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1 Introduction

Recall from last time that for an automorphic representation π ∈ Coh(G,λ,Kf ) and an
admissible signature ε for π, we have defined

Lalg(1,Ad0, π, ε) :=
L(1,Ad0, π)

ωF · pram · p∞(π) · pε(π) · qε̃(π̃)

We showed that this is actually an algebraic number contained in Q(π).

For this talk, we will consider a finite extension E of Qp with ring of integers O, uni-
formizer $, and residue field κ = O/℘. Our goal will be to explain and prove the following
theorem:

Theorem 1.1. [BR14] There exist finite sets S1, S2 and S3 consisting of rational primes
such that if

v℘
(
Lalg(1,Ad0, π, ε)

)
> 0

(1) and if p 6∈ S1, then there exists π′ congruent to π modulo ℘ and π′ 6∼= π,

(2) and if p 6∈ S2 and if π is of parallel weight, then there exists π′ congruent to π modulo
℘ and π′ 6' σπ for all σ ∈ Aut(C),

(3) and if p 6∈ S3 and if π is of parallel weight, then there exists σ ∈ Aut(C) with π′ = σπ
congruent to π modulo ℘ and π′ 6∼= π.

1



2 Congruence module

Let V and Ṽ be finitely generated vector spaces over E, and let L and L̃ be O-lattices in
V and Ṽ respectively.
Suppose that we have a non-degenerate bilinear form 〈·, ·〉 : V × Ṽ → E with a decompo-
sition V = V1 ⊕ V2 and Ṽ = Ṽ1 ⊕ Ṽ2 that respects this pairing. We also suppose that this
pairing restricts to a perfect pairing L× L̃→ O.

We have exact sequences:

0→ L2 → L
π1−→ Λ1 → 0

0→ L1 → L
π2−→ Λ2 → 0

where πi is the projection of V onto Vi, Li = L ∩ Vi, and Λi = πi(L). Similarly we define
L̃i and Λ̃i. The congruence module of L with respect to this decomposition is defined by

C(L, V1, V2) :=
L

L1 ⊕ L2

∼=
Λi
Li
∼=

Λ1 ⊕ Λ2

L

where the first isomorphism is induced by the projection maps and the second by the nat-
ural inclusion Λi ↪→ Λ1 ⊕ Λ2. Note that by calculating the ranks of these modules, we get
that C(L, V1, V2) is a finite torsion module over O (since it is a PID).

If (ei)i is a basis of L1 and (ẽj)j is a basis of L̃1, then we define the discriminant (up
to a unit of O) by:

disc(L1 × L̃1) =O× det
(
〈ei, ẽj〉

)
i,j

If we let L̃∗1 = {v ∈ V1 | 〈v, w〉 ∈ O, ∀w ∈ L̃1}, then we have

disc(L1 × L̃1) =O× |L̃∗1/L1|

Lemma 2.1. The module of congruence C(L, V1, V2) is non-zero if and only if

v℘
(

disc(L1 × L̃∗1)
)
> 0

Proof. By the above formula, it suffices to show that Λ1 = L̃∗1.
First, it is straightforward that Λ1 ⊆ L̃∗1.
Second, by the structure theorem of finitely generated modules over a PID, we can find a
basis u1, . . . , ut of L̃ such that l1u1, . . . , lsus is a basis of L̃1 with l1, . . . , ls ∈ O. But by
definition, if liui ∈ L̃1 we must have ui ∈ L̃1. Thus we can take the li to be equal to 1.
Let u∗1, . . . , u∗t be the corresponding dual basis for the dual lattice L. Since L̃1 generate Ṽ1,
we get that π1(u∗i ) = 0 for i > s so that π1(u∗1), . . . , π1(u∗s) generate the lattice Λ1 over O.
Now if v ∈ L̃∗1, we can write v =

∑
i aiπ1(u

∗
i ) with ai ∈ E. But then

O 3 〈v, ui〉 =
∑
j

aj〈π1(u∗j ), ui〉 = ai

which proves the other inclusion.

