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Abstract

This paper focuses on studying the multilevel Monte Carlo method recently introduced
by Giles [8] which is significantly more efficient than the classical Monte Carlo one. Our
aim is to prove a central limit theorem of Lindeberg Feller type for the multilevel Monte
Carlo method associated with the Euler discretization scheme. To do so, we prove first
a stable law convergence theorem, in the spirit of Jacod and Protter [16], for the Euler
scheme error on two consecutive levels of the algorithm. This leads to an accurate descrip-
tion of the optimal choice of parameters and to an explicit characterization of the limiting
variance in the central limit theorem of the algorithm. A complexity of the multilevel
Monte Carlo algorithm is carried out.
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Key Words and Phrases. Central limit theorem, Multilevel Monte Carlo methods,
Euler scheme, finance.

1 Introduction

In many applications, in particular in the pricing of financial securities, we are interested in the
effective computation by Monte Carlo methods of the quantity Ef(XT ), where X := (Xt)0≤t≤T

is a diffusion process and f a given function. The Monte Carlo Euler method consists of
two steps. First, approximate the diffusion process (Xt)0≤t≤T by the Euler scheme (Xn

t )0≤t≤T

with time step T/n. Then, approximate E f (Xn
T ) by 1

N

∑N
i=1 f(X

n
T,i), where f(Xn

T,i)1≤i≤N is

∗This research benefited from the support of the chair ”Risques Financiers”, Fondation du Risque.
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a sample of N independent copies of f(Xn
T ). This approximation is affected respectively by a

discretization error and a statistical error

εn := E (f(Xn
T )− f(XT )) and

1

N

N
∑

i=1

f(Xn
T,i)− Ef(Xn

T ).

On one hand, Talay and Tubaro [21] prove that if f is sufficiently smooth, then εn ∼ c/n with c
a given constant and in a more general context, Kebaier [17] proves that the rate of convergence
of the discretization error εn can be 1/nα for all values of α ∈ [1/2, 1] (see e.g. Kloeden and
Platen [18] for more details on discretization schemes). On the other hand, the statistical error
is controlled by the central limit theorem with order 1/

√
N . Further, the optimal choice of

the sample size N in the classical Monte Carlo method mainly depends on the order of the
discretization error. More precisely, it turns out that for εn = 1/nα the optimal choice of N is
n2α. This leads to a total complexity in the Monte Carlo method of order CMC = n2α+1 (see
Duffie and Glynn [5] for related results). Let us recall that the complexity of an algorithm is
proportional to the maximum number of basic computations performed by this one. Hence,
expressing this complexity in terms of the discretization error εn we get CMC = ε

−2−1/α
n .

In order to improve the performance of this method, Kebaier introduced a two-level Monte
Carlo method [17] (called the statistical Romberg method) reducing the complexity CMC while
maintaining the convergence of the algorithm. This method uses two Euler schemes with time
steps T/n and T/nβ, β ∈ (0, 1) and approximates E f(XT ) by

1

N1

N1
∑

i=1

f(X̂nβ

T,i) +
1

N2

N2
∑

i=1

f(Xn
T,i)− f(Xnβ

T,i),

where X̂nβ

T is a second Euler scheme with time step T/nβ and such that the Brownian paths
used for Xn

T and Xnβ

T has to be independent of the Brownian paths used to simulate X̂nβ

T . It
turns out that for a given discretization error εn = 1/nα (α ∈ [1/2, 1]), the optimal choice is
obtained for β = 1/2, N1 = n2α and N2 = n2α−(1/2). With this choice, the complexity of the

statistical Romberg method is of order CSR = n2α+(1/2) = ε
−2−1/(2α)
n which is lower than the

classical complexity in the Monte Carlo method.
More recently, Giles [8] generalized the statistical Romberg method of Kebaier [17] and

proposed the multilevel Monte Carlo algorithm, in a similar approach to Heinrich’s multilevel
method for parametric integration [12] (see also Creutzig, Dereich, Müller-Gronbach and Ritter
[3], Dereich [4], Giles [7], Giles, Higham and Mao [9], Giles and Szpruch [10], Heinrich [11],
Heinrich and Sindambiwe [13] and Hutzenthaler, Jentzen and Kloeden [14] for related results).
The multilevel Monte Carlo method uses information from a sequence of computations with
decreasing step sizes and approximates the quantity Ef(XT ) by

Qn =
1

N0

N0
∑

k=1

f(X1
T,k) +

L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(Xℓ,mℓ

T,k )− f(Xℓ,mℓ−1

T,k )
)

, m ∈ N \ {0, 1},

where the fine discretization step is equal to T/n thereby L = logn
logm

. For ℓ ∈ {1, · · · , L}, pro-
cesses (Xℓ,mℓ

t,k , Xℓ,mℓ−1

t,k )0≤t≤T , k ∈ {1, · · · , Nℓ}, are independent copies of (Xℓ,mℓ

t , Xℓ,mℓ−1

t )0≤t≤T
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whose components denote the Euler schemes with time steps m−ℓT and m−(ℓ−1)T . However,

for fixed ℓ, the simulation of (Xℓ,mℓ

t )0≤t≤T and (Xℓ,mℓ−1

t )0≤t≤T has to be based on the same
Brownian path. Concerning the first empirical mean, processes (X1

t,k)0≤t≤T , k ∈ {1, · · · , N0},
are independent copies of (X1

t )0≤t≤T which denotes the Euler scheme with time step T . Here,
it is important to point out that all these L + 1 Monte Carlo estimators have to be based on
different independent samples. Due to the above independence assumption for the paths, the
variance of the multilevel estimator is given by

σ2 := V ar(Qn) = N−1
0 V ar(f(X1

T )) +
L
∑

ℓ=1

N−1
ℓ σ2

ℓ ,

where σ2
ℓ = V ar

(

f(Xℓ,mℓ

T )− f(Xℓ,mℓ−1

T )
)

. Assuming that the diffusion coefficients of X and

the function f are Lipschitz continuous then it is easy to check, using properties of the Euler
scheme, that

σ2 ≤ c2

L
∑

ℓ=0

N−1
ℓ m−ℓ

for some positive constant c2 (see Proposition 1 for more details). Giles [8] uses this computation
in order to find the optimal choice of the multilevel Monte Carlo parameters. More precisely,
to obtain a desired root mean squared error (RMSE), say of order 1/nα, for the multilevel
estimator, Giles [8] uses the above computation on σ2 to minimize the total complexity of the
algorithm. It turns out that the optimal choice is obtained for (see Theorem 3.1 of [8])

Nℓ = 2c2n
2α

(

log n

logm
+ 1

)

T

mℓ
, for ℓ ∈ {0, · · · , L} and L =

log n

logm
. (1)

Hence, for an error εn = 1/nα, this optimal choice leads to a complexity for the multilevel
Monte Carlo Euler method proportional to n2α(log n)2 = ε−2

n (log εn)
2. Interesting numerical

tests, comparing three methods (crude Monte Carlo, statistical Romberg and the multilevel
Monte Carlo), were processed in Korn, Korn and Kroisandt [19].

