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Abstract

It is well-known that the first time a stable subordinator reaches [1,+∞). is Mittag-Leffler distributed.
These distributions also appear as limiting distributions in triangular Polya urns. We give a direct link
between these two results, using a previous construction of the range of stable subordinators. Beyond the
stable case, we show that for a subclass of complete subordinators in the domain of attraction of stable
subordinators, the law of the first passage time is given by the limit of an urn with the same replacement
rule but with a random initial composition.
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1 Introduction

Let (St)t≥0 be a stable subordinator of index α ∈ (0, 1), started at 0, and let T be the first passage time in
[1,+∞).

T = inf{t > 0, St > 1}

Then it is well-known that the law of T is the Mittag-Leffler distribution with parameter α, which is
characterized by its moments:

ETn =
Γ(1/α+ n)

Γ(1/α)Γ(1 + nα)

See for instance [10], p.10. This same distribution also appears as the asymptotic number of white balls in
a classical Polya urn scheme. Let us introduce some standard notation.

Definition
We call an urn scheme with replacement matrix(

a b
c d

)
and initial condition (B0,W0) the following process. We initially have a black and a white ball with respective
weights (B0,W0). Then sequentially, a ball is drawn at random with probability proportional to its weight.
If this ball is black, it is replaced into the urn together with a black ball of weight a and a white ball of
weight b. If the ball is white, it is put back into the urn together with a black ball with weight c and a black
ball with weight d.

Consider the case with the replacement matrix(
1 0

1− α α

)
(1)

1



and initial condition (B0,W0). Let Wn be the total weight of white balls after n steps. Then n−αWn

converges in law to a Mittag-Leffler random variable X which can be characterized by its moments, namely

EXn =
Γ(B0 +W0)Γ(W0/α+ n)

Γ(W0/α)Γ(B0 +W0 + nα)
(2)

See e.g. [6]. In particular, X has the same law as the first passage time T defined above with the choice of
parameters (B0,W0) = (1− α, α). Note that (2) still holds when α = 1.

We argue that these two results are directly related via a construction of stable subordinators that first
appeared in [7] and that was then extended to complete subordinators in [8]. Complete subordinators can
be indexed by all possible measurable functions β : [0, 1]→ [0, 1] and have Lévy-Khintchine exponent given
by

φ(β)(λ) = − logE[exp(−λS(β)
1 )] = exp

∫ 1

0

(λ− 1)β(x)

1 + (λ− 1)x
dx (3)

For general references on subordinators, see e.g. [2] and [11]. Our result is that for a subclass of complete
subordinators, the first passage time is also related to an urn process:

Theorem 1 Let β : [0, 1] → [0, 1] be a measurable function which is constant, equal to α ∈ (0, 1] on an

interval [0, h] for some h ∈ (0, 1]. Let (S
(β)
t ) be the subordinator with exponent given by (3) and let

T (β) = inf{t > 0, S
(β)
t > 1}

be its first passage time to [1,+∞). Then, up to a multiplicative constant, T (β) has the same law as the limit
of n−αWn where Wn is the number of white balls in an urn scheme with replacement matrix (1) and random
initial conditions as follows. Put θ = (1/h)− 1. Then for all integers l,m ≥ 0,

P((B0,W0) = (l + (m+ 1)(1− α), (m+ 1)α) =
θl+me−θ

(l +m)!

1

2iπ

∫
C

dt

t
ψ(t)m(1− ψ(t))

1− (1/t)l+m

1− (1/t)

where C is the unit circle of the complex plane and the function ψ is given by

ψ(t) = 1− exp

(∫ 1

0

tγ(x)

1− tx

)
with

γ(x) = β

(
1

θ

(
1

h
− 1

x

))
The presence of a multiplicative constant in Theorem 1 is not a real issue since this corresponds to

replacing (S
(β)
t ) with (S

(β)
ct ) for some positive constant c. We stated our result for the entrance to [1,+∞)

but of course, similar results hold with a staightforward adaptation for the entrance to [a,+∞) for any a > 0.
When h = 1, the subordinator is stable. When h < 1, the process is in the domain of attraction of an

α-stable subordinator in small time: as t → 0, t−1/αS
(β)
t converges in law to the (unique) positive stable

distribution with index α.
Conversely however, a complete subordinator (S

(β)
t ) may belong to the domain of attraction of an α-

stable subordinator in small time without the function β being constant near 0. Take for instance β(x) =

α + (1 − α)x, then (S
(β)
t ) belongs to this domain of attraction but Theorem 1 does not apply. It would be

interesting to know how far Theorem 1 could be generalized for subordinators of this kind, that is, whether
the first passage time can be related to an urn process.

