Congruences between automorphic representations

Mohamed Moakher

November 2020

Contents

1	Introduction	1
2	Congruence module	2
3	Application to the proof of the theorem	4
	3.1 Case I	4
	3.2 Case II	5
	3.3 Case III	6
4	The sets of excluded primes	7
	4.1 Borel Serre compactification	8

1 Introduction

Recall from last time that for an automorphic representation $\pi \in Coh(G, \lambda, K_f)$ and an admissible signature ϵ for π , we have defined

$$L^{\mathrm{alg}}(1, \mathrm{Ad}^{0}, \pi, \epsilon) := \frac{L(1, \mathrm{Ad}^{0}, \pi)}{\omega_{F} \cdot \mathfrak{p}_{\mathrm{ram}} \cdot \mathfrak{p}_{\infty}(\pi) \cdot \mathfrak{p}^{\epsilon}(\pi) \cdot \mathfrak{q}^{\tilde{\epsilon}}(\tilde{\pi})}$$

We showed that this is actually an algebraic number contained in $\mathbb{Q}(\pi)$.

For this talk, we will consider a finite extension E of \mathbb{Q}_p with ring of integers \mathcal{O} , uniformizer ϖ , and residue field $\kappa = \mathcal{O}/\wp$. Our goal will be to explain and prove the following theorem:

Theorem 1.1. [BR14] There exist finite sets S_1, S_2 and S_3 consisting of rational primes such that if

$$v_{\wp}(L^{alg}(1, \operatorname{Ad}^0, \pi, \epsilon)) > 0$$

- (1) and if $p \notin S_1$, then there exists π' congruent to π modulo \wp and $\pi' \ncong \pi$,
- (2) and if $p \notin S_2$ and if π is of parallel weight, then there exists π' congruent to π modulo \wp and $\pi' \not\simeq {}^{\sigma}\pi$ for all $\sigma \in \operatorname{Aut}(\mathbb{C})$,
- (3) and if $p \notin S_3$ and if π is of parallel weight, then there exists $\sigma \in \operatorname{Aut}(\mathbb{C})$ with $\pi' = {}^{\sigma}\pi$ congruent to π modulo \wp and $\pi' \ncong \pi$.

2 Congruence module

Let V and \tilde{V} be finitely generated vector spaces over E, and let L and \tilde{L} be \mathcal{O} -lattices in V and \tilde{V} respectively.

Suppose that we have a non-degenerate bilinear form $\langle \cdot, \cdot \rangle : V \times \tilde{V} \to E$ with a decomposition $V = V_1 \oplus V_2$ and $\tilde{V} = \tilde{V}_1 \oplus \tilde{V}_2$ that respects this pairing. We also suppose that this pairing restricts to a perfect pairing $L \times \tilde{L} \to \mathcal{O}$.

We have exact sequences:

$$0 \to L_2 \to L \xrightarrow{\pi_1} \Lambda_1 \to 0$$
$$0 \to L_1 \to L \xrightarrow{\pi_2} \Lambda_2 \to 0$$

where π_i is the projection of V onto V_i , $L_i = L \cap V_i$, and $\Lambda_i = \pi_i(L)$. Similarly we define \tilde{L}_i and $\tilde{\Lambda}_i$. The congruence module of L with respect to this decomposition is defined by

$$\mathcal{C}(L, V_1, V_2) := \frac{L}{L_1 \oplus L_2} \cong \frac{\Lambda_i}{L_i} \cong \frac{\Lambda_1 \oplus \Lambda_2}{L}$$

where the first isomorphism is induced by the projection maps and the second by the natural inclusion $\Lambda_i \hookrightarrow \Lambda_1 \oplus \Lambda_2$. Note that by calculating the ranks of these modules, we get that $\mathcal{C}(L, V_1, V_2)$ is a finite torsion module over \mathcal{O} (since it is a PID).

