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Abstract

It has been shown by Pittel and Romik that the random surface associ-
ated with a large rectangular Young tableau converges to a deterministic
limit. We study the fluctuations from this limit along the edges of the
rectangle. We show that in the corner, these fluctuations are gaussian
wheras, away from the corner and when the rectangle is a square, the
fluctuations are given by the Tracy-Widom distribution. Our method is
based on a connection with the Jacobi ensemble.
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1 Statement of the results

From a formal point of view, a rectangular Young tableau of size (m,n) can be
defined as an mn-tuple of integers (X1,1, . . . Xm,n) satisfying, for all i, j,

Xi,j < min(Xi,j+1, Xi+1,j)

{X1,1, . . . Xm,n} = {1, 2, . . .mn}
We denote by Xm,n the set of mn-tuples of this form.

Pittel and Romik [11] studied the limit shape of the surface associated with
a random large rectangular Young tableau. Fix a real t > 0, and consider a
Young tableau of size (n, btnc), chosen uniformly at random. Then they proved
that for all reals (r, s) ∈ [0, 1]2, Xbrnc,bstnc/tn

2 converges in law as n→∞ to a
deterministic quantity g(r, s, t), which is the solution of a minimization problem.
We want to study the fluctuations of this shape along the edges of the rectangle.
First, we state a completely explicit result on the corner:

Theorem 1 Let (X1,1, . . . , Xm,n) be a uniform random variable on Xm,n. Then
for n ≤ k ≤ mn−m+ 1,

P(X1,n = k) =

(
k−1
n−1
)(
mn−k
m−1

)(
mn

m+n−1
) (1)
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Let us compare this result with the following model. Let R be a rectangle of
size ((m− 1)(n− 1),m+ n− 1) on an integer lattice. Consider the set of paths
going from the south-west corner to the north-east corner with only north and
east steps. Choose such a path uniformly at random. Then it is an elementary
exercise to check that the probability for the n-th north step to be the k-th step
is equal to (1). However, we have not been able to find a combinatorial link
between this simple model and the corner of a rectangular Young tableau.

A consequence of Theorem 1 is the following:

Corollary 1 Fix some real t ∈ R∗+. For every n, put mn = btnc and let

(X
(n)
1,1 , . . . , X

(n)
mn,n) be a uniform random variable on Xmn,n. Then as n→∞,

√
2(1 + t)

(
X

(n)
1,n − EX(n)

1,n

)
n3/2

law→ G

where G is a standard gaussian random variable.

Our second result only holds when the rectangle is a square and deals with
the fluctuations on the edges.

Theorem 2 For each n, let (X
(n)
1,1 , . . . , X

(n)
n,n) be a uniform random variable on

Xn,n. Then there exists a function r : (0, 1) → R∗+ such that for t ∈ (0, 1), as
n→∞,

r(t)
(
X

(n)
btnc,n − EX(n)

btnc,n

)
n4/3

law→ TW

where TW has the Tracy-Widom distribution.

Pittel-Romik’s result tells us that n−2EX(n)
btnc,n converges to the value of the

limit shape at (t, 1), namely (1 +
√

2t− t2)/2.
Our method consists in studying Young tableaux in a slightly modified

framework. As the asymptotic shape only makes sense when the “height” is
renormalized, that is, the Xi,j are divided by mn, it seems natural to work
directly in a continuous framework. The formal setup is the following.

Definition. For a pair of integers (m,n), let Ym,n be the set of mn-tuples
(Y1,1, . . . Ym,n) of reals in [0, 1] satisfying, for all i, j,

Yi,j < min(Yi,j+1, Yi+1,j) (2)

We want to study uniform random variables on Ym,n. Denote by ∆(x1, . . . xk)
the Vandermonde of the k-tuple (x1, . . . xk):

∆(x1, . . . xk) =
∏

1≤i<j≤k

(xi − xj)

When the rectangle is a square, we get:
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Theorem 3 Let n be a positive integer and (Y1,1, . . . , Yn,n) be a uniform ran-
dom variable on the set Yn,n. Then for every k ∈ [1, n], the k − tuple

(Y1,n−k+1, Y2,n−k+2, . . . , Yk−1,n−1, Yk,n)

has a marginal density proportional to

1{x1≤x2...≤xk}∆(x1, . . . xk)2
k∏
i=1

xn−ki (1− xi)n−k

For a general rectangle, the result reads:

Theorem 4 Let m < n be two positive integers. Let (Y1,1, . . . , Ym,n) be a uni-
form random variable on the set Ym,n.

