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1 Preliminaries

In this section, we introduce some objects and results that will be useful later on.

1.1 Formal Lie algebra

Let R be a ring and consider A = R[[ X1, ..., X, ]] the ring of power series in n variables over R.

Definition 1.1. A commutative formal group law of dimension n over R is an n-tuple of power series F' = (F1, . ..

F; e R[[X1,...,Xn,Y1,... Y, ]] such that

1. F;(X,0) = F;(0,X) = X,
2. F(F(X.,Y),Z)=F(Z F(X.,Y)),
3 F(X)Y)=F(Y,X).

It turns out that 1) and 2) automatically imply the existence of an inverse map ¢ : R[[ X1, ..., X,]] — R[[X1,. ..
given by power series 1;( X)) that verifies

F(X, (X)) = F((X), X) = 0.

A p-divisible formal Lie group is a commutative formal Lie group F' such that the map

[p] : R[[X17 cee 7Xn]] - R[[Xla cee 7Xn]]a

makes R[[X1,...,X,]] a free module over itself.

Let I = (X1,...
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, Xp) be the augmentation ideal of A. If F' is a p-divisible formal Lie group, for v > 1, consider the

ring A, = A/[p"]r(I). 1t is a finite flat R-module and F' equips the scheme I';, = Spec A, with the structure of a
group scheme. There are also canonical inclusions i, : I'y, — I',41 and one can verify that (I',, i,) forms a connected
p-divisible group. We have the following theorem:



Theorem 1.2. Let R be a complete local Noetherian ring with residue characteristic p > 0. Then the above con-
struction F' > (I, 1,) is an equivalence between the category of p-divisible formal Lie groups and the category of
connected p-divisible groups.

Remark 1.3. Note that if G = (G, = Spec Ay, i,) is a connected p-divisible group, the arrow in the other direction is
given by equipping A = lim A, with the formal group structure induced from the compatible group structures on the

Gy.

v

If (G, = Spec Ay, i,) is a p-divisible group over a complete local Noetherian ring R, there exists a compatible family
of exact sequences
0->G)—>G,—> G —0,

which gives rise to an exact sequence of p-divisible groups

0->G —>G—G"—0,
where G° is a connected p-divisible group called the connected component of G, and G*' is an étale p-divisible group
called the étale component of G. By the previous theorem, we have that A° = lim A7 =~ R[[X,- -+, X, ]], where

v
n = dim G. If S is an R-algebra, we define the tangent space of G with coefficients in S to be
t¢(S) = Homg(I/1%, S),

where [ is the augmentation ideal of A°.

1.2 Points of a p-divisible group

Let O be a complete Noetherian local domain with maximal ideal m and fraction field K, and consider G = (G, =
Spec Ay, iy )y a p-divisible group over O. If R is a complete local (D-algebra, we want to define the set of R-valued
points of GG in a way that it carries topological information. In order for this to work, we need to assume that for all
T € mp, there exists 7 » 0 such that " € mR.

We define the R-valued points of G to be

G(R) = limlim G, (R/m"R).

Putting A = lim A, equipped with the inverse limit topology (where each A, has the mA,-adic topology), we see that

v

G(R) = Lin h_II)l Homo_ag (Ay, R/m"R) = Homcon (’)—alg(Aa R),

T v

where R has the m R-adic topology.
Lemma 1.4. The following properties are true:

1. G(R) is a Zy-module.

2. The canonical map limlim G,,(R/m"R) — limlim G,(R/m"R) is injective and its image is G(R)ors (the
T T v

v
torsion points of G(R)).
3. If G is étale then the previous map is an isomorphism, G(R) = lim G, (R/mg) and it is torsion.
v

4. If O has residue characteristic p and G is connected, then there exists a (non-canonical) G i -equivariant iso-
morphism (as topological spaces)
G(R) = mfp,

where n is the dimension of G.



Proposition 1.5. Suppose that O has perfect residue field of characteristic p and let R be a complete local O-algebra,
then the sequence of Abelian groups

0 — G°(R) - G(R) - G“(R) - 0
is exact.

