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ABSTRACT

Birkhoff’s pointwise ergodic theorem with the shift operator over [0, 1)F yields a
new practical method to compute expectations of functionals of stochastic process.
N-1

Indeed ;\’— ZF o 8" converges to EF, as N converges toward infinity, almost surely.

n=0

By numerical simulations we will explain the efficiency of this method especially
when compared to the classic Monte-Carlo one. 1t will furthermore be proven that
under suitable assumptions a central limit theorem holds. These assumptions are
satisfied in most encountered practical problems. It will precisely be fulfilled when
F ¢ L¥]0,1]%, Fp) with a stopping time T having a moment of order p, p > 2.
Moreover, under this assumptions a “weak” law of iterated logarithm applies. Such
that :

N-1
Ye > 0 |~11\7 Z;’F 08" — EF| = o( N7 (log(N))3+) dz®Va.s..
Numerical simulations were processed.

1 INTRODUCTION.

Concerning nuinerical simulations in large dimension or for randomn processes, the
use of BirkhofF’s pointwise ergodic theorem in the case of the shift operator, turns out

to be a an efficient method in many aspects, especially when taking into account its
133
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implementation on computers (see Bouleau[3]). Therefore it is interesting to study
in details the laws that rule the behavior of this method and the rate of convergence
for the functions currently encountered in actual simulations.

Let [0,1]% be the product space of the interval {0.1]. with the Lebesgue’s measure

A = dz%" and let 8 be the shift operator. defined on [0, 1] as follow
O(U Uy Uy o) = (U Uy Uy )

It is easy to clieck that (X)) = A, where §(\) is the image measure of Aby 8. Itis
well known that the dynamic system ([0, 1]5, B({0. 1}%%), A.6) is ergodic
(see Krengel{]). Therefore, it derives from the Birkhoff pointwise ergodic theorem,

that :
Nt

ZFO()"——EF A - s, (1)

n=0

1
AT
for every A-integrable function I on [0, 1.
Let us recall two results for the shift operator over ({0, 11, B([0, 1]°"), A, 8)
(see. Krengel [3})), we deduce that the rate of convergence can be arbitrarily slow or
arbitrarily close to 0{4).
On aone hand : for every sequence (@, )yer.an > 0,a, — 0. there exist a continuous
function T over [0, 1]" of real values such that

P 1N
(=S Fof" - EF|)—nX. A= a.s..
QN(‘N%["G EF|)——oc a.s

On the other hand : for every sequence (¢, )aeu.€, > 0, increasing toward infinity,

with ¢; > 2, there exist a measurable set A with P(A) = %, for which

VAN 1—1—‘\2_11\09%11(9—'.

N 2'7 N

One goal of this paper is to explain to the reader, with examples inspired by ac-

tual problems, the interest of this method. We will study the asymptotic law of
N1

ﬁ(z Fo@ — NEF) and determine the fate of convergence for several classes of

n=0
functions usually employed in actual shmulations.

Through out this paper, we will denote :

0% = o*(F)=Var(F)+ 2 cou(F ol F),

k=1

if the series Lcov(]’ 0 6, F) is converging, and ¢” = +00 otherwise. Furthermore,
k=1
let set :

Var(F) = E(F —EF)?® |, cov(F,G) = E(F - EF)(G - EG))

for all F,G € L*((0,1}").
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The first part of this paper is_dedicated to the purely numerical aspects of the
method. Indeed the particularities of jts impleientation on computer will be dis-
cussed and its efficiency will be tested by simulation, especially in comparaison with
the classic Monte-Carlo method. In the second part the theoretical results, base on
hypothesis that are usually satisfied during simulation. will be presented. It will
furthermore be proven that if T is a stopping time having a moment of order P,
P > 2and if F is a function of L?, Fp-measurable with null integral, then the central
limit theorem applies and a “weak” law of iterated logarithm holds. Indeed, on a

one hand : .
1 Y=l

=S Fog" £ \(0;1), (2)
n=0

oV

With A(0;1) the standard normal distribution and —*- means convergence in dis-

tribution. On the other hand :
N-1

Y F o —EF| = o N ¥ (log(N))3+¢) A - p.s..

n=0
* (3)
The third part illustrates with numerical simulations the theoretical results obtained

1
Ve >0 Ij—\"

in the second one. Furthemore, we will note that usual law of iterated logarithmn is

verified by simulation.

