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Abstract

We construct, on a single probability space, a class of regenerative
sets R(α), indexed by all measurable functions α : [0, 1] → [0, 1]. For
each function α, R(α), has the law of the range of a special subordinator.
Constant functions correspond to stable subordinators. If α ≤ β, then
R(α) ⊂ R(β). Other examples of special subordinators are given in the
lattice case.

1 Introduction

Recall that a (possibly killed) subordinator (St)t≥0 is a Lévy process on R+

with Laplace exponent given, for λ ≥ 0, by

φ(λ) = − logE[exp(−λS1)] = a+ bλ+

∫ ∞
0

Π(dx)(1− e−λx) (1)

The coefficient b ≥ 0 is the drift, Π is the Lévy measure and a ≥ 0 is a killing
parameter. If a > 0, S is submarkovian. A function of the form (1) is called a
Bernstein function.

The subordinator S is special if it admits a dual subordinator (Ŝt)t≥0 with

Laplace exponent φ̂, such that for every λ > 0,

φ(λ)φ̂(λ) = λ (2)

The canonical example is the case when S (resp. Ŝ) is the subordinator of
the ascending (resp. descending) ladder times of a real-valued Lévy process X.
In particular, if X drifts to −∞, then S is a killed subordinator (that is, the

parameter a in (1) is positive). If X is stable, then S and Ŝ are stable, with
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respective indices α = P(X1 > 0) and 1 − α. If X is symmetric and is not a

compound Poisson process, then S and Ŝ are stable with index 1/2. See, among
others, Bertoin [1], Doney, [3], Schilling et al. [8] for numerous references on
subordinators, Bernstein functions and the connections with fluctuation theory
for Lévy processes.

It turns out that, apart from the classical example of ladder times of a Lévy
process, the class of special subordinators or special Bernstein functions is not
known in detail. The main goal of this paper is to introduce a family of special
subordinators indexed by all measurable functions α : [0, 1]→ [0, 1]. A property
of this family is that we can construct the ranges of all these subordinators on
a single probability space, with the property that if α ≤ β, then the range of
S(α) is contained in the range of S(β). Here are the statements:

Theorem 1 For every measurable function α : [0, 1] → [0, 1], there exists a

special subordinator (S
(α)
t )t≥0 with Laplace exponent

φ(α)(λ) = − logE[exp(−λS(α)
1 )] = exp

∫ 1

0

(λ− 1)α(x)

1 + (λ− 1)x
dx

for λ ≥ 0. Its dual is the subordinator (S
(1−α)
t )t≥0.

Note that when α is constant, S(α) is stable with index α. Moreover, put
ψ(α)(µ) = φ(α)(µ+ 1). Then

ψ(α)(µ) = exp

∫ 1

0

µα(x)

1 + µx
dx = exp

( ∞∑
n=1

(−1)n+1µn
∫ 1

0

[α(x)]ndx

)

can be expanded as a power series in µ whose coefficients can be computed
from the moments of the measure ν(dx) = α(x)dx on [0, 1]. Observe that the
measure ν is characterized by its moments and that these moments determine
the function ψ(α), and thus also determine φ(α). It follows that if α(x) 6= β(x)
for x in a set of positive Lebesgue measure, then φ(α) 6= φ(β).

Theorem 2 One can construct, on a single probability space, a family of re-
generative sets R(α) indexed by all measurable functions α : [0, 1]→ [0, 1], such
that

• for every measurable function α,

R(α) law= {S(α)
t , t ≥ 0}

• if α, β are two measurable functions such that for every x ∈ [0, 1], α(x) ≤
β(x), then

R(α) ⊂ R(β)
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The properties of a subordinator can be read from its Laplace exponent. In
turn, the properties of this exponent can be deduced from the function α, see
Proposition 1 in Section 3.

Our construction generalizes a former construction for stable processes. This
was used to construct Ruelle cascades, using nested stable regenerative sets
obtained by subordination [6]. Other constructions of regenerative sets can be
found in [4, 5, 7, 9].