In the present paper, we focus on central limit theorems for the inferred error; a question
which has not been addressed in previous research. To do so, we use techniques adapted to
this setting, based on a central limit theorem for triangular array (see Theorem 2) together
with Toeplitz lemma. It is worth to note that our approach improves techniques developed by
Kebaier [17] in his study of the statistical Romberg method (see Remark 2 for more details).
Hence, our main result is a Lindeberg Feller central limit theorem for the multilevel Monte
Carlo Euler algorithm (see Theorem 4). Further, this allows us to prove a Berry-Essen type
bound on our central limit theorem.

In order to show this central limit theorem, we first prove a stable law convergence theorem,
for the Euler scheme error on two consecutive levels mℓ−1 and mℓ, of the type obtained in Jacod
and Protter [16]. Indeed, we prove the following functional result (see Theorem 3)

√

mℓ

(m− 1)T
(Xℓ,mℓ −Xℓ,mℓ−1

)⇒stably U, as ℓ → ∞,
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where U is the same limit process given in Theorem 3.2 of Jacod and Protter [16]. Our result
uses standard tools developed in their paper but it can not be deduced without a specific and
laborious study. Further, their result, namely

√

mℓ

T
(Xℓ,mℓ −X)⇒stably U, as ℓ → ∞,

is neither sufficient nor appropriate to prove our Theorem 4, since the multilevel Monte Carlo
Euler method involves the error process Xℓ,mℓ −Xℓ,mℓ−1

rather than Xℓ,mℓ −X .
Thanks to Theorem 4 we obtain a precise description for the choice of the parameters to

run the multilevel Monte Carlo Euler method. Afterward, by a complexity analysis we obtain
the optimal choice for the multilevel Monte Carlo Euler method. It turns out that for a total
error of order εn = 1/nα the optimal parameters are given by

Nℓ =
(m− 1)T

mℓ logm
n2α log n, for ℓ ∈ {0, · · · , L} and L =

log n

logm
. (2)

This leads us to a complexity proportional to n2α(logn)2 = ε−2
n (log εn)

2 which is the same order
obtained by Giles [8]. By comparing relations (1) and (2), we note that our optimal sequence
of sample sizes (Nℓ)0≤ℓ≤L does not depend on any given constant, since our approach is based
on proving a central limit theorem and not on obtaining an upper bound for the variance of
the algorithm. However, some numerical tests comparing the runtime with respect to the root
mean square error, show that we are in line with the original work of Giles [8]. Nevertheless,
the major advantage of our central limit theorem is that it fills the gap in the literature for
the multilevel Monte Carlo Euler method and allows to construct a more accurate confidence
interval compared to the one obtained using Chebyshev’s inequality. All these results are
stated and proved in section 3. The next section is devoted to recall some useful stochastic
limit theorems and to introduce our notations.

2 General framework

2.1 Preliminaries

Let (Xn) be a sequence of random variables with values in a Polish space E defined on a
probability space (Ω,F ,P). Let (Ω̃, F̃ , P̃) be an extension of (Ω,F ,P), and let X be an E-
valued random variable on the extension. We say that (Xn) converges in law to X stably and
write Xn ⇒stably X , if

E(Uh(Xn)) → Ẽ(Uh(X))

for all h : E → R bounded continuous and all bounded random variable U on (Ω,F) . This
convergence is obviously stronger than convergence in law that we will denote here by “⇒”.
According to section 2 of Jacod [15] and Lemma 2.1 of Jacod and Protter [16], we have the
following result.

Lemma 1 let Vn and V be defined on (Ω,F) with values in another metric space E ′.

if Vn
P→ V, Xn ⇒stably X then (Vn, Xn) ⇒stably (V,X).
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Conversely, if (V,Xn) ⇒ (V,X) and V generates the σ-field F , we can realize this limit as
(V,X) with X defined on an extension of (Ω,F ,P) and Xn ⇒stably X.

Now, we recall a result on the convergence of stochastic integrals formulated from Theorem 2.3
in Jacod and Protter [16]. This is a simplified version but it is sufficient for our study. Let Xn =
(Xn,i)1≤i≤d be a sequence of Rd-valued continuous semimartingales with the decomposition

Xn,i
t = Xn,i

0 + An,i
t +Mn,i

t , 0 ≤ t ≤ T

where, for each n ∈ N and 1 ≤ i ≤ d, An,i is a predictable process with finite variation, null at
0 and Mn,i is a martingale null at 0.

Theorem 1 Assume that the sequence (Xn) is such that

〈Mn,i〉T +

∫ T

0

∣

∣dAn,i
s

∣

∣

is tight. Let Hn and H be a sequence of adapted, right-continuous and left-hand limited pro-
cesses all defined on the same filtered probability space. If (Hn, Xn) ⇒ (H,X) then X is a
semimartingale with respect to the filtration generated by the limit process (H,X), and we have
(Hn, Xn,

∫

HndXn) ⇒ (H,X,
∫

HdX).

We recall also the following Lindeberg Feller central limit theorem that will be used in the
sequel (see for instance Theorem 7.2 and 7.3 in [1]).

Theorem 2 (central limit theorem for triangular array) Let (kn)n∈N be a sequence such
that kn −→ ∞ as n −→ ∞. For each n, let Xn,1, · · · , Xn,kn be kn independent random variables
with finite variance such that E(Xn,k) = 0 for all k ∈ {1, · · · , kn}. Suppose that the following
conditions hold.

A1. limn→∞

∑kn
k=1 E|Xn,k|2 = σ2, σ > 0.

A2. Lindeberg’s condition: for all ε > 0, limn→∞

∑kn
k=1 E

(

|Xn,k|21{|Xn,k|>ε}

)

= 0. Then

kn
∑

k=1

Xn,k ⇒ N (0, σ2) as n → ∞.

Moreover, if the Xn,k have moments of order p > 2, then the Lindeberg’s condition can be
obtained by the following one

A3 Lyapunov’s condition: limn→∞

∑kn
k=1 E|Xn,k|p = 0.
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2.2 The Euler scheme

Let X := (Xt)0≤t≤T
be the process with values in R

d, solution to

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x ∈ R
d (3)

where W = (W 1, . . . ,W q) is a q-dimensional Brownian motion on some given filtered probabil-
ity space B = (Ω,F , (Ft)t≥0, P ) with (Ft)t≥0 is the standard Brownian filtration, b and σ are
respectively R

d and R
d×q valued functions. We consider the continuous Euler approximation

Xn with step δ = T/n given by:

dXn
t = b(Xηn(t))dt+ σ(Xηn(t))dWt, ηn(t) = [t/δ]δ.

