

Bram Petri

Systole

Systole X closed hyperbolic surface

Systole X closed hyperbolic surface

Systole X closed hyperbolic surface

sys(X) := length of the shortest

closed geodesics on X

Systole X closed hyperbolic surface

sys(X) := length of the shortest

closed geodesics on X

Systole X closed hyperbolic surface length of the shortest closed geodesius on X

 M_g

<u>Systole</u> X closed hyperbolic surface sys(X) := length of the shortest closed geodesius on XMg:= { closed hyperbolic surfaces } of genus g / isometry

Tystole X closed hyperbolic surface sys(X) := length of the shortest closed geodesius on XMg:= { closed hyperbolic surfaces } of genus g } isometry inf mys (X) XEMg

<u>Jystole</u> X closed hyperbolic surface sys(X) := length of the shortest closed geodesius on XMg:= { closed hyperbolic surfaces } of genus g / isometry inf yys(X) = 0XEMg

Tystole X closed hyperbolic surface sys(X) := length of the shortest closed geodesius on XMg:= { closed hyperbolic surfaces } of genus g / isometry $\sup_{X \in M_g} \sup_{S}(X) = ?$ inf mys(X) = 0, XEMg

Tystole X closed hyperbolic surface sys(X) := length of the shortest closed geodesius on XMg:= { closed hyperbolic surfaces } of genus g } isometry $\max_{\text{sup sys}}(X) = ?$ $X \in M_g$ $\inf_{M} \sup_{M} (X) = O,$ XEMg

Lemma for any $X \in M_g$, we have $sys(X) \leqslant 4 are sinh(\sqrt{g_{-1}})$

Lemma $\exists C$ s.t. for any $X \in M_g$, we have $sys(X) \leqslant 4$ are $sinh(\sqrt{g_{-1}}) \leqslant 2 \log g + C$

Lemma $\exists C$ s.t. for any $X \in M_g$, we have $sys(X) \leqslant 4$ are $sinh(\sqrt{g-1}) \leqslant 2 \log g + C$

Troof

Lemma $\exists C$ s.t. for any $X \in M_g$, we have $sys(X) \leqslant 4$ are $sinh(\sqrt{g-1}) \leqslant 2 \log g + C$ Proof let $p \in X$ Lemma $\exists C \text{ s.t. for any } X \in M_g$, we have $sys(X) \leqslant 4 \text{ are sinh } (\sqrt{g-1}) \leqslant 2 \log g + C$ Proof let $p \in X$

Lemma 3C s.t. for any XEMg, we have $sys(X) \leq 4 are sinh(\sqrt{g-1}) \leq 2 log g + C$ Proof let ptX $disk(p, \frac{sys(X)}{2})$

Lemma 3C s.t. for any XEMg, we have $sys(X) \leq 4 are sinh(\sqrt{g-1}) \leq 2 \log g + C$ Proof let p t X center radius disk $(p, \frac{sys(x)}{2})$

Lemma 3C s.t. for any XEMg, we have $sys(X) \leq 4 are sinh(\sqrt{g-1}) \leq 2 log g + C$ Proof let ptX center radius area $\left(\frac{1}{2}, \frac{1}{2}\right)$

Lemma 3C s.t. for any XEMg, we have $sys(X) \leq 4 are sinh(\sqrt{g-1}) \leq 2 \log g + C$ Proof let $p \in X$ center radius

area $\left(\operatorname{disk}(\hat{p}, \frac{\operatorname{sys}(X)}{2}) \right) \leq \operatorname{area}(X)$

Lemma 3C s.t. for any XEMg, we have $sys(X) \leq 4 are sinh(\sqrt{g-1}) \leq 2 \log g + C$ Proof let $p \in X$ center radius

area $\left(\operatorname{disk}(\hat{p}, \frac{\operatorname{sys}(X)}{2}) \right) \leq \operatorname{area}(X)$ $4\pi \sinh\left(\frac{sys(X)}{\mu}\right)$

Lemma 3C s.t. for any XEMg, we have $sys(X) \leq 4 are sinh(\sqrt{g-1}) \leq 2 \log g + C$ Proof let p t X center radius area $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ <a>area(X) || Gauss-Bonnet $4\pi \sinh\left(\frac{sys(X)}{4}\right)$ $2\pi(29-2)$

What do we know about man nys(x)?

