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1 Quadratic forms

Let F be a field of characteristic # 2. Let (V, Q) be a quadratic space over F' of dimenson m, S the
associated symmetric bilinear form and suppose that it is non-degenerate.
(V,Q) is called anisotropic if Q(z) < = = 0, otherwise it is called isotropic.

For a proof of the statements in this section, consult [Shil0].

Theorem 1.1 (Witt). Suppose that (V,Q) = (V1,Q1) ® (Va,Q2) = (V{, Q) ® (V3,Q%).
If (V17Q1) = (‘/1/762/1); then (‘/27@2) = (‘/’2/7Q/2>

Theorem 1.2. Given (V,Q) with Q non-degenerate, there exist a decomposition called the Witt de-
composition:

V=X&) (Fe;®Ff)
i=1
such that

o Q(es) = Qf) = 0 and S(ex, f;) = b5,
o X = (X (Fe EBFfi))L and (X, Q|x) is anisotropic.

Moreover, s and the isomorphism class of (X, Q|X) are completely determined by the isomorphism class

of (V,Q).

Let M be a symmetric matrix representing the bilinear form .S in a chosen basis of V. Then M is well
defined up to conjugation aM'a by an element a € Aut(V). Thus the coset (—1)"("=1/2 det(M)F*?
in F*/F*? is completely determined by . We call this coset the discriminant of @) and denote it by
50(Q). Consider the field Ky = F[6p(Q)'/?], and define the discriminant algebra K of @ to be:

i | Ko K #F
"\ FeF itKy=F

which we equip with the canonical involution fixing F'.

1.1 Clifford Algebra

There exist a unique pair (up to isomorphism) (A, p) consisting of a unital F-algebra A = A(V) and
an F-linear map p: V — A such that:

(1) As an F-algebra, A is generated by p(V).
(2) p(v)?2 = Q(v)1a for allv € V.

(3) If (A1, p1) is another pair satisfying (2), then there is an F-algebra homomorphism f : A — A;
such that p; = f op.



We call A(V) the Clifford algebra associated to (V, Q).

Applying (3) to A1 = A and p;(v) = —p(v), we get an endomorphism f : A — A,a — d satis-
fying v = —wv for every v € V. We also let * : A — A be the canonical involution.
We put:

AT(V)={a€ A(V) | d = a}
A~(V)={a€ A(V) | d = —a}
AT (V) is a subalgebra called the even Clifford algebra.

Lemma 1.3. Let ey, - , ey be a basis of V', then the elements

with 11 < -+ <ig, 0<s<m

eil . eis
form a basis of A. In particular, dimp(A) = 2™.
Theorem 1.4. Let V =X & Y7 (Fe; ® Ff;) be a weak Witt decomposition, and let n = 2%, then

N :
A(V) = M, (A(X)). Moreover, we have that AT (V) = { Mn/i\?}()A@ %)/L(F) Zﬁ i 8

Proof. The general case follows from the case s = 1 by induction. So suppose that s = 1 and define
an F-linear map:

UV — My(A(X))
T+rettfis <”3 T)

t —x

We have U(z +re +tf) = (22 +1t)id = Q(x + re + tf)id. Hence by the universal property of the
Clifford algebra, we can extend this to an F-algebra homomorphism

U A(V) = My(A(X))

Observing that W(e) = Eia, ¥(f) = Ea1, Y(ef) = Eq1, and ¥(fe) = Ea where E;; are the elementary
matrices, we easily see that W(A(V')) generates all of Ma(A(X)). Since A(V) and M3(A(X)) have the
same dimension, we conclude that they are isomorphic.

Now put I = e — f, then 1> = —1 and lzl™! = —x = 2’ for every ¢ € X, and so lal~! = d for
every a € A(X). So putting A = diag(l, —1), we get that
AV(a)A™' = U(d') for every a € A(V) (1.1)

this follows from the fact that it is true for a € V. Now we have that:
T(AH(V)) = {(Z Z) | a,d € AX(X) and b,c € AT(X)} (1.2)

Y
Indeed, for ¥(a) = <CCL Z), we have U (') = (—ac’ dl,)> by . Thus o € A*(V) if and only if
a = +a, V/ = Fb, ¢ = Fec, and d' = +d.
If X #0, let h € X such that h? # 0. Then we define a new algebra isomorphism:
CA(V) S My (A(X))

a— ATU(a)A
with A = diag(h,1). Then since h'A*(X) = A=Y (X)h = AT(X) and h ' AT (X)h = AT (X), from
(1.2)) we obtain that

[1]

S(AT(V)) = My(AF(X)) i X #0



Lemma 1.5. Given an orthogonal basis hi,... hy of V., put z = hy---hy. Then the following
assertions hold:

(1) 27wz = (=1)" v for everyv € V.

m(m—1) m(m—1)

(2) 22=(-1)" =2 h?---h2, and z* = (-1)" = =z.

m

(3) Fz is independent of the choice of the basis {h;};.

(4) F @ Fz is isomorphic to the discriminant algebra of Q.

Proof. Since the basis h; is orthogonal, we easily see that h;z = (—1)™"!zh; for every i. Since the h;
span V, we get the first assertion. The second assertion is a straightforward calculation. Since z? = F
and z € F, we see that if v € F & Fz and v € F, then v € Fz. Hence (3) is a consequence of the
following assertion proved in the next theorem: F' & Fz is the center of A(V) or AT (V) according to
whether m is odd or even. Finally, (4) follows easily from (2). O

Theorem 1.6. Let € be the center of A(V), € is the center of AT(V) and z be as in the previous
lemmea.

(1) Suppose m = dim(V') is even strictly positive. Then A(V) is a central simple algebra over F' and
¢t =F® Fz. AT(V) is a central simple algebra over € if €% is a field; otherwise, AT (V) is
the direct sum of two central simple algebras over F' of the same degree.

(2) Suppose m = dim(V) is odd. Then AT (V) is a central simple algebra over F, € = F & Fz, and
AV)=AT(V)aFC.

Proof. Let F be the algebraic closure of F. Suppose that m = 2541, then V& has a Witt decomposition
Ve=Fg® > ;. (Fe; ® Ff;) (recall that there is only one quadratic form up to iso in an algebraically
closed field), and A" (Fg) = F. By theorem AT (V) is isomorphic to M, (F) with m = 2%. Since
At (Vz) = AY(V)@p F, we get that AT(V) is a central simple algebra. Now by lemma zv = vz for
all v € V and so z € €. Since z € A~ (V) (given that m is odd) and that z is invertible, we have that
AV)=AT(V)® AT (V)z. Now F & Fz is a commutative algebra, and so A(V) = AT(V)®@p (F @ F2).
But since the center of AT(V) is F, we get that € = F @ Fz.

Now suppose that m = 2s, then we have a Witt decomposition Vi = >7 | (Fe; & Ff;), and A(V)
is isomorphic to M, (F) with n = 2. Hence A(V) is central simple over F. By theorem At (V)
is isomorphic to M, j»(F) @& M, »(F) whose center is F @ F and so [€* : F] = 2. By lemma H we
have that za = az for all a € AT(V) and so €t = F @ Fz. If €1 is a field, then AT(V) is central
simple over €. Otherwise, there is an element ¢ of F such that 22 = ¢2. Put € = (1 + ¢ !2)/2 and
§=(1—c12)/2,then 1 =€+, ¢ =¢, 2 =6, and €§ = 0. Therefore €* is isomorphic to the algebra
F & F and AT (V) is the direct sum of two central simple algebras A" (V)e and AT (V)J. O

1.2 Clifford groups
We define:
Gv ={ac AV)* | a 'Va=V}
GJ‘; =Gy N A+(V) Gy, =Gy N A (V)
We consider the group homomorphism 7 : Gy — Oy given for a € Gy by:

v(a): v~ ava™?

This is well defined since Q(7y (a)v) = (ava™1)? = v? = Q(v).

Suppose that we have an orthogonal decomposition V= X @ Y. Then we can easily verify that
af =Baifae AT (X)or e AT(Y) and aff = —Baif a € A~(X) and 3 € A~ (Y). In particular, if
a € AT(X)X, then a lya =y forally € Y, and o ' Xa = X if and only if = 'Va = V. Therefore,
we can view elements of G} as elements in G‘J; (This is not the case for Gx).



Lemma 1.7. For v,u € V, we have vuv € V.. Moreover, if v2 # 0, then v € Gy and v leV.

