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Algebraic intersection

Let X be a closed oriented surface with a Riemannian metric, possibly
with singularities.

Given two oriented closed curves o and 3 on X, consider the algebraic
intersection Int(«, /).

Int (o) = +1 A
Int(o,B) =0

The algebraic intersection Int(-,-) is a bilinear symplectic form in homology.
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Algebraic intersection

How many times can two closed curves of a given length intersect ?

Definition [(algebraic) interaction strength]

B | Int(c, 5)
KVOI(X) o VOI(X) a,B cI<)Ss:<I1)curves /(a)/(ﬁ)

Remark : Multiplying by the volume makes KVol scalar invariant.
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History and motivations

— In D. Massart’s thesis (1996), KVol arises as a comparison constant
between the stable norm || - ||s and the Hodge norm || - |2 in
homology, namely we have for all h € H;(X,R),

1 1
1hlls < [lAll2 < KVoI(X) ———mx</lhlls-

Vol(X) V/Vol(X)

The Hodge norm (coming from the
L? norm in cohomology) is

Unit ball of the Hod . . . . .
/N' o of the Hodge norm euclidean: its unit ball is an ellipse.

The stable norm depends on the
/ metric, its unit ball can be very
Unit ball of the stable norm complicated (e.g. polyhedral with

an infinite number of cells)
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History and motivations

— In D. Massart’s thesis (1996), KVol arises as a comparison constant
between the stable norm || - ||s and the Hodge norm || - ||2 in
homology, namely we have for all h € H;(X,R),

1 1
——=——=|lhlls < [Ihll2 < KVol(X)—===|hlls.
Vol(X) Vol(X)

Theorem (Massart, Muetzel, 2014)

For every Riemannian surface X of genus g > 1, we have:
KVol(X) > 1

with equality if and only if X is a flat torus.
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Theorem (Massart, Muetzel, 2014)

For every Riemannian surface X of genus g > 1, we have:
KVol(X) > 1

with equality if and only if X is a flat torus.

«

Int(a, B)

i)

Hence, V33, Ilnt(a, B)

(@)(B)
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KVol on hyperbolic surfaces

— In 2014, D. Massart and B. Muetzel studied the behaviour of
KVol(X) as X goes towards the boundary of the moduli space of
hyperbolic surfaces, and gave geometric bounds on KVol, namely for
any Riemannian surface:

Vol(X Vol(X
M%) Kvor(x) < 9# = 9 SysVol(X),

where D is the diameter and /y the homological systolic length of X.

Theorem (Consequence of Balacheff, Karam, Parlier, 2021)

There exist ¢ > 0 such that for any hyperbolic surface X of genus g > 2,

we have
g

(log(g))?

This growth rate is optimal, see [Buser, Sarnak 1994].

KVol(X) > ¢
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KVol on translation surfaces

Is it possible to compute explicitely KVol on some examples of translation
surfaces 7
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surfaces.
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KVol on translation surfaces

Is it possible to compute explicitely KVol on some examples of translation
surfaces 7

o We have seen that KVol is 1 on a flat torus.

@ In 2021, S. Cheboui, A. Kessi and D.Massart provide a method to
compute KVol on SL;(IR)-orbits of a family of squared tiled staircase
surfaces.

@ In 2022, in a joint work with E.Lanneau and D.Massart we compute
KVol on the SLy(IR)-orbit of the double regular n-gons for odd n.
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KVol on translation surfaces

Is it possible to compute explicitely KVol on some examples of translation
surfaces ?

@ We have seen that KVol is 1 on a flat torus.

@ In 2021, S. Cheboui, A. Kessi and D.Massart provide a method to
compute KVol on SL;(IR)-orbits of a family of squared tiled staircase
surfaces.

@ In 2022, we extend this method with E.Lanneau and D.Massart to
compute KVol on the SLy(R)-orbit of the double regular n-gons for
odd n.

@ In 2023, we deal with the case of the regular n-gon for even n.

@ We then generalize the method with |. Pasquinelli to the case of
Bouw-Médller surfaces with a single singularity.
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Outline

© Translation surfaces and their Veech groups
@ Definition
@ Teichmiiller space and moduli space
@ Sly(R)-action on the moduli space, Veech group
@ Example : The Golden L
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Translation surfaces

Definition

A translation surface is a surface obtained from a collection of euclidean
polygon, by identifying pairs of parallel opposite sides of the same length
(by translation).

