
Random-bit optimal uniform sampling for

rooted planar trees with given sequence of

degrees and Applications

O.Bodini ⋆, J. David ⋆⋆, and Ph. Marchal

Institut Galilée, Université Paris 13, Villetaneuse (France)

Abstract. In this paper, we redesign and simplify an algorithm due
to Remy et al. for the generation of rooted planar trees that satisfies a
given partition of degrees. This new version is now optimal in terms of
random bit complexity, up to a multiplicative constant. We then apply
a natural process “simulate-guess-and-proof” to analyze the height of a
random Motzkin in function of its frequency of unary nodes. When the
number of unary nodes dominate, we prove some unconventional height
phenomena (i.e. outside the universal Θ(

√
n) behaviour.)

1 Introduction

Trees are probably among the most studied objects in combinatorics,
computer science and probability. The literature on the subject is abun-
dant and covers many aspects (analysis of structural properties such
as height, profile, path length, number of patterns, but also dynamic as-
pects such as Galton-Watson processes or random generation, ...) and use
various techniques such as analytic combinatorics, graph theory, proba-
bility,...
More particularly, in computer science, trees are a natural way to struc-
ture and manage the data, and as such, they are the basis of many crucial
algorithms (binary search trees, quad-trees, 2-3-4 trees, ...). In this arti-
cle, we are essentially interested in the random sampling of rooted planar
trees. This topic itself is also subject to a extensive study. To mention
only the best known algorithms, we can distinguish four approaches. The
first two of them are in fact more general, but can be applied efficiently
to the sampling of trees, the two others are ad hoc to tree sampling:

1. The random sampling by the recursive method [FZC94] of generating
a tree from rules described with coefficients associated generating
series [DPT10],

2. The random generation under Boltzmann model that allows uniform
generation to approximate size from the evaluation of generating
functions [DFLS04,BP10].

3. The random generation by Galton-Watson processes based on the
dynamics of branching processes [Dev12],

⋆ Supported by ANR Magnum project BLAN 0204 (France)
⋆⋆ Supported by ANR Magnum project BLAN 0204 (France)

4. The generation following Remy precepts.[ARS97a,ARS97b,BBJ13]

Concerning the generation of trees with a fixed degree sequence, the
reference algorithms are due to Alonso et al. However, the complete un-
derstanding of their approach seems to us quite intricate. Moreover their
approach is not optimal in terms of entropy (i.e. the minimum numbers
of random bits necessary to draw an object uniformly as described in the
famous Knuth-Yao paper [KY76]).

In this article, we give two versions of an algorithm for drawing efficiently
trees whose the degree sequence is given. Our first version is fast and
easy to implement, and its description is simple and (we hope) natural.
It works, essentially like Alonso’s algorithm, though we explicitly use
the Lukasiewicz code of trees. Our second version only modifies the two
first steps of the first algorithm. It is nearly optimal in terms of entropy
because it uses only in average a linear number of random bits to draw a
tree. Moreover, Lukasiewicz codes and a very elementary version of cyclic
lemma allows us to give a simple proof of the theorem of Tutte [Tut64]
which gives under an explicit multinomial form the number of plane trees
with a given partition of the degrees.

From our sampler, we simulate various kind of trees. We focus our atten-
tion on unary-binary rooted planar trees (also called Motzkin trees) with
a fixed frequency of unary nodes. In particular, we look for the variation
of the height depending of the frequency of unary nodes. We can easily
conjecture the nature of the variation.

Our second contribution is to describe and prove the distribution of the
height according to the number of unary nodes. The proof follows a
probabilistic approach and uses in a central the notion of continuous
random trees (CRT). Even if the distribution of the height still follows
a classical theta law, the expected value can leave the universal Θ(

√
n)

behaviours.

The general framework used in this paper to describe trees is the analytic
combinatorics even if we use some classical notion on word theory and
a basis of probabilistic concepts in the second part of the paper. More
specifically, we deal with the symbolic method to describe the bijection
between Lukasiewicz words and trees. A combinatorial class is a set of
discrete objects O, provided with a (multidimensional) size function s :
O → N

d for some integer d, in such way that for every n ∈ N
d, the set

of discrete objects of size n, denoted by On, is finite. In the classical
definition, the size is just scalar, but for our parametrized problem this
extension is more convenient. For more details, see for instance [FS09].
This approach is very well suited to the definition of trees. For instance,
the class of binary trees B can be described by the following classical
specification : B = Z + ZB2.

In this framework, random sampling can be interpreted as follows. A size
uniform random generator is an algorithm that generate discrete objects
of a combinatorial class (O, s), such that for all objects o1, o2 ∈ On of
the same size, the probability to generate o1 is equal to the probability
to generate o2.