Corollary 1.6. If moreover R is normal and has algebraically closed residue field, then G(R) is a divisible group.

1.3 The Tate module

With the same notation as before, let K22 be the algebraic closure of K and let G be the absolute Galois group
Gal(K¥¢/K) of K. The Tate module of G is the Z,[G x]-module

T(G) = lim G, (K"®),

v

where the limit is taken over the maps j, : G,+1 — G, induced by the multiplication by p. The Tate co-module is the
Zp| G i ]-module
Pp(G) := lim Gy (K™,

v

where the colimit is taken over the inclusions 7.
Lemma 1.7. The Tate module and co-module have the following properties:
1. T,(G) is a free Z,-module of rank h such that T,,(G)/p* = G,(K),

2. ®(G) = T,(G) ®z, Qp/Zy as Zy[G k] modules (so ®,(G) = (Qp/Zp)" as Z,-modules)
and ©,(G)[p’] = G,

3. Ty(G) = Homg, (Qp/Zy, ®p(G)) as Zp[Gk]-modules.

Proposition 1.8. Ler K be any field of characteristic 0. The functor G ~~~ T,(G) induces an equivalence of categories

p-divisible groups | ~ | finite free Z,-modules with
—
over K continuous Zy-linear action of G g

2 Hodge-Tate decomposition for p-divisible groups

In this section, we consider a complete discrete valuation field X with valuation v. We let O be its ring of integers,
whose maximal ideal and residue field are denoted respectively by m and k. The valuation v on K extends uniquely to
K®2, as well as C, the completion of K2 under v. We denote by G ¢ the absolute Galois group of K and by R the
ring of integers of Cx. We will work with a p-divisible group G = (G, i,,) over O.

2.1 The logarithm map

Much like in the case of Lie groups, we can define a logarithm map, relating points on our p-divisible group with its
tangent space, which is functorial in G and satisfies the expected nice properties. Concretely, this map is Z,-module
homomorphism given by

log; : G(R) — tq(Cg) = Home (I/I%,C),
fi (a: s lim ([pr]f)($))

r—0o0 pr
First note that since G*'(R) is torsion, and since we have an exact sequence

0 — G°(R) — G(R) - G*(R) — 0,



then [p"]f € G°(R) = ContHomp_a1(.A°, V') for r » 0. Hence ([p"] f)(x) makes sense for big r.
We define a filtration on G°(R) given by

FAG°(R) := {f e G°(R) | v(f(a)) = A\Va € I}.
If f e FAG°(R) and z € I, then [p]az = pz + 2 for some z € I2, and
() N)(@) = f([plz) = flpz + 2) = pf(z) + f(2).
Since f is multiplicative, we have v(f(z)) = 2\. Hence v([p]f(z)) = min(v(p) + A, 2)) and we get
[p]FAG°(R) < FA+min®)NGo(R).

Since any f € G°(R) belongs to FAG°(R) for some \ > 0, up to replacing f by [p']f for some i » 0, we can assume
that A > v(p). Replacing f with [p"]f in the previous calculations, we get

(1)) (P1HE) _ PR

pr+1 pr pr+1 ’

which has valuation > 2(\ + 7v(p)) — (r + 1)v(p) = 2* + (r — 1)v(p) — 0 as r — oo.

([Pr] () ;

This shows that the sequence is Cauchy, so it converges in C . It also shows that if z € I, then the sequence

% tends to zero as r — 0. Therefore log; is well defined.
The logarithm log; is actually a group homomorphism. Indeed, if we let f, g € G°(R), we have

Frg=AL 404 1% ROR ™ R,

where forz € I, F(z) = 2 ® 1 + 1 ® « + z with z € I®I. Hence (f + g)(z) = f(x) + g(z) mod f(I)g(I). And
we get that log (f + g) = logg(f) + logg(g) using the above calculations.

Lemma 2.1. We have the following properties:
( )

1. The logarithmlogq : G(R) — tq(Ck) is a local homeomorphism. More precisely, for every A > it induces

an isomorphism N
logg; : F*G°(R) = {1 € tq(Ck) | v(7(Xi)) = M for 1 <i <n}.