If $(e_i)_i$ is a basis of L_1 and $(\tilde{e}_j)_j$ is a basis of \tilde{L}_1 , then we define the discriminant (up to a unit of \mathcal{O}) by:

$$\operatorname{disc}(L_1 \times L_1) =_{\mathcal{O}^{\times}} \operatorname{det}\left(\langle e_i, \tilde{e}_j \rangle\right)_{i,j}$$

If we let $\tilde{L}_1^* = \{ v \in V_1 \mid \langle v, w \rangle \in \mathcal{O}, \ \forall w \in \tilde{L}_1 \}$, then we have

$$\operatorname{disc}(L_1 \times \tilde{L}_1) =_{\mathcal{O}^{\times}} |\tilde{L}_1^*/L_1|$$

Lemma 2.1. The module of congruence $C(L, V_1, V_2)$ is non-zero if and only if

$$v_{\wp}\left(\operatorname{disc}(L_1 \times \tilde{L}_1^*)\right) > 0$$

Proof. By the above formula, it suffices to show that $\Lambda_1 = \tilde{L}_1^*$. First, it is straightforward that $\Lambda_1 \subseteq \tilde{L}_1^*$.

Second, by the structure theorem of finitely generated modules over a PID, we can find a basis u_1, \ldots, u_t of \tilde{L} such that l_1u_1, \ldots, l_su_s is a basis of \tilde{L}_1 with $l_1, \ldots, l_s \in \mathcal{O}$. But by definition, if $l_iu_i \in \tilde{L}_1$ we must have $u_i \in \tilde{L}_1$. Thus we can take the l_i to be equal to 1. Let u_1^*, \ldots, u_t^* be the corresponding dual basis for the dual lattice L. Since \tilde{L}_1 generate \tilde{V}_1 , we get that $\pi_1(u_i^*) = 0$ for i > s so that $\pi_1(u_1^*), \ldots, \pi_1(u_s^*)$ generate the lattice Λ_1 over \mathcal{O} . Now if $v \in \tilde{L}_1^*$, we can write $v = \sum_i a_i \pi_1(u_i^*)$ with $a_i \in E$. But then

$$\mathcal{O} \ni \langle v, u_i \rangle = \sum_j a_j \langle \pi_1(u_j^*), u_i \rangle = a_i$$

which proves the other inclusion.

Now let $\mathcal{H}^{\circ} \subseteq \operatorname{End}_{\mathcal{O}}(L)$ be a reduced subalgebra generated by a pairwise commuting operators acting on L, and let $\mathcal{H}_{E}^{\circ} = \mathcal{H}^{\circ} \otimes E \subseteq \operatorname{End}_{E}(V)$ which is semi-simple.

Suppose that the action of \mathcal{H}_E° preserves a subspace $V_1 \subseteq V$, then taking the kernel of the restriction to this subspace, we get an ideal of \mathcal{H}_E° which by semisimplicity gives a decomposition:

$$\mathcal{H}_E^{\circ} = e_1 \mathcal{H}_E^{\circ} \times e_2 \mathcal{H}_E^{\circ}$$

where e_1, e_2 are orthogonal idempotents satisfying $e_1 + e_2 = \text{id.}$ Letting $V_2 = \ker e_1$, we have a decomposition $V = V_1 \oplus V_2$ stable under \mathcal{H}_E° . (Note that if \mathcal{H}° is equivariant with respect to a non degenerate bilinear form, then V_2 is just the orthogonal of V_1).

We let $\mathcal{H}_i^{\circ} = \mathcal{H}^{\circ} \cap e_i \mathcal{H}_E^{\circ}$ and we define the congruence module

$$Q(\mathcal{H}^{\circ}; e_1, e_2) = \frac{\mathcal{H}^{\circ}}{\mathcal{H}^{\circ}_1 \oplus \mathcal{H}^{\circ}_2} \cong \frac{e_i \mathcal{H}^{\circ}}{\mathcal{H}^{\circ}_i}$$

There is a natural map $Q(\mathcal{H}^{\circ}; e_1, e_2) \to \operatorname{End}_{\mathcal{O}}(\mathcal{C}(L; V_1, V_2))$ induced by the inclusion $\mathcal{H}^{\circ} \subset \operatorname{End}_{\mathcal{O}}(L)$.