(i) Let k ∈ [1,m] be an integer. Then the k-tuple

(Y1,n−k+1, Y2,n−k+2, . . . , Yk−1,n−1, Yk,n)

has a marginal density proportional to

1{x1≤x2...≤xk}∆(x1, . . . xk)2
k∏
i=1

xn−ki (1− xi)m−k

(ii) If m < k ≤ n, then the m− tuple

(Y1,n−k+1, Y2,n−k+2, . . . , Ym−1,n−k+m−1, Ym,n−k+m)

has a marginal density proportional to

1{x1≤x2...≤xk}∆(x1, . . . xk)2
k∏
i=1

xn−ki (1− xi)k−m

Of course, for a diagonal of the form (Ym−k+1,1, Ym−k+2,2, . . . , Ym,k), we get
a similar expression as in (i). The densities appearing in these two theorems
belong to the general class called the Jacobi ensemble. This ensemble also
appears in various models, among others the MANOVA procedure in statistics
[10], log-gas theory [6], Wishart matrices and random projections [4]. For a
detailed account on random matrices, we refer to [1].

Using Theorems 3 and 4 together with known results on the Jacobi ensemble
enables us to derive the results stated above. Moreover, the deterministic limit
shape can also be recovered this way, see Section 4. An alternative form of
Theorem 2 in the continuous setting is as follows:

Corollary 2 For each integer n, let (Y
(n)
1,1 , . . . , Y

(n)
n,n ) be a uniform random vari-

able on Yn,n. Then for t ∈ (0, 1), with the same function r as in Theorem 2, as
n→∞,

r(t)(Y
(n)
btnc,n − EY (n)

btnc,n)

n4/3
law→ TW

where TW has the Tracy-Widom distribution.
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Remark that Yn,n is a convex subset (indeed, a compact polytope) of Rn2

.
From this point of view, Corollary 2 can be seen as a result on the projection
of the uniform measure on a convex set in high dimension. This is reminiscent
of the classical result saying that if (X1, . . . Xn) is a random vector distributed
according to the uniform measure on the euclidean n-dimensional sphere with
radius

√
n, then X1 is asymptotically gaussian.

The remainder of this note is organized as follows. We prove Theorems 3
and 4 in Section 2. Theorem 1 is derived in Section 3. Section 4 is devoted
to the proofs of the asymptotic results. Some concluding remarks are made in
Section 5

2 Diagonals of continuous tableaux

We prove here Theorem 3. The proof of Theorem 4 is the same and is omit-
ted. The basic idea is to use a random generation algorithm filling the tableau
diagonal by diagonal, using conditional densities.

We begin with a preliminary lemma. Let n ≥ 2 and define by induction the
following polynomials: g1(x) = 1 and for i ≤ n− 1,

gi+1(x1, . . . xi+1) =

∫ x2

x1

dy1 . . .

∫ xi+1

xi

dyn gi(y1, . . . , yi)

while for i ∈ [n, 2n− 2],

gi+1(x1, . . . x2n−i−1) =

∫ x1

0

dy1

∫ x2

x1

dy2 . . .

∫ 1

x2n−i−1

dy2n−i gi(y1, . . . , y2n−i)

Lemma 1 (i) For every i ∈ [1, n], there exists a constant ci such that

gi(x1, . . . xi) = ci∆(x1, . . . xi)

(ii) For i ∈ [n, 2n− 1], there exists a constant ci such that

gi(x1, . . . x2n−i) = ci∆(x1, . . . x2n−i)

2n−i∏
j=1

xi−nj (1− xj)i−n

Proof
An elementary proof of (i) can be found in Baryshnikov [2]. To deduce (ii),

we proceed by induction. For m ≤ n, define Km(ε, y1, . . . yn−m) as the integral∫ 0

−ε
dr1 . . .