Proof. Both v? and vu + uv belong to F, hence vuv = (vu + uv)v — uv? € V.
Suppose v? # 0, then v is invertible, v=! = (v?)~lv € V, and v~ Vv = v20Vv C V so that v € Gy.
Since x € A~ (V), we get that v € Gy,. O

If v1,...,vs are invertible elements of V', then the previous lemma shows that the product vy - - - v,
belong to G‘J; or Gy, according to whether s is even or odd.
To describe the action of these elements more precisely, let v € V such that v? # 0, and consider the
hyperplane H = (Fv)*. Then we have a decomposition V = Fv @ H and the element —7(v) € Oy
is the orthogonal symmetry of V' with respect to H, i.e,

(—tv(v))(v) =—v and (—7y(v))(h)=h VYhe H
Lemma 1.8. Fvery element of Oy is a product of orthogonal symmetries as described above.

Now let us put
Gy =GHUG (V)
Theorem 1.9. (1) If m is odd, then TV(G‘J;) =1y (Gy) = SOy and Gy = QﬁXG;}.

(2) If m > 0 is even, then Gy = G5, [Gy : GJ\;] =2, 7v(Gy) = Oy, TV(G¢) = SOy, and
Tv(Gy) = {9 € Ov | det(g) = —1}. Moreover,

CHX =G, ifm=2
+ Aot — v
¢ mGV_{ F*XUF*z ifm>2
(3) For both m even and odd, Ty gives an isomorphism of G /F>* onto SOy . For even m Ty gives
an isomorphism of Gy /F* onto Oy .

(4) If V=X @&, Y is an orthogonal decomposition, then
G X)={a€eG} | v(a)y=y forally €Y}

Proof. Let g € Oy. By lemma g = (—7mv(v1)) - (—=71v(vg)) for invertible v; € V. Since each
orthogonal symmetry (—7y(v1)) has determinant —1, we have that det(g) = (—1). If g € SOy, then
k is even, which shows that SOy C TV(G‘J;).

Suppose m > 0 is even, then for every invertible v € V, det(ry(v)) = —1. Since v € Gy and
[Oy : SOy] = 2, we see that 7v(Gy) = Oy. Suppose that 7y (v) = 7y () with o € Gy>. Then a™1v
commutes with every element of V' and hence is is the center of A(V') which is F' by theorem .
Therefore v = ca with ¢ € F, which is a contradiction, since ca € AT(V) and 0 # v € A~ (V).
Thus 7v(v) € 7v(GY), and so 7v(Gy;) = SOy. From the fact that Gy, = vGy;, we get that
n(Gy) = {g € Oy | det(g) = —1}.

Now let v € Gy. For det(ry(y)) = £1, we have that () = 7y (5) for 5 € G‘f. Then =1y € FX
and so vy € G. Thus Gy = G5, and [Gy : Gf] = 2.

Now suppose that m is odd. Suppose that 7/(a) = —id for some a@ € Gy. Then a lva = —v
for every v € V, so that a~lya =y’ for every y € A(V). Let z be as in lemma Then 2/ = —z and
2z belongs to the center € of A(V). Thus z = a~'za = 2/ = —z contradiction. Thus —id & 7 (Gy), so
that 7 (Gy) = 7v(GY,) = SOy. Take any v € Gy, then 7y (y) = 7v(8) with 8 € Gy, and so B~y € €
so that v € €* GJ‘E. Clearly €% C Gy, hence Gy = QZXG;.

As for (3), if @ € Gy and 7y(a) = id, then @ € F* as an immediate corollary of theorem
(€Nt =F). If n is even, the same is true since € = F.

Now for (4), we saw that G} is contained in the RHS of the equality. For the other inclusion, let
o € Gy such that 7/(a) fixes Y. Then by applying (1) and (2) to V and X, we get that o € SOx and
there exist 8 € G% such that 7y (o) = 7/(8). Thus a = ¢f with ¢ € F* by (3) and so a € G7,. O
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Corollary 1.10. For o € G°, put v(a) = aa™.

(1) Gy (resp. Gy;) consists of all the products of even (resp. odd) number of elements of V that are
invertible in A(V').

(2) Gy, is a subgroup of Gy, [G" : Gv] = 2, and we have a homomorphism v : G° — F*. Moreover,
v(a) =v(a*) = v(d) for every a € Gy,

Proof. We have Gy, = vGY, for any invertible v € V. Therefore, it suffices to prove (1) for G.. If
wi, . .., wy are invertible elements of V', then each v; belongs to Gy by lemmaand SOwi W € GJVT
if k is even. To prove the converse, let a € G{}. Then 7y (a) = v (v1, -+ ,v) with v, ;o € VN
A(V)* and even k as shown in the proof of theorem[1.9} By (3) of the same theorem, a = cvy, - - - vj, with
¢ € F* which proves (1). The first part of (2) is then clear, and if @ = vy - - v with v; € VN A(V)*,
then

via)=aa* =z Tpxp T = T3 - - X8

from which the remaining part of (2) follows. O

1.3 Lower dimensional cases

One can prove that a quadratic form on a space of dimension > 4 over a local field is always isotropic.
Thus over a local field, we have a Witt decomposition with an anisotropic space Z of dimension < 4.
Therefore it is important to investigate the Clifford algebra of such a Z. Here we will only consider
the cases m = 2, 3.

First, let us give a few examples:

Take a couple (K,¢) consisting of an F-algebra K of rank 2 and an F-linear automorphism of K
belonging to the following two types:

(I) K is a quadratic extension of F' and ¢ is the generator of Gal(K/F).
(II) K = F& F and ¢(a,b) = (b,a).

In both cases, we obtain a quadratic space (K, k) of dimension two by putting x(z) = Nk, p(z) = z*
for € K, and we have 25(z,y) = Trg,/p(zy*). Clearly & is anisotropic if and only if K is a field.
Now take a quaternion algebra D over F' and consider the main involution t. We have a direct sum
decomposition

D=F@&D° withD°={zeD|z*=—x}
Putting N(z) = Np /g (z) = zx* for € X, we get quadratic spaces (D, N) and (D°, N° = N|po) of
dimension 4 and 3. We clearly have that D is a division algebra if and only if IV is anisotropic, if and
only if N° is anisotropic. We also see that 25(x,y) = Trp /g (2y*) for z,y € D. If D = K ® Kw for an
element w such that w = +2 € FX, then N(z + yw) = Ngp(r) —vNg,p(y) for 2,y € K. Thus:

(D, N) = (K, k) ® (K, —yK)

Lemma 1.11. Let K be the discriminant algebra of Q which we view as a subalgebra of A(Q) by lemma
[725. Then the following assertions hold:

(1) If m = 2, then (V, Q) is isomorphic to (K, ck) for some ¢ € F*. Moreover A(V) is the quaternion
algebra <L§)’C>, AT (V) =K, SOy = {z € K* | za*t =1}, G, = K*, Gy = KX UK*h for
any h € V\{0}.

(2) If m = 3, then there exists a quaternion algebra D over F such that (V,Q) is isomorphic to
(D°,—0N°) with § € 6(Q). Moreover A(V) = A™(V)®r K, AT(V) 2 D, G{, & DX,
Tv(d)z = d7'azd for v € D° and d € D* and the canonical involution of A(V) restricted to
AT (V) correspond to the main involution of D.



Proof. Suppose m = 2 and let V = Fg @ Fh with elements g, h such that S(g,h) = 0. Put b = g2,
c = h?, and as in lemma z = gh. Then Q(zg + yh) = bx? + cy? for z,y € F, 22 = —be, and
V = Kh . By a dimension argument, we have that AT (V)= K = F & Fz and so A(V) = K & Kh.
Since 2* = —z, we see that a* = o' for « € K. We have by direct calculation that Q(kh) = cNg/p(k)
for k € K and so k — kh gives an isomorphism of (K, ck) onto (V, Q). Since hk = k*h for k € K, we
see that A(V) = <%) We easily see that K* = G{, C Gy and h € Gy, and so by (2) of theorem
K* =Gy and Gy = KX U K*h.

Next, let & € K* = G, and v =kh € V for k € K. Then 7y (a)(v) = akha™ = aa*"'v. Thus 7v(a)
as an element of Endp(Kh) is multiplication by aa®~!. Therefore, SOy = 7 (Gy;) = {k/k* | k €
K*} ={k e K* | kk* = 1} (the last equality is an easy lemma).

Now suppose that m = 3. Let hq, hg, h3 be an F-basis of V' such that S(h;, hj) = ¢;0;;. We put:

g1 = hahg g2 = hzhq 93 = hiho z = hihahs

c = cicacy T=Fg & Fgy® Fgs B=FoT

Then 22 = —d € 6o(Q), AT(V) = D is a quaternion algebra, k = F @ Fz, and A(V) = D ®r K by
theorem Since gf = —g;, and AT (V) = F®T, we see that the involution * coincides with the main
involution of D and that "= D°. Since V = Dz, and Q(dz) = cdd* for d € D°, (V, Q) is isomorphic
to (D°,c¢N°). We have d~'D°d = D°® for every d € D* and so Gy, = D*. O

Now let us suppose that dim(V') = 4, then we have the following facts:

V={acA™(V)|a" =a} (1.3)

FoFz={ac AT(V)|a* =a} (1.4)

GE ={ac AX(V) | aa* € F*} (1.5)

where z is as in lemma . We easily derive the first equality from the fact that A=(V) = V &
Yic i<k Fejejer, with an orthogonal basis e1,...,e4 of V' and the second equality follows similarly.