What do we know about man $y_s(x)$? Very little... What do we know about $\underset{X \in M_g}{\text{man}} \text{ nys}(x)$? Very little... Only the case g=2 is completely clear.

What do we know about man nys(x)? Very little... Only the case g = 2 is completely clear. Theorem (Fenni 1980s) The Bolza surface & M2 has the largest systole = $arc cosh(1+\sqrt{2})$.

What do we know about man nys(x)? Very little... Only the case g = 2 is completely clear. Theorem (Fenni 1980s) The Bolza surface & M2 has the largest systole = $arc \cosh(1+\sqrt{2})$. Conjectures (Schmutz 1993) g = 3, 4.

What do we know about man nys(x)? Very little... Only the case g = 2 is completely clear. Theorem (Fenni 1980s) The Bolza surface & M2 has the largest systole = $arc cosh(1+\sqrt{2})$. Conjectures (Schmutz 1993) g = 3, 4. A more reasonable question: when g > 00.

What do we know about man nys(x)? Very little... Only the case g = 2 is completely clear. Theorem (Fenni 1980s) The Bolza surface & M2 has the largest systole = $arc cosh(1+\sqrt{2})$. Conjectures (Schmutz 1993) g = 3, 4. A more reasonable question: when g > 00; eg \exists ? a sequence $(X_k)_k$ s.t. as $k \to \infty$, $yys(X_k) \to \infty$

∃ a sequence (Xk)k

 \exists a sequence $(X_k)_k$ such that $g_k = g_{enus}(X_k) \xrightarrow{k \to \infty} \infty$

Theorem (Buser-Sarnak, 1994) $\exists a \text{ sequence}(X_k)_k \text{ such that } g_k = g_{enus}(X_k) \xrightarrow{k \to \infty} \infty$

 $sys(X_R) \geqslant \frac{4}{3} log g_R - C$

$$\exists$$
 a sequence $(X_k)_k$ such that $g_k = g_{enus}(X_k) \xrightarrow{k \to \infty} \infty$

$$sys(X_R) > \frac{4}{3} log g_R - C$$
 universal constant

$$\exists$$
 a sequence $(X_k)_k$ such that $g_k = g_{enus}(X_k) \xrightarrow{k \to \infty} \infty$

$$sys(X_k) > \frac{4}{3} log g_k - C$$
 some universal constant

Xx's are congurence covers of an arithmetic surface

We know

We know $\forall X, \ \text{sys}(X) \leqslant 2 \log g + C_1$

We know $\forall X, \text{ sys}(X) \leq 2 \log g + C_1$ $\exists (X_k)_k, \text{ sys}(X_k) \geqslant \frac{4}{3} \log g_k - C_2$

We know $\forall X$, $sys(X) \leq 2 log g + C_1$ $\exists (X_k)_k, sys(X_k) \geqslant \frac{4}{3}logg_k - C_2$ $\lim_{g \to \infty} \frac{\max_{X \in M_g} \sup_{X \in M_g} (X)}{\log g} = 0$

We know $\forall X$, $sys(X) \leq 2 log g + C_1$ $\exists (X_k)_k, sys(X_k) \geqslant \frac{4}{3}logg_k - C_2$ $\lim_{g \to \infty} \frac{\max_{X \in M_g} \sup_{X \in M_g} (X)}{\log g} = 0$

We don't know if the limit exists...

We know $\forall X, \text{ sys}(X) \leq 2 \log g + C_1$ $\exists (X_k)_k, \text{ sys}(X_k) \geqslant \frac{4}{3} \log g_k - C_2$

 $\lim_{g \to \infty} \frac{\max_{X \in M_g} \sup_{X \in M_g} (X)}{\log g} = 0$

We don't know if the limit exists...

We don't even know if man sys (g) is increasing...

$$\exists$$
 a sequence $(X_k)_k$ such that $g_k = g_{emus}(X_k) \xrightarrow{k \to \infty} \infty$
 $sys(X_k) > \frac{4}{3} log g_k - 0$ universal constant

Xx's are congurence covers of an arithmetic surface /Q

Xx's are congurence covers of an arithmetic surface

a number fuld

Theorem (eary) $X \in M_g$ $sys(X) \leq 4 are sinh(\sqrt{g-1})$ $\frac{T_{heorem}(eary)}{sys(X)} \times \in M_g$ $sys(X) \leq 4 are sinh(\sqrt{g-1}) = 2 \log g + 2.77 + o(1)$