Suppose that $\mathcal{C}(L; V_1, V_2) \neq 0$ and let us see what it means. Since it is a torsion module, there exists an element $\overline{x} \in \mathcal{C}(L; V_1, V_2) \setminus \{0\}$ such that $\overline{\varpi x} = 0$. Lifting \overline{x} to an element $x \in L$, this means that there exist $f \in L_1$ and $g \in L_2$ such that $f - g = \overline{\varpi x}$, or in other words, $f \equiv g \mod \wp$ with $f \notin \wp L$.

Now let us also suppose that the algebra \mathcal{H}° acts on V_1 via a character $\chi : \mathcal{H}^{\circ} \to \mathcal{O}$. Then there exists an element $g \in L_2$ which is an eigenvector modulo \mathfrak{p} for \mathcal{H}° with system of eigenvalues $\overline{\chi}$. This puts us in the setting of Deligne-Serre's lemma:

Lemma 2.2 (Deligne-Serre). [Bel]

Assume that there exists an element $g \in L_2$ such that $g \notin \wp L_2$ and such that for every $T \in \mathcal{H}^\circ$, $T \cdot g \equiv \overline{\chi}(T)g \mod \wp L_2$ for some character $\overline{\chi} : \mathcal{H}^\circ \to \kappa$. Then for E large enough, there exists a vector $g' \in L_2$ which is an eigenvector for \mathcal{H}° whose system of eigenvalues χ' satisfies $\chi' \equiv \overline{\chi} \mod \wp$.

Proof. Since \mathcal{H}° is a finite flat \mathcal{O} -algebra, the map

 $\operatorname{Spec} \mathcal{H}^\circ \to \operatorname{Spec} \mathcal{O}$

satisfies the gowing down and the incomparability property. This implies that it sends the closed points to the special point and the non-closed points (they correspond to minimal primes) to the generic point.

On the other hand, we have a decomposition

$$\mathcal{H}^{\circ} \cong \prod_{i} \mathcal{H}^{\circ}_{\mathfrak{m}_{i}}$$

where \mathfrak{m}_i range over the maximal ideals of \mathcal{H}° . To see this, note that \mathcal{H}°/\wp is artinian over κ so it has such a decomposition and since \mathcal{O} is henselian we can lift the associated idempotents to idempotents in \mathcal{H}° (it can even be taken as a definition for being henselian [aut]).

In particular, every prime ideal lies in exactly one maximal ideal. This gives us a commutative diagram:

where the leftmost vertical map sends a character $\chi : \mathcal{H}_E^{\circ} \to \overline{E}$ to the reduction of the character $\chi_{|\mathcal{H}^{\circ}} : \mathcal{H}^{\circ} \to \overline{\mathcal{O}}$. Now let $\mathfrak{m} = \ker \overline{\chi}$. If $(L_2)_{\mathfrak{m}} = 0$, then there exists an element $h \in \mathcal{H}^{\circ} \setminus \mathfrak{m}$ such that $h \cdot g = 0$. Reducing modulo \wp , we get that $\overline{\chi}(h)\overline{g} = 0$ and since $\overline{\chi}(h) \neq 0$, we get that $\overline{g} = 0$ which contradicts our assumptions. Therefore, $\mathfrak{m} \in \operatorname{Supp}_{\mathcal{H}^{\circ}}(L_2/\wp L_2)$.

Now by what we have just seen, the \mathcal{H}° -module $(\mathcal{H}^{\circ} \cdot g)_{\mathfrak{m}}$ is non-zero.

