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1 Quadratic forms

Let F be a field of characteristic 6= 2. Let (V,Q) be a quadratic space over F of dimenson m, S the
associated symmetric bilinear form and suppose that it is non-degenerate.
(V,Q) is called anisotropic if Q(x)⇔ x = 0, otherwise it is called isotropic.

For a proof of the statements in this section, consult [Shi10].

Theorem 1.1 (Witt). Suppose that (V,Q) = (V1, Q1)⊕ (V2, Q2) = (V ′1 , Q
′
1)⊕ (V ′2 , Q

′
2).

If (V1, Q1) ∼= (V ′1 , Q
′
1), then (V2, Q2) ∼= (V ′2 , Q

′
2).

Theorem 1.2. Given (V,Q) with Q non-degenerate, there exist a decomposition called the Witt de-
composition:

V = X ⊕
s∑
i=1

(Fei ⊕ Ffi)

such that

• Q(ei) = Q(fi) = 0 and S(ei, fj) = δij.

• X =
(∑s

i=1(Fei ⊕ Ffi)
)⊥ and (X,Q|X) is anisotropic.

Moreover, s and the isomorphism class of (X,Q|X) are completely determined by the isomorphism class
of (V,Q).

LetM be a symmetric matrix representing the bilinear form S in a chosen basis of V . ThenM is well
defined up to conjugation αM tα by an element α ∈ Aut(V ). Thus the coset (−1)n(n−1)/2 det(M)F×2

in F×/F×2 is completely determined by Q. We call this coset the discriminant of Q and denote it by
δ0(Q). Consider the field K0 = F [δ0(Q)1/2], and define the discriminant algebra K of Q to be:

K =

{
K0 if K0 6= F

F ⊕ F if K0 = F

which we equip with the canonical involution fixing F .

1.1 Clifford Algebra

There exist a unique pair (up to isomorphism) (A, p) consisting of a unital F -algebra A = A(V ) and
an F -linear map p : V → A such that:

(1) As an F -algebra, A is generated by p(V ).

(2) p(v)2 = Q(v)1A for all v ∈ V .

(3) If (A1, p1) is another pair satisfying (2), then there is an F -algebra homomorphism f : A → A1

such that p1 = f ◦ p.
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We call A(V ) the Clifford algebra associated to (V,Q).

Applying (3) to A1 = A and p1(v) = −p(v), we get an endomorphism f : A → A, a 7→ a′ satis-
fying v′ = −v for every v ∈ V . We also let ∗ : A→ A be the canonical involution.
We put:

A+(V ) = {a ∈ A(V ) | a′ = a}
A−(V ) = {a ∈ A(V ) | a′ = −a}

A+(V ) is a subalgebra called the even Clifford algebra.

Lemma 1.3. Let e1, · · · , em be a basis of V , then the elements

ei1 · · · eis with i1 < · · · < is, 0 ≤ s ≤ m

form a basis of A. In particular, dimF (A) = 2m.

Theorem 1.4. Let V = X ⊕
∑s

i=1(Fei ⊕ Ffi) be a weak Witt decomposition, and let n = 2s, then

A(V ) ∼= Mn(A(X)). Moreover, we have that A+(V ) ∼=
{

Mn(A+(X)) if X 6= 0
Mn/2(F )⊕Mn/2(F ) if X = 0

Proof. The general case follows from the case s = 1 by induction. So suppose that s = 1 and define
an F -linear map:

Ψ : V →M2(A(X))

x+ re+ tf 7→
(
x r
t −x

)
We have Ψ(x + re + tf) = (x2 + rt) id = Q(x + re + tf) id. Hence by the universal property of the
Clifford algebra, we can extend this to an F -algebra homomorphism

Ψ : A(V )→M2(A(X))

Observing that Ψ(e) = E12, Ψ(f) = E21, Ψ(ef) = E11, and Ψ(fe) = E22 where Eij are the elementary
matrices, we easily see that Ψ(A(V )) generates all of M2(A(X)). Since A(V ) and M2(A(X)) have the
same dimension, we conclude that they are isomorphic.

Now put l = e − f , then l2 = −1 and lxl−1 = −x = x′ for every x ∈ X, and so lal−1 = a′ for
every a ∈ A(X). So putting Λ = diag(l,−l), we get that

ΛΨ(a)Λ−1 = Ψ(a′) for every a ∈ A(V ) (1.1)

this follows from the fact that it is true for a ∈ V . Now we have that:

Ψ(A±(V )) = {
(
a b
c d

)
| a, d ∈ A±(X) and b, c ∈ A∓(X)} (1.2)

Indeed, for Ψ(α) =

(
a b
c d

)
, we have Ψ(α′) =

(
a′ −b′
−c′ d′

)
by (1.1). Thus α ∈ A±(V ) if and only if

a′ = ±a, b′ = ∓b, c′ = ∓c, and d′ = ±d.
If X 6= 0, let h ∈ X such that h2 6= 0. Then we define a new algebra isomorphism:

Ξ : A(V )
∼−→M2(A(X))

α 7→ ∆−1Ψ(α)∆

with ∆ = diag(h, 1). Then since h−1A+(X) = A−1(X)h = A+(X) and h−1A+(X)h = A+(X), from
(1.2) we obtain that

Ξ(A+(V )) = M2(A+(X)) if X 6= 0
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Lemma 1.5. Given an orthogonal basis h1, . . . , hm of V , put z = h1 · · ·hm. Then the following
assertions hold:

(1) z−1vz = (−1)m−1v for every v ∈ V .

(2) z2 = (−1)
m(m−1)

2 h2
1 · · ·h2

m and z∗ = (−1)
m(m−1)

2 z.

(3) Fz is independent of the choice of the basis {hi}i.

(4) F ⊕ Fz is isomorphic to the discriminant algebra of Q.

Proof. Since the basis hi is orthogonal, we easily see that hiz = (−1)m−1zhi for every i. Since the hi
span V , we get the first assertion. The second assertion is a straightforward calculation. Since z2 = F
and z 6∈ F , we see that if v ∈ F ⊕ Fz and v 6∈ F , then v ∈ Fz. Hence (3) is a consequence of the
following assertion proved in the next theorem: F ⊕ Fz is the center of A(V ) or A+(V ) according to
whether m is odd or even. Finally, (4) follows easily from (2).

Theorem 1.6. Let C be the center of A(V ), C+ is the center of A+(V ) and z be as in the previous
lemma.

(1) Suppose m = dim(V ) is even strictly positive. Then A(V ) is a central simple algebra over F and
C+ = F ⊕ Fz. A+(V ) is a central simple algebra over C+ if C+ is a field; otherwise, A+(V ) is
the direct sum of two central simple algebras over F of the same degree.

(2) Suppose m = dim(V ) is odd. Then A+(V ) is a central simple algebra over F , C = F ⊕ Fz, and
A(V ) = A+(V )⊗F C.

Proof. Let F be the algebraic closure of F . Suppose thatm = 2s+1, then VF has a Witt decomposition
VF = Fg⊕

∑s
i=1(Fei⊕Ffi) (recall that there is only one quadratic form up to iso in an algebraically

closed field), and A+(Fg) = F . By theorem 1.4, A+(VF ) is isomorphic to Mn(F ) with m = 2s. Since
A+(VF ) = A+(V )⊗F F , we get that A+(V ) is a central simple algebra. Now by lemma 1.5, zv = vz for
all v ∈ V and so z ∈ C. Since z ∈ A−(V ) (given that m is odd) and that z is invertible, we have that
A(V ) = A+(V )⊕A+(V )z. Now F ⊕Fz is a commutative algebra, and so A(V ) = A+(V )⊗F (F ⊕Fz).
But since the center of A+(V ) is F , we get that C = F ⊕ Fz.
Now suppose that m = 2s, then we have a Witt decomposition VF =

∑s
i=1(Fei ⊕ Ffi), and A(VF )

is isomorphic to Mn(F ) with n = 2s. Hence A(V ) is central simple over F . By theorem 1.4, A+(VF )
is isomorphic to Mn/2(F ) ⊕Mn/2(F ) whose center is F ⊕ F and so [C+ : F ] = 2. By lemma 1.5, we
have that zα = αz for all α ∈ A+(V ) and so C+ = F ⊕ Fz. If C+ is a field, then A+(V ) is central
simple over C+. Otherwise, there is an element c of F such that z2 = c2. Put ε = (1 + c−1z)/2 and
δ = (1− c−1z)/2, then 1 = ε+ δ, ε2 = ε, δ2 = δ, and εδ = 0. Therefore C+ is isomorphic to the algebra
F ⊕ F and A+(V ) is the direct sum of two central simple algebras A+(V )ε and A+(V )δ.

1.2 Clifford groups

We define:
GV = {α ∈ A(V )× | α−1V α = V }

G+
V = GV ∩A+(V ) G−V = GV ∩A−(V )

We consider the group homomorphism τV : GV → OV given for α ∈ GV by:

τV (α) : v 7→ αvα−1

This is well defined since Q(τV (α)v) = (αvα−1)2 = v2 = Q(v).

Suppose that we have an orthogonal decomposition V = X ⊕⊥ Y . Then we can easily verify that
αβ = βα if α ∈ A+(X) or β ∈ A+(Y ) and αβ = −βα if α ∈ A−(X) and β ∈ A−(Y ). In particular, if
α ∈ A+(X)×, then α−1yα = y for all y ∈ Y , and α−1Xα = X if and only if α−1V α = V . Therefore,
we can view elements of G+

X as elements in G+
V (This is not the case for GX).
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Lemma 1.7. For v, u ∈ V , we have vuv ∈ V . Moreover, if v2 6= 0, then v ∈ G−V and v−1 ∈ V .