Theorem (eary) $X \in M_g$ $sys(X) \leq 4 \operatorname{are sinh}(\sqrt{g}-1) = 2 \log g + 2.77 + o(1)$

Theorem (Bavard 1996)

Theorem (eary) $X \in M_g$ $sys(X) \leq 4 \operatorname{are sinh}(\sqrt{g-1}) = 2 \log g + 2.77 + o(1)$ Theorem (Bavard 1996)

 $MS(X) \leqslant 2arccosh\left(\frac{1}{2sin\left(\frac{\pi}{12g-6}\right)}\right)$

heorem (eary) X E Mg $sys(X) \leq 4 are sinh(\sqrt{g-1}) = 2 log g + 2.77 + o(1)$ Theorem (Bavard 1996) $\text{Mys}(X) \leqslant 2\text{arccosh}\left(\frac{1}{2\sin(\frac{\pi}{12g-6})}\right) = 2\log g + 2.68 + o(1)$

Theorem (eary)
$$X \in M_g$$
 $sys(X) \leq 4 \operatorname{are sinh}(\sqrt{g-1}) = 2 \log g + 2.77 + o(1)$

Theorem (Bavard 1996)

 $sys(X) \leq 2 \operatorname{arecosh}\left(\frac{1}{2 \sin\left(\frac{\pi}{12g-6}\right)}\right) = 2 \log g + 2.68 + o(1)$

Theorem (early)
$$X \in M_g$$
 $sys(X) \leq 4 \operatorname{are sinh}(\sqrt{g-1}) = 2 \log g + 2.77 + o(1)$

Theorem (Bavard 1996)

 $sys(X) \leq 2 \operatorname{are cosh}\left(\frac{1}{2 \sin(\frac{\pi}{12g-6})}\right) = 2 \log g + 2.68 + o(1)$

Theorem (For tier Bourque - Petri 2023)

Theorem (eary) X E Mg $sys(X) \leq 4are sinh(\sqrt{g-1}) = 2log g + 2.77 + o(1)$ Theorem (Bavard 1996) $sys(X) \leq 2arccosh\left(\frac{1}{2sin\left(\frac{\pi}{12g-6}\right)}\right) = 2logg + 2.68 + o(1)$

Theorem Fortier Bourque-Petri 2023)

Theorem (eary)
$$X \in M_g$$
 $sys(X) \leq 4 \operatorname{are sinh}(\sqrt{g-1}) = 2 \log g + 2.77 + o(1)$

Theorem (Bavard 1996)

 $sys(X) \leq 2 \operatorname{arcosh}\left(\frac{1}{2 \sin\left(\frac{\pi}{12g-6}\right)}\right) = 2 \log g + 2.68 + o(1)$

Theorem (Fortier Bourque-Petri 2023)

 $sys(X) \leq 2 \log g + 2.41 + o(1)$

Theorem (eary)
$$X \in M_g$$
 $sys(X) \leq 4 \operatorname{are sinh}(\sqrt{g-1}) = 2 \log g + 2.77 + o(1)$

Theorem (Bavard 1996)

 $sys(X) \leq 2 \operatorname{arccosh}\left(\frac{1}{2 \sin\left(\frac{\pi}{129-6}\right)}\right) = 2 \log g + 2.68 + o(1)$

Theorem (Fortier Bourque—Petri 2023)

 $sys(X) \leq 2 \log g + 2.41 + o(1)$

heorem (eary) X E Mg $sys(X) \leq 4 are sinh(\sqrt{g-1}) = 2 log g + 2.77 + o(1)$ heorem (Bavard 1996) $\text{Mys}(X) \leqslant 2\text{arccosh}\left(\frac{1}{2\sin(\frac{\pi}{12g-6})}\right) = 2\log g + 2.68 + o(1)$ Theorem (Fortier Bor rys (X) \leq 2 log g + Famoni - Parlier 2015)

Girth

gir(G) := length of the shortest cycles in G

Girth

n' of edges

gir(G) := length of the shortest cycles in G

Girth gir(G) := length of the shortest cycles in G $\Gamma_n := \{3 - regular graphs with n vertices\}$

Girth Girth

n' of edges

gir(G) := length of the shortest cycles in G To = {3-regular graphs with n vertices} $\max_{G \in \Gamma_n} \mathring{gr}(G) = ?$

