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We introduce a recursive algorithm generating random trees, which we identify as skeletons of a continuous, stable
tree. We deduce a representation of a fragmentation process on these trees.
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1 Introduction
The aim of this note is to introduce a recursive construction of a class of continuous trees, which can be
identified as stable trees associated with stable processes.

Recall that stable trees of index α ∈ (1, 2) can be viewed, loosely speaking, as scaling limits of large
Galton-Watson trees where the probability to have n children is asymptotic to n−α−1 as n → ∞. More-
over, as discrete trees can be associated with Lukasiewicz paths by the the Lukasiewicz correspondence,
stable trees can be associated likewise with stable, spectrally positive Lévy processes. For a detailed
account, see Duquesne–Le Gall (5).

For a discrete tree, saying that two leaves are in the same block if they share a common ancestor at
height, say h, yields a partition of the set of leaves. When h increases, the partition becomes finer. The
same kind of procedure can be applied to continuous trees and, under suitable conditions, this may produce
a fragmentation process as defined in Bertoin (4). The case of stable trees was studied by Miermont (8),
using the relations between these trees and their associated stable processes.

When α = 2, the corresponding stable tree is Aldous’ classical continuum random tree (1) and its
fragmentation, first studied by Bertoin (3), is in some sense the dual of the standard additive coalescent
constructed by Aldous-Pitman (2).

Our goal is to provide an alternative approach to the fragmentation of stable trees based on a recursive
construction of stable trees, which can be described as follows. Choose a parameter α ∈ (1, 2]. Then
apply the

RANDOM GROWTH ALGORITHM.
Begin with a tree T1 with two vertices, A0, A1. At each step, assign to each edge a weight α− 1 and to

each node of degree d ≥ 3 a weight d− 1− α. Then recursively, to construct Tn+1 from Tn:
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I. Choose at random either an edge e or a node v of degree≥ 3, with probability proportional to the weight.

II. If an edge e has been chosen, split e into two edges e1, e2 and denote by Vn+1 the vertex between e1
and e2. Then add a new vertex An+1 and say that An+1 is connected to Vn+1.

III. If a node v has been chosen, add a new vertex An+1 and say that An+1 is connected to v.

Of course, all the choices are assumed independent. Hence, at each step n, either a new leaf, adjacent
to an already existing internal node, appears, or a new leaf together with an internal node is created.

In the case when α = 2, the weight of internal nodes is always zero and therefore the algorithm
generates random binary trees. Under this form, the algorithm was first introduced by Rémy (10). It
is shown in (7) that using the Lukasiewicz correspondence between trees and Lukasiewicz paths, the
sequence of random trees becomes a sequence of excursions of the simple random walk which converges
almost surely to a Brownian excursion.

In the general case when 1 < α ≤ 2, we shall see that, after proper rescaling, when n → ∞, the
trees Tn converge, at least in some weak sense, to a continuous tree T∞. More specifically, we can define
a distance on T∞ by normalizing the distances on Tn and T∞ can be identified as a stable tree as in
Duquesne-Le Gall (5). We can also a define a probability measure on T∞ by normalizing the counting
measure on the leaves of Tn. Moreover, we shall see that the recursive construction enables us to analyze
the fragmentation of these trees, which provides an alternative approach different from Miermont’s paper
(8).

The next section studies the law of the trees Tn. Section 3 is devoted to the limit as n → ∞. Finally,
the fragmentation associated to the limiting tree is the topic of Section 4.

2 The discrete tree
2.1 Preliminaries
Let Ĩ = {k, Vk exists} be the set of times at which an internal node is created and let

T∞ =
⋃
n≥0

{An} ∪
⋃
n∈eI
{Vn}

If v is a vertex of a tree, deg(v) is the degree of v, i.e. the number of edges incident to v. A vertex v is
an internal vertex if deg(v) > 1 and a leaf if deg(v) = 1. The set of internal vertices is denoted I(T ).