2 NUMERICAL ASPECT OF THE METHOD.

The modelling of random phenomena has often to deal with discret time processes
such as : particles motion, the discretization of stochastic differential equations, ctc.
Very often these processes are Markov chains. We will describe how to implement
such a chain with the shift method.
Let X, a Markov chain defined by :

-X’O =X, /Yn+l - ]1(4"(113 n, h(U'n(H»ly Tt (/(”+l)d))v

where U, are i.i.d. random variables with the uniform distribution on the interval
[0,1]. Therefore the process (X )nex admits a representation on ([0, 1N, dz®¥),

Let T be the reaching time of the Borel set A, T = inf{n > 1;X, € A}. We
associate to the stopping time T the class of functions defined by F''= G(Xy,T).
The expectation EG(Xy,T) can be evaluated by Birkhofl’s theorem, because

1=l ,
EG(Xy,T) = I\]'i_x}gc W.Z G(X¢,T) o g A—a.s., (4)

n=0
as soon as G(X7,T) € L'. The practical implementation of this algorithm calls

upon the notion of pointer (or any other process equivalent to stock management).
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FIG 1.

Xo

1

In order to apply equation (3), G{(X7,T) has to be evaluated at the successive points
U, 84U, 6%4(U), ... of [0, 1]F, each of them being a [0,1]-valued sequence
v
U = (UhU?v'"1lid1"'aUL‘1”')
od(U) (Ud+laUd+23"'1U‘Jd:"'de+ks"')

i

Therefore, if the stopping time T is almost surely finite, which is what we assume
here, the evaluation of G(Xz,T) depends only on a finite number of coordinates
along each trajectory U = (Uy,Us,+ <+, U, -+ ) . The sequence U already computed
until the indice k = dT(U) where T(U) is determined by the test

X, still outside A = n<T(U)

< lest > { X, € A for the first time = n=T()

Let us assume that G(Xr,T) was evaluated at the point U= (U,Us,-), and
that the value of intermediate terms, ¥, = b(Upm-1yas1, -2 Und)y 1 S 7 < T(U),
were placed in pointers as shown in FIG 1. The simulation of G(Xr,T) along the tra-
jectory 8%(U) = (Uassr, Ugya, - - ) will be casier because the intermediate evaluation
of the Yi's associated to 84U} is partially done. Indeed, either T(O4U)) < T(U)
and no other computation is required, or the chain has just to be lengthen from
T(U) to T(8°(U)). If the second case occurs the FIG 2 holds .

In this diagrams the arrows represent the evaluation of :

Xn-i~l = II(‘XH$ nvh(Undi-ly Tt (—"v(n-f-l)rl)) = ]1(-x'ny7lv),n+l)'
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Y'Z Y;} """ Yn """ \.n
Xo ‘Il 1‘2 ‘In«l"” —_— ‘In'-l
test=F]  (test=F) test=F
FIG 2.
It is clear that the performances of this method derive emanate from the storage

box that permits to avoid redoing the partial products of the variables Yi. Of course

this storage has to be done during the lfigthening of the sequence when this latter

is needed as explained above.,

In the rest of this part we will test the efficiency of this methad, we will compare it
to the classical method of Monte-Carlo and we will emphasize through an example
the saving of C.P.U time, as well as its saving in randomn number. Indeed one way
to simulate the real random walk of the standard normal distribution, issued from

the origin, is to set
Xo=0, Xou=X,++/-2h Usng1008(27 Usnys),

with (Un)nen a sequence of i.i.d. random variables with uniform distribution

on [0,1]. Let T be the stopping defined by T = inf{n > 1, X,, ¢ [~10,10]}.

o I'or F = X7.
TABLE 1.
T C.P.U. time Random number
Iteration number | Shift | Monte-Carlo | Shift [ Moute-Carlo |