Note that if the hypothesis of Theorem 1 on β is satisfied with α = 1, the subordinator has positive drift
whereas if it is satisfied with α = 0, the subordinator is a compound Poisson process, see [8]. In the case
α = 1, Theorem 1 still holds. On the other hand, in the case α = 0, the first passage time problem reduces
to a problem on random walks which can be handled using the same tools as in Section 3.3. This last case
is in fact very classical and we shall not review the corresponding literature here.
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Using Theorem 1 and (2), one can compute the moments of the first passage time. Let us make these
computations in two simple cases. First, suppose that β(x) = α1{x∈[0,h]. Then almost surely, W0 = α and
the the moments of T are given by (c being a positive constant)

ETn = cn
∑
l≥0

θle−θ

l!

Γ(1 + n)

Γ(1 + l + nα)

Next, suppose that
β(x) = α1{x∈[0,h)} + 1{x∈[h,1]}

Then almost surely, B0 = 1− α and the the moments of T are given by (c being a positive constant)

ETn = cn
∑
m≥0

θme−θ

m!

Γ(1 +m+ n)

Γ(1 +m+ nα)

In all other cases however, the computations are more intricate and there are no obvious simplifications.
Apart from exact computations, for which little is known, other results on first passage times for subor-

dinators, regarding in particular the existence of a density or asymptotic estimates, can be found in [5] and
references therein.

The remainder of this paper is organized as follows. We first recall the construction of regenerative sets
from [8], both in the discrete and continuous case, in Section 2. We explain in Section 3 how urns are
embedded in this construction and how the distributions described in Theorem 1 occur in that context.
Finally, we show in Section 4 that the embedded urns described in Section 3 indeed correspond to first
passage times for subordinators.

2 A construction of regenerative sets

In the first two subsections, we recall the construction of regenerative sets given in [8], both in the discrete
and in the continuous case. The proof of Theorems 2 and 3 can be found there. The class of regenerative
sets obtained in Section 2.2 is exactly the class of ranges of complete subordinators, as noted in [1] and [4].

2.1 The lattice case

We begin by the construction of regenerative sets in N.
Construction 1.
Fix a measurable function γ : [0, 1] → [0, 1]. Let (Xn, n ≥ 1) be iid random variables, uniformly dis-

tributed on [0, 1]2. We denote Xn = (hn, Un). One should view h as a height and U as a parameter. Say
that Xn is green if Un ≤ γ(hn), and red otherwise. Say that an integer k ∈ [1, n] is n-visible if hk ≥ hm for
all integers m ∈ [k, n]. Finally, say that n percolates for γ if, for every k ≤ n such that k is n-visible, Xk is
green. Let R(γ) be the set of integers that percolate for γ (by convention, 0 percolates for γ).

See Figure 1. Green points are represented by black circles, red points by white circles and the black
squares stand for the integers that percolate. The horizontal lines express the fact that the red point at 4
prevents 5, 6 and 7 from percolating.

Remark that if γ is a constant, then the Xn are green or red with probability γ (resp. 1−γ), independently
of the height.

Theorem 2 The set R(γ) defined by Construction 1 is a lattice regenerative set. It can be viewed as the

image of a random walk (S
(γ)
n , n ≥ 0), where S

(γ)
n = Y

(γ)
1 + . . . + Y

(γ)
n , the Y

(γ)
i being iid random variables

taking values in N ∪ {∞}, with generating function

ψ(γ)(t) = E(tY
(γ)
1 ) = 1− exp

(
−
∫ 1

0

tγ(x)

1− tx
dx

)
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Figure 1: Construction 1

2.2 The continuous case

Consider a Poisson Point process N on R+× [0, 1]× [0, 1] with intensity dx⊗y−2dy⊗dz. Given a measurable
function β : [0, 1]→ [0, 1], we can define an analogue of Construction 1 as follows.