We first explain, in Section 2, a similar construction in the lattice case, that
is, in the framework of integer-valued regenerative sets. We use it to prove
Theorems 1 and 2 in Section 3. In the lattice case, an extension is given in
Section 4. In particular, this extension includes a lattice version of the special
subordinators described in [10]. It should be possible to give a continuous
version of the construction described in Section 4, however, we shall not handle
this question here.

2 The lattice case

The lattice equivalent of a subordinator is a random walk on N ∪ {∞} (we
include here the possibility of killing the random walk by sending it to ∞).
Such a random walk S has a generating function ψ(t) = E(tS1), defined for

t < 1. The dual of S, if it exists, is the random walk Ŝ with generating function
ψ̂ such that

(1− ψ(t))(1− ψ̂(t)) = 1− t (3)

which is a discrete version of (2). A lattice regenerative set is the range of a
random walk on N started at 0.

For instance, the set of strong ladder times of a discrete time real-valued
random walk X is a lattice regenerative set. This regenerative set has a dual,
namely the set of weak ladder times of −X.

It is a classical fact that a random subsetR of N∪{∞} is a lattice regenerative
set if and only if it contains 0 and satisfies the regenerative property: for every
n ∈ N, conditionally on the event that n ∈ R, the set R ∩ [n,∞] is independent
of R ∩ [0, n] and has the same law as R+ n.

We construct a family of random walks on N, indexed by measurable func-
tions α as in Theorem 1.

Construction 1.
Fix a measurable function α : [0, 1] → [0, 1]. Let (Xn, n ≥ 1) be iid ran-

dom variables, uniformly distributed on [0, 1]2. We denote Xn = (hn, Un). One
should view h as a height and U as a parameter. Say that Xn is α-green if
Un ≤ α(hn), and α-red otherwise. Say that an integer k ∈ [1, n] is n-visible
if hk ≥ hm for all integers m ∈ [k, n]. Finally, say that n percolates for α if,
for every k ≤ n such that k is n-visible, Xk is α-green. Let R(α) be the set of
integers that percolate for α (by convention, 0 percolates for α).
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Figure 1: Construction 1

See Figure 1. Green points are represented by black circles, red points by
white circles and the black squares stand for the integers that percolate. The
horizontal lines express the fact that the red point at 4 prevents 5, 6 and 7 from
percolating.

Remark that if α is a constant, then the Xn are green or red with probability
α (resp. 1 − α), independently of the height. This is a discrete version of the
construction given in [6].

Theorem 3 The set R(α) defined by Construction 1 is a lattice regenerative

set. It can be viewed as the image of a random walk (S
(α)
n , n ≥ 0), where

S
(α)
n = Y

(α)
1 + . . . + Y

(α)
n , the Y

(α)
i being iid random variables taking values in

N ∪ {∞}, with generating function

ψ(α)(t) = E(tY
(α)
1 ) = 1− exp

(
−
∫ 1

0

tα(x)

1− tx
dx

)
Moreover, R(α) has a dual, namely R(1−α).

From the very definition, the nested property of the sets R(α) is obvious: if
α ≤ β and if Xn is α-green, then it is also β-green. Therefore R(α) ⊂ R(β). So
we have immediately:

Theorem 4 One can construct, on a single probability space, the sets R(α) for
all measurable functions α : [0, 1]→ [0, 1], with the property that if α, β are two
measurable functions satisfying α ≤ β, then

R(α) ⊂ R(β)

Proof of Theorem 3.
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Let n ∈ N and let En be the event that n percolates. Conditionally on
En, all the n-visible points are green. Moreover, for every N ≥ n and every
k ≤ n, if k is N -visible, then k is also n-visible. Therefore, for every N ≥ n,
conditionally on En, N percolates if and only if all N -visible points in [n+1, N ]
are α-green. This is independent of (Xi, i ∈ [1, n]) and has the same probability
as the probability that N − n is α-green. Hence R(α) satisfies the regenerative
property.