Now let H◦ ⊆ EndO(L) be a reduced subalgebra generated by a pairwise commuting
operators acting on L, and let H◦E = H◦ ⊗ E ⊆ EndE(V ) which is semi-simple.
Suppose that the action of H◦E preserves a subspace V1 ⊆ V , then taking the kernel of
the restriction to this subspace, we get an ideal of H◦E which by semisimplcity gives a
decomposition:

H◦E = e1H◦E × e2H◦E
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where e1, e2 are orthogonal idempotents satisfying e1 + e2 = id. Letting V2 = ker e1, we
have a decomposition V = V1 ⊕ V2 stable under H◦E . (Note that if H◦ is equivariant with
respect to a non degenerate bilinear form, then V2 is just the orthogonal of V1).

We let H◦i = H◦ ∩ eiH◦E and we define the congruence module

Q(H◦; e1, e2) =
H◦

H◦1 ⊕H◦2
∼=
eiH◦

H◦i

There is a natural map Q(H◦; e1, e2) → EndO(C(L;V1, V2)) induced by the inclusion
H◦ ⊂ EndO(L).

Suppose that C(L;V1, V2) 6= 0 and let us see what it means. Since it is a torsion module,
there exists an element x ∈ C(L;V1, V2) \ {0} such that $x = 0. Lifting x to an element
x ∈ L, this means that there exist f ∈ L1 and g ∈ L2 such that f − g = $x, or in other
words, f ≡ g mod ℘ with f 6∈ ℘L.

Now let us also suppose that the algebra H◦ acts on V1 via a character χ : H◦ → O.
Then there exists an element g ∈ L2 which is an eigenvector modulo p for H◦ with system
of eigenvalues χ. This puts us in the setting of Deligne-Serre’s lemma:

Lemma 2.2 (Deligne-Serre). [Bel]
Assume that there exists an element g ∈ L2 such that g 6∈ ℘L2 and such that for every
T ∈ H◦, T ·g ≡ χ(T )g mod ℘L2 for some character χ : H◦ → κ. Then for E large enough,
there exists a vector g′ ∈ L2 which is an eigenvector for H◦ whose system of eigenvalues
χ′ satisfies χ′ ≡ χ mod ℘.

Proof. Since H◦ is a finite flat O-algebra, the map

SpecH◦ → SpecO

satisfies the gowing down and the incomparability property. This implies that it sends the
closed points to the special point and the non-closed points (they correspond to minimal
primes) to the generic point.

On the other hand, we have a decomposition

H◦ ∼=
∏
i

H◦mi

where mi range over the maximal ideals of H◦. To see this, note that H◦/℘ is artinian over
κ so it has such a decomposition and since O is henselian we can lift the associated idem-
potents to idempotents inH◦ (it can even be taken as a definition for being henselian [aut]).

In particular, every prime ideal lies in exactly one maximal ideal. This gives us a commu-
tative diagram:

{ non-closed points of SpecH◦} HomE−alg
(
H◦E , E

)
/(GE-action)

{ closed points of SpecH◦} Homκ−alg
(
H◦κ, κ

)
/(Gκ-action)

∼

∼

where the leftmost vertical map sends a character χ : H◦E → E to the reduction of the
character χ|H◦ : H◦ → O.
Now let m = kerχ. If (L2)m = 0, then there exists an element h ∈ H◦ \ m such that
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h · g = 0. Reducing modulo ℘, we get that χ(h)g = 0 and since χ(h) 6= 0, we get that
g = 0 which contradicts our assumptions. Therefore, m ∈ SuppH◦(L2/℘L2).
Now by what we have just seen, the H◦-module (H◦ · g)m is non-zero.
Since H◦ is noetherian, there exists a prime p ⊆ m and an element x

h ∈ (H◦ · g)m such that
p = AnnH◦(x) (it is a maximal ideal with respect to this property). And since p is finitely
generated, we can find an element h′ ∈ H◦ such that p is the annihilator of g′ = h′x ∈ L2.
Now by the above commutative diagram, if we suppose E large enough, p is the kernel of
a character χ′ : T → O reducing to χ. In particular, for all h ∈ H◦, h−χ′(h) ∈ p meaning
that h · g′ = χ′(h)g′.