Proof. Both v2 and vu+ uv belong to F , hence vuv = (vu+ uv)v − uv2 ∈ V .
Suppose v2 6= 0, then v is invertible, v−1 = (v2)−1v ∈ V , and v−1V v = v−2vV v ⊆ V so that v ∈ GV .
Since x ∈ A−(V ), we get that v ∈ G−V .

If v1, . . . , vs are invertible elements of V , then the previous lemma shows that the product v1 · · · vs
belong to G+

V or G−V according to whether s is even or odd.
To describe the action of these elements more precisely, let v ∈ V such that v2 6= 0, and consider the
hyperplane H = (Fv)⊥. Then we have a decomposition V = Fv ⊕H and the element −τV (v) ∈ OV
is the orthogonal symmetry of V with respect to H, i.e,

(−τV (v))(v) = −v and (−τV (v))(h) = h ∀h ∈ H

Lemma 1.8. Every element of OV is a product of orthogonal symmetries as described above.

Now let us put
G·
V = G+

V ∪G
−(V )

Theorem 1.9. (1) If m is odd, then τV (G+
V ) = τV (GV ) = SOV and GV = C×G+

V .

(2) If m > 0 is even, then GV = G·
V , [GV : G+

V ] = 2, τV (GV ) = OV , τV (G+
V ) = SOV , and

τV (G−V ) = {g ∈ OV | det(g) = −1}. Moreover,

C+ ∩G+
V =

{
C+,× = G+

V if m = 2
F× ∪ F×z if m > 2

(3) For both m even and odd, τV gives an isomorphism of G+/F× onto SOV . For even m τV gives
an isomorphism of GV /F× onto OV .

(4) If V = X ⊕⊥ Y is an orthogonal decomposition, then

G+(X) = {α ∈ G+
V | τV (α)y = y for all y ∈ Y }

Proof. Let g ∈ OV . By lemma 1.8, g = (−τV (v1)) · · · (−τV (vk)) for invertible vi ∈ V . Since each
orthogonal symmetry (−τV (v1)) has determinant −1, we have that det(g) = (−1)k. If g ∈ SOV , then
k is even, which shows that SOV ⊆ τV (G+

V ).

Suppose m > 0 is even, then for every invertible v ∈ V , det(τV (v)) = −1. Since v ∈ GV and
[OV : SOV ] = 2, we see that τV (GV ) = OV . Suppose that τV (v) = τV (α) with α ∈ G+

V . Then α−1v
commutes with every element of V and hence is is the center of A(V ) which is F by theorem 1.6.
Therefore v = cα with c ∈ F , which is a contradiction, since cα ∈ A+(V ) and 0 6= v ∈ A−(V ).
Thus τV (v) 6∈ τV (G+

V ), and so τV (G+
V ) = SOV . From the fact that G−V = vG+

V , we get that
τV (G−V ) = {g ∈ OV | det(g) = −1}.
Now let γ ∈ GV . For det(τV (γ)) = ±1, we have that τV (γ) = τV (β) for β ∈ G±V . Then β−1γ ∈ F×
and so γ ∈ G±V . Thus GV = G·

V and [GV : G+
V ] = 2.

Now suppose that m is odd. Suppose that τV (α) = − id for some α ∈ GV . Then α−1vα = −v
for every v ∈ V , so that α−1yα = y′ for every y ∈ A(V ). Let z be as in lemma 1.5, Then z′ = −z and
z belongs to the center C of A(V ). Thus z = α−1zα = z′ = −z contradiction. Thus − id 6∈ τV (GV ), so
that τV (GV ) = τV (G+

V ) = SOV . Take any γ ∈ GV , then τV (γ) = τV (β) with β ∈ G+
V , and so β−1γ ∈ C

so that γ ∈ C×G+
V . Clearly C× ⊂ GV , hence GV = C×G+

V .

As for (3), if α ∈ G+
V and τV (α) = id, then α ∈ F× as an immediate corollary of theorem 1.6

(C ∩ C+ = F ). If n is even, the same is true since C = F .
Now for (4), we saw that G+

V is contained in the RHS of the equality. For the other inclusion, let
α ∈ G+

V such that τV (α) fixes Y . Then by applying (1) and (2) to V and X, we get that α ∈ SOX and
there exist β ∈ G+

X such that τV (α) = τV (β). Thus α = cβ with c ∈ F× by (3) and so α ∈ G+
V .
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Corollary 1.10. For α ∈ G·, put ν(α) = αα∗.

(1) G+
V (resp. G−V ) consists of all the products of even (resp. odd) number of elements of V that are

invertible in A(V ).

(2) G·
V is a subgroup of GV , [G· : GV ] = 2, and we have a homomorphism ν : G· → F×. Moreover,

ν(α) = ν(α∗) = ν(α′) for every α ∈ G·
V .

Proof. We have G·
V = vG+

V for any invertible v ∈ V . Therefore, it suffices to prove (1) for G+
V . If

w1, . . . , wk are invertible elements of V , then each vi belongs to GV by lemma 1.7 and so w1 · · ·wk ∈ G+
V

if k is even. To prove the converse, let α ∈ G+
V . Then τV (α) = τV (v1, · · · , vk) with v1, · · · , vk ∈ V ∩

A(V )× and even k as shown in the proof of theorem 1.9. By (3) of the same theorem, α = cv1, · · · vk with
c ∈ F× which proves (1). The first part of (2) is then clear, and if α = v1 · · · vk with vi ∈ V ∩A(V )×,
then

ν(α) = αα∗ = x1 · · ·xkxk · · ·x1 = x2
1 · · ·x2

k

from which the remaining part of (2) follows.

1.3 Lower dimensional cases

One can prove that a quadratic form on a space of dimension > 4 over a local field is always isotropic.
Thus over a local field, we have a Witt decomposition with an anisotropic space Z of dimension ≤ 4.
Therefore it is important to investigate the Clifford algebra of such a Z. Here we will only consider
the cases m = 2, 3.
First, let us give a few examples:
Take a couple (K, ι) consisting of an F -algebra K of rank 2 and an F -linear automorphism of K
belonging to the following two types:

(I) K is a quadratic extension of F and ι is the generator of Gal(K/F ).

(II) K = F ⊕ F and ι(a, b) = (b, a).

In both cases, we obtain a quadratic space (K,κ) of dimension two by putting κ(x) = NK/F (x) = xxι

for x ∈ K, and we have 2S(x, y) = TrK/F (xyι). Clearly κ is anisotropic if and only if K is a field.
Now take a quaternion algebra D over F and consider the main involution ι. We have a direct sum
decomposition

D = F ⊕D◦ with D◦ = {x ∈ D | xι = −x}

Putting N(x) = ND/K(x) = xxι for x ∈ X, we get quadratic spaces (D,N) and (D◦, N◦ = N|D◦) of
dimension 4 and 3. We clearly have that D is a division algebra if and only if N is anisotropic, if and
only if N◦ is anisotropic. We also see that 2S(x, y) = TrD/K(xyι) for x, y ∈ D. If D = K ⊕Kw for an
element w such that w = γ2 ∈ F×, then N(x+ yw) = NK/F (x)− γNK/F (y) for x, y ∈ K. Thus:

(D,N) ∼= (K,κ)⊕ (K,−γκ)

Lemma 1.11. Let K be the discriminant algebra of Q which we view as a subalgebra of A(Q) by lemma
1.5. Then the following assertions hold:

(1) If m = 2, then (V,Q) is isomorphic to (K, cκ) for some c ∈ F×. Moreover A(V ) is the quaternion
algebra

(
δ0(Q),c
F

)
, A+(V ) = K, SOV = {x ∈ K× | xxι = 1}, G+

V = K×, GV = K× ∪K×h for
any h ∈ V \{0}.

(2) If m = 3, then there exists a quaternion algebra D over F such that (V,Q) is isomorphic to
(D◦,−δN◦) with δ ∈ δ0(Q). Moreover A(V ) ∼= A+(V ) ⊗F K, A+(V ) ∼= D, G+

V
∼= D×,

τV (d)x = d−1xd for x ∈ D◦ and d ∈ D× and the canonical involution of A(V ) restricted to
A+(V ) correspond to the main involution of D.
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Proof. Suppose m = 2 and let V = Fg ⊕ Fh with elements g, h such that S(g, h) = 0. Put b = g2,
c = h2, and as in lemma 1.5 z = gh. Then Q(xg + yh) = bx2 + cy2 for x, y ∈ F , z2 = −bc, and
V = Kh . By a dimension argument, we have that A+(V ) = K = F ⊕ Fz and so A(V ) = K ⊕Kh.
Since z∗ = −z, we see that α∗ = αι for α ∈ K. We have by direct calculation that Q(kh) = cNK/F (k)
for k ∈ K and so k 7→ kh gives an isomorphism of (K, cκ) onto (V,Q). Since hk = kιh for k ∈ K, we
see that A(V ) =

(
−bc,c
F

)
. We easily see that K× = G+

V ⊆ GV and h ∈ G−V and so by (2) of theorem

1.9, K× = G+
V and GV = K× ∪K×h.

Next, let α ∈ K× = G+
V and v = kh ∈ V for k ∈ K. Then τV (α)(v) = αkhα−1 = ααι,−1v. Thus τV (α)

as an element of EndF (Kh) is multiplication by ααι,−1. Therefore, SOV = τV (G+
V ) = {k/kι | k ∈

K×} = {k ∈ K× | kkι = 1} (the last equality is an easy lemma).