Let us compute the probability that n ∈ R(α). If n is α-green, then there
is a left-most n-visible point, say n1, with height x1 = hn1

. Then n1 has to be
green, which occurs with probability α(x1), and for all i ∈ [1, n1 − 1], hi ≤ x1,
which occurs with probability xn1−1

1 . If n1 6= n, then there is second left-most
n-visible point, say n1 + n2, and so on. So we have

P(n ∈ R(α)) =
∑
k

∑
n1+...+nk=n∫ 1

0

dx1

∫ x1

0

dx2 . . .

∫ xk−1

0

dxkα(x1)xn1−1
1 . . . α(xk)xnk−1k

By symmetrization,

P(n ∈ R(α)) =
∑
k

1

k!

∑
n1+...+nk=n

∫ 1

0

dx1 . . .

∫ 1

0

dxkα(x1)xn1−1
1 . . . α(xk)xnk−1k

Summing over n, ∑
n

P(n ∈ R(α))tn = exp

(∫ 1

0

tα(x)

1− tx
dx

)
On the other hand,∑

n

P(n ∈ R(α))tn =
∑
i

P(S
(α)
i = n)tn =

∑
i

E(tS
(α)
i ) =

1

1− E(tY
(α)
1 )

Finally, the duality property follows from a straighforward computation:

(1− ψ(α)(t))(1− ψ(1−α)(t)) = exp

(
−
∫ 1

0

t

1− tx
dx

)
= 1− t

3 From the lattice case to the continuous case

3.1 Proof of Theorem 1

We first state a lemma:

Lemma 1 Let β : [0, 1]→ [0, 1] be a measurable function and F : [0, 1]→ [0, 1]
be a Lipschitz, nondecreasing function such that F (0) = 0, F (1) = 1. Let q > 0,
θ ≥ 0 be two reals. Then the the function φ : R+ → R+ defined by

φ(λ) = θ exp

(
−
∫ 1

0

qβ(F (x))

λ+ q − qF (x)
F ′(x)dx

)
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is a Bernstein function.

Proof of Lemma 1
First, the case θ = 0 corresponds to a subordinator which is constantly 0.

Assume now θ > 0.
From Construction 1 we derive a continuous process. Consider the random

walk (S
(β)
n , n ≥ 0). First, let e1, e2, . . . be iid exponential random variables with

parameter q > 0, independent of S(β). We get a discrete-time, continuous-state
random walk (Zn, n ≥ 0) by setting

Zn = e1 + . . .+ e
S

(β)
n

Next, let (Nt, t ≥ 0) be a Poisson process with parameter θ > 0, independent of
S(β) and of the random variables (en, n ≥ 1). For t ≥ 0, put

Xt = ZNt

Then (Xt, t ≥ 0) is a subordinator, more specifically a compound Poisson pro-
cess, whose range is the same as the range of Z, the only difference between X
and Z being the time parametrization. For every λ > 0,

E(exp(−λX1)) =
∑
n≥0

θn

n!
e−θ(ψ(β)(q/(q + λ))n = exp[−θ(1− ψ(β)(q/(q + λ)))]

Thus the Laplace exponent of X is

φ(λ) = − logE(exp(−λX1)) = θ[1− ψ(β)(q/(q + λ))]

That is,

φ(λ) = θ exp

(
−
∫ 1

0

qβ(x)

λ+ q − qx
dx

)
Remark that by a change of variable,

φ(λ) = θ exp

(
−
∫ 1

0

qβ(F (x))

λ+ q − qF (x)
F ′(x)dx

)
which proves Lemma 1. �

Proof of Theorem 1
Fix a measurable function α : [0, 1]→ [0, 1]. For an integer m ≥ 2 define

qm = m− 1

Fm(x) =
1{x∈[1/m,1]}(mx− 1)

(m− 1)x
(4)

