
Recent interactions between online learning
and active statistics

Vianney Perchet
Colloquium Paris 13
Paris, June 2020

Crest, ENSAE
& Criteo Research, Paris



Original Motivations



The Original Motivating Problem

Heterogenous Source Estimation

– d different sources Xk(t) ∼ N (µk, σ2
k) to estimate

– Total of N samples to allocate: (N1,N2, . . . ,Nd)

– Minimization of E∥µ̂− µ∥2 =
∑

k
σ2

k
Nk

= 1
N
∑

k
σ2

k
pk

Loss defined on Proportions

L(p1, . . . , pK) =
∑

k
σ2

k
pk

, with p ∈ ∆d

2



The solution ?

Min. of L(p1, . . . , pd) =
∑

k
σ2

k
pk

, constraint to p ∈ ∆d

– Easy to solve, p∗
k = σk∑

σj
with error L(p∗) = (

∑
σk)2 ≃ σ2d2

The Question
What if the σk are also unknown?

– Sequentially estimate σ̂2
k = 1

Nk

∑Nk
t=1

(
Xk(t)− Xk(t)

)2

• Bigger Nk, better estimation of σ2
k

• Do not overshoot ! Smaller σ2
k , smaller Nk

Sequential (simultaneous) Estimation vs. Optimization

3



More complex: Linear Regression

Standard Linear Regression: Yi = X⊤
i β + εi

Homoscedastic case

• Design Matrix: X = (X1, . . . ,XN)⊤

• Unbiased Estimate: β̂ = (X⊤X)−1X⊤Y = β + (X⊤X)−1X⊤ε

• Expected Error: E∥β̂ − β∥2 = σ2 Tr(X⊤X)−1 if ε ∼ N (0, σ2 Id).

Heteroscedastic case

• Known variance: Var(ε) = Ω

• Unbiased Estimate: β̂ = (X⊤Ω−1X)−1X⊤Ω−1Y
• Expected Error: E∥β̂ − β∥2 = Tr(X⊤Ω−1X)−1.

4



Active Linear Regression

• Fixed Design: X ⊂ RN×d is fixed and given
• Random Design: Xi ∈ Rd are iid ∼ M(Rd)

Active Design: From a given set {X(1), . . . ,X(K)} ⊂ Rd

• Choose Xi ∈ {X(1), . . . ,X(K)} to sample and Observe
Yi = X⊤

i β + ε(Xi)

• Sample Xi+1, observe Yi+1, etc.
• Estimate β from Y1, . . . ,YN and X

• Easy cases: Homoscedastic or known variance

Active Heteroscedastic Linear Regression ??

• “Optimization of design matrix” vs ”Estimation of variance”
• Minimize Tr(X⊤Ω−1X)−1 and estimate Ω̂

5



Best solution in hindsight

Minimize Tr(X⊤Ω−1X)−1 with Xi ∈ {X(1), . . . ,X(K)}

• Assume εt independent, Gaussian N (0, σ2(X(k)))

• Total number N of samples allowed
• Optimal allocation N(1), . . . ,N(K) s.t.,

∑
N(k) = N.

• Discretization errors. Consider proportion p(1), . . . , p(K)

X⊤Ω−1X = N
∑

k p(k) X(k)(X(k))⊤

σ2
k

• Asymptotically, it boils down to

Min. over “sampling simplex” Tr(
∑

k p(k) X(k)(X(k))⊤

σ2
k

)−1

6



Related questions

Activification of Statistical Procedures

• Heterogenous Source Estimation
• Linear regression
• Estimation of Gaussian mixtures
• Clustering
• ..

Sounds like Exploration vs Exploitation

and multi-armed bandits

7



An intro to multi-armed Bandit

7



Classical Examples of Bandits Problems

– Size of data: n patients with some proba of getting cured
– Choose one of two treatments to prescribe

or
– Patients cured or dead

1) Inference: Find the best treatment between the red and blue
2) Cumul: Save as many patients as possible

8



Classical Examples of Bandits Problems

– Size of data: n banners with some proba of click
– Choose one of two ads to display

or
– Banner clicked or ignored

1) Inference: Find the best ad between the red and blue
2) Cumul: Get as many clicks as possible

8



Classical Examples of Bandits Problems

– Size of data: n auctions with some expected revenue
– Choose one of two strategies(bid/opt out) to follow

or
– Auction won or lost

1) Inference: Find the best strategy between the red and blue
2) Cumul: Win as many profitable auctions as possible