Now for the third equality, we have an obvious inclusion. Conversely, if a € A(V)* N AT(V), then for
v € V we have a*va € A7(V) and (a*va)* = a*va so that a*va € V by the first equality. If aa* € F'*,
then a~'va € V so that a € Gy-.

Now let us consider the case where @ is isotropic. We have a weak Witt decomposition V =
X @ (Fe® Ff) for U a subspace of dimension 2. Then by theorem A(V) (resp. AT(V)) is
isomorphic to Ma(A(X)) (resp. Ma(AT(X))). Let K be the discriminant algebra of (V, Q) which is
also the discriminant algebra of (X, Q|x) (since the discriminant of a hyperbolic space is 1). By (1) of
lemmal[l.11]and its proof, we can put A*(X) = K and X = Kh with an element h such that hk = k*h
for every k € K. Define = : A(V) = Ms(A(X)) as in the proof of theorem then we can easily
verify that:

[1]

(*) = JME(a")J Yae A(V) (1.6)

by verifying this for &« € V. The map M +— J'MJ™ ! with J = <(1) _01> is the main involution
of My(K). Therefore if we identify A1 (V) with My(K), then (1.6) shows that a +— a* is the main

involution of Ms(K'). Thus we get fro (1.5]) that
E(GY) = {M € GLy(K) | det(M) € F*}

and v(a) = det(E(a)) for o € G-



Let D be a quaternion algebra over F' and put (V,Q) = (D,cN) with ¢ € F*. We consider the
linear map:

p: D — My(D)
(0 cx> (1.7)
T
zt 0
observe that p(z)? = cxz'id = Q(x) - id. Now p(D) generates Ma(D) as an F-algebra. Indeed, take

z,y € D such that zy = —yz € D*. Then p(zy)p(1) = (xoy yggb) and p(z)p(y") = ¢ <a:0y 0 )

_nyL
so that:

p(zy)p(1) + p(x)p(y') = <26(9)Uy 8)

This way we can easily verify the claim. Since dimp Mo(D) = 2%, we get by the above that Ms(D) =
cr

A(V') with the identification V = p(D) = {<3?L 0) | z € D}. Then AT(V) = {(96 2) | z,y €

D}~ D x D. For a = (p q> € My(B) = A(V), we have:

r s
. L ort
Q= (C—qu SL) (18)

since this is true for @ € V. Then if we identify AT (V) with D x D, then
Gy ={(z,y) € Dx D | az' = yy' € Q*}
and v((z,y)) = zz*. We have that 7 (a)p(d) = p(zdy~!) for d € D, a = (z,y) € Gy>. Furthermore,

Gv = G{, UG{n with n = ((1) g) and p(d)ry(n) = p(a") for all d € V.

The main involution ¢ of D belongs to Oy and has determinant —1. Thus Oy is generated by SOy
and ¢.

2 The Weil representation

Let (V, Q) be a quadratic space over Q with dimension m. The quadratic form produces a Q-bilinear
pairing S(z,y) = Q(x + y) — Q(x) — Q(y) which we suppose to be non-degenerate.
Let T be the multiplicative group of complex numbers of absolute value 1, which we also identify with
R/Z by x — exp(2imx). Then for 7 = p, 00, or A, we identify the Pontryagin dual V5" = Homeont (V2, T)
of V» with itself via the symmetric bilinear pairing:
() Vax Ve =T
(z,y) = e:(S(z,y))

where:
e For z € R, es, = exp(2imz).

e For z € Qp, write z = )
ep(—2im[z]p).

e For z = (x,) € A, we let ey(z) =[], ev(z,) which induces a character ey : A/Q — T.

s —o00 CnP" With 0 < ¢ < p. We let [z], = > _(cp" € Q and



Let dv be a Haar measure on V. For ¢ : V' — C an integrable function, we define its Fourier transform:
oa) = [ o))y

and we normalize dv so that ¢(z) = ¢(—=) (it is the unique Haar measure satisfying this).

We let W =V x V which inherits a non-degenerate bilinear pairing (-, -) from V given coordinate-wise.
We can write an automorphism o : Wo — W5 as a matrix:

e e (17 17)

Co

with as, by, ¢y, dy € End(V). We then define an alternating bilinear form J : WoxWo — T, J((x,y), («’,y")) =
(—y,2')(x,y’) which we can write symbolically:

@ (& o) () = nate)

We then define the group Sp(W->) C Aut(W>) to be the stabilizer of J. From this definition, we get

that for o € Aut(W>),
—1 ( do’ _b0'>
O' =
—Cy fop

A continuous function f : Wy — T is called a multiplicative quadratic form if the map:

(w,w') = fw +w') f(w) ™ fw) ™

is a bicharacter. In this case, there is a unique symmetric endomorphism p € End(W>) such that:
flw+w') flw)™Hf(w) ™ = {w, p(w'))

2.1 The Heisenberg group

For each w = (v1,v2) € Wo, we define the unitary operator U(w) on L?(V3) by:
(U(w)®)(v) = ®(v + v1)(v, v2)
For ® € L?(V%). Then for w' = (v}, v}) € We, we get by direct computation:
U(w)U(w) = (o1, o) Uw + w') = Flw,w)U (w + )

where we set F(w,w') = (vy,vh). Thus H(V7) = {tU(w) | t € T,w € W>} is a subgroup of unitary
operators acting on L?(V7) called the Heisenberg group.

Since U(w)U(w') = U(w')U(w) implies that (vy,vh) = (va,v]), if U(w) commutes with all other
elements of the Heisenberg group, then w = 0. Thus the center is given by Z(H(V2)) = {tU(0) | t €
T} = T, and so we have a central extension:

1-T—HW) =W, =1

We write B(V7) for the automorphism group of H(V7) which induce the identity on T.
Let s € B(V7) and let:
s(U(w)) = f(w)U(ow)

for 0 € Aut(W>) and f(w) € T and so we write s = (o, f). The composition formula is given by:

(@', f'(w)) = (o 00", f(w)f'(ow))



Note that we have we have:

f") f(w)F(ow', ow)U(ow' + ow) = f(w')U(ow') f(w)U(ocw)

By the composition law for the Heisenberg group, we get that:
Fw' +w) f(w)) " fw) ™ = Flow!,ow)F (!, w)™! (2.1)

This shows that f is a multiplicative quadratic form on W>. Conversely, one can check that for any
function f on W> satisfying the above formula, the couple (o, f) defines an element of B(V7).
Given that the right-hand-side of the equation is symmetric with respect to w and w’, we get that:

F(ow',ow)F(vw',w)™' = Flow,ocw')F(w,w) ™

Since J(w,w') = F(w,w')F(w',w)™!, o preserves J and so o € Sp(V7).
Therefore we have a group homomorphism 7 : B(V2) — Sp(V7) given by the projection to the first
coordinate. Its kernel consists of couples (1, f) where f is a character of W> and so is of the form:

f(w) = (w,wy)

Calculations show that the automorphism of H(V?) associated to the couple (1, f) is the conjugation
by U(wy). Hence the kernel of 7 consists of interior automorphisms of H(V17), and since its center is
T, we get that ker(m) = H(V>)/T = Ws.

On the other hand, one can check that by defining

fo((vla UZ)) = <U17 2_1a;bovl> <2_1d;CUU27 U2> <CUU2> bcrvl

for o = <ZU ZU) € Sp(V7), we get a section of 7 given by o + (0, fy). Thus we find that B(V;) &
Sp(V?) X W?.

Theorem 2.1. Let B(V;) be the normalizer of H(V3) in Aut(L?(V7)). Then we have a canonical exact
sequence
1 T—B(WV:) S B(Wk) —»1

We define the metaplectic group Mp(V7) by:
Mp(Va) ={u € B(V?) | u(u) = s = (o, fs) for o € Sp(V») and fs homogenious multiplicative}
By definition Mp(V7) is a central extension of Sp(V7) and we have a short exact sequence:
1= T— Mp(Vs) S Sp(Va) — 1

In general, this extension is non-trivial. However, over some subset of Sp(V7), one can define a section
r of 7.
Let

U =g 1) € Snv) | p € End(vh)

then since it is a subgroup of the symplectic group, p is symmetric with respect to (-,-) and so we
can associate to it a multiplicative quadratic form f,(v) = (v,27'pv). Then we define a section

£ U(V) —» B(V) by
(o 1D=(5 1)

9



which we extend to r : U(V;2) — Mp(V>) by:

(15 The) e =2wint) foree )

For the subgroup
a

LV = {<0 0) 0 e Aut(Vh)}

of Sp(V7), we also define a section r : L(V7) — B(V%7)

(5 g )= )

and we extend it to r : L(V?) — Mp(V7) via:

(1§ o )12) ) = Vialota ) tor @ € £2(12)

Finally for ¢ € Aut(V7), we let:

<r(<2 ‘Cg’_1>)c1>> () = o] ®(—cv) for ® € L2(V3)

where we fix a Haar measure dv on V7> and ® is the Fourier transform on ®.