Girth Girth

n' of edges

gir(G) := length of the shortest cycles in G To = {3-regular graphs with n vertices} $\max_{G \in \Gamma_n} \operatorname{gir}(G) = ?$ Similarly, $gir(6) \leq 2 log n$

Girth Girth

n' of edges

gir(G) := length of the shortest cycles in G To = {3-regular graphs with n vertices} $\max_{G \in \Gamma_n} gir(G) = ?$ Similarly, $gir(6) \leq 2 \log n$ $\exists (G_k)_k \text{ with } n_k \to \infty \text{ as } k \to \infty \text{ s.t. } gir(G_k) \geq \frac{4}{3} \log n_k$

Girth Girth

n' of edges

gir(6) := length of the shortest cycles in 6 To = {3-regular graphs with n vertices} $\max_{G \in \Gamma_{n}} \operatorname{gir}(G) = ?$ Similarly, $gir(6) \leq 2 \log n \# \ln \approx n^{\frac{n}{2}}$ $\exists (G_k)_k \text{ with } n_k \to \infty \text{ as } k \to \infty \text{ s.t. } gir(G_k) \geq \frac{4}{3} \log n_k$ $\lim_{g \to \infty} \frac{\max_{X \in M_g} sys(X)}{\log g} = 0$

$$\lim_{g \to \infty} \frac{\max_{X \in M_g} \sup_{X \in M_g} (X)}{\log g} = 0$$

Theorem (Buser-Sarnak

$$\lim_{g \to \infty} \inf \frac{\max_{X \in M_g} \sup_{X \in M_g} (X)}{\log g} > 0$$

Theorem (Buser-Sarnak, Katz-Sabouran

$$\lim_{g \to \infty} \inf \frac{\max_{X \in M_g} \sup_{X \in M_g} (X)}{\log_g} > \frac{19}{120}$$

$$\lim_{g \to \infty} \frac{\max_{X \in M_g} sys(X)}{\log g} = 0$$

Theorem (Buser-Sarnak, Katz-Sabourau, L-Petri)

$$\lim_{g\to\infty} \frac{\max_{X\in M_g} sys(X)}{\log g} > \frac{19}{120} \frac{2}{9}$$

$$\lim_{g \to \infty} \frac{\max_{X \in M_g} \sup_{X \in M_g} (X)}{\log g} = 0$$

Theorem (Buser-Sarnak, Katz-Sabouran, L-Petri)

 $\lim_{g \to 00} \inf \frac{\max_{X \in M_g} \sup_{\log g} (X)}{\log g} > 000$ $\lim_{g \to 00} \inf \frac{\max_{X \in M_g} \sup_{\log g} (X)}{\log g} > 000$ $\lim_{g \to 00} \inf \frac{\max_{X \in M_g} \sup_{\log g} (X)}{\log g} > 000$ $\lim_{g \to 00} \inf \frac{\max_{X \in M_g} \sup_{\log g} (X)}{\log g} > 000$

$$\lim_{g \to \infty} \frac{\max_{X \in M_g} \sup_{X \in M_g} (X)}{\log g} = 0$$

Theorem (Buser-Sarnak, Katz-Sabouran, L-Petri)

 $\lim_{g \to \infty} \inf \frac{\max_{X \in M_g} \sup_{X \in M_g} (X)}{\log_g g} > 0$ $\lim_{120} \frac{2}{9}$

How? Random surfaces Why should I care about random stuff?

Why should I care about random stuff?

o'it's useful, especially when you want to prove \exists

Why should I care about random stuff? o'it's useful, especially when you want to prove \exists

Why should I care about random stuff? o'it's useful, especially when you want to prove \exists

Wiley Series in Discrete Mathematics and Optimization

THE
PROBABILISTIC
METHOD

Noga Alon • Joel H. Spencer

WILEY

Why should I care about random stuff? o it's useful, especially when you want to prove \exists

Wiley Series in Discrete Mathematics and Optimization

The basic probabilistic method can be described as follows: In order to prove the existence of a combinatorial structure with certain properties, we construct an appropriate probability space and show that a randomly chosen element in this space has the desired properties with positive probability. This method was initiated by Paul Erdős,

Why should I care about random stuff?

o it's useful, especially when you want to prove \exists

The basic probabilistic method can be described as follows: In order to prove the existence of a combinatorial structure with certain properties, we construct an appropriate probability space and show that a randomly chosen element in this space has the desired properties with positive probability. This method was initiated by Paul Erdős,

Q1 How to prove $\exists x \in [0,1] \text{ st. } x \notin Q$?

