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Abstract

We show that there exist Lévy processes (Xt, t ≥ 0) and reals y > 0
such that for small t, the probability P(Xt > y) has an expansion involv-
ing fractional powers or more general functions of t. This constrats with
previous results giving polynomial expansions under additional assump-
tions.

1 The Brownian case

1.1 Main result

Let (Xt, t ≥ 0) be a real-valued Lévy process with Lévy measure Π and let
y > 0. It is well-known (see for example [B], Chapter 1) that when t→ 0,

P(Xt ≥ y) ∼ tΠ(y) (1)

whenever Π(y) > 0 and Π is is continuous at y, where Π stands for the tail of
Π: for every z > 0,

Π(z) = Π([z,∞))

It has been proved that under additional assumptions, which in particular in-
clude the smoothness of Π, one gets more precise expansions of the probability
P(Xt ≥ y) and that these are polynomial in t. See [L, P, RW, FH2] among
others.

The problem of relating Π to the marginals of the process have several appli-
cations. The paper [RW], as well as [FH1], is concerned with problems of math-
ematical finance. Applications of statistical nature can be found in [F]. From
a more theoretical point of view, this relation plays an important role when
studying small-time behaviour of Lévy processes, which involves fine properties
of the Lévy measure (see for instance Section 4 in [BDM]).
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Our goal is to exhibit some examples where this expansion involves more
general functions of t, such as fractional powers, powers of the logarithm and
so on. We shall focus on the case when X has the form Xt = St + Yt where
(Yt, t ≥ 0) is a compound Poisson process with Lévy measure Π and (St, t ≥ 0)
is a stable process, S and Y being independent. Assume first that

Xt = Bt + Yt

where (Bt, t ≥ 0) is a standard Brownian motion. Then we have:

Theorem 1 (i) Suppose that Π has a continuous density f on [y−δ, y)∪(y, y+δ]
for some δ > 0. Suppose that

f+ := lim
x→0+

f(y + x) 6= f− := lim
x→0−

f(y + x)

Then as t→ 0,

P(Xt ≥ y)− t
[
Π(z)− Π({z})

2

]
∼ λt3/2

[
(f− − f+)E(G)

2

]
where G is the absolute value of a standard gaussian random variable.

(ii) Define the functions g−, g+ : R+ → R+ by

g+(x) = Π((y, y + x))

g−(x) = Π((y − x, y))

Suppose that
x2 = o(|g+(x)− g−(x)|)

as x→ 0+. Then as t→ 0,

P(Xt ≥ y)− t
[
Π(z)− Π({z})

2

]
∼ tE[g−(

√
tG)− g+(

√
tG)]

2

Remarks
(i) Suppose that for small x > 0,

g+(x) = ax+ cxα| log x|β + o(xα| log x|β)

g−(x) = ax+ c′xγ | log x|δ + o(xγ | log x|δ)
with the conditions that (c, α, β) 6= (c′γ, δ) and 1 < min(α, γ) < 2. Then
x2 = o(|g+(x) − g−(x)|) and the conclusion of (ii) applies. For example, if
α < γ, this gives the estimate

P(Xt ≥ y)− t
[
Π(z)− Π({z})

2

]
∼ −cE(Gα| logG|β)

2
t1+(α/2)| log t|β

Of course, one could take any slowly varying function instead of the logarithm.
On the other hand, if Π has a density that is twice differentiable in the neigh-
bourhood of y, then |g+(x)− g−(x)| = O(x2) and (ii) does not apply.
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(ii) For a fixed time t, adding Bt to Yt has a smoothing effect on the prob-
ability measure P(Xt ∈ dx). In turn, if we fix y and consider the function
hy : t 7→ P(Xt ≥ y), the effect of adding Bt to Yt is counter-regularizing. In-
deed, hy would be analytic in the absence of Brownian motion while it is not
twice differentiable in the presence of Brownian motion. This is not very intu-
itive in our view.