Let Q = Q(V%) be the collection of all the o = <ZJ 20> € Sp(V7) with ¢, € Aut(V7). Then using the

fas bs\ (1 aacgl 0 —c}l’* 1 c;ldg
7T \e ) "0 1 o 0 0 1

(the equality aac(*,’_ldg — Tl = b, follows from the formula of the inverse of o), we can extend the
section to r : Q — Mp(V7). Explicitly, we have:

decomposition:

Lemma 2.2. [Wei64, Lem. 6] The group Sp(V-) is the group generated by the elements Q(V7) subject
to the relations oo’ = o” for o,0’,0” € Q(V7) if the same equality holds in Sp(V7).

2.2 The Siegel-Weil formula
For ® € §(V4,.), we can form a theta series as a function on SLy(F)\SLa2(Ar) x Oy (F)\Oy (Ap):

0(g.h,®)= > x(g.h) (g.h) € SLa(AF) x Ov(Ap)
(z,u)eV XX

When V has even dimension, we can define the theta series for ® € § (Vap x A%) as an automorphic
form on GLa(F)\ GL2(A) x GOy (F)\GOy (A):

0(g,h,®)= Y r(g,h)

(z,u)EV X FX
Now we introduce the Siegel Eisenstein series. For ® € S(V},.) and s € C, we have a section:
g9~ 4(9)°r(9)®(0)

I (| #47/2) = {f: STa(A) - C | f<(3 b) 9) = lal** ™y (a) £ (9))

10



Here the modulus function ¢ is defined as follows: first we let

a b a l/2
dy : B(F,) = R*, (0 d)»—>|d]v

which we extend to a function 6, : GLa(F,) — R* by Iwasawa decomposition, and we led 6 =[], d,.
Thus we can form the Eisenstein series:

E(s,9,2)= Y. 3(79)°r(v9)®(0)
+EB(F)\ SLa(F)

It has a meromorphic continuation to s € C and a functional equation with center s =1 —m/2.
Let r be the Witt index of V, i.e., the maximal dimension of F-subspaces of V' consisting of elements
of norm 0 (it is denoted by s in theorem |1.1f). Then we always have r < m/2.

Theorem 2.3. (Siegel-Weil) Assume that (V, Q) is anisotropic or m —r > 2, then:

1

£(0,9,®) =k /
( ) Vol(SOv (F)\SOv (AF)) Jso, (F)\sOv (Ar)

0(g, h, ®)dh

1
with k = 2 zfm 2 , and the integration uses the Haar measure of total volume 1.
1 ifm > 2

Remark 2.4. The theorem implicitly states that the Eisenstein series is analytic at s = 0 and the
integral on the RHS converges absolutely.
2.3 Explicit form of the metaplectic groups

We view the group SL2(A) (and similarly for other coefficient rings) as the subgroup of Sp(Vy) given

by o = (CCLU ZJ> with ag, by, o, dse € A. We let Mp;(Vy) to be the inverse image of SLa(A) inside

Mp(Va).
Recall that for a group G, the set of isomorphism classes of central extensions
1A—-F—>G—1

i.e., A C Z(E) is classified by H?(G, A). Setting E = A x G, this is given explicitly by defining the
composition law on E for a cocycle a € H?(G, A) by:

(a,e) - (d',e) = (ale,e)ad, ec)

Moreover, if G and A are locally compact topological groups, then a measurable cocycle « induces a
unique locally compact topology on E compatible with the exact sequence.

Weil [Wei64] showed that there is a subgroup SLa(A) of Mpi(A) satisfying the following commutative
diagram:

1 M2 > S’{Z‘J?(A) E— SLQ(A) — 1
1 T » Mpi(A) —— SLa(A) —— 1

In other words, the 2-cocycle SLa(A)? — T giving rise to the metaplectic extension is cohomologous
to another one with values in puo.

11



Theorem 2.5. [Kub67] Let v = oo, p be a place of Q, and (-, )y : QF x Q)% — ua be the Hilbert symbol.
For~ = <CCL Z) € SL2(Qy), set z(y) = ¢ or d according to whether ¢ # 0 or = 0. Then the map:

ap : SLQ(QU) X SLQ(QU) — 2
(7, 1) = (@(), 2(8))u(—2(y) " 2(5), 2(76))o

defines a (measurable) cohomologically non-trivial 2-cocycle.

Proposition 2.6 (|Gel76|Prop 2.3). Let v = oo, p be a place of Q. Then

H?(SLa(Qy), p12) = pao

In other words, there exists a unique (up to isomorphism) extension SNLg(Qv) of SL2(Qy) by pua.

Remark 2.7. The topology on SL, (Qy) is not the product topology. If {U, },, is a basis of neighborhoods
of the identity in SL2(Q,), then a basis of neighborhoods of the identity in SL2(Q,) is of the form
(Un, 1) for Uy, such that «(U,,U,) is identically one.

We modify Kubolta’s cocycle by a coboundary as follows: let s, : SLa(Qp) — po for a prime p be
given by

( a b )= (¢,d)p ifc#dand ordy(c) =1 mod 2
P\e a)) T 1 otherwise

and for Qo = R, set soc = 1. Then we define a new 2-cocycle:
Ko (7,0) = ay(7,6)8u(7)50(6)50(70)

By [Gel76| Prop 2.8| for a prime p, k), is trivial on I'1(4), = {(CCL 2) € SLa(Qp) | ¢c=0,a=1 mod 4}

. Therefore the product x(°)(v,d) = [1, 5p(p, 6p) is well defined for v,0 € SLy(A(>)) and gives the
metaplectic extension .
1= ps— SLQ(A(OO)) — SLQ(A(‘X’)) -1

For the infinite place, we will choose another cocycle defined by Shimura [Shi73]. We first define
Shimura’s symbol (%) for an integer a and an odd integer b # 0 by:

(1) (§) =0if (a;6) # 1.

(2) If b is an odd prime, then (%) is the Legendre symbol.
(3) If b> 0, a > (%) is a character modulo b.

(4)

4) If a # 0, b+ (%) is a character modulo 4a whose conductor is the conductor of Q[y/a]/Q.

(5) (%) =1 or —1 accorting to whether a > 0 or a < 0.

O

Consider the theta function 6 : $§ — C,7 = > ewo(n?r). We define for o € To(4), h(y,7) :=
O(v(7))/0(T). Then by [Shi73|, 1.10],

(2 8=t (e ) i (§ 3)n=era

12



1/2 _

where we choose a square root function z 2]e'™ for 2z = |z]|ex(#) with —7 < 0 < 7, and e =i

or 1 according to whether d =3 or 1 mod 4.
We can now realize

é\]iQ(R) ={(g,J(g9,7)) | g € SL2(R), J(g,—) is holomorphic and J2( T)=7(g9,7)}

with multiplication given by (g, J(g,7)(h,J(h,T)) = (gh,J(g,h(7))J(h,T)) (because j is a cocycle).
We thus have a central extension ps — SLo (R) = SL2(R) with (1) = (id, —1).
)

= (7, h(y, 7).

The above calcualtion shows that we have a section Ig(4) — SLa(R

3 Waldspurger’s formula

Let F' be a number field and D be a quaternion algebra with ramification set . Fix an embedding
K — D for a quadratic extension K/F, then we have a decomposition:

D=K®Kj withj?eF*
We let 1) : F*\Aj — C* be the quadratic character associated to the extension K/F.

Consider the orthogonal space (V,Q) = (D, N) and the orthogonal decomposition V' = V; @ V5 for
Vi =K and Vs = Kjj

Let 7 be an irreducible cuspidal automorphic representation of Dg with central character wy : F*\Aj5 —
C*, and let x : K™\ Ax — C* be a character with w - Xjax = 1. We define the toric period integral:

r(n= | X dt for fen
KX\AR /A%
then P, € Homyx (7 ® x,C).
For any ® € S(Va, x A}), we have a theta series:

0(g,h,®) = Z r(g, h)®(z,u) for g € GLa(AFr),h € Dg_ x Dy
zeVueFX

Let o be the Jacquet-Langlands transfer of m to GLy /F. For any ¢ € o, we define the normalized
global Shimizu lifting:

¢(2)

o(d, )(h :/
(@, 9)(h) L(1,7,ad) Jar,(p)\ GLa(ar)

©(9)0(g,h,®) dg for h e Di x Dy

This defines an automorphic form O(®, ¢) € 7 @7 (the reason for this normalisation will be appearent
in the next lemma). Let
F:nerm—C

be the canonical bilinear map defined by the Petersson pairing.