8



Classical Examples of Bandits Problems

– Size of data: n mails with some proba of spam
– Choose one of two actions: spam or ham

or
– Mail correctly or incorrectly classified

1) Inference: Find the best strategy between the red and blue
2) Cumul: as possibleMinimize number of errors

8



Classical Examples of Bandits Problems

– Size of data: n patients with some proba of getting cured
– Choose one of two treatments to prescribe

or
– Patients cured or dead

1) Inference: Find the best treatment between the red and blue
2) Cumul: Save as many patients as possible

8



Two-Armed Bandit

– Patients arrive and are treated sequentially.

– Save as many as possible.

9



Two-Armed Bandit

– Patients arrive and are treated sequentially.

– Save as many as possible.

9



Two-Armed Bandit

– Patients arrive and are treated sequentially.

– Save as many as possible.

9



Two-Armed Bandit

– Patients arrive and are treated sequentially.

– Save as many as possible.

9



Two-Armed Bandit

– Patients arrive and are treated sequentially.

– Save as many as possible.

9



Two-Armed Bandit

– Patients arrive and are treated sequentially.

– Save as many as possible.

9



Two-Armed Bandit

– Patients arrive and are treated sequentially.

– Save as many as possible.

9



Two-Armed Bandit

– Patients arrive and are treated sequentially.

– Save as many as possible.

9



Two-Armed Bandit

– Patients arrive and are treated sequentially.

– Save as many as possible.

9



Two-Armed Bandit

– Patients arrive and are treated sequentially.

– Save as many as possible.

9



Two-Armed Bandit

– Patients arrive and are treated sequentially.

– Save as many as possible.

9



Two-Armed Bandit

– Patients arrive and are treated sequentially.

– Save as many as possible.

9



Two-Armed Bandit

– Patients arrive and are treated sequentially.
– Save as many as possible.

9



Estimation of Means

Discrete-time proc.: X(1)
n in [0, 1]

“The efficiency of treatment 1 on patient n”
Estimate the mean µ1

Hoeffding inequality: exponential decay∣∣∣X(k)
n − µ1

∣∣∣ > ε with proba at most 2 exp
(
− 2nε2).

Finite number of mistakes:

E
∑
n∈N

1
{∣∣X(k)

n − µ1
∣∣ > ε

}
≤ 1

ε2

10



Regret Minimization

– Choose one ad to display kn. Reward: X(kn)
n

Maximize cumulative reward
∑n

m=1 X(km)
m or

∑n
m=1 µ

(km)

Minimize Regret [Hannan’56]

Rn = nµ⋆ −
n∑

m=1
µkm , with µ⋆ = max{µk}

– Equivalent formulation with ∆k = µ⋆ − µk:

Rn =
∑

k
∆k

n∑
m=1

1{km = k ̸= ⋆}

11



Stochastic & Full Monitoring

– Full Monitoring: all values X(k)
n observed.

– Optimal algorithm: kn = argmaxX(k)
n :

ERn ≤
∑

k

1
∆k

and for small n, ERN ≤ nmax∆k

Bounded regret, uniformly in n!

– Given n, worst ∆ is
√

d
n and ERn ≤

√
dn

– But in the examples, only X(kn)
n is observed (bandit monitoring)!

12



Stochastic & Bandit Monitoring

– X(k)
n = 1

n
∑n

m=1 X(k)
m not available, only X̂(k)

n =

∑
m:km=k X(k)

m

♯{m : km = k}

– with kn = argmax X̂(k)
n , ERn = Θ(n).

because E[X(k)
n ] ≤ µk negatively biased

– Positive (vanishing) bias ? Tradeoff Exploitation/Exploration

Upper Confidence Bound [Auer,Cesa-Bianchi,Fischer’02]

kn = argmax X̂(k)
n +

√
2 log(n)

♯{m : km = k}

Regret: ERn ≤
∑

k
log(n)
∆k

13



An active linear optim on Multi-Armed Bandits

– d different sources Xk(t) ∼ N (µk, σ2
k)

– Total of N samples to sequentially allocate: (N1,N2, . . . ,Nd)