1000 1.3 18.0 2876 220232
5000 5.2 93.1 10214 1132330
10000 | 10.5 199.5 20610 2260466
50000 | 59.0 916.4 100664 11209942

100000 | 118.8 2078.1 200108 22440720
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o For F =1T.
- TABLE 2.
C.P.U. time Random number
Tteration number | Shift l Monte-Carlo | Shift l Monte-Carlo
‘ 10001 1.3 18.2 2876 220232
5000 5.3 94.3 10214 1132330
10000 { 10.8 187.2 20610 2260466
50000 604 936.4 100664 11209942
100000 | 123.1 1S54.1 200108 22440720

3 ASYMPTOTIC RESULTS ON THE SHIFT.

ALAYA

In general, we will consider a (F,, ), en-stopping time T and a Fr-measurable function
I, with F,, = o(U,,---,U,).

Proposition 1 .

Joap F =0, we have

Proof : We have

Therefore

< Fogk,F" l{TSL-) >=

furthermore

| < Fob* F>|

< Fof* F>|<

i i

IA

o+

(o.1)*

f(O.)]«. | FIPdNET? )4
L% ;

subsequently the series 0*(F) is absolulely converging.

|< I‘100k,F' 1{T>L) > |

| < Fob* lysuy, F > |

([ 1Fob 1ipmnl?an)d -( /{ [T

{0.1]"

| If T has ¢ moment of order p > 2 then for cvery I € L*([0,1)¥, Fr). such that

<Fof" F>=<Fob F lireiy >+ < Fof* F-lipspy >.

From the fact that F o 8% is 0(Upy1, - - -)-measurable and that F- 1izgy is

Fo6*dA F1(zgiyd) =0,

fo. )"

o(Uy, -, Us)-measurable, we deduce that F o @* and F - 1{y¢y) are independent.

(5)
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By noticing that £ 0 6* is o(Usyy,  )-measurable. and that {T'" > I} belongs to

o(Uy, -+, Uy), it appears that F o 8* and Yr5ey ave independent. Furthermore

/ F 08t 1ragy |2 :/ |Foe",t?(1,\-/ LirsaydA
(0,1} (0.1) {0.1)"

/ |FIPdA - BT > &),
(o1~

Therefore

[<Fobt F>|< / |F2dA - (F(T > 1))},
(Ovllr‘.

because T € L”, it follows then

c

|< Fof*.F >|<

with
C= (/ | FIFdA)ET™ ),
{o.1y

which concludes the proof.

+
|
Remarks: _
1/From the proof, we notice that the condition
(<]
YP(T> k) < o, (6)
k=1

is actually sufficient to get the series o*(F) absolutely converging.

2/By applying Holder ilz\eq/ua\hty instead of of Cauchy-Schwartz in equation (5), we
obtain a more precise refult; indeed if T satisfies the following property

iP(T> k) < o<,

k=1
then, for every F € L([0,1]Y, 1), ¢ > p, such that Joap T = 0 and ’1 + % =1,
1 < p < 20, we have .
|< Fob,F>|< (/ |F]PdAY: -(/ [FI7dA) - P(T > k)%,
(0.1 fo.m
Espedially, if p = 1, we obtain that if 1 is integrable and F is a bounded Fy-

measurable function then

| < Fof*, F'>|< |]17||w(/ NPT k).
(0,1"
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3/Morcover. the result that the series o7 is absolutely converging also holds for the

wider class of functionals F that can be approximated by a sequence Fy, such that F,
0

is o(Uy, - - -. Uy )-measurable and Z HF = Flly < oc. In fact, under this assumptions
r=1
we have (see thesis. reference{l}) :

| < Fob*.F > | <||FILIIF - Fille.

For the reader’s convenience we will prove a sccond proposition which will be
used to establish a central limite theorem and to evalute the rate of convergence of

this method.
Proposition 2 Let F € L*.