∫ −(m−1)ε
−mε

drm

∫ 1+ε

1

ds1 . . .

∫ 1+mε

1+(m−1)ε
dsm

∆(r1, . . . rm, y1, . . . yn−m, s1, . . . sm)

We want to evaluate

I :=

∫ x1

0

dy1 . . .

∫ 1

xn−m−1

dyn−mKm(ε, y1, . . . yn−m)

4



On the one hand, using (i) easily gives

I ∼ ε−m(m+1)C(m,n)∆(x1, . . . , xn−m−1)

n−m−1∏
i=1

xm+1
i (1− xi)m+1 (3)

for some positive constant C(m,n), where the equivalent is uniform over all
(n−m)-tuples (x1, . . . xn−m) satisfying

√
ε ≤ x1 ≤ . . . ≤ xn−m ≤ 1−

√
ε (4)

On the other hand,

∆(r1, . . . y1, . . . sm) ∼ ∆(y1, . . . yn−m)∆(r1, . . . s1, . . . sm)

n−m∏
i=1

ymi (1− yi)m

where the equivalent is uniform over all (n+m)-tuples (r1, . . . y1, . . . sm) satis-
fying √

ε ≤ y1 ≤ . . . ≤ yn−m ≤ 1−
√
ε

−ε < r1 < 0, . . . ,−mε < rm < −(m− 1)ε, 1 < s1 < 1 + ε, . . .

As a consequence,

Km(ε, y1, . . . yn−m) ∼ C ′(m,n)εm(m+1)∆(y1, . . . , yn−m)

n−m∏
i=1

ymi (1− yi)m

where C ′(m,n) is the constant such that∫ 0

−ε
dr1 . . .

∫ 1+mε

1+(m−1)ε
dsm∆(r1, . . . s1, . . . sm) ∼ C ′(m,n)εm(m+1)

It follows that uniformly over all (n−m)-tuples (x1, . . . xn−m) satisfying (4),

I ∼ C ′(m,n)εm(m+1)

∫ x1

0

dy1 . . .

∫ 1

xn−m−1

dyn−m∆(y1, . . . , yn−m)

n−m∏
i=1

ymi (1−yi)m

Comparing this estimate with (3) yields (ii). �
We now describe an algorithm generating random elements in Yn,n. A similar

algorithm can be used to generate random permutations with a prescribed profile
of ascents and descents [9]. In the remainder of this section, k and n are the
integers in the statement of Theorem 3. For i ∈ [1, n], we denote

Di = (Y1,n−i+1, Y2,n−i+2, . . . , Yi,n)

while for i ∈ [n+ 1, 2n− 1],

Di = (Yi−n+1,1, Yi−n+2,2, . . . , Yn,2n−i)
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If (x1, . . . xj) and (y1, . . . yj+1) are two sequences of reals, we say that they are
interlacing in [0, 1] if 0 ≤ y1 ≤ x1 ≤ y2 . . . ≤ xj ≤ yj+1 ≤ 1. We denote the
event that this interlacing relation is satisfied by

Inter((x1, . . . xj), (y1, . . . yj+1))

Algorithm

• Choose the diagonal Dk at random according to the density

1{0≤x1≤x2...≤xk≤1}gk(x1, . . . xk)g2n−k(x1, . . . xk)

Zk

where

Zk =

∫ 1

0

dxk

∫ xk

0

dxk−1 . . .

∫ x2

0

dx1gk(x1, . . . xk)g2n−k(x1, . . . xk)

• By induction, for i from k down to 2, conditional on Di, choose Di−1
according to the conditional density

gi−1(x1, . . . , xi−1)1Inter(Di,(x1,...,xi−1))

gi(Di)
(5)

• By induction, for i from k to n − 1, conditional on Di, choose Di+1 ac-
cording to the conditional density

gi+1(x1, . . . , xi+1)1Inter(Di,(x1,...,xi+1))

gi(Di)

• By induction, for i from n to 2n − 2, conditional on Di, choose Di+1

according to the conditional density

gi+1(x1, . . . , x2n−i−1)1Inter(Di,(x1,...,x2n−i−1))

gi(Di)

First, remark that the conditional densities used by the algorithm are indeed
probability densities. That is, they are measurable, positive functions and their
integral is 1. The latter fact is easy to verify: for instance, by definition of gi,

gi(Di) = gi(Y1, . . . Yi) =

∫ Y2

Y1

dx1 . . .