– Minimization of 1
N
∑

k Nkµk =
∑

k pkµk

Loss defined on Proportions
L(p1, . . . , pd) =

∑
k pkµk = p⊤µ, with p ∈ ∆d

– Let’s take σ2
k = 1 in bandits to simplify

14



Back to UCB

Upper-Confidence Bound - algorithm

1) Estimate µk by µk(t) = 1
Nk(t)

∑Nk(t)
s=1 Xk(s), but biased

2) “Positively-bias it” with µk(t)−
√

2 log(t)
Nk(t)

3) Sample/pull the “arm” with smallest “unbiased” estimate

UCB-algo

πt+1 = argmink
{
µk(t)−

√
2 log(t)

Nk(t)

}
4) Enjoy Optimization error / “regret”

L(pN)− L(p∗) ≲ log(N)

N
∑

k

1
µk − µk∗

15



Ugly & useless but insightful 1 page proof

L(pt+1)− L(p∗) = L(pt +
1

t + 1 (eπt+1 − pt))− L(p∗)

= L(pt)− L(p∗) +
1

t + 1∇L(pt)
⊤(eπt+1 − pt)

= L(pt)− L(p∗) +
1

t + 1∇L(pt)
⊤(p∗ − pt)

+
1

t + 1∇L(pt)
⊤(eπt+1 − p∗)

≤ (1 − 1
t + 1 )

[
L(pt)− L(p∗)

]
+

1
t + 1∇L(pt)

⊤(eπt+1 − p∗)

≤ t
t + 1

[
L(pt)− L(p∗)

]
+

1
t + 1 (µπt+1 − µk∗︸ ︷︷ ︸

:=εt+1

)

L(pN)− L(p∗) ≤ 1
N

N∑
t=1

µπt − µk∗ :=
1
N

N∑
t=1

εt

16



Ugly & useless but insightful 1 page proof

L(pt+1)− L(p∗) = L(pt +
1

t + 1 (eπt+1 − pt))− L(p∗)

= L(pt)− L(p∗) +
1

t + 1∇L(pt)
⊤(eπt+1 − pt)

= L(pt)− L(p∗) +
1

t + 1∇L(pt)
⊤(p∗ − pt)

+
1

t + 1∇L(pt)
⊤(eπt+1 − p∗)

≤ (1 − 1
t + 1 )

[
L(pt)− L(p∗)

]
+

1
t + 1∇L(pt)

⊤(eπt+1 − p∗)

≤ t
t + 1

[
L(pt)− L(p∗)

]
+

1
t + 1 (µπt+1 − µk∗︸ ︷︷ ︸

:=εt+1

)

L(pN)− L(p∗) ≤ 1
N

N∑
t=1

µπt − µk∗ :=
1
N

N∑
t=1

εt

16



Ugly & useless but insightful 1 page proof

L(pt+1)− L(p∗) = L(pt +
1

t + 1 (eπt+1 − pt))− L(p∗)

= L(pt)− L(p∗) +
1

t + 1∇L(pt)
⊤(eπt+1 − pt)

= L(pt)− L(p∗) +
1

t + 1∇L(pt)
⊤(p∗ − pt)

+
1

t + 1∇L(pt)
⊤(eπt+1 − p∗)

≤ (1 − 1
t + 1 )

[
L(pt)− L(p∗)

]
+

1
t + 1∇L(pt)

⊤(eπt+1 − p∗)

≤ t
t + 1

[
L(pt)− L(p∗)

]
+

1
t + 1 (µπt+1 − µk∗︸ ︷︷ ︸

:=εt+1

)

L(pN)− L(p∗) ≤ 1
N

N∑
t=1

µπt − µk∗ :=
1
N

N∑
t=1

εt

16



Ugly & useless but insightful 1 page proof

L(pt+1)− L(p∗) = L(pt +
1

t + 1 (eπt+1 − pt))− L(p∗)

= L(pt)− L(p∗) +
1

t + 1∇L(pt)
⊤(eπt+1 − pt)

= L(pt)− L(p∗) +
1

t + 1∇L(pt)
⊤(p∗ − pt)

+
1

t + 1∇L(pt)
⊤(eπt+1 − p∗)

≤ (1 − 1
t + 1 )

[
L(pt)− L(p∗)

]
+

1
t + 1∇L(pt)

⊤(eπt+1 − p∗)

≤ t
t + 1

[
L(pt)− L(p∗)

