Small time expansions for transition probabilities
of some Lévy processes

Philippe Marchal*
February 19, 2009

Abstract

We show that there exist Lévy processes (X¢,t > 0) and reals y > 0
such that for small ¢, the probability P(X; > y) has an expansion involv-
ing fractional powers or more general functions of ¢. This constrats with
previous results giving polynomial expansions under additional assump-
tions.

1 The Brownian case

1.1 Main result

Let (X¢,t > 0) be a real-valued Lévy process with Lévy measure IT and let
y > 0. It is well-known (see for example [B], Chapter 1) that when ¢ — 0,

P(X; > y) ~ tI(y) (1)

whenever II(y) > 0 and II is is continuous at y, where I stands for the tail of
I1: for every z > 0, -
11(2) = 11([2, 00))

It has been proved that under additional assumptions, which in particular in-
clude the smoothness of II, one gets more precise expansions of the probability
P(X; > y) and that these are polynomial in ¢. See [L, P, RW, FH2| among
others.

The problem of relating IT to the marginals of the process have several appli-
cations. The paper [RW], as well as [FH1], is concerned with problems of math-
ematical finance. Applications of statistical nature can be found in [F]. From
a more theoretical point of view, this relation plays an important role when
studying small-time behaviour of Lévy processes, which involves fine properties
of the Lévy measure (see for instance Section 4 in [BDM)]).
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Our goal is to exhibit some examples where this expansion involves more
general functions of ¢, such as fractional powers, powers of the logarithm and
so on. We shall focus on the case when X has the form X; = S; + Y; where
(Y3, t > 0) is a compound Poisson process with Lévy measure IT and (S, ¢ > 0)
is a stable process, S and Y being independent. Assume first that

X =B +Y;

where (By,t > 0) is a standard Brownian motion. Then we have:

Theorem 1 (i) Suppose that II has a continuous density f on [y—o, y)U(y, y+9]
for some § > 0. Suppose that

o= Jim Sl a) £ 0= i S+
Then ast — 0,

Bx, 2 y) [Ty - P e [V m O]

where G is the absolute value of a standard gaussian random variable.
(ii) Define the functions g—,g+ : Ry — Ry by

9+(z) = U((y,y + z))

g9-(z) =I((y —,y))
Suppose that
2? = o(|g+(x) — g-(x)|)
as x — 0+. Then ast — 0,

tElg- (VIG) = g+ (VIG)]
2

P(X,>y)—t [H(z) _ H<{;}>] N

Remarks
(i) Suppose that for small x > 0,

g4 (z) = azx + cx®|log z|® + o(z*|log z|”)
g—(z) = ax + x| log z|® + o(z"|log |°)

with the conditions that (¢,a, 8) # (¢v,0) and 1 < min(a,7y) < 2. Then
2?2 = o(|g+(z) — g—(x)|) and the conclusion of (ii) applies. For example, if
a < 7, this gives the estimate

= z c | 1o B8
P<thy>t{n<z>ﬂ<{2w G og )

t1+(a/2)| log t|°

Of course, one could take any slowly varying function instead of the logarithm.
On the other hand, if IT has a density that is twice differentiable in the neigh-
bourhood of y, then |g, (z) — g_(x)| = O(2?) and (ii) does not apply.



(ii) For a fixed time ¢, adding B; to Y; has a smoothing effect on the prob-
ability measure P(X; € dz). In turn, if we fix y and consider the function
hy @t — P(X; > y), the effect of adding B, to Y; is counter-regularizing. In-
deed, h, would be analytic in the absence of Brownian motion while it is not
twice differentiable in the presence of Brownian motion. This is not very intu-
itive in our view.

Proof of Theorem 1
Let X be the total mass of II. For every y > 0 one can write

P(X; >y) =e MP(B; > 9y) + Me MP(B, + Z, > y)

)\t 2 _—)\t
n %P(Bt Y2+ 2y > y)
4o 2)

where the random variables Z,, are iid with common law A\7'II. As ¢t — 0, for
every integer n > 0, P(B; > y) = o(t"™). Moreover,

Me MP(B; + Z1 > y) = MP(B; + Z; > y) + O(t?)
Hence, as t — 0,
P(X; >y) = MP(B; + Z1 > y) + O(t*)
Since P(B; + Z1 > y) =P(Z; > y — Bi), we have
P(B;+2,>y) = N 'H(y)+P(Z €[y — By,y),B; > 0)
—P(Z1 € [y,y +|Bi]), Bt <0)
The stability property By 4 V/tB; entails