Construction 2.
Say that a point X = (t, h, U) of N is green if U ≤ β(h), and red otherwise. Say that another point

X ′ = (t′, h′, U ′) of N is visible for X if t′ ≤ t and if, for all points of N of the form X ′′ = (t′′, h′′, u′′) with
t′ ≤ t′′ ≤ t, we have h′ ≥ h′′. Finally, say that X percolates for β if, for every X ′ such that X ′ is visible

for X, X ′ is green. By convention, 0 percolates for β. We denote by R(β)
1 the set of first coordinates of

percolating points, and we set

R(β) = R(β)
1

For every point X = (t, h, U) of N , let U(X) be the set of points of N of the form X ′ = (t′, h′, u′)
with t′ ≤ t and h′ ≥ h. Then almost surely, U(X) is finite, since almost surely, every strip of the form
[0, t]× [h,∞]× [0, 1] with h > 0 contains a finite number of points of N . Moreover, determining whether X
percolates only depends on U(X), and therefore Construction 2 is well-defined.

Theorem 3 The set R(β) defined by Construction 2 is a regenerative set. It can be viewed as the image of

a subordinator (S
(β)
t )t≥0 with Laplace exponent

φ(β)(λ) = − logE[exp(−λS(β)
1 )] = exp

∫ 1

0

(λ− 1)β(x)

1 + (λ− 1)x
dx

for λ ≥ 0.

2.3 Relating the discrete and the continuous case

Let h > 0. As noted above, if we only look at the points of N with y-coordinate ≥ h in Construction 2, we
have a discrete set and we can determine whether these points percolate or not without taking into account
the points whose y-coordinate is < h. Denote the points with y-coordinate ≥ h by

(x1, y1, U1), (x2, y2, U2), . . .

with x1 < x2 < . . .. From this discrete set, we can recover Construction 1 as follows.
Let θ = (1/h)− 1 and consider the function F : [h, 1]→ [0, 1] defined by

F (x) = 1− 1

θ
+

1

θx
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Its inverse is the function F−1 : [0, 1]→ [h, 1] given by

F−1(x) =
1

θ

(
1

h
− 1

x

)
Put hn = F (yn) for every n ≥ 1. Then it is easily seen that the sequence (hn, n ≥ 1) is a sequence of iid
random variables, uniformly distributed on [0, 1] and independent of the sequence (xn, n ≥ 1). Therefore
the sequence

((hn, Un), n ≥ 1)

has the same law as in Section 2.1 and is independent of (xn, n ≥ 1).
Consider the function

γ(x) = β(F (x)) = β

(
1

θ

(
1

h
− 1

x

))
so that β(x) = γ(F−1(x)). Then from the sequence (hn, Un) and the function γ, we can define a regenerative
set R by Construction 1 and we check that k ∈ R if and only if (xk, yk, Uk) percolates by Construction 2.
Moreover, Theorem 3 tells us that R is the range of a random walk (Sn) with generating function

ψ(t) = 1− exp

(∫ 1

0

tγ(x)

1− tx

)
which is the same as in Theorem 1.

3 Embedded urns

In this section, we use the construction of regenerative sets from Section 2.2. We shall always restrict
ourselves to the subset of points of N with x-coordinate ≤ 1.

3.1 An alternative description of the urn

Consider an urn scheme with replacement matrix(
1 0

1− α α

)
and initial condition (B0,W0). This urn can be described by the following mechanism:

• At time 0, add a black ball with weight B0 and a white ball with weight W0.

• Recursively at time N ≥ 1,

– choose, independently of the past, a random time tN ∈ {0, . . . N − 1} with probability

P(tN = k) =
1

N − 1 +B0 +W0

if k ≥ 1 and

P(tN = 0) =
B0 +W0

N − 1 +B0 +W0

– If, at time tN , a black ball with weight 1 had been added, then add at time N a black ball with
weight 1.

– If, at time tN , a black ball with weight 1 − α and a white ball with weight α had been added,
then at time N , with probability 1 − α, add a black ball with weight 1 and with probability α,
add a black ball with weight 1− α and a white ball with weight α.
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3.2 The stable case

We deal here with the case when β is constant and equal to α ∈ (0, 1). Let us denote the set of points of N ,
re-arranged by decreasing y-coordinate, as

{(x1, y1, U1), (x2, y2, U2), . . .}

with y1 > y2 . . .. By convention, set (x0, y0) = (0,∞).
For two integers N ≥ 0 and k ∈ [0, N ], put

z
(N)
k = max({1, x0, . . . , xN} \ {xk}

and
I
(N)
k = (xk, z

(N)
k ]