The paper is organized as follows. Section 2 presents the definition of
tree-alphabets, valid words, Lukasiewicz words ordered trees and the

2

links between the objects. Section 3 presents a re-description of an algo-
rithm by Alonso et al. [ARS97a], using the notion of Lukasiewicz words.
Our approach is to prove the algorithm step by step, using simple argu-
ments. Section 4 present the dichotomic sampling method, which directly
generates random valid words, using a linear number of random bits.
The last part of the paper follows a simulate-guess-and-prove scheme.
We first show some examples of random trees obtained from the gener-
ator. Then, we experimentally and theoretically study the evolution of
the tree’s height according to the proportion of unary nodes.

2 Words and Trees

2.1 Valid words and Lukasiewicz Words

This section is devoted to recall the one-to-one map between trees and
Lukasiewicz words. This bijection is the central point for the sampling
part of the paper. Let us recall basic definitions on words. An alphabet
Σ is a finite tuple (a1, ..., ad) of distinct symbols called letters. A word w
defined on Σ is a sequence of letters from Σ. In the following, wi denotes
the i-th letters of the word w, |w| its length and for all letter a ∈ Σ, |w|a
counts the occurrences of the letter a in w. A language defined on Σ is
a set of words defined of Σ.
The following new notion of tree-alphabet will make sense in the next
sections. It will allow us to define subclasses of Lukasiewicz words will
be in relation to natural combinatorial classes of trees.

Definition 1. A tree-alphabet Σf is a couple (Σ, f) constituted by an
alphabet Σ = (a1, . . . , ak) and a function f : Σ → N ∪ {−1} that asso-
ciates each symbol of Σ to an integer such that:
i. f(a1) = −1,
ii. f(ai) ≤ f(ai+1), for 1 ≤ i < k.

We finish this section by introducing Lukasiewicz words.

Definition 2. A word w on the tree-alphabet Σf = ((a0, ..., ak), f) is a
f -Lukasiewicz word if :

i. for all i < k, we have
∑i

j=0 |w|aj
f(aj) ≥ 0

ii.
∑k

i=1 |w|ai
f(ai) = −1

When the condition ii. is verified, we say that the word w if f-valid.
By extension and convenience, we also say that a k-tuple (n1, . . . , nk) is
f -valid

∑k
i=1 nif(ai) = −1.

The Lukasiewicz words Lf are just the union over all tree-alphabet Σf

of the f -Lukasiewicz words.
A classical and useful representation of words on a tree-alphabet is to
plot a path describing the evolution of

∑i
j=1 f(wj). Then, a word of size

n is valid if and only if the path terminate at position (n,−1) and it
is a Lukasiewicz word if and only if the only step that goes under the
x − axis is the last one. In particular, these remarks prove that we can
verify in linear time if a word is or not a Lukasiewicz word.

3

For instance, if f(a) = −1, f(b) = 0 and f(c) = 1, the following paths
represent (from left to right) a Lukasiewicz word, a f -valid word and a
non valid word:

i

∑i
j=1 f(wi) + 1

c c b a b a a

∑i
j=1 f(wi) + 1

b a b a c c a

∑i
j=1 f(wi) + 1

c a c a b a a
Finally, we can give an alternative definition of Lukasiewicz words in
the framework of the symbolic method as follows: a word w defined
over Σf is a Lukasiewicz word if w = aw1 . . . wf(a)+1n where a ∈ Σf and
∀i ≤ f(a)+1, wi is a Lukasiewicz word. In other word, the combinatorial
class of Lukasiewicz words follow the recursive specification:

L =
∑

a∈Σf

aLf(s)+1

2.2 The Tree classes

Rooted planar trees are very classical combinatorial objects. Let us recall
how we can define them recursively and how this can be describe by a
formal grammar. Let us begin by the rooted tree class T over the tree-
alphabet Σf which can be define as the smallest set verifying:
– [x] ∈ T for every x ∈ Σ such that f(x) = −1.
– Let x such that f(x) = k and T1, · · · , Tk in T , then x[T1, · · · , Tk] is

in T .
So, the set T of all planar Σf -labelled trees is a combinatorial class whose
the size of a tree T is (|f−1(a1)|, · · · , |f−1(ad)|) where Σ = (a1, ..., ad).
And just observing the recursive definition, we can specify it from the
following symbolic grammar:

G =
∑

s∈Σf

sGf(s)+1

Theorem 1 (Lukasiewicz). The combinatorial class of f-Lukasiewicz
words Lf is isomorphic to the combinatorial class of trees described by
the specification (grammar) G =

∑

s∈Σf
sGf(s)+1.

An explicit bijection can be done as follows: from a Σf -labelled tree T , a
prefix walk gives a word. This word is a f -Lukasiewicz word. Conversely,
from a f -Lukasiewicz word w, we build a tree recursively, the root is
of degree f(w1) + 1 and we continue with the sons as a left-first depth
course.

3 A random sampler as a proof of Tutte’s

theorem

This section is devoted to describe the algorithm that we propose for
drawing uniformly a rooted planar tree with a given sequence of degree.
The diagram (Fig.1) shows the very simple strategy we adopt.