Proof of Theorem 1
Let λ be the total mass of Π. For every y > 0 one can write

P(Xt ≥ y) = e−λtP(Bt ≥ y) + λte−λtP(Bt + Z1 ≥ y)

+
(λt)2e−λt

2
P(Bt + Z1 + Z2 ≥ y)

+ . . . (2)

where the random variables Zn are iid with common law λ−1Π. As t → 0, for
every integer n ≥ 0, P(Bt ≥ y) = o(tn). Moreover,

λte−λtP(Bt + Z1 ≥ y) = λtP(Bt + Z1 ≥ y) +O(t2)

Hence, as t→ 0,

P(Xt ≥ y) = λtP(Bt + Z1 ≥ y) +O(t2)

Since P(Bt + Z1 ≥ y) = P(Z1 ≥ y −Bt), we have

P(Bt + Z1 ≥ y) = λ−1Π(y) + P(Z1 ∈ [y −Bt, y), Bt > 0)
−P(Z1 ∈ [y, y + |Bt|), Bt < 0)

The stability property Bt
d=
√
tB1 entails

P(Bt + Z1 ≥ y)− λ−1Π(y) =
1
2

[
P(Z1 ∈ [y −

√
tG, y))− P(Z1 ∈ [y, y +

√
tG))

]
where G is the absolute value of a standard gaussian random variable. Under
the assumptions of (i), as t→ 0,

P(Z1 ∈ [y −
√
tG, y)) = λ−1f−

√
tE(G) + o(

√
t)

and
P(Z1 ∈ [y, y +

√
tG)) = λ−1Π({y}) + λ−1f+

√
tE(G) + o(

√
t)

Therefore

P(Bt+Z1 ≥ y)−λ−1

[
Π(z)− Π({z})

2

]
=
λ−1

[
f−
√
tE(G)− f+

√
tE(G)

]
2

+o(
√
t)

and, together with (2), this entails (i). The proof of (ii) is similar. Remark that
proving (ii) does not involve the existence of the expectation E(G). �
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1.2 Additional remarks

As a slight generalization of Theorem 1, we have:

Proposition 1 With the same notation as in Theorem 1, suppose that there
exists an integer n ≥ 1 such that for every i < 2n,

f (i)(y+) = f (i)(y−)

but that
f (2n)(y+) 6= f (2n)(y−)

Then there exist some constants ck, 1 ≤ k ≤ 2n+ 2 such that as t→ 0,

P(Xt ≥ y) =
n+1∑
k=1

ckt
k + cn+2t

n+(3/2) + o(tn+(3/2))

Proof
The proof is exactly the same as in Theorem 1. The estimate

λ[P(Z1 ∈ [y −
√
tG, y))− P(Z1 ∈ [y, y +

√
tG))] + Π({y})

=
n∑
i=1

[f (2i−1)(y−) + f (2i−1)(y+)]E(G2i)ti

(2i)!

+
n∑
i=1

[f (2i)(y−)− f (2i)(y+)]E(G2i+1)ti+(1/2)

(2n+ 1)!

+ o(tn+(1/2)) (3)

shows that in (2), the term

λte−λtP(Bt + Z1 ≥ y)

gives rise to a singularity as stated in the proposition. On the other hand, it is
clear that the other terms in (2) yield polynomial terms of degree at least n+ 2
in the small t asymptotics. This proves the proposition. �

Thanks to the estimate (3), we can see that the expression of the coefficients
ck involves the successive derivatives of f at y. This fact was first observed by
Figueroa and Houdré [FH2] in the more general context of a Lévy process whose
Lévy measure may have infinite mass near 0. Our method enables us to recover
their result in the particular case when Xt has the form Xt = Bt + Yt. On the
other hand, we do not assume any regularity of the Lévy measure Π outside a
neighbourhood of y, in contrast to [FH2].

It appears that the function hy : t 7→ P(Xt ≥ y) “feels” the irregularities of
the derivatives of f of even order but not the irregularities of the derivatives of
f of odd order. In particular, if Π has an atom of mass, say m at y but if the
measure Π −mδy is smooth at y, then hy is smooth at 0. Thus in that case,
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the largest possible irregularity of Π at y is not reflected by an irregularity of
hy. This may seem counter-intuitive.

Remark that the first-order estimate (1) does not enable us to detect the
presence or absence of a Brownian part in the process X. In turn, looking at
finer estimates, we can see that the presence of a Brownian part is felt either
through the fact that for some y, the function hy : t 7→ P(Xt ≥ y) is not smooth,
or through the fact that the functions hy are smooth for all y but that their
expression involves the derivatives of f .