In words, x0, . . . , xN cut the interval [0, 1] into N + 1 subintervals and I
(N)
k is the subinterval with left

extremity xk. Denote the lengths of these subintervals

l
(N)
k = z

(N)
k − xk

Let QN+1 be the index of the interval where xN+1 lies, that is, put QN+1 = k if k is the (unique) integer

∈ [0, N ] such that xN+1 ∈ I
(N)
k . From the properties of Poisson point processes, the random variable

(l
(N)
0 , . . . , l

(N)
1 ) is uniformly distributed on the N -dimensional simplex and is independent of the random

variables Qi, 1 ≤ i ≤ N . Therefore, for every k ∈ [0, N ],

P(QN+1 = k|Q1, . . . QN ) = 1/(N + 1) (4)

Say that I
(N)
k percolates if the point (xk, yk, Uk) percolates. From Construction 2, we see that the point

(xN+1, yN+1, UN+1) percolates if and only if I
(N)
QN

percolates and (xN+1, yN+1, UN+1) is green.
To put it formally, for every k ∈ [1, N ] let Vk be the indicator function that (xk, yk) is green and Wk be

the indicator function that (xk, yk) percolates. Put also W0 = 1. Then we have

WN+1 = VN+1WQN (5)

Since the random variables Vn are independent of the random variables Qn, we can extend (4) by further
conditioning on the random variables Vn,Wn:

P(QN+1 = k|Q1, . . . QN , V1, . . . VN ,W0, . . .WN , ) = 1/(N + 1) (6)

Using (6) together with (5), we can describe the law of the family of random variables (Wn) as follows.

• First, W0 = 1.

• Recursively at time N ≥ 1,

– choose QN uniformly at random on [1, N + 1], independently of the past.

– If WQN = 0, then WN = 0.

– If WQN = 1, then independently of the past, choose either WN = 1 or WN = 0 with respective
probabilities α, 1− α.

Comparing with Section 3.1, we check that it is exactly the same mechanism as the urn scheme with
initial condition B0 = 1− α, W0 = α. So we can state

Proposition 1 Let An be the number of percolating points in the set

{(x1, y1, U1), (x2, y2, U2), . . . (xn, yn, Un)}

Then the sequence (An) has the same law as (Wn), where Wn is the number of white balls in an urn scheme
with replacement matrix (

1 0
1− α α

)
and initial condition (1− α, α).
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3.3 The general case

We use here the same assumptions on the function β as in Theorem 1 and we keep the notation from Section
3.2.

Let M be the number of points of the process N with y-coordinate greater that h. Then conditionally on
M , the interval [0, 1] is cut into M + 1 subintervals. We define percolating and non-percolating subintervals
as in the previous subsection and denote by W the number subintervals that percolate. Note that even if
M = 0, W = 1 since by convention, we say that (x0, y0) percolates.

Using the same arguments as in Section 3.2, we see that the family of lengths of these subintervals,
which we can denote by (l1, . . . lM+1), is uniformly distributed on the simplex and that (xM+1, yM+1, UM+1)
percolates if and only if it is green and xM+1 lies in a subinterval which percolates.

Then adding xM+1, we cut [0, 1] into M + 2 subintervals and then we can see in which subintervals xM+2

and whether the point (xM+2, yM+2) percolates or not. Reasoning this way by induction, as in Section3.2,
we see that conditionally on M and W , we get an urn scheme with the same replacement matrix (1) but
now the initial condition is (M + 1−Wα0,Wα0).

Proposition 2 Let An be the number of percolating points in the set

{(x1, y1), (x2, y2), . . . (xM+n, yM+n)}

Then the sequence (An) has the same law as (Wn), where Wn is the number of white balls in an urn scheme
with replacement matrix (

1 0
1− α α

)
and random initial condition (M + 1−Wα0,Wα0).

It remains to study the joint law of (M,W ). First, the law of M is Poisson with mean θ = (1/h) − 1.
Next, conditionally on M , using Section 2.3, we get that W has the same law as the number of points in
[0,M ] in the regenerative set R obtained from Construction 1 in Section 2.3.