Q1 How to prove $\exists x \in [0,1] \text{ st. } x \notin Q$?

Proof

Q1 How to prove $\exists x \in [0,1] \text{ s.t. } x \notin \mathbb{Q}$? Proof Consider $x = \sqrt{2}/2$ Q1 How to prove $\exists x \in [0,1] \text{ st. } x \notin \mathbb{Q}$? Proof Consider $x = \sqrt{2}/2$ Q1 How to prove $\exists x \in [0,1] \text{ s.t. } x \notin \mathbb{Q}$? Proof Consider $x = \sqrt{2}/2$

Proof

Q1 How to prove $\exists x \in [0,1] \text{ s.t. } x \notin \emptyset$? Proof Consider $x = \sqrt{2}/2$ Proof $M_{bb}([0,1]) = 1 > 0$ Q1 How to prove $\exists x \in [0,1] \text{ s.t. } x \notin \emptyset$? Proof Consider $x = \sqrt{2}/2$ Proof $M_{bb}([0,1]) = 1 > 0$ Q1 How to prove $\exists x \in [0,1]$ st. $x \notin \emptyset$? Proof Consider $x = \sqrt{2}/2$

Proof $M_{leb}([0,1]) = 1 > 0$ $M_{leb}(Q) = 0$

(21) How to prove $\exists x \in [0,1] \text{ s.t. } x \notin Q$? Proof Consider $x = \sqrt{2}/2$ Proof $M_{lab}([0,1]) = 1 > 0$ $M_{leb}(Q) = 0$

a random number is (almost surely) irrational

(21) How to prove $\exists x \in [0,1]$ st. $x \notin Q$? Proof Consider $x = \sqrt{2}/2$ a random number is (almost surely) irrational Proof $M_{lab}([0,1]) = 1 > 0$ Meb(Q) = 0 $22 \text{ How to prove } \exists x \in [0,1] \text{ st. } x \notin \mathbb{Q}$?

21 How to prove $\exists x \in [0,1]$ st. $x \notin Q$? Proof Consider $x = \sqrt{2}/2$ a random number is (almost surely) irrational Proof $M_{lab}([0,1]) = 1 > 0$ Mel(Q) = 0Q2 How to prove $\exists x \in [0,1] \text{ s.t. } x \notin \overline{Q}$? Proof consider $x = \pi/4$

(21) How to prove $\exists x \in [0,1]$ st. $x \notin Q$? Proof Consider $x = \sqrt{2}/2$ a random number is (almost surely) irrational Proof $M_{lab}([0,1]) = 1 > 0$ Meb(Q) = 0Q2 How to prove $\exists x \in [0,1]$ st. $x \notin \overline{Q}$? Proof consider $x = \pi_4$ Proof' Meb $(\overline{Q}) = 0$

21 How to prove $\exists x \in [0,1]$ st. $x \notin Q$? Proof Consider $x = \sqrt{2}/2$ a random number is (almost surely) Proof $M_{lab}([0,1]) = 1 > 0$ isrational Meb(Q) = 0transcendental Q2 How to prove $\exists x \in [0,1]$ st. $x \notin \overline{Q}$? Proof consider $x = \pi_4$ Proof' Meb $(\overline{Q}) = 0$

both are inspired by graph theory

both are inspired by graph theory

1. A random greedy algorithm

both are inspired by graph theory

1. a random greedy algorithm inspired by Linial - Simkin

$$\lim_{g \to \infty} \frac{\max_{X \in M_g} \sup_{X \in M_g} (X)}{\log g} = 0$$

Theorem (Buser-Sarnak, Katz-Sabouran, L-Petri)

 $\lim_{g \to \infty} \inf \frac{\max_{X \in M_g} \sup_{X \in M_g} (X)}{\log_g g} > 0$ $\lim_{120} \frac{2}{9}$

How? Random surfaces

both are inspired by graph theory

- 1. a random greedy algorithm inspired by Linial Simkin
- 2. random Galois covers

both are inspired by graph theory

- 1. a random greedy algorithm inspired by Linial Simkin
- 2. random Galois covers inspired by

Gamburd-Hoory-Shahshahani-Shalev-Virág

both are inspired by graph theory

1. a random greedy algorithm inspired by Linial - Simkin

Gamburd-Hoory-Shahshahani-Shalev-Virág

Random Galois covers

Random Galois covers

X E Mg.