2. We have a short exact sequence
logq
0— G(R)wrs > G(R) —> tg(Ck) — 0

Proof. 1) Let 7 € tg(Cx) be an element of the set on the right hand side. We want to construct f € F*G°(R) such

that log(f) = 7.
Let 1 = v(p). We can write [p](X) = p(X + ¢(X)) + ¢(X) with deg(¢)) > p and deg(qﬁ) > 2 (see the Corollary

to Lazard’s theorem in [Sl p. 115]). An easy calculation shows that for z € m¢t _ v(z) > zﬁ’ ([p] (2)) = v(z) +v.
In fact multiplication by p induces an isomorphism [p] : F*G°(R) = FATHG°(R) for all A > pfl (see Theorem 4 in

[5, p. 119]). Therefore, for every r > 0 there is a unique element f. € FAG°(R) such that ([p"]f.)(X;) = p"7(X;)
forall 1 <7 < n. And we have

" (Fr(X3) — fre1(X5)) = [](P"7(X5)) — p T (X5)
= po(p"7(X;)) + (" 7(Xi)).

Thus v ([p" 1 (fr(X5) — fre1(X3))) = (20 + 1)p + 2, and v (fr(Xi) — fra1(X5)) =70+ 2X > c0as 7 — 0.
Finally, we set f(X;) = 1m fr(X;) for 1 < i < n. Almost by construction, we have

o @D

r—00 pr



Thus log(f) = 7. And this constitute the inverse of the logarithm.

2) Since tg(Cg) is torsion free, we have that G(R)rs € ker logg;. Conversely, if f € ker log, then [p'] f € ker log
for all i > 0. But for i » 1, we have [p’]f € FAG°(R), so by the statement above, we must have [p ‘1f = 0 and f
is torsion. To prove surjectivity of logg, let 7 € t¢(Ck), then for ¢ » 1 p'T lies in the right-hand-side of the above
isomorphism, so p'7 lies in the image of log. But by corollary. 1.6, G(R) is divisible, so 7 is also in the image of log;
which proves the result. O

Example 2.2. If G = p,» o is the p-divisible group associated to G,, one can verify that G(R) = 1 + mg, so
G(R)1ors is the group puyo of p-power roots of unity in 1 + mp, and we have an exact sequence
1
O—>Mpoo —>1+mR&>CK—>O,

where log (1 + x) = Y70 (=1)" "1™ /n is the usual logarithm.

n=1

2.2 Exploiting duality

Using the Cartier duality, we can define a p-divisible group GP = (G2, jP), where G? is the Cartier dual of G, and
ju : Gyy1 — Gy is the map induced by the multiplication by p . We have pairings G? x G, — pv for each v > 1
which are compatible in the sense that the following diagram

D
Gt—i—v X Gt+v - ,LLpt+v

ljt,v iv,tT 7:11/[

GUD X Gv — Mpv

commutes. Taking the K*2-points and then the limit over v projectively with G and inductively with G,, yields a
Gk -equivariant perfect pairing

TP(GD) X Op(G) = Cp(pp=) = Qp/Zp(1). 6]
We also get another G g -equivariant perfect pairing

TP(GD) x Tp(G) — Tp(ppe) = Zp(1), (2)

where we add (1) for the twist by the cyclotomic character. Indeed, for (z,), € T,(GP) and (yy ). € T,(G), we have

. . . . t
<$m yv> = <]t,v($t+v)7jt,v(yt+v)> = <$t+v, lv,t]t,u(yt+v)> = <xt+vapt(yt+v)> = <$t+va yt+v>p

So we set
{T0)vs (Yo)v) = (Tuy Yo))v € Tp(ppe),

which is a level-wise G g -equivariant perfect pairing.

2.3 The Hodge-Tate decomposition

Given that every finite flat group scheme over an algebraically closed field of characteristic 0 is constant, we have for
everyv = 1
Go(K™) = G,(Ck) = Gy(R).