Therefore if we assume that E is large enough, then H◦ has an eigenvector in L2 which
is congruent to an eigenvector in L1.

3 Application to the proof of the theorem

Let λ be a strongly-pure dominant integral weight (necessary condition for the non-
vanishing of cuspidal cohomology), and π ∈ Coh(G,Kf , λ) as considered in the statement
of the theorem.

3.1 Case I

We will work with the following finite dimensional vector spaces over E:

V = Hb
! (SGKf

,M̃λ,E) and Ṽ = Ht
! (S

G
Kf
,M̃

λ̃,E
)

We also consider the following subspaces of V and Ṽ , respectively:

V1 =
⊕
ε

Hb
! (SGKf

,M̃λ,E)(πf × ε) and Ṽ1 =
⊕
ε

Ht
! (SGKf

,M̃
λ̃,E

)(π̃f × ε̃)

where ε runs over the characters of K∞/K◦∞ that are admissible for π.

Let V2 (resp. Ṽ2) be the the complement of V1 (resp. Ṽ1) given as before with respect
to the Hecke algebra. We consider the following lattices in V and Ṽ , respectively:

L = H̄b
! (SGKf

,M̃λ,O) and L̃ = H̄t
! (SGKf

,M̃λ̃,O)

Then we see that

L1 = L ∩ V1 =
⊕
ε

H̄b(SGKf
,M̃λ,O)(πf × ε)

and,
L̃1 = L̃ ∩ Ṽ1 =

⊕
ε

H̄b(SGKf
,M̃λ̃,O)(π̃f × ε̃)

The cup product induces the pairings

〈·, ·〉 : V × Ṽ → E and 〈·, ·〉 : L× L̃→ O

where the first pairing is non-degenerate by Poincaré duality. Later we will show that
outside a finite set of rational primes S1, the second pairing is also perfect. Therefore, we
can apply the results of the previous section.
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In the previous talk, we have chosen an O-basis {ϑ◦b,ε(π)}ε and {ϑ̃◦t,ε̃(π̃)}ε for L1 and
L̃1 respectively, such that 〈ϑ◦b,ε(π), ϑ̃◦t,η(π̃)〉 if η 6= ε̃. Hence we get that

disc(L1 × L̃1) =
∏
ε

〈ϑ◦b,ε(π), ϑ̃◦t,ε̃(π̃)〉 =
∏
ε

Lalg(1,Ad0, π, ε)

Therefore, if for some ε we have v℘(Lalg(1,Ad0, π, ε)) > 0, then v℘(disc(L1 × L̃1)) > 0
which means that C(L;V1, V2) 6= 0. Hence, there exists a automorphic representation π′f
contributing to V2 which is congruent to πf . So we get an automorphic representation π′

whose finite part contributes to inner cohomology such that π′ ≡ π( mod ℘) and π′ 6' π
(by definition of V1).

3.2 Case II

Now assume moreover that the weight λ is parallel (it is invariant under the action of
Aut(C)). It follows by a result of Clozel, that for any σ ∈ Aut(C), the representation σπ
is also cohomological with respect to the weight λ.
As in case I, we will consider the finite dimensional E-vector spaces:

V = Hb
! (SGKf

,M̃λ,E) and Ṽ = Ht
! (S

G
Kf
,M̃

λ̃,E
)

But we will work with the following subspaces of V and Ṽ :

V1 =
⊕
σ,ε

Hb
! (SGKf

,M̃λ,E)(σπf × ε) and Ṽ1 =
⊕
σ,ε

Ht
! (SGKf

,M̃
λ̃,E

)(σπ̃f × ε̃)

where the direct sum is taken over characters ε on K∞/K◦∞ that are permissible for π and
over the finite set of embeddings σ : Q(π) ↪→ C. As before we have complements V2 and
Ṽ2 with respect to the Hecke action.
We consider the lattices:

L = H̄b
! (SGKf

,M̃λ,O) and L̃ = H̄t
! (SGKf

,M̃λ̃,O)

Then we have:

L1 = L ∩ V1 ⊇ L(π) :=
⊕
σ,ε

H
b
! (SGKf

,M̃λ,O)(σπf × ε)

and,
L̃1 = L̃ ∩ Ṽ1 ⊇ L̃(π̃) :=

⊕
σ,ε

H
b
! (SGKf

,M̃λ̃,O)(σπ̃f × ε̃)

I think that some of these summands might be zero since the character through which the
Hecke algebra acts might not take values in O. Anyways, after excluding a finite set of
rational primes (that figure in the denominator of theser characters), we can assume that
the above inclusions are equalities.

