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Abstract

We introduce an algorithm generating uniformly distributed random
alternating permutations of length n in time n log n.

1 The main result

An alternating permutation σ of {1, 2, . . . N} is a permutation such that

σ(1) > σ(2) < σ(3) > σ(4) . . .

Alternating permutations are a very classical topic in combinatorics. See for
instance the surveys [KPP, ST] for numerous references and the link with in-
creasing trees. The basic result, which dates back from the 19th century [A],
states that if pN is the probability that a permutation of {1, 2, . . . N} chosen
uniformly at random is alternating, then∑

N≥0

pNx
N = secx+ tanx

The integers N !pN are called Euler numbers. The goal of this paper is to intro-
duce an algorithm generating random alternating permutations of {1, 2, . . . N}
in time N logN .

An alternative way to generate random alternating permutations is to use
Boltzmann sampling [DFLS, BRS]. In a general framework, this method con-
structs random combinatorial objects of approximate size in linear time. How-
ever, to get the exact size, one must use a rejection procedure and the complexity
of the algorithm increases. In the context of permutations, the average time to
run the algorithm is quadratic in the length of the permutation.
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Before describing our algorithm, we begin by a simple remark. Let Y =
(Y1, . . . YN ) be a sequence of distinct reals in [0, 1]. We can construct from Y
a permutation as follows. Let k1 ∈ {1, 2, . . . N} be the integer such that Yk1 is
minimal in {Y1, . . . YN} and put σ(k1) = 1. Then, let k2 ∈ {1, 2, . . . N} − {k1}
be the integer such that Yk2 is minimal in {Y1, . . . YN} − {Yk1}, put σ(k2) = 2
and so on. To recover σ from Y , one can use a sorting algorithm.

If the sequence is alternating, that is, if

Y1 > Y2 < Y3 > Y4 . . .

then σ is alternating. Besides, if Y is chosen according to the Lebesgue measure
on [0, 1]N , then σ is uniformly distributed over all permutations of {1, 2, . . . N}.
As a consequence, if Y is a random, uniform alternating sequence, that is, if its
density with respect to the Lebesgue measure on [0, 1]N is

(1/pN )1{Y1>Y2<Y3>Y4...} (1)

then σ is uniformly distributed over all alternating permutations. Therefore, we
want to find an algorithm constructing a random, uniform alternating sequence.
With probability 1, all the reals in the sequence will be distinct. Our method,
although this does not appear in the proof, is based on the general theory of
quasitationary Markov chains. Further comments on this point can be found in
the concluding remarks of the paper.

Algorithm
Fix an integer N and let U1, U2, . . . UN be iid random variables, uniformly

distributed on [0, 1]. First, define a random sequence (X1, . . . , XN ) as follows:

• X1 = U1

• for n ∈ [1, N − 1],

Xn+1 = 1− 2
π

arcsin
(
Un+1 sin(

π

2
Xn)

)
Next, put

αN =
sin(π2XN )
sin(π2X1)

(2)

and define the sequence Y as follows

• With probability 1/(αN + α−1
N ), put

Y = (X1, 1−X2, X3, 1−X4 . . .)

• With probability 1/(αN + α−1
N ), put

Y = (XN , 1−XN−1, XN−2, 1−XN−3 . . .)
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• With probability 1− 2/(αN + α−1
N ), start over.

Finally, recover a permutation from Y by randomized quicksort.

Theorem 1 The algorithm described above yields a random alternating permu-
tation of {1, 2, . . . N}, uniformly distributed over all alternating permutations.
The rejection probability is bounded above, uniformly on N , by

E[1− 2/(αN + α−1
N )] ≤ 1− 2

3π

As a consequence, the average complexity is Θ(N logN).

The upper bound on the rejection probability is certainly not optimal, how-
ever, it is sufficient for our purpose. We now proceed to the proof of the theorem.

2 Proof of the result

First, let us observe that the random sequence X is a Markov chain. Let us
compute its transition probabilities. Let x ∈ [0, 1] and n ≥ 1. With probability
x, Un ≤ 1− x and therefore, conditionally on Xn, with probability x,

Xn+1 ≥ 1− 2
π

arcsin
(

(1− x) sin(
π

2
Xn)

)
In other words, the right-hand side of the inequality above is the inverse of
Fn+1, where Fn+1 stands for the cumulative distribution function of Xn+1,
conditionally on Xn. Therefore Fn+1(x) = 0 for x ≤ 1−Xn and for x ≥ 1−Xn,

Fn+1(x) = 1−
sin(π2 (1− x))

sin(π2Xn)
= 1−

cos(π2x)
sin(π2Xn)

Differentiating, we find that the conditional density of Xn+1 given Xn is fXn ,
with

fx(y) = 1{y≥1−x}

(π
2

) sin(π2 y)
sin(π2x)

To sum up, the transition probabilities of X are given by

Px(X2 ∈ dy) = fx(y)dy

where, as usual, Px denotes the probability for the Markov chain started at x.
As a consequence, the density of X with respect to the Lebesgue measure on
[0, 1]N is

1{X2≥1−X1,X3≥1−X2,...}

(π
2

)N−1 sin(π2XN )
sin(π2X1)

= 1{X2≥1−X1,X3≥1−X2,...}

(π
2

)N−1

αN
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with αN defined in (2). Likewise, the density of (XN , XN−1, XN−2, XN−3 . . .)
with respect to the Lebesgue measure on [0, 1]N is

1{X2≥1−X1,X3≥1−X2,...}

(π
2

)N−1

α−1
N

Now define a random sequence Z as follows. With probability 1/(αN + α−1
N ),

put
Z = (X1, X2, X3 . . .)