We denote by dn the natural distance in the tree Tn. Recall that, as a metric space, a tree T satisfies the
four-point condition: for all x, y, z, t ∈ T ,

d(x, y) + d(z, t) ≤ max[d(x, z) + d(y, t), d(y, z) + d(x, t)]

(for more details, see for instance (6)). If T is a tree, any two points a, b define a segment [a, b] by the
following

[a, b] = {v ∈ T, d(a, b) = d(a, v) + d(v, b)}
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If v ∈ I(T ), one can define subtrees of T cut at v as follows. Say that a, b are in the same subtree cut at
v if v /∈ [a, b]. It is easily seen that this defines an equivalence relation on T − {v}. The corresponding
equivalence classes are the subtrees of T cut at v.

We call a labelled tree with n leaves a tree with n leaves where the leaves are numbered from 1 to n.
So Tn is a labeled tree with n leaves.

2.2 The law of the discrete tree
To characterize of the law of Tn, set

• p1 = 0

• p2 = (α− 1)

• for n ≥ 3,
pn = (α− 1)(2− α) . . . (n− 1− α)

Then

Theorem 1 For every integer k ≥ 2, if T is a labelled tree with k + 1 leaves,

P(Tk = T ) = ck
∏

v∈I(T )

pdeg(v)−1

where the ck are constants defined by induction: c1 = 1 and

ck
ck−1

= kα− 1

Proof
We first observe that after k iterations of the algorithm, the total weight given by the algorithm equals

(k + 1)α− 1. In particular, this does not depend on the shape of the tree.
We want to prove the theorem by induction on k. It is obvious for k = 1, 2. If it is true for k ≥ 2,

consider a labelled tree T with k+1 leaves. Denote by L the (k+1)-th leaf of T and by V the only vertex
connected to L. Also, let T− be the labelled tree with k leaves obtained by removing L and removing V
if V had degree 3 in T . That is, if V had degree 3 in T and was connected to L,L′, L”, then in T−, we
suppress L and V and L′ is connected to L”. By the induction hypothesis,

P(Tk−1 = T−) = ck−1

∏
v∈I(T−)

pdeg(v)−1 (1)

and since
P(Tk = T ) = P(Tk−1 = T−)P(Tk = T |Tk−1 = T−) (2)

we are led to compute P(Tk = T |Tk−1 = T−). We have to distinguish between two cases. Either
deg(V ) = 3 in T or deg(V ) > 3 in T .
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In the first case, V does not exist in T− but at the k-th step, the random growth algorithm choses an
edge and adds a leaf (namely, L) and an internal node (namely, V ). In that case,

P(Tk = T |Tk−1 = T−) =
α− 1
kα− 1

(3)

Moreover, we also have

∏
v∈I(T )

pdeg(v)−1 =

 ∏
v∈I(T−)

pdeg(v)−1

 pdeg(V )−1

=

 ∏
v∈I(T−)

pdeg(v)−1

 (α− 1)

=

 ∏
v∈I(T−)

pdeg(v)−1

 (kα− 1)P(Tk = T |Tk−1 = T−)

and the formula of Theorem 1 is verified.
In the second case, V already exists in T− but has degree deg(V )− 1 in T−. Then at the k-th step, the

random growth algorithm choses V and adds the leaf L, adjacent to V . Thus

P(Tk = T |Tk−1 = T−) =
(

deg(V )− 1− α
kα− 1

)
(4)

Next,

∏
v∈I(T )

pdeg(v)−1 =

 ∏
v∈I(T−)

pdeg(v)−1

(pdeg(V )−1

pdeg(V )−2

)

=

 ∏
v∈I(T−)

pdeg(v)−1

 (deg(V )− 1− α)