It is well known that under the global Lipschitz condition

(Hb,σ) ∃ CT > 0, such that, |b(x)− b(y)|+ |σ(x)− σ(y)| ≤ CT |y − x|, x, y ∈ R
d,

the Euler scheme satisfies the following property (see e.g. Bouleau and Lépingle [2])

P) ∀p ≥ 1, X,Xn ∈ Lp and E

[

sup
0≤t≤T

|Xt −Xn
t |p
]

≤ Kp(T )

np/2
, with Kp(T ) > 0.

Note that according to Theorem 3.1 of Jacod and Protter [16], under the weaker condition

(H̃b,σ) b and σ are locally Lipschitz with linear growth,

we have only the uniform convergence in probability, namely the property

P̃) sup
0≤t≤T

|Xt −Xn
t |

P−→ 0.

Following the notation of Jacod and Protter [16], we rewrite diffusion (3) as follows

dXt = ϕ(Xt)dYt =

q
∑

j=0

ϕj(Xt)dY
j
t

where ϕj is the j-th column of the matrix σ, for 1 ≤ j ≤ q, ϕ0 = b and Yt := (t,W 1
t , · · · ,W q

t )
′.

Then, the continuous Euler approximation Xn with time step δ = T/n becomes

dXn
t = ϕ(Xn

ηn(t))dYt =

q
∑

j=0

ϕj(X
n
ηn(t))dY

j
t , ηn(t) = [t/δ]δ. (4)

3 The Multilevel Monte Carlo Euler method

Let (Xmℓ

t )0≤t≤T denotes the Euler scheme with time step m−ℓT for ℓ ∈ {0, · · · , L}, where
L = log n/ logm. Noting that

Ef(Xn
T ) = Ef(X1

T ) +
L
∑

ℓ=1

E

(

f(Xmℓ

T )− f(Xmℓ−1

T )
)

, (5)
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the multilevel method is to estimate independently by the Monte Carlo method each of the
expectations on the right-hand side of the above relation. Hence, we approximate Ef(Xn

T ) by

Qn =
1

N0

N0
∑

k=1

f(X1
T,k) +

L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(Xℓ,mℓ

T,k )− f(Xℓ,mℓ−1

T,k )
)

. (6)

Here, it is important to point out that all these L + 1 Monte Carlo estimators have to be
based on different, independent samples. More precisely, for each ℓ ∈ {1, · · · , L} the samples

(Xℓ,mℓ

T,k , Xℓ,mℓ−1

T,k )1≤k≤Nℓ
are independent copies of (Xℓ,mℓ

T , Xℓ,mℓ−1

T ) whose components are the Eu-

ler schemes with time steps m−ℓT respectively m−(ℓ−1)T and simulated with the same Brownian
path. Concerning the first empirical mean, the samples (X1

T,k)1≤k≤N0
are independent copies of

X1
T . The following result gives us a first description of the asymptotic behavior of the variance

in the multilevel Monte Carlo Euler method.

Proposition 1 Assume that b and σ are functions satisfying condition (Hb,σ). For a Lipschitz
continuous function f : Rd −→ R we have

V ar(Qn) = O
(

L
∑

ℓ=0

N−1
ℓ m−ℓ

)

. (7)

Proof : We have

V ar(Qn) = N−1
0 V ar

(

f(X1
T )
)

+
L
∑

ℓ=1

N−1
ℓ V ar

(

f(Xℓ,mℓ

T )− f(Xℓ,mℓ−1

T )
)

≤ N−1
0 V ar

(

f(X1
T )
)

+ 2

L
∑

ℓ=1

N−1
ℓ

(

V ar(f(Xmℓ

T )− f(XT )) + V ar(f(Xmℓ−1

T )− f(XT ))
)

≤ N−1
0 V ar

(

f(X1
T )
)

+ 2[f ]lip

L
∑

ℓ=1

N−1
ℓ E

[

sup
0≤t≤T

∣

∣

∣
Xmℓ

t −Xt

∣

∣

∣

2

+ sup
0≤t≤T

∣

∣

∣
Xmℓ−1

t −Xt

∣

∣

∣

2
]

,

where [f ]lip := supu 6=v
|f(u)−f(v)|

|u−v|
. We complete the proof by using P) on the strong convergence

of the Euler scheme.
�

Inequality (7) indicates the dependence of the variance of Qn on the choice of the parameters
N0, . . . , NL. This variance can be smaller than the variance of f(Xn

T ), so that Qn appears as a
good candidate for the variance reduction.

The main result of this section is a Lindeberg Feller central limit theorem (see Theorem
4 below). In order to prove this result, we need to prove first a new stable law convergence
theorem for the Euler scheme error adapted to the setting of multilevel Monte Carlo algorithm.
This is crucial and is the aim of the following subsection.
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3.1 Stable convergence

In what follows, we prove a stable law convergence theorem, for the Euler scheme error on two
consecutive levels mℓ−1 and mℓ, of the type obtained in Jacod and Protter [16]. Our result in
Theorem 3 below is an innovative contribution on the Euler scheme error that is different and
more tricky than the original work by Jacod and Protter [16] since it involves the error process
Xℓ,mℓ − Xℓ,mℓ−1

rather than Xℓ,mℓ − X . Note that the study of the error Xℓ,mℓ − Xℓ,mℓ−1

as
ℓ → ∞ can be reduced to the study of the error Xmn−Xn as n → ∞ where Xmn and Xn stand
for two Euler schemes with time steps T/(mn) and T/n constructed on the same Brownian
path.

Theorem 3 Assume that b and σ are C1 with linear growth then the following result holds.

For all m ∈ N \ {0, 1},
√

mn

(m− 1)T
(Xmn −Xn) ⇒stably U, as n → ∞,

with (Ut)0≤t≤T the d-dimensional process satisfying

Ut =
1√
2

q
∑

i,j=1

Zt

∫ t

0

H i,j
s dBij

s , t ∈ [0, T ], (8)

where
H i,j

s = (Zs)
−1ϕ̇s,jϕ̄s,i, with ϕ̇s,j := ∇ϕj(Xs) and ϕ̄s,i := ϕi(Xs), (9)

and (Zt)0≤t≤T is the R
d×d valued process solution of the linear equation

Zt = Id +

q
∑

j=0

∫ t

0

ϕ̇s,jdY
j
s Zs, t ∈ [0, T ].

Here, ∇ϕj is a d×d matrix with (∇ϕj)ik is the partial derivative of ϕij with respect to the k-th
coordinate, and (Bij)1≤i,j≤q is a standard q2-dimensional Brownian motion independent of W .
This process is defined on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of the space (Ω,F , (Ft)t≥0,P).

Note that by letting formally m tend to infinity we recover the Jacod and Protter’s result [16].

Proof: Consider the error process Umn,n = (Umn,n
t )0≤t≤T , defined by

Umn,n
t := Xmn

t −Xn
t , t ∈ [0, T ].

