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Algebraic intersection

Let X be a closed oriented surface with a Riemannian metric, possibly
with singularities.

Given two oriented closed curves α and β on X, consider the algebraic
intersection Int(α, β).

The algebraic intersection Int(·, ·) is a bilinear symplectic form in homology.

2 / 36



Algebraic intersection

Question

How many times can two closed curves of a given length intersect ?

De�nition [(algebraic) interaction strength]

KVol(X ) := Vol(X ) · sup
α,β closed curves

Int(α, β)

l(α)l(β)

Remark : Multiplying by the volume makes KVol scalar invariant.
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History and motivations

→ In D. Massart's thesis (1996), KVol arises as a comparison constant
between the stable norm ∥ · ∥s and the Hodge norm ∥ · ∥2 in
homology, namely we have for all h ∈ H1(X ,R),

1√
Vol(X )

∥h∥s ≤ ∥h∥2 ≤ KVol(X )
1√

Vol(X )
∥h∥s .

The Hodge norm (coming from the
L2 norm in cohomology) is
euclidean: its unit ball is an ellipse.

The stable norm depends on the
metric, its unit ball can be very
complicated (e.g. polyhedral with
an in�nite number of cells)
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Theorem (Massart, Muetzel, 2014)

For every Riemannian surface X of genus g ≥ 1, we have:

KVol(X ) ≥ 1

with equality if and only if X is a �at torus.
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KVol on hyperbolic surfaces

→ In 2014, D. Massart and B. Muetzel studied the behaviour of
KVol(X ) as X goes towards the boundary of the moduli space of
hyperbolic surfaces, and gave geometric bounds on KVol, namely for
any Riemannian surface:

Vol(X )

2Dl0
≤ KVol(X ) ≤ 9

Vol(X )

l2
0

= 9 · SysVol(X ),

where D is the diameter and l0 the homological systolic length of X .

Theorem (Consequence of Balache�, Karam, Parlier, 2021)

There exist c > 0 such that for any hyperbolic surface X of genus g ≥ 2,
we have

KVol(X ) ≥ c
g

(log(g))2

This growth rate is optimal, see [Buser, Sarnak 1994].
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KVol on translation surfaces

Question

Is it possible to compute explicitely KVol on some examples of translation
surfaces ?

We have seen that KVol is 1 on a �at torus.

In 2021, S. Cheboui, A. Kessi and D.Massart provide a method to
compute KVol on SL2(R)-orbits of a family of squared tiled staircase
surfaces.
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Is it possible to compute explicitely KVol on some examples of translation
surfaces ?

We have seen that KVol is 1 on a �at torus.

In 2021, S. Cheboui, A. Kessi and D.Massart provide a method to
compute KVol on SL2(R)-orbits of a family of squared tiled staircase
surfaces.

In 2022, in a joint work with E.Lanneau and D.Massart we compute
KVol on the SL2(R)-orbit of the double regular n-gons for odd n.
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KVol on translation surfaces

Question

Is it possible to compute explicitely KVol on some examples of translation
surfaces ?

We have seen that KVol is 1 on a �at torus.

In 2021, S. Cheboui, A. Kessi and D.Massart provide a method to
compute KVol on SL2(R)-orbits of a family of squared tiled staircase
surfaces.

In 2022, we extend this method with E.Lanneau and D.Massart to
compute KVol on the SL2(R)-orbit of the double regular n-gons for
odd n.

In 2023, we deal with the case of the regular n-gon for even n.

We then generalize the method with I. Pasquinelli to the case of
Bouw-Möller surfaces with a single singularity.

15 / 36



Outline

1 The algebraic interaction strength KVol
History and motivations
Example: �at tori
KVol on hyperbolic surfaces
KVol on translation surfaces

2 Translation surfaces and their Veech groups
De�nition
Teichmüller space and moduli space
SL2(R)-action on the moduli space, Veech group
Example : The Golden L

3 A few geometric ideas
KVol on the golden L
The action of a twist
KVol on the double pentagon

16 / 36



Translation surfaces

De�nition

A translation surface is a surface obtained from a collection of euclidean
polygon, by identifying pairs of parallel opposite sides of the same length
(by translation).
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Teichmüller space and moduli space

The two polygonal models above give what we want to consider as the same
resulting surface, whereas we have below two polygonal models of surfaces with
di�erent properties.
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Teichmüller space and moduli space

De�nition

The moduli space ΩMg of translation surfaces of genus g is the set:

ΩMg =

{
Collection of polygons with

identi�cations of parallel sides of
the same length and genus g

}
/cut and paste

The Teichmüller space ΩTg of translation surfaces can be seen as the
space of (X , φ) where X ∈ ΩMg and φ is a marking of a homology basis.

We have ΩMg = ΩTg/MCG (g).
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SL2(R)-action on the moduli space

Given a translation surface X described by a collection of polygons and
M ∈ GL+

2
(R), we can construct the translation surface M · X .

It is often convenient to consider the action of SL2(R) instead of GL+
2
(R)

as it preserves the area.
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Veech group

De�nition

The Veech group of a translation surface X is the stabilizer of X (in the
moduli space) under the action of SL2(R). We denote it by SL(X ).