For an additive character ¢ : F\Ap — C, we consider the Whittaker model W(¢, o) of o. For

p€oand x € I, let:
1 «
Woole) = [ o((g §) Dens(-sa) da
F\Ap

then the map ¢ — W, , induces a Hecke equivariant isomorphism o = W(o, ea . (z—)).
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Lemma 3.1. For any ¢ € o and decomposable ® = ®@,®, € S(Va, x Af), we have:

G(2)

]:(6((1)790)) = Hm ch,fl,v(g)r(g)q)v(lal) dg

/N(Fu)\ GLa(Fv)

For @ € S(Vj,, x A}), we can form the mixed theta-Eisenstein series:

I(s,9.®)= > 8y > r(19)®(a1,u)

~yEP(F)\GL2(F) (z1,u)EVIXFX
Define its x-component:
I.9.00) = [ X(OI(s.g.2(t.1)) ds
T(F)\T(AF)

(Here (t,1) is seen as an element of Oy ). For any ¢ € o, we introduce the Petersson pairing:

P(s,x,®,¢) = ©(9)I(s,9,x,®) dg

/Z(AF) GLa(F)\ GL2(Ar)

Proposition 3.2. [Wal85, Prop. 4] If we have decomposable ® = @, P, and ¢ = Qypy, then:

P(S,X,(I)7<,0) = HPU(Sava(I)vaSDU)
v
where:

Pv(SaXUa(I)w(Pv) :/ X(t)/ 5U(g)sW—17<Pu(g)r(g)(pv(tilvQ(t)) dgdt
Z(Fu)\T(Fv) N(Fy)\ GL2(Fy)

Proof. Writing the explicit formula for I(s, g, x, ®), we get that P(s,x,®, ) is equal to:

> rlg (£,1)0(x1,u) dgdt

z1,u)EVE X FX

/ sO(g)(S(g)s/ x(t)
Z(Ap)P(F)\GL2(AF) T(FO\T(AF) (
We decompose the first integral as a double integral:

/ dg—/ / dndg
Z(Ap)P(F)\ GL2(AF) Z(Ap)N(Ap)P(F)\GL2(Ar) JN(F)\N(Ap)

and using the expression of the Whittaker model and of r on elements of N(Ar), we get:

Z W—Q(ml)u,go(g)r(ga (t’ 1)) ($1, )dtdg
zl,u)eVI X F'%

/ st9)* [ ()
Z(Ap)N(Ap)P(F)\ GL2(AF) T(F)\T(AF) (

Since ¢ is cuspidal, Wo,, = 0. This way we can change variables (z1,u) — (2, Q(z] ')u) to obtain the
following expression:

S Wowe@)r(e, (D)0, Q) ) = S Wewp(g)r(g, (a1, 1) ®(1,u)

(z1,u)EKX XFX (z1,u) KX XFX
Since T'(F) = K* and fT FO\T(AR) D a1 €T (F fT , the integral becomes:
/ 5(9) / (1) 3 Wowulo)e(o, (1, 1)@(1,u) didg
Z(Ap)N(Ap)P(F)\ GL2(AF) Ap weFx
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By a straightforward calculation, we have W_,, ( <(1) u01> g) = W_1,,(g) and |u|s, =1, the integral
is equal to:
/ 0 [0 X Wy L) or(g L) o ye0,0) g
Z(Ap)N(Ap)P(F)\ GLa(A) 0 u 0 u

u€Fx

The sum over u € F* collapses with the quotient over P(F'), thus we get the following expression:

Pls, . B, ) = / 5(9)° / S X(OW_1p(0)r(9)0(t 1, Q(1)) dtdg
(AF)N(AF)\ GL2 (AF) T(AF) ugc Fx

We may decompose the inside integral as f Z(AR\T(AF) i) Z(Ap) and move the first integral outside. Then
using the fact that w, - x Ax = 1, we obtain:

P(s,x,®,¢) = 5(9)*W_1,4(g9)r(9)®(t™", Q(t)) dtdg

/ x(t) /
Z(AF)\T(AF) N(Arp)\GL2(AF)
O

When everything is unramified, Waldspurger computed these integrals (cf. lemma 2 in [Wal85])
and got:
L((s +1)/2,my, Xv)

L(s+1,1m)

Pv(sa Xv, P, Spv) =
So we may define a normalised integral P; by:

L(s+1,m,)
L((S + 1)/2, Ty Xv)

This normalized integral P; will be regular at s = 0 and equal to

P’z?(&XUa(I)mSOU) = PU(87X11aq)v>(pv)

L(1/2,my, xv)L(1, 7y, ad)
Cu(2)L(1,70)

by lemma This can be written as a,(0(®,, ¢,)) with a,, € Hom(m, ® 7,, C) given by integration
of matrix coeflicients:

/ Yo F(r(£)0(@y, 0,))dt
Z(Fy)\T(Fy)

L(1/2, 7y, xv)L(1, 7y, ad)
Cuo(2)L(1, ny)

and we define the global element « := ®,a,, € Hom(7w @ 7, C). We thus get:

ay(f1® fo) =

/ X Fxo(®) (r (D) f1, o) dt
(Fu)\T'(Fy)

Proposition 3.3. We have that:
L(1/2,m
P(()aXa(I)a(p) / X Hav va(Pv
v

We thus get to the main theorem of [Wal85]:

Theorem 3.4. For f; € m and fa € 7, we have:

CF(2)L(1/27 , X)

Py (f1) - Py (f2) = 8L(1,7)2L(1, 7, ad)

a(fi @ f2)
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4 Doi-Naganuma Lift

Let £/Q be a real quadratic field extension so that E = Q(v/A) with A > 0 squarefree. We write
Gal(E/Q) = {1,0} and note that we fixed an embedding E < R so that the set of embeddings of F
in R is identified with Gal(E/Q). Let D be a quaternion algebra over Q and Dg = D ®g E. We will
consider the following quadratic spaces (V, Q):

(DE) Let (DE) = {x € Dg | 2° = +2*}, and Q¥ (r) = z2° = +a2* = £N(z) € Q. Then,
S(z,y) = S*(z,y) = £ Trp, /p(zy') = Trp, /p(zy’) € Q
We have m = 4. Indeed, we have a decomposition over C:
Dg ®q C = M3(C) © M(C)
with o interchanging the components My(C), and we have:
Dy ©q C = {(X,£X") € Ma(C) & My(C) | X € M(C)}
which has dimension 4 over C.
(DF) Let DF = {x € Df | Tr(x) = = + 2* = 0} and Q*(x) = 22° = +N(z). Note that Dy = {z €
D | Tr(z) = 0} and that Df = V/ADy; C Dg (so that as quadratic spaces D is isomorphic
to Dy with the norm multiplied by —A) . Then the lemma m gives the Clifford algebras and

groups associated to these spaces. In particular, the even Clifford group is isomorphic to D* and
the morphism of algebraic groups 7p, : D* — SOp, is given by a — (v~ ava™1).

(Z%) Let Z* = {x € DFf | 2 = 2} = 6:Q with 6, = 1 and 6_ = VA with S*(0rx,d1y) =
Tr(d12(d1y)?) = #2622y, So QT (6+x) = +6322, the space (Z1,Q7F) is positive definite, and
(Z7,Q7) is negative definite.

Note that if we don’t need to refer to the sign of D we just write D, instead.

We may let a € Dg act on DF by v+ a‘va’ as:
(a*va?)? = a“v’a = +a*?v'a = £(a‘va’)"
This preserves @ up to a scalar N(a)N(a)? € Q, and so we get a morphism of linear algebraic groups:
7:Dj — GOp, (4.1)

Given the inclusion of quadratic spaces (DF,£N) C (Dg,£N) and following (1.7), we define the
Q-linear map:

p:DE = RC My(Dg) = A(Dg)
. 0 ==x
xt 0
b

where R = {(;, ag> | a,b € Dg}. Since dimg R = 2%, we get that R = A(D,). We also have

that AT(D,) = “ OU | a € DE} = Dp where we make the identification by the projection

- 0 a
<g '—> a® By and , the even Clifford group is equal to:

p, =1a € Dg | N(a) € Q*}
and the morphism to the special orthogonal group is given explicitly by:
D, GB, — SOp,
a— (z— a’za™t)

By lemma , this map is surjective with kernel Q*.
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4.1 Choices of D for a fixed Dg

Pick a € D N D}, and consider z°« = az®a~*. Then,
(272)7 = a(a?(27)7a” Na ™t = a(ta'z + o ol =2

Thus we get a new action of Gal(E/Q) on Dg, and the fixed points D, = H°(E/Q,Dg) = {z €
Dpg | za = ax?} under this new action is a quaternion algebra over Q with Dg = D, ®q E.