Our last remark concerns the case when Π has a Dirac mass at y. In that
case, Theorem 1 states that

P(Xt ≥ z) ∼ t
[
Π(z)− Π({z})

2

]
and the function z 7→ Π(z) − Π({z})/2 is discontinuous at y. However, since
X has a Brownian component, the law of Xt has a smooth density for every
t > 0 and so the function z 7→ P(Xt ≥ z) is continuous at y. The compatibility
between these two observations is explained in the following:

Proposition 2 With the same notation as in Theorem 1, suppose that for some
y > 0, Π({y}) > 0 and that Π has a continuous density f on R−{y}. Then for
every fixed c > 0, as t→ 0,

P(Xt ≥ y + c
√
t) ∼ t

[
Π(y)− Π({y})P(G ≤ c)

2

]
Of course, a similar result holds for c < 0.

Proof
The same arguments as in the proof of Theorem 1 give

P(Xt ≥ y + c
√
t)− tΠ(y + c

√
t) ∼ λt

2

[
P(Z1 ∈ [y +

√
t(c−G), y +

√
tc))

− P(Z1 ∈ [y +
√
tc, y +

√
t(c+G)))

]
Using the regularity of Π on R− {y}, we get the estimates

P(Z1 ∈ [y +
√
t(c−G), y +

√
tc)) = λ−1Π({y})P(G ≥ c) +O(

√
t),

P(Z1 ∈ [y +
√
tc, y +

√
t(c+G))) = O(

√
t)

and
Π(y + c

√
t) = Π(y)−Π({y}) +O(

√
t)

This gives the result. �

5



2 The stable case

Consider now the process
Xt = Yt + St

where S is a stable process of index α ∈ (0, 2) and Y is an independent compound
Poisson process with Lévy measure Π. Let ν be the Lévy measure of X and
denote by ν the tail of ν.

Theorem 2 (i) Let g+, g− be as in Theorem 1. Suppose that when t→ 0,

t = o
(
E[g−(t1/αS1)1{S1>0} − g+(t1/α|S1|1{S1<0}]

)
Then for small t > 0,

P(Xt ≥ y)− t [ν(y)− P(S1 < 0)Π({y})]

∼ tE
[
g−(t1/αS1)1{S1>0} − g+(t1/α|S1|1{S1<0}

]
(ii) Suppose that there exist β > α, a ∈ R, b, δ0 > 0 such that if |x| < δ0,∣∣Π(y + x)−Π(y)− ax

∣∣ < bxβ (4)

Then there exists a real c such that as t→ 0,

P(Xt ≥ y) = t [ν(y)− P(S1 < 0)Π({y})] + ct2 + o(t2) (5)

Remarks
(i) Suppose that α > 1. Then Theorem 2 (i) applies for example when

g+(x) ∼ ax, g−(x) ∼ bx in the neighbourhood of 0, with a 6= b. Another
instance is the case when

g+(x) = ax+ cxη| log x|β + o(xη| log x|β)

g−(x) = ax+ c′xγ | log x|δ + o(xγ | log x|δ)

with the conditions that (c, α, β) 6= (c′γ, δ) and 1 < min(η, γ) < α.
(ii) Likewise, in the case when α < 1, choosing

g+(x) = cxη| log x|β + o(xη| log x|β)

g−(x) = c′xγ | log x|δ + o(xγ | log x|δ)

with (c, α, β) 6= (c′γ, δ) and α/2 < min(η, γ) < α provides an example in which
the conditions of Theorem 2 (i) are satisfied. Remark that Π does not have a
bounded density, which is not surprising. Indeed, Theorem 2.2 in [FH2] shows,
in the general framework of a Lévy process with bounded variation, that if the
Lévy measure is bounded outside a neighbourhood of 0, then an estimate of the
form (5) always holds.
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(iii) The examples provided for α < 1 also work when α = 1. Besides, when
α = 1, consider the case when y > 1/2, Π is supported on [y− 1/2, y+ 1/2] and
for 0 ≤ x ≤ 1/2,

g+(x) =
ax

(−1 + log x)2

g−(x) =
bx

(−1 + log x)2

with b 6= a. Then it is easily seen that Π has bounded density and that the
conditions of Theorem 2 (i) are satisfied. Of course, the difference with the case
α < 1 is that when α = 1, the process has infinite variation.

(iv) Theorem 2 (ii) indicates that, loosely speaking, adding St instead of Bt
to Yt is more regularizing for the function hy : t 7→ P(Xt ≥ y). Moreover, the
smaller α is, the easier it is to satisfy (4).