Proposition

The Veech group of any �at torus is conjugated to SL2(Z).

Consequence: If we quotient by the action of the rotations SO2(R), the
orbit of X in the moduli space can be identi�ed with H2/SL(X ).
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Veech group

De�nition

The Veech group of a translation surface X is the stabilizer of X (in the
moduli space) under the action of SL2(R). We denote it by SL(X ).

Theorem (W.Veech, 1989)

For any translation surface X , SL(X ) is a discrete subgroup of SL2(R).

Consequence: If we quotient by the action of the rotations SO2(R), the
orbit of X under the action of SL2(R) can be identi�ed with H2/SL(X ).
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Example : The golden L

We choose a base surface S in the orbit. If X = M · S with

M =

(
a b
c d

)
∈ SL2(R), we map the surface X to the point di+b

ci+a ∈ H2.
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Example : The golden L

Proposition

The golden L and the double pentagon belong to the same GL+
2
(R)-orbit.

The Veech group of the golden L is the triangle group ∆+(2, 5,∞).
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Theorem (B.-Lanneau-Massart, 2022)

Let n ≥ 5 odd. For every X in the SL2(R)-orbit of the double regular

n-gon, represented as a point in the fundamental domain

H2/∆+(2, 5,∞). Then

KVol(X ) =
n

2
cot

π

n
· 1

sin π
n

sin θ(X ).

For n = 5:

KVol(X ) =
2φ− 1

(φ− 1)2
sin θ(X ).
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How to understand this result

We start with the golden L and consider the curve α2.

Any saddle connection β intersecting non-singularly α2

must have a length at least 2.

More generally, any saddle connection β intersecting
non-singularly α2 K times must have a length at least
K + 1.

The curve β2 intersects α2 once while having a length
φ− 1 ≃ 0.61.

Proposition

KVol on the golden L is achieved uniquely by (α2, β2).

For any other pair of closed curves (α, β), we have

Int(α2, β)

l(α2)l(β)
≤ 1

φ− 1
.

32 / 36



How to understand this result

We start with the golden L and consider the curve α2.

Any saddle connection β intersecting non-singularly α2

must have a length at least 2.

More generally, any saddle connection β intersecting
non-singularly α2 K times must have a length at least
K + 1.

The curve β2 intersects α2 once while having a length
φ− 1 ≃ 0.61.

Proposition

KVol on the golden L is achieved uniquely by (α2, β2).

For any other pair of closed curves (α, β), we have

Int(α2, β)

l(α2)l(β)
≤ 1

φ− 1
.

32 / 36



On the surface obtained from the Golden L by a twist of angle θ, the
length of β2 is multiplied by 1

sin θ .

In particular,

∀X ,
Int(α2(X ),β2(X ))
l(α2(X ))l(β2(X ))

= 1
(φ−1)2

sin θ(X ).

Lemma

The angle θ corresponds to the angle θ(X )
between the horizontal and the segment

OX .

Theorem (Re�nement of the previous result)

For every X in the fundamental domain, the

supremum in the de�nition of KVol is

achieved by the pair (α2, β2).
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→ Every red geodesic corresponds to the image of α2, β2 by the action of
an element of the a�ne group.
→ On the interior of D, the pair (α2, β2) is the only pair achieving the
supremum in the de�nition of KVol.
→ KVol on the double pentagon is achieved uniquely by pairs of distinct
sides.
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The three main steps of the proof

1 Show that KVol is achieved by the curves α2 and β2 on the
right-angled L surfaces of the orbit.
→ Same argument as for the torus (uses cylinder decomposition).

→ The method generalizes to so-called "Veech surfaces" for which we have

�nitely many cylinder decompositions up to the action of the Veech group.

2 Show that KVol is achived by the (images of the) curves α2 and β2

on the double pentagon.
→ "Subdivision method" : decompose curves α, β into smaller segments

for which we can control both the length and the intersections.

→ With work, it can be generalised to surfaces made with convex

polygons having obtuse angles + a non-self-identi�cation condition on the

polygons (work in progress with I.Pasquinelli, out soon!).
3 Use properties of KVol as a function in the SL2(R)-orbit to

interpolate between the right-angled staircases and the double
pentagon.
→ It requires estimates on cylinder decompositions that are easy to obtain

for the double (2n + 1)-gon but are di�cult to obtain in general.
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Thanks for your attention

36 / 36


	The algebraic interaction strength KVol
	History and motivations
	Example: flat tori
	KVol on hyperbolic surfaces
	KVol on translation surfaces

	Translation surfaces and their Veech groups
	Definition
	Teichmüller space and moduli space
	SL2(R)-action on the moduli space, Veech group
	Example : The Golden L

	A few geometric ideas
	KVol on the golden L
	The action of a twist
	KVol on the double pentagon


	anm3: 
	3.11: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	anm2: 
	2.31: 
	2.30: 
	2.29: 
	2.28: 
	2.27: 
	2.26: 
	2.25: 
	2.24: 
	2.23: 
	2.22: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


