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Abstract

We estimate a median of f(Xt) where f is a Lipschitz function, X is
a Lévy process and t is an arbitrary time. This leads to concentration
inequalities for f(Xt). In turn, corresponding fluctuation estimates
are obtained under assumptions typically satisfied if the process has
a regular behavior in small time and a, possibly different, regular
behavior in large time.

Key words and phrases: Lévy processes, median, fluctuations, concentra-
tion AMS Subject Classification (2000): 60E07, 60F10, 60G51, 60G52.

1 Introduction

In Rd, let X = (Xt, t ≥ 0) be a Lévy process, without Gaussian component.
Its characteristic exponent ψX is given, for all u ∈ Rd, by

E exp(i〈u,Xt〉) = exp(tψX(u)),

where

ψX(u) = i〈u, b〉+

∫
Rd

(
ei〈u,y〉 − 1− i〈u, y〉1‖y‖≤1

)
ν(dy), (1)
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†DMA, École Normale Supérieure, 75005 Paris, France, Philippe.Marchal@ens.fr

1



b ∈ Rd and ν 6≡ 0 (the Lévy measure) is a positive Borel measure without
atom at the origin and such that

∫
Rd(‖y‖2∧1)ν(dy) < +∞ (throughout, 〈·, ·〉

and ‖ · ‖ are respectively the Euclidean inner product and norm in Rd).

While the asymptotic behavior of X in small or large time can be deduced
from the asymptotic behavior of ψ near the origin or at infinity, it is more
difficult to get precise estimates, for the law of Xt, at some given time t.
However, when X has finite mean, Marcus and Rosiński [MR] (see the next
section for a precise statement) provide a fine estimation of E‖Xt‖ involving
the functions

V (R) =

∫
‖x‖≤R

‖x‖2ν(dx),

and

M(R) =

∫
‖x‖>R

‖x‖ν(dx),

R > 0.
If one removes the assumption of finite mean, in which case M(R) be-

comes infinite, the natural way to express the order of magnitude of ‖Xt‖ is
to consider one of its medians. One may then want to estimate this median
and to further know how ‖Xt‖ is concentrated around it. More generally,
one may ask the same question for f(Xt), where f is a Lipschitz function
with respect to the Euclidean norm. The aim of this paper is to investigate
these questions and related ones.

In essence, the main result of the present paper is that under some rather
general hypotheses, if f is a Lipschitz function with Lipschitz constant 1
(a 1-Lipschitz function), the order of magnitude of the median and of the
fluctuations of f(Xt) is given by functions of the form

hc(t) = inf

{
x > 0 :

V (x)

x2
=
c

t

}
, (2)

where c is some positive real. More precisely, denote by ν the tail of ν, i.e.,
let

ν(R) =

∫
‖x‖>R

ν(dx),

then we have:
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Theorem 1 Let X be a Lévy process with characteristic exponent (1). Let
f be a 1-Lipschitz function, let c > 0, let t > 0, and let hc be given by (2).
Then, for every t > 0 such that

tν(hc(t)) ≤ 1/4, (3)

any median mf(Xt) of f(Xt) satisfies:

|mf(Xt)− f(0)| ≤ hc(t) [1 + 3gc(1/4)] + Ec(t), (4)

where gc(x) is the solution in y of the equation

y − (y + c) log
(
1 +

y

c

)
= log(x),

and where

Ec(t) = t

√√√√ d∑
k=1

(
〈ek, b〉 −

∫
hc(t)<‖y‖≤1

〈ek, y〉ν(dy) +

∫
1<‖y‖≤hc(t)

〈ek, y〉ν(dy)
)2

,

e1, . . . , ed being the canonical basis of Rd.

Remark 1 (i) Note that ifXt is symmetric, i.e. ifXt
d
= −Xt, then Ec(t) = 0.

(ii) The proof of the above theorem actually shows that 3gc(1/4) can be
replaced by gc(1/4)+2gc(1/2− tν(hc(t))) whenever the condition tν(hc(t)) ≤
1/4 is weakened to tν(hc(t)) < 1/2.

(iii) Note also that the main assumption of Theorem 1, namely (3), is
satisfied as soon as there exists a constant A > 0 such that for every R > 0,

ν(R) ≤ A
V (R)

R2
. (5)

Indeed, when (5) holds, choosing c = 1/4A ensures that mf(Xt) is of order
at most hc(t) + Ec(t). This is, in particular, true if X is a stable vector in
which case A = (2− α)/α will do. In fact, in the stable case, for any c > 0,
hc(t) = (σ(Sd−1)t/(2 − α)c)1/α, where σ is the spherical component of the
corresponding stable Lévy measure. In the next section, a further natural
class of examples satisfying (3) is presented.

