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Abstract

In this article, we consider a generalization of Young Tableaux in which we allow
some consecutive pairs of cells with decreasing labels. We show that this leads to a rich
variety of combinatorial formulas, which suggest that these new objects could be related
to deeper structures, similarly to the ubiquitous Young tableaux.

Our methods rely on variants of hook-length type formulas, and also on a new efficient
generic method (which we call the density method) which allows not only to generate
constrained combinatorial objects, but also to enumerate them. We also investigate
some repercussions of this method on the D-finiteness of the generating functions of
combinatorial objects encoded by linear extension diagrams, and give a limit law result
for the average number of local decreases.
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1 Introduction
As predicted by Anatoly Vershik in [12], the 21st century should see a lot of challenges and
advances on the links of probability theory with (algebraic) combinatorics. A key role is played
here by Young tableaux, because of their ubiquity in representation theory [7], in algebraic
combinatorics, and their relevance in many other different fields (see e.g. [11]).

Young tableaux are tableaux with n cells labelled from 1 to n, with the additional constraint
that these labels increase among each row and each column (starting from the lower left cell).
Here we consider the following variant: What happens if we allow exceptionally some consecutive
cells with decreasing labels? Does it lead to nice formulas if these local decreases are regularly
placed? Is it related to other mathematical objects or theorems? How to generate them? This
article gives some answers to these questions.

As illustrated in Figure 1, we put a bold red edge between the cells which are allowed to
be decreasing. Note that these two adjacent cells can therefore have decreasing labels (like 20
and 17 in the top row of Figure 1, or 11 and 10 in the untrustable Fifth column), or increasing
label (like 7 and 15 in the bottom row of Figure 1). We call these bold red edges “walls”.

12 18 19 13 21 20 17

2 6 8 9 10 14 16

1 3 4 5 11 7 15

Figure 1: We consider Young Tableau in which some pairs of (horizontally or vertically) con-
secutive cells are allowed to have decreasing labels. Such places where a decrease is allowed
(but not compulsory) are drawn by a bold red edge, which we call “wall”.

For Young Tableaux of shape1 n×2 several cases lead directly to nice enumerative formulas:

1. Walls everywhere: fn = (2n)!
2. Horizontal walls everywhere: fn = (2n)!

2n

3. Horizontal walls everywhere in left (or right) column: fn = (2n− 1)!! = (2n)!
2nn!

4. Vertical walls everywhere: fn =
(

2n
n

)
= (2n)!

(n!)2

5. No walls: fn = 1
n+1

(
2n
n

)
= (2n)!

(n+1)(n!)2

In this article we are interested in the enumeration and the generation of Young tableaux
(of different rectangular shapes) with such local decreases, and we investigate to which other
mathematical notions they are related. Section 2 focuses on the case of horizontal walls: we give
a link with the Chung–Feller Theorem, binomial numbers, and a Gaussian limit law. Section 3
focuses on the case of vertical walls: we give a link with hook-length type formulas. Section 4
presents a generic method, which allows us to enumerate many variants of Young tableaux (or
more generally, linear extensions of posets), and which also offers an efficient uniform random
generation algorithm, and links with D-finiteness.

1We will refer to “n ×m Young tableaux”, or “Young Tableaux of shape n ×m”, for rectangular Young
Tableaux with n rows and m columns. They are trivially in bijection with m× n Young tableaux.
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2 Vertical walls, Chung–Feller and binomial numbers

14 12

10 13

9 11

8 7

4 6

3 5

2 1

Figure 2: Example
of one of our n× 2
“Young tableaux”
with walls.

In this section we consider a family of Young tableaux having some local
decreases at places indicated by horizontal walls, see Figure 2.

Theorem 2.1. The number of n × 2 Young tableaux with k vertical
walls is equal to

vn,k = 1
n+ 1− k

(
n

k

)(
2n
n

)
.

Proof. We apply a bijection between two-column Young tableaux of
size 2n with k walls and Dyck paths without the positivity constraint of
length 2n and k coloured down steps. These paths start at the origin,
end on the x-axis and are composed out of up steps (1, 1) and down
steps (1,−1) which are either red or blue.

Given an arbitrary two-column Young tableau, the m-th step of the
associated path is an up step if the entry m appears in the left column,
or the m-th step is a down step, if the m-th entry appears in the right
column. Furthermore, we associate colours to the down steps: If the m-
th down step is in a row with a wall we colour it red, and blue otherwise.