This regenerative set R is the trace of a random walk (Sn) and the generating function of S1 is the
function ψ given in Theorem 1. Conditionally on M , we have

P(W = n|M) = P(Yn ≤M,Yn+1 > M) = P(Yn ≤M)− P(Yn+1 ≤M) (7)

For each k, we have
P(Yn = k) = [tk]E(tYn) = [tk]ψ(t)n

where [tk]f(t) stands for the coefficient of the momomial tk in the function f(t) viewed as a power series.
By the theorem of residues,

[tk]ψ(t)n =
1

2iπ

∫
C

ψ(t)n

tk + 1

Summing over k in (7) yields

P(W = n|M) =
1

2iπ

∫
C

dt

t
ψ(t)n(1− ψ(t))

1− (1/t)n+M

1− (1/t)

and so finally,

P(M = m,W = n) =
θm+ne−θ

(m+ n)!

1

2iπ

∫
C

dt

t
ψ(t)n(1− ψ(t))

1− (1/t)m+n

1− (1/t)
(8)

Comparing (8) with Theorem 1 and using Proposition 2, we can state:

Proposition 3 The sequence (An) from Proposition 2 has the same law as the number of white balls in the
urn process described in Theorem 1.
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4 Proof of Theorem 1

We assume in this section that the conditions of Theorem 1 are satisfied. We shall use the following property,
see for instance [3] or [9] for a recent use of it:

Proposition 4 Suppose that a sequence of subordinators S(n) converges in law to S. Then the law of the
first passage time for S(n) converges in distribution to the law of the first passage time for S.

Let us go back to the construction of Section 2.2. If we only consider the points that percolate and
that have a y-coordinate more than 1/n, this yields a regenerative set R(n) associated with the function
αn(x) = α(x)1{x≥1/n}. According to Theorem 3, R(n)is the range of a subordinator S(n) with exponent

φ(n)(λ) = exp

∫ 1

0

(λ− 1)α(x)

1 + (λ− 1)x
1{x≥1/n}dx

Thus S(n) converge to the subordinator S with exponent given in Theorem 1. Using Proposition 4, we get
the convergence

T (β)
n

law→ T (β)

where T
(β)
n stands for the first passage time for S(n)

Since S(n) has a finite number of jumps inside a finite interval, it is a compound Poisson process. This
means that the times between two consecutive jumps are iid, exponentially distributed random variables
whose mean is given by

mn =
1

φ(n)(0)
= exp

(∫ 1

1/n

α(x)

1− x
dx

)
∼ cn−α

for some constant c > 0. Now let K(n) denote the number of of jumps of S(n) before exiting from [0, 1]. Then

conditionally on K(n) = k, the first passage time T
(β)
n has the same law as the sum of k iid, exponentially

distributed random variables with mean mn and variance m2
n. Using the Chebyshev inequality, we get

P (|T (β)
n −K(n)mn| > A|K(n)) ≤ K(n)m2

n

A2
=
K(n)c2n−2α

A2
(9)

Next, remark that K(n) is the cardinal of the set R(n) ∩ [0, 1], that is, the number of percolating points
with y-coordinate greater than 1/n. Using Proposition 3, we get that K(n) has the same law as the number
of white balls in the urn scheme described in Theorem 1:

αK(n) law= WL(n)

where L(n) is the number of points of N with y-coordinate greater than 1/n. Note that L(n) is Poisson
distributed with mean n− 1 and therefore

P (|L(n) − n| ≥ n2/3)→ 0 (10)

as n→∞. It follows from (10) that n−αWL(n) and n−αWn have the same limit law, which is also the limit
law of n−ααK(n).

Taking δ > 0 and A = n−α/4 in (9) yields

P (|T (β)
n −K(n)mn| > n−α/4) ≤ P(K(n) < δnα) +

δ

nα/2
(11)

This is true for every δ > 0 and we have seen that

P(K(n) < δnα)

has the same limit as
P(Wn < δαnα)
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Denote this limit g(δ). From Proposition 3, we know that the limit law of n−αWn is a convex combination of
distributions with moments given by (2) and it is easily seen that this entails g(δ)→ 0 as δ → 0. We deduce
that the right-hand side of (11) can be made arbitrarily small if n is large enough. As a consequence, the

limit law of K(n)mn is the same as the limit law of T
(β)
n . This is the same as the limit law of cn−αK(n)/α,

which in turn is the same as the limit law of cn−αWn/α. Together with Proposition 4, this concludes the
proof of Theorem 1.
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Lecture Notes in Mathematics 1875. Berlin: Springer

[11] Schilling, R.;Song, R.; Vondracek, Z. Bernstein functions. Theory and applications. de Gruyter Studies
in Mathematics, 37. Walter de Gruyter, Berlin, 2010.

9