Since \mathcal{H}° is noetherian, there exists a prime $\mathfrak{p} \subseteq \mathfrak{m}$ and an element $\frac{x}{h} \in (\mathcal{H}^{\circ} \cdot g)_{\mathfrak{m}}$ such that $\mathfrak{p} = \operatorname{Ann}_{\mathcal{H}^{\circ}}(x)$ (it is a maximal ideal with respect to this property). And since \mathfrak{p} is finitely generated, we can find an element $h' \in \mathcal{H}^{\circ}$ such that \mathfrak{p} is the annihilator of $g' = h'x \in L_2$. Now by the above commutative diagram, if we suppose E large enough, \mathfrak{p} is the kernel of a character $\chi': T \to \mathcal{O}$ reducing to $\overline{\chi}$. In particular, for all $h \in \mathcal{H}^{\circ}$, $h - \chi'(h) \in \mathfrak{p}$ meaning that $h \cdot g' = \chi'(h)g'$.

Therefore if we assume that E is large enough, then \mathcal{H}° has an eigenvector in L_2 which is congruent to an eigenvector in L_1 .

3 Application to the proof of the theorem

Let λ be a strongly-pure dominant integral weight (necessary condition for the nonvanishing of cuspidal cohomology), and $\pi \in \operatorname{Coh}(G, K_f, \lambda)$ as considered in the statement of the theorem.

3.1 Case I

We will work with the following finite dimensional vector spaces over E:

$$V = H^b_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, E}) \quad \text{and} \quad \tilde{V} = H^t_!(S^G_{K_f}, \widetilde{\mathcal{M}}_{\widetilde{\lambda}, E})$$

We also consider the following subspaces of V and \tilde{V} , respectively:

$$V_1 = \bigoplus_{\epsilon} H^b_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, E})(\pi_f \times \epsilon) \quad \text{and} \quad \tilde{V}_1 = \bigoplus_{\epsilon} H^t_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\widetilde{\lambda}, E})(\tilde{\pi}_f \times \tilde{\epsilon})$$

where ϵ runs over the characters of $K_{\infty}/K_{\infty}^{\circ}$ that are admissible for π .

Let V_2 (resp. \tilde{V}_2) be the complement of V_1 (resp. \tilde{V}_1) given as before with respect to the Hecke algebra. We consider the following lattices in V and \tilde{V} , respectively:

$$L = \bar{H}^b_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}}) \quad \text{and} \quad \tilde{L} = \bar{H}^t_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\tilde{\lambda}, \mathcal{O}})$$

Then we see that

$$L_1 = L \cap V_1 = \bigoplus_{\epsilon} \bar{H}^b(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}})(\pi_f \times \epsilon)$$

and,

$$\tilde{L}_1 = \tilde{L} \cap \tilde{V}_1 = \bigoplus_{\epsilon} \bar{H}^b(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\tilde{\lambda}, \mathcal{O}})(\tilde{\pi}_f \times \tilde{\epsilon})$$

The cup product induces the pairings

$$\langle \cdot, \cdot \rangle : V \times \tilde{V} \to E \quad \text{and} \quad \langle \cdot, \cdot \rangle : L \times \tilde{L} \to \mathcal{O}$$

where the first pairing is non-degenerate by Poincaré duality. Later we will show that outside a finite set of rational primes S_1 , the second pairing is also perfect. Therefore, we can apply the results of the previous section.

In the previous talk, we have chosen an \mathcal{O} -basis $\{\vartheta_{b,\epsilon}^{\circ}(\pi)\}_{\epsilon}$ and $\{\tilde{\vartheta}_{t,\tilde{\epsilon}}^{\circ}(\tilde{\pi})\}_{\epsilon}$ for L_1 and \tilde{L}_1 respectively, such that $\langle \vartheta_{b,\epsilon}^{\circ}(\pi), \tilde{\vartheta}_{t,\eta}^{\circ}(\tilde{\pi}) \rangle$ if $\eta \neq \tilde{\epsilon}$. Hence we get that

$$\operatorname{disc}(L_1 \times \tilde{L}_1) = \prod_{\epsilon} \langle \vartheta_{b,\epsilon}^{\circ}(\pi), \tilde{\vartheta}_{t,\tilde{\epsilon}}^{\circ}(\tilde{\pi}) \rangle = \prod_{\epsilon} L^{\operatorname{alg}}(1, \operatorname{Ad}^0, \pi, \epsilon)$$