Thus, vn,k counts the number of paths with exactly k red down steps. Note that the down
steps of a path below the x-axis are always red because a wall has to be involved, yet above the
x-axis down steps can have any colour. We decompose paths with k coloured down steps with
respect to the number of steps which are below the x-axis. By the Chung–Feller Theorem [4]
(see also [3] for a bijective proof) the number of Dyck paths of length 2n with i down steps
below the x axis is independent of i and equal to the Catalan number Catn = 1

n+1

(
2n
n

)
. When

i steps are below the x-axis we have to colour k − i of the remaining n − i steps above the
x-axis red. This gives

vn,k =
k∑
i=0

(
n− i
k − i

)
Catn =

(
n+ 1
k

)
Catn,

and the claim follows.

As a simple consequence, we get the following result.

Corollary 2.2. The average number of linear extensions of a random n×2 Young tableau with
k walls, where the location of these walls is chosen uniformly at random, is

1
n+ 1− k

(
2n
n

)
.

Proof. In a two-column Young tableaux of size 2n we have
(
n
k

)
possibilities to add k walls.

We now conclude this section with a limit law result.
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Theorem 2.3. Let Xn be the random variable for the number of walls in a random n × 2
Young tableau chosen uniformly at random. The rescaled random variable Xn−n/2√

n/4
converges

to the standard normal distribution N (0, 1).

Proof. We see that the total number of two-column Young tableaux of size n with walls is
equal to

n∑
k=0

vn,k = Catn
(
2n+1 − 1

)
.

Then, the previous results show that

P (Xn = k) =
(
n+ 1
k

)
1

2n+1 − 1 ,

which is a slight variation of a binomial distribution with parameters n+ 1 and probability 1/2.
By the well-known convergence of the rescaled binomial distribution to a normal distribution
the claim holds (see e.g. [5]).

3 Horizontal walls and the hook-length formula
The hook-length formula is a well-known formula to enumerate standard Young Tableaux of
a given shape (see e.g. [7, 11]). What happens if we add walls in these tableaux? Let us
first consider the case of a Young tableau of size n such that its walls cut the corresponding
tableau into m disconnected parts without walls of size k1, . . . , km (e.g., some walls form a full
horizontal or vertical line). Then, the number of fillings of such a tableau is trivially:

n!
k1! . . . km!

m∏
i=1

HookLengthFormula(subtableau of size ki).

So in the rest of article, we focus on walls which are not trivially splitting the problem into
subproblems: They are the only cases for which the enumeration (or the random generation)
is indeed challenging.

We continue our study with families of Young Tableaux of shape m× n having some local
decreases at places indicated by horizontal walls in the left column. We will need the following
lemma counting special fillings of Young tableaux.

Lemma 3.1. The number of n × 2 “Young tableaux” with 2λ cells filled with the numbers
1, 2, . . . , 2n for n ≥ λ such that (the number 2n is used and) all consecutive numbers between
the minimum of the second column and 2n are used is equal to(

2n
λ

)
−
(

2n
λ− 1

)
. (1)
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Proof. The constraint on the maximum implies that all not used numbers are smaller than
the number in the bottom right cell. Therefore it is legitimate to add these numbers to the
tableaux. In particular, we create a standard Young tableau of shape (λ, 2n− λ) (i.e., the first
column has λ cells and the second one 2n−λ) which is in bijection with the previous tableaux.

Next we build a bijection between standard Young tableaux of shape (λ, 2n− λ) and Dyck
paths with up steps (1, 1) and down steps (1,−1) starting at (0, 2n−λ), always staying above
the x-axis and ending on the x-axis after 2n steps. In particular, if the number i appears in the
left column the i-th step is an up step, and if it appears in the right column, the i-th step is a
down step.

Finally, note that these paths can be counted using the reflection principle [1]. In particular,
there are

(
2n
λ

)
possible paths from (0, 2n − λ) to (2n, 0). Yet,

(
2n
λ−1

)
“bad” paths cross the

x-axis at some point. This can be seen, by cutting such a path at the first time it reaches
altitude −1. The remaining path is reflecting along the horizontal line y = −1 giving a path
ending at (2n,−2). It is easy to see that this is a bijection between bad paths from (0, 2n−λ)
to (2n, 0) and all paths from (0, 2n−λ) to (2n,−2). The latter is obviously counted by

(
2n
λ−1

)
,

as λ− 1 of the 2n steps have to be up steps.

Theorem 3.2. The number of n×2 Young tableaux of size 2n with k walls in the first column
at heights 0 < hi < n, i = 1, . . . , k with hi < hi+1 is equal to

1
2n+ 1

k+1∏
i=1

(
2hi + 1
hi − hi−1

)
,

with h0 := 0 and hn = n.

