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Original Motivations



The Original Motivating Problem

Heterogenous Source Estimation

— d different sources Xi(t) ~ N (11, 02) to estimate
— Total of N samples to allocate: (N, Na, ..., Ny)

2
~ Minimization of E|z — p|* = 3, £ o T
Loss defined on Proportions

2
L(py,.-.,Pk) =2y 5= with p€ Ay



The solution ?

2
Min. of L(p;,. ... pd) = . . constraint to p € Ay

o)’

— Easy to solve, pj = %% with error L(p*) = (3] 0)* = o

The Question
What if the o, are also unknown?

. . = S 2
~ Sequentially estimate 7 = - M (Xi(®) — Xi(2))
] Bigger Ny, better estimation of o7
" Do not overshoot | Smaller oﬁ, smaller Ny

Sequential (simultaneous) Estimation vs. Optimization



More complex: Linear Regression

Standard Linear Regression: Y; = X,TB + &

Homoscedastic case
» Design Matrix: X = (X;,.. ., Xn) "
B=(XTX)IXTY=38+(XTX)"XTe
= Expected Error: E|| — 8]]2 = 02 Tr(X X)L if & ~ N(0,021d).

= Unbiased Estimate:

Heteroscedastic case
= Known variance: Var(c) = Q
= Unbiased Estimate: 3 = (X'Q 'X)"IXTQ 'y
= Expected Error: E|| — |2 = Tr(X QX)L



Active Linear Regression

= Fixed Design: X C RN*9 is fixed and given
= Random Design: X; € R are iid ~ M(R)

Active Design: From a given set {X(V) ... Xx(9} c RY

= Choose X; € {X(l), . 7X(K)} to sample and Observe
Y, = X7 B+ ¢(X)

= Sample Xj11, observe Y1, etc.

= Estimate 8 from Y1,..., Yy and X

= Easy cases: Homoscedastic or known variance

Active Heteroscedastic Linear Regression ?7

= “Optimization of design matrix” vs "Estimation of variance”

= Minimize Tr(X ' Q'X)~! and estimate Q



Best solution in hindsight

Minimize Tr(X ' O "X 1 with X; e {X®) ..., XK}

= Assume &, independent, Gaussian N(0, o%(X(¥))
= Total number N of samples allowed

= Optimal allocation NV, ... N® st STN® = N.

= Discretization errors. Consider proportion p(l), ey p(K)

XTQ X = Ny, ph X0 T

Tk

= Asymptotically, it boils down to

Min. over “sampling simplex” Tr(ka(k)%)*1



Related questions

Activification of Statistical Procedures

= Heterogenous Source Estimation
= Linear regression
= Estimation of Gaussian mixtures

= Clustering

Sounds like Exploration vs Exploitation

and multi-armed bandits



An intro to multi-armed Bandit



Classical Examples of Bandits Problems

— Size of data: n patients with some proba of getting cured

— Choose one of two treatments to prescribe

or

— Patients cured or dead

1) Inference: Find the best treatment between the red and blue
2) Cumul: Save as many patients as possible



Classical Examples of Bandits Problems

— Size of data: n banners with some proba of click

— Choose one of two ads to display

or

— Banner clicked or ignored

1) Inference: Find the best ad between the red and blue
2) Cumul: Get as many clicks as possible



Classical Examples of Bandits Problems

— Size of data: n auctions with some expected revenue

— Choose one of two strategies(bid/opt out) to follow

— Auction won or lost

1) Inference: Find the best strategy between the red and blue
2) Cumul: Win as many profitable auctions as possible



Classical Examples of Bandits Problems

— Size of data: n mails with some proba of spam

— Choose one of two actions: spam or ham

— Mail correctly or incorrectly classified

1) Inference: Find the best strategy between the red and blue
2) Cumul: as possibleMinimize number of errors



Classical Examples of Bandits Problems

— Size of data: n patients with some proba of getting cured

— Choose one of two treatments to prescribe

or

— Patients cured (or dead @

1) Inference: Find the best treatment between the red and blue
2) Cumul: Save as many patients as possible



Two-Armed Bandit

— Patients arrive and are treated sequentially.