4

Input: A tree-alphabet Σf
of k letters, a tuple n

Permutation
Probability of each

permutation: 1
n!

Valid Word

Probability for each

valid word:

∏k
i=1 ni!

n!

Lukasiewicz
Word

Probability for each

Lukasiewicz word:

∏k
i=1 ni!

(n−1)!

Planar Tree

Probability for each

tree:

∏k
i=1 ni!

(n−1)!

Fisher-Yates Algorithm: Θ(n)

Knuth-Yao Algorithm or
Dichotomic Sampling: Θ(n)
random bit complexity

Transform according to n

Circular permutation: Θ(n)

Bijection in Θ(n)

Fig. 1. Diagram of the two possible algorithms. The algorithm (Section 3) using the
Fisher-Yates algorithm uses Θ(n log n) random bits to generate a random tree with
n nodes, but is easy to implement. The algorithm (Section 4) using the Knuth-Yao
algorithm [KY76] or our dichotomic sampling method use a linear number of random-
bit, but doesn’t allow us to prove the Tutte’s enumerative theorem.

The first algorithm contains 4 steps. The first and the last steps respec-
tively consist in generating a random permutation using the Fisher-Yates
algorithm and the transformation of a Lukasiewicz word into a tree. The
two other steps are described in the two following subsections. Each sub-
section contains an algorithm, the proof of its validity, and its time and
space complexity. We also uses the transformations to obtain enumera-
tion results on each combinatorial object. Those enumeration results will
be useful to prove that the random generator is size-uniform.

From a permutation to a valid word This part is essentially
based on the following surjection from permutations to words. Consider
the application Φ from Σn the set of permutations of size n to Wn the
words of size n having for 1 ≤ i ≤ k, ni letters ai such that :

Φ((σ1, ..., σn)) = φ(σ1) · · ·φ(σn)

where φ(k) = ai if n1 + · · ·nk−1 + 1 ≤ k ≤ n1 + · · ·nk.

Lemma 1. For each valid word w ∈ Σn

f defined over a k letters alpha-
bet, the number of permutation associated to w by the Algorithm 1 is
exactly

∏k
i=1 ni!.

Proof. Let us define mi =
∑i−1

j=1 ni and m1 = 0. The application is
invariant by permutation of the values inside [mi, . . . ,mi + ni]. So, the
cardinality of the kernel is

∏k
i=1 ni!.

5

Algorithm 1: From a permutation to a valid word

Input: A tree-alphabet Σfof k letters and a tuple n, a permutation σ of length
n

Output: A tabular w encoding a valid word
1 Create a tabular w of size n;
2 pos← 0;
3 for i ∈ {1, . . . , k} do
4 for j ∈ {1, . . . , ni} do
5 w[σpos]← ai;
6 pos← pos+ 1;

7 return w;

Corollary 1. The number of valid words in Σn

f is exactly n!
∏

k
i=1 ni!

.

Lemma 2. The time and space complexity of Algorithm 1 is Θ(n).

Proof. The space complexity is linear since we create a tabular of size n.
Instructions of line 1, 2, 5, 6 can be done in constant time. Lines 5 and 6
are executed

∑k
i=1 ni times, that is to say n times.

From a valid word to a Lukasiewicz word This part is essen-
tially based on a very simple version of the cyclic lemma which says
that among the n circular permutations of a valid word, there is only
one which is a Lukasiewicz word. Therefore, if we have a uniform ran-
dom valid word and transform it into a Lukasiewicz word, we obtain a
uniform Lukasiewicz word.

i

∑i
j=1 f(wi) + 1

b a b a c a c

Circular

Permutation
i

∑i
j=1 f(wi) + 1

c a c b a b a

Fig. 2. An example: the valid word babacac is not a Lukasiewicz word but cacbaba
is. The idea is to find the smallest value of i such that

∑i
j=1 f(wi) is minimal, and

compute the word wi+1 · · ·w|w|w1 · · ·wi

Lemma 3. For each valid word w ∈ Σn

f), there exists a unique integer
ℓ such that wℓ+1 · · ·wnw1 · · ·wℓ is a Lukasiewicz word. Such integer is
defined as the smallest integer that minimizes

∑ℓ
j=1 f(wj).

Proof. Let w′ = wℓ+1 · · ·wnw1 · · ·wℓ be the circular permutation of w
at a position ℓ. We notice that w′ is a valid word. Let’s now picture the

6

path representation of w and w′ (see Figure 2). Let b(i) (resp. (a(i))
be the height of the path at position i before (resp. after) the circular
permutation. In other words:

b(i) =

i
∑

j=1

f(wj)

a(i) =

{

b(i)− b(ℓ), for all i ∈ {ℓ+ 1, . . . , n}
b(i)− b(ℓ)− 1, for all i ∈ {1, . . . , ℓ}

w′ is a Lukasiewicz word iff a(i) ≥ 0, for all i ∈ {1, . . . , ℓ−1, ℓ+1, . . . , n},
that is to say:

a(i) ≥ 0⇐⇒
{

b(i) ≥ b(ℓ), for all i ∈ {ℓ+ 1, . . . , n}
b(i) > b(ℓ), for all i ∈ {1, . . . , ℓ− 1}

This concludes the proof.