Our next step is to study the deviations from the median.
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Theorem 2 Under the assumptions of Theorem 1, for all c, t > 0 such
that R = hc(t) satisfies (5), there exists m(c, t) ∈ R such that for all reals
x > x′ > 0, the quantities

P(f(Xt)−m(c, t) ≥ x) and P(f(Xt)−m(c, t) ≤ −x),

are upper bounded by

Ac+ exp

(
x− x′

hc(t)
−
(
x− x′

hc(t)
+ c

)
log

(
1 +

x− x′

chc(t)

))
. (6)

In particular, if q > 0, then for every t > 0 such that R = hq/2A(t) satisfies
(5) and every x > 0 such that

x ≥
[
1 + gq/2A(q/2)

]
hq/2A(t), (7)

there exists a real m(t) such that

P(f(Xt)−m(t) ≥ x) ≤ q, (8)

and
P(f(Xt)−m(t) ≤ −x) ≤ q. (9)

Remark 2 (i) From the proof of the above theorem, it can be seen that

m(c, t) = Ef(Y
(hc(t))
t ), where the Lévy process Y is obtained by truncating

the Lévy measure of the process X at R = hc(t), will do. Then, taking
c = q/2A in m(c, t) gives m(t) in (8) and (9). Remark also that, since
f(Xt) is concentrated around some value, this value is necessarily close to
the median, and so mf(Xt) is necessarily close to m(c, t).

(ii) In view of (4), when X is symmetric, as well as (8) and (9) the median
and the fluctuations of f(Xt) are of order h1/4A(t).

(iii) It is easily seen that when q → 0, gq/2A(q/2) → 1. So for q small
enough, P(f(Xt) −m(t) ≥ x) ≤ q and P(f(Xt) −m(t) ≤ −x) ≤ q, as soon
as x ≥ (2 + ε)hq/2A(t), ε > 0.

Let us now return to the mean and let us precisely recall the result of
Marcus and Rosiński. Let X have finite expectation and be centered, i.e.,
such that

E(Xt) = 0, (10)
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let t > 0 and let x0(t) be the solution in x of the equation:

V (x)

x2
+
M(x)

x
=

1

t
. (11)

Then
1

4
x0(t) ≤ E(‖Xt‖) ≤

17

8
x0(t), (12)

and the factor 17/8 can be replaced by 5/4 when X is symmetric.

The inequality (12) suggests that one should have fluctuations of order
x0(t) at time t. We shall actually prove this under the following additional
assumption: There exists a constant K such that for every R > 0,

M(R) ≤ K
V (R)

R
. (13)

Under this last hypothesis, (11) entails

h1/(1+K)(t) ≤ x0(t) ≤ h1(t),

and so E‖Xt‖ � hc(t), where � means that the ratio of the two quantities is
bounded above and below by two positive constants. We can now state:

Theorem 3 Using the notation of Theorem 1, assume also that (10) and
(13) hold. Then for all b > 0, all c, t > 0 such that R = hc(t) satisfies (5),
and for every 1-Lipschitz function f ,

P(f(Xt)− Ef(Xt) ≥ (b+ cK)hc(t)) ≤ Ac+ exp

[
b− (b+ c) log

(
1 +

b

c

)]
.

In particular, if q > 0, then for every t > 0, such that R = hq/2A(t) satisfies
(5) and for every x such that

x ≥
[
qK

2A
+ gq/2A(q/2)

]
hq/2A(t), (14)

we have
P(f(Xt)− Ef(Xt) ≥ x) ≤ q.
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Remark 3 (i) Of course, if X has finite mean but is not centered, one
obtains a similar result by considering the Lévy process Xt − E(Xt).

(ii) Here again, for q small enough, one has P(f(Xt) − Ef(Xt) ≥ x) ≤ q
as soon as x ≥ (1 + ε)hq/2A(t), ε > 0.

(iii) Above, it is clear that left tails inequalities also hold true. For ex-
ample, for all x satisfying (14), we have: P(f(Xt)−m(t) ≤ −x) ≤ q.