Combining relation (4), for both processes Xmn and Xn, together with a Taylor expansion

dUmn,n
t =

q
∑

j=0

ϕ̇n
t,j(X

mn
ηmn(t) −Xn

ηn(t)) dY
j
t ,

where ϕ̇n
t,j is the d× d matrix whose i-th row is the gradient of the real-valued function ϕij at

a point between Xn
ηn(t)

and Xmn
ηmn(t)

. Therefore, the equation satisfied by Un can be written as

Umn,n
t =

∫ t

0

q
∑

j=0

ϕ̇n
s,j U

mn,n
s dY j

s +Gmn,n
t ,

8



with

Gmn,n
t =

∫ t

0

q
∑

j=0

ϕ̇n
s,j(X

n
s −Xn

ηn(s)) dY
j
s −

∫ t

0

q
∑

j=0

ϕ̇n
s,j(X

mn
s −Xmn

ηmn(s)) dY
j
s .

In the following, let (Zmn,n
t )0≤t≤T be the R

d×d valued solution of

Zmn,n
t = Id +

∫ t

0

(

q
∑

j=0

ϕ̇n
s,j dY

j
s

)

Zmn,n
s .

Theorem 48 p.326 in [20], ensures existence of the process ((Zmn,n
t )−1)0≤t≤T defined as the

solution of

(Zmn,n
t )−1 = Id +

∫ t

0

(Zmn,n
s )−1

q
∑

j=1

(ϕ̇n
s,j)

2ds−
∫ t

0

(Zmn,n
s )−1

q
∑

j=0

ϕ̇n
s,jdY

j
s .

Thanks to Theorem 56 p.333 in the same reference [20], we get

Umn,n
t = Zmn,n

t

{

∫ t

0

(Zmn,n
s )−1dGmn,n

s −
∫ t

0

(Zmn,n
s )−1

q
∑

j=1

(ϕ̇n
s,j)

2(Xn
s −Xn

ηn(s)) ds

+

∫ t

0

(Zmn,n
s )−1

q
∑

j=1

(ϕ̇n
s,j)

2(Xmn
s −Xmn

ηmn(s)) ds
}

.

Since the increments of the Euler scheme satisfy

Xn
s −Xn

ηn(s) =

q
∑

i=0

ϕ̄n
s,i(Y

i
s − Y i

ηn(s)) and Xmn
s −Xmn

ηmn(s) =

q
∑

i=0

ϕ̄mn
s,i (Y

i
s − Y i

ηmn(s)),

with ϕ̄n
s,i = ϕi(X

n
ηn(s)

) and ϕ̄mn
s,i = ϕi(X

mn
ηmn(s)

), it is easy to check that

Umn,n
t =

q
∑

i,j=1

Zmn,n
t

∫ t

0

H i,j,mn,n
s (Y i

s − Y i
ηn(s)) dY

j
s + Rmn,n

t,1 +Rmn,n
t,2

−
q
∑

i,j=1

Zmn,n
t

∫ t

0

H̃ i,j,mn,n
s (Y i

s − Y i
ηmn(s)) dY

j
s − R̃mn,n

t,1 − R̃mn,n
t,2 (10)

with

Rmn,n
t,1 =

q
∑

i=0

Zmn,n
t

∫ t

0

Ki,mn,n
s (Y i

s − Y i
ηn(s)) ds, Rmn,n

t,2 =

q
∑

j=1

Zmn,n
t

∫ t

0

H0,j,mn,n
s (s− ηn(s)) dY

j
s ,

and

R̃mn,n
t,1 =

q
∑

i=0

Zmn,n
t

∫ t

0

K̃i,mn,n
s (Y i

s−Y i
ηmn(s)) ds, R̃mn,n

t,2 =

q
∑

j=1

Zmn,n
t

∫ t

0

H̃0,j,mn,n
s (s−ηmn(s)) dY

j
s .

9



where, for (i, j) ∈ {0, · · · , q} × {1, · · · , q},

Ki,mn,n
s = (Zmn,n

s )−1

(

ϕ̇n
s,0ϕ̄

n
s,i −

q
∑

j=1

(ϕ̇n
s,j)

2ϕ̄n
s,i

)

, H i,j,mn,n
s = (Zmn,n

s )−1ϕ̇n
s,jϕ̄

n
s,i,

and

K̃i,mn,n
s = (Zmn,n

s )−1

(

ϕ̇n
s,0ϕ̄

mn
s,i −

q
∑

j=1

(ϕ̇n
s,j)

2ϕ̄mn
s,i

)

, H̃ i,j,mn,n
s = (Zmn,n

s )−1ϕ̇n
s,jϕ̄

mn
s,i .

Now, let us introduce

Zt = Id +

∫ t

0

q
∑

j=0

(

ϕ̇s,j dY
j
s

)

Zs, with ϕ̇t,j = ∇ϕj(Xt).

Moreover, ((Zt)
−1)0≤t≤T exists and satisfies the following explicit linear stochastic differential

equation

(Zt)
−1 = Id +

∫ t

0

(Zs)
−1

q
∑

j=1

(ϕ̇s,j)
2ds−

∫ t

0

(Zs)
−1

q
∑

j=0

ϕ̇s,jdY
j
s .

Thanks to the uniform convergence in probability of the Euler scheme and according to Theorem
2.5 in Jacod and Protter [16], we have

sup
0≤t≤T

|Zmn,n
t − Zt| P→ 0 and sup

0≤t≤T

∣

∣(Zmn,n
t )−1 − (Zt)

−1
∣

∣

P→ 0. (11)

Furthermore, in relation (10), one can replace respectively H i,j,mn,n
s and H̃ i,j,mn,n

s by their
common limit H i,j

s given by relation (9). So that relation (10) becomes

Umn,n
t =

q
∑

i,j=1

Zmn,n
t

∫ t

0

H i,j
s (Y i

ηmn(s) − Y i
ηn(s)) dY

j
s + Rmn,n

t , (12)

with
Rmn,n

t = Rmn,n
t,1 +Rmn,n

t,2 +Rmn,n
t,3 − R̃mn,n

t,1 − R̃mn,n
t,2 − R̃mn,n

t,3

where Rmn,n
t,i and R̃mn,n

t,i , i ∈ {1, 2}, are introduced by relation (10) and

Rmn,n
t,3 =

q
∑

i,j=1

Zmn,n
t

∫ t

0

(H i,j,mn,n
s −H i,j

s )(Y i
s − Y i

ηn(s)) dY
j
s

R̃mn,n
t,3 =

q
∑

i,j=1

Zmn,n
t

∫ t

0

(H̃ i,j,mn,n
s −H i,j

s )(Y i
s − Y i

ηmn(s)) dY
j
s ,

The remainder term process Rmn,n vanishes with rate
√
n in probability. More precisely, we

have the following convergence result.

10



Lemma 2 The rest term introduced in relation (12) is such that sup0≤t≤T

∣

∣

√
nRmn,n

t

∣

∣ converges
to zero in probability as n tends to infinity.

For the reader’s convenience, the proof of this lemma is postponed to the end of the current
subsection.