Corollary 2. The number of Lukasiewicz words in Σn

f is exactly (n−1)!
∏

k
i=1 ni!

.

Proof. From Lemma 3 we know that each Lukasiewicz word can be ob-
tained from exactly n valid words. We conclude using Corollary 1

Corollary 3 (Tutte). The number of trees having ni of type i and such

that (n1, ..., nk) is f-valid is exactly (n−1)!
∏

k
i=1

ni!
.

Proof. It is a direct consequence of the bijection between trees and
Lukasiewicz words.

We use the property of Lemma 3 to describe an algorithm that transforms
any valid word into its associated Lukasiewicz word.

Lemma 4. Algorithm 2 transforms a valid word into its Lukasiewicz
word. Its time and space complexity is Θ(n).

Proof. The space complexity is linear since we create a tabular v of size
n. The first loop computes unique integer ℓ such that wℓ+1 · · ·wnw1 · · ·wℓ

is a Lukasiewicz word, in linear time. The second and the third loop fill
tabular the v of length n such that v = wℓ+1 · · ·wnw1 · · ·wℓ.

3.1 First algorithm

Theorem 2. Algorithm 3 is a random planar tree generator. Its time
and space arithmetic complexity is linear.

7

Algorithm 2: From a valid word to a Lukasiewicz word

Input: A valid word w of length n according to (Σ, f, occ)
Output: A tabular v encoding a Lukasiewicz word

1 min← cur ← f(w1);
2 ℓ← 1;
3 for i ∈ {2, . . . , n} do
4 cur ← cur + f(wi);
5 if cur < min then
6 ℓ← i;
7 min← cur;

8 Create a tabular v of length n;
9 for i ∈ {1, . . . , ℓ} do

10 v[i+ ℓ+ 1]← w[i];

11 for i ∈ {ℓ+ 1, . . . , n} do
12 v[i− ℓ− 1]← w[i];

13 return v;

Algorithm 3: Random Planar Tree Generator

Input: A tree-alphabet Σf of k letters and a tuple n

Output: A random planar tree satisfying Σf and n

1 Generate a random permutation σ using Fisher-Yates Algorithm;
2 Transform σ into a valid word w;
3 Transform w into a Lukasiewicz word v;
4 Transform v in a planar tree t
5 return t;

8

4 The dichotomic sampling method

Using the diagram of Figure 1 above, we arrive at the algorithm 3. How-
ever, this algorithm is not optimal in random bit because drawing the
permutation consumes more bits than necessary. We shall describe an-
other method to more efficiently generate a valid word. The problem is
just to draw a f -valid word from a f -valid tuple n = (n1, . . . , nk). For
that purpose, consider the random variable A on the letters of Σ, assume

that A1 follows the distribution Dn: Prob(A1 = ai) =
ni

∑

i ni
, draw A1

(says A1 = aj) and put it in the first place in the word (i.e. w1 = aj).
Now, A2 is conditioned by A1, just by decrease by one nj , again draw
A2 and put it in the second place, and so on. This algorithm is described
below (see Algorithm 4). It is clear that the built word is a f -valid word,
because it contains exactly the good number of each letters. Now, it is
drawn uniformly, indeed, in a uniform f -valid word, the first letter follows
exactly the distribution Dn, the sequel follows directly by induction.

Algorithm 4: From a tuple n to a valid word

Input: A tree-alphabet Σf of k letters and a tuple n

Output: A tabular w encoding a valid word
1 Create a tabular w of size n;
2 for i ∈ {1, . . . , n} do
3 k ← Distrib(n) (k is drawn according to the distribution Dn);
4 w[i]← ak;
5 n← n− ek (ek denotes the k-th canonical vector);

6 return w;

So, to obtain a random-bit optimal sampler, we just need to have a
optimal sampler for general discrete distribution. But, it is exactly the
result obtained by Knuth-Yao [KY76]. This achieves the proof of:

Theorem 3. The algorithm described below is a random-bit optimal
sampler for rooted planar tree with a given sequence of degree.