P(B.+ 7 > y) ~ A Tiy) = 1 [P(Z1 € [y~ ViG,y) ~ B(Z1 € [,y + ViQ))

where G is the absolute value of a standard gaussian random variable. Under
the assumptions of (i), as t — 0,

P(Z1 € [y — ViG,y)) = A" - VIE(G) + o(V1)

and
P(Zy € [y, y + VIG)) = A I({y}) + A~ L VIE(G) + o(VE)
Therefore

A [ VIE(G) — [4VIE(G)]
2

P(Bi+7, > y)—A"! [H(z) - H({;})} = +o(V1)

and, together with (2), this entails (i). The proof of (ii) is similar. Remark that
proving (ii) does not involve the existence of the expectation E(G). O



1.2 Additional remarks
As a slight generalization of Theorem 1, we have:

Proposition 1 With the same notation as in Theorem 1, suppose that there
exists an integer n > 1 such that for every i < 2n,

FO+) = r9y-)
but that
FEI(y+) # FC (y-)
Then there exist some constants ci,1 < k < 2n + 2 such that ast — 0,

n+1
P(X, > y) = > eut® + copat™ /D 4 o(t+3/2)
k=1

Proof
The proof is exactly the same as in Theorem 1. The estimate
ANP(Z1 € [y — ViG,y)) = P(Z1 € [y,y + VIG))] + TI({y})
[fPD (y—) + fED (y+)|E(G*)t
(24)!
[f(2i) (y_) _ f(Qi) (y+)]E(G2i+l)ti+(l/2)
— (2n +1)!
+o(tm /2 (3)

I
- 107

K2

+

shows that in (2), the term
Me MP(B, + Z1 > y)

gives rise to a singularity as stated in the proposition. On the other hand, it is
clear that the other terms in (2) yield polynomial terms of degree at least n + 2
in the small ¢ asymptotics. This proves the proposition. O

Thanks to the estimate (3), we can see that the expression of the coefficients
¢, involves the successive derivatives of f at y. This fact was first observed by
Figueroa and Houdré [FH2] in the more general context of a Lévy process whose
Lévy measure may have infinite mass near 0. Our method enables us to recover
their result in the particular case when X; has the form X; = B; + Y;. On the
other hand, we do not assume any regularity of the Lévy measure II outside a
neighbourhood of y, in contrast to [FH2].

It appears that the function hy : t — P(X; > y) “feels” the irregularities of
the derivatives of f of even order but not the irregularities of the derivatives of
f of odd order. In particular, if IT has an atom of mass, say m at y but if the
measure Il — md, is smooth at y, then h, is smooth at 0. Thus in that case,



the largest possible irregularity of II at y is not reflected by an irregularity of
hy. This may seem counter-intuitive.

Remark that the first-order estimate (1) does not enable us to detect the
presence or absence of a Brownian part in the process X. In turn, looking at
finer estimates, we can see that the presence of a Brownian part is felt either
through the fact that for some y, the function hy : ¢ — P(X; > y) is not smooth,
or through the fact that the functions h, are smooth for all y but that their
expression involves the derivatives of f.

Our last remark concerns the case when II has a Dirac mass at y. In that
case, Theorem 1 states that

P(X,>2) ~ 1 [H(z) _ H({;”]

and the function z — TI(z) — I1({z})/2 is discontinuous at y. However, since
X has a Brownian component, the law of X; has a smooth density for every
t > 0 and so the function z — P(X; > z) is continuous at y. The compatibility
between these two observations is explained in the following:

Proposition 2 With the same notation as in Theorem 1, suppose that for some
y >0, II({y}) > 0 and that 1T has a continuous density f on R —{y}. Then for
every fized ¢ >0, ast — 0,

I{yP(E <o)

POt >y o) ~ ¢ T() .

Of course, a similar result holds for ¢ < 0.
Proof
The same arguments as in the proof of Theorem 1 give

P(X; >y + Vi) —tl(y + Vi) ~ gP(Zle[y-l-\/f(c—G),y-i-\/fc))

—P(Z; € [y + Vie,y + Vi(c+ @)))
Using the regularity of IT on R — {y}, we get the estimates
P(Z1 € ly+ Vi(c = G),y + Vic) = X II{y})P(G = ¢) + O(V1),
P(Z1 € [y + Vie,y +Vi(c+ @) = O(VH)

and

(y + evt) = 1(y) - I({y}) + O(V1)

This gives the result. O



2 The stable case

Consider now the process
Xe=Y; + 5

where S is a stable process of index « € (0,2) and Y is an independent compound
Poisson process with Lévy measure II. Let v be the Lévy measure of X and
denote by 7 the tail of v.