]
+

1
t + 1 (µπt+1 − µk∗︸ ︷︷ ︸

:=εt+1

)

L(pN)− L(p∗) ≤ 1
N

N∑
t=1

µπt − µk∗ :=
1
N

N∑
t=1

εt

16



Ugly & useless but insightful 1 page proof

L(pt+1)− L(p∗) = L(pt +
1

t + 1 (eπt+1 − pt))− L(p∗)

= L(pt)− L(p∗) +
1

t + 1∇L(pt)
⊤(eπt+1 − pt)

= L(pt)− L(p∗) +
1

t + 1∇L(pt)
⊤(p∗ − pt)

+
1

t + 1∇L(pt)
⊤(eπt+1 − p∗)

≤ (1 − 1
t + 1 )

[
L(pt)− L(p∗)

]
+

1
t + 1∇L(pt)

⊤(eπt+1 − p∗)

≤ t
t + 1

[
L(pt)− L(p∗)

]
+

1
t + 1 (µπt+1 − µk∗︸ ︷︷ ︸

:=εt+1

)

L(pN)− L(p∗) ≤ 1
N

N∑
t=1

µπt − µk∗ :=
1
N

N∑
t=1

εt

16



Ugly & useless but insightful 1 page proof

L(pt+1)− L(p∗) = L(pt +
1

t + 1 (eπt+1 − pt))− L(p∗)

= L(pt)− L(p∗) +
1

t + 1∇L(pt)
⊤(eπt+1 − pt)

= L(pt)− L(p∗) +
1

t + 1∇L(pt)
⊤(p∗ − pt)

+
1

t + 1∇L(pt)
⊤(eπt+1 − p∗)

≤ (1 − 1
t + 1 )

[
L(pt)− L(p∗)

]
+

1
t + 1∇L(pt)

⊤(eπt+1 − p∗)

≤ t
t + 1

[
L(pt)− L(p∗)

]
+

1
t + 1 (µπt+1 − µk∗︸ ︷︷ ︸

:=εt+1

)

L(pN)− L(p∗) ≤ 1
N

N∑
t=1

µπt − µk∗ :=
1
N

N∑
t=1

εt

16



Still that proof !

L(pN)− L(p∗) =
1
N

N∑
t=1

εt =
1
N
∑

k
Nk(µk − µk∗)

– πt+1 = k if Xk(t)−
√

log(t)
Nk(t) ≃ µk −

√
log(N)
Nk(t) ≤ µk∗ ⇒ εt ≲

√
log(t)
Nk(t)

Slow rate of convergence

L(pN)− L(p∗) ≲ 1
N
∑

k
∑Nk

s=1

√
log(N)

s

≲ 1
N
∑

k
√
log(N)Nk ≤

√
d log(N)

N

17



From slow to fast rates

– Start from the slow rate
1
N

∑
k ̸=k∗

Nk(µk − µk∗) = L(pN)− L(p∗) ≲ 1
N
∑

k

√
log(N)Nk

– Enforce µk − µk∗ and Cauchy-Schwartz

∑
k̸=k∗

Nk(µk − µk∗) ≲
√∑

k ̸=k∗

Nk(µk − µk∗)

√√√√∑
k ̸=k∗

log(N)

µk − µk∗

– Enjoy your fast rates !

L(pN)− L(p∗) ≤ log(N)
N

∑
k

1
µk−µk∗

18



What did we learn with UCB ?

1. Optimistic Estimation of ∇L(p) or “positively-biased”

µk(t)−
√

2 log(t)
Nk(t) = ∇̂−

k L(pt) and et+1 = argminp∈∆d ∇̂−L(pt)⊤p

2. Variant of Frank-Wolfe: pt+1 = (1 − γt)pt + γt arg min
p∈∆d

∇L(pt)
⊤p

pt+1 = (1 − 1
t+1 )pt +

1
t+1 et+1

= (1 − 1
t+1 )pt +

1
t+1 argminp∈∆d ∇̂−L(pt)⊤p

3. From Slow to Fast Rates with some simple algebra

L(pN)− L(p∗) ≲
√

log(N)
N vs. log(N)