Lemma 4.1. With the above notation we have:

1) If B is a central simple Q-subalgebra of Dg of dimension 4, then there exists o € Dy, N D7 such
( g E
that B = D,,.

(2) We have that o = xzfz' for f € Dy N D*E and x € Dy, if and only if Do = Dg as quaternion
algebras over Q, and in this case, we have D, = :UD/gac*l iside Dg.

(8) We have that D, = D if and only if « € D, N E*.

Proof. Let D be a quaternion Q-subalgebra B C Dg. Then we have an action of o € Gal(E/Q) on
Dpg, such that H*(E/Q, Dg) = B. This is given by the action on the second factor in Dg = B ®g E.
Write this action by a,, then z — (27)% is an E-linear automorphism of Dg. By the Noether-Skolem
theorem, it is an inner automorphism, and so there exists a € DE such that:

2° =az’a”l VeeFE
Since (x7¢)%* = x, we see that a’a € Z(Dg) = E. In particular (a”a)a = a(a’a), and so dividing
on both sides by a, we get that a and a” commute. Then (aa?)? = a’a = aa” which shows that
aa® € Q. Thus a = za* for some z € Q*, and a®* = za. Therefore « is an eigenvalue of o¢ which is
of order 2 (0 and ¢ commute), and so z = +1 which gives that a” = +a*. If z does not match with
the sign of DF, we replace o with v/Aa. We have B = D,, which shows (1). O

5 Rankin convolution

5.1 Adelic fourier expansion of cuspforms of integral weight

Let F' € S.(I'g(C), ) be a cusp form of weight k € N, ¢ : (Z/CZ)* — C* be a Dirichlet character
b

where we let go((ccl d)) = ¢(d) for <CCL Z) € I'y(C). Then we have:
F(y(1)) = e(MF(7)i(v,7)"  for ally € To(C)

Since A*/Q*R} = 2*, by composing with the projection map 7% —» (Z/CZ)* we extend ¢ to a
character ¢ : A /Q* — C* . Using strong approximation, SLa(A) = SLQ(Q)fO(C) SL2(R) and we lift
F to F : SLy(Q)\ SLy(A) — C by putting:

F(au) = " (u) F (oo - )] (too, 1) ™"

for o € SL2(Q), u € fO(C) SLy(R), and ¢* = o~ L.
Define an idele character ¢ : A*/Q* — C* by ¢(z) = ¢*(x)|z[,". Write the Fourier expansion of F

1 o~
0 -l ) with z € Z*RZ, we find for

as F(1) =Y >, an(F)ex(nt). For g € B(Z)B(R) with g = <x v
T:goo-i:a:goi—kyoo,

F(g) = ¢*(@®) "2 ) an(Feco(nt) = @(2) 7' ) an(F) exp(—2mna, )ecc(nyso)
n=1 n=1
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Let v(y) = <(1)

F(v(u)g) = F(g9) = F(x,y) for u € Q, we have the adelic Fourier expansion of F(z,y) with respect to
y € A:

‘7{> € N(A), then for g = v(y)diag[z, z~1], write F(x,y) := F(g). Since F(z,y +u) =

F(z,y) = Y ar(u;x)ex(uy)

ueQ
For t € Q*, we have diag[t,t!]v(y)diag[z, 27 !] = v(t?x)diag[tx, (tz) '] we have:

" ap(u, z)es(uy) = F(z,y) = F(te,%y) = 3 ap(u, tz)es (ut’y)
u€eQ u€Q
By the uniqueness of the Fourier expansion, we get:

ap(u, ) = ap(t 2u,tr) fort € Q*,ue€Q

—1 o 2 : X ~
ap(u,x) = { () au(F)gxp( 2muas) L{Z ; gx for x € Z*R%

(5.1)

Suppose that ¢ € zXRi, then given that diag[t,¢=1] € To(C) SLa(R), we get by definition of F :

Pat) =Pel) (o ) =F (g L) =w0 Fa (s L) =0 Pt

so that

Z ap (u, vt)e(uy) = ¢*(t) 7! Z ap(u, rto)e(uy)

ueQ ueQ

By unicity of the Fourier expansion, we get that
ap(u, 2t) = *(t) Lap (u, 2ts) (5.2)
For z € Q% (A*)? = QX(zX)QRi, write z = ua® for u € Q* with a € A%, and define:
ap(ua?) == p(a)ar (u, a) exp(2ma’ oo )
Note that by comparing the two Fourier expansions, we have that if a € ZXRJXF,

ap(ua?) = { ay(F) if u e N*

0 if u ¢ N*

If ua® = tb? for some t € Q* and b € A*, then there exists ¢ € Q* and s € AX with s2 =1, 540 = 1,
q*> = u/t, and b = gsa. Then we get that:

w(a)ar(u, a) exp(2ma s )
(ags)p"(s) " ar(a*u, gseca) exp (27 (aocsoctoo) P tioc)
@ (b)ap(t,b) exp(2mbi too) = ap(th?)

ar (ua®)

by 1D and 1} This shows that ap(z) is well defined, and we get that for = € zXRi and y € Q*,

F(z,y) = F(v(y)diag(z,z71)) = ¢ 1(x) Z ap (uz?) exp(—2mnz?, ey (uy)
ueQ
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5.2 Adelic Fourier expansion of cuspforms of half integral weight
Let f € Sy/2(L'o(M),v) for k odd and ¢ an even Dirichet character modulo M. Then f(y-7) =
YY) f(T)h(y, T)F for v € To(M), h(y,T) = eéz%;) and ¥( <a b)) = (d). We extend 1 to a character

c d
P A /Q* — C*, and we lift f to f : SLo(Q)\Mp(A) — C by putting:
E(cu(u, ¢ (too, 7)) = 9" (u) f (oo - 1)¢* T (oo, 1) 7 (5.3)
for o € SLy(Q) C Mp(A), (u,J(tse, 7)) € To(M)Mp(R), and ¢ € T; regarding SLy(R) C SLy(A) C
Mp(A).

Note that B(A) is canonically lifted to Mp(A) by the Weil representation, and this lifting coincides with

the splitting SL2(Q) < Mp(A). Define the idele character ¥ : A* /Q* — C* by ¥(a) = ¢* (a)\a\&kﬂ.

Then letting f(7) = >.°0; an(f)es(nt), we put for v(y)diag[zr,z71] = < 1

0 y;_1> € B(Z)B(R) C
éig(A):

£(z,y) == f(o(y)diaglz, 2 7"]) = (@7 ") f (250 + yoo)aL® = %71 (2) D an(f) exp(—2mnad,)ece (nyoo)
n=1

Noting that f(z,y + u) = f(x,y) for u € Q, f(a,u) has a Fourier expansion over y € A of the form:

f(a,y) = > ae(u; v)es(uy)

ueQ

As before, we get by uniqueness of the Fourier expansion that:

ag(u, r) = ag(t 2u,tx) forte Q*,uecQ

-1 _ 2 : X ~ 5.4
ag(u,x) = { ¥(@) au(F)gxp( 2muas) EZ ; ITTX for x € Z*R% (5:4)

Define

5.3 Adelic Rankin product
Lemma 5.1. The natural map m: B(Q)\B(A)Cx — SLa(Q)\Mp(A) is an isomorphism.

Proof. By strong approximation, SLy(A(%)) = SLy(Q)K for an open subgroup K of f0(4). By Iwasawa
decomposition, we have that B(R)Co = Mp(R) so that Mp(A) = SL2(Q)B(A)KCs. Thus we have

a natural continuous surjection:
7k : Bg := B(Q)\B(A)KCyx — SLa(Q)\Mp(A)

For 2 € Mp(A) and an open neighborhood U of z, there exists a compact open K C f0(4) such that
xK C U. But knowing that 7x is surjective, we have 2K N 71 (B(Q)\B(A)Cy) # 0, which shows
that 7 has dense image. Since SLa(Q)\Mp(A) is locally compact, we can consider a system of open
neighborhoods {X,,}n>0 of a point € SLa(Q)\Mp(A). Let {Y,}n>0 be a system of open compact
subsets of B(Q)\B(A)Cy such that Y, 11 C Y, and Y,, C 7~ 1(X,,). Then given that SL2(Q)\Mp(A)
is Hausdorff, we get that Np>om1(Y;,) = {x} and so m is surjective.

Now if m(bu) = m(V'u’) for bt/ € B(A) and u,u’ € Cy, then there is a v € SLy(Q) such that
vbu = b'u'. By projecting down to SLy(A) and comparing the finite part, we find that v € B(Q) which
shows the injectivity of 7. O
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6 Computing the Period

6.1 Symmetric domain for O(n,?2)

Suppose that m = dim V' = n+ 2 and that Vg has signature (n,2). We would like to make explicit the
symmetric domain GOy (R)/R*C for a maximal compact subgroup C' C GOy (R).
We start with the following complex submanifold of V¢:

V(@) ={veVe|Qv)=0and S(v,v) <0}
Since S is indefinite over C, the space Y(Q) is always non-empty, and g € GO (R) acts on Y(Q) by

v gu.