If a*(F) < x then

N-1

1 2
H 7 . A n — -
/\I'TLT\T‘(”(g Fob"y=0". . (7)

n=0
Proof : Siuce, one can substitute*F" — EF for I in the previous equation, we will

assume that F has a null integral. Then, we have :

N=d
/ |ZF00”|2(1/\ Z <Fof* Fof >
(0.1

n=0 kSN

N ON-l
= N||FI3+2) (3 < Fof*F>)
=1 k=1

N N

= No*=2) (Y, <FofF>)
I=1 k=N-I41
N oo

=23 (3. <FobF>)

t=1 k=N+1

N o
= No*=2) k<Fot*F>-2N 3" <Fof"' F>
k=1

k=N+1

Therefore
1 N-1 9 N =
T [ I Fer i =at - = k< Fot" P> -2 3 < Fof"F>.
N Jpar ' 5 . N = k=N

It derives from Kronecker lemma (sec for example [6]) the second term, to the right
of the equality, converges towards zero. The third term, converges to zero, as a

remainder of convergent sequence. Therefore

s
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>

| N1 .
lim — Fog"’d\ = o*
N A [0,1]””& l

Remarks:

1/The functions depending on a finite number of variables. called cvlindric functions,

verify the condition o® < cc. Indeed. if F depends only on the first N coordinates,
Then :

N-1
A(F)=FI3+2) < Fot*.I'>.

k=1
2/The previous result is valid for every strong mixing transform :

One recalls that a transform is strong mixing if
Llim < forf fo= (/ fdu)? Vfe LAN(X. A, 1,pn).
0o ¥

where (X, A, 7,1t), is a given dynamic system.

g

3.1  Convergence In Distribution.

In this part we will prove the central limit theorem for functions depending on a

stopping time. Thus we will have the following result :

Theorem 1 .
If T have a moment of order p > 2 then for every F € L*([0,1]%, Fr), such that
Joapn F =0 and 0*(F) > 0 we have

1 N-1

aV'N ;,Foo" £ N(0;1), (8)

where N(0;1) is the standard normal distribution.

In order to establish the central limit theorem we will now compute the limits of
0*(Flpg) and 0?(F.lyy) when I goes to oo. Indeed if denote for every I € N that :
) o
(7,’" = Uz(F.1T5,) = ‘/[L7'(f‘.17‘s)) + ZZ CO'U(F.ITSI (o] 0", 1‘—‘.11‘51)
k=1 \
and -
0= 0 (Flpsy) = Var(Flyps:) +2 Zcov(l"'.l7->, 0 0%, Flrsy),
k=1
we have the following results :

S
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Lemma 1 /
If T has a moment of order p > 2 then for cvery I € L2([0 1] Fr). such that
Joap &7 = 0, we have

fim of = 0% (9)
Proof:
Indeed

Uf = OE(F.ITS') = "(H'(F.lj'sz) + 2 ZCOL’(F.ITS’ 00", F.l']'g;).

k=1

It derives from proposition 1 that :

o ., (ET?)3
lCOl?(F.lTS‘091,}'.1’['51)' S /[ ]'F.l'[’s[’—EF.lTsl"d/\( I\C)
0]1 al 2
o (ET?)3
< of (rnaraE
fo.1)™ - k2
PYyE
J< 2 R
{0,1]" MG

Hence of is a absolutely convergent sequence uniformly with respect to 1. Since each

term of the seric converges towards < Fo8*, F >, ’lim of = a’.
—00

|
Lemma 2
If T has a moment of order p > 2 then for every I € L2({0, 1), Fr), such tha!
fm,l]nF =0, we have
Jim it =0. (10)
Proof:
Indeed
T,2 = 02(1‘1.1'1‘)) - EF.1T>1) = Va7‘(F.1T>,) + QZCOU(F.I'[*)[ o 91;’ F.lT>')‘
k=1
The same proof as in the above lemma 1 yields :
. (ETP)z
lcov(F.lpsr 0 6%, Flps ) < ‘2/ lF]'d)\( AZ) (1)
[O‘llﬁ v ?