∫ Yi

Yi−1

dxi−1 gi−1(x1, . . . , xi−1)

and thus, using (5), we get∫
[0,1]i−1

dx1 . . . dxi−1
gi−1(x1, . . . , xi−1)1Inter(Di,(x1,...,xi−1))

gi(Di)
= 1
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We claim that the algorithm yields a random element of Yn,n with the uniform
measure. Indeed, by construction, the n2-tuple generated by the algorithm
has a density which is the product of the conditional densities of the diagonals
D1, D2 . . . D2n−1. Hence this density is given by

1{0≤x1≤...≤xk≤1}gk(Dk)g2n−k(Dk)

Zk

×
k∏
i=2

gi−1(Di−1)1Inter(Di,Di−1)

gi(Di)

2n−1∏
i=k+1

gi(Di)1Inter(Di,Di−1)

gi−1(Di−1)

The expression above is a telescopic product and after simplification, we find
that the density is constant on the set Yn,n. This proves our claim.

Finally, the density of Dk is proportional to

1{x1≤...≤xk}gk(x1, . . . xk)g2n−k(x1, . . . xk)

= 1{x1≤...≤xk}∆(x1, . . . xk)2
k∏
i=1

xn−ki (1− xi)n−k

according to Lemma 1. This proves Theorem 3.

3 The law of the corner

One can relate the discrete and the continuous model of Young tableaux. To
construct a continuous Young tableau (Yi,j) of size (m,n) from a discrete Young
tableau (Xi,j) of the same size, proceed as follows:

• Let (Xi,j) be a uniform random variable on Xm,n.

• Let (Z1 ≤ . . . ≤ Zmn) be the increasing reordering of mn independent,
uniform random variables on [0, 1], independent of (Xi,j).

• For every pair (i, j), let k(i, j) be the integer satisfying Xi,j = k(i, j).
Then put Yi,j = Zk(i,j).

Proposition 1 Consider the (mn)-tuple (Yi,j) constructed as above. Then
(i) (Yi,j) is distributed according to the uniform measure on Ym,n,
(ii) For every pair (i, j),

E
(
Yi,j −

Xi,j

mn+ 1

)2

≤ 1

mn+ 1

The proof of (i) is elementary and (ii) follows from a simple variance com-
putation, using the fact that the density of Zk is

hk(x) = xk−1(1− x)mn−k
(mn)!

(k − 1)!(mn− k)!
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As a consequence of Proposition 1, let fi,j be the marginal density of Yi,j .
For every 1 ≤ k ≤ mn put pi,j(k) = P(Xi,j = k). Using Proposition 1, we get
that the density fi,j is equal to

fi,j(x) =

mn∑
k=1

pi,j(k)hk(x)

where hk(x) is the density of Zk. Thus

fi,j(x) =

mn∑
k=1

pi,j(k)xk−1(1− x)mn−k
(mn)!

(k − 1)!(mn− k)!
(6)

This way one can deduce the probabilities in the discrete model from the
densities in the continuous model. For the case i = 1, j = n, according to
Theorem 4 (i),

f1,n(x) = xn−1(1− x)m−1
(m+ n− 1)!

(m− 1)!(n− 1)!

To obtain the desired decomposition, divide both sides of (6) by (1 − x)mn−1

and use the change of variables y = x/(1− x) to get

(m+ n− 1)!

(m− 1)!(n− 1)!
yn−1(1 + y)mn−n−m+1 =

mn∑
k=1

p1,n(k)yk−1
(mn)!

(k − 1)!(mn− k)!

Identifying the coefficient of yk−1, we find that if n ≤ k ≤ mn−m+ 1, then

p1,n(k) = cm,n
(k − 1)!(mn− k)!