Therefore, if for some ϵ we have $v_{\wp}(L^{\text{alg}}(1, \operatorname{Ad}^{0}, \pi, \epsilon)) > 0$, then $v_{\wp}(\operatorname{disc}(L_{1} \times \tilde{L}_{1})) > 0$ which means that $\mathcal{C}(L; V_{1}, V_{2}) \neq 0$. Hence, there exists a automorphic representation π'_{f} contributing to V_{2} which is congruent to π_{f} . So we get an automorphic representation π' whose finite part contributes to inner cohomology such that $\pi' \equiv \pi(\mod \wp)$ and $\pi' \not\simeq \pi$ (by definition of V_{1}).

3.2 Case II

Now assume moreover that the weight λ is parallel (it is invariant under the action of $\operatorname{Aut}(\mathbb{C})$). It follows by a result of Clozel, that for any $\sigma \in \operatorname{Aut}(\mathbb{C})$, the representation ${}^{\sigma}\pi$ is also cohomological with respect to the weight λ .

As in case I, we will consider the finite dimensional E-vector spaces:

$$V = H^b_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, E}) \quad \text{and} \quad \tilde{V} = H^t_!(S^G_{K_f}, \widetilde{\mathcal{M}}_{\widetilde{\lambda}, E})$$

But we will work with the following subspaces of V and \tilde{V} :

$$V_1 = \bigoplus_{\sigma, \epsilon} H^b_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, E})({}^{\sigma}\pi_f \times \epsilon) \quad \text{and} \quad \tilde{V}_1 = \bigoplus_{\sigma, \epsilon} H^t_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\widetilde{\lambda}, E})({}^{\sigma}\tilde{\pi}_f \times \tilde{\epsilon})$$

where the direct sum is taken over characters ϵ on $K_{\infty}/K_{\infty}^{\circ}$ that are permissible for π and over the finite set of embeddings $\sigma : \mathbb{Q}(\pi) \hookrightarrow \mathbb{C}$. As before we have complements V_2 and \tilde{V}_2 with respect to the Hecke action.

We consider the lattices:

$$L = \bar{H}^b_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}}) \quad \text{and} \quad \tilde{L} = \bar{H}^t_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\tilde{\lambda}, \mathcal{O}})$$

Then we have:

$$L_1 = L \cap V_1 \supseteq L(\pi) := \bigoplus_{\sigma, \epsilon} \overline{H}^b_! (\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}})({}^{\sigma}\pi_f \times \epsilon)$$

and,

$$\tilde{L}_1 = \tilde{L} \cap \tilde{V}_1 \supseteq \tilde{L}(\tilde{\pi}) := \bigoplus_{\sigma, \epsilon} \overline{H}^b_! (\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\tilde{\lambda}, \mathcal{O}})({}^{\sigma} \tilde{\pi}_f \times \tilde{\epsilon})$$

I think that some of these summands might be zero since the character through which the Hecke algebra acts might not take values in \mathcal{O} . Anyways, after excluding a finite set of rational primes (that figure in the denominator of these characters), we can assume that the above inclusions are equalities.

Now the cup product induces the following pairings:

$$\langle \cdot, \cdot \rangle : V \times \tilde{V} \to E \quad \text{and} \quad \langle \cdot, \cdot \rangle : L \times \tilde{L} \to \mathcal{O}$$

where the first pairing is non-degenerate and the second pairing is perfect outside the finite set of primes S_1 . So in this case the set of primes which we exclude is

$$S_2 = S_1 \cup \{ p \mid L(\pi) \subsetneq L_1 \}$$

Considering the \mathcal{O} -bases $\{\vartheta_{b,\epsilon}^{\circ}(\sigma\pi)\}_{\sigma,\epsilon}$ and $\{\tilde{\vartheta}_{t,\tilde{\epsilon}}^{\circ}(\sigma\tilde{\pi})\}_{\sigma,\epsilon}$ for L_1 and \tilde{L}_1 respectively. Given that the $(\sigma\pi \times \epsilon)$ -component of V pairs non-trivially with the $(\tau\tilde{\pi} \times \tilde{\epsilon})$ -component of \tilde{V} if and only if $\sigma = \tau$. We get that :

$$\operatorname{disc}(L_1 \times \tilde{L}_1) = \prod_{\epsilon,\sigma} \langle \vartheta^{\circ}_{b,\epsilon}({}^{\sigma}\pi), \tilde{\vartheta}^{\circ}_{t,\tilde{\epsilon}}({}^{\sigma}\tilde{\pi}) \rangle$$