Take v € Y(Q) and write W for the subspace of Vg spanned over R by 2Re(v) = v + v and
2Im(v) = iv — 0. Then we have:

Qv+7v)=25(v,v) <0
Q(iv — ) = 25(v,0) <0
S(v+7,iv —iv) = —iS(v,v) + iS(v,v) =0

This shows that Sy, is negative definite, and so Sy 1 is positive definite. Now define the positive
linear bilinear form:

Pv(may) = S(xWJ—vyWJ-) - S(CEW,yw)
for the orthogonal projections zy to W and zy,. to W+ of z. If g € GO (R) fixes v € Y(Q), then
g fixes by definition the positive definite form P,. Thus g has to be in the compact subgroup Op,

made up of orthogonal matrices preserving P,. On the other hand, if we have to v,w € Y(Q), then by
Sylvester’s theorem, we can find g € GO (R) such that gv = w and hence GO (R)/Op, = Y(Q).

Now we make explicit the domain V(@) as a hermitian bounded matrix domain:
Proposition 6.1. [Hid0G, Prop. 2.1] There is a C-linear isomorphism A : Ve = C"2 such that:
S(z,y) = "(Ar)R(Ay) and  S(T,y) ="(Az)T(Ay)
where R and T are real symmetric matrices given by:
id, 0 0

R=[0 0 -1| and T:<1%” _(.)d>
0 -1 0 2

With A as in the proposition, the map g — AgA~"! gives an isomorphism of Lie groups:
L1 GOY(R) = G(Q,T) = {g € GLn12(C) | 'gRg = v(g)R, 'gTg = v(g)Q for some v(g) € R*}
and the map v — Av gives an isomorphism of complex manifolds:
§:Y7Q) S YR, T) = {ueC? | ‘wRu =0 and 'uTu < 0}

These two maps are equivariant, i.e, ¢(g)j(v) = j(gv).
Let us show that Y(Q,T) has two connected components. So writing u = t(ul, s Upg2) € YV(R,T),
we get:

n
(Z u?) — QUpy1Unyo = "uRu =0
i=1

n
S il < Junga]? + [ungel® = "TQu < 0
=1
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If we suppose that |u,41| = |up+2|, then

n n
Z Juil* > ‘Z“ﬂ = 2luns1tny2| = || + [unta|
i=1 i=1

a contradiction. Thus we either have |upy1| > |upy2| or |upta| > |unpy1|. These two cases split the
domain Y(Q,T) into two pieces of connected components.

To see that each component is connected, we may assume that |u,+2| > |up+1| by interchanging the
coordinates if necessary, and so u,42 # 0. Put z; = u:’H for ¢ < n and define z = 1t(zl, ..., 2n). Then
t

= 5%, and defining:

Un+1
Un+2

1
3=3,={zeC"| tzE<1+Z]tzz\2<2}
we see that C* x 3 is isomorphic to the component of Y(R,T) given by |unt2| > |unt1]| via
(A, z) = AP(2)

where P(z2) = '(z, tZTZ, 1). We define an action of g € GO (R) on 3 and a factor of automorphic u(g, 2)
for z € 3 by:

L(g)P(2) = P(g(2))u(g, 2)

We now look into spherical functions on Vg. Choose a basis vi,...,v, of V so that we have an
identification of Vg with R™ by v — (z1,...,2m) for v =Y, z;v;. We take the dual basis Uj so that
S (v}‘, v;) = 05, and define a second degree homogenious differential operator A by:
82
A= S, vl
zij: ( 17 7] ) axlaxj

A polynomial function n : Vg — C is called a spherical function if Anp = 0. Writing S = (S(vs,v;)),
we have that this definition does not depend on the choice of the basis v; because A = 95719 for
0= t(%, cee %). And since d(*fwSz) = *Sw = Sw for a constant vector w, we find that for k > 2,

A(twSz)F =t0S 1 o(twSx)*
= E'o(S1Sw) (fwSz)k 1
= K (fwd(*wSz)* 1)
= k(k — 1)(*wSw) (fwSz)* 2
Thus the polynomial function 2 +— S(w,z)* for k > 2 is spherical if and only if Q(w) = 0. In fact, all
homogenious spherical polynomials of degree k& > 2 are a linear combination of S(w, z)* for a finite set

of spherical vectors w with Q(w) = 0. In particular, for v € Y*(Q), then function 2 + S(v,z)* is a
spherical function. We define a Schwartz function ¥ on Vg for each 7 =z + iy € $ and v € Y(Q) by:

V(r;v)(w) = e(%(S[w]x +iPy[w]y)) = exp(in(S[w]z + iP,[w]y)) (6.1)

where S[w] = S(w,w).

Now we go back to our case and suppose that D is indefinite, so that we can fix an isomorphism
Dg ®g R = M(R) @ M(R) and,

Ve = D @gR = {(X,+X") € Ma(R) @ Ma(R) | X € My(R)} = My(R)
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which has signature (2,2). With these identifications, the morphism (4.1)) becomes:

(GL2(R) x GLa(R))/{£(1, 1)} = GOv(R)
(Xl,XQ) — (M — XQMXi)
with v((X1, X2)) = det(X1X2). Since the symmetric space of GOy (R) has dimension 2 over C, the
above morphism has to be onto on the identity connected component. Also the symmetric space of
GOy (R) has four connected components (Y(Q) has two), the above morphism has to be surjective and

S0 it is an isomorphism. Given that the symmetric space of GLj (R) x GL3 (R) is § x £, we find that
3 =9 x 9. But let us make this more explicit.

Since V¢ & Mo(C) with S* = +Tr, we have from the definition that:

er:{(C Z) € M(C) | ad = be, ad — be + da — cb < 0}

Q

y—:{@ Z) € My(C) | ad = be, ad — be + da — cb > 0}

. a b
Pick v = <c d
and so 0 = ad + da > 0 (or < 0) which is a contradiction. Thus ¢ # 0, and define z = 2 and w = _Td.
Then —zw = g and,

) € Y~ U Yt and suppose that ¢ = 0. Then by the defining equation of Y+, ad = 0

zZ —wz

v=cp(z,w) with p(z,w) = <1 > = (2, 1)(w,1)J

—w

where J = (01 (1)

). By the equation defining Y+, we have:
SE(p(z,w), p(z,w)) = £(2 = 2)(w — W) = £4Im(z)Im(w) # 0 (6.2)

Then we clearly have that Y~ LU Y+t =2 C* x (C — R)? via cp(z,w) <+ (¢, (z,w)). The action of
(X1, X2) € GOp, (R) is given explicitly by:

X2p(sz)Xi :p(Xg 'Z,X1 w)](X27z).](X17w) (63)
Thus (X1, X2)-(z,w) = (X2-z, X1-w) and the factor of automorphy u((X1, X2), (z,w)) = j(X2,2)j (X1, w).
Let us also define a spherical function:
v [v32,w]" = S v, p(z,w))*

for a positive integer k > 0.

As before, let W be the subspace of Vg generated by Re(p(z,w)) and Im(p(z,w)) and decompose
Ve = W @ W+, A direct calculation shows that W+ is generated by the real and imaginary part
of p(z,w). If Im(z)Im(w) > 0, then by (6.2), we have that ST is > 0 on W and ST is < 0 on W+
(the opposite for S7). Let PT be the positive majorant of ST given by the above decomposition (cf
[Hid20]), then we have that:
Pi(x7y) = :ES:‘:(ZL'W, yW) + Si(l'WJ-ayWJ—)
To compute P*[v], note that P*[v] + ST [v] = 425 (v, vi). So writing v = cp(z,w) + ep(Z, W) + =
with € W+ and ¢ € C, we have:
PF[v] + 5F[o] = £25% (ep(z + w) + ep(Z, W), ep(z + w) + p(z, W)
= £4[eP'S* (p(z,w). p(z.))
= 4|c|*(w —w)(z —Z) >0
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Now if Im(z)Im(w) < 0, then replacing W by W+, w by @, and repeating the calculations, we get
that P*[v] £ S*[v] = 4|c|* (W — w)(z — ) > 0.

Since S* (v, p(z,w)) = eS*(p(z,w), p(z,w)) = +e(w — W)(z — Z), we get that:

[v, 2, w]|?

1] = gty 4 W
PRl =350 ()

. T in case +
Write 7% = .
—7 In case —

and 0 < k € Z:

and define a Schwartz function ¥y, on Vg for (7, z,w) € H x (C — R)?