N

19



Links with active statistics

19



More General Model

Optimization of convex loss L(pN) on ∆d, think of L(p) =
∑

k
σ2

k
pk

• Typical parametric form: Lθ(p) =
∑

k fk(θk, pk) with θk unknown
Main assumption (typical case)

fk is smooth w.r.t. p and θ

• ∥∇fk(θk, pk)−∇fk(θ′k, p′
k)∥ ≤ C|pk − p′

k|+ C′∥θk − θ′k∥
• At stage t, choose eπt and observe Xπt(t) ∼ N (θπt , 1)

After Nk(t) observations, Xk(t) ≃ θk ±
√

log(t/δ)
Nk(t)

• Noisy information on ∇kL(·) only when sampling process k

20



Other examples

– Utility maximization Optim. basket of substitutes goods

• V. thinks of “cardio”, “bench-press” and “squats” for fitness training

• Q. thinks of “wine”, “bread” and “cheese” for his breakfast

• Kobb-Douglas utility U(x1, . . . , xd) = xβ1
1 xβ2

2 . . . xβd
d

• Use/buy one good (same price 1), estimate log-utility increase
– online Markovitz portfolio optimization

• Optimize L(p) = p⊤Σp − λµ⊤p with Σ known, µ unknown
– General Case

• L is C-smooth w.r.t. p and
∣∣∇̂kL(p)−∇kL(p)

∣∣ ≤ C′
√

log(t/δ)
Nk(t)

21



Other examples

– Utility maximization Optim. basket of substitutes goods
• V. thinks of “cardio”, “bench-press” and “squats” for fitness training

• Q. thinks of “wine”, “bread” and “cheese” for his breakfast

• Kobb-Douglas utility U(x1, . . . , xd) = xβ1
1 xβ2

2 . . . xβd
d

• Use/buy one good (same price 1), estimate log-utility increase
– online Markovitz portfolio optimization

• Optimize L(p) = p⊤Σp − λµ⊤p with Σ known, µ unknown
– General Case

• L is C-smooth w.r.t. p and
∣∣∇̂kL(p)−∇kL(p)

∣∣ ≤ C′
√

log(t/δ)
Nk(t)

21



Other examples

– Utility maximization Optim. basket of substitutes goods
• V. thinks of “cardio”, “bench-press” and “squats” for fitness training

• Q. thinks of “wine”, “bread” and “cheese” for his breakfast

• Kobb-Douglas utility U(x1, . . . , xd) = xβ1
1 xβ2

2 . . . xβd
d

• Use/buy one good (same price 1), estimate log-utility increase
– online Markovitz portfolio optimization

• Optimize L(p) = p⊤Σp − λµ⊤p with Σ known, µ unknown
– General Case

• L is C-smooth w.r.t. p and
∣∣∇̂kL(p)−∇kL(p)

∣∣ ≤ C′
√

log(t/δ)
Nk(t)

21



Other examples

– Utility maximization Optim. basket of substitutes goods
• V. thinks of “cardio”, “bench-press” and “squats” for fitness training

• Q. thinks of “wine”, “bread” and “cheese” for his breakfast

• Kobb-Douglas utility U(x1, . . . , xd) = xβ1
1 xβ2

2 . . . xβd
d

• Use/buy one good (same price 1), estimate log-utility increase
– online Markovitz portfolio optimization

• Optimize L(p) = p⊤Σp − λµ⊤p with Σ known, µ unknown
– General Case

• L is C-smooth w.r.t. p and
∣∣∇̂kL(p)−∇kL(p)

∣∣ ≤ C′
√

log(t/δ)
Nk(t)

21



The algorithm - Stochastic/Online optimization

UC-FW: Upper Confident Frank-Wolfe

• Optimistic/Unbiased grad. ∇̂−
k L(p) = ∇̂kL(p)− C′

√
log(t/δ)

Nk(t)

• Frank-Wolfe: eπt+1 = argminp∈∆k p⊤∇̂−
k L(pt), with δ = 1/t

First result (rather easy) Slow Rate of FwUC

EL(pN)− L(p∗) ≲
√

d log(N)
N + log(N)

N

• Proof ? (almost) identical to UCB !

22



Frank-Wolfe vs Gradient Descent

• For linear functions:
Projected gradient descent (in red) can converge slowly
Frank-Wolfe goes straight to the minimum

23



The proof. Identical !!