=

 ∏
v∈I(T−)

pdeg(v)−1

 (kα− 1)P(Tk = T |Tk−1 = T−)

and again, the formula of Theorem 1 is verified.
2

A consequence of Theorem 1 is the following. It is intuitively clear from the definition of the algorithm
that “different parts of the tree T evolve independently”. Theorem 1 enables us to give a formal proof of
this idea, using the expression of the probability of a given tree as a product. For instance, suppose that
i, j ∈ Ĩ and and that Vi /∈ [A0, Vj ], Vj /∈ [A0, Vi]. Then Theorem 1 shows that the subtrees above Vi
and Vj are independent, conditionally on their sizes. More general results in this direction hold, although
stating them formally in all generality would be a bit tedious. We shall use this remark in Section 4.
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2.3 Identification with the stable tree
Given a finite labelled tree T , the number of planar embeddings of T is∏

v∈I(T )

deg(v)− 1

So let T ′n be a random random planar version of Tn. Then if T ′ is a planar tree with n leaves, Theorem 1
entails that

P(T ′n = T ′) = ck
∏

v∈I(T )

p′deg(v)−1

with the same ck as in the statement of Theorem 1 and with

• p′1 = 0

• p′2 = (α− 1)/2

• for n ≥ 3,

p′n =
(α− 1)(2− α) . . . (n− 1− α)

n!

This is exactly the law of a random planar tree obtained by sampling n leaves from a continuous, stable
tree. See (5).

3 Convergence to the continuous tree
3.1 Distances in the limiting tree
Theorem 2 Almost surely, for every u, v ∈ T∞, the limit

d(u, v) = lim
n→∞

dn(u, v)
n(α−1)/α

exists and d is a distance on T∞ satisfying the four-point condition.

It follows from the theorem that the closure of T∞ is almost surely a continuous tree. Of course, it
would be stronger to show the convergence in the Gromov-Hausdorff tolopogy, but this would require a
uniform control of the convergence for all pair of vertices. We shall not enter into these considerations
here. Moreover, since the random, planar embeddings of the Tn are skeletons of a stable tree, it should be
clear that, loosely speaking, a random planar embedding of T∞ is a stable tree. Here again, we shall not
enter into these details.
Proof

The proof follows from a martingale argument which is basically the same as in (7). Let u, v ∈ T∞ and
set a1 = 1,

an+1 =
an((n+ 1)α− 2)

nα− 1

so that an ∼ cn1−1/α. Then Mn(u, v) = dn−1(u, v)/an is a martingale:
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E(Mn+1(u, v)|Mn(u, v)) =
(α− 1)dn−1(u, v)

nα− 1

(
dn−1(u, v) + 1

an+1

)
+
nα− 1− (α− 1)dn−1(u, v)

nα− 1

(
dn−1(u, v)
an+1

)
=

(α− 1)anMn(u, v)
nα− 1

(
anMn(u, v) + 1

an+1

)
+
nα− 1− (α− 1)anMn(u, v)

nα− 1

(
anMn(u, v)

an+1

)
=

anMn(u, v)
an+1

(
(n+ 1)α− 2
nα− 1

)
= Mn(u, v)

Furthermore, Mn(u, v) is bounded in L2:

E ((Mn+1(u, v)−Mn(u, v))2|Mn(u, v))

=
(α− 1)dn−1(u, v)

nα− 1

(
dn−1(u, v) + 1

an+1
− dn−1(u, v)

an

)2

+
nα− 1− (α− 1)dn−1(u, v)

nα− 1

(
dn−1(u, v)
an+1

− dn−1(u, v)
an

)2

=
(α− 1)anMn(u, v)

nα− 1

(
anMn(u, v) + 1

an+1
−Mn(u, v)

)2

+
nα− 1− (α− 1)anMn(u, v)

nα− 1

(
anMn(u, v)

an+1
−Mn(u, v)

)2

=
(α− 1)an[Mn(u, v) + (an − an+1)M2

n(u, v)]
(nα− 1)a2

n+1

≤ C
Mn(u, v)
n2−1/α

Thus Mn(u, v) converges almost surely to some limit d(u, v) Since we have a countable number of
vertices, almost surely, for every pair (u, v), d(u, v) exists. By passage to the limit, it is clear that for all
u, v, w ∈ V , d(u, u) = 0, d(u, v) = d(v, u) and d(u, v) + d(v, w) ≤ d(u,w). Similarly, the four-point
condition is satisfied.