The last equality holds since every O-algebra homomorphism A — Cg with A finite as an O-module factors through
R. Thus, Cartier duality yields an isomorphism

Tp(GD) = @GUD (R) = liLnHomGsch/R(Gv ®o R, pipy,r) = Homy divisivle groups (G ®0 R, pip~ R),

v v

of Zp|G i ]-modules. By functoriality, any map of p-divisible groups induces a map on the points and on the tangent
spaces over Cx. Hence, we get two G i -equiavariant maps

T,(G”) — Homg, (G(R), = (R)) and  T,(G") — Homg,c (t6(Ck), pp=,0(Cr))-



These induce Z,[G i ]-module homomorphisms

a: G(R) — Homg, (T,(GP),1 + mpg),
which restricts to torsion points, and

do : tq(Cg) — Homzp(Tp(GD),(CK).
Proposition 2.3. We have a map of exact sequences of Z,|G i |-modules

0 (R G(R) loga te(Cx) ———— 0

I I o

0 —— Homg, (T,(GP), ) —— Homg, (T,(GP),1 + mp) o8, Homy, (T,(G”),Cg) —— 0

where « is an isomorphism, and o and doc are injective.

Proof. First, note that the square commutes by functoriality of the logarithm and by the definition of a and da.. More-
over, the bottom map is Homz, (T,(G®), —) applied to the exact sequence

0—>,upoo—>1+leO—g>CK—>0.

So it’s exact (T,(GP) is a free Z,-module). Next, using the isomorphism G(R)irs = ®,(G), p identifies with the
isomorphism ®,(G) =~ Homy,, (T,(G?), ®,(up=)) induced by the perfect pairing . Thus « is an isomorphism. It
remains to show that « and d« are injective. We will prove this in a series of steps:

Step 1 The kernel and cokernel of « are Q,-vector spaces (A priori they are only Z,-modules).

Applying the snake lemma and the fact that oy is an isomorphism, we get that the maps ker & — ker da and coker @ —
coker do induced by the logarithm are isomorphisms. But since do is a Zjy-linear map between (Q,-vector spaces it is
automatically Q,-linear. Thus its kernel and cokernel are also Q,-vector spaces.

Step2 We have G(R)“% = G(O) and t5(Cg)% = tg(K).
By the exact sequence in proposition it suffices to show the fact separately for G and G°. By 4. of lemma(3.2|and
Ax-Sen-Tate theorem, we have
G°(R)9% = (m%)9x = md = G°(0).
Again by 3. of lemma we have G*(R) = lim G,(k"¢) and G*(O) = lim G, (k) where k¢ = R/mp is the

-
v

v
algebraic closure of k. But on any group scheme H over O, we have H ((k¥¢)¢x) = H(k¥2)¢x = H(k) from which
we get the result.
For the tangent spaces, by Ax-Sen-Tate theorem,

tq(Cr )% = Home (I/12,C5%) = Home(I/12, K) = tg(K).

Step 3« is injective on G(O).

Since G(R)“% = G(O), the kernel of « restricted to G(O) is (ker )%k which is a Q, vector space by step 1.
Decomposing G into its étale and connected pieces, by a diagram chase (and the fact that T,((G°)P) — T,(GP))
we can reduce to these pieces. So it suffices to shows that neither G(O) nor G°(O) contain a non-zero Q,-vector
space. But this is straightforward for G () since it is torsion ( by lemma/3.2). For G°(0O), since the valuation on O is
discrete, we have [p] F°G°(0) < FO*1G°(0O). Moreover, [, [p']G°(O) = 0, so G°(©) does not contain a non-zero
p*-divisible point. Thus it cannot contain a non-zero QQ,,-vector space.



Step 4 The restriction of da to t¢(K) < tq(Ck) is injective.