(iv) The results on norm estimates of infinitely divisible vectors derived
in [MR] were used to obtain related estimates for stochastic integrals, of
deterministic and, possibly, random predictable integrands, with respect to
infinitely divisible random measures. Similar applications and extensions will
also carry over to our settings.

2 Examples: symmetric, truncated stable pro-

cesses

In many important situations that have been considered in the literature,
the assumption (13) is satisfied. This is the case, in particular, of Lévy
processes, for which ν(dx) = g(x/‖x‖)ρ(‖x‖)dx, where ρ is a function such
that, say, ρ(r) � cr−α−1, for r small enough, while ρ(r) � cr−β−1, for r large
enough, 0 < α, β < 2, or such that

∫∞
1
r2ρ(dr) < ∞. Processes of this type

have been introduced in physics and are also of use in mathematical finance,
where they provide models of asset prices different from the usual modeling
via diffusions.

Let us examine more precisely the truncated stable case. Let X be the
real symmetric Lévy process without Gaussian component and Lévy measure

ν(dx)

dx
=

K

|x|1+α
1{|x|≤M},

with K,M > 0 and 0 < α < 2. Then for every R > 0,

V (R) = 2K
inf(R,M)2−α

2− α
,

and for any c > 0, we have for 0 ≤ t ≤ (2− α)cMα/2K,

hc(t) =

(
2Kt

(2− α)c

)1/α

,
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while for t ≥ (2− α)cMα/2K,

hc(t) =

(
2KM2−αt

(2− α)c

)1/2

.

Taking, say, c = α/4(2− α), set for 0 ≤ t ≤ αMα/(8K),

Hα(t) =

(
8Kt

α

)1/α

,

while for t ≥ αMα/(8K), set

Hα(t) =

(
8KM2−αt

α

)1/2

.

Moreover, since

ν(R) =
2K

α

(
1

Rα
− 1

Mα

)
1{R≤M},

(5) holds with

A =
2− α

α
.

Thus, further setting

K(α) = 1 + 3gα/4(2−α)(1/4),

it follows from our first theorem that for every 1-Lipschitz function f ,

|mf(Xt)− f(0)| ≤ K(α)Hα(t).

So we recovered the fact that in small time, X behaves like a stable process
of index α while in large time, X behaves like a Brownian motion. But
furthermore, we see that the transition occurs around a time of order αMα/K
and we have precise bounds estimating how this transition happens.

Our second and third theorems also apply and give upper bounds for the
fluctuations around the median and around the mean. For instance, choose
q > 0. It is then easily seen that

1 + gqα/2(2−α)(q/2) ≤ cα,
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with

cα = 1 + max

(
1,

(1 + 2e)α

2(2− α)

)
.

Therefore, Theorem 2 says that if t ≤ qαMα/2K, then there exists some
m(t) ∈ R such that

P(f(Xt)−m(t) ≥ x) ≤ q,

as soon as

x ≥ cα

(
2Kt

qα

)1/α

.

On the other hand, if t ≥ qαMα/2K, then there exists some m′(t) ∈ R such
that

P(f(Xt)−m′(t) ≥ x) ≤ q,

as soon as

x ≥ cα

(
2KM2−αt

qα

)1/2

.

Moreover, if ones takes, R = M , then (5) is automatically satisfied. This
amounts to taking A = (2− α)qMα/2Kt, and so we also have

P(f(Xt)−m(t) ≥ x) ≤ q,

as soon as
x ≥ [1 + gKt/(2−α)Mα(q/2)]M.

To sum up, there exists some realm(t) such that if one of these two conditions
holds:

• t ≤ qαMα/2K and

x ≥ min

{
cα

(
2Kt

qα

)1/α

, [1 + gKt/(2−α)Mα(q/2)]M

}
,

• t ≥ qαMα/2K and

x ≥ min

{
cα

(
2KM2−αt

qα

)1/2

, [1 + gKt/(2−α)Mα(q/2)]M

}
,
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then
P(f(Xt)−m(t) ≥ x) ≤ q.

Suppose for instance that t ≤ qαMα/2K. For q not too small, the minimum
is attained for the first term, and so the condition is x ≥ c(t/q)1/α. On the
other hand, for very small q, the condition is x ≥ Gt(q) where Gt can be
expressed in terms of the function g.