Let us show that if u 6= v, then almost surely, d(u, v) > 0. Let pn be the probability, for two vertices
u, v such that dn(u, v) = 1, that d(u, v) = 0. Clearly, pn increases in n and thus tends to some p∞. We
want to show that p∞ = 0.

It is easily seen that almost surely, there exists a minimal n′ > n such that dn′(u, v) = 2. Let w be the
vertex between u and v in T (n′). Then on the event that d(u, v) = 0, one must have d(u,w) = d(w, v) =
0, and thus pn ≤ supn′>n p2

n′ . Taking limits, p∞ ≤ p2
∞ and therefore, p∞ is either 0 or 1. Since Mn is

bounded in L2, E(M∞) = E(Mn) > 0, which implies that p∞ 6= 1. Hence p∞ = 0.
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Notice that the L2 estimate entails that for every n,

E[(Mn(u, v)− d(u, v))2] ≤
C ′|Mn(u, v)|
n1−1/α

and the maximal inequality implies

P[ sup
N≥n
|Mn(u, v)−MN (u, v)| ≤ x] ≤ C ′|Mn(u, v)|

x2n1−1/α
(5)

2

3.2 Probability measure on the continuous tree
If v is an internal node in T∞, define T (v,An) as the subtree of T∞ cut at v and containingAn. Similarly,
for k ≥ 1, let Tk(v,An) be the subtree of Tk cut at v and containing An. Then we have:

Proposition 1 Let m,n ≥ 1. Then conditionally on m ∈ Ĩ , the limit

lim
N→∞

|TN (Vm, An)|
N

exists almost surely, where |T | denotes the number of leaves of T .

We denote this limit m̃(Vm, An).
Proof Let k = max(m,n). For every l ≥ k, letwl be the weight, given by the random growth algorithm,
of the subtree Tl(Vm, An). From the definition the random growth algorithm, the sequence wl follows
the scheme of a generalized Polya urn. That is, wl+1 = wl + α with probability wl/[(l + 1)α + 1] and
wl+1 = wl with probability 1 − wl/[(l + 1)α + 1]. This entails the almost sure convergence of wl/l as
l→∞ and the convergence stated in the proposition follows.

2

4 Fragmentation
Let us briefly describe the fragmentation process we want to study. When we supress from a tree an
internal node, we disconnect the tree and obtain different subtrees. In the case of T∞, we have seen that
these subtrees have a mass and we would like to know the distribution of the respective masses when we
have removed all internal nodes “sufficiently closed to” A0. For a more precise statement, see Section
4.4. The question of fragmentation of stable trees was already solved in (8). We want to show that our
recursive construction provides an alternative approach.

4.1 Partitions and the Chinese restaurant
A partition of mass is a family of nonnegative numbers (a1 ≥ a2 ≥ . . .) such that

∑
an ≤ 1. Of course,

if (a1, a2, . . .) is a family of nonnegative numbers such that
∑
an ≤ 1, we can turn it into a partition of

mass by reordering the terms in decreasing order.
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A way to construct random partitions of mass is Pitman’s Chinese restaurant process (9). We present
here a slight modification thereof. We call a Chinese restaurant with parameters (β, θ, n) the following
process. At time 0, there is a first table with n customers and a second table with 1 customer. Then
sequentially, other customers arrive. At time N ≥ 1, the new customer chooses either to sit at a table
with already k customers, with probability (k− β)/(N + n+ θ), or to sit at a new table, with probability
(t(N)β + θ)/(N + n+ θ), t(N) being the number of occupied tables at time N .

For k ≥ 1 let Ck(N) denote the number of customers seated at the k-th table at time N . Then it is clear
that Ck(N) follows a generalized urn scheme and therefore, the family (Ck(N)/N, k ≥ 1) converges
almost surely, as N → ∞, to a partition of mass (this is the same argument as, for instance, (9), Chapter
2.2). We denote the distribution of this partition of mass R(β, θ, n).