Proof of Theorem 2
The proof of (i) is the same as the proof of Theorem 1 (ii). Recall that this

proof does not use the existence of E(G), and thus can be mimicked even in the
case when α ≤ 1, in which E(S1) does not exist. On the other hand, the proof of
Proposition 1 cannot be reproduced in the stable case. Indeed, an analogue of
(3) no longer holds, since one would have to replace G with |S1| but E|S1|n =∞
if n ≥ 2.

Let us prove (ii). To simplify the notation, we assume that Π has total mass
1. Recall that there exists a family (cn) of reals such that for every N ≥ 1,

P(St ∈ dy) =
N∑
n=1

cnt
ny−nα−1 + o(tN ) (6)

as t→ 0. See Zolotarev [Z], Chapter 2.5. As in the proof of Theorem 1,

P(Xt ≥ y) = e−tP(St ≥ y)+te−tP(St+Z1 ≥ y)+
t2e−t

2
P(St+Z1+Z2 ≥ y)+o(t2)

Remark that

te−tP(St + Z1 ≥ y) = tP(St + Z1 ≥ y)− t2P(St + Z1 ≥ y) + o(t2)

and
t2e−t

2
P(St + Z1 + Z2 ≥ y) =

t2

2
P (St + Z1 + Z2 ≥ y) + o(t2)

Together with (6), this entails

P(Xt ≥ y) = At+Bt2 + tP(St + Z1 ≥ y) + o(t2) (7)

for some constants A and B. The key point is to show that

P(St + Z1 ≥ y) = Π(y) + Ct+ o(t) (8)
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for some constant C. Let us first handle the case when α > 1. As already seen,

P(St + Z1 ≥ y)−Π(y) = P(Z1 ∈ [y − t1/αS1, y), S1 > 0)
−P(Z1 ∈ [y, y + |t1/αS1|), S1 < 0)

Let us consider the first term of the right-hand side:

I1 := P(Z1 ∈ [y − t1/αS1, y), S1 > 0) =
∫ ∞

0

g(x)P(Z1 ∈ [y − t1/αx, y))dx

where g denotes the density of S1. Put

F (z) = P(Z1 ∈ [y − z, y))− az (9)

Then
I1 = at1/α

∫ ∞
0

xg(x)dx+
∫ ∞

0

g(x)F (t1/αx)dx

Let δ > 0 and cut the last integral as follows:∫ ∞
0

g(x)F (t1/αx)dx =
∫ δt−1/α

0

+
∫ ∞
δt−1/α

By a change of variable, the second integral can be rewritten as∫ ∞
δt−1/α

g(x)F (t1/αx)dx = t−1/α

∫ ∞
δ

g(zt−1/α)F (z)dz

Using Zolotarev’s estimate (6) yields g(zt−1/α) ∼ K(zt−1/α)−1−α for some K >
0 and thus we get∫ ∞

δt−1/α
g(x)F (t1/αx)dx = Kt

∫ ∞
δ

F (z)
dz

z1+α
+H1(δ, t)

where the function H1(δ, t) depends on δ but in any case, H1(δ, t) = o(t). Let
us consider the other integral, namely

I(δ) :=
∫ δt−1/α

0

g(x)F (t1/αx)dx

Then if δ < δ0, the assumption (4) entails that for every x ∈ [0, δ], |F (x)| ≤ bxβ ,
whence

|I(δ)| < b

∫ δt−1/α

0

tβ/αxβg(x)dx (10)

Let us bound, for large M ,∫ M

0

xβg(x)dx = E(Sβ1 1{0<S1<M})
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Write

E(Sβ1 1{0<S1<M}) =
∫ ∞

0

P(Sβ1 > x, S1 < M)dx

=
∫ Mβ

0

P(x1/β < S1 < M)dx

≤
∫ Mβ

logM

P(x1/β < S1)dx+ logM

Using again (6), we get that if x ≥ logM ,

P(x1/β < S1) ≤ K

xα/β

(
1 +

(
c

logM

)α/β)
for some c > 0. Therefore there exists some M1 > 0 such that if M > M1,∫ M

0

xβg(x)dx ≤ 2KMβ−α

1− (α/β)