Using a diagram chase and the fact that « is injective on G(O) we get that do is injective on log,(G(Q)). Thus it is
also injective on the Q)-vector space it generates. But this is exactly t¢(K). Indeed for any 7 € tg(K), there exist
n » 0 such that p"7 € imlog;(G(O)) by lemma[2.1]

Step 5 The map da is injective (hence so is ).
We factor it as follows

ta(Ck) = tq(K) ®k Cx — Homg, (T,(GP),Cx)“* @k Cx — Homg, (T,(G"),Ck),

where the first map is injective by step 4 and the second map is injective by the following step:

Step 6 Let W be a Cg-vector space endowed with a semi-linear C g -action. Then, the Cx-linear map
WO @K Cr — W,

is injective.

Suppose that this is not the case, and let w # 0 € ker f, say w = w1 ®c1+wa®cs - - - +w,®c, with w; € WEK and ¢; €
Cg . We can assume that r is minimal (among the expressions of elements of the kernel of f), so in particular ¢; # 0. Up
to dividing z by ¢1, we can also assume that ¢; = 1. If 0 € G, 0(w) = w1 ®1+wa®oc(c2)+- - - +w,Roc(c,) € ker f.
And o(w) — w € ker f is a tensor of rank < 7 — 1 so it must be zero by minimality of 7. If o(¢;) # ¢; for some i, then
w; ® 1 is a linear combination of the other w; ® 1 which contradicts the minimality of 7. So by Ax-Sen-Tate theorem,
cie(C?(K:K.Thusr:1,andwegetf(w1®1)=O:>w1:0. O

Theorem 2.4. The maps
ap : G(O) = Homg, [, (Tp(GP),1 + mp),

and
daop :tg(K) — HOH]ZP[GK](TP(GD), Ck),

induced from the previous maps by taking the G g -invariants, are isomorphisms.

Proof. Let us recollect what we know from the previous proposition in the following diagram

logg

0 ——— G(R)tors G(R) t¢(Cx) — 0

| i o

0 —— Homg, (T,(GP), ppw) — Homg, (T,(GP), 1+ mpg) LN Homg, (T,(GP),Cg) —— 0

l l

coker « = coker da

Taking the G'i-invariants of the two vertical columns, we get two exact sequences
0— G(O) 2% Homg, (¢ (Tp(GD), 14+ mpg) — (coker )%,

and
0 — to(K) 229 Homy, (6, (Tp(GP), Cx) — (coker dar) ¥

It follows that the map coker ay — coker dap induced by the logarithm, is injective. Therefore, it is enough to show
that da is surjective.
Since da is an injective morphism of K -vector spaces, we just need to equate the dimension of both sides. For this,
we set

W =Homg, (T,(G),Ck) and WP =Homy (T,(G"),Ck).



Let d = dimg W% and d' = dimg (W), By injectivity of dao, we have dim G = dimg tg(K) < d’, and
swapping G and G, we also have dim G < d. We want to show that the equalities hold, but since dim G4dim G =
ht(G) =: h, it suffices to show that d + d’ < h. The key is to use the Tate modules pairing [2{ which induces a perfect
pairing of h-dimensional C g -vector spaces

W x WP — Homg, (Z,(1),Ck) = Cx(-1). 3)
Taking the G'i-invariants, we get a pairing
WER X (WP)EK — Homg, [6,)(Zp(1), Cx) = 0,

where the vanishing is due to Ax-Sen-Tate’s theorem (Cx does not contain a period for the cyclotomic character). We
deduce that W& ®x Cg and (WP)%% ®x Ck are orthogonal with respect to the pairing so the sum of their
dimensions is < h as desired. O

Corollary 2.5. (Hodge-Tate decomposition)
There is a G i -equivariant isomorphism of C g -vector spaces

T,(G) ®z, Ck = (ti:0(K) ®k Ck) @ (ta(K) ®k Ck(1)),
where t¥,, (K) is the cotangent space of GP at k, i.e., t},, (K) = Homg (tgo (K), K).