L(pt+1)− L∗ = L(pt +
1

t + 1 (eπt+1 − pt))− L∗

≤L(pt)− L∗ +
1

t + 1∇L(pt)
⊤(eπt+1 − pt) +

C
(t + 1)2

= L(pt)− L∗ +
1

t + 1∇L(pt)
⊤(p∗ − pt)

+
1

t + 1∇L(pt)
⊤(eπt+1 − p∗) +

C
(t + 1)2

≤ t
t + 1

[
L(pt)− L∗

]
+

1
t + 1∇L(pt)

⊤(eπt+1 − p∗) +
C

(t + 1)2

≤ t
t + 1

[
L(pt)− L∗

]
+

1
t + 1εt +

C
(t + 1)2

L(pN)− L∗ ≤ 1
N

N∑
t=1

εt + C log(N)

N and
∑
εt ≃ C

∑
k
∑

t

√
log(t)
Nk(t)

24



Similar results/techniques

• Stochastic Frank Wolfe (errors independent of algorithms)
– [Jaggi], [Lacoste-Julien et al.], [Lafond et al.]

• Global Cost. Specific L(p) = f(θ⊤p) with θ unknown, f known
– Adversarial: [Even-Dar et al.], [Blackwell], [Mannor et al.], [Rakhlin

et al.]etc.
– Stochastic: [Agrawal and Devanur], [Agrawal et al] Also use

stochastic Frank Wolfe
• Specific Cases. with pb tailored algorithm

– [Carpentier et al.], [the bandit community]

25



Fast Rates !



Slow to Fast rates ?

As in bandit ?
√

d log(N)
N transformed into d log(N)

N ?

1) Slow rate: L(pN)− L(p∗) ≲ 1
N
∑

k
√

log(N)Nk

2) Lower bound the convex functions

L(pN)− L(p∗) ≳ (pN−p∗)∇L(p∗) ≳ 1
N

∑
k̸=k∗

Nk(∇kL(p∗)−∇k∗L(p∗))

3) Cauchy-Schwartz
1
N

∑
k̸=k∗

Nk(∇kL(p∗)−∇k∗L(p∗)) ≲ log(N)

N
∑
k ̸=k∗

1
∇kL(p∗)−∇k∗L(p∗)

4) Another lower bound: fast rate !

L(pN)− L(p∗) ≲ (1 + CK
mink ∇kL(p∗)−∇k∗L(p∗) ).lhs ≲ O( log(N)

N )

26



What about interior minimized functions ?

• General Case. Can we do the same ?
• Without more assumption, no.
• Maybe with strong convexity

Strong convexity

f(y) ≥ f(x) +∇f(x)⊤(y − x) + µ∥y − x∥2

• Positive Results. Fast rates sometimes possible
– without noise [Garben and Hazan] [Jaggi][...]
– with decaying noise [Lafond et al.]
– in online convex optim. [Polyak-Tsybakov], [Bach-P.][...]

• Negative Results
– Cannot leverage strong convexity in online convex optim. [Shamir],

[Jamieson et al.]
– No choice of parameter in FW, has to be 1

t+1

27



The model for fast rates

• On top of the previous assumptions
Assumptions

L is µ-strongly convex and minimized in the interior of ∆d

η := d(∂∆d, p∗) will play a role [Lacoste-Julien & Jaggi]

L(p)− L(p∗) ≤ 1
2µη2 |∇L(p)⊤(e⋆,p − p)|2

where e⋆,p = argminq∈∆d L(p)⊤q

• Main idea - change in proofs
• Before 1

t+1∇L(pt)
⊤(e⋆,pt − pt) ≤ − 1

t+1 (L(pt)− L(p∗))

• Now 1
t+1∇L(pt)

⊤(e⋆,pt − pt) ≤ −
√

2µη2

t+1
√

(L(pt)− L(p∗))

28



The model for fast rates

p?p? ptpte⇡te⇡t

L(pt)� L(p?)L(pt)� L(p?)

hrL(pt), e?t � ptihrL(pt), e?t � pti

hrL(pt), p? � ptihrL(pt), p? � pti

L(p)L(p)

L(pt) + hrL(pt), p� ptiL(pt) + hrL(pt), p� pti

28



The model for fast rates

• On top of the previous assumptions
Assumptions

L is µ-strongly convex and minimized in the interior of ∆d

η := d(∂∆d, p∗) will play a role [Lacoste-Julien & Jaggi]

L(p)− L(p∗) ≤ 1
2µη2 |∇L(p)⊤(e⋆,p − p)|2

where e⋆,p = argminq∈∆d L(p)⊤q
• Main idea - change in proofs

• Before 1
t+1∇L(pt)