4.2 Indices of internal nodes and fragmentation
For every n ∈ Ĩ , we say that the index of Vn is k if the number of leaves of Tn− Tn(Vn, A0) is k+ 1. By
convention, say that A0 has index 1. Also, if n ∈ Ĩ , we define J(n) as a set of integers such that for every
i, there is exactly one j ∈ J(n) such that Aj , Ai are in the same subtree of T∞ cut at Vn. Then we have

Proposition 2 For every n, conditionally on n ∈ Ĩ , putting M = 1− m̃(Vn, A0), the partition of mass

Part(Vn) := (m̃(Vn, Ai)/M, i ∈ J(n))

has the same law as the partition of mass R(1/α,−1, k)

Proof This follows readily from the construction by the random growth algorithm. Indeed, the leaves
Ak /∈ T (Vn, A0) can be identified as customers and the subtrees cut at Vn can be identified as tables and
this way, the algorithm exactly reproduces the Chinese restaurant scheme described above.

2

We also have:

Proposition 3 Let n 6= m. Then conditionally on n,m ∈ Ĩ and on the indices of Vn, Vm, the partitions
of masses Part(Vn), Part(Vm) are independent

Proof Let G(n) = {i, Ai /∈ T (Vn, A0)}. Define the partition part(Vn) as follows. Say that i, j ∈ G(n)
are in the same block of part(Vn) if Ai, Aj are in the same subtree of T∞ cut at Vn.

Then the partitions part(Vn), part(Vm) are determined by the trees T (Vn, Ai), i 6= 0 and T (Vm, Ai),
i 6= 0. First, if Vn /∈ [A0, Vm] and Vm /∈ [A0, Vn], then conditionally on G(n), G(m) and on the indices
of Vn, Vm, these trees are independent, as noticed after the proof of Theorem 1.

Otherwise, suppose that Vn ∈ [A0, Vm]. Then the partitions part(Vn) and part(Vm) are determind by
the trees T (Vm, Ai), i ∈ J(m). Now for every N , conditionally on the number of their leaves, on the
indices of Vn, Vm and onG(m)∩{1, 2, . . . N}, these trees are independent, again according to the remark
after the proof of Theorem 1. This proves the proposition.

2

Proposition 4 Conditionally on the indices of Vn, n ∈ Ĩ , the partitions of masses (Part(Vn), n ∈ Ĩ) are
independent.
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Proof The proof is the same as for Proposition 3.
2

So we know the law of the fragmentation at a node conditionally on the index of this node and we
have shown the independence of the fragmentations at different nodes, conditionally on their indices. It
remains to study the distribution of the indices of the nodes.

4.3 Another length parametrization
The distribution of the indices of internal nodes can be described as follows. First consider the segment
[A0, A1]. Along this segment, there is a natural order: say that if Vn, Vm ∈ [A0, A1], Vm comes before
Vm if Vm ∈ [A0, Vn].

Let U(k) be the set of nodes of index ≤ k in the segment [A0, A1]. Since there is an order on [A0, A1],
we can define consecutive vertices of the set U(k). When k increases, the sets U(k) are nested sets. We
then have:

Proposition 5 The number of vertices in U(k+1) between two consecutive vertices in U(k) is a geomet-
ric random variable with mean (α− 1)/kα. Moreover these random variables are independent.

Proof Suppose that Vm, Vn are consecutive vertices in U(k), with Vm coming before Vn. First, remark
that necessarily, by definition of the index of a node, n ≥ m and that there is no vertex in the segment
[Vm, Vn] of the tree Tn.

Let N be the first time ≥ n at which the random growth algorithm inserts a leaf in the subtree
T (Vm, An). If the insertion is not along the edge (Vm, Vn), which happens with probability

1− α− 1
(k + 1)α− 1

then there can be no vertex of index k+1 in the segment [Vm, Vn] of T∞. If the algorithm inserts a vertex
along the edge (Vm, Vn), which happens with probability

α− 1
(k + 1)α− 1

then VN has index k + 1. Moreover, in that case there can be no vertex of index k + 1 in the segment
[Vm, VN ] of T∞ but there can be a vertex of index k + 1 in the segment [VN , Vn] of T∞, and this occurs
with the same probability. Therefore, the number Nk+1(Vm, Vn) of vertices of index k+1 in the segment
[Vm, Vn] is geometric with mean (α− 1)/kα.