Therefore 7/ is an absolutely convergent sequence uniformly over l. Since each term
N 9

converges towards 0, lhm =0
00
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Let us prove now the theorem.
Proof:

Let F e L*([0. 17, F3), for every [ € N we have

F=(Flrg —EFlrg) + (Flps — EF 17y).
Then

N-1 N-1 Ni

1 : ,
Zr 0"-\/_"20 Flrg=EF.lrg)ot" + ﬁé(l’.l'ry—l'&f.lh,)o&’.

Since the function Flre - IEI".ITS,'is o(Uy,--+,U}) measurable. the first term on
the right of the equality converges in distribution towards N(0.0}), for every [ € N,
with i

o0

of = (Flra) = |Flralf + 23 cov(Flrg 06 . Flrg).

k=1
From lemma 1, one has the convergence in distribution of A(0,07) towards A(0, 0?).
Therefore it suflices to show that :

N -1

L
/_Z(r17>,—m lrsi)o 8| >e} =0
‘ n=0

hm hm sup F{|

for every positive €. From the Bienaymé-Tchebychev’s inequality

N
-&0,1]"‘: | Z(F-1T>I ~EF1rs)0 0"
P{’ (F-1T>l - EF.1T>,) o 0"! > 5} < n=0
\/172%

Ne?
Using the second proposition and letting N tend towards infinity, yields

N-1

, 1 . 7
1llryfipp{|\/_ ?:O(mb, ~EF1py) 08" >} < ~.
The proof is achieved simply by applying lemma 2. |

Remark :
1/Due to the second remark bellow the proposition 1, one can prove the central limit
theorem, for a more large class of functions, by the use of same argument. Actually,
if T satisfies the propérty Z]I"(T > k)? < oo, then, for every F e L*([0,1)%, Fr),
k=1
k = sup(g, 2), such that f[O,l]" F =0and %+ % =1,1< p <oz, we have
=

——=S"Fo " . A(0:1).
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2/Moreover, the central limit theorem also liolds for a wider class of functionals ¥

that can be approximated by a sequence Fy. such as £ is o(U,. - U})-measurable

and ZHF — Fills < 00.(See reference(l]) for a proof.
k=1

3.2 Rate Of Convergence.

Let us start first with some definitions.

Let {X, 1) be a measured space. We consider a family of functions (S(Af, N, Par Nen
that belongs to LP( X, 1) and such that S(A. X, x) >0 for every M and N in N and
z € X. We finally suppose that $(M.0,-)=0 for every M in N and that

S(M,N, )< S(M.N' )+ S(M+ N, N - N9 (12)

for every M. N, N eNand 0 < N <N

Given this definitions, the following resul is proven.

Theorem 2 v

If / S(M, N, 2)dp = O(¥(N)) uniformly over M, (13)
x

¥NY . .
where —(—\‘—’ is « non decreasing function, that for every ¢ > 0 we have :

S(0,N,z)= o(lll(z\")(log(!\’))”““)% - a.s. X

Proof : This result has been shown in Gal and Koksma’s paper “Sur ordre de
grandeur des fonctions sommables”, under the hypothesis that X is a measurable
part of an euclidien space. However this hypothesis is not used in the proof.

See reference [4], (theorem 3, page 646) as well as (definition, page 640).

.
Remark:
We usually use this theorem in the case ¥(N)=N and p = 2, this gives the following
result : -
If [ so,w.zyde = 0(N) uniformly over M,
X

then for every € > 0
$(0,N,z) = o( N 3(log(N))3+) - a.s..

Let us now reconsider the dynamic system ({0, 1], B([0, 1]®"), A, 8). One can deduce
from the previous theorem a strong ergodic resull that suggests an estimate of the

rate of convergence, within the pointwise ergodic theorem of Birkhof.
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Proposition 3 Let ([0, 1]*, B([0, 1]%"). X, 8) be the dynamic system associated to the
shift operator. Let F be u function over [0, 1), such that ¢*(F) < 4o, then :
13 . >
Ye >0 FZFOB"—EF=o(:\"‘5(log(_\'))?+’) A= a.s..
" (14)
Proo :"Fh\is proposition will be deduced from the previous remark. Indeed, let us

denote by

M4eN-1
S(M, N U)y=] > Fob'(U)|
Y
where U is an element of {0, 1}* U= (U Uso o Upe )

We will only verify properties (12) and (13). The other ones can be directly deduced
from the definition of S(A, N, .).
On one hand : for every N, N’ such that 0<N'<N

AM+N~1
S(M,NU)Y = | 3 Fo#(U)
A
AT+N' -1 M4+N=-1
< | Y Fo (U4 Y Fob(L)
M M4N!