The task is now to study the asymptotic behavior of the process given by relation (12)

q
∑

i,j=1

√
nZmn,n

t

∫ t

0

H i,j
s (Y i

ηmn(s) − Y i
ηn(s)) dY

j
s .

In order to study this process, we introduce the martingale process,

Mn,i,j
t =

∫ t

0

(Y i
ηmn(s) − Y i

ηn(s)) dY
j
s , (i, j) ∈ {1, · · · , q}2,

and we proceed to a preliminary calculus of the expectation of its bracket. Let (i, j) and (i′, j′) ∈
{1, · · · , q}2, we have

• for j 6= j′, the bracket 〈Mn,i,j,Mn,i′,j′〉 = 0

• for j = j′ and i 6= i′, E〈Mn,i,j ,Mn,i′,j〉 = 0

• for j = j′ and i = i′, E〈Mn,i,j〉t =
∫ t

0
(ηmn(s)− ηn(s)) ds, t ∈ [0, T ] and we have

E(〈Mn,i,j〉t) =

∫ ηn(t)

0

(ηmn(s)− ηn(s))ds+O(
1

n2
)

=

m−1
∑

ℓ=0

[t/δ]−1
∑

k=0

∫ (mk+ℓ+1)δ/m

(mk+ℓ)δ/m

(ηmn(s)− ηn(s)) ds+O(
1

n2
)

=

m−1
∑

ℓ=0

[t/δ]−1
∑

k=0

δ2

m

(

mk + ℓ

m
− k

)

+O(
1

n2
) =

(m− 1)δ2

2m
[t/δ] +O(

1

n2
)

=
(m− 1)T

2mn
t+O(

1

n2
). (13)

Having disposed of this preliminary evaluations, we can now study the stable convergence

of
(
√

2mn
(m−1)T

Mn,i,j
)

1≤i,j≤q
. By virtue of Theorem 2-1 in [15], we need to study the asymptotic

behavior of both brackets n〈Mn,i,j,Mn,i′,j′〉t and
√
n〈Mn,i,j, Y j′〉t, for all t ∈ [0, T ] and all

(i, j, i′, j′) ∈ {1, · · · , q}4. The case j 6= j′ is obvious and we only proceed to prove that

• for j = j′,
√
n〈Mn,i,j, Y j〉t P−→

n→∞
0, for all t ∈ [0, T ].

• for j = j′ and i 6= i′, n〈Mn,i,j,Mn,i′,j〉t P−→
n→∞

0, for all t ∈ [0, T ].

• for j = j′ and i = i′, n〈Mn,i,j〉t P−→
n→∞

(m−1)T
2m

t, for all t ∈ [0, T ].

11



For the first point, we consider the L2 convergence

E〈Mn,i,j, Y j〉2t = E

(
∫ t

0

(Y i
ηmn(s) − Y i

ηn(s))ds

)2

=

∫ t

0

∫ t

0

E
(

(Y i
ηmn(s) − Y i

ηn(s))(Y
i
ηmn(u) − Y i

ηn(u))
)

dsdu

= 2

∫

0<s<u<t

g(s, u)dsdu

with

g(s, u) = ηmn(s) ∧ ηmn(u)− ηmn(s) ∧ ηn(u)− ηn(s) ∧ ηmn(u) + ηn(s) ∧ ηn(u). (14)

It is worthy to note that

ηn(s) ≤ ηmn(s) ≤ s ≤ ηn(u) ≤ ηmn(u) ≤ u, ∀ s ≤ ηn(u). (15)

Hence g(s, u) = 0, for s ≤ ηn(u), g(s, u) = ηmn(s)− ηn(s), for ηn(u) < s < u, and

E 〈Mn,i,j, Y j〉2t = 2

∫

0<ηn(u)<s<u<t

(ηmn(s)− ηn(s)) dsdu ≤ 2
T

n

∫ t

0

(u− ηn(u))du ≤ 2
T 2

n2
t.

This yields the desired result. Concerning the second point, the L2 norm is given by

E〈Mn,i,j,Mn,i′,j〉2t = E

(
∫ t

0

(Y i
ηmn(s) − Y i

ηn(s))(Y
i′

ηmn(s) − Y i′

ηn(s))ds

)2

=

∫ t

0

∫ t

0

(

E
(

(Y i
ηmn(s) − Y i

ηn(s))(Y
i
ηmn(u) − Y i

ηn(u))
))2

dsdu

= 2

∫

0<s<u<t

g(s, u)2dsdu,

with the same function g given in relation (14). By properties of g developed above, we have
in the same manner

E〈Mn,i,j,Mn,i′,j〉2t = 2

∫

0<ηn(u)<s<u<t

(ηmn(s)− ηn(s))
2dsdu ≤ 2

T 3

n3
t,

which proves our claim. For the last point, that is the essential one, taking into account the
development of E〈Mn,i,j〉t given by relation (13) we obtain

E

(

n〈Mn,i,j〉t −
(m− 1)T

2m
t

)2

= n2
E〈Mn,i,j〉2t −

(m− 1)2T 2

4m2
t2 +O(

1

n
). (16)

Otherwise, we have

E〈Mn,i,j〉2t = E

(
∫ t

0

(Y i
ηmn(s) − Y i

ηn(s))
2ds

)2

=

∫ t

0

∫ t

0

E
(

(Y i
ηmn(s) − Y i

ηn(s))
2(Y i

ηmn(u) − Y i
ηn(u))

2
)

dsdu

= 2

∫

0<s<u<t

h(s, u)dsdu (17)

12



with
h(s, u) = E

(

(Y i
ηmn(s) − Y i

ηn(s))
2(Y i

ηmn(u) − Y i
ηn(u))

2
)

. (18)

On one hand, for s ≤ ηn(u), by property (15) and since the increments Y i
ηmn(s)

− Y i
ηn(s)

and

Y i
ηmn(u)

− Y i
ηn(u)

are independent, it follows immediately that

h(s, u) = (ηmn(s)− ηn(s))(ηmn(u)− ηn(u)).

On the other hand, in relation (18) we use the Cauchy-Schwartz inequality to get h(s, u) =
O( 1

n2 ) and this yields
∫

0<ηn(u)<s<u<t

h(s, u)dsdu = O(
1

n3
).

Now, noting that (ηmn(s)− ηn(s))(ηmn(u)− ηn(u)) = O( 1
n2 ), relation (17) becomes

E
(

〈Mn,i,j〉2t
)

= 2

∫

0<s<u<t

(ηmn(s)− ηn(s))(ηmn(u)− ηn(u))dsdu+O(
1

n3
)

=

(
∫ t

0

(ηmn(s)− ηn(s))ds

)2

+O(
1

n3
).