Now the cup product induces the following pairings:

〈·, ·〉 : V × Ṽ → E and 〈·, ·〉 : L× L̃→ O

where the first pairing is non-degenerate and the second pairing is perfect outside the finite
set of primes S1. So in this case the set of primes which we exclude is

S2 = S1 ∪ {p |L(π) ( L1}
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Considering the O-bases {ϑ◦b,ε(σπ)}σ,ε and {ϑ̃◦t,ε̃(σπ̃)}σ,ε for L1 and L̃1 respectively. Given
that the (σπ × ε)-component of V pairs non-trivially with the (τ π̃ × ε̃)-component of Ṽ if
and only if σ = τ . We get that :

disc(L1 × L̃1) =
∏
ε,σ

〈ϑ◦b,ε(σπ), ϑ̃◦t,ε̃(
σπ̃)〉

So for any ε, we have:

v℘(Lalg(1,Ad0, π, ε)) > 0⇒ v℘(
∏
ε

Lalg(1,Ad0, σπ, ε)) > 0

⇔ v℘(disc(L1 × L̃1)) > 0

⇔ C(L;V1, V2) 6= 0

Hence we get an automorphic representation π′ whose finite part contributes to V2 and
such that π′ ≡ π( mod ℘). By definition of V1, we have that π′ 6' σπ for all σ ∈ Aut(C).

3.3 Case III

Here we also suppose that λ is parallel, and we consider the following finite dimensional
vector spaces over E:

V =
⊕
σ,ε

Hb
! (SGKf

,M̃λ,E)(σπf × ε) and Ṽ =
⊕
σ,ε

Ht
! (SGKf

,M̃
λ̃,E

)(σπ̃f × ε̃)

Let V1 and Ṽ1 be the following subspaces of V and Ṽ respectively:

V1 =
⊕
ε

Hb
! (SGKf

,M̃λ,E)(πf × ε) and Ṽ1 =
⊕
ε

Ht
! (SGKf

,M̃
λ̃,E

)(π̃f × ε̃)

Same as before, we have Hecke complements V2 and Ṽ2 and we define the following lattices
in V and Ṽ respectively:

L = H̄b
! (SGKf

,M̃λ,O) ∩ V and L̃ = H̄t
! (SGKf

,M̃λ̃,O) ∩ Ṽ

Then we have:

L1 = L∩V1 =
⊕
ε

H̄b
! (SGKf

,M̃λ,O)(πf×ε) and L̃1 = L̃∩Ṽ1 =
⊕
ε

H̄t
! (SGKf

,M̃λ,O)(π̃f×ε̃)

And we have pairings induced by the cup product:

〈·, ·〉 : V × Ṽ → E and 〈·, ·〉 : L× L̃→ O

where the first pairing is non-degenerate and we assume that the second pairing is perfect
after excluding a finite set S3 of rational primes.
Calculating the discriminant with respect to the bases {ϑ◦b,ε(π)}ε and {ϑ̃◦b,ε̃(π̃)}ε of L1 and
L̃1 respectively, we have:

disc(L1 × L̃1) =
∏
ε

〈ϑ◦b,ε(π), ϑ̃◦b,ε̃(π̃)〉

Thus for any ε, v℘(Lalg(1,Ad0, π, ε)) > 0 implies that C(L, V1, V2) 6= 0.