Proof. Actually the proof of the previous theorem, tells us that d + d’ = h, so W% @ Cx and (WP)Cx @ Cx
are complements of each other under the pairing . Therefore, by the isomorphism in theorem we get a G-
equivariant exact sequence

dao®id
—_—

0—>fg(K) ®K (CK WD —>HOHIZp (fGD(K) ®K (CK,(CK<—1)) —>0,

tensoring by Cx (1), and noting that 7,,(G) ®z, Cx = Homg, (T,(G),Z,(1)) ®z, Cx = WP (1), we get
0— tg(K)®kx Cx(1) — T,(G) Xz, Ckg — tZD(K) ®r Cx — 0.

But by Ax-Sen-Tate’s theorem, we have that Ext%;K (Ck,Ck(1)) = H(Gk,Ck(1)) = 0 so the above sequence
splits which gives the result. O

3 The main theorem

In this section, we will prove the following result

Theorem 3.1. Let R be an integrally closed, Noetherian integral domain, whose fraction field K is of characteristic
0. Let G and H be p-divisible groups over R, then the map

Hompg.pain (G, H) — Hom ¢ _pain (G ®r K, H ®r K),
is bijective.

Before attempting to prove this theorem, we shall make a few reductions. We begin by reformulating the problem, so
forv > 1, consider A, (resp. B,) to be the Hopf algebra associated to G, (resp. H,,). Anelement ¢ € Hom g _pgiy (G®r
K, H ®r K) is a compatible sequence of morphisms of group schemes ¢, : G, g K — H, ®p K, or equivalently
a compatible sequence of morphisms of Hopf algebras u,, : B, g K — A, ®r K. Note that since B, is flat over R,
the injectivity of the map in the statement of the theorem is immediate, so the hard part is to prove surjectivity.

Since B, and A, are finitely generated as an R-module, we can identify u, with a matrix with coefficients in K
relative to a generating system over R of B, and A,. To ask that u, lifts to a morphism B, — A, is the same as
asking that the matrix has coefficients in R. So if we know that the result holds for discrete valuation rings, then it
holds for any localisation R, of I with respect to a minimal prime ideal p. Consequently, the matrix associated to u,,



has coefficients in R, for all minimal prime ideals p. But since R is integrally closed, we have ﬂp minimal L0 = 12, 0
u,, has coefficients in R as desired. Therefore, we can reduce to the case that R is a discrete valuation ring. Note that
if the residue characteristic is zero, then the p-divisible groups are étale and the theorem follows (we have an explicit
description of étale p-divisible groups over Henselian local rings). Therefore, for the rest of the section, we can assume
that R is a complete discrete valuation ring with residue field of characteristic p > 0.

Lemma 3.2. Ifg : G — H is a homomorphism of p-divisible groups over R such that its restriction GrK — HRrK
is an isomorphism, then g is an isomorphism.

Proof. Let G = (Gy)y, H = (Hy), and A, (resp. B,) be the Hopf algebra corresponding to G, (resp. H,). We have
a sequence of compatible homomorphisms u,, : B, — A, such that v, ®id : B, ® g K — A, ®p K are isomorphism.
Given that B, is flat over R, it follows that u, is injective for all v > 1. Now B, and A, are finite flat modules over
R (a noetherian local ring), so they are free of rank k = pU" where h is the height of G (and H). Moreover B, is a
submodule of A,, and since R is a PID, there exist a basis w1, ..., wy of A, over R such that 7™ wq, ..., 72wy is a
basis of B, (where 7 is the uniformizer of R). If we can show that disc(B,) = disc(A,) then we are done. Indeed, we
have
det (Tr(n"w;m i w;)) = ¢ det (Tr(wiw;)),

where ¢ = 72i". So in that case we would have ¢ € R* which implies ; = 0 for all i, and consequently that
Ay = By.

We have a formula for the discriminant of a p-divisible group given by disc(G,) = (p"”phv) where n is the dimension
of G and h is its height. Since GG and H have the same height (it is determined by the Tate module, hence by the generic
fiber), in order for the equality between the discriminants to hold, it suffices to show that they have the same dimension.
But the dimension is also determined by the Tate module thanks to Theorem( dim G = dimg tg(K)). So G, and
H, have the same discriminant, which proves the lemma. O

Proposition 3.3. If F' is a p-divisible group over R, and M is a G i -submodule of T),(F') which is a Z,-direct summand,
then there exist a p-divisible group E over R and a homomorphism ¢ : E — F' inducing closed immersions at each
finite level and an isomorphism T,,(E) = M via T,(p).