/ Double pentagon

Golden L s the golden ratio
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Teichmiiller space and moduli space

glue
blue & red

cut along

—
green & red

The two polygonal models above give what we want to consider as the same
resulting surface, whereas we have below two polygonal models of surfaces with
different properties.

Systole = 1
Area = g

[

Systole = 1
Area =1
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Teichmiiller space and moduli space

Definition
The moduli space QM of translation surfaces of genus g is the set:

Collection of polygons with
QMg = ¢ identifications of parallel sides of 5 /cut and paste
the same length and genus g

The Teichmiiller space Q27 of translation surfaces can be seen as the
space of (X, ¢) where X € QM and ¢ is a marking of a homology basis.

We have QM = Q7. /MCG(g).
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SL;(R)-action on the moduli space

Given a translation surface X described by a collection of polygons and
M € GLI (R), we can construct the translation surface M - X.

’ M=<: :> v
1T
N — L \ .

It is often convenient to consider the action of SLy(R) instead of GLJ (
as it preserves the area.

R)
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Veech group

Definition

The Veech group of a translation surface X is the stabilizer of X (in the
moduli space) under the action of SLy(IR). We denote it by SL(X).

N (11 7
\\ 0 1 //
—

7
\
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Veech group

Definition

The Veech group of a translation surface X is the stabilizer of X (in the
moduli space) under the action of SLy(IR). We denote it by SL(X).

N (11 7
\\ 0 1 //
—

7
\

X

The Veech group of any flat torus is conjugated to SLy(Z).

Proposition
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Veech group

Definition

The Veech group of a translation surface X is the stabilizer of X (in the
moduli space) under the action of SLy(IR). We denote it by SL(X).

Theorem (W.Veech, 1989)
For any translation surface X, SL(X) is a discrete subgroup of SL>(R).
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Veech group

Definition

The Veech group of a translation surface X is the stabilizer of X (in the
moduli space) under the action of SLy(IR). We denote it by SL(X).

Theorem (W.Veech, 1989)
For any translation surface X, SL(X) is a discrete subgroup of SL>(R).

Consequence: If we quotient by the action of the rotations SO,(R), the
orbit of X under the action of SLy(R) can be identified with H2/SL(X).
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Example : The golden L

We choose a base surface S in the orbit. If X = M - S with
M= (° 2 € SLy(R), we map the surface X to the point 9+b ¢ H2,

ci+a

-

/ \ o)

4 =10 X =(0,1)
-1 —
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Example : The golden L

We choose a base surface S in the orbit. If X = M - S with

a b
d

M =

-

- L

0 X =(0,1)

_ v (1 0
\ t=0 .\17<“ 1)
s=

€ SL(R), we map the surface X to the point 28 ¢ H2.
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Example : The golden L

We choose a base surface S in the orbit. If X = M - S with

a b

M = (c d) € SL>(R), we map the surface X to the point % c H2.

08 —042
0o M=
/ \ t= 022 M <n 125)
s= 052 X =(-081,1.55)

4 L
5 0 5
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Example : The golden L

We choose a base surface S in the orbit. If X = M - S with
M = i 3) € SL(R), we map the surface X to the point 9+2 ¢ H?2,

ci+a

-

= 0 0.42
22 M= 8
/ \ oo M < 0 1,2.:)
s= 05

0.52 X = (0.81,1.55)
1

< ©
2 2
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Example : The golden L

We choose a base surface S in the orbit. If X = M - S with

a b

M = <c d) € SL5(R), we map the surface X to the point 45 ¢ H2.

o 13 179

- 02 M=

/ \ ¢ 021 M < 0 0 77)
s= 137 X = (0.81,0.59)

_],f L
2 0 2
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Example : The golden L

We choose a base surface S in the orbit. If X = M - S with

M= (i Cb/> € SL>(R), we map the surface X to the point £ d'+b c H2.

o 13 179
— _02 M=
/ \ . 021 M <” 0177)
s= 137 X = (0.81,0.59)

,l,f LS|
5 0 B)
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Example : The golden L

Proposition

The golden L and the double pentagon belong to the same GL3 (R)-orbit.
The Veech group of the golden L is the triangle group A™(2,5, ).