βm(x) = 1{x>0}α

(
1

m− (m− 1)x

)
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and

θm = exp

(∫ 1

1/m

βm(Fm(x))

x
dx

)
Remark that qm, βm, Fm and θm satisfy the assumptions of Lemma 1, and that

F ′m(x) =
1{x∈[1/m,1]}

(m− 1)x2

If x ∈ [1/m, 1],

λ+ qm − qmFm(x) = λ+
1− x
x

=
1 + (λ− 1)x

x

and thus
qmF

′
m(x)

λ+ qm − qmFm(x)
=

1

x[1 + (λ− 1)x]

Applying Lemma 1, we find that the following function

φ(α,m)(λ) = exp

(
−
∫ 1

1/m

βm(Fm(x))

x[1 + (λ− 1)x]
dx+

∫ 1

1/m

βm(Fm(x))

x
dx

)

= exp

(∫ 1

1/m

(λ− 1)βm(Fm(x))

1 + (λ− 1)x
dx

)

is a Bernstein function. Moreover,

βm(Fm(x)) = α(x)1{x∈(1/m,1]}

whence

φ(α,m)(λ) = exp

(∫ 1

1/m

(λ− 1)α(x)

1 + (λ− 1)x
dx

)
So any function of this form is a Bernstein function and it is known [8] that
every limit of Bernstein functions is a Bernstein function. Therefore, letting
m→∞, we get that

φ(α)(λ) = exp

(∫ 1

0

(λ− 1)α(x)

1 + (λ− 1)x
dx

)
is the Laplace exponent of a subordinator. Likewise, the function φ(1−α) is a
Bernstein function and the duality relation follows from the equality

λ = exp

∫ 1

0

λ− 1

1 + (λ− 1)x
dx (5)
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3.2 Some properties

The basic properties of a subordinator can be read easily from the asymptotic
behaviour of its Laplace exponent. It turns out that the small-time properties
of S(α) depend on the behaviour of α near 0, while the large-time properties
depend on the behaviour of α near 1. More precisely,

Proposition 1 Let R(α) be as in Theorem 2.
(i) If ∫ 1

1/2

α(x)

1− x
dx <∞

then R(α) is bounded almost surely. Otherwise, R(α) is unbounded almost surely.
(ii) If ∫ 1/2

0

1− α(x)

x
dx <∞

then the Lebesgue measure of R(α) is positive almost surely. Otherwise, this
Lebesgue measure is almost surely 0.

(iii) If α(x) → β as x → 0, then the Hausdorff dimension of R(α) is β
almost surely.

Proof
We use here classical results on subordinators, which can be found for in-

stance in [1], Chapter 1. First, if the killing rate of a subordinator is positive,
then its range is bounded almost surely. Otherwise, the range is unbounded
almost surely. The killing rate of S(α) is

φ(α)(0) = exp

(
−
∫ 1

0

α(x)

1− x
dx

)
which easily gives (i).

Next, recall that if the drift of a subordinator is positive, then the Lebesgue
measure of its range is positive almost surely. If this drift is zero, then the
Lebesgue measure of the range is zero almost surely. Moreover the drift is given
by limλ→∞ φ(λ)/λ. Using (5), we find

φ(α)(λ)

λ
= exp

∫ 1

0

α(x)− 1

x+ [1/(λ− 1)]
dx

By monotone convergence, this ratio has a finite limit as λ→∞ if and only if∫ 1/2

0

1− α(x)

x
dx <∞

which proves (ii).
Finally, recall that index of the exponent φ(α) is given by

I = lim
λ→∞

log φ(α)(λ)

log λ
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if this limit exists. If so, the Hausdorff dimension of the range is equal to the
index. See [2], or [1], Chapter 5. It is easy to check that that if α(x) → β as
x→ 0, then the index of the exponent is β.