* Im(7)

2|Im(z)Im(w)]

[v,Z,w .
(2 = 2)F(w —w)k

Uy (73 z,w)(v) = Im(7) (N(U)TjE +4 |[v, Z,EHQ)

We choose a Bruhat function ¢() : D, jee) = C, and put:

o= =0 @,

and consider Siegel’s theta series 0(¢r) = 0(dx)(7, 2, w) = > cp. d(v).
From 1} we have by direct computation that for g € Dj:

o,—1

[97 twg" Yz, w] = N(gg”) i (972)4 (g9, w)[v; g7 2, gw] (6.4)

Im(z)
i (g,2)%

and since Im(gz) = N(g) we get that:

1

o,—1, t,—1.%5 77
vg" i Z, W]

Im(z)Im(w)

[v; g°Z, g0]
Im(g°z)Im(gw

)[g

7= (g%, 2)i(g, w

multiplying on both sides with [v; g%z, gw], we get:

|2 U’_lng’_l;Z,w]‘Q

Im(z)Im(w)

|[v; 9° 2, gw] Ilg

Im(g72)Im(gw)

= N(gg”)
Thus for v € D} with N(y) = 1 and ¢(®) (77~ luys=1) = ¢(*) (v), we have:
0(0r) (772, yw) = 0() (2, w)i (77, 2)"i (7, @)" (6.5)

6.2 Differential form coming from theta series

Let Lg(n; A) be the space of homogenious polynomials for each pari (X,Y) and (X', Y”) of variables
of degree n with coefficients in A for an E-algebra A. Suppose that Dg ®g A = Ma(A) x My(A) for
two projections inducing the identity and o. We let v € Dp act on P(X,Y; X" Y') € Lg(n; A) via
(v- PYX Y5 X Y") = P((X, V)" (X', Y)'y7"). Then,

O(z,w) = O(1; z,w) := O(¢p) (135 2, w) (X —wWY ) 2(X' — 2Y")F2 dz A dw

is a C* differential form with values in Lg(k—2,C). Since - (X —2Y)*=2 = j(v, 2)¥2(X —y(2)Y)*k2
and dvy(z) = det(y)j(v, z) "2dz, we have that:
7'O(z, w) = O(17(2),7(w))
= 0(7577(2), Y(w) (X = y(w)Y) (X' =77 (2)Y")? dy7 (2)dy (w)
=v-0(z,w)

where we write 7 - © for the action of v on the value in Lg(k — 2,C). We write O(7; 2); = O(T; 2, 2).
We let L(n; A) = Lg(n;A) be the space of homogenious polynomials of degree n in the variables
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(X,Y) with coefficients in A. If D ®g A = My(A), we let v € D act on P(X,Y) € L(n,A) via
(v- P)(X,Y) = P((X,Y)'y*). Then by the Clebsch-Gordan decomposition, we have:

Lp(n, A)px = Lg(n; A) @ Lo(n; A) = € Lo(2n — 2j; A)
=0
We write 7 : Lg(n, A) — Lg(0, A) = A for the SLa(R)-equivariant projection given by:

02 02
oXoY' OYoX'

1
w(P) = WV"P where V =

Then we have that:

ivn (Xn—iin/n_jY/j) — i i(_l)k n 82k 82(77‘7’6) (Xn—zsz/n_]Y/])
e ni? 2o k) (OX)F(@Y")E (9Y )k (@X7)nF
[T =it
0 otherwise.

Thus we get from (X — 2V)"(X' —zY")" = 31", (=1)"" @) (?) 2170 Xy i XY that:

(X = 2Y)"(X —2Y)") =) <n> (-1)2' 7" = (Z - 2)"
i=0
6.3 Factoring the Theta series
We split the quadratic space as:

(D7, £N) = (Z*,£N5+) © (Dy, £N ps)

Then Dy (resp. D) is 3 dimensional of signature (1,2) (resp. (2,1)) and ZT (resp. Z7) has
signature (1,0) (resp. (0,1)). We assume that there are Schwartz-Bruhat functions ¢ € S(Zg)o)) and
oo €S (D(()CX)) such that for 3 € Zéoo) and n € D((JOX), we have a tensor product decomposition:

(5 4+1n) = (b7 ® ¢0)(3 + 1) := 7(3)¢o(n)
of the Schwartz-Bruhat function in order to factor the theta series.

Next we study the decomposition of the infinite part. First decompose the spherical polynomial
[v; 2,Z]. For 3 € Z* = Qd1 and n € Dy, we have:

k
bz =z 4 =Y ("f>3j<z— 2Pz, o

=0

1 -z
S*(n,Re(p(z,2))) € R. Hence,

Note that since p(z, z) = (Z ZZ) so that Re(p(Z,2)) € Dor and Im(p(Z, z)) € Zg. Thus [n,Z, 2] =

2 2

5+m2,2)° = (2, 2] + 32 = 2) (M7, 2] = 3(2 = 2)) = |2, 2]° = 5°(2 — 2)

Now set

, Im(7)(z — 2)%32 7es(3?7) in case +
L (nb) =rew <3 T 2m(2) 3'€se(—3°7)  in case —
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and,

m(7)|[n; 2, 2]|?
W (7,2)(n) = (2 = 2) Y [m; %, 2Pen (N(n)Ti + Z”““”) ,

2Im(z)?2
j ; m(7)S™t e(p(z,2)))?
= (2 —2)775T(n,Re(p(Z, 2))) eso (N(n)TjE + iI (1)S ;;r;r({z)(f( %)) )
By the calculations above, we get that:
k
Im(7) (2 = 2)*r(72,2) = > _(—1 ( >¢Zx1rz( 7) @ go¥p0,(7; 2) (6.6)
7=0

6.4 The period integral

We assume that the level of 0(¢y) with respect to 7 is of the form I'; = I'g(M) for some integer M > 0.
For « € DX N Dy, let:

Lo = {2 € O, (AP)) | ) (z0v) = ¢(>) (v) Vo € Dy a0}

and Sh, = Shy ¢ = 0a(Q)\Ou(A)/ToC, where Cq is a maximal compact subgroup of O (R).
We write z = « 44y, 7 = £ 4+ 1, Sh = Shy, and consider for F' € S (I'7, wxf)o) andn=F%k—2:

:/ / n!_2V”@(T;z,z)F(7)nk_2 dé&dn

ShJT\%

Z/ / (2 — 2)"0(¢) F(T)n" 2 dz A dz dédn
Sh JT\%

since dz A dz = —2idx A dy and —%(E — 2)%y~2 = 1, the above integral is equal to:

;/FT\S:) </Sh(z— 2)50(d) (15 2, 2)y 2 dl’dy) F(r)n*=? dgdn

Choose a lattice L of D, and assume L = Ly & Lg for lattices Ly C Z and Ly C DS—L. We take ¢g to
be the characteristic function of Ly C Dy ®g A(®) and we choose in subsection the finite part ¢
of ¢ which has open support in L.

6.5 Choice of ¢,

6.6 Siegel Weil formula
Since Oz(R) = {%1}, the action of ¢ € Oy(R) on \II]Z(Z)(;,) = e (3%) is trivial. For g, =

1/2
<(1) Rel(T)) <Im(70—) Im(2)1/2> € SL(R), we have that (i) = 7, and so:

r7(gm) W2 0)(3) = I’Z(G) Refﬂ) Jim(r) 2 g (Im(r)3%)
o2 ERe(r) + i)

V7 (1)(3)

Since the even Clifford algebra of Dy is D, we have by theorem 1.9 that SOp,(R) = PGLy(R) by 7p,

Im(z)% Re(z)Im(z) 2
0 Im(z)%1

with the action on the matrices by conjugation, and for g, =

we have by (6.4):

£y (gr. 92) 7 (i58)(n) = £py (9r) ¥ (65 2) (n) = Im(r) T2 20 (7 2) ()

€ PGLy(R)
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As the Siegel-Weil formula is stated with respect to the theta series of variable g € Op,(A) and not
with respect to z, we lift 8(¢x)(7; 2, 2) to a function 8(¢y)(7;g) on Op,(A) in the standard way by:

O0(0x)(759) = 0(dx) (159 -4, g - ) (9, 7)|

then we have by that:

k
0(64)(r10:) = (= — DM0(en) (:2.2) = n 3 (1) ("f)ewf)(f)e(qbfoj)(m)
=0

J
k
O (j.)e(quz)(f)mo (9:)0(62° ) (7:1)
Hence,
Lz -2k T.szazdy_ y —i(* (r r Do (714
R e -3 1>J(j)9<<z>]>< )| o, IR

k
=31 ()oehnmer)

=0

by the Siegel-Weil formula (theorem . Here we normalize the Haar measure dug on O5(A) so that
it has volume 1 on I'sCs, and m satisfies djug = §dwo; for the Tamagawa measure dws of Os (the
factor of 3 is because [ dwo, = 2).
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