Now suppose that m = 3. Let h1, h2, h3 be an F -basis of V such that S(hi, hj) = ciδij . We put:

g1 = h2h3 g2 = h3h1 g3 = h1h2 z = h1h2h3

c = c1c2c3 T = Fg1 ⊕ Fg2 ⊕ Fg3 B = F ⊕ T

Then z2 = −d ∈ δ0(Q), A+(V ) = D is a quaternion algebra, k = F ⊕ Fz, and A(V ) = D ⊗F K by
theorem 1.6. Since g∗i = −gi, and A+(V ) = F ⊕T , we see that the involution ∗ coincides with the main
involution of D and that T = D◦. Since V = Dz, and Q(dz) = cdd∗ for d ∈ D◦, (V,Q) is isomorphic
to (D◦, cN◦). We have d−1D◦d = D◦ for every d ∈ D× and so G+

V = D×.

Now let us suppose that dim(V ) = 4, then we have the following facts:

V = {a ∈ A−(V ) | a∗ = a} (1.3)

F ⊕ Fz = {a ∈ A+(V ) | a∗ = a} (1.4)

G±V = {a ∈ A±(V ) | aa∗ ∈ F×} (1.5)

where z is as in lemma 1.5. We easily derive the first equality from the fact that A−(V ) = V ⊕∑
i<j<k Feiejek with an orthogonal basis e1, . . . , e4 of V and the second equality follows similarly.

Now for the third equality, we have an obvious inclusion. Conversely, if a ∈ A(V )× ∩A±(V ), then for
v ∈ V we have a∗va ∈ A−(V ) and (a∗va)∗ = a∗va so that a∗va ∈ V by the first equality. If aa∗ ∈ F×,
then a−1va ∈ V so that a ∈ GV .

Now let us consider the case where Q is isotropic. We have a weak Witt decomposition V =
X ⊕ (Fe ⊕ Ff) for U a subspace of dimension 2. Then by theorem 1.4, A(V ) (resp. A+(V )) is
isomorphic to M2(A(X)) (resp. M2(A+(X))). Let K be the discriminant algebra of (V,Q) which is
also the discriminant algebra of (X,Q|X) (since the discriminant of a hyperbolic space is 1). By (1) of
lemma 1.11 and its proof, we can put A+(X) = K and X = Kh with an element h such that hk = k∗h
for every k ∈ K. Define Ξ : A(V )

∼−→ M2(A(X)) as in the proof of theorem 1.4, then we can easily
verify that:

Ξ(α∗) = J−1tΞ(α′)J ∀α ∈ A(V ) (1.6)

by verifying this for α ∈ V . The map M 7→ J tMJ−1 with J =

(
0 −1
1 0

)
is the main involution

of M2(K). Therefore if we identify A+(V ) with M2(K), then (1.6) shows that α 7→ α∗ is the main
involution of M2(K). Thus we get fro (1.5) that

Ξ(G+
V ) = {M ∈ GL2(K) | det(M) ∈ F×}

and ν(α) = det(Ξ(α)) for α ∈ G+
V .
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Let D be a quaternion algebra over F and put (V,Q) = (D, cN) with c ∈ F×. We consider the
linear map:

p : D →M2(D)

x 7→
(

0 cx
xι 0

) (1.7)

observe that p(x)2 = cxxι id = Q(x) · id. Now p(D) generates M2(D) as an F -algebra. Indeed, take

x, y ∈ D such that xy = −yx ∈ D×. Then p(xy)p(1) =

(
xy 0
0 yιxι

)
and p(x)p(yι) = c

(
xy 0
0 −yιxι

)
so that:

p(xy)p(1) + p(x)p(yι) =

(
2cxy 0

0 0

)
This way we can easily verify the claim. Since dimF M2(D) = 24, we get by the above that M2(D) =

A(V ) with the identification V = p(D) = {
(

0 cx
xι 0

)
| x ∈ D}. Then A+(V ) = {

(
x 0
0 y

)
| x, y ∈

D} ∼= D ×D. For α =

(
p q
r s

)
∈M2(B) = A(V ), we have:

α∗ =

(
pι crι

c−1qι sι

)
(1.8)

since this is true for α ∈ V . Then if we identify A+(V ) with D ×D, then

G+
V = {(x, y) ∈ D ×D | xxι = yyι ∈ Q×}

and ν((x, y)) = xxι. We have that τV (α)p(d) = p(xdy−1) for d ∈ D, α = (x, y) ∈ G+
V . Furthermore,

GV = G+
V ∪G

+
V η with η =

(
0 c
1 0

)
and p(d)τV (η) = p(xη) for all d ∈ V .

The main involution ι of D belongs to OV and has determinant −1. Thus OV is generated by SOV
and ι.

2 The Weil representation

Let (V,Q) be a quadratic space over Q with dimension m. The quadratic form produces a Q-bilinear
pairing S(x, y) = Q(x+ y)−Q(x)−Q(y) which we suppose to be non-degenerate.
Let T be the multiplicative group of complex numbers of absolute value 1, which we also identify with
R/Z by x 7→ exp(2iπx). Then for ? = p,∞, or A, we identify the Pontryagin dual V ∗? = Homcont(V?,T)
of V? with itself via the symmetric bilinear pairing:

〈·, ·〉 : V? × V? → T
(x, y) 7→ e?(S(x, y))

where:

• For x ∈ R, e∞ = exp(2iπx).

• For x ∈ Qp, write x =
∑

n�−∞ cnp
n with 0 ≤ cp < p. We let [x]p =

∑
n<0 cpp

n ∈ Q and
ep(−2iπ[x]p).

• For x = (xv) ∈ A, we let eA(x) =
∏
v ev(xv) which induces a character eA : A/Q→ T.

7



Let dv be a Haar measure on V . For φ : V → C an integrable function, we define its Fourier transform:

φ̂(x) =

∫
V
φ(y)〈y, x〉dy

and we normalize dv so that ̂̂φ(x) = φ(−x) (it is the unique Haar measure satisfying this).

We letW = V ×V which inherits a non-degenerate bilinear pairing 〈·, ·〉 from V given coordinate-wise.
We can write an automorphism σ : W? →W? as a matrix:

(x, y) 7→ (x, y)

(
aσ bσ
cσ dσ

)
with aσ, bσ, cσ, dσ ∈ End(V ). We then define an alternating bilinear form J : W?×W? → T, J((x, y), (x′, y′)) =
〈−y, x′〉〈x, y′〉 which we can write symbolically:

(x, y)

(
0 1
−1 0

)(
x′

y′

)
= 〈−y, x′〉〈x, y′〉

We then define the group Sp(W?) ⊂ Aut(W?) to be the stabilizer of J . From this definition, we get
that for σ ∈ Aut(W?),

σ−1 =

(
dσ −bσ
−cσ aσ

)
A continuous function f : W? → T is called a multiplicative quadratic form if the map:

(w,w′) 7→ f(w + w′)f(w)−1f(w′)−1

is a bicharacter. In this case, there is a unique symmetric endomorphism ρ ∈ End(W?) such that:

f(w + w′)f(w)−1f(w′)−1 = 〈w, ρ(w′)〉

2.1 The Heisenberg group

For each w = (v1, v2) ∈W?, we define the unitary operator U(w) on L2(V?) by:

(U(w)Φ)(v) = Φ(v + v1)〈v, v2〉

For Φ ∈ L2(V?). Then for w′ = (v′1, v
′
2) ∈W?, we get by direct computation:

U(w′)U(w) = 〈v1, v
′
2〉U(w + w′) = F (w,w′)U(w + w′)

where we set F (w,w′) = 〈v1, v
′
2〉. Thus H(V?) = {tU(w) | t ∈ T, w ∈ W?} is a subgroup of unitary

operators acting on L2(V?) called the Heisenberg group.
Since U(w)U(w′) = U(w′)U(w) implies that 〈v1, v

′
2〉 = 〈v2, v

′
1〉, if U(w) commutes with all other

elements of the Heisenberg group, then w = 0. Thus the center is given by Z(H(V?)) = {tU(0) | t ∈
T} ∼= T, and so we have a central extension:

1→ T→ H(V?)→W? → 1

We write B(V?) for the automorphism group of H(V?) which induce the identity on T.
Let s ∈ B(V?) and let:

s(U(w)) = f(w)U(σw)

for σ ∈ Aut(W?) and f(w) ∈ T and so we write s = (σ, f). The composition formula is given by:

(σ′, f ′(w)) = (σ ◦ σ′, f(w)f ′(σw))
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Note that we have we have:

f(w′)f(w)F (σw′, σw)U(σw′ + σw) = f(w′)U(σw′)f(w)U(σw)

= s(U(w′))s(U(w))

= s(U(w′)U(w))

= F (w′, w)f(w′ + w)U(σw′ + σw)

By the composition law for the Heisenberg group, we get that:

f(w′ + w)f(w′)−1f(w)−1 = F (σw′, σw)F (w′, w)−1 (2.1)

This shows that f is a multiplicative quadratic form on W?. Conversely, one can check that for any
function f on W? satisfying the above formula, the couple (σ, f) defines an element of B(V?).
Given that the right-hand-side of the equation 2.1 is symmetric with respect to w and w′, we get that:

F (σw′, σw)F (w′, w)−1 = F (σw, σw′)F (w,w′)−1

Since J(w,w′) = F (w,w′)F (w′, w)−1, σ preserves J and so σ ∈ Sp(V?).
Therefore we have a group homomorphism π : B(V?) → Sp(V?) given by the projection to the first
coordinate. Its kernel consists of couples (1, f) where f is a character of W? and so is of the form:

f(w) = 〈w,wf 〉

Calculations show that the automorphism of H(V?) associated to the couple (1, f) is the conjugation
by U(wf ). Hence the kernel of π consists of interior automorphisms of H(V?), and since its center is
T, we get that ker(π) ∼= H(V?)/T ∼= W?.