Two-Armed Bandit

— Patients arrive and are treated sequentially.



Two-Armed Bandit
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Two-Armed Bandit
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— Patients arrive and are treated sequentially.



Two-Armed Bandit
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— Patients arrive and are treated sequentially.



Two-Armed Bandit
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— Patients arrive and are treated sequentially.



Two-Armed Bandit

= = s
@) o/

— Patients arrive and are treated sequentially.



Two-Armed Bandit
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— Patients arrive and are treated sequentially.



Two-Armed Bandit
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— Patients arrive and are treated sequentially.



Two-Armed Bandit
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— Patients arrive and are treated sequentially.



Two-Armed Bandit
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— Patients arrive and are treated sequentially.



Two-Armed Bandit
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— Patients arrive and are treated sequentially.



Two-Armed Bandit

o o o] & o) -

— Patients arrive and are treated sequentially.

— Save as many as possible.



Estimation of Means

Discrete-time proc.: X5 in [0,1]
“The efficiency of treatment 1 on patient n"

Estimate the mean y;

Hoeffding inequality: exponential decay

‘)_é,k) - ul‘ > £ with proba at most 2 exp ( — 2n=7).

Finite number of mistakes:

Ezﬂ{p&)—ﬂﬂ >€} < %2

nelN

10



Regret Minimization

— Choose one ad to display k,. Reward: Xg,k")

- : Kem
Maximize cumulative reward " _; X o Son_ ulkm)

Minimize Regret [Hamanss)
n
R, = nu* — Z [k, with p* = max{pux}

m=1

— Equivalent formulation with A, = g% — g

RH:ZAkiL{km:k;é*}
k m=1

11



Stochastic & Full Monitoring

— Full Monitoring: all values Xff) observed.

—{k
Optimal algorithm: k, = arg mafo7 ):

1
ER, < ZA—k and for small n, ERy < nmax Ay
k

Bounded regret, uniformly in n!

Given n, worst A is \/g and ER, < Vdn

But in the examples, only X<nk”) is observed (bandit monitoring)!

12



Stochastic & Bandit Monitoring

_ - o X
- Xf,k) =15 X not available, only XK — m

— with k, = arg max)?g,k), ER, = ©(n).
because E[)?E,k)] < ux negatively biased
— Positive (vanishing) bias ? Tradeoff Exploitation/Exploration

Upper Confidence Bound (auer,cesa-Bianchi,Fischer02]

2 log(n)

= X(K) __c eV
kn arg;max)(f1 + TR a—

Regret: ER, < 3, 'Oi(k")
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An active linear optim on Multi-Armed Bandits

— d different sources Xk(t) ~ N (j1x, 0%)
— Total of N samples to sequentially allocate: (Ny, Na, ..., Ng)
— Minimization of %,Zk Nitte = D) Prhii

Loss defined on Proportions

L(p1, .-, Pd) = X Puttk = P, With p € Ag

— Let's take 07 = 1 in bandits to simplify

14



Back to UCB

Upper-Confidence Bound - algorithm

1) Estimate fux by 77,(t) = gk S0t Xi(s), but biased

e s Bl corfidly log (1)
2) “Positively-bias it” with 71,(t)— 2,\,%“)

3) Sample/pull the “arm” with smallest “unbiased” estimate

UCB-algo

Ter1 = argming {ﬁk(t) - 2',?,%((:))}

4) Enjoy Optimization error / “regret”

log () 1
L —L(p*) <
(pw) = L(P*) S Ek: —”

15



Ugly & useless but insightful 1 page proof

L(per1) — L(p*) = L(pt + = (eres — pt)) — L£(p")
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Ugly & useless but insightful 1 page proof

L(per1) — L(p*) = L(pt + = (eres — pt)) — L£(p")
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Ugly & useless but insightful 1 page proof