Nevertheless, according to the authors, the Knuth-Yao algorithm can be
inefficient in practice (because it needs to solve the difficult question to
generate infinite DDG-trees). There is a long literature on it which is
summarized in the book of L. Devroye [?]. Let just mention the interval
sampler from [HH97] and the alias methods [Vos91,Wal77,MTW04].
We propose in the sequel a nearly optimal and very elementary algorithm,
called dichotomic sampling, to draw a random variable X following a
given discrete distribution of k parts, say, Prob(X = xi) = pi for 1 ≤
i ≤ k. Let us denote sj =

∑

i≤j pi and let us express X as [s1, · · · , sk−1].
Now, let m be the largest integer such that sm ≤ 1/2 and m = 0 if there
is no such a number. Then to draw X1 = [s1, . . . , sk−1], we can flip a
coin (Bernoulli choice of parameter 1/2), and if the result is heads then if

9

m = 0 return x0 or draw in X2 = [2s1, . . . , 2sm], if the result is tails and
if m = k− 1 then return xk else draw in X2 = [2sm+1− 1, . . . , 2sk−1− 1]
and continue recursively while Xµ 6= ∅
The dichotomic sampling algorithm implies the following induction for
Cn the mean number of flip needed for drawing when there are n + 1
parts : C1 = 2 and Ck = 1 + 1

2
max0≤k≤m(Cm + Ck−m). First, let us

assume that Ck is concave, so let us consider C̃k = 1+ 1
2
(C̃⌊ k

2
⌋ + C̃⌈ k

2
⌉).

A short calculation shows that C̃n = ⌊ln2(n − 1)⌋ + 1 +
n

2⌊ln2(n−1)⌋ .

Now, by induction, we can easy check that Ck = C̃k. So, in particular,
Ck ≤ 2 + ln2(k).

Fig. 3. Graphic for Mean Cost
Ck

2 + ln2(k)

Note that the sequence Ck can also be analyzed by classical Mellin trans-
form techniques and the periodic phenomena we show in the figure 3 is
quite familiar.

5 Simulate-Guess-and-prove : Analysis of height

In this section, we study experimentally and theoretically the height
of random Motzkin trees (unary-binary) when the proportion of unary
nodes fluctuates.
Figure 4 shows example of random Motzkin trees generated with the
algorithm from Section 3, with different proportions of unary nodes.
Figure 5 shows the evolution of the height of trees when one increases
the proportions of unary nodes.
In the following, we study the height of Motzkin trees according to the
proportion of unary nodes, using exclusively probabilistic arguments.
The continuum random tree (CRT) is a random continuous tree defined
by Aldous [Ald93], which is closely related to Brownian motion. In par-
ticular, the height of the CRT has the same law as the maximum of a
Brownian excursion. The CRT can be viewed as the renormalized limit of

10

0% 10% 20% 30% 40%

50% 60% 70% 80% 90%

Fig. 4. Example of Motzkin trees with 101 nodes generated with our algorithm, where
the proportion of unary nodes varies from 0% to 90%.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

H
ei

gh
t /

 s
qu

ar
e-

ro
or

 o
f n

Proportion of unary nodes (%)

Height of a random tree with n nodes,divided by the square-root of n

Fig. 5. In this example, all random trees have n = 1000 nodes. For each proportion of
unary nodes, varying from 0 to 99, 9 percent, 10 000 Motzkin trees have been generated.
The curve shows how the average height of Motzkin trees, divided by the square-root
of n.

11

several models of large trees, in particular, critical Galton-Watson trees
with finite variance conditioned to have a large population [GK98,Duq].
Our model does not exactly fit into this framework, however, it is quite
clear that the proofs can be adapted to our situation. We show here a
convergence result related to the height of Motzkin trees.

Theorem 1 Let (cn, n ≥ 1) be a sequence of integers such that cn = o(n)
and (logn)2 = o(cn). Then one can construct, on a single probability
space, a family (Tn, n ≥ 1) of random trees and a random variable H > 0
such that
(i) for every n ≥ 1, Tn is a uniform Motzkin tree with n vertices and
cn + 1 leaves.
(ii) H has the law of the height of the CRT
(iii) almost surely, √

cn

n
height(Tn)→ H

Proof. The proof’s idea is the following:
– A Motzkin tree can been seen as a binary tree with 2cn +1 nodes in

which we each node can be replaced by a sequence of unary nodes.
If n is the size of the Motzkin tree, then the number of unary node
is n− 2cn − 1.

– The height of a leaf in the Motzkin tree is equal its length in the
binary tree plus the lengths of the sequences of unary nodes between
the leaf and the tree’s root.

– We study the probability that the lengths sum of the sequences of
unary nodes between a given leaf and the tree’s root is equal to a
given value.

– We use this result to frame the generic height of Tn.
We assume that (cn, n ≥ 1) is non-decreasing, otherwise, the proof can
be easily adapted. Let us call the skeleton of a Motzkin tree the binary
tree obtained by forgetting the vertices having one child. Denote by Sn

the skeleton of Tn. For a leaf l, let d(l) be the distance of l to the root
in Sn and D(l) the distance of l to the root in Tn.
First, one can construct the sequence (Sn, n ≥ 1) by Rémy’s algorithm
[?] and it can be shown that Sn converges in a strong sense to a CRT
[CHar], in particular,

height(Sn)√
cn

→ H

where H has the law of the height of the CRT.
Next, for every n ≥ 1, one can obtain Tn from Sn by replacing each edge
e of Sn with a “pipe” containing Xe nodes of degree 2. The family (Xe) is
a 2cn-dimensional random vector with non-negative integer entries, and
it is uniformly distributed over all vectors of this kind such that the sum
of the entries is n − 2cn − 1. Let us denote (Xe) = (X1, . . . , X2cn) (we

should write (X
(n)
1 , . . . , X

(n)
2cn

) but we want to make the notation lighter).
It is a classical remark that the random variable (X1, . . . , X2cn) has the
same law as (Y1, . . . , Y2cn) conditional on the event