So for any ϵ , we have:

$$\begin{split} v_{\wp}(L^{\mathrm{alg}}(1,\mathrm{Ad}^{0},\pi,\epsilon)) > 0 \Rightarrow v_{\wp}(\prod_{\epsilon} L^{\mathrm{alg}}(1,\mathrm{Ad}^{0},{}^{\sigma}\pi,\epsilon)) > 0 \\ \Leftrightarrow v_{\wp}(\mathrm{disc}(L_{1}\times\tilde{L}_{1})) > 0 \\ \Leftrightarrow \mathcal{C}(L;V_{1},V_{2}) \neq 0 \end{split}$$

Hence we get an automorphic representation π' whose finite part contributes to V_2 and such that $\pi' \equiv \pi \pmod{\wp}$. By definition of V_1 , we have that $\pi' \not\simeq {}^{\sigma} \pi$ for all $\sigma \in \operatorname{Aut}(\mathbb{C})$.

3.3 Case III

Here we also suppose that λ is parallel, and we consider the following finite dimensional vector spaces over E:

$$V = \bigoplus_{\sigma,\epsilon} H^b_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, E})({}^{\sigma}\pi_f \times \epsilon) \quad \text{and} \quad \tilde{V} = \bigoplus_{\sigma,\epsilon} H^t_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\widetilde{\lambda}, E})({}^{\sigma}\tilde{\pi}_f \times \tilde{\epsilon})$$

Let V_1 and \tilde{V}_1 be the following subspaces of V and \tilde{V} respectively:

$$V_1 = \bigoplus_{\epsilon} H^b_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, E})(\pi_f \times \epsilon) \quad \text{and} \quad \tilde{V}_1 = \bigoplus_{\epsilon} H^t_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\widetilde{\lambda}, E})(\tilde{\pi}_f \times \tilde{\epsilon})$$

Same as before, we have Hecke complements V_2 and \tilde{V}_2 and we define the following lattices in V and \tilde{V} respectively:

$$L = \bar{H}^b_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}}) \cap V \quad \text{and} \quad \tilde{L} = \bar{H}^t_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\tilde{\lambda}, \mathcal{O}}) \cap \tilde{V}$$

Then we have:

$$L_1 = L \cap V_1 = \bigoplus_{\epsilon} \bar{H}^b_! (\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}})(\pi_f \times \epsilon) \quad \text{and} \quad \tilde{L}_1 = \tilde{L} \cap \tilde{V}_1 = \bigoplus_{\epsilon} \bar{H}^t_! (\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}})(\tilde{\pi}_f \times \tilde{\epsilon})$$

And we have pairings induced by the cup product:

 $\langle\cdot,\cdot\rangle:V\times \tilde{V}\to E \quad \text{ and } \quad \langle\cdot,\cdot\rangle:L\times \tilde{L}\to \mathcal{O}$

where the first pairing is non-degenerate and we assume that the second pairing is perfect after excluding a finite set S_3 of rational primes.

Calculating the discriminant with respect to the bases $\{\vartheta_{b,\epsilon}^{\circ}(\pi)\}_{\epsilon}$ and $\{\tilde{\vartheta}_{b,\tilde{\epsilon}}^{\circ}(\tilde{\pi})\}_{\epsilon}$ of L_1 and \tilde{L}_1 respectively, we have:

$$\operatorname{disc}(L_1 \times \tilde{L}_1) = \prod_{\epsilon} \langle \vartheta^{\circ}_{b,\epsilon}(\pi), \tilde{\vartheta}^{\circ}_{b,\tilde{\epsilon}}(\tilde{\pi}) \rangle$$

Thus for any ϵ , $v_{\wp}(L^{\mathrm{alg}}(1, \mathrm{Ad}^0, \pi, \epsilon)) > 0$ implies that $\mathcal{C}(L, V_1, V_2) \neq 0$.