Remark 3.3. Denoting consecutive relative distances of the walls by λi := hi − hi−1 for
i = 1, . . . , k + 1 the previous result can also be stated as

1
2n+ 1

k+1∏
i=1

(
2(λ1 + . . .+ λi) + 1

λi

)
.

Proof. We will show this result by induction on the number of walls k. For k = 0 the result
is clear as we are counting two-column standard Young tableaux which are counted by Catalan
numbers (for a proof see also Lemma 3.1 with λ = n).

Next, assume the formula has been shown for k− 1 walls and arbitrary n. Choose a proper
filling with k walls and cut the tableau at the last wall at height hk into two parts. The top
part is a Young tableau with 2(n − hk) elements and no walls, yet labels between 1 and 2n.
Furthermore, it has the constraint that all numbers larger than the element in the bottom right
cell have to be present. This is due to the fact that all elements in lower cells must be smaller.
In other words, these are the objects of Lemma 3.1 and counted by (1).

The bottom part is a Young tableau with k − 1 walls and 2hk elements (after proper
relabelling). By our induction hypothesis this number is equal to

1
2hk + 1

k∏
i=1

(
2hi + 1
hi − hi−1

)
.
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As a final step, we rewrite Formula (1) into

2(n− λ) + 1
2n+ 1

(
2n+ 1
λ

)
,

and set λ = n− hk. Multiplying the last two expressions then shows the claim.

Remark 3.4. Note that so far we have not found a direct combinatorial interpretation of this
formula. However note that in general

(
2n+1
λ

)
does not have to be divisible by 2n+ 1.

Let us now also give the general formula for n ×m Young tableaux with walls of lengths
m − 1 from columns 1 to m − 1, i.e., a hole in column m and nowhere else in a row with
walls. Before we state the result, let us define for integers n, k the falling factorial (n)k :=
n(n−1) · · · (n−k+1) and for integers n,m1, . . . ,mk such that n ≥ m1+· · ·mk the (shortened)
multinomial coefficient2

(
n

m1,m2,...,mk

)
:= n!

m1!m2!···mk!(n−m1−...−mk)! .

Theorem 3.5. The number of n ×m Young tableaux of size with k walls from column 1 to
m− 1 at heights 0 < hi < n, i = 1, . . . , k with hi < hi+1 is equal to

(m− 1)!
(mn+m− 1)m−1

k+1∏
i=1

m−2∏
j=1

(
λi + j

j

)−1
(k+1∏

i=1

(
m(λ1 + . . . λi) +m− 1

λi, . . . , λi

))
,

where λi = hi − hi−1 and the λi’s in the multinomial coefficients appear m− 1 times.

Proof (Sketch). First derive an extension of Lemma 3.1 proved by the hook-length formula and
then compute the product. Note that this gives a telescoping factor, giving the first factor.

Just as one more example, here is a more explicit example of what it gives.

Corollary 3.6. The number of n×4 Young tableaux with k walls from column 1 to 3 at heights
0 < hi < n, i = 1, . . . , k with hi < hi+1 is equal to

6
(4n+ 3)(4n+ 2)(4n+ 1)

(
k+1∏
i=1

2
(λi + 1)2(λi + 2)

)(
k+1∏
i=1

(
4(λ1 + . . . λi) + 3

λi, λi, λi

))
,

with λi = hi − hi−1.

Let us consider some other special cases. For example, consider tableaux with walls between
every row and a hole in the last column. For this case we set λi = 1 for all i. This gives the
general formula (mn)!

n!(m!)n , for n ×m tableaux, see OEIS A001147 for m = 2 and OEIS A025035
to OEIS A025042 for the special cases m = 3, . . . , 10.

Now that we gave several examples of closed-form formulas enumerating some families
of Young Tableaux with local decreases, we go to harder families which do not necessarily
lead to a closed-form result. However, we shall see that we have a generic method to get
useful alternative formulas (based on recurrences), also leading to an efficient uniform random
generation algorithm.

2In the literature, one more often finds the notation
(

n
m1,m2,...,mk,n−m1−...−mk

)
:=

n!
m1!m2!···mk!(n−m1−...−mk)! . But we opted in this article for a more suitable notation to the eyes of our
readers!
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4 The density method, D-finiteness, random generation
In this section, we present a generic approach which allows us to enumerate and generate any
shape involving some walls located at periodic positions. To keep it readable, we illustrate it
with a more specific example (without loss of generality).