∑

i Yi = n− 2cn− 1,
where the Yi are independent, geometric random variables with mean

mn =
n− 2cn − 1

2cn

12

Moreover, since the sum
∑

i Yi has mean n−2cn−1 and variance∼ cnm
2
n,

a classical local limit theorem [Gne48] tells us that there exists a constant
c > 0 such that for every n ≥ 1,

P(
∑

i

Yi = n− 2cn − 1) ≥ 1

c
√
cnmn

(1)

Fix ε > 0. Pick at random a realization of Rémy’s algorithm, yielding a
sequence of binary trees (Sn, n ≥ 1) such for every n ≥ 1, Sn, has cn +1
leaves. Then almost surely, there exists H > 0 such that the height of
Sn, which we denote hn, satisfies

hn√
cn
→ H (2)

From now on, since we have chosen our sequence (Sn, n ≥ 1), the symbols
P and E will refer to the probability and expectation with respect to the
random variables (Xi), (Yi), (Zi).
If a leaf l in Sn is at a distance d(l) from the root, then its distance D(l)
from the root in Tn is the sum of d(l) random variables in the family
(Xe). Therefore,

P(D(l) = k) = P(X1 + . . .+Xd(l) = k)

= P(Y1 + . . .+ Yd(l) = k|
∑

i

Yi = n− 2cn − 1)

=
P(Y1 + . . .+ Yd(l) = k,

∑

i Yi = n− 2cn − 1)

P(
∑

i Yi = n− 2cn − 1)

≤ P(Y1 + . . .+ Yd(l) = k)

P(
∑

i Yi = n− 2cn − 1)

The right-hand side is maximized when d(l) = hn. We shall now use
independent, exponential random variables (Z1, . . . , Z2cn) with mean

µn =
1

log(mn/(mn − 1))
(3)

It is easy to check that for every integer k ≥ 0,

P(Z1 ∈ [k, k + 1]) = P(Y1 = k).

Therefore, we can define Yi as the integer part of Zi for each i. Since
Zi ≥ Yi for each i,

P

(

Y1 + . . .+ Yhn√
cnmn

≥ (1 + ε)H

)

≤ P

(

Z1 + . . .+ Zhn√
cnmn

≥ (1 + ε)H

)

Substracting the expectation,

P

(

Z1 + . . .+ Zhn√
cnmn

≥ (1 + ε)H

)

= P

(

Z1 + . . .+ Zhn − hnµn√
cnmn

≥ (1 + ε)H − hnµn√
cnmn

)

13

Because of (3) and (2), we have, for n large enough,

(

1− ε

2

)

H ≤ hnµn√
cnmn

≤
(

1 +
ε

2

)

H

This entails that for n large enough,

(1 + ε)H − hnµn√
cnmn

≤ εH

2

and therefore,

P

(

Z1 + . . .+ Zhn − hnµn√
cnmn

≥ (1 + ε)H − hnµn

)

≤ P

(

Z1 + . . .+ Zhn − hnµn√
cnmn

≥ εH

2

)

We now use the Laplace transform: for every λ > 0,

E exp(λZ1 − µn) =
e−λµn

1− λµn

The Markov inequality yields

P

(

Z1 + . . .+ Zhn − hnµn√
cnmn

≥ εH

2

)

≤
(

e−λµn

1− λµn

)hn

exp

(

−λ√cnmn
εH

2

)

Let (tn) be a sequence of positive real numbers such that tn tends to 0
and that

√
cntn/ log n tends to infinity. Choose λ such that λµn = tn.

Then,

P

(

Z1 + . . .+ Zhn − hnµn√
cnmn

≥ εH

2

)

≤
(

e−tn

1− tn

)hn

exp

(

− tn
√
cnmnεH

2µn

)

For n large enough, we have mn ≥ µn/2 and

e−tn

1− tn
≤ 1 + 2t2n

Therefore, for n large enough

P

(

Z1 + . . .+ Zhn − hnµn√
cnmn

≥ εH

2

)

≤ (1 + 2t2n)
hn exp

(

−εHtn
√
cn

4

)

Summing up, if n is large enough, then for every leaf l,

P

(

D(l)√
cnmn

≥ (1 + ε)H

)

≤
(1 + 2t2n)

hn exp
(

− εHtn
√

cn
4

)

P(
∑

i Yi = n− 2cn − 1)

Using the estimate (1),

P

(

D(l)√
cnmn

≥ (1 + ε)H

)

≤ c
√
cnmn(1 + 2t2n)

hnexp

(

−εHtn
√
cn

4

)