£lpess) = £4%) = £lpe + 7 (ores — p2) = £(5°)
= £(p) — £5") + 7 VL) (ervs — PO
= £(p) - £7") + 7 VLRI (7 — p)

1 T 5«
+ mVC(Pt) (ers — P")
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Ugly & useless but insightful 1 page proof

L(pest) = £(5%) = £pe + —— (e, — p)) — £(67)
= £(p) — £5") + 7 VL) (ervs — PO

= £(p) - £7") + 7 VLRI (7 — p)

1 T 5«
+ mVC(Pt) (er — P")
1

< (1= )£ - £67)] + 7 VL) (enn — P)
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Ugly & useless but insightful 1 page proof

L(pest) = £(5%) = £pe + —— (e, — p)) — £(67)
= £(p) — £5") + 7 VL) (ervs — PO

= £(p) - £(57) + ——=VL(p) (5" — o)

t+1
+ %VC(pt)T(em -p")
< (1- ﬁ) [ﬁ(pr) - ll(p*)} + %Vﬁ(pr)T(em -p")
< =7 [£0) - £67)] + g s = )

=€t
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Ugly & useless but insightful 1 page proof

L(pest) = £(5%) = £pe + —— (e, — p)) — £(67)
= £(p) — £5") + 7 VL) (ervs — PO

= £(p) - £(57) + ——=VL(p) (5" — o)

t+1
1 T 5«
+ mv£(pt) (e‘ﬂ'rﬂ - P )
1 . 1 “
< (1 ) |£e) = £1)] + 57 VER) (ers =)
t >k
< m[ﬁ(l)t) - L(p )} + o 1(/1m L~ k)

=€t

1 1
L(pn) — L(p*) < NZMm — e = W/Z €t
t=1 =il
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Still that proof !

— mers = KiF Xi(8) — /7RY = i — /R < e = e S/ e

Slow rate of convergence

«V/Tog(N)Ny, < /<5

17



From slow to fast rates

— Start from the slow rate

=3 Ml — ) = Llpw) — £(6") S i,; VViog(N) IV,

Ktk

— Enforce px — pg- and Cauchy-Schwartz

> Nl — i) S \/Z Nic( ik = pre)
PP

Ktk

— Enjoy your fast rates !

L(pn) — L(p*) < =V 52, 1

k= Hoie*

18



What did we learn with UCB ?

1. Optimistic Estimation of VL(p) or “positively-biased”

() — \/251’,%((:)) = @;E(pt) and ey 1 = arg minpen, VL(p) p

2. Variant of Frank-Wolfe: p;11 = (1 — v¢)p: + Yy arg le VL(p) p
pELy

per1 = (1— %)Pt + gy
=(1- Fll)pt + % arg minpea, V=L(p:) p

3. From Slow to Fast Rates with some simple algebra

L(pn) — L£(p*) S 1/ M s, L)

19



Links with active statistics



More General Model

Optimization of convex loss £(py) on Ag, think of L(p) =", Z—E

Typical parametric form: Lg(p) = >, fi(0k. pi) with 8 unknown
Main assumption (typical case)

fi is smooth w.r.t. p and 0

IV A0k Pi) = VOl PN < Cpic = pil + Cll0k — 03|
At stage t, choose e, and observe X, (t) ~ N (0, 1)

After Ni(t) observations, X(t) ~ 0y & lolfl(kz)é)

Noisy information on V,£L(-) only when sampling process k

20



Other examples

— Utility maximization Optim. basket of substitutes goods

21



Other examples

— Utility maximization Optim. basket of substitutes goods
= V. thinks of “cardio”, “bench-press” and “squats” for fitness training

21



Other examples

— Utility maximization Optim. basket of substitutes goods
= V. thinks of “cardio”, “bench-press” and “squats” for fitness training

= Q. thinks of “wine”, “bread” and “cheese” for his breakfast

’xfﬁ - ; —. '
<"

21



Other examples

— Utility maximization Optim. basket of substitutes goods
= V. thinks of “cardio”,