So, we now illustrate the method on the case of a 2n × 3 tableau where we put walls on
the right and on the left column at height 2k (for 1 ≤ k ≤ n− 1), see the leftmost tableau in
Figure 3. In order to have an easier description of the algorithm (and more compact formulas),
we generate/enumerate first similar tableaux with an additional cell at the bottom of the middle
column, see the middle tableau in Figure 3: It is a polyomino Polyon with 6n+ 1 cells. There
are trivially (6n + 1)! fillings of this polyomino with the numbers 1 to 6n + 1. Some of these
fillings are additionally satisfying the classical constraints of Young Tableaux (i.e., the labels
are increasing in each row and each column), with some local decreases allowed between cells
separated by a wall (as shown with bold red edges in Figure 3). Let fn be the number of such
constrained fillings.

To compute fn we use a generic method which we call the density method, which we
introduced and used in [2,8–10]. It relies on a geometric point of view of the problem: consider
the hypercube [0, 1]6n+1 and associate to each coordinate a cell of Polyon. To almost every
element α of [0, 1]6n+1 (more precisely, every element with all coordinates distinct) we can
associate a filling of Polyon: put 1 into the cell of Polyon corresponding to the smallest
coordinate of α, 2 into the cell of Polyon corresponding to the second smallest coordinate of
α and so on. The reverse operation associates to every filling of Polyon a region of [0, 1]6n+1

(which is actually a polytope). We call P the set of all polytopes corresponding to correct
fillings of Polyon (i.e., respecting the order constraints). This P is also known as the “order
polytope” in poset theory.

Let us explain how the density method works. It requires two more ingredients. The first one
is illustrated in Figure 3: it is a generic building block with 7 cells with names X,Y,Z,R,S,V,W.
We put into each of these cells a number from [0, 1], which we call x, y, z, r, s, v, w, respectively.
The second ingredient is the sequence of polynomials pn(x), defined by the following recurrence
(which in fact encodes the full structure of the problem, building block after building block):

pn+1(z) =
∫ z

0

∫ z

x

∫ y

0

∫ z

r

∫ 1

z

∫ w

y
pn(x)dy dr ds dw dv dx, with p0 = 1. (2)

6 15 16

1 13 14

8 10 18

3 9 12

4 7 17

2 5 11

7 16 17

2 14 15

9 11 19

4 10 13

5 8 18

3 6 12

1

S Z W

R Y V

X

Figure 3: Left: A 2n × 3 Young tableaux with walls. Center: Our algorithm first generates
a related labelled shape, Polyon, with one more cell in its bottom (removing this cell and
relabelling the remaining cells gives the left tableau). Right: The “building block” of 7 cells.
Each polyomino Polyon is made of the overlapping of n such building blocks.
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Density method algorithm

1 Initialization: We order the building blocks from k = n−1 (the top one) to k = 0
(the bottom one). We start with the value k := n−1, i.e. the building block from
the top. Put into its cell Z a random number z with density pn(z)/

∫ 1
0 pn(t)dt.

We repeat the following process until k = 0:

2 Filling: Now that Z is known, put into the cells X, Y,R, S, V,W random numbers
x, y, r, s, v, w with conditional density

gz(x, y, r, s, v, w) := 1
pk+1(z)

pk(x)1P ,

where 1P := 1{0≤x≤y≤z,0≤r≤y,r≤s≤z,z≤w≤1,y≤v≤w}.

3 Iteration: Consider X as a the Z of the next building block. Set k := k − 1 and
go to step 2.

Theorem 4.1. The density method algorithm is a uniform random generation algorithm with
quadratic time complexity and linear space complexity.

Proof. Let us indeed prove that the algorithm gives a random element of our set of polytopes
P with the uniform measure. First, the density of the 7-tuple (x, y, z, r, s, v, w) (the content
of our building block from Figure 3) is the product of the conditional densities:

p1(z)∫ 1
0 p1(t)dt

× gz(x, y, r, s, v, w) = 1P∫ 1
0 p1(t)dt

(as p0(x) = 1).

So this density is constant on our set P of polytopes and zero elsewhere, which is exactly what
we wanted. The fact that it is a density implies that its integral is 1, whence∫

[0,1]7
1P dx dy dz dr ds dv dw =

∫ 1

0
p1(t) dt.

Now if we choose a random uniform element in [0, 1]7, the probability that it belongs to our
set P of polytopes is ∫

[0,1]7
1P dx dy dz dr ds dv dw.

But due to the reasoning above, this is also the probability that a random uniform filling of our
building block is correct (i.e., respects the order constraints). Thus this probability is given by
f1/7!. It follows that f1 = 7!

∫ 1
0 p1(t)dt = 12.