(k − n)!(mn−m− k + 1)!

with

cm,n =
(m+ n− 1)!(mn−m− n+ 1)!

(mn)!(m− 1)!(n− 1)!

and pi,j(k) = 0 otherwise. This proves Theorem 1.

4 Asymptotic results

4.1 Proof of Theorem 2

For every n, let (Y
(n)
1,1 , . . . , Y

(n)
n,n ) be distributed according to the uniform measure

on Yn,n. Collins’ results on the “soft edge” of the Jacobi ensemble [4] can be
translated in our context as follows. For every t ∈ (0, 1), there exists a sequence
(sn(t)) and a constant r(t) such that, for every k, as n goes to infinity,

r(t)n2/3
(
Y

(n)
btnc,n − sn(t), . . . , Y

(n)
btnc−k+1,n−k+1 − sn(t)

)
(7)
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converges in distribution to a k-tuple (A1, . . . , Ak) which is the truncation of a
random point process

(A1 > A2 > . . . > Ak > . . .)

distributed according to the Airy ensemble. Moreover, the estimate (ii) of
Proposition 1 entails that (7) and

r(t)n2/3

X(n)
btnc,n

n2
− sn(t), . . . ,

X
(n)
btnc−k+1,n−k+1

n2
− sn(t)


have the same limit. This yields Theorem 2. Remark that Theorem 2 is a
specialization to the case k = 1 but that we have in fact a multidimensional
convergence:

Theorem 5 With the same assumptions and notation as in Theorem 2, for
every k ≥ 1, the k-tuple

r(t)n2/3

X(n)
btnc,n − EX(n)

btnc,n

n2
, . . . ,

X
(n)
btnc−k+1,n−k+1 − EX(n)

btnc−k+1,n−k+1

n2


converges in distribution towards the largest k values of the Airy process.

In fact, [4] gives a general result which applies for every rectangle. More
precisely, for all m,n, k, the diagonal (Yk,n, . . . , Y1,n−k−1) of Ym,n is a determi-
nantal point process for which [4] provides estimates both on the edge and in
the bulk of the spectrum. However, the convergence towards the Airy ensemble
is only proven in the square case. The extension to the rectangular case would
require some concentration inequalities that do not seem to be available yet.

4.2 Proof of Corollary 1

To prove Corollary 1, remark again that Proposition 1 (ii) enables us to deduce

the limit law of X
(n)
1,n from the limit law of Y

(n)
1,n . The density of Y

(n)
1,n is xn−1(1−

x)mn−1. Put r = 1/(1 + t) and Tn =
√
n− 1(Y

(n)
1,n − r). Then the density of Tn

has the form

cn

(
1 +

x

r
√
n− 1

)n−1(
1− x

(1− r)
√
n− 1

)btnc−1
for some constant cn. Asymptotic estimations easily yield Corollary 1.

4.3 The deterministic limit shape

We focus here on the square case but the case of a rectangle can be dealt with
similarly. Fix a real t ∈ (0, 1), let m(t) = btnc and consider the diagonal

(D
(t)
1 , D

(t)
2 , . . . D

(t)
m(t)) := (Y1,n−m(t)+1, Y2,n−m(t)+2, . . . , Ym(t),n)
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Consider the empirical measure

µn(t) =
1

m(t)

m(t)∑
i=1

δ
D

(t)
i

General results on Jacobi ensembles apply in this case and we get that µn(t)
converges in distribution, as n goes to infinity, to the deterministic probability
measure with density

ft(x) :=

√
(λ+(t)− x)(x− λ−(t))

πx(1− x)
1{x∈[λ−(t),λ+(t)]} (8)

where

λ±(t) =
1±

√
t(2− t)
2

(9)

See for instance the first proposition in [5]. Reformulating this result, we get
the following. Let r, s ∈ [0, 1]2, r ≥ s and put t = 1− s+ r. Then as n tends to
infinity, Xbrnc,bsnc converges in law to the Dirac point mass δg(r,s) where

g(r, s) = F−1t (s/t)

the function F−1t being the inverse of the function

Ft(x) =

∫ x

λ−(t)

ft(y)dy

and ft being given by (8) and (9). The function g is an alternative fomulation
of the limit shape found by Pittel and Romik.