On the other hand, one can check that by defining

fσ((v1, v2)) = 〈v1, 2
−1a∗σbσv1〉〈2−1d∗σcσv2, v2〉〈cσv2, bσv1

for σ =

(
aσ bσ
cσ dσ

)
∈ Sp(V?), we get a section of π given by σ 7→ (σ, fσ). Thus we find that B(V?) ∼=

Sp(V?) nW?.

Theorem 2.1. Let B(V?) be the normalizer of H(V?) in Aut(L2(V?)). Then we have a canonical exact
sequence

1→ T→ B(V?)
µ−→ B(V?)→ 1

We define the metaplectic group Mp(V?) by:

Mp(V?) = {u ∈ B(V?) | µ(u) = s = (σ, fs) for σ ∈ Sp(V?) and fs homogenious multiplicative}

By definition Mp(V?) is a central extension of Sp(V?) and we have a short exact sequence:

1→ T→Mp(V?)
π−→ Sp(V?)→ 1

In general, this extension is non-trivial. However, over some subset of Sp(V?), one can define a section
r of π.
Let

U(V?) = {
(

1 ρ
0 1

)
∈ Sp(V?) | ρ ∈ End(V?)}

then since it is a subgroup of the symplectic group, ρ is symmetric with respect to 〈·, ·〉 and so we
can associate to it a multiplicative quadratic form fρ(v) = 〈v, 2−1ρv〉. Then we define a section
r : U(V?)→ B(V?) by:

r(

(
1 ρ
0 1

)
) = (

(
1 ρ
0 1

)
, fρ)

9



which we extend to r : U(V?)→Mp(V?) by:(
r(

(
1 ρ
0 1

)
)Φ

)
(v) = Φ(v)fρ(v) for Φ ∈ L2(V?)

For the subgroup

L(V?) = {
(
a 0
0 a∗,−1

)
| a ∈ Aut(V?)}

of Sp(V?), we also define a section r : L(V?)→ B(V?)

r(

(
a 0
0 a∗,−1

)
) = (

(
a 0
0 a∗,−1

)
, 1)

and we extend it to r : L(V?)→Mp(V?) via:(
r(

(
a 0
0 a∗,−1

)
)Φ

)
(v) =

√
|a|φ(a−1v) for Φ ∈ L2(V?)

Finally for c ∈ Aut(V?), we let:(
r(

(
0 −c∗,−1

c 0

)
)Φ

)
(v) =

√
|c|
−1

Φ̂(−c∗v) for Φ ∈ L2(V?)

where we fix a Haar measure dv on V? and Φ̂ is the Fourier transform on Φ.

Let Ω = Ω(V?) be the collection of all the σ =

(
aσ bσ
cσ dσ

)
∈ Sp(V?) with cσ ∈ Aut(V?). Then using the

decomposition:

σ =

(
aσ bσ
cσ dσ

)
=

(
1 aσc

−1
σ

0 1

)(
0 −c−1,∗

σ

cσ 0

)(
1 c−1

σ dσ
0 1

)
(the equality aσc

∗,−1
σ dσ − c∗,−1

σ = bσ follows from the formula of the inverse of σ), we can extend the
section to r : Ω→Mp(V?). Explicitly, we have:

Lemma 2.2. [Wei64, Lem. 6] The group Sp(V?) is the group generated by the elements Ω(V?) subject
to the relations σσ′ = σ′′ for σ, σ′, σ′′ ∈ Ω(V?) if the same equality holds in Sp(V?).

2.2 The Siegel-Weil formula

For Φ ∈ S(VAF ), we can form a theta series as a function on SL2(F )\S̃L2(AF )×OV (F )\OV (AF ):

θ(g, h,Φ) =
∑

(x,u)∈V×F×
r(g, h) (g, h) ∈ S̃L2(AF )×OV (AF )

When V has even dimension, we can define the theta series for Φ ∈ S̃(VAF × A×F ) as an automorphic
form on GL2(F )\GL2(A)×GOV (F )\GOV (A):

θ(g, h,Φ) =
∑

(x,u)∈V×F×
r(g, h)

Now we introduce the Siegel Eisenstein series. For Φ ∈ S(VAF ) and s ∈ C, we have a section:

g 7→ δ(g)sr(g)Φ(0)

in

Ind
S̃L2(AF )
P 1(AF )

(χV | · |s+m/2) = {f : S̃L2(A)→ C | f(

(
a b
0 a−1

)
g) = |a|s+m/2χV (a)f(g)}

10



Here the modulus function δ is defined as follows: first we let

δv : B(Fv)→ R×,
(
a b
0 d

)
7→ |a

d
|
1/2

v

which we extend to a function δv : GL2(Fv)→ R× by Iwasawa decomposition, and we led δ =
∏
v δv.

Thus we can form the Eisenstein series:

E(s, g,Φ) =
∑

γ∈B(F )\ SL2(F )

δ(γg)sr(γg)Φ(0)

It has a meromorphic continuation to s ∈ C and a functional equation with center s = 1−m/2.
Let r be the Witt index of V , i.e., the maximal dimension of F -subspaces of V consisting of elements
of norm 0 (it is denoted by s in theorem 1.1). Then we always have r ≤ m/2.

Theorem 2.3. (Siegel-Weil) Assume that (V,Q) is anisotropic or m− r > 2, then:

E(0, g,Φ) = κ
1

Vol(SOV (F )\SOV (AF ))

∫
SOV (F )\SOV (AF )

θ(g, h,Φ)dh

with κ =

{
2 if m = 1, 2
1 if m > 2

, and the integration uses the Haar measure of total volume 1.

Remark 2.4. The theorem implicitly states that the Eisenstein series is analytic at s = 0 and the
integral on the RHS converges absolutely.

2.3 Explicit form of the metaplectic groups

We view the group SL2(A) (and similarly for other coefficient rings) as the subgroup of Sp(VA) given

by σ =

(
aσ bσ
cσ dσ

)
with aσ, bσ, cσ, dσ ∈ A. We let Mp1(VA) to be the inverse image of SL2(A) inside

Mp(VA).

Recall that for a group G, the set of isomorphism classes of central extensions

1→ A→ E → G→ 1

i.e., A ⊆ Z(E) is classified by H2(G,A). Setting E = A × G, this is given explicitly by defining the
composition law on E for a cocycle α ∈ H2(G,A) by:

(a, e) · (a′, e′) = (α(e, e′)aa′, ee′)

Moreover, if G and A are locally compact topological groups, then a measurable cocycle α induces a
unique locally compact topology on E compatible with the exact sequence.

Weil [Wei64] showed that there is a subgroup S̃L2(A) of Mp1(A) satisfying the following commutative
diagram:

1 µ2 S̃L2(A) SL2(A) 1

1 T Mp1(A) SL2(A) 1

In other words, the 2-cocycle SL2(A)2 → T giving rise to the metaplectic extension is cohomologous
to another one with values in µ2.
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Theorem 2.5. [Kub67] Let v =∞, p be a place of Q, and (·, ·)v : Q×v ×Q×v → µ2 be the Hilbert symbol.

For γ =

(
a b
c d

)
∈ SL2(Qv), set x(γ) = c or d according to whether c 6= 0 or = 0. Then the map:

ap : SL2(Qv)× SL2(Qv)→ µ2

(γ, µ) 7→ (x(γ), x(δ))v(−x(γ)−1x(δ), x(γδ))v

defines a (measurable) cohomologically non-trivial 2-cocycle.

Proposition 2.6 ([Gel76]Prop 2.3). Let v =∞, p be a place of Q. Then

H2(SL2(Qv), µ2) = µ2

In other words, there exists a unique (up to isomorphism) extension S̃L2(Qv) of SL2(Qv) by µ2.

Remark 2.7. The topology on S̃L2(Qv) is not the product topology. If {Un}n is a basis of neighborhoods
of the identity in SL2(Qv), then a basis of neighborhoods of the identity in S̃L2(Qv) is of the form
(Un, 1) for Un such that α(Un, Un) is identically one.

We modify Kubolta’s cocycle by a coboundary as follows: let sp : SL2(Qp) → µ2 for a prime p be
given by

sp(

(
a b
c d

)
) =

{
(c, d)p if c 6= d and ordp(c) ≡ 1 mod 2

1 otherwise

and for Q∞ = R, set s∞ = 1. Then we define a new 2-cocycle:

κv(γ, δ) = av(γ, δ)sv(γ)sv(δ)sv(γδ)

By [Gel76, Prop 2.8] for a prime p, κp is trivial on Γ1(4)p = {
(
a b
c d

)
∈ SL2(Qp) | c ≡ 0, a ≡ 1 mod 4}

. Therefore the product κ(∞)(γ, δ) =
∏
p κp(γp, δp) is well defined for γ, δ ∈ SL2(A(∞)) and gives the

metaplectic extension
1→ µ2 → S̃L2(A(∞))→ SL2(A(∞))→ 1

For the infinite place, we will choose another cocycle defined by Shimura [Shi73]. We first define
Shimura’s symbol

(
a
b

)
for an integer a and an odd integer b 6= 0 by:

(1)
(
a
b

)
= 0 if (a; b) 6= 1.

(2) If b is an odd prime, then
(
a
b

)
is the Legendre symbol.

(3) If b > 0, a 7→
(
a
b

)
is a character modulo b.

(4) If a 6= 0, b 7→
(
a
b

)
is a character modulo 4a whose conductor is the conductor of Q[

√
a]/Q.

(5)
(
a
−1

)
= 1 or −1 accorting to whether a > 0 or a < 0.