Once again thanks to the development of E(〈Mn,i,j〉t) given by relation (13), we deduce that

E〈Mn,i,j〉2t =
(m− 1)2T 2

4m2n2
t2 +O(

1

n3
). (19)

Combining relations (16) and (19), we deduce the convergence in L2 of n〈Mn,i,j〉t towards
(m−1)T

2m
t. By virtue of Theorem 2-1 in Jacod [15],

(
√

2mn
(m−1)T

Mn,i,j
)

1≤i,j≤q
converges in law stably

to a standard q2-dimensional Brownian motion (Bij)1≤i,j≤q independent of W . Consequently,
by Lemma 1 and Theorem 1, we obtain
(
√

mn

(m− 1)T

∫ t

0

H i,j
s (Y i

ηmn(s) − Y i
ηn(s)) dY

j
s , t ≥ 0

)

1≤i,j≤q

⇒stably

(
∫ t

0

H i,j
s

dBij
s√
2
, t ≥ 0

)

1≤i,j≤q

Finally, we complete the proof using relations (11), (12), Lemma 2 and once again Lemma 1 to
obtain

√

mn

(m− 1)T
Umn,n ⇒stably U, where Ut =

1√
2

q
∑

i,j=1

Zt

∫ t

0

H i,j
s dBij

s .

�

Proof of Lemma 2 : At first, we prove the uniform convergence in probability toward zero
of the normalized rest terms

√
nRmn,n

t,i for i ∈ {1, 2}. The convergence of
√
nR̃mn,n

t,i i ∈ {1, 2} is
a straightforward consequence of the previous one. The main part of these rest terms can be
represented as integrals with respect to three types of supermartingales that can be classified
through the following three cases

Dn,0,0
t =

√
n

∫ t

0

(s−ηn(s)) ds, Dn,i,0
t =

√
n

∫ t

0

(Y i
s −Y i

ηn(s)) ds, Mn,0,j
t =

√
n

∫ t

0

(s−ηn(s)) dY
j
s ,
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where (i, j) ∈ {1, · · · , q}2 and t ∈ [0, T ]. In the first case the supermartingale is deterministic
of finite variation and its total variation on the interval [0, T ] has the following expression

∫ T

0

∣

∣dDn,0,0
t

∣

∣ =
√
n

∫ T

0

(s− ηn(s)) ds ≤
T 2

√
n
.

So, the process Dn,0,0 converges to 0 and is tight. In the second case, for i ∈ {1, · · · , q}, the
supermartingale is also of finite variation and its total variation on the interval [0, T ] has the
following expression

∫ T

0

∣

∣dDn,i,0
t

∣

∣ =
√
n

∫ T

0

|Y i
s − Y i

ηn(s)| ds.

It is clear that supn E

(

∫ T

0
|dDn,i,0

s |
)

< ∞ which ensures the tightness of the process Dn,i,0.

Therefore, we only need to establish the convergence of Dn,i,0
t towards 0 in L2(Ω), for t ∈ [0, T ].

In fact, we have

E
(

(Dn,i,0
t )2

)

= 2n

∫

0<s<u<t

E
(

(Y i
s − Y i

ηn(s))(Y
i
u − Y i

ηn(u))
)

ds du.

When s ≤ ηn(u), we have ηn(s) ≤ s ≤ ηn(u) ≤ u and by independence of the Brownian motion
increments, we deduce that the integrand term is equal to 0. Otherwise, when s ≥ ηn(u), we
apply the Cauchy Schwartz inequality to get

E
(

(Dn,i,0
t )2

)

≤ 2T

∫ t

0

(u− ηn(u))du ≤ 2
T 2

n
t.

It follows from all these that Dn,i,0 ⇒ 0. In the last case, for j ∈ {1, · · · , q}, the process Mn,0,j
t

is a square integrable martingale and its bracket has the following expression

〈Mn,0,j〉T = n

∫ T

0

(s− ηn(s))
2 ds ≤ T 3

n
.

It is clear that supn E〈Mn,0,j〉T < ∞, so we deduce the tightness of the process 〈Mn,0,j〉 and
the convergence Mn,0,j ⇒ 0.

Now thanks to property P̃) and relation (11), it is easy to check that the integrand processes
Ki,mn,n

s and H0,j,mn,n
s , introduced in relation (10), converge uniformly in probability to their

respective limits Ki
s = (Zs)

−1
(

ϕ̇s,0ϕ̄s,i −
∑q

j=1(ϕ̇s,j)
2ϕ̄s,i

)

and H0,j
s = (Zs)

−1ϕ̇s,jϕ̄s,i, where

ϕ̇s,j = ∇ϕj(Xs) and ϕ̄s,i = ϕi(Xs). Therefore, by Theorem 1 we deduce that the integral
processes given by

√
n

∫ t

0

Ki,mn,n
s (Y i

s − Y i
ηn(s)) ds and

√
n

∫ t

0

H0,j,mn,n
s (s− ηn(s)) dY

j
s

vanish. Consequently, we conclude using relation (11) that
√
nRmn,n

i ⇒ 0 for i ∈ {1, 2}.
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We now proceed to prove that Rmn,n
3 ⇒ 0. The convergence of the process R̃mn,n

3 toward 0 is
obviously obtained from the previous one. The main part of this rest term can be represented
as a stochastic integral with respect to the martingale process given by

Nn,i,j
t =

√
n

∫ t

0

(Y i
s − Y i

ηn(s)) dY
j
s ,

with (i, j) ∈ {1, · · · , q} × {1, · · · , q}. It was proven in Jacod and Protter [16] that

√

n

T
Nn,i,j ⇒stably Bij

√
2
,

where (Bij)1≤i,j≤q is a standard q2-dimensional Brownian motion defined on an extension
(Ω̃, F̃ , (F̃t)t≥0, P̃) of the space (Ω,F , (Ft)t≥0,P), which is independent of W . Thanks to prop-
erty P̃) and relation(11), the integrand process H i,j,mn,n−H i,j ⇒ 0 and once again by Theorem
1 we deduce that the integral processes given by

√
n

∫ t

0

(H i,j,mn,n
s −H i,j

s )(Y i
s − Y i

ηn(s)) dY
j
s

vanish. All this allows us to conclude using relation (11). �

3.2 Central limit theorem

Let us recall that the multilevel Monte Carlo method uses information from a sequence of
computations with decreasing step sizes and approximates the quantity Ef(XT ) by

Qn =
1

N0

N0
∑

k=1

f(X1
T,k) +

L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(Xℓ,mℓ

T,k )− f(Xℓ,mℓ−1

T,k )
)

, m ∈ N \ {0, 1} and L =
log n

logm
.