Note that the lattices L and \tilde{L} in this case correspond to the sublattices L_1 and \tilde{L}_1 in

the previous case. Therefore if $p \notin S_2$ the paring between L and \tilde{L} is non-degenerate if and only if there are no congruences in the second case. Hence we have :

 $S_3 = S_1 \cup \{$ the congruence primes from Case II $\}$

So In the case where p is a congruence prime, we get an automorphic representation whose finite part contributes to V_2 , and by definition of V_1 , this means that there is an embedding $\sigma : \mathbb{Q}(\pi) \hookrightarrow \mathbb{C}$ such that $\pi' = {}^{\sigma}\pi \not\simeq \pi$ and such that $\pi' \equiv \pi \pmod{\wp}$.

4 The sets of excluded primes

We will now proceed to describe the set S_1 of excluded primes. Our goal is to find a finite set of rational primes outside of which the Poincaré pairing between the following cohomology groups

$$\bar{H}^b(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}}) \quad \text{and} \quad \bar{H}^t_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\widetilde{\lambda}, \mathcal{O}})$$

is perfect. In other words, we want to show that the following maps

$$\bar{H}^{b}_{!}(\mathcal{S}^{G}_{K_{f}},\mathcal{M}_{\lambda,\mathcal{O}}) \to \operatorname{Hom}_{\mathcal{O}}(\bar{H}^{t}_{!}(S^{G}_{K_{f}},\mathcal{M}_{\tilde{\lambda},\mathcal{O}}),\mathcal{O}) \\
\bar{H}^{t}_{!}(\widetilde{S}^{G}_{K_{f}},\widetilde{\mathcal{M}}_{\tilde{\lambda},\mathcal{O}}) \to \operatorname{Hom}_{\mathcal{O}}(\bar{H}^{b}_{!}(\mathcal{S}^{G}_{K_{f}},\widetilde{\mathcal{M}}_{\lambda,\mathcal{O}}),\mathcal{O})$$

are isomorphisms. Since these modules are finite free over \mathcal{O} , it suffices to show that the first map is an isomorphism. Now injectivity follows from the injectivity of the corresponding map with rational coefficients:

$$H^b_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, E}) \to \operatorname{Hom}_E(H^t_!(\widetilde{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\widetilde{\lambda}, E}), E)$$

which is an isomorphism by Poincaré duality.

Again by Poincaré duality, we have a commutative diagram where the top row is an isomorphism:

$$\bar{H}^{b}(\mathcal{S}_{K_{f}}^{G},\widetilde{\mathcal{M}}_{\lambda,\mathcal{O}}) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{O}}(\bar{H}_{c}^{t}(\mathcal{S}_{K_{f}}^{G},\widetilde{\mathcal{M}}_{\lambda,\mathcal{O}}),\mathcal{O}) \\
\uparrow & i^{*} \uparrow \\
\bar{H}_{!}^{b}(\mathcal{S}_{K_{f}}^{G},\widetilde{\mathcal{M}}_{\lambda,\mathcal{O}}) \longleftrightarrow \operatorname{Hom}_{\mathcal{O}}(\bar{H}_{!}^{t}(\mathcal{S}_{K_{f}}^{G},\widetilde{\mathcal{M}}_{\lambda,\mathcal{O}}),\mathcal{O})$$

We need to show that the bottom row is surjective. So let $\alpha \in \operatorname{Hom}_{\mathcal{O}}(\overline{H}^t_!(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}}), \mathcal{O}),$ then there exists $x \in \overline{H}^b(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}})$ such that

$$\alpha \circ i(y) = \langle x, y \rangle, \quad \forall y \in \bar{H}_c^t(\mathcal{S}_{K_f}^G, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}})$$