S(M,N,U) < S(M,N'U)+ S(M+ N',N = N.U).

On the other hand : using the result of the previous proposition and the fact that

# preserves the measure A we have,

. N-=1 N-1
SM,N,U?dA:/ Foe'*?oo“dA:/ FobFdr = O(N).
/ S ) O RO L (V)

Next, the hypothesis of the theorem are verified. Therefore for every € > 0

N-1
S Fob = o(N3(log(N))i*) A - as.,
n=0
furthermore
T . .
=D Fof" =o(N"i(log(N)):*) A —as.
N n=0
]
Remark :

1/Actually, the previous result remains valid for any strong mixing transform.

Therefore, we have for every function fin L*(X, ), where (X, A,7,0) is a given
N oo

dynamic system with strong mixing transform, such that Var(f) + 22601;([ o

k=1
%, f) < o0, the following result holds :

LN
el 3 — r—1 fyVE e
Ve >0 N?:;for ~'/X dpe = o( N ™3 (log( NV )3 ) - a.s..
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Corollary 1 If T have a moment of order p > 2 then for cvery F € L*([0, 1, Fr).
such that f{m)ﬁ F =0 we have

[y . ¥
Ve >0 R:”Z:;Fo()”—EF=o(l\'"?(log(.\"))?*‘) A= a.s..

Proof : This result derived from the previous proposition and the first one.
|

Due to the remarks of page 5 and by the same argument we deduce the following

corollaries.

Corollary 2 If T satisfies the property ZIP(T > k) < oc then, for cvery F €

1

oy
LA([0, 1], Fr), &k = sup(q,2), such that fig ;. F =0 and 147 =1, 1<p< oo, we/>
have {
. , N
Ye> 0 N?::O“O""M = o( N (log(N))i+) A - as..
|
Y

Corollary 3 Let (Fi)ren be a sequence of L*([0. 1]%, B([0,1]®%), A, 8). One assumes
that Fy is o(Uy,- -, Us)-measurable and thut I, converges toward I in

L2({0, 1)%, B([0, 1)®"), A, 8). Then :

i Z |[F— Fills < oo we have
k=1
L N2 ‘ .
Ye > 0 Nn};;pop"—mp = o N3 (log(N))**) A—as.
| |
Remarks:

1/One knows that if (X,).en is a sequence of real random variables that are in-
dependent and identically distributed such that EX] < oo and with null integral,

then
1
N

the independency hypothesis was weakened in several works (see Berger [2]).

(X1 4+ Xx) = O(X ¥(loglog(N))?),

2/1t g evident that the estithations of the previous remark, known as the jterated
logarithm property, are stronger than the result of proposition 1.
The usefulness of our result is to give an estimate close to the iterated logarithm

but under weaker and more natural hypothesis suitable for simulation.
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4 NUMERICAL ILLUSTRATION.

To check the validity of the results obtained in the previous section with computer
simulations, we have cousidered the random walks defined as follow :

Xo =z, Xopr =N + h(l’-,:+1~ Tt U::j+1)’

where (U}) are i.i.d. random variables with uniform distribution on {0.1]. For such
a random walk let us consider the stopping time 7" = inf{n > 1; X, ¢ [e,b]} and
functions of type F' = G(X¢,T). It is clear that T has a moment of order p > 2.
An estimate of ¢ is obtained from proposition 2, knowing that :

N-t
l 9
im —Var F'of")=0".
Nll_l‘lcl\’) IS (u(; 0f")=0¢
Unfortunately the proof of the previous equation essentially bases on the Kronecker’s
lemma. So it does not allow the evaluation of the theoretical error. Thus there is no
other method available than to wait fgr a numerical stabilization of this sequence
and to take the stable value as the limit : indeed, if we denote Nmax the value from

which the first digits of the terms of the sequence are not modified, any more we will

Nmar—~1
take as an estimate of o the corresponding quantity & = Fi—=Var( Z Fog).

n=0
N-1

For every fixed N we simulated Var(z Fo6") by Monte Carlo’s method over 5000

n=0
independent trajectories.