14

Since there are cn + 1 leaves, and since the probability of the union is
less that the sum of the probabilities, for n large enough,

P

(

height(Tn)√
cnmn

≥ (1 + ε)H

)

≤ c(cn+1)
√
cnmn(1+2t2n)

hn exp

(

−εHtn
√
cn

4

)

The upper bound can be rewritten as

c exp

(

hn log(1 + 2t2n)−
εHtn

√
cn

4
+ logmn +

3

2
log(cn + 1)

)

Recall that for n large enough,

hn ≤ (1 + ε/2)H
√
cn

and then our bound becomes

exp

(

H
√
cn

[

(1 + ε/2) log(1 + 2t2n)−
εtn
4

]

+ logmn +
3

2
log(cn + 1)

)

Since tn → 0, for n large enough,

[(1 + ε/2) log(1 + 2t2n)−
εtn
4

] ≥ −εtn
8

and so for n large enough, our bound becomes

bn = exp

(−Hεtn
√
cn

8
+ logmn +

3

2
log(cn + 1)

)

Now because of the assumption that
√
cntn/ log n→∞, we remark that

∑

bn <∞. Thus by the Borel-Cantelli lemma, almost surely, conditional
on the sequence (Sn), for n large enough,

height(Tn)√
cnmn

≤ (1 + ε)H

Integrating with respect to the law of the sequence (Sn), we find that
almost surely, there exists a random variable H which has the law of the
height of the CRT and such that for n large enough,

height(Tn)√
cnmn

≤ (1 + ε)H

Likewise, one shows that almost surely, for n large enough,

height(Tn)√
cnmn

≥ (1− ε)H

This being true for every positive ε, our result is established.

Remark In the case when the number of leaves is proportional to the
number of vertices, cn ∼ kn for some constant k ∈ (0, 1/2], it can be

shown by the same arguments that height(Tn)√
n

converges to 2(1− k)H .

In the case when (log n)2/cn does not tend to 0, a refinement in the proof
is necessary. Typically, replacing the inequality (1) with a stochastic dom-
ination argument would prove that the height of the tree converges in

15

distribution whenever cn → ∞. To prove an almost sure convergence, a
more detailed construction would be needed.

General case
We only assume that cn tends to infinity. The construction of the skeleton
and the convergence of Rémy’s algorithm still hold. The representation
of the variables Xi as conditioned versions of the Yi can be refined in the
following manner:

P(X1 + . . .+Xd(l) ≥ A)

= P(Y1 + . . .+ Yd(l) ≥ A|
∑

i

Yi = n− 2cn − 1)

=

∞
∑

k=A

P(Y1 + . . .+ Yd(l) = k|
∑

i

Yi = n− 2cn − 1)

=

∞
∑

k=A

P(Y1 + . . .+ Yd(l) = k|
2cn
∑

i=d(l)

Yi = n− 2cn − 1− k)

=
∞
∑

k=A

P(Y1 + . . .+ Yd(l) = k,
∑2cn

i=d(l) Yi = n− 2cn − 1− k)

P(
∑

i Yi = n− 2cn − 1)

=

∞
∑

k=A

P(Y1 + . . .+ Yd(l) = k)P(
∑2cn

i=d(l) Yi = n− 2cn − 1− k)

P(
∑

i Yi = n− 2cn − 1)

Gnedenko’s result also gives the existence of a real C such that for every
integer k,

P(

2cn
∑

i=d(l)

Yi = n− 2cn − 1− k)) ≤ C
√

cn − d(l)mn

(4)

From (1) and (4) we deduce that if d(l) ≤ cn/2, the following stochastic
domination bound hols:

P(Y1 + . . .+ Yd(l) ≥ A|
∑

i

Yi = n− 2cn − 1)

=
∞
∑

k=A

P(Y1 + . . .+ Yd(l) = k)P(
∑2cn

i=d(l) Yi = n− 2cn − 1− k)

P(
∑

i Yi = n− 2cn − 1)

≤ C
√
2

c

∞
∑

k=A

P(Y1 + . . .+ Yd(l) = k)

To sum up, if d(l) ≤ cn/2,

P(X1 + . . .+Xd(l) ≥ A) ≤ C
√
2

c
P(Y1 + . . .+ Yd(l) ≥ A) (5)

Recall that for every leaf l of Sn, d(l) ≤ hn, and that because of (2), the
condition d(l) ≤ cn/2 is satisfied for all leaves if n is large enough. The
bound using conditioning gave

P

(

D(l)√
cnmn

≥ (1 + ε)H

)

≤
(1 + 2t2n)

hn exp
(

− εHtn
√

cn
4

)

P(
∑

i Yi = n− 2cn − 1)

16

But using the stochastic domination bound (5), we can improve this to

P

(

D(l)√
cnmn

≥ (1 + ε)H

)