⊤(e⋆,pt − pt) ≤ − 1
t+1 (L(pt)− L(p∗))

• Now 1
t+1∇L(pt)

⊤(e⋆,pt − pt) ≤ −
√

2µη2

t+1
√

(L(pt)− L(p∗))

28



Fast rates, our result

FwUC: eπt+1 = argminp∈∆k p⊤∇̂−
k L(pt), with δ = 1/t

Assumptions:
– C-smoothness/gradient estimation,
– µ-strong convexity,
– η-interior minimum

Main result, Fast rates of FwUC

EL(pN)− L(p∗) ≤ c1
log2(N)

N + c2
log(N)

N + c3
1
N

with c1 = 3 d(C′)2

µη2 , c2 = 3 dC′∥L∥∞
(µη2)3 , c3 = dC′∥L∥∞ + C

29



Some remarks

• FwUC Fully adaptive to
– The strong/non-strong convexity and the parameter µ
– The horizon N
– And any other constants/parameters except C′

• Parameters dependencies (Leading Term)
– Linear in the ambiant dimension d
– inverse-Linear in the strongly-convexity parameter µ
– inverse-square in the distance to the boundary η (but 1

d on ∆d)
• Generalizations

– Gradients errors
(

log(t/δ)
Nk(t)

)β

with β ≤ 1/2

Slow rate
(

log(N)
N

)β

, and fast rates log(N)

N2β

– (Non-strongly convex) without interior minimum but ∇L(p∗) ≪ 0

• Lower bounds matching in N (classic in bandits/stoc. optim)

30



Ideas of proof

Objective: L(pt)− L∗ ≤
∑T

t=1 ε
2
t

T ≃ 1
T
∑

t
log(t)

t ≃ log2(T)
T

L(pt+1)− L∗ ≤ L(pt)− L∗ +
1

t + 1∇L(pt)
⊤(eπt+1 − pt) +

C
(t + 1)2

≤ L(pt)− L∗−
√

2µη2

t + 1
√
L(pt)− L∗ +

εt
t + 1 +

C
(t + 1)2

• Introducing ρt = L(pt)− L∗ and ψ(x) = x −√
αx, we get

(t + 1)ρt+1 ≤ tρt +
[
ψ(ρt)− ψ(

ε2
t
α )

]
+

ε2
t
α + C

t+1

• if ψ(ρt)− ψ(
ε2

t
α ) ≤ 0 then ok. but not always...

more or less only asymptotically, if everything goes right.

31



Some details (again from slow to fast)

– If ρt ≤ ε2
t
α then (t + 1)ρt+1 ≤ tρt +

ε2
t
α + C

t+1

TρT ≤ τε2
τ

α
+

1
α

T∑
t=τ+1

ε2
s + C log(eT)

• τε2
τ ≃ log(T)

pτ (πτ )
, with pτ (πτ ) the current proportion of action πt

– Use again the slow rates ! and strong cvx + interior minimum

∥pτ − p∗∥2 ≤ 1
µ

(
L(pτ )− L(p∗)

)
≤ 1

µ

∑τ
s=1 εs
τ

≤

√
d log(T)
µ2T

– Conclude: pτ (πτ ) ≃ p⋆(πτ )− 1
T1/4 >

p⋆(πτ )
2 is a constant !

32



Back to heterogeneous estimation

L(p) =
∑

k
σ2

k
pk

, p∗
k = σk∑

j σj
, , L(p∗) =

(∑
j σj

)2

– Main issue: L not smooth in p nor σ2...

– But smooth “around” p∗, with C′ ≃
∑

σj
σmin

and C ≃
(∑

σj
)3

σmin

– First phase of rough estimation of σ2
k

• Difficult to estimate σ2
k ± ε, easy for [σ

2
k

2 ,
3σ2

k
2 ]

• Xt ∼ N (θk, 1), sample as long as Xτ ≤
√

log(T/δ)
τ

• Need roughly log(T/δ)

θ2 = o(T) samples
– Second phase of sampling linear time

• k sampled N σ̂k/2∑
j 3σ̂j/2 ≤ Nk times

– Third phase of optimization, using FwUC
• pt far from boundary, close to p∗. Valid upper-bounds on C,C′

33


	Original Motivations
	Fast Rates !