(6)
(

0
±1

)
= 1

Consider the theta function θ : H → C, τ 7→
∑

n∈Z e∞(n2τ). We define for γ ∈ Γ0(4), h(γ, τ) :=
θ(γ(τ))/θ(τ). Then by [Shi73, 1.10],

h(

(
a b
c d

)
, τ) = ε−1

d

( c
d

)
j(

(
a b
c d

)
, τ)1/2 with j(

(
a b
c d

)
, τ) = cτ + d
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where we choose a square root function z1/2 =
√
|z|eiπθ for z = |z|e∞(θ) with −π < θ ≤ π, and εd = i

or 1 according to whether d ≡ 3 or 1 mod 4.
We can now realize

S̃L2(R) = {(g, J(g, τ)) | g ∈ SL2(R), J(g,−) is holomorphic and J2(g, τ) = j(g, τ)}

with multiplication given by (g, J(g, τ)(h, J(h, τ)) = (gh, J(g, h(τ))J(h, τ)) (because j is a cocycle).
We thus have a central extension µ2

ι
↪−→ S̃L2(R) � SL2(R) with ι(−1) = (id,−1).

The above calcualtion shows that we have a section Γ0(4)→ S̃L2(R), γ 7→ (γ, h(γ, τ)).

3 Waldspurger’s formula

Let F be a number field and D be a quaternion algebra with ramification set Σ. Fix an embedding
K ↪→ D for a quadratic extension K/F , then we have a decomposition:

D = K ⊕Kj with j2 ∈ F×

We let η : F×\A×F → C× be the quadratic character associated to the extension K/F .

Consider the orthogonal space (V,Q) = (D,N) and the orthogonal decomposition V = V1 ⊕ V2 for
V1 = K and V2 = Kj.

Let π be an irreducible cuspidal automorphic representation ofD×A with central character ωπ : F×\A×F →
C×, and let χ : K× \A×K → C× be a character with ωπ · χ|A×F = 1. We define the toric period integral:

Pχ(f) =

∫
K×\A×K/A

×
F

f(t)χ(t) dt for f ∈ π

then Pχ ∈ HomK×(π ⊗ χ,C).

For any Φ ∈ S(VAF × A×F ), we have a theta series:

θ(g, h,Φ) =
∑

x∈V,u∈F×
r(g, h)Φ(x, u) for g ∈ GL2(AF ), h ∈ D×AF ×D

×
AF

Let σ be the Jacquet-Langlands transfer of π to GL2 /F . For any ϕ ∈ σ, we define the normalized
global Shimizu lifting:

Θ(Φ, ϕ)(h) :
ζ(2)

L(1, π, ad)

∫
GL2(F )\GL2(AF )

ϕ(g)θ(g, h,Φ) dg for h ∈ D×AF ×D
×
AF

This defines an automorphic form Θ(Φ, ϕ) ∈ π⊗ π̃ (the reason for this normalisation will be appearent
in the next lemma). Let

F : π ⊗ π̃ → C

be the canonical bilinear map defined by the Petersson pairing.

For an additive character ψ : F\AF → C, we consider the Whittaker model W(ψ, σ) of σ. For
ϕ ∈ σ and x ∈ F×, let:

Wx,ϕ(g) =

∫
F\AF

ϕ(

(
1 α
0 1

)
g)eAF (−xα) dα

then the map ϕ 7→Wx,ϕ induces a Hecke equivariant isomorphism σ
∼−→W(σ, eAF (x−)).

13



Lemma 3.1. For any ϕ ∈ σ and decomposable Φ = ⊗vΦv ∈ S(VAF × A×F ), we have:

F
(
Θ(Φ, ϕ)

)
=
∏
v

ζv(2)

L(1, πv, ad)

∫
N(Fv)\GL2(Fv)

Wϕ,−1,v(g)r(g)Φv(1, 1) dg

For Φ ∈ S(VAF × A×F ), we can form the mixed theta-Eisenstein series:

I(s, g,Φ) =
∑

γ∈P (F )\GL2(F )

δ(γg)s
∑

(x1,u)∈V1×F×
r(γg)Φ(x1, u)

Define its χ-component:

I(s, g, χ,Φ) =

∫
T (F )\T (AF )

χ(t)I(s, g, r(t, 1)Φ) dt

(Here (t, 1) is seen as an element of OV ). For any ϕ ∈ σ, we introduce the Petersson pairing:

P (s, χ,Φ, ϕ) =

∫
Z(AF ) GL2(F )\GL2(AF )

ϕ(g)I(s, g, χ,Φ) dg

Proposition 3.2. [Wal85, Prop. 4] If we have decomposable Φ = ⊗vΦv and ϕ = ⊗vϕv, then:

P (s, χ,Φ, ϕ) =
∏
v

Pv(s, χv,Φv, ϕv)

where:

Pv(s, χv,Φv, ϕv) =

∫
Z(Fv)\T (Fv)

χ(t)

∫
N(Fv)\GL2(Fv)

δv(g)sW−1,ϕv(g)r(g)Φv(t
−1, Q(t)) dgdt

Proof. Writing the explicit formula for I(s, g, χ,Φ), we get that P (s, χ,Φ, ϕ) is equal to:∫
Z(AF )P (F )\GL2(AF )

ϕ(g)δ(g)s
∫
T (F )\T (AF )

χ(t)
∑

(x1,u)∈V1×F×
r(g, (t, 1))Φ(x1, u) dgdt

We decompose the first integral as a double integral:∫
Z(AF )P (F )\GL2(AF )

dg =

∫
Z(AF )N(AF )P (F )\GL2(AF )

∫
N(F )\N(AF )

dndg

and using the expression of the Whittaker model and of r on elements of N(AF ), we get:∫
Z(AF )N(AF )P (F )\GL2(AF )

δ(g)s
∫
T (F )\T (AF )

χ(t)
∑

(x1,u)∈V1×F×
W−Q(x1)u,ϕ(g)r(g, (t, 1))Φ(x1, u)dtdg

Since ϕ is cuspidal, W0,ϕ = 0. This way we can change variables (x1, u) 7→ (x,Q(x−1
1 )u) to obtain the

following expression:∑
(x1,u)∈K××F×

W−u,ϕ(g)r(g, (t, 1))Φ(x1, Q(x1)−1u) =
∑

(x1,u)∈K××F×
W−u,ϕ(g)r(g, (tx1, 1))Φ(1, u)

Since T (F ) = K× and
∫
T (F )\T (AF )

∑
x1∈T (F ) =

∫
T (AF ), the integral becomes:∫

Z(AF )N(AF )P (F )\GL2(AF )
δ(g)s

∫
T (AF

χ(t)
∑
u∈F×

W−u,ϕ(g)r(g, (t, 1))Φ(1, u) dtdg
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By a straightforward calculation, we have W−u,ϕ(

(
1 0
0 u−1

)
g) = W−1,ϕ(g) and |u|AF = 1, the integral

is equal to:∫
Z(AF )N(AF )P (F )\GL2(AF )

δ(g)s
∫
T (AF

χ(t)
∑
u∈F×

W−1,ϕ(

(
1 0
0 u−1

)
g)r(

(
1 0
0 u−1

)
g, (t, 1))Φ(1, 1) dtdg

The sum over u ∈ F× collapses with the quotient over P (F ), thus we get the following expression:

P (s, χ,Φ, ϕ) =

∫
Z(AF )N(AF )\GL2(AF )

δ(g)s
∫
T (AF )

∑
u∈F×

χ(t)W−1,ϕ(g)r(g)Φ(t−1, Q(t)) dtdg

We may decompose the inside integral as
∫
Z(AF \T (AF )

∫
Z(AF ) and move the first integral outside. Then

using the fact that ωσ · χA×F
= 1, we obtain:

P (s, χ,Φ, ϕ) =

∫
Z(AF )\T (AF )

χ(t)

∫
N(AF )\GL2(AF )

δ(g)sW−1,ϕ(g)r(g)Φ(t−1, Q(t)) dtdg

When everything is unramified, Waldspurger computed these integrals (cf. lemma 2 in [Wal85])
and got:

Pv(s, χv,Φv, ϕv) =
L((s+ 1)/2, πv, χv)

L(s+ 1, ηv)

So we may define a normalised integral P ◦v by:

P ◦v (s, χv,Φv, ϕv) =
L(s+ 1, ηv)

L((s+ 1)/2, πv, χv)
Pv(s, χv,Φv, ϕv)

This normalized integral P ◦v will be regular at s = 0 and equal to

L(1/2, πv, χv)L(1, πv, ad)

ζv(2)L(1, ηv)

∫
Z(Fv)\T (Fv)

χv(t)F(π(t)Θ(Φv, ϕv))dt

by lemma 3.1. This can be written as αv(Θ(Φv, ϕv)) with αv ∈ Hom(πv ⊗ π̃v,C) given by integration
of matrix coefficients:

αv(f1 ⊗ f2) =
L(1/2, πv, χv)L(1, πv, ad)

ζv(2)L(1, ηv)

∫
Z(Fv)\T (Fv)

χ(t)Fχv(t)〈π(t)f1, f2〉 dt

and we define the global element α := ⊗vαv ∈ Hom(π ⊗ π̃,C). We thus get:

Proposition 3.3. We have that:

P (0, χ,Φ, ϕ) =
L(1/2, π, χ)

L(1, η)

∏
v

αv(Θ(Φv, ϕv))

We thus get to the main theorem of [Wal85]:

Theorem 3.4. For f1 ∈ π and f2 ∈ π̃, we have:

Pχ(f1) · Pχ−1(f2) =
ζF (2)L(1/2, π, χ)

8L(1, η)2L(1, π, ad)
α(f1 ⊗ f2)
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4 Doi-Naganuma Lift

Let E/Q be a real quadratic field extension so that E = Q(
√

∆) with ∆ > 0 squarefree. We write
Gal(E/Q) = {1, σ} and note that we fixed an embedding E ↪→ R so that the set of embeddings of E
in R is identified with Gal(E/Q). Let D be a quaternion algebra over Q and DE = D ⊗Q E. We will
consider the following quadratic spaces (V,Q):

(D±σ ) Let (D±σ ) = {x ∈ DE | xσ = ±xι}, and Q±(x) = xxσ = ±xxι = ±N(x) ∈ Q. Then,

S(x, y) = S±(x, y) = ±TrDE/E(xyι) = TrDE/E(xyσ) ∈ Q

We have m = 4. Indeed, we have a decomposition over C:

DE ⊗Q C = M2(C)⊕M2(C)

with σ interchanging the components M2(C), and we have:

D±σ ⊗Q C = {(X,±Xι) ∈M2(C)⊕M2(C) | X ∈M2(C)}

which has dimension 4 over C.