≤ C
√
2

c
(1 + 2t2n)

hn exp

(

−εHtn
√
cn

4

)

for n large enough. Taking tn = c
−1/4
n and using (2), we find that the

probability

P

(

D(l)√
cnmn

≥ (1 + ε)H

)

tends to 0 as n goes to infinity, for every positive ε. Likewise, if en is a
leaf in Sn such that d(l) = hn, one can prove that the probability

P

(

D(en)√
cnmn

≤ (1− ε)H

)

goes to 0 as n goes to infinity. This proves that

height(Sn)√
cn

converges in distribution to H . So we have the more general result

Theorem 2 Let (cn, n ≥ 1) be a sequence of integers such that cn →∞
as n → ∞. Let (Tn, n ≥ 1) be a family of random trees such that for
every n ≥ 1, Tn is a uniform Motzkin tree with n vertices and cn + 1
leaves. Then √

cn

n
height(Tn)

converges in distribution to the law of the height of a CRT.

6 Conclusion

In this paper, we gave a new sampler for of rooted planar trees that sat-
isfies a given partition of degrees. This sampler is now optimal in terms
of random bit complexity. We apply it to predict the average height of
a random Motzkin in function of its frequency of unary nodes. We then
prove some unconventional height phenomena (i.e. outside the universal
Θ(
√
n) behaviour. Our work can certainly be extended to more compli-

cate properties than the list of degrees. We can expected similar samplers
for simple patterns constraints, such as fixed numbers of paths of fixed
length, or fixed numbers of complete trees.

17

References

[Ald93] David Aldous. The continuum random tree. iii. Ann. Probab.,
21(1):248–289, 1993.

[ARS97a] Laurent Alonso, Jean-Luc Remy, and René Schott. A linear-
time algorithm for the generation of trees. Algorithmica,
17(2):162–183, 1997.

[ARS97b] Laurent Alonso, Jean-Luc Remy, and René Schott. Uniform
generation of a schröder tree. Inf. Process. Lett., 64(6):305–
308, 1997.

[BBJ13] Axel Bacher, Olivier Bodini, and Alice Jacquot. Exact-size
sampling for motzkin trees in linear time via boltzmann sam-
plers and holonomic specification. In Markus E. Nebel andWo-
jciech Szpankowski, editors, ANALCO, pages 52–61. SIAM,
2013.

[BP10] Olivier Bodini and Yann Ponty. Multi-dimensional Boltzmann
Sampling of Languages. In DMTCS Proceedings, number 01
in AM, pages 49–64, Vienne, Autriche, 2010. 12pp.

[CHar] N. Curien and B. Haas. The stable trees are nested. Prob.
Theory Rel. Fields, to appear.

[Dev12] Luc Devroye. Simulating size-constrained galton-watson trees.
SIAM J. Comput., 41(1):1–11, 2012.

[DFLS04] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles
Schaeffer. Boltzmann samplers for the random generation of
combinatorial structures. Combinatorics, Probability & Com-
puting, 13(4-5):577–625, 2004.

[DPT10] Alain Denise, Yann Ponty, and Michel Termier. Controlled
non uniform random generation of decomposable structures.
Theoretical Computer Science, 411(40-42):3527–3552, 2010.

[Duq] T. Duquesne. A limit theorem for the contour process of con-
ditioned galton-watson trees.

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic Combina-
torics. Cambridge University Press, 2009.

[FZC94] Philippe Flajolet, Paul Zimmermann, and Bernard Van Cut-
sem. A calculus for the random generation of labelled combi-
natorial structures. Theor. Comput. Sci., 132(2):1–35, 1994.

[GK98] J. Geiger and G. Kersting. The galton-watson tree conditioned
on its height. Proceedings 7th Vilnius Conference., 1998.

[Gne48] B. V. Gnedenko. On a local limit theorem of the theory of
probability. Uspehi Matem. Nauk (N. S.), 3(3(25)):187–194,
1948.

[HH97] Te Sun Hao and M. Hoshi. Interval algorithm for random
number generation. Information Theory, IEEE Transactions
on, 43(2):599–611, 1997.

[KY76] Donald E. Knuth and Andrew C. Yao. The Complexity of
Nonuniform Random Number Generation. In J. F. Traub,
editor, Algorithms and Complexity: New Directions and Recent
Results. Academic Press, New York, 1976.

[MTW04] George Marsaglia, Wai Wan Tsang, and Jingbo Wang. Fast
generation of discrete random variables. Journal of Statistical
Software, 11(3):1–11, 7 2004.

18

[Tut64] W. T. Tutte. The number of planted plane trees with a given
partition. The American Mathematical Monthly, 71(3):pp.
272–277, 1964.

[Vos91] Michael D. Vose. A linear algorithm for generating random
numbers with a given distribution. IEEE Transactions on
Software Engineering, 17(9):972–975, 1991.

[Wal77] Alastair J. Walker. An Efficient Method for Generat-
ing Discrete Random Variables with General Distributions.
ACM Transactions on Mathematical Software, 3(3):253–256,
September 1977.

19