3.3 Proof of Theorem 2

Consider a Poisson Point process N on R+ × [0, 1] × [0, 1] with intensity dx ⊗
y−2dy ⊗ dz. Given a measurable function α : [0, 1] → [0, 1], we can define an
analogue of Construction 1 as follows.

Construction 1’.
Say that a point X = (t, h, U) of N is α-green if U ≤ α(h), and α-red

otherwise. Say that another point X ′ = (t′, h′, U ′) of N is visible for X if t′ ≤ t
and if, for all points of N of the form X ′′ = (t′′, h′′, u′′) with t′ ≤ t′′ ≤ t, we
have h′ ≥ h′′. Finally, say that X percolates for α if, for every X ′ such that X ′

is visible for X, X ′ is α-green. By convention, 0 percolates for α. We denote by

R(α)
1 the set of first coordinates of percolating points, and we set

R(α) = R(α)
1

For every point X = (t, h, U) of N , let U(X) be the set of points of N of the
form X ′ = (t′, h′, u′) with t′ ≤ t and h′ ≥ h. Then almost surely, U(X) is finite,
since almost surely, every strip of the form [0, t] × [h,∞] × [0, 1] with h > 0
contains a finite number of points of N . Moreover, determining whether X
percolates only depends on U(X), and therefore Construction 1’ is well-defined.

Alternatively, one can define R(α) as follows. For m ≥ 2 an integer, consider

the restriction N (m) of N to the subset R+× [1/m, 1]× [0, 1]. Let (X
(m)
n , n ≥ 1)

be the set of points of N (m), ranked by increasing x-coordinate. Denote, for
each n ≥ 1,

X(m)
n = (t(m)

n , h(m)
n , U (m)

n )

Consider the functions Fm, βm and the constant θm as in the proof of The-

orem 1. Then we can define the sequence (Y
(m)
n , n ≥ 1) by

Y (m)
n = (Fm(h(m)

n ), U (m)
n )

Note that (Fm(h
(m)
n ), n ≥ 1) is a sequence of iid, uniform random variables on

[0, 1]. Therefore, using Construction 1, we can define a lattice regenerative set

S(α,m) from the the sequence (Y
(m)
n , n ≥ 1) and the function βm. As proved in

Theorem 3, S(α,m) can be viewed as the range of a random walk (T
(α,m)
n , n ≥ 0)

with generating function

EtT
(α,m)
1 = 1− exp

(
−
∫ 1

0

tβm(x)

1− tx
dx

)
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Next, observe that the family (t
(m)
n+1− t

(m)
n , n ≥ 0) is a family of iid, exponential

random variables with parameter m − 1, and that these random variables are

independent of (Y
(m)
n , n ≥ 1). Therefore, we can do as in the proof of Lemma 1

and transform the lattice regenerative set S(α,m) into a continuous-state regen-
erative set R(α,m). To do so, we put

Z(α,m)
n =

T (α,m)
n −1∑
k=0

[t
(m)
k+1 − t

(m)
k ]

and we define R(α,m) as the range of Z(α,m).
By construction, one checks that if m < n,

R(α,m) ⊂ R(α,n) (6)

and if α ≤ γ,
R(α,m) ⊂ R(γ,m) (7)

Finally, we define

R(α) = ∪m>0R(α,m)

and it is easy to see that this definition coincides with Construction 1’. Note
that the nesting property of the sets R(α) as stated in Theorem 2 follows from
(7), or directly from Construction 1’.

It remains to show that for every measurable function α, R(α) is a regen-
erative set with the Laplace exponent given in Theorem 1. From now on the
measurable function α is fixed.

Using the proof of Lemma 1, we get that for every integer m ≥ 2, R(α,m) can

be viewed as the image of a subordinator (S
(m)
t , t ≥ 0) with Laplace exponent

φ(α,m)(λ) = exp

(∫ 1

1/m

(λ− 1)α(x)

1 + (λ− 1)x
dx

)
So it is possible to construct, on a single probability space, a family of subor-

dinators (S
(m)
t , t ≥ 0), for all integers m ≥ 2 with respective ranges R(α,m) and

respective Laplace exponent φ(α,m).