“bench-press” and “squats” for fitness training

Q. thinks of “wine"”, “bread” and “cheese” for his breakfast

¥ «
g \f - :l.
il s
By

= Kobb-Douglas utility 2/(xi, .. ., 2 5%) = xflx;2 C Xy

= Use/buy one good (same price 1), estimate log-utility increase
— online Markovitz portfolio optimization

= Optimize £(p) = p ' Xp— Ap' p  with X known, i unknown
— General Case

= L is C-smooth w.r.t. p and ’@kﬁ(p) - ViL(p)| £ C log

(f)

21



The algorithm - Stochastic/Online optimization

UC-FW: Upper Confident Frank-Wolfe

= Optimistic/Unbiased grad. @;/j(p) = ViL(p) - C loﬁizif)
= Frank-Wolfe: e, , = argminpeca, pT€;lj(pt), with 6 =1/t

First result (rather easy) Slow Rate of FwUC

BL(pw) - £(p") S / 25 + 50

= Proof ? (almost) identical to UCB !

22



Frank-Wolfe vs Gradient Descent

= For linear functions:
Projected gradient descent (in red) can converge slowly

Frank-Wolfe goes straight to the minimum



The proof. ldentical !!

1
E(Pt—s—l) == ﬁ(Pt + 7(6‘7@1 - Pt)) - L

t+1
< L(pe) = L* + —VL(p) (em. — pe) +—C
= pt t+1 pt T t+1 pt (f+1)2
1
= L(ps) — L* + qupt)T(ﬁk — pt)
1 T * C
+mV£(Pt) (em-l—P)+m
i 1 T C
< — LM+ — —p
< 7| £lp) — £7] + =5 VLR (enes R
t 1 C
< o _ *
- t+1{£(pt) £ } tr 1Et+(t+ 1)2

1 log(NV)
L(py) — L* < N €t + CT and e~ Cy 3, l/(\)/%((tt))
t=1

24



Similar results/techniques

= Stochastic Frank Wolfe (errors independent of algorithms)
— [Jaggi], [Lacoste-Julien et al.], [Lafond et al.]
= Global Cost. Specific £(p) = 0 p) with # unknown, f known
— Adversarial: [Even-Dar et al.], [Blackwell], [Mannor et al.], [Rakhlin
et al.]Jetc.
— Stochastic: [Agrawal and Devanur], [Agrawal et al] Also use
stochastic Frank Wolfe
= Specific Cases. with pb tailored algorithm
— [Carpentier et al.], [the bandit community]

25



Fast Rates !




Slow to Fast rates ?

As in bandit ? (“LN(N) transformed into dloi(/v) ?

1) Slow rate: L(pn) — L(p*) S Xk V/Iog(N) N,

2) Lower bound the convex functions

£(pw) — L(p") 2 (ow=p VL") 2 15 3 N(Val(p") =i £(5"))

ket ke
3) Cauchy-Schwartz
1 log(N) 1
- N (VL(p*)—Vi-L(p")) S
W3 )T Lo £ 50 S

4) Another lower bound: fast rate !

L(pn) = L(p*) S L+ mmvzms—vmze)-hs S O og(1) )

26



What about interior minimized functions ?

= General Case. Can we do the same ?
= Without more assumption, no.
= Maybe with strong convexity
Strong convexity

fly) > fx)+ VA " (y — x) + plly — xI?

= Positive Results. Fast rates sometimes possible
— without noise [Garben and Hazan] [Jaggi][...]
— with decaying noise [Lafond et al.]
— in online convex optim. [Polyak-Tsybakov], [Bach-P.][...]

= Negative Results

— Cannot leverage strong convexity in online convex optim. [Shamir],

[Jamieson et al.]

— No choice of parameter in FW, has to be ?11

27



The model for fast rates

= On top of the previous assumptions
Assumptions

L is p-strongly convex and minimized in the interior of Ay
1 := d(0Ay, p*) will play a role [Lacoste-Julien & Jaggi]

L(p) = L(p*) < 52| VL(P) T (6o — P)I°

where e, , = argmingea, £(p) ' q

28



The model for fast rates

L(P) //
————— L(pe) + (VL(ps),p — pe) 7

L7 L L) - L(py)

N s/ .