Proof. By proposition the module M < T,(F') corresponds to a p-divisible group £* over K which is a closed
subgroup of F'®p K. Forv > 1, let F,, = Spec(B,), E¥ = Spec A}, so that we have a surjective morphism of rings
Uy : By ®p K — A*. We set A, = u,(B,) and E, = Spec A,. Then E is a finite flat closed R-subgroup scheme of
Fy,and Ef = E, ®p K.

The inclusions F, — F,4; induce inclusions u;, : E; — E! ;. Since orders can be computed on the generic fiber,
each E! has order p¥" where h is the Zy-rank of M. Moreover, given that E* is a p-divisible group, E;; is killed by p”,
hence so is E;,. Similarly, we get that E, _ , /E, is killed by p. Therefore, multiplication by p induce homomorphisms

E;+2/Eq/;+1 - E1/J+1/E1/17 4

which become isomorphisms on the generic fiber. Set £, ; /E; = Spec D,, then by definition of surjectivity of maps
between finite flat group schemes, the morphism D,, — A, is faithfully flat, so in particular it is injective. Therefore
D, is finitely generated as an R-module. The morphism in (4]) corresponds to a morphism D,, — D,,;1 which becomes
an isomorphism upon tensoring with K, so it is injective, and as a consequence, the D, can be viewed as an increasing
sequence of R-orders in the finite étale K -algebra D1 ®r K. Given that the D, are finite as Z-modules, they all lie in
the integral closure of R inside D1 ®r K which we denote R. But R being an integrally closed Noetherian domain,
R is a Noetherian R-module. Therefore, the increasing sequence of R-modules (D,,),, inside Ris stationary, i.e., there
exist vg = 1, such that Yv = vy, Dy = Dyy1.

Define £, = E,,,,/E,,. The inclusions u;, ., : Ej,,,, < E, ., . induce inclusions u, : £y, < Ey 41, and we now
show that (E,, u,) is a p-divisible group. In order to do so, let us consider the following diagram

v / P / /
Eyi1=FE +v0+1/Evo » B +v0+1/Ev0 = By

v v

B

/ / / /
%
Evo+v+1/Evo+v Evo+1/Ev0



where « is the canonical projection, y the canonical inclusion, and /3 is the composition of the multiplication by p maps
asin . By the choice of v, 3 is an isomorphism, and given that y is a closed immersion, we have ker[p”] = ker v =
E .,/E}, = E,. Moreover, the order of E, is equal to ord(E}_ ,,)/ord(E} ) = p°". So (Ey,u,) is a p-divisible
group of order h as desired.

Finally, we have a morphism of p-divisible groups ¢ : E — F' given on each finite level by

v

E,=E, . /B, Y E cF,
which identifies 7),(E) with T),(E*) = M. O
Finally, we finish by the proof of the main theorem.

Proof. of Theorem[3.1]

Let G and H be p-divisible groups over R, and let f : G ®r K — H ®pr K be a morphism of p-divisible groups
between their generic fibers. Consider the graph I' of T),(f) inside T,,(G) x T,,(H) which is a Gx-module. The
quotient (T),(G) x T,(H))/T injects into T,,(H) via (z,y) — y — T,(f)(z), so it is torsion free, hence a free Z,-
module. Consequently, I' is a direct Z;, summand of T),(G) x T,,(H). Applying proposition to I', we get a
p-divisible group £ < G x H over R such that T),(E) =~ I'. Therefore, the projection m; : E — G induces an
isomorphism 7},(E) = T),(G), hence an isomorphism on the generic fibers (by proposition[L.8). So by lemma 3.2} 7
is an isomorphism. Finally, the morphisms of p-divisible groups over R

7r20771_1:G—>H,

extends f (one can see that by looking for example at the map on the Tate modules). This proves the surjectivity of our
map, hence the theorem. O
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