The same argument is readily extended for all n, using Formula (2) defining the pn by
induction, and the fact that the full product of the densities is telescopic.
This implies that fn = (6n+ 1)!

∫ 1
0 pn(t)dt.

Finally, as each step relies on the computation and the evaluation of the associated poly-
nomial pn(z) (of degree proportional to n), this gives a quadratic time complexity, and takes
linear space.
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Remark 1: If one wants to generate many diagrams, not just one, then it is valuable to
make a precomputation phase computing and storing all the polynomials pn. The rest of the
algorithm is the same. For each new object generated, this is saving O(n2) time, to the price
of O(n2) memory. The algorithm is globally still of quadratic time complexity (because of the
evaluation at each step of pk(x), while pk+1(z) was already computed).

Remark 2: If one directly wants to generate 2n×3 Young Tableaux with decreases instead
of our strange polyomino shapes Polyon, then one still uses the same relation between pn+1
and pn but p0 is not defined and p1 has a more complicated form. Another way is to generate
Polyon, and to reject all the ones not having a 1 in the bottom cell, then remove this bottom
cell and to relabel from 1 to 6n the remaining cells (see Figure 3). This still gives a fast
algorithm of O(n2) time complexity (the only difference with the cost of the initial algorithm
is the multiplicative constant included in the big-O).

Using dynamic programming or clever backtracking algorithms allows hardly to compute
the sequence fn (the number of fillings of the diagram) for n ≥ 3. In the same amount
of time, the density method allows us to compute thousands of coefficients via the relation
fn = (6n+ 1)!

∫ 1
0 pn(x), where the polynomial pn(x) is computed via the recurrence

pn+1(z) =
∫ z

0

1
24(z − 1)(x− z)(3x3 − 7x2z − xz2 − z3 − 2x2 + 4xz + 4z2)pn(x)dx. (3)

This gives the sequence {fn}n≥0:
{1, 12, 8550, 39235950, 629738299350, 26095645151941500, 2323497950101372223250, 392833430654718548673344250, 115375222087417545717234273063750,

55038140590519890608190921051205837500, 40460077456664688766902540022810130044068750, 4393840235884118464495128448703896167747914784375, . . . }.

As far as we know, there is no further simple expression for this sequence. This concludes
our analysis of the model given by Figure 3.

We can additionally mention that the generating function associated to the sequence of
polynomials pn(x) has a striking property:
Theorem 4.2. The generating function G(t, x) := ∑

n≥0 pn(x)tn is D-finite3 in x.
Proof. The general scheme (whenever one has one hole between the walls) is

pn+1(z) =
∫ z

0
Q(x, z)pn(x)dx. (4)

where Q is a polynomial in x and z, given by Q(x, z) :=
∫
P 1. The fact that there is just

one hole between the walls guarantees that all the other variables encoding the faces of the
polytope P will disappear in this integration. Let d be the degree of Q in x, applying (∂x)d+1

to both sides of Formula 4 leads to relation between the (d + 1) derivatives of pn+1 and the
first (d + 1) derivatives of pn. Multiplying this new relation by tn+1 and summing over n ≥ 0
leads to the D-finite equation for G(t, x).

Note that G(t, x) is D-finite in x, but is (in general) not D-finite in t. When it is D-finite
in t, our algorithm has a better complexity (namely, a O(n3/2) time complexity), because it is
then possible to evaluate pn(x) in time O(

√
n) instead of O(n).

3A function F (x) is D-finite if it satisfies a linear differential equation, with polynomial coefficients in x.
See e.g. [5] for their role in enumeration and asymptotics of combinatorial structures.
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Conclusion: We thus gave a way to enumerate and generate Young tableaux with local
decreases (and, in fact, more generally, linear extensions of posets). Our approach is different
from the classical way to generate Young tableaux (e.g. via the Greene–Nijenhuis–Wilf algo-
rithm, see [6]), which relies on the existence of an enumeration by a simple product formula
(given by the hook-length formula). As there is no such simple product formula for the more
general cases we considered here, such an approach cannot work anymore. For sure, in order
to generate these objects, there is the alternative to use some naive “brute-force-like” methods
(like e.g. dynamic programming, with backtracking). However this leads to an exponential time
algorithm. The density method which we presented here is the only method we are aware of
which leads to a quadratic cost uniform random generation algorithm.

It would be a full project to examine many more families of Young Tableaux with local
decreases, to check which ones lead to nice generating functions, to give bijections, and so
on. This article presented three different approaches to handle them, the last one (the density
method) being of great generality. We will give more examples in the long version of this article.
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