N4 .

27 : X
L : (VL(pe), ps — 1)
: : > (VL(ps), ex, — pe)
Ery  Px P

28



The model for fast rates

= On top of the previous assumptions
Assumptions

L is p-strongly convex and minimized in the interior of Ay
1 := d(0Ay, p*) will play a role [Lacoste-Julien & Jaggi]
L(p) = L(p*) < 52| VL(P) T (6o — P)I°

where e, , = argmingea, £(p) ' q
= Main idea - change in proofs

= Before H%V,C(pt)‘r(e*,pt —pt) < _?ll(ﬁ(pt) - L(p"))
o)
s Now L VL(p) (enp — pe) < — Y2 /(L(pe) — L(p*))

28



Fast rates, our result

FwUC: e, , = arg minpen, pTﬁ;ﬁ(pt), with § =1/t

Assumptions:
— (C-smoothness/gradient estimation,
— Ji-strong convexity,

— 7)-interior minimum
Main result, Fast rates of FwUC

EE(pN)—E(p*) < Cl'Og( )—|—C |°g(N) +c3 N

o = 3dC/H£H3oov c = dC/”L”oo +C

with ¢; = 34 )

/“/

29



Some remarks

= FwUC Fully adaptive to

— The strong/non-strong convexity and the parameter 1

— The horizon N

— And any other constants/parameters except C’
= Parameters dependencies (Leading Term)

— Linear in the ambiant dimension d

— inverse-Linear in the strongly-convexity parameter 1

— inverse-square in the distance to the boundary 7 (but 5 on Ay)
= Generalizations

— Gradients errors ('“g(t/(s))‘g with 8 < 1/2

Ni(t)
B
Slow rate % , and fast rates ‘052(/}’)

— (Non-strongly convex) without interior minimum but V£(p*) < 0

= Lower bounds matching in N (classic in bandits/stoc. optim)

30



Ideas of proof

Objective: L(p:) —

L(pey1) —

= [ntroducing p; =

L5 < L(pe) -

< L(p:) —

L(pt) —

o >l L log(t) . log?
Lr < =1 _%Ztog()_og(ﬂ

o C
L + mv’c(pf) (eﬂ'tﬂ - Pt) + (t+ 1)2
.V 2un? C
t+1 t+ 1 ( +1)2

L£* and ¥(x) = x — /ax, we get

(¢4 Dpesa < toet [loe) = w(D)|+2 + .5

= if Y(pr)

- 1/)(%) < 0 then ok. but not always...

more or less only asymptotically, if everything goes right.
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Some details (again from slow to fast)

— If pr < = then (t+ 1)pe1 < tpe+ ﬁ - G

1
o2 T
e
Tor < — + — Z e2 + Clog(eT)
t=7+41
I
. 7e2 o~ pog(£7'))’ with p,(m.) the current proportion of action 7¢

— Use again the slow rates ! and strong cvx + interior minimum

1 157 ¢ | dlog(T)
=P € S (Upr) = Lipy)) < &= < 22
lpr = P < u( (pr) = L(ps)) < 5 o Sl e

— Conclude: p(r,) ~ p.(7;) — =7 > w is a constant !
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Back to heterogeneous estimation

L) =Sk pi= s L) =(Z0)°

— Main issue: £ not smooth in p nor o2...

B3]
— But smooth “around” p*, with C' ~ i? and C~ (£2)

Tmin

— First phase of rough estimation of o7
= Difficult to estimate o} + ¢, easy for [U2 3ka]

= X: ~ N (0 1), sample as long as X, < w

= Need roughly 'OU 1elT/9) — o( T) samples
— Second phase of samplmg linear time
= k sampled N<Z£2_ < N, times

¥, 35,72
— Third phase of optimization, using FwUC
= p; far from boundary, close to p*. Valid upper-bounds on C, C’
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