Alternatively, one can write, for x ≥Mcα,

P(f(Xt)−m(t) ≥ x) ≤ min

{
C ′t

x2
, Gt(x)

}
,

and for x ≤Mcα

P(f(Xt)−m(t) ≥ x) ≤ min

{
Ct

xα
, Gt(x)

}
,

with

C =
2Kcαα
α

,

C ′ =
2KM2−αc2α

α
,

and

Gt(x) = exp

[( x
M

− 1
)
−
(
x

M
− 1+

Kt

(2− α)Mα

)
log

(
1+

(2−α)Mα−1(x−M)

Kt

)]
.

3 Proofs

3.1 Proof of Theorem 1

Fix t > 0, and, as in [HM], decompose Xt by truncating the Lévy measure ν

at R (to be chosen later). Write Xt = Y
(R)
t + Z

(R)
t , where Y (R) = (Y

(R)
t , t ≥

0) and Z(R) = (Z
(R)
t , t ≥ 0) are two independent Lévy processes. Their

respective characteristic exponent ψ
(R)
Y and ψ

(R)
Z are given, for u ∈ Rd, by:

ψ
(R)
Z (u) =

∫
‖y‖>R

(
ei〈u,y〉 − 1

)
ν(dy),

ψ
(R)
Y (u) = i〈u, b̃〉+

∫
‖y‖≤R

(
ei〈u,y〉 − 1− i〈u, y〉1‖y‖≤1

)
ν(dy),
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with

b̃ = b−
∫
‖y‖>R

y1‖y‖≤1ν(dy),

where the last integral is understood coordinate-wise (and so is the above
difference). Next, our global strategy is to bound |mf(Xt)− f(0)| using:

|mf(Xt)− f(0)| ≤ |mf(Xt)−mf(Y
(R)
t )| + |mf(Y

(R)
t )− Ef(Y

(R)
t )|

+ |Ef(Y
(R)
t )− f(0)|.

Let us start by bounding |mf(Xt) − mf(Y
(R)
t )|. To do so, it is easy to

check (see for instance [HM], p.1498) that

P(Z
(R)
t 6= 0) ≤ tν(R). (15)

On the other hand, [H] tells us that

P(f(Y
(R)
t )−mf(Y

(R)
t ) ≥ x) ≤ H(R)(x),

where

H(R)(x) = exp

(
x

2R
−
(
x

2R
+
tV (R)

R2

)
log

(
1 +

Rx

2tV (R)

))
.

Next, let
I(R)(y) = sup{x ≥ 0 : H(R)(x) ≥ y},

and let
Pm = P(f(Xt) ≤ mf(Xt)) ≥ 1/2.

Then we have (see [HM] p. 1500)

|mf(Y
(R)
t )−mf(Xt)| ≤ I(R)(Pm − P(Z

(R)
t 6= 0)) ≤ I(R)(1/2− tν(R)), (16)

provided that tν(R) < 1/2.

To bound |Ef(Y
(R)
t )−mf(Y

(R)
t )|, we use the concentration inequality [H]

P(|f(Y
(R)
t )−Ef(Y

(R)
t )| ≥ x′) ≤ 2 exp

(
x′

R
−
(
x′

R
+
tV (R)

R2

)
log

(
1 +

Rx′

tV (R)

))
.

(17)
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By the very definition of a median, and taking x′ = |Ef(Y
(R)
t )−mf(Y

(R)
t )|,

we see that (17) lead to our second estimate:

2|Ef(Y
(R)
t )−mf(Y

(R)
t )| ≤ I(R)(1/4). (18)

Finally, we bound |Ef(Y
(R)
t )− f(0)|.

|Ef(Y
(R)
t )− f(0)| ≤ E‖Y (R)

t ‖

≤
√

E‖Y (R)
t ‖2

=

√√√√ d∑
k=1

(
t

∫
‖y‖≤R

y2
kν(dy) + t2

(̃
bk +

∫
‖y‖≤R

yk1‖y‖>1ν(dy)

)2
)

=

√
tV (R) + ‖EY (R)

t ‖2. (19)

Combining (16), (18) and (19), gives for any t > 0 and R > 0 such that
tν(R) < 1/2,

|mf(Xt)−f(0)| ≤ I(R)(1/2−tν(hc(t)))+2−1I(R)(1/4)+

√
tV (R) + ‖E(Y

(R)
t )‖2.