- 1.3 179
T M=
/ \ t 0.27 M < 0 ()_77>
s= 1.37 X = (0.81,0.59)

20/36



Theorem (B.-Lanneau-Massart, 2022)

Let n > 5 odd. For every X in the SLy(R)-orbit of the double regular
n-gon, represented as a point in the fundamental domain
H2/A*(2,5,00). Then

KVol(X) = ’5’ cot % g sinf(X).

(L
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Outline

© A few geometric ideas
@ KVol on the golden L
@ The action of a twist
@ KVol on the double pentagon
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How to understand this result

We start with the golden L and consider the curve as.

@ Any saddle connection S intersecting non-singularly s

must have a length at least 2.
57 @ More generally, any saddle connection § intersecting
non-singularly c, K times must have a length at least
1 K+ 1.
l @ The curve [3; intersects ap once while having a length
%) »—1~0.61.
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How to understand this result

We start with the golden L and consider the curve as.

@ Any saddle connection S intersecting non-singularly s

must have a length at least 2.
57 @ More generally, any saddle connection § intersecting
non-singularly c, K times must have a length at least
1 K+ 1.
l @ The curve [3; intersects ap once while having a length
%) »—1~0.61.

Proposition

@ KVol on the golden L is achieved uniquely by (az, B2).
@ For any other pair of closed curves (o, ), we have

Int(a, B) - 1

(a2)l(B) — -1
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On the surface obtained from the Golden L by a twist of angle 6, the
length of B, is multiplied by =

sinf"

(X) .
B2 B2 In particular,
1
Int(az(X),B2(X)) __ 1 i
s VX, Taz sz = (o1 S 0(X)-
Qo Qo(X)
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On the surface obtained from the Golden L by a twist of angle 6, the
length of 3, is multiplied by ﬁ.

Bo

The angle 6 corresponds to the angle 6(X)
between the horizontal and the segment X

OX.

(X) ;
B2 In particular,
!
Int(az(X),B2(X)) __ i
I A8 VX Tazm0) = o Sin (%)
Qi Q2(X)

.

Theorem (Refinement of the previous result) \

O
For every X in the fundamental domain, the / o \
supremum in the definition of KVol is

achieved by the pair (a2, B2).

.
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Ba| s
N

i)

— Every red geodesic corresponds to the image of ap, 5> by the action of
an element of the affine group.

— On the interior of D, the pair (a2, 32) is the only pair achieving the
supremum in the definition of KVol.

— KVol on the double pentagon is achieved uniquely by pairs of distinct
sides.

a2

/
-1-2 0 Y
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The three main steps of the proof

© Show that KVol is achieved by the curves o and (> on the
right-angled L surfaces of the orbit.
— Same argument as for the torus (uses cylinder decomposition).
— The method generalizes to so-called "Veech surfaces" for which we have
finitely many cylinder decompositions up to the action of the Veech group.
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© Show that KVol is achieved by the curves o and (> on the
right-angled L surfaces of the orbit.
— Same argument as for the torus (uses cylinder decomposition).
— The method generalizes to so-called "Veech surfaces" for which we have
finitely many cylinder decompositions up to the action of the Veech group.
@ Show that KVol is achived by the (images of the) curves ap and (3,
on the double pentagon.
— "Subdivision method" : decompose curves «, 3 into smaller segments
for which we can control both the length and the intersections.
— With work, it can be generalised to surfaces made with convex
polygons having obtuse angles + a non-self-identification condition on the
polygons (work in progress with |.Pasquinelli, out soon!).
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The three main steps of the proof

© Show that KVol is achieved by the curves o and (> on the
right-angled L surfaces of the orbit.
— Same argument as for the torus (uses cylinder decomposition).
— The method generalizes to so-called "Veech surfaces" for which we have
finitely many cylinder decompositions up to the action of the Veech group.
@ Show that KVol is achived by the (images of the) curves ap and (3,
on the double pentagon.
— "Subdivision method" : decompose curves «, 3 into smaller segments
for which we can control both the length and the intersections.
— With work, it can be generalised to surfaces made with convex
polygons having obtuse angles + a non-self-identification condition on the
polygons (work in progress with |.Pasquinelli, out soon!).
© Use properties of KVol as a function in the SLy(R)-orbit to
interpolate between the right-angled staircases and the double
pentagon.
— It requires estimates on cylinder decompositions that are easy to obtain

for the double (2n 4 1)-gon but are difficult to obtain<in general.
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Thanks for your attention
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