In the same way as in the case of a crude Monte Carlo estimation, let us assume that the
discretization error

εn = Ef(Xn
T )− Ef(XT )

is of order 1/nα for any α ∈ [1/2, 1]. Taking advantage from the limit theorem proven in the
above section, we are now able to establish a central limit theorem of Lindeberg Feller type on
the multilevel Monte Carlo Euler method. To do so, we introduce a real sequence (aℓ)ℓ∈N of
positive terms such that

(W) lim
L→∞

L
∑

ℓ=1

aℓ = ∞ and lim
L→∞

1
(

∑L
ℓ=1 aℓ

)p/2

L
∑

ℓ=1

a
p/2
ℓ = 0, for p > 2.

and we assume that the sample size Nℓ depends on the rest of parameters by the relation

Nℓ =
n2α(m− 1)T

mℓaℓ

L
∑

ℓ=1

aℓ, ℓ ∈ {0, · · · , L} and L =
log n

logm
. (20)
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We choose this form for Nℓ because it is a generic form allowing us a straightforward use of
Toeplitz lemma that is a crucial tool used in the proof of our central limit theorem. Indeed,
property (W) implies that if (xℓ)ℓ≥1 is a sequence converging to x ∈ R as ℓ tends to infinity
then

lim
L→+∞

∑L
ℓ=1 aℓxℓ
∑L

ℓ=1 aℓ
= x.

In the sequel, we will denote by Ẽ respectively Ṽ ar the expectation respectively the variance
defined on the probability space (Ω̃, F̃ , P̃) introduced in Theorem 3. We can now state the
central limit theorem under strengthened conditions on the diffusion coefficients.

Theorem 4 Assume that b and σ are C1 functions satisfying the global Lipschitz condition
(Hb,σ). Let f be a real valued function satisfying

(Hf ) |f(x)− f(y)| ≤ C(1 + |x|p + |y|p)|x− y|, for some C, p > 0.

Assume P(XT /∈ Df) = 0, where Df := {x ∈ R
d; f is differentiable at x}, and that for some

α ∈ [1/2, 1] we have

(Hεn) lim
n→∞

nαεn = Cf(T, α).

Then, for the choice of Nℓ, ℓ ∈ {0, 1, · · · , L} given by equation (20), we have

nα
(

Qn − E (f(XT ))
)

⇒ N
(

Cf(T, α), σ
2
)

with σ2 = Ṽ ar
(

∇f(XT ).UT

)

and N (Cf(T, α), σ
2) denotes a normal distribution.

The global Lipschitz condition (Hb,σ) seems to be essential to establish our result, since it
ensures property P). Otherwise, Hutzenthaler, Jentzen and Kloeden [14] prove that under
weaker conditions on b and σ the multilevel Monte Carlo Euler method may diverges whereas
the crude Monte Carlo method converges.

Proof: To simplify our notations we give the proof for α = 1, the case α ∈ [1/2, 1) is a
straightforward deduction. Combining relations (5) and (6) together we get

Qn − E (f(XT )) = Q̂1
n + Q̂2

n + εn,

where

Q̂1
n =

1

N0

N0
∑

k=1

(

f(X1
T,k)− E

(

f(X1
T )
))

Q̂2
n =

L
∑

ℓ=1

1

Nℓ

Nℓ
∑

k=1

(

f(Xℓ,mℓ

T,k )− f(Xℓ,mℓ−1

T,k )− E

(

f(Xℓ,mℓ

T )− f(Xℓ,mℓ−1

T )
))

.
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Using assumption (Hεn) we obviously obtain the term Cf(T, α) in the limit. Taking N0 =
n2(m−1)T

a0

∑L
ℓ=1 aℓ, we can apply the classical central limit theorem to Q̂1

n. Then we have nQ̂1
n

P→
0. Finally, we have only to study the convergence of nQ̂2

n and we will conclude by establishing

nQ̂2
n ⇒ N

(

0, Ṽ ar
(

∇f(XT ).UT

)

)

.

To do so, we plan to use Theorem 2 with the Lyapunov condition and we set

Xn,ℓ :=
n

Nℓ

Nℓ
∑

k=1

Zmℓ,mℓ−1

T,k and Zmℓ,mℓ−1

T,k := f(Xℓ,mℓ

T,k )− f(Xℓ,mℓ−1

T,k )− E

(

f(Xℓ,mℓ

T,K )− f(Xℓ,mℓ−1

T,k )
)

.

(21)
In other words, we will check the following conditions :
• limn→∞

∑L
ℓ=1 E(Xn,ℓ)

2 = Ṽ ar
(

∇f(XT ).UT

)

• (Lyapunov condition) there exists p > 2 such that limn→∞

∑L
ℓ=1 E |Xn,ℓ|p = 0.

For the first one, we have

L
∑

ℓ=1

E(Xn,ℓ)
2 =

L
∑

ℓ=1

V ar(Xn,ℓ) =

L
∑

ℓ=1

n2

Nℓ
V ar

(

Zmℓ,mℓ−1

T,1

)

=
1

∑L
ℓ=1 aℓ

L
∑

ℓ=1

aℓ
mℓ

(m− 1)T
V ar

(

Zmℓ,mℓ−1

T,1

)

. (22)

Otherwise, since P(XT /∈ Df) = 0, applying the Taylor expansion theorem twice we get

f(Xℓ,mℓ

T )− f(Xℓ,mℓ−1

T ) = ∇f(XT ).U
mℓ,mℓ−1

T +

(Xℓ,mℓ

T −XT )ε(XT , X
ℓ,mℓ

T −XT )− (Xℓ,mℓ−1

T −XT )ε(XT , X
ℓ,mℓ−1

T −XT ).

The function ε is given by the Taylor-Young expansion, so it satisfies ε(XT , X
ℓ,mℓ

T −XT )
P−→

ℓ→∞
0

and ε(XT , X
ℓ,mℓ−1

T −XT )
P−→

ℓ→∞
0. By property P) we get the tightness of

√

mℓ

(m−1)T
(Xℓ,mℓ

T −XT )

and
√

mℓ

(m−1)T
(Xℓ,mℓ−1

T −XT ) and we deduce

√

mℓ

(m− 1)T

(

(Xℓ,mℓ

T −XT )ε(XT , X
ℓ,mℓ

T −XT )− (Xℓ,mℓ−1

T −XT )ε(XT , X
ℓ,mℓ−1

T −XT )
)

P−→
ℓ→∞

0.

So, according to Lemma 1 and Theorem 3 we conclude that
√

mℓ

(m− 1)T

(

f(Xℓ,mℓ

T )− f(Xℓ,mℓ−1

T )
)

⇒stably ∇f(XT ).UT , as ℓ → ∞. (23)

Using (Hf ) it follows from property P) that

∀ε > 0, sup
ℓ

E

∣

∣

∣

∣

∣

√

mℓ

(m− 1)T

(

f(Xℓ,mℓ

T )− f(Xℓ,mℓ−1

T )
)

∣

∣

∣

∣

∣

2+ε

< ∞.
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We deduce using relation (23) that

E

(
√

mℓ

(m− 1)T

(

f(Xℓ,mℓ

T )− f(Xℓ,mℓ−1

T )
)

)k

→ Ẽ

(

∇f(XT ).UT

)k

< ∞ for k ∈ {1, 2}.

Consequently,
mℓ

(m− 1)T
V ar(Zmℓ,mℓ−1

T,1 ) −→ Ṽ ar (∇f(XT ).UT ) < ∞.