Theorem 2 (i) Let g4, g— be as in Theorem 1. Suppose that when t — 0,

t=o (Blg-(t"/S1)1(s,50) — 94 (1/°181] 115, <0)])
Then for small t > 0,

P(X; > y) —t[P(y) — P(S1 < 0)II({y})]
~ tE {g—(tl/asl)l{s»o} - g+(t1/a|51|1{51<o}}

(#i) Suppose that there exist B > a, a € R, b, 69 > 0 such that if |z| < do,
Iy + z) — (y) — az| < ba? (4)
Then there exists a real ¢ such that ast — 0,
P(X; > y) = t[r(y) — P(S1 < OI({y})] + ct* + o(t?) (5)

Remarks

(i) Suppose that o > 1. Then Theorem 2 (i) applies for example when
9+(x) ~ ax, g_(x) ~ bx in the neighbourhood of 0, with a # b. Another
instance is the case when

g4 (z) = az + cx"|log z|® + o(z"|log z|?)

g (z) = azx + x| log z|® + o(z”|log z|°)

with the conditions that (¢, a, 8) # (¢'7,0) and 1 < min(n,vy) < a.
(ii) Likewise, in the case when a < 1, choosing

g+ () = ca”|log 2] + o(a"| log 2|”)

g-(x) = c'a"|logal’ + o(a”|log )

with (¢, a, 8) # (¢'7,0) and /2 < min(n,v) < a provides an example in which
the conditions of Theorem 2 (i) are satisfied. Remark that IT does not have a
bounded density, which is not surprising. Indeed, Theorem 2.2 in [FH2] shows,
in the general framework of a Lévy process with bounded variation, that if the
Lévy measure is bounded outside a neighbourhood of 0, then an estimate of the
form (5) always holds.



(iii) The examples provided for a < 1 also work when « = 1. Besides, when
a =1, consider the case when y > 1/2, II is supported on [y — 1/2,y+ 1/2] and
for 0 <2 <1/2,

90 = i Togar
bx
) = T logap

with b # a. Then it is easily seen that II has bounded density and that the
conditions of Theorem 2 (i) are satisfied. Of course, the difference with the case
a < 1 is that when o = 1, the process has infinite variation.

(iv) Theorem 2 (ii) indicates that, loosely speaking, adding S; instead of B,
to Y; is more regularizing for the function hy : t — P(X; > y). Moreover, the
smaller « is, the easier it is to satisfy (4).

Proof of Theorem 2

The proof of (i) is the same as the proof of Theorem 1 (ii). Recall that this
proof does not use the existence of E(G), and thus can be mimicked even in the
case when a < 1, in which E(S7) does not exist. On the other hand, the proof of
Proposition 1 cannot be reproduced in the stable case. Indeed, an analogue of
(3) no longer holds, since one would have to replace G with |S1| but E|S1|” = 00
ifn>2.

Let us prove (ii). To simplify the notation, we assume that II has total mass
1. Recall that there exists a family (¢,,) of reals such that for every N > 1,

N
P(S; € dy) = Y cnt™y " 4 o(tY) (6)
n=1

as t — 0. See Zolotarev [Z], Chapter 2.5. As in the proof of Theorem 1,

2, ,—t

t
P(X; > y) = e 'P(S; > y)+te 'P(S;+21 > y)+ P(Si+Z1+ 25 > y)+o(t?)

Remark that
te 'P(S; + Zy > y) = tP(Sy + Z1 > y) — t*P(S; + Z, > y) + o(t?)

and
t2€—t 2

t
5 P(St+Z1+ZQZy)=§P(St+Z1+222y)+0(t2)

Together with (6), this entails

P(X; > y) = At + Bt®> + tP(S; + Z1 > y) + o(t?) (7)
for some constants A and B. The key point is to show that

P(S; + Zy > y) = Il(y) + Ct + o(t) (8)



for some constant C. Let us first handle the case when a > 1. As already seen,

P(Si+ 71 > y) —T(y) = P(Z € y—t7/"S1,y),5 > 0)
_P(Zl € [y7y+ |t1/a81|)a51 < O)

Let us consider the first term of the right-hand side:
I :=P(Z € [y—t""S1,y),5 > 0) = / g9(x)P(Z1 € [y — t"/"2,y))dz
0
where g denotes the density of S;. Put

F(z)=P(Z1€ly—2y)) —az 9)

Then - -
I = atl/a/ zg(x)dx +/ g(x)F(tY“z)dx
0 0

Let 6 > 0 and cut the last integral as follows:
oo
<,
ot— 1/«

/000 g(z)F(tYz)de = /0

By a change of variable, the second integral can be rewritten as

6t71/a

/OO g(z)F(t/x)de =t~/ /00 gzt Y F(2)dz
1) )

t—1/a

Using Zolotarev’s estimate (6) yields g(zt=1/®) ~ K (2t=1/*)~1= for some K >
0 and thus we get