Remark however that this result is weaker than Pittel-Romik’s, since it only
gives the convergence along a diagonal, whereas Pittel and Romik show a uni-
form convergence on the whole rectangle. In fact, a major weakness of our
method is that it only allows us to work on a single diagonal, and not on several
diagonals simultaneously.

5 Concluding remarks

Consider the case when the rectangle is a square. It would be interesting to study
the transition between the deterministic regime of Xn,n and the fluctuations of
order n4/3 for Xbtnc,n, as well as the transition between the fluctuations of order

n4/3 for Xbtnc,n and the fluctuations of order n3/2 for X1,n. A natural conjecture
is the following:

Conjecture 1 Let (an) be a nondecreasing sequence with an →∞ as n→∞.
Then, up to a multiplicative constant,

a
1/6
n (X

(n)
banc,n − EX(n)

banc,n)

n3/2
law→ TW
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X
(n)
banc,1 − EX(n)

banc,1

a
4/3
n

law→ TW

where TW has the Tracy-Widom distribution.

Let us explain where this conjecture comes from. The function r from The-
orem 2 can be computed using [4]:

r(t) =

√
2(t(2− t))1/6

(3− 2t+ t2 −
√

2t− t2)2/3

Computing the asymptotics when t→ 1 leads to the second part of the conjec-
ture. The first part comes from a link with the random matrix model known

as the GUE. For a fixed k, define a family of variables (T
(n)
i,k , 1 ≤ i ≤ k) by the

formula

Yi,n−k+i =
1

2

(
1−

T
(n)
i,k√
n

)
Then it follows immediately from Theorem 3 that, as n goes to infinity, the

renormalized diagonal (T
(n)
i,k , . . . T

(n)
k,k ) has a limit density proportional to

1{x1≤x2...≤xk}∆(x1, . . . xk)2
k∏
i=1

exp(−x2i /2)

This is the density of the eigenvalues of a random (k, k) matrix from the GUE,
and classical results [1] naturally lead to the first part of the conjecture. Prov-
ing it would involve an exchange of limits, which does not seem to have been
achieved in the literature so far.

There is a link between rectangular Young tableaux and a particle system
known as the TASEP, see [12]. In this view, a phenomenon of arctic circle arises
when the rectangle is a square. In the general case, the arctic curve is no longer
a circle but it is still algebraic. To compute an equation of this curve, one has to
determine the parameters of the Jacobi ensemble associated with the rectangle
using Theorem 4, and then compute the values λ± for this Jacobi ensemble as
in [5].

The horizontal strips of the TASEP diagram where this arctic curve appears
correspond to diagonals of the Young tableau. Moreover, the places of the
vertical steps inside a horizontal strip correspond to the integers in the diagonal
of the Young tableau, and Theorems 3 and 4 tell us that these vertical steps are
asymptotically distributed like the eigenvalues of a Jacobi ensemble. A similar
result has been established by Johansson and Nordenstam for domino tilings of
the Aztec diamond [8], where the Jacobi ensemble is replaced by the GUE.

In the case of a GUE of size n, the fluctuations of the eigenvalues in the
bulk are of order

√
log n/n and are asymptotically gaussian [7]. It is not clear

whether the same behaviour occurs in our context.
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A model of corners of Jacobi ensembles was studied recently by Borodin and
Gorin [3], who showed a convergence to the gaussian free field. Their model is
slightly different from ours, but it would be interesting to know whether their
results could be transposed in our case.

Finally, the method used here can be applied to generate at random a stan-
dard filling of a general polyomino: compute the conditional densities of the
diagonals, which will be polynomials given by multiple integrals, and then use
a generating algorithm as in Section 2. Of course, the problem is that for a
general polyomino, the corresponding polynomials will not have a simple form
as for rectangles.

Acknowledgements I thank Florent Benaych-Georges, Cédric Boutillier,
Benoit Collins and Alain Rouault for useful references.
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