The convergence of the Laplace exponents φ
(α)
m to φ(α) as m → ∞ entails

that the processes (S
(m)
s , s ≥ 0) converge in law to a subordinator with Laplace

exponent φ(α). Moreover, for each integer m ≥ 2 and each real s > 0, the

law of S
(m)
s is diffuse, as the law of a sum of independent exponential random

variables. Therefore, there exists a subsequence (un, n ≥ 0) such that S
(un)
1

converges almost surely as n → ∞. From this subsequence, one can extract a

subsequence (vn, n ≥ 0) such that S
(vn)
1/2 , S

(vn)
1 , S

(vn)
3/2 and S

(vn)
2 converge almost

surely as n → ∞. Iterating the procedure and using diagonal extraction, we

can find a subsequence (wn, n ≥ 0) such that S
(wn)
s converges almost surely as

n→∞, for all dyadic s ≥ 0. Let Ss denote the limit.
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The reals Ss are defined for all dyadic s ≥ 0. We extend the definition by
setting, for every t ≥ 0,

St = inf
{s≥t, s dyadic}

Ss

Since the marginals of (St, t ≥ 0) are the marginals of a subordinator with
Laplace exponent φ(α) for all dyadic t and since S is cadlag, S is a subordinator
with Laplace exponent φ(α).

Let R be the the range of S. Using the inclusion property (6), the definition
of R(α) and of S, we see that R ⊂ R(α). Moreover, since S(wn) converges to S
in the Skorokhod topology, it is easy to check that the Hausdorff distance

d(R ∩ [0, T ],R(α,wn) ∩ [0, T ])

converges to 0 as n → ∞, for every T > 0. It follows that R = R(α), and thus
R(α) is a regenerative set with Laplace exponent φ(α).

4 A generalization in the lattice case

Construction 2.
Take two arbitrary probability distributions ν, ν̂ on R. Let (Sn, n ≥ 0)

be a real-valued random walk started at 0, with increments (Xn, n ≥ 1). Let

(Hn, n ≥ 1) be iid real-valued random variables with law ν and (Ĥn, n ≥ 0) be

iid real-valued random variables with law ν̂. Assume that the Xn, Hn and Ĥn

are independent.
For n ≥ 1, say that an integer k ∈ [0, n − 1] is an n-obstacle if, for every

m ∈ [k + 1, n],

Sm +Hm < Sk + Ĥk (8)

Say that n ≥ 1 percolates if, for every k ∈ [0, n− 1], k is not an n-obstacle. By
convention, say that 0 percolates. Let R be the set of integers that percolate.

Theorem 5 The random set R defined by Construction 2 is a lattice regener-
ative set. Its dual is obtained by replacing the random walk (Sn, n ≥ 0) with

(−Sn, n ≥ 0) and exchanging the role of the random variables (Hn) and (Ĥn).

Proof
The regenerative property is established by the same argument as for The-

orem 3.
To show the duality, consider a regenerative set R′ defined as in Construc-

tion 2, using independent random variables (X ′n, n ≥ 1), (H ′n, n ≥ 1) and

(Ĥ ′n, n ≥ 0), where S′1 has the same law as −S1, H ′1 has the same law as

Ĥ1, and Ĥ ′1 has the same law as H1. The only difference is that we define an
obstacle using a large inequality, in contrast to the strict inequality in (8). To
avoid any ambiguity, we shall use the terms dual obstacle, dual-percolate for the
construction of R′.
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Figure 2: Construction 2

One can construct the sets R∩ [0, N ] and R′∩ [0, N ] on the same probability

space, using the random variables Xn, n ∈ [0, N ], Hm, m ∈ [1, N ], H̃l, l ∈
[0, N − 1], by putting

S′n = SN−n − Sn, n ∈ [0, N ]

H ′n = H̃N−n, n ∈ [1, N ]

H̃ ′n = HN−n, n ∈ [0, N − 1]

See Figure 2. The black squares stand for the variables Sn +Hn, the white
squares for the variables Sn+Ĥn. Black squares “look to the left”, white squares
“look to the right”. The horizontal dashed lines express the fact that they see
an obstacle when looking to the left, or a dual obstacle when looking to the
right. In turn, the plain lines express the fact that they see no obstacle or dual
obstacle and, therefore, percolate or dual-percolate.