The proof of independence is tedious. To simplify, we shall only examine the case k = 1. Suppose
that Vm, Vn are, in that order, consecutive vertices in U(1). Let N be the first time at which the algo-
rithm inserts a vertex along the segment [Vn, A1]. Then N2(Vm, Vn) is entirely determined at time M ,
while N2(Vn, VN ) only depends on what occurs after time N . Therefore, N2(Vm, Vn) and N2(Vn, VN )
are independent and Vm, Vn, VN are consecutive vertices in U(1). The same argument can be used for i
consecutive vertices in U(1). 2
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With the same arguments, one can show that if Vm, Vn are consecutive vertices ∈ U(k), if l ≥ k and if
Nl(Vm, Vn) is the number of vertices in the intersection U(l)∩ [Vm, Vn], then Nl(Vm, Vn) is a geometric
random variable with mean [

l−1∏
i=k

(
1 +

α− 1
iα

)]
− 1

One can also show that
Nl(Vm, Vn)∏
i≤l
(
1 + α−1

iα

)
converges, as l → ∞, to an exponential random variable E(Vm, Vn). Moreover, again by the same
arguments, the random variables E(Vm, Vn) and E(Vl, Vp) are independent if [Vm, Vn]∩ [Vl, Vp] = ∅. Of
course, the same results can be proved for vertices /∈ [A0, A1]. This leads to

Theorem 3 (i) Let v be an internal node in T∞. Let Nn(v) be the number of internal nodes of index ≤ n
in the segment [A0, v]. Then

Nn(v)∏
i≤n

(
1 + α−1

iα

)
converges almost surely, as n→∞, to a positive real number L(v).

(ii) For all n, k ≥ 1, let

N (n) = {t ≥ 0, L(Vi) = t for some i such that Vi has index ≤ n and Vi ∈ [A0, Ak]}

Then N (n) is a Poisson point process on R+ with intensity

n−1∏
i=1

(
1 +

α− 1
iα

)
dx

4.4 Fragmentation of the tree
Let t ≥ 0 and define the partition of integers F ′t as follows. Say that i, j ≥ 1 are in the same block of F ′t
if, for every Vm ∈ [Ai, Aj ], L(Vm) > t. Since these blocks are unions of subtrees, which have asymptotic
frequencies, it is easily seen that the blocks of Ft also have asymptotic frequencies and induce a partition
of mass Ft. When t increases, these partitions “split” into finer partitions. More precisely, if, for some
L(Vn) = t, then the block containing An at time t− splits at time t into blocks given by the subtrees cut
at Vn. One can describe this phenomeneon using the general framework of fragmentation introduced by
Bertoin (4). Then we can state:

Theorem 4 The process (Ft, t ≥ 0) is a homogeneous fragmentation process with dislocation measure∑
n≥1

pn(α)R(1/α,−1, n)

where p1(α) = 1 and for n ≥ 2,

pn(α) =
n−1∏
i=1

(
1 +

α− 1
iα

)
−
n−2∏
i=1

(
1 +

α− 1
iα

)
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As already mentioned, this result appears in (8), where the dislocation measure is expressed in a different
way. As observed therein, loosely speaking, this dislocation measure corresponds to a Chinese restaurant
with parameters (1/α,−1) except that, strictly speaking, this has no meaning since 1/α < 1. The decom-
position of the dislocation measure as a “mixture” of dislocation measures of the form R(α,−1, n) gives
a precise sense to this informal idea.

Theorem 4 can be proved using the description of the dislocation depending on the index in Proposition
2, the independence of these dislocations stated in Proposition 3 and the distribution of the indices of
internal nodes given by Theorem 3.
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