$$X \in M_g$$
. $\pi_1(X) \simeq \langle a_1, ..., a_g, b_1, ..., b_g | \prod_{i=1}^g [a_i, b_i] = 1 \rangle$

 $X \in M_g$. $\pi_i(X) \cong \langle a_1, ..., a_g, b_1, ..., b_g | \prod_{i=1}^g [a_i, b_i] = 1 \rangle$ $(G_n)_n$ a sequence of finite groups

 $X \in M_g$. $\pi_1(X) \simeq \langle a_1, ..., a_g, b_1, ..., b_g | \prod_{i=1}^g [a_i, b_i] = 1 \rangle$ $(G_n)_n$ a sequence of finite groups $Hom(\pi_1(X), G_n)$

 $X \in M_g$. $\pi_1(X) \simeq \langle a_1, ..., a_g, b_1, ..., b_g | \prod_{i=1}^g [a_i, b_i] = 1 \rangle$ $(G_n)_n$ a sequence of finite groups $Hom(\pi_1(X), G_n)$ is a finite set

 $X \in M_g$. $\pi_1(X) \simeq \langle a_1, ..., a_g, b_1, ..., b_g | \tilde{\prod} [a_i, b_i] = 1 \rangle$ (Gn)n a sequence of finite groups $\mathcal{H}_{0m}(\pi_{1}(X), G_{n})$ is a finite set \mathcal{H}_{n} uniform random $\ker \Upsilon_n < \pi_1(X)$ is normal

 $X \in M_g$. $\pi_1(X) \simeq \langle a_1, ..., a_g, b_1, ..., b_g | \prod_{i=1}^r [a_i, b_i] = 1 \rangle$ (Gn)n a sequence of finite groups Ker yn $\mathcal{H}_{om}(\pi_{1}(X), G_{n})$ is a finite set \mathcal{H}_{n} uniform random $X = \frac{1}{\pi(x)} \mathcal{H}$ $\ker \mathcal{Y}_n < \pi_1(X)$ is normal

 $X \in M_g$. $\pi_1(X) \simeq \langle a_1, ..., a_g, b_1, ..., b_g | \prod_{i=1}^r [a_i, b_i] = 1 \rangle$ (Gn)n a sequence of finite groups $X = \ker \psi$ $\mathcal{H}_{om}(\pi_{1}(X), G_{n})$ is a finite set \mathbb{R}^{2} \mathbb{R}^{2} uniform random $\ker \Upsilon_n < \pi_1(X)$ is normal

 $X \in M_g$. $\pi_1(X) \simeq \langle a_1, ..., a_g, b_1, ..., b_g | \prod_{i=1}^r [a_i, b_i] = 1 \rangle$ (Gn)n a sequence of finite groups $X = \ker \psi$ $\mathcal{H}_{om}(\pi_{1}(X), G_{n})$ is a finite set \mathbb{R}^{2} (In uniform random \mathbb{R}^{2}) \mathbb{R}^{2} \mathbb{R}^{2}

 $X \in M_g$. $\pi_1(X) \simeq \langle a_1, ..., a_g, b_1, ..., b_g | \overline{\prod} [a_i, b_i] = 1 \rangle$ (Gn)n a sequence of finite groups $X = \ker \psi$ $\mathcal{H}_{om}(\pi_{1}(X), G_{n})$ is a finite set $\mathcal{H}_{n}(X)$ and $\mathcal{H}_{n}(X)$ and $\mathcal{H}_{n}(X)$ Theorem (L-Petri) ker $\mathcal{I}_n < \pi_1(X)$ is normal $X = \pi_1(X)$ $\mathcal{I}_n < \pi_2(X)$ \mathcal

 $X \in M_g$. $\pi_1(X) \simeq \langle a_1, ..., a_g, b_1, ..., b_g | \prod_{i=1}^r [a_i, b_i] = 1 \rangle$ (Gn)n a sequence of finite groups $X = \ker \psi$ $Hom(\pi_1(X), G_n)$ is a finite set Theorem (L-Petri) ker $\mathcal{T}_n(X)$ is normal $X = \pi_n(X)$ For $G_p := SL_2(\mathbb{Z}/p\mathbb{Z})$, p prime, we have $P[sys(X_p) > \frac{1}{3}logg_p] \xrightarrow{P \to \infty} 1$

hank Moll!