Now, choosing R = hc(t), gives

|mf(Xt)−f(0)| ≤ I(hc(t))(1/2−tν(hc(t)))+2−1I(hc(t))(1/4)+hc(t)+‖E(Y
(hc(t))
t )‖,

where ‖E(Y
(hc(t))
t )‖ is equal to E(t) given in the statement. Finally, note

that

I(R)(x)

2R
−
(
I(R)(x)

2R
+
tV (R)

R2

)
log

(
1 +

RI(R)(x)

2tV (R)

)
= log(x),

and so I(hc(t))(x) = 2hc(t)gc(x) with the definition of gc given in the statement
of Theorem 1. This concludes the proof.

3.2 Proof of Theorem 2

Recall the assumptions and notation as the previous subsection: t > 0 is
fixed and c > 0 is such that R = hc(t) satisfies (5). Put

m(c, t) = Ef(Y
(R)
t )
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Since f is 1-Lipschitz, we have |f(Xt) − f(Y
(R)
t )| ≤ ‖Z(R)

t ‖. Therefore for
every x′ < x,

P(f(Xt)−m(c, t) ≥ x) ≤ P(f(Y
(R)
t )−m(c, t) ≥ x− x′) + P(‖Z(R)

t ‖ ≥ x′).
(20)

The first term of the above right-hand side is bounded as in (17). On the

other hand, recall that Z
(R)
t can be seen as the value at time t of a com-

pound Poisson process (Z
(R)
s , s ≥ 0). Therefore, if ‖Z(R)

t ‖ ≥ x′, the process

(Z
(R)
s , s ≥ 0) has at least a jump before time t. This implies that

P(‖Z(R)
t ‖ ≥ x′) ≤ 1− e−tν(R) ≤ tν(R).

Using (5), gives

P(‖Z(R)
t ‖ ≥ x′) ≤ Ac, (21)

which when combined with (20) lead to the inequality (6) giving the first part
of the theorem. The second part of the theorem follows by taking x′ = hc(t)
and c = q/2A. This choice provides first the upper bound q/2 on (21), and
moreover entails that the condition (7) becomes (x − x′)/hc(t) ≥ gc(q/2),
leading to another upper bound q/2 on the rightmost term in (6).

3.3 Proof of Theorem 3

Let c, t > 0. Decompose Xt by truncating the measure ν at R = hc(t).

As above, write Xt = Y
(R)
t + Z

(R)
t , where Y

(R)
t , Z

(R)
t are two independent,

infinitely divisible random vectors whose Lévy measures are, respectively,
tν(dx)1‖x‖≤R and tν(dx)1‖x‖>R. Then for every a > cK,

P(f(Xt)−Ef(Xt) ≥ ahc(t)) ≤ P(f(Y
(R)
t )−Ef(Xt) ≥ ahc(t)) + P(Z

(R)
t 6= 0).

(22)

Since Z
(R)
t is a compound Poisson process, we have, as seen in the proof of

Theorem 2,
P(Z

(R)
t 6= 0) ≤ tν(R). (23)

On the other hand,

P(f(Y
(R)
t )− Ef(Xt) ≥ ahc(t)) ≤ P(f(Y

(R)
t )− Ef(Y

(R)
t ) ≥ x′),

with
x′ = ahc(t)− |Ef(Xt)− Ef(Y

(R)
t )|.
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To bound x′ from below, remark that∣∣∣Ef(Xt)− Ef(Y
(R)
t )

∣∣∣ =
∣∣∣E(f(Y

(R)
t + Z

(R)
t )− f(Y

(R)
t )

)
1{Z(R)

t 6=0}

∣∣∣
≤ E‖Z(R)

t ‖

≤ t

∫
‖x‖>R

‖x‖ν(dx)

= tM(R)

≤ cKR,

using both (13) and (2) for the last inequality. Hence

x′ ≥ (a− cK)R.

Moreover, [H] tells us that

P(f(Y
(R)
t )−Ef(Y

(R)
t ) ≥ x′) ≤ exp

(
x′

R
−
(
x′

R
+
tV (R)

R2

)
log

(
1 +

Rx′

tV (R)

))
.

Using the fact that R = hc(t) and x′ ≥ (a− cK)R, we get

P(f(Y
(R)
t )− Ef(Y

(R)
t ) ≥ x′) ≤ exp

[
b− (b+ c) log

(
1 +

b

c

)]
,

with b = a− cK. Together with (23), this yields the first part of Theorem 3.
The second part follows by taking c = q/2A, and b = gq/2A(q/2).
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