With probability 1/(αN + α−1
N ), put

Z = (XN , XN−1, XN−2, . . .)

Since Z is obtained either by keeping X or by taking its time reversal, its
density is a convex combination of the density of X and of the density of the
time-reversal of X. More precisely, the density of Z with respect to the Lebesgue
measure on [0, 1]N is given by

1{Z2≥1−Z1,Z3≥1−Z2,...}

(π
2

)N−1
[

αN

αN + α−1
N

+
α−1
N

αN + α−1
N

]
= 1{Z2≥1−Z1,Z3≥1−Z2,...}

(π
2

)N−1

The total mass of the density is less than 1 since there is a positive probability
that Z is not defined. On the event that Z is not defined, start over until the
the process yields a sequence Z. Then almost surely, the procedure terminates
and yields a random sequence Z with density

1
QN

(π
2

)N−1

1{Z2≥1−Z1,Z3≥1−Z2,...}

where QN is the non-rejection probability

QN = E[2/(αN + α−1
N )]

Finally, the sequence Y in the algorithm is given by

Y = (Z1, 1− Z2, Z3, 1− Z4 . . .)

and the density of Y is

1
QN

(π
2

)N−1

1{Y1≥Y2≤Y3≥Y4...} (3)

which is exactly what we were aiming at. Therefore, producing a random per-
mutation from Y yields a random, uniform alternating permutation.
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Let us prove the bound on the rejection probability. First, the invariant
probability measure of the Markov chain X is

µ(dy) = 2 sin2(
π

2
y)dy

Indeed,∫ 1

0

µ(dx)fx(y) = 2
∫ 1

1−y
dx
π

2
sin(

π

2
x) sin(

π

2
y) = 2 sin2(

π

2
y) = µ(dy)

The non-rejection probability can be expressed as

QN = E[2/(αN + α−1
N )] = 2E

sin(π2XN ) sin(π2X1)
sin2(π2XN ) + sin2(π2X1)

≥ E sin(
π

2
XN ) sin(

π

2
X1)

Write

E sin(
π

2
XN ) sin(

π

2
X1) =

∫ 1

0

dx

∫ 1

0

Px(XN ∈ dy) sin(
π

2
x) sin(

π

2
y)

≥
∫ 1

0

dx

∫ 1

0

Px(XN ∈ dy) sin2(
π

2
x) sin(

π

2
y)

=
1
2

∫ 1

0

µ(dx)
∫ 1

0

Px(XN ∈ dy) sin(
π

2
y)

=
1
2

Eµ sin(
π

2
XN )

where Eµ stands for the expectation for the Markov chain started with initial
distribution µ. Since µ is the invariant measure, under Pµ, XN is distributed
according to µ. Hence

Eµ sin(
π

2
XN )) =

∫ 1

0

sin3(
π

2
x)dx

2
π

∫ 1

0

1− z2dz =
4

3π

This gives the bound in Theorem 1.
Finally, notice that using randomized quicksort, we get the same complexity

on average as if we were using quicksort with a random, uniform permutation
(whereas we are dealing here with a random, uniform alternating permutation).
See [K].

3 Concluding remarks

As already mentioned in the first section, the method used here is based on the
theory of quasistationary distributions for Markov chains. Indeed, a random
sequence on [0, 1] can be viewed as a Markov chain, and a random alternating
sequence is a submarkovian chain obtained from the initial Markov chain by for-
bidding some transitions. Transforming this submarkovian chain into a Markov
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chain leads to the definition of X. See [T] for a reference on quasistationary dis-
tributions on a continuous state space. The sequence (X1, 1−X2, X3, 1−X4 . . .)
is, loosely speaking, a sequence conditioned to be alternating forever. If we want
to obtain a finite-length alternating sequence, we get the bias αN . To eliminate
this bias, we need to use a rejection procedure.

When N → ∞, the law of XN converges to the invariant measure and
XN is asymptotically independent of X1. Therefore, the rejection probability
converges to

1− 4
∫ 1

0

dx

∫ 1

0

dy
sin(π2x) sin3(π2 y)

sin2(π2x) + sin2(π2 y)
= 1− 8

π2

the integral being is easily computed by symmetrizing the integrand.
Alternatively, comparing (1) with (3), we see that (2/π)NQN = pN . More-

over, it is known that for large N ,

pN ∼
4
π

(
2
π

)N+1

(see Example IV.35 in [FS]) whence QN → 8/π2 as N →∞.

This method inpired by quasistationary distributions may be adapted to
generate more general types of permutations.
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