Using this estimate together with (10) leads to:

|I(δ)| ≤ 2bKδβ−αt
1− (α/β)

whenever δ < δ0 and δt−1/α > M1. Thus for δ, t satisfying these conditions,∣∣∣P(Z1 ∈ [y − t1/αS1, y), S1 > 0)

−at1/α
∫ ∞

0

xg(x)dx−Kt
∫ ∞
δ

[P(Z1 ∈ [y − z, y))− az] dz

z1+α

∣∣∣∣
≤ 2bKδβ−αt

1− (α/β)
+H1(δ, t)

Similarly,∣∣∣P(Z1 ∈ [y, y + |t1/αS1|), S1 < 0)− P(S1 < 0)Π({y})

−at1/α
∫ 0

−∞
|x|g(x)dx−Kt

∫ ∞
δ

[P(Z1 ∈ (y, y + z))− az] dz

z1+α

∣∣∣∣
≤ 2bKδβ−αt

1− (α/β)
+H2(δ, t)

Remark that in the formula above, we have replaced the semi-open interval
[y, y + z) with the open interval (y, y + z) and this accounts for presence of the
term P(S1 < 0)Π({y}). Since S is stable with index α > 1,∫ ∞

0

xg(x)dx−
∫ 0

−∞
|x|g(x)dx = E(S1) = 0 (11)
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and this entails∣∣P(St + Z1 ≥ y)−
[
Π(y)− P(S1 < 0)Π({y})

]
−Kt

(∫ ∞
δ

[P(Z1 ∈ [y − z, y))− P(Z1 ∈ (y, y + z))]
dz

z1+α

)∣∣∣∣
≤ 4bKδβ−αt

1− (α/β)
+H1(δ, t) +H2(δ, t)

Because of the assumption (4),∫ ∞
δ

[P(Z1 ∈ [y − z, y))− P(Z1 ∈ (y, y + z))]
dz

z1+α

has a limit as δ → 0. Put

L =
∫ ∞

0

[P(Z1 ∈ [y − z, y))− P(Z1 ∈ (y, y + z]))]
dz

z1+α

Now fix ε > 0. There exists δ1 such that if δ ≤ δ1,∣∣∣∣L− (∫ ∞
δ

[P(Z1 ∈ [y − z, y])− P(Z1 ∈ (y, y + z])]
dz

z1+α

)∣∣∣∣ ≤ ε
Moreover, one can choose δ > 0 such that δ ≤ inf(δ0, δ1) and that

4bKδβ−α

1− (α/β)
≤ ε

For such a choice of δ, if t satisfies δt−1/α > M1, i.e. t < (δ/M)α, we have

|P(St + Z1 ≥ y)− [Π(y)− P(S1 < 0)Π({y})]−KLt|
≤ 2εt+H1(δ, t) +H2(δ, t)

Finally, since H1(δ, t) +H2(δ, t) = o(t), one may choose t small enough so that

H1(δ, t) +H2(δ, t) ≤ εt

and thus we have proved that if t is small enough,

|P(St + Z1 ≥ y)− [Π(y)− P(S1 < 0)Π({y})]−KLt| ≤ 3εt

which proves (8) in the case α > 1.
When α = 1, we replace (9) with

F (z) = P(Z1 ∈ [y − z, y))− az1(|z|<1)

The proof then goes along the same lines. The only difference is that (11) is
replaced by the following equality:∫ 1

0

xg(x)dx−
∫ 0

−1

|x|g(x)dx
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which uses the symmetry of S.
Finally, when α < 1, starting again from (7), we can directly evaluate, using

a change of variable together with (6),

P(Z1 ∈ [y − t1/αS1, y), S1 > 0) =
∫ ∞

0

g(x)P(Z1 ∈ [y − t1/αx, y))

∼ Kt

∫ ∞
0

dz

z1+α
P(Z1 ∈ [y − z, y))

The latter integral is convergent at 0 thanks to the assumptions of the theorem
and this concludes the proof in the case α < 1. �

Finally, let us state the analogue of Proposition 2 in the case when Xt =
St + Yt:

Proposition 3 Suppose that for some y > 0, Π({y}) > 0 and that Π has a
continuous density on R− {y}. Then for every fixed c > 0, as t→ 0,

P(Xt ≥ y + ct1/α) ∼ t
[
Π(y)− P(0 < S1 ≤ c)Π({y})

]
Here again, a similar result holds for c < 0.
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