(D±0 ) Let D±0 = {x ∈ D±σ | Tr(x) = x + xι = 0} and Q±(x) = xxσ = ±N(x). Note that D−0 = {x ∈
D | Tr(x) = 0} and that D+

0 =
√

∆D−0 ⊂ DE (so that as quadratic spaces D+
0 is isomorphic

to D−0 with the norm multiplied by −∆) . Then the lemma 1.11 gives the Clifford algebras and
groups associated to these spaces. In particular, the even Clifford group is isomorphic to D× and
the morphism of algebraic groups τD0 : D× � SOD0 is given by a 7→ (v 7→ ava−1).

(Z±) Let Z± = {x ∈ D±σ | xι = x} = δ±Q with δ+ = 1 and δ− =
√

∆ with S±(δ±x, δ±y) =
Tr(δ±x(δ±y)σ) = ±2δ2

±xy. So Q±(δ±x) = ±δ2
±x

2, the space (Z+, Q+) is positive definite, and
(Z−, Q−) is negative definite.

Note that if we don’t need to refer to the sign of D±σ we just write Dσ instead.

We may let a ∈ DE act on D±σ by v 7→ aιvaσ as:

(aιvaσ)σ = aισvσa = ±aισvιa = ±(aιvaσ)ι

This preserves Q up to a scalar N(a)N(a)σ ∈ Q, and so we get a morphism of linear algebraic groups:

τ̃ : D×E → GODσ (4.1)

Given the inclusion of quadratic spaces (D±σ ,±N) ⊆ (DE ,±N) and following (1.7), we define the
Q-linear map:

p : D±σ → R ⊂M2(DE) = A(DE)

x 7→
(

0 ±x
xι 0

)
where R = {

(
a b
bσ aσ

)
| a, b ∈ DE}. Since dimQR = 24, we get that R = A(Dσ). We also have

that A+(Dσ) = {
(
a 0
0 aσ

)
| a ∈ DE} ∼= DE where we make the identification by the projection(

a 0
0 aσ

)
7→ aσ . By (1.8) and (1.5), the even Clifford group is equal to:

G+
Dσ

= {a ∈ DE | N(a) ∈ Q×}

and the morphism to the special orthogonal group is given explicitly by:

τDσ : G+
Dσ
→ SODσ

a 7→ (x 7→ aσxa−1)

By lemma 1.9, this map is surjective with kernel Q×.
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4.1 Choices of D for a fixed DE

Pick α ∈ D±σ ∩D×E , and consider xσα = αxσα−1. Then,

(xσα)σα = α(ασ(xσ)σασ,−1)α−1 = α(±αιx± αι,−1)α−1 = x

Thus we get a new action of Gal(E/Q) on DE , and the fixed points Dα = H0(E/Q, DE) = {x ∈
DE | xα = αxσ} under this new action is a quaternion algebra over Q with DE = Dα ⊗Q E.

Lemma 4.1. With the above notation we have:

(1) If B is a central simple Q-subalgebra of DE of dimension 4, then there exists α ∈ Dσ ∩D×E such
that B = Dα.

(2) We have that α = xβxισ for β ∈ Dσ ∩D×E and x ∈ D×E if and only if Dα
∼= Dβ as quaternion

algebras over Q, and in this case, we have Dα = xDβx
−1 inside DE.

(3) We have that Dα = D if and only if α ∈ Dσ ∩ E×.

Proof. Let D be a quaternion Q-subalgebra B ⊆ DE . Then we have an action of σ ∈ Gal(E/Q) on
DE such that H0(E/Q, DE) = B. This is given by the action on the second factor in DE = B ⊗Q E.
Write this action by ασ, then x 7→ (xσ)σα is an E-linear automorphism of DE . By the Noether-Skolem
theorem, it is an inner automorphism, and so there exists α ∈ D×E such that:

xσ = αxσαα−1 ∀x ∈ E

Since (xσα)σα = x, we see that ασα ∈ Z(DE) = E. In particular (ασα)α = α(ασα), and so dividing
on both sides by α, we get that α and ασ commute. Then (αασ)σ = ασα = αασ which shows that
αασ ∈ Q. Thus ασ = zαι for some z ∈ Q×, and ασι = zα. Therefore α is an eigenvalue of σι which is
of order 2 (σ and ι commute), and so z = ±1 which gives that ασ = ±αι. If z does not match with
the sign of D±σ , we replace α with

√
∆α. We have B = Dα which shows (1).

5 Rankin convolution

5.1 Adelic fourier expansion of cuspforms of integral weight

Let F ∈ Sκ(Γ0(C), ϕ) be a cusp form of weight κ ∈ N, ϕ : (Z/CZ)× → C× be a Dirichlet character

where we let ϕ(

(
a b
c d

)
) = ϕ(d) for

(
a b
c d

)
∈ Γ0(C). Then we have:

F (γ(τ)) = ϕ(γ)F (τ)j(γ, τ)κ for allγ ∈ Γ0(C)

Since A×/Q×R×+ ∼= Ẑ×, by composing with the projection map Ẑ× � (Z/CZ)× we extend ϕ to a
character ϕ : A×/Q× → C× . Using strong approximation, SL2(A) = SL2(Q)Γ̂0(C) SL2(R) and we lift
F to F : SL2(Q)\ SL2(A)→ C by putting:

F(αu) = ϕ∗(u)F (u∞ · i)j(u∞, i)−κ

for α ∈ SL2(Q), u ∈ Γ̂0(C) SL2(R), and ϕ∗ = ϕ−1.
Define an idele character ϕ : A×/Q× → C× by ϕ(x) = ϕ∗(x)|x|−κA . Write the Fourier expansion of F

as F (τ) =
∑∞

n=1 an(F )e∞(nτ). For g ∈ B(Ẑ)B(R) with g =

(
x yx−1

0 x−1

)
with x ∈ Ẑ×R×+, we find for

τ = g∞ · i = x2
∞i+ y∞,

F(g) = ϕ∗(x∞)−1xκ∞

∞∑
n=1

an(F )e∞(nτ) = ϕ(x)−1
∞∑
n=1

an(F ) exp(−2πnx2
∞)e∞(ny∞)
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Let v(y) =

(
1 y
0 1

)
∈ N(A), then for g = v(y)diag[x, x−1], write F(x, y) := F(g). Since F(x, y + u) =

F(v(u)g) = F(g) = F(x, y) for u ∈ Q, we have the adelic Fourier expansion of F(x, y) with respect to
y ∈ A:

F(x, y) =
∑
u∈Q

aF(u;x)eA(uy)

For t ∈ Q×, we have diag[t, t−1]v(y)diag[x, x−1] = v(t2x)diag[tx, (tx)−1] we have:∑
u∈Q

aF(u, x)eA(uy) = F(x, y) = F(tx, t2y) =
∑
u∈Q

aF(u, tx)eA(ut2y)

By the uniqueness of the Fourier expansion, we get:

aF(u, x) = aF(t−2u, tx) for t ∈ Q×, u ∈ Q

aF(u, x) =

{
ϕ(x)−1au(F ) exp(−2πux2

∞) if u ∈ N×
0 if u 6∈ N× for x ∈ Ẑ×R×+

(5.1)

Suppose that t ∈ Ẑ×R×+, then given that diag[t, t−1] ∈ Γ̂0(C) SL2(R), we get by definition of F :

F(xt, y) = F(v(y)

(
xt 0
0 (xt)−1

)
) = F(g

(
t 0
0 t−1

)
)) = ϕ∗(t)−1F(g

(
t∞ 0
0 t−1

∞

)
) = ϕ∗(t)−1F(xt∞, y)

so that ∑
u∈Q

aF(u, xt)e(uy) = ϕ∗(t)−1
∑
u∈Q

aF(u, xt∞)e(uy)

By unicity of the Fourier expansion, we get that

aF(u, xt) = ϕ∗(t)−1aF(u, xt∞) (5.2)

For x ∈ Q×(A×)2 = Q×(Ẑ×)2R×+, write x = ua2 for u ∈ Q× with a ∈ A×, and define:

aF(ua2) := ϕ(a)aF(u, a) exp(2πa2
∞u∞)

Note that by comparing the two Fourier expansions, we have that if a ∈ Ẑ×R×+,

aF(ua2) =

{
au(F ) if u ∈ N×

0 if u 6∈ N×

If ua2 = tb2 for some t ∈ Q× and b ∈ A×, then there exists q ∈ Q× and s ∈ A× with s2 = 1, s∞ = 1,
q2 = u/t, and b = qsa. Then we get that:

aF(ua2) = ϕ(a)aF(u, a) exp(2πa2
∞u∞)

= ϕ(aqs)ϕ∗(s)−1aF(q−2u, qs∞a) exp(2π(a∞s∞q∞)2q−2
∞ u∞)

= ϕ(b)aF(t, b) exp(2πb2∞t∞) = aF(tb2)

by (5.4) and (5.2). This shows that aF(x) is well defined, and we get that for x ∈ Ẑ×R×+ and y ∈ Q×,

F(x, y) = F(v(y)diag(x, x−1)) = ϕ−1(x)
∑
u∈Q

aF(ux2) exp(−2πnx2
∞)eA(uy)
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5.2 Adelic Fourier expansion of cuspforms of half integral weight

Let f ∈ Sk/2(Γ0(M), ψ) for k odd and ψ an even Dirichet character modulo M . Then f(γ · τ) =

ψ(γ)f(τ)h(γ, τ)k for γ ∈ Γ0(M), h(γ, τ) = θ(γ·τ)
θ(τ) and ψ(

(
a b
c d

)
) = ψ(d). We extend ψ to a character

ψ : A×/Q× → C×, and we lift f to f : SL2(Q)\Mp(A)→ C by putting:

f(α(u, ζJ(u∞, τ))) = ψ∗(u)f(u∞ · i)ζkJ(u∞, i)
−k (5.3)

for α ∈ SL2(Q) ⊂ Mp(A), (u, J(u∞, τ)) ∈ Γ̂0(M)Mp(R), and ζ ∈ T; regarding S̃L2(R) ⊂ S̃L2(A) ⊂
Mp(A).
Note that B(A) is canonically lifted toMp(A) by the Weil representation, and this lifting coincides with
the splitting SL2(Q) ↪→Mp(A). Define the idele character ψ : A×/Q× → C× by ψ(a) = ψ∗(a)|a|−k/2A .