/ g(z)F(tYz)dz = Kt / F(z)f—f + Hy(6,1)
s s zrre

t—1/a

where the function H;(0,t) depends on ¢ but in any case, H1(d,t) = o(t). Let
us consider the other integral, namely

st
1(0) := /0 g(z)F(tYz)dx

Then if § < Jy, the assumption (4) entails that for every z € [0, 4], |F(z)| < bz?,

whence
5t~ 1/«

[1(9)] < b/o 80P g(x)da (10)

Let us bound, for large M,

M
/ B g(x)dz = E(SPL0es, <ar))
0



Write
oo

E(S?1{0<31<M}) = ]P’(Slﬁ > 2,581 < M)dx

MP
P(z'/? < 81 < M)dx

MP
P(z'/? < 81)dx + log M

IN

Il
— S S

log M

Using again (6), we get that if x > log M,

K c /B
P(x'/8 <— (1

for some ¢ > 0. Therefore there exists some M; > 0 such that if M > My,

M 2K MP—
iEﬁ X X e ———
IECCE 1= (a/B)

Using this estimate together with (10) leads to:

20K 65—t
11(d)| < 1= (a/B)

whenever § < &g and 6t='/* > M;. Thus for 6, satisfying these conditions,

‘P(Zl €y —t/S1,9), 81 > 0)

—atl/a/ zg(z)dr — Kt/ [P(Z1 € [y — 2,y)) — az] pd
; s Zl+oz
20K 5P~ ¢
< ——— + H{(5,t
< T /®) 1(0,1)
Similarly,
[P(Z1 € g,y + |/81]), 81 < 0) = P(S1 < O)TI({y})
0 00 dz
~atl [ palgtayie — Kt [ (e Gy ) - 0]
oo s
2K 5Pt
< ———— + Hy(4,t
T (ayp) "0

Remark that in the formula above, we have replaced the semi-open interval
[y, y + z) with the open interval (y,y + z) and this accounts for presence of the
term P(S; < 0)II({y}). Since S is stable with index a > 1,

o 0
/0 xg(z)dr — / |z|g(xz)dz =E(S1) =0 (11)

— 00



and this entails
[P(S; + Z1 > y) — [T(y) — P(S1 < 0)II({y})]
&t ([ TB@ € - s - P € G+ ) )
5 ’ ’ lta

4bK 68—t

Because of the assumption (4),

| B el B e G+ )
has a limit as § — 0. Put
L= [P € li- ) - P € G+ )] e

Now fix € > 0. There exists §; such that if § < §,

= ([P by s P2 € Gy DI )| <«

Moreover, one can choose d > 0 such that 6 < inf(dy, ;) and that

4K 68—
— <€

1—(a/B)
For such a choice of 4, if ¢ satisfies 0t~/ > M, i.e. t < (§/M)*, we have

IP(S: + Z1 2 y) — [ll(y) — P(S1 < OI({y})] - KLt|
< 2et + H;(6,t) + Ha(6,1)
Finally, since Hy(d,t) + H2(d,t) = o(t), one may choose ¢t small enough so that
Hy(6,t) + Ha(6,t) < et
and thus we have proved that if ¢ is small enough,

IP(S: + 21 =2 y) — [I(y) — P(S1 < O)I({y})] — KLt| < et

which proves (8) in the case a > 1.
When o = 1, we replace (9) with

F(z) =P(Z1 €[y — 2,y)) — azl( <)

The proof then goes along the same lines. The only difference is that (11) is
replaced by the following equality:

/01 xg(x)dx — /_01 |z|g(x)dx

10



which uses the symmetry of S.
Finally, when « < 1, starting again from (7), we can directly evaluate, using
a change of variable together with (6),

B(Zi €y — (/9S1,y), 5 > 0) = / (2)B(Z, € [y — 1V, y))
0

* dz
~ Kt/o WP(ZI €ly—=vy)

The latter integral is convergent at 0 thanks to the assumptions of the theorem
and this concludes the proof in the case o < 1. O

Finally, let us state the analogue of Proposition 2 in the case when X, =
St + thi

Proposition 3 Suppose that for some y > 0, II({y}) > 0 and that II has a
continuous density on R — {y}. Then for every fized ¢ > 0, ast — 0,

(X, >y +ct/?) ~ 1 [TI(y) - P(0 < S < )TI({y})]

Here again, a similar result holds for ¢ < 0.
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