Let GN = max(R∩ [0, N ]), G′N = max(R′ ∩ [0, N ]). We claim that
(i) N −GN dual-percolates.
(ii) For every n ∈ [N −GN + 1, N ], n does not dual-percolate.
To show (i), suppose that N − GN does not dual-percolate. Let k be the

largest integer that is a dual obstacle for N − GN . Then from the definition
of a dual obstacle, there exists no (N − k)-obstacle in [GN , k − 1] . Moreover,
from the definition of GN , there is no (N − k)-obstacle either in [0, GN − 1].
Therefore, k percolates, but this contradicts the definition of GN . This proves
(i). One proves (ii) by similar arguments. As a consequence, G′N = N − GN .
This being true for every N ≥ 1, we find that

(iii) For every N > 0, N −GN and G′N have the same law.
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It is then standard to check that (iii) is equivalent to the analytical property
(3).

Some examples
1. If both ν and ν̂ are the Dirac mass at 0, then R is the set of strict

ascending ladder times of the random walk S, that is, the set of integers n such
that Sn > maxk≤n−1 Sk. On the other hand, R′ is the set of weak descending
ladder times of S, ie the set of integers n such that Sn ≤ mink≤n−1 Sk.

2. Suppose that ν̂ is the Dirac mass at 0 and that

ν(dx) = (1− r)δ0 + rδ−∞

for some fixed r ∈ [0, 1]. Then the event that T1 > n is the event that for every
every ladder time k ≤ n, Hk = −∞. Therefore,

φ(t) =

∞∑
n=1

tnE(rLn−1 − rLn)

where Ln is the number of ladder times between time 1 and time n. Put

ψ(t) = E(tτ )

where τ is the first ladder time. Then by standard computations, we find

φ(t) =
(1− r)ψ(t)

1− rψ(t)

3. Suppose that ν̂ is the Dirac mass at 0 and that

ν(dx) = c exp(−c|x|)1{x<0}dx

Then the event that T1 > n is the event that for every every ladder time k ≤ n,

|Hk| ≥ Sk − sup
i<k

Si

Conditionnally on Sk and supi<k Si, the latter event has probability exp[−c(Sk−
supi<k Si)]. Therefore,

P(T1 > n) = E exp[−c sup
i≤n

Si]

By time reversal, we have:

P(T̂1 > n) =

∫ ∞
0

ce−cxP(∀k ∈ [1, n], Sk ≥ x)dx

Note that in the limit c→∞, we recover the first example.
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4. Let S be deterministic, Sn = −n. Also, suppose that ν̂ is the Dirac mass
at 0. Then the event that T1 > n is the intersection of the events {H1 ≤ 1},
{H2 ≤ 2}, . . . {Hn ≤ n}, all these events being independent. Therefore,

P(T1 > n) =

n∏
i=1

ν([0, n])

In particular, the sequence of ratios

P(T1 > n+ 1)

P(T1 > n)
= ν([0, n+ 1])

can be chosen to be any nondecreasing sequence of reals ∈ [0, 1]. If we consider
the dual process, we see that

P(n ∈ R̂) =

n∏
i=1

ν([0, n])

This is the lattice equivalent of Corollary 2.5 in [10]. In particular, if the support

of ν is bounded, say supp(ν) ⊂ [0, A], then P(n ∈ R̂) is constant for n ≥ A.
This corresponds to the examples given in Section 3 in [10].

Acknowledgments. I thank Löıc Chaumont for references.
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