑
j=1

υ(j) − τ (j) = E(υ(1)) > 0.

We are now in a position to prove Theorem 1.

Proof. Let f and g be two functions satisfying (9). For all ε > 0, we set

fε(x) := 1{x>2ε}f(x− 2ε) + 1{x<−2ε}f(x+ 2ε)
gε(x) := 1{x>ε}g(x− ε) + 1{x<−ε}g(x+ ε).

Note that fε, gε satisfy (9) and (10), therefore, by Lemma 1, the conclusions of
Theorem 1 hold for Xε and Y ε. Next, since the law of (Xε, Y ε) converges toward
the law of (X,Y ), one can conclude, by Skorokhod’s embedding theorem, that
there is trajectorial convergence, and that the limiting process (X,Y ) satisfies
the conclusion of Theorem 1.

Remark 1. If Y is an Ornstein-Uhlenbeck process with pull strength λ, then
condition (9) becomes

∀x ∈ [−K,K], sgn(x)f(x) ≤ −λ|x|.
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3.2 Comparison Theorem in dimension d ≥ 2
To enforce a “symmetric” dominance assumption in dimension d ≥ 2, we intro-
duce the radial decomposition: for x ∈ Rd\{0}, denote by Rx the matrix of the
rotation that brings x

‖x‖ to the first basis vector e1 (by convention, R0 := Id).
Theorem 1 can now be extended to dimension d ≥ 2 as follows.

Theorem 2 (Comparison Theorem in dimension d ≥ 2). Let f, g be continuous
functions satisfying

∀r ∈ R+, sup
θ∈Sd−1

f(rθ)>θ ≤ inf
θ∈Sd−1

g(rθ)>θ. (14)

then, given the SDEs

dXt = f(Xt)dt+R−1
Xt
dBt

dYt = g(Yt)dt+R−1
Yt
dBt,

one has almost surely ‖Xt‖ ≤ ‖Yt‖ for all t ≤ TK := inf{t > 0 : ‖Yt‖ = K}. In
particular, one has

∀R ∈ (0,K], ∀T ≥ 0, P(sup
t≤T
‖Xt‖ ≤ R) ≥ P(sup

t≤T
‖Yt‖ ≤ R).

Proof. We follow the same strategy as in the proof of Theorem 2. Note that,
using Itô-Tanaka formula in dimension d ≥ 2, one has

||Xt|| =
∫ t

0
f(Xs)>

Xs

||Xs||
ds+Bt.e1 + LXt ,

and a similar formula for Y , where

LXt := lim
ε→0

1
Vdεd

∫ t

0
1{||Xs||≤ε}ds.

The rest of the proof is similar to that of Theorem 2.

Remark 2. If Y is an Ornstein-Uhlenbeck process with pull strength λ, then
condition (14) becomes

∀r ∈ R+, sup
θ∈Sd−1

f(rθ)>θ ≤ −λr.

4 Link with contraction theory
Contraction theory [8] provides a set of tools to analyze the exponential sta-
bility of nonlinear systems, and has been applied notably to observer design
(see e.g. [2]), synchronization analysis (see e.g. [10]), and systems neuroscience.
Nonlinear contracting systems enjoy desirable aggregation properties, in that
contraction is preserved under many types of system combinations given suit-
able simple conditions [8].

We say that f is contracting with contraction rate λ > 0 in the identity
metric [8] if

∀x, t, λmax

(
∂f

∂x

)
≤ −λ,
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where λmax(A) denotes the largest eigenvalue of the symmetric part of matrix A.
A specialized result of contraction theory is that, if f is contracting with con-
traction rate λ, then all system trajectories converge exponentially to a single
trajectory, with convergence rate λ. More general settings of contraction theory
can cater for the dependency of f on the time parameter t as well as nonlinear
metrics. For simplicity, however, our current discussion is carried out without
the dependency of f on t and in the identity metric. Including time-dependency
could be addressed by adapting condition (14) to include uniformity over t ∈ R
and ω ∈ Ω. Extension to nonlinear metrics would likely involve checking whether
the metrics are compatible with the symmetric dominance assumption. Such
extensions will be investigated in our future work.

Assume now that f is contracting with contraction rate λ in the identity
metric and consider two d-dimensional SDEs

dXt = f(Xt)dt+ σdBXt

dYt = f(Yt)dt+ σdBYt .

Consider the d-dimensional process Z := Y −X. One has

dZt = dYt − dXt = [f(Yt)− f(Xt)]dt+
√

2σdBZt .

Since f is smooth, one can write 1

f(Yt)− f(Xt) =
(∫ 1

0

∂f

∂x
(Xt + s(Yt −Xt))ds

)
(Yt −Xt)

=: g(Xt, Yt)Zt.

Thus, one can rewrite

dZt = g(Xt, Yt)Ztdt+
√

2σdBZt ,

where g(Xt, Yt) can be seen as an external driving signal.
Define h(z) := g(x, y)z. Let us evaluate the radial component of h. For that,

set z = rθ where r > 0, θ ∈ Sd−1. One has

h(rθ)>θ = 1
r

(g(x, y)z)>z

= 1
r
z>
(∫ 1

0

∂f

∂x
(x+ s(y − x))ds

)>
z

= 1
r

∫ 1

0
z>
(
∂f

∂x
(x+ s(y − x))

)>
zds

≤ 1
r

∫ 1

0
−λ‖z‖2ds = −λr.

Since −λr is the radial component of a d-dimensional Ornstein-Uhlenbeck pro-
cess with pull strength λ (see Remark 2), Theorem 2 can be used to bound
the containment probabilities for the distance P(supt≤T ‖Yt −Xt‖ ≤ R) by the
corresponding containment probabilities of a d-dimensional Ornstein-Uhlenbeck
process with pull strength λ and noise strength

√
2σ.

1See for instance Lemma 1 at https://en.wikipedia.org/wiki/Mean_value_theorem.
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5 Conclusion
We have defined a dominance relationship between the pull strengths of two
nonlinear stochastic systems that implies an order relationship between their
containment probabilities. This result enables establishing tight bounds on the
containment probabilities for a large class of nonlinear systems by comparing
them with suitable Ornstein-Uhlenbeck processes, for which containment prob-
abilities can be numerically obtained.

One important implication of this result is that one can immediately bound
the containment probabilities of stochastic systems that are contracting with
rate λ by those of Ornstein-Uhlenbeck processes with pull strength λ.

The results presented here may have many exciting applications in control
theory. For example, the design of controllers for optical manipulation in [11]
could be extended to deal with nonlinear trapping forces. Another application
could be to develop a rigorous theory of stability for Extended Kalman Filters,
e.g. by extending the contraction-theory-based analysis of [2] to stochastic sys-
tems. Yet another avenue would be to establish tight bounds on the time taken
by stochastic optimization algorithms – such as the Stochastic Gradient Descent
widely used in machine learning – to escape local minima [5]. Exploring such
applications is the subject of ongoing research.
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