Then letting f(τ) =
∑∞

n=1 an(f)e∞(nτ), we put for v(y)diag[x, x−1] =

(
x yx−1

0 x−1

)
∈ B(Ẑ)B(R) ⊂

S̃L2(A):

f(x, y) := f(v(y)diag[x, x−1]) = ψ∗(x−1)f(x2
∞i+ y∞)xk/2∞ = ψ−1(x)

∞∑
n=1

an(f) exp(−2πnx2
∞)e∞(ny∞)

Noting that f(x, y + u) = f(x, y) for u ∈ Q, f(a, u) has a Fourier expansion over y ∈ A of the form:

f(x, y) =
∑
u∈Q

af (u;x)eA(uy)

As before, we get by uniqueness of the Fourier expansion that:

af (u, x) = af (t
−2u, tx) for t ∈ Q×, u ∈ Q

af (u, x) =

{
ψ(x)−1au(F ) exp(−2πux2

∞) if u ∈ N×
0 if u 6∈ N× for x ∈ Ẑ×R×+

(5.4)

Define

5.3 Adelic Rankin product

Lemma 5.1. The natural map π : B(Q)\B(A)C∞ � SL2(Q)\Mp(A) is an isomorphism.

Proof. By strong approximation, SL2(A(∞)) = SL2(Q)K for an open subgroupK of Γ̂0(4). By Iwasawa
decomposition, we have that B(R)C∞ = Mp(R) so that Mp(A) = SL2(Q)B(A)KC∞. Thus we have
a natural continuous surjection:

πK : BK := B(Q)\B(A)KC∞ � SL2(Q)\Mp(A)

For x ∈ Mp(A) and an open neighborhood U of x, there exists a compact open K ⊂ Γ̂0(4) such that
xK ⊆ U . But knowing that πK is surjective, we have xK ∩ π1(B(Q)\B(A)C∞) 6= ∅, which shows
that π1 has dense image. Since SL2(Q)\Mp(A) is locally compact, we can consider a system of open
neighborhoods {Xn}n≥0 of a point x ∈ SL2(Q)\Mp(A). Let {Yn}n≥0 be a system of open compact
subsets of B(Q)\B(A)C∞ such that Yn+1 ⊂ Yn and Yn ⊂ π−1(Xn). Then given that SL2(Q)\Mp(A)
is Hausdorff, we get that ∩n≥0π1(Yn) = {x} and so π1 is surjective.
Now if π1(bu) = π1(b′u′) for b, b′ ∈ B(A) and u, u′ ∈ C∞, then there is a γ ∈ SL2(Q) such that
γbu = b′u′. By projecting down to SL2(A) and comparing the finite part, we find that γ ∈ B(Q) which
shows the injectivity of π1.
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6 Computing the Period

6.1 Symmetric domain for O(n, 2)

Suppose that m = dimV = n+ 2 and that VR has signature (n, 2). We would like to make explicit the
symmetric domain GO+

V (R)/R×C for a maximal compact subgroup C ⊂ GO+
V (R).

We start with the following complex submanifold of VC:

Y(Q) = {v ∈ VC | Q(v) = 0 and S(v, v) < 0}

Since S is indefinite over C, the space Y(Q) is always non-empty, and g ∈ GO+
V (R) acts on Y(Q) by

v 7→ gv.

Take v ∈ Y(Q) and write W for the subspace of VR spanned over R by 2Re(v) = v + v and
2Im(v) = iv − iv. Then we have:

Q(v + v) = 2S(v, v) < 0

Q(iv − iv) = 2S(v, v) < 0

S(v + v, iv − iv) = −iS(v, v) + iS(v, v) = 0

This shows that S|W is negative definite, and so S|W⊥ is positive definite. Now define the positive
linear bilinear form:

Pv(x, y) = S(xW⊥ , yW⊥)− S(xW , yW )

for the orthogonal projections xW to W and xW⊥ to W⊥ of x. If g ∈ GO+
V (R) fixes v ∈ Y(Q), then

g fixes by definition the positive definite form Pv. Thus g has to be in the compact subgroup OPv
made up of orthogonal matrices preserving Pv. On the other hand, if we have to v, w ∈ Y(Q), then by
Sylvester’s theorem, we can find g ∈ GO+

V (R) such that gv = w and hence GO+
V (R)/OPv

∼= Y(Q).

Now we make explicit the domain Y(Q) as a hermitian bounded matrix domain:

Proposition 6.1. [Hid06, Prop. 2.1] There is a C-linear isomorphism A : VC
∼−→ Cn+2 such that:

S(x, y) = t(Ax)R(Ay) and S(x, y) = t(Ax)T (Ay)

where R and T are real symmetric matrices given by:

R =

idn 0 0
0 0 −1
0 −1 0

 and T =

(
idn 0
0 − id2

)

With A as in the proposition, the map g 7→ AgA−1 gives an isomorphism of Lie groups:

ι : GO+
V (R)

∼−→ G(Q,T ) = {g ∈ GLn+2(C) | tgRg = ν(g)R, tgTg = ν(g)Q for some ν(g) ∈ R×}

and the map v 7→ Av gives an isomorphism of complex manifolds:

j : Y+(Q)
∼−→ Y(R, T ) = {u ∈ Cn+2 | tuRu = 0 and tuTu < 0}

These two maps are equivariant, i.e, ι(g)j(v) = j(gv).
Let us show that Y(Q,T ) has two connected components. So writing u = t(u1, · · · , un+2) ∈ Y(R, T ),
we get:

(

n∑
i=1

u2
i )− 2un+1un+2 = tuRu = 0

n∑
i=1

|ui|2 < |un+1|2 + |un+2|2 = tuQu < 0
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If we suppose that |un+1| = |un+2|, then

n∑
i=1

|ui|2 > |
n∑
i=1

u2
i | = 2|un+1un+2| = |un+1|2 + |un+2|2

a contradiction. Thus we either have |un+1| > |un+2| or |un+2| > |un+1|. These two cases split the
domain Y(Q,T ) into two pieces of connected components.
To see that each component is connected, we may assume that |un+2| > |un+1| by interchanging the
coordinates if necessary, and so un+2 6= 0. Put zi = ui

un+2
for i ≤ n and define z = t(z1, . . . , zn). Then

un+1

un+2
=

tzz
2 , and defining:

Z = Zn = {z ∈ Cn | tzz < 1 +
1

4
|tzz|2 < 2}

we see that C× × Z is isomorphic to the component of Y(R, T ) given by |un+2| > |un+1| via

(λ, z) 7→ λP(z)

where P(z) = t(z,
tzz
2 , 1). We define an action of g ∈ GO+

V (R) on Z and a factor of automorphic µ(g, z)
for z ∈ Z by:

ι(g)P(z) = P(g(z))µ(g, z)

We now look into spherical functions on VC. Choose a basis v1, . . . , vm of V so that we have an
identification of VR with Rm by v 7→ (x1, . . . , xm) for v =

∑
i xivi. We take the dual basis v∗j so that

S(v∗j , vi) = δij , and define a second degree homogenious differential operator ∆ by:

∆ =
∑
ij

S(v∗i , v
∗
j )

∂2

∂xi∂xj

A polynomial function η : VR → C is called a spherical function if ∆η = 0. Writing S = (S(vi, vj)),
we have that this definition does not depend on the choice of the basis vi because ∆ = t∂S−1∂ for
∂ = t( ∂

∂x1
, . . . , ∂

∂xm
). And since ∂(twSx) = tSw = Sw for a constant vector w, we find that for k ≥ 2,

∆(twSx)k = t∂S−1∂(twSx)k

= kt∂(S−1Sw)(twSx)k−1

= kt(tw∂(twSx)k−1)

= k(k − 1)(twSw)(twSx)k−2

Thus the polynomial function x 7→ S(w, x)k for k ≥ 2 is spherical if and only if Q(w) = 0. In fact, all
homogenious spherical polynomials of degree k ≥ 2 are a linear combination of S(w, x)k for a finite set
of spherical vectors w with Q(w) = 0. In particular, for v ∈ Y+(Q), then function x 7→ S(v, x)k is a
spherical function. We define a Schwartz function Ψ on VR for each τ = x+ iy ∈ H and v ∈ Y(Q) by:

Ψ(τ ; v)(w) = e(
1

2
(S[w]x+ iPv[w]y)) = exp(iπ(S[w]x+ iPv[w]y)) (6.1)

where S[w] = S(w,w).