But since the bottom row is an isomorphism after tensoring with E, we get that

$$\overline{x \otimes 1} = 0 \quad \text{inside} \ \frac{\overline{H}^b(\mathcal{S}_{K_f}^G, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}}) \otimes E}{\overline{H}^b_!(\mathcal{S}_{K_f}^G, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}}) \otimes E} = \frac{H^b(\mathcal{S}_{K_f}^G, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}})}{H^b_!(\mathcal{S}_{K_f}^G, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}})} \otimes E$$

In other words, x is a torsion element of

$$\frac{H^b(\mathcal{S}_{K_f}^G, \mathcal{M}_{\lambda, \mathcal{O}})}{H^b_!(\mathcal{S}_{K_f}^G, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}})}$$

By the exact sequence in the next subsection, we get that this quotient lies inside the boundary cohomology $H^b(\partial \overline{\mathcal{S}}_{K_f}^G, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}})$. Therefore, we can take the set of excluded primes to be

$$S_1 = \{ p \mid H^b(\partial \overline{\mathcal{S}}_{K_f}^G, \widetilde{\mathcal{M}}_{\lambda, \mathcal{O}}) \text{ has } p \text{ torsion} \}$$

4.1 Borel Serre compactification

Consider the inclusion into the Borel-Serre compactification $i : \mathcal{S}_{K_f}^G \hookrightarrow \overline{\mathcal{S}}_{K_f}^G$ which is a homotopy equivalence. There are two natural ways to extend the sheaf $\widetilde{\mathcal{M}}_{\lambda}$ to a sheaf on $\overline{\mathcal{S}}_{K_f}^G$.

First, we can take the sheaf

$$i_*(\widetilde{\mathcal{M}_{\lambda}})$$
 on $\overline{\mathcal{S}}_{K_f}^G$

In fact the functor i_* is exact, so we get from Leray's spectral sequence that:

$$H^{\bullet}(\overline{\mathcal{S}}_{K_f}^G, i_*(\widetilde{\mathcal{M}}_{\lambda})) \cong H^{\bullet}(\mathcal{S}_{K_f}^G, \widetilde{\mathcal{M}}_{\lambda})$$

On the other hand, we can also consider the extension by zero $i_! \widetilde{\mathcal{M}}_{\lambda}$. Then we have:

$$H^{\bullet}_{c}(\mathcal{S}^{G}_{K_{f}},\widetilde{\mathcal{M}}_{\lambda})\cong H^{\bullet}(\overline{\mathcal{S}}^{G}_{K_{f}},i_{!}(\widetilde{\mathcal{M}}_{\lambda}))$$

From the exact sequence

$$0 \to i_!(\widetilde{\mathcal{M}}_{\lambda}) \to i_*(\widetilde{\mathcal{M}}_{\lambda}) \to i_*(\widetilde{\mathcal{M}}_{\lambda})/i_!(\widetilde{\mathcal{M}}_{\lambda}) \to 0$$

and noting that $i_*(\widetilde{\mathcal{M}}_{\lambda})/i_!(\widetilde{\mathcal{M}}_{\lambda}) \to \text{is just the extension by 0 of the restriction of the sheaf } i_*(\widetilde{\mathcal{M}}_{\lambda}) \text{ to } \partial \overline{\mathcal{S}}_{K_f}^G$, we get a long exact sequence:

$$\cdots \to H^q_c(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda}) \to H^q(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda}) \to H^q(\partial \overline{\mathcal{S}}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda}) \to H^{q+1}_c(\mathcal{S}^G_{K_f}, \widetilde{\mathcal{M}}_{\lambda}) \to \cdots$$

References

- [aut] The CRing Project authors. The cring project, chapter 11.
- [Bel] J. Bellaïche. The eigenbook.
- [BR14] B. Balasubramanyam and A. Raghuram. Special values of adjoint l-functions and congruences for automorphic forms on gl(n) over a number field, 2014.