Note that the lattices L and L̃ in this case correspond to the sublattices L1 and L̃1 in
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the previous case. Therefore if p 6∈ S2 the paring between L and L̃ is non-degenerate if
and only if there are no congruences in the second case. Hence we have :

S3 = S1 ∪ {the congruence primes from Case II}

So In the case where p is a congruence prime, we get an automorphic representation whose
finite part contributes to V2, and by definition of V1, this means that there is an embedding
σ : Q(π) ↪→ C such that π′ = σπ 6' π and such that π′ ≡ π( mod ℘).

4 The sets of excluded primes

We will now proceed to describe the set S1 of excluded primes. Our goal is to find a
finite set of rational primes outside of which the Poincaré pairing between the following
cohomology groups

H̄b(SGKf
,M̃λ,O) and H̄t

! (SGKf
,M̃

λ̃,O)

is perfect. In other words, we want to show that the following maps

H̄b
! (SGKf

,M̃λ,O)→ HomO(H̄t
! (S̃

G
Kf
,M̃

λ̃,O),O)

H̄t
! (S̃

G
Kf
,M̃

λ̃,O)→ HomO(H̄b
! (SGKf

,M̃λ,O),O)

are isomorphisms. Since these modules are finite free overO, it suffices to show that the first
map is an isomorphism. Now injectivity follows from the injectivity of the corresponding
map with rational coefficients:

Hb
! (SGKf

,M̃λ,E)→ HomE(Ht
! (S̃

G
Kf
,M̃

λ̃,E
), E)

which is an isomorphism by Poincaré duality.

Again by Poincaré duality, we have a commutative diagram where the top row is an
isomorphism:

H̄b(SGKf
,M̃λ,O) HomO(H̄t

c(SGKf
,M̃λ,O),O)

H̄b
! (SGKf

,M̃λ,O) HomO(H̄t
! (SGKf

,M̃λ,O),O)

∼

i∗

We need to show that the bottom row is surjective. So let α ∈ HomO(H̄t
! (SGKf

,M̃λ,O),O),

then there exists x ∈ H̄b(SGKf
,M̃λ,O) such that

α ◦ i(y) = 〈x, y〉, ∀y ∈ H̄t
c(SGKf

,M̃λ,O)

But since the bottom row is an isomorphism after tensoring with E, we get that

x⊗ 1 = 0 inside
H̄b(SGKf

,M̃λ,O)⊗ E

H̄b
! (SGKf

,M̃λ,O)⊗ E
=
Hb(SGKf

,M̃λ,O)

Hb
! (SGKf

,M̃λ,O)
⊗ E

In other words, x is a torsion element of

Hb(SGKf
,M̃λ,O)

Hb
! (SGKf

,M̃λ,O)

By the exact sequence in the next subsection, we get that this quotient lies inside the
boundary cohomology Hb(∂SGKf

,M̃λ,O). Therefore, we can take the set of excluded primes
to be

S1 = {p | Hb(∂SGKf
,M̃λ,O) has p torsion}
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4.1 Borel Serre compactification

Consider the inclusion into the Borel-Serre compactification i : SGKf
↪→ SGKf

which is a

homotopy equivalence. There are two natural ways to extend the sheaf M̃λ to a sheaf on
SGKf

.
First, we can take the sheaf

i∗(M̃λ) on SGKf

In fact the functor i∗ is exact, so we get from Leray’s spectral sequence that:

H•(SGKf
, i∗(M̃λ)) ∼= H•(SGKf

,M̃λ)

On the other hand, we can also consider the extension by zero i!M̃λ. Then we have:

H•c (SGKf
,M̃λ) ∼= H•(SGKf

, i!(M̃λ))

From the exact sequence

0→ i!(M̃λ)→ i∗(M̃λ)→ i∗(M̃λ)/i!(M̃λ)→ 0

and noting that i∗(M̃λ)/i!(M̃λ)→ is just the extension by 0 of the restriction of the sheaf
i∗(M̃λ) to ∂SGKf

, we get a long exact sequence:

· · · → Hq
c (SGKf

,M̃λ)→ Hq(SGKf
,M̃λ)→ Hq(∂SGKf

,M̃λ)→ Hq+1
c (SGKf

,M̃λ)→ · · ·
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