4.1 Convergence In Distribution.

In order to numerically verify the convergence in distribution of the sequence
F+Fof+ - 4+ Fof1! - pEF

ayn ‘
towards the normal distribution A7(0; 1), x*-distance between A, (F) et A(0;1) was
computed : to this end, the real line R was parted into m = 57 classes obtained
by dicretizing the interval | — 2.8,2.8(, with a step 0.1 and considering the residual
classe | — co, —2.8[U]2.8, +00]. -

AF) =

Then the empirical frequencies (% h<icm were computed over N = 5000 independent
simulations of A, (F). Recall that the “Khi-deux-distance” between A,(F) and

N(0; 1) (related to the m above classes) displays as :

m . !\7 . '_Z
DY = Da(AJF)N (1) =3 (u = Npi)®

i=1

)

Np;
with p; = P{N(0;1) € classe ¢}.
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For the large values of N, it is well known that D;?' may be assumed to have

A(m = 1) distribution. Intuitively, if A,(F)

IS

A(0: 1), DY must become small as
n increases. One way to know if, for a given n, the simulated values of A,(F) are
close enough to a A(0; 1) distribution, is to implement an adequation y*-test. Such
a decision test displays :

{ (Hy) the A (F) hasa A(0: 1} distribution

(Hy,  the A,(F) has not a AT(0: 1) distribution.

The deciding rule is defined at the level a by the critical area
W= {(ny, -, nm) tel que D, > Ca}, where Py (W) =a.
If @ = 0.05 and m = 57, we have C, = 74.12. Subsequently the distance D, may
be considered as small as soon as it is lower then C,.
Examples : Consider the random walk :

QUn—H -

1
Xo=0, X=X, + and T = inf{n > 1. X, ¢[-5,1]}.

* IfF:,XTI

An estimate of &, & = 23.7244 was computed, as explained above,
for N'maz = 10000.

The table below displays the variation of D, = D}’ as a function of n.

TABLE 3.

n 100 1000 | 5000 | 10000 | 100000
D, | 31667.18 | 759.11 | 113.92 | 70.39 [ 67.66

The graphic below illustrate the convergence in distribution of A, (X7) towards

normal distribution A7(0;1). It is actually the histogram of Atooono{ X1)-

?50 T T ¥ T

200 , ]

T

* The y-axis 150
represents ’

the numbers
ng 00 -

Z ,.uqll\“ H \l‘llm, .

4 0 4
The x-axis represents the discretization of the interval [-5,5)

I

1

FI1G 3.
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o Pour '=T:
An estimate of &, 6 = 571.281, was computed. as explained above,
for Nmaxr = 10000.

The table below displays the variation of D, = D¥ as a function of n.

TABLE 4.

n 100 1000 | 5000 | 10000 | 100000
D, | 2187.10 | 258.07 | 92.10 | 64.S1 | 72.89

The graphic below illustrate the convergence in distribution of 4,{ X7) towards

normal distribution A7(0;1). It is actually the histogram of A;gpg00( X7).

250 . T , :
200 + i
"rr:]e y-axis 150 + ¢ i
h . ..,nﬂh”mm Hl“lhmn,, . |

4 -2 0 2

1
- . 4 ‘ 4
The x-axis represents the discretization of the interval {-5.5]

FIG 4.

4.2 Rate Of Convergence.

We wanted to check the validity of the results that we obtained in the preceding

paragraph on the rate of convergence and eventually test for the existence of a

" “classical”law of the iterated logarithmic by simulations.