Hence combining this result with relation (22), we obtain the first condition using Toeplitz
lemma. Concerning the second one, by Burkholder’s inequality and elementary computations,
we get for p > 2

E|Xn,ℓ|p =
np

Np
ℓ

E

∣

∣

∣

∣

∣

Nℓ
∑

ℓ=1

Zmℓ,mℓ−1

T,1

∣

∣

∣

∣

∣

p

≤ Cp
np

N
p/2
ℓ

E

∣

∣

∣
Zmℓ,mℓ−1

T,1

∣

∣

∣

p

, (24)

where Cp is a numerical constant depending only on p. Otherwise, property P) ensures the
existence of a constant Kp > 0 such that

E
∣

∣Zmℓ,mℓ−1

T,1

∣

∣

p ≤ Kp

mpℓ/2
.

Therefore
L
∑

ℓ=1

E |Xn,ℓ|p ≤ C̃p

L
∑

ℓ=1

np

N
p/2
ℓ mpℓ/2

≤ C̃p
(

∑L
ℓ=1 aℓ

)p/2

L
∑

ℓ=1

a
p/2
ℓ −→

n→∞
0. (25)

This completes the proof. �

Remark 1 From Theorem 2 page 544 in [6], we prove a Berry-Essen type bound on our central
limit theorem. This improves the relevance of the above result. Indeed, take α = 1 as in the
proof, for Xn,0 = nQ̂1

n and Xn,ℓ given by relation (21), with ℓ ∈ {1, · · · , L}, put

s2n =
L
∑

ℓ=0

E|Xn,ℓ|2, ρn =
L
∑

ℓ=0

E|Xn,ℓ|3

and denote by Fn the distribution function of n(Qn − Ef(Xn
T ))/sn. Then for all x ∈ R and

n ∈ N
∗

|Fn(x)−G(x)| ≤ 6
ρn
s3n

, (26)

where G is the distribution function of a standard Gaussian random variable. If we interpret
the output of the above inequality as sum of independent individual path simulation, we get

s2n =
1

(m− 1)T
∑L

ℓ=1 aℓ

(

a0V ar
(

f(X1
T )
)

+
L
∑

ℓ=1

aℓm
ℓV ar

(

f(Xℓ,mℓ

T )− f(Xℓ,mℓ−1

T )
)

)

.
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According to the above proof, it is clear that sn behaves like a constant but getting lower bounds
for sn seems not to be a common result to our knowledge. Concerning ρn, taking p = 3 in both
inequalities (24) and (25) gives us an upper bound. In fact, when f is Lipschitz, there exists a
positive constant C depending on b, σ, T and f such that

ρn ≤ C
(

∑L
ℓ=1 aℓ

)3/2

L
∑

ℓ=1

a
3/2
ℓ .

For the optimal choice aℓ = 1, given in the below subsection, the obtained Berry-Essen type
bound is of order 1/

√
logn.

Remark 2 Note that the above proof differs from the ones in Kebaier [17]. In fact, here
our proof is based on the central limit theorem for triangular array which is adapted to the
form of the multilevel estimator, whereas Kebaier used a crude approach based on studying the
associated characteristic function. Further, this latter approach needs a control on the third
moment, whereas we only need to control a moment strictly greater than two. Also, it is worth
to note that the limit variance in Theorem 4 is smaller than the limit variance in Theorem 3.2
obtained by Kebaier in [17].

3.3 Complexity analysis

From a complexity analysis point of view, we can interpret Theorem 4 as follows. For a total
error of order 1/nα the computational effort necessary to run the multilevel Monte Carlo Euler
method is given by the sequence of sample sizes specified by relation (20). The associated time
complexity is given by:

CMMC = C ×
(

N0 +
L
∑

ℓ=1

Nℓ(m
ℓ +mℓ−1)

)

with C > 0

= C ×
(

n2α(m− 1)T

a0

L
∑

ℓ=1

aℓ + n2α (m
2 − 1)T

m

L
∑

ℓ=1

1

aℓ

L
∑

ℓ=1

aℓ

)

.

The minimum of the second term of this complexity is reached for the choice of weights a∗ℓ = 1,
ℓ ∈ {1, · · · , L}, since the Cauchy-Schwartz inequality ensures that L2 ≤∑L

ℓ=1
1
aℓ

∑L
ℓ=1 aℓ, and

the optimal complexity for the multilevel Monte Carlo Euler method is given by

CMMC = C ×
(

(m− 1)T

a0 logm
n2α log n+

(m2 − 1)T

m(logm)2
n2α(logn)2

)

= O
(

n2α(logn)2
)

.

It turns out that for a given discretization error εn = 1/nα to be achieved the complexity is
given by CMMC = O (ε−2

n (log εn)
2). Note that this optimal choice a∗ℓ = 1, ℓ ∈ {1, · · · , L}, with

taking a0 = 1 corresponds to the sample sizes given by

Nℓ =
(m− 1)T

mℓ logm
n2α log n, ℓ ∈ {0, · · · , L}.
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Figure 1: Comparison of both routines.

Hence, our optimal choice is consistent with that proposed by Giles [8]. Nevertheless, unlike
the parameters obtained by Giles [8] for the same setting (see relation (1)), our optimal choice of
the sample sizes Nℓ, ℓ ∈ {1, · · · , L} does not depend on any given constant, since our approach
is based on proving a central limit theorem and not on getting upper bounds for the variance.
Otherwise, for the same error of order εn = 1/nα the optimal complexity of a Monte Carlo
method is given by

CMC = O
(

n2α+1
)

= O
(

ε−2−1/α
n

)

which is clearly larger than CMMC. So we deduce that the multilevel method is more efficient.
Note also that the optimal choice of the parameter m is obtained for m∗ = 7. Otherwise, any
choice N0 = n2α(log n)β, 0 < β < 2, leads to the same result. Some numerical tests comparing
original Giles work [8] with the one of us show that both error rates are in line. Here in Figure
1, we make a simple log-log scale plot of CPU time with respect to the root mean square error,
for European call and with N0 = n2α(log n)1.9.

It is worth to note that the advantage of the central limit theorem is to construct a more
accurate confidence interval. In fact, for a given root mean square error RMSE, the radius of
the 90%-confidence interval constructed by the central limit theorem is 1.64×RMSE. However,
without this latter result one can only use Chebyshev’s inequality which yields a radius equal
to 3.16×RMSE. Finally note that, taking α = 1/2 still gives the optimal rate and allows us to
cancel the bias in the central limit theorem due to the Euler discretization.
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4 Conclusion

The multilevel Monte Carlo algorithm is a method that can be used in a general frame-
work: as soon as we use a discretization scheme in order to compute quantities such as
Ef (Xt, 0 ≤ t ≤ T ), we can implement the statistical multilevel algorithm. And this is worth
because it is an efficient method according to the original work by Giles [8]. The central limit
theorems derived in this paper fill the gap in literature and confirm superiority of the multilevel
method over the classical Monte Carlo approach.

Acknowledgments The authors are greatly indebted to the Associate Editor and the referees
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