One simulation of the sample paths of the process

F4Fofi4 -+ Fof ' —akF
&v/n(log n)? ’

must therefore confirm the convergence toward zero.

Bo(F) =

Anyway, a mistake over the evaluation of ¢ dont prevents us to verify the rate of

convergence, since it modify the rapport with a constant factor.
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Examples:

Let us cousider the random walk

Wi, -
-\'0 = 07 "\-n+l = ~\'n + :{-’%‘—{7
and
\ T=inf{n>1.X,¢[-51]}
o for F=Xp:
Taking Nmax=10000, we get 6 = 23.721
the following table represent the convergence towards zero of the sequence
B.(X71):
TABLE 5.
I 1000 10000 | 100000 | 200000
B.(T) | 0.0249 | -0.0032 | -0.0358 | -0.0231
n 400000 | 600000 { 800000 | 1000000
B,(T) | -0.0238 | -0.0014 | 0.0050 | -0.0031
The graphical representation below illustrates the same simulation.
0.10 T T Y T
y = Ba(XT)
0.05 ]
The y-axis
represents (.00

B,,(;\’T) W

-0.0% -
-0.10 L 1 1 L
0 200000 400000 600000 800000 1000000
The x-axis represents the number n of iterations
FIG 5.
o For F=T:

by taking Nmax=10000, we obtain & = 574.281
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the following table represent the convergence toward zero of the sequence

B,(T):

TABLE 6.

n 1000 10000 | 100000 | 200000
B, (T} | -0.0242 | 0.0180 | 0.0383 | 0.0236
n 400000 | 600000 [ 800000 | 1000000
B.(T) | 0.0180 | 0.0067 | -0.0037 | -0.0057

0.10 T T T T
y = Ba(T)

0.05 } p -1
The y-axis M
represents (.00 MMWW

Bn(XT) \"
-0.05 - 1
-0.10 L L 4 L
0 200000 400000 600000 800000 1000000

The x-axis represents the number n of iterations

FIG 6.

It seems natural to try to verify experimentally if the law of iterated logarithm
is satisfied, this latter was the subject of several previous works (see Berger [2]) and
was shown under hypothesis apparently not very well adapted to practical situations
which we usually encounter in simulation. In order to do that, we simulated the

)

trajectories of the process :

_F4Fof+4---4 Fob" ' - nEF
- g/ nloglogn '

We clearly notice in the simulations that the plots changed : most of them

Ca(F)

oscillate between -1 and 1, without converging toward a specific value (see FIG 7

and FIG 8). All the plots of the sequences have been stopped at million time of
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iteration which seems to be large enough. The fact that all the sample paths remain
between —1 and 1, without noticing a convergence toward a specific value is the
best confirmation of the law of iterated logarithm that can be numerically given
for million steps for this function. This positive result and simulations for other
functions suggest that the law of iterated logarithm be satisfied by a sub-class of
functions satisfving o < oo. For the examples we studied previously, the following

results arce obtained :

o For F= Xy

All the paths of the process that we got have the following shape :

04 T T T T
0.0 ",
The y-axis .0.2 .
represents
Ca(XN7) -04 & 4
T
06 F .
o8t fw /( .
-1.0 + —t = L 4
0 200000 400000 600000 800000 1000000
The x-axis represents the number n of iterations
FIG 7
e For F=T:

All the paths of the process that we got have the following shape :

1.2 T T T T J

10} f ’ y = Cn(T)

08 -1
The y-axis 06 V 1
represents {4 i
Ca(X .

(X7) 0.9 )\ |
™ f\

0.0 \

-0.2 V W/\v

0.4 . I | ] 1

0 200000 400000 600000 800000 1000000

The x-axis represents the number n of iterations

F1G 8.
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5 CONCLUSION.

The central limit theorem that we proved for functionals measurable with respect
to stopping time and the fact that the rate of convergence is in practice of same
order than the law of large number provide a theoritical bases to the practical
implementation of the shift method. Let us recall as conclusion that the qualities of
this method are essentially : drastic time saving (simulating times are currently cut
down by 90% or more in many examples) and even more drastic random gencrator

saving.
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