Now we go back to our case and suppose that D is indefinite, so that we can fix an isomorphism
DE ⊗Q R ∼= M2(R)⊕M2(R) and,

VR = D±σ ⊗Q R ∼= {(X,±Xι) ∈M2(R)⊕M2(R) | X ∈M2(R)} ∼= M2(R)
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which has signature (2, 2). With these identifications, the morphism (4.1) becomes:

(GL2(R)×GL2(R))/{±(1, 1)} ↪→ GOV (R)

(X1, X2) 7→ (M 7→ X2MXι
1)

with ν((X1, X2)) = det(X1X2). Since the symmetric space of GOV (R) has dimension 2 over C, the
above morphism has to be onto on the identity connected component. Also the symmetric space of
GOV (R) has four connected components (Y(Q) has two), the above morphism has to be surjective and
so it is an isomorphism. Given that the symmetric space of GL+

2 (R)×GL+
2 (R) is H×H, we find that

Z = H× H. But let us make this more explicit.

Since VC ∼= M2(C) with S± = ±Tr, we have from the definition that:

Y+ = {
(
a b
c d

)
∈M2(C) | ad = bc, ad− bc+ da− cb < 0}

Y− = {
(
a b
c d

)
∈M2(C) | ad = bc, ad− bc+ da− cb > 0}

Pick v =

(
a b
c d

)
∈ Y− t Y+ and suppose that c = 0. Then by the defining equation of Y±, ad = 0

and so 0 = ad+ da > 0 (or < 0) which is a contradiction. Thus c 6= 0, and define z = a
c and w = −d

c .
Then −zw = b

c and,

v = cp(z, w) with p(z, w) =

(
z −wz
1 −w

)
= −t(z, 1)(w, 1)J

where J =

(
0 1
−1 0

)
. By the equation defining Y±, we have:

S±(p(z, w), p(z, w)) = ±(z − z)(w − w) = ±4Im(z)Im(w) 6= 0 (6.2)

Then we clearly have that Y− t Y+ ∼= C× × (C − R)2 via cp(z, w) ←[ (c, (z, w)). The action of
(X1, X2) ∈ GODσ(R) is given explicitly by:

X2p(z, w)Xι
1 = p(X2 · z,X1 · w)j(X2, z)j(X1, w) (6.3)

Thus (X1, X2)·(z, w) = (X2·z,X1·w) and the factor of automorphy µ((X1, X2), (z, w)) = j(X2, z)j(X1, w).
Let us also define a spherical function:

v 7→ [v; z, w]k = S+[v, p(z, w)]k

for a positive integer k > 0.

As before, let W be the subspace of VR generated by Re(p(z, w)) and Im(p(z, w)) and decompose
VR = W ⊕ W⊥. A direct calculation shows that W⊥ is generated by the real and imaginary part
of p(z, w). If Im(z)Im(w) > 0, then by (6.2), we have that S+ is > 0 on W and S+ is < 0 on W⊥

(the opposite for S−). Let P± be the positive majorant of S± given by the above decomposition (cf
[Hid20]), then we have that:

P±(x, y) = ±S±(xW , yW )∓ S±(xW⊥ , yW⊥)

To compute P±[v], note that P±[v]± S±[v] = ±2S±(vW , vW ). So writing v = cp(z, w) + cp(z, w) + x
with x ∈W⊥ and c ∈ C, we have:

P±[v]± S±[v] = ±2S±(cp(z + w) + cp(z, w), cp(z + w) + cp(z, w))

= ±4|c|2S±(p(z, w), p(z, w))

= 4|c|2(w − w)(z − z) ≥ 0
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Now if Im(z)Im(w) < 0, then replacing W by W⊥, w by w, and repeating the calculations, we get
that P±[v]± S±[v] = 4|c|2(w − w)(z − z) ≥ 0.

Since S±(v, p(z, w)) = cS±(p(z, w), p(z, w)) = ±c(w − w)(z − z), we get that:

P±[v] = ∓S±[v] +
|[v, z, w]|2

|Im(z)Im(w)|

Write τ± =

{
τ in case +
−τ in case − and define a Schwartz function Ψk on VR for (τ, z, w) ∈ H× (C− R)2

and 0 ≤ k ∈ Z:

Ψk(τ ; z, w)(v) = Im(τ)
[v, z, w]k

(z − z)k(w − w)k
e∞
(
N(v)τ± + i

Im(τ)

2|Im(z)Im(w)|
|[v, z, w]|2

)
We choose a Bruhat function φ(∞) : Dσ,A(∞) → C, and put:

φ = φk = φ(∞) ⊗Ψk

and consider Siegel’s theta series θ(φk) = θ(φk)(τ, z, w) =
∑

v∈Dσ φ(v).
From (6.3), we have by direct computation that for g ∈ D×E :

[gσ,−1vgι,−1; z, w] = N(ggσ)−1j(gσz)j(g, w)[v; gσz, gw] (6.4)

and since Im(gz) = N(g) Im(z)
|j(g,z)|2 , we get that:

[v; gσz, gw]

Im(gσz)Im(gw)
= j(gσ, z)j(g, w)

[gσ,−1vgι,−1; z, w]

Im(z)Im(w)

multiplying on both sides with [v; gσz, gw], we get:

|[v; gσz, gw]|2

Im(gσz)Im(gw)
= N(ggσ)

|[gσ,−1vgι,−1; z, w]|2

Im(z)Im(w)

Thus for γ ∈ D×E with N(γ) = 1 and φ(∞)(γσ,−1vγι,−1) = φ(∞)(v), we have:

θ(φk)(γ
σz, γw) = θ(φk)(z, w)j(γσ, z)kj(γ,w)k (6.5)

6.2 Differential form coming from theta series

Let LE(n;A) be the space of homogenious polynomials for each pari (X,Y ) and (X ′, Y ′) of variables
of degree n with coefficients in A for an E-algebra A. Suppose that DE ⊗Q A ∼= M2(A) ×M2(A) for
two projections inducing the identity and σ. We let γ ∈ DE act on P (X,Y ;X ′, Y ′) ∈ LE(n;A) via
(γ · P )(X,Y ;X ′, Y ′) = P ((X,Y )tγι; (X ′, Y ′)tγσι). Then,

Θ(z, w) = Θ(τ ; z, w) := θ(φk)(τ ; z, w)(X − wY )k−2(X ′ − zY ′)k−2 dz ∧ dw

is a C∞ differential form with values in LE(k−2,C). Since γ ·(X−zY )k−2 = j(γ, z)k−2(X−γ(z)Y )k−2

and dγ(z) = det(γ)j(γ, z)−2dz, we have that:

γ∗Θ(z, w) = Θ(γσ(z), γ(w))

= θ(τ ; γσ(z), γ(w))(X − γ(w)Y )k−2(X ′ − γσ(z)Y ′)k−2 dγσ(z)dγ(w)

= γ ·Θ(z, w)

where we write γ ·Θ for the action of γ on the value in LE(k − 2,C). We write Θ(τ ; z); = Θ(τ ; z, z).
We let L(n;A) = LQ(n;A) be the space of homogenious polynomials of degree n in the variables
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(X,Y ) with coefficients in A. If D ⊗Q A ∼= M2(A), we let γ ∈ D act on P (X,Y ) ∈ L(n,A) via
(γ · P )(X,Y ) = P ((X,Y )tγι). Then by the Clebsch-Gordan decomposition, we have:

LE(n,A)|D× ∼= LQ(n;A)⊗ LQ(n;A) ∼=
n⊕
j=0

LQ(2n− 2j;A)

We write π : LE(n,A)→ LQ(0, A) = A for the SL2(R)-equivariant projection given by:

π(P ) =
1

n!2
∇nP where ∇ =

∂2

∂X∂Y ′
− ∂2

∂Y ∂X ′

Then we have that:

1

n!2
∇n(Xn−iY iX ′

n−j
Y ′

j
) =

1

n!2

n∑
k=0

(−1)k
(
n

k

)
∂2k

(∂X)k(∂Y ′)k
∂2(n−k)

(∂Y )n−k(∂X ′)n−k
(Xn−iY iX ′

n−j
Y ′

j
)

=

{
(−1)j

(
n
i

)−1 if n = i+ j
0 otherwise.

Thus we get from (X − zY )n(X ′ − zY ′)n =
∑n

i,j=0(−1)i+j
(
n
i

)(
n
j

)
zizjXn−iY iX ′n−jY ′j that:

π((X − zY )n(X ′ − zY ′)n) =

n∑
i=0

(
n

i

)
(−1)izizn−i = (z − z)n

6.3 Factoring the Theta series

We split the quadratic space as:

(D±σ ,±N) = (Z±,±N|Z±)⊕ (D±0 ,±N|D±0 )

Then D+
0 (resp. D−0 ) is 3 dimensional of signature (1, 2) (resp. (2, 1)) and Z+ (resp. Z−) has

signature (1, 0) (resp. (0, 1)). We assume that there are Schwartz-Bruhat functions φZ ∈ S(Z
(∞)
A ) and

φ0 ∈ S(D
(∞)
0,A ) such that for z ∈ Z(∞)

A and n ∈ D(∞)
0,A , we have a tensor product decomposition:

φ(∞)(z + n) = (φZ ⊗ φ0)(z + n) := φZ(z)φ0(n)

of the Schwartz-Bruhat function in order to factor the theta series.

Next we study the decomposition of the infinite part. First decompose the spherical polynomial
[v; z, z]. For z ∈ Z± = Qδ± and n ∈ D0, we have:

[z + n; z, z]k = ([z; z, z] + [n; z, z])k =

k∑
j=0

(
k

j

)
zj(z − z)j [n; z, z]k−j

Note that since p(z, z) =

(
z −zz
1 −z

)
so that Re(p(z, z)) ∈ D0,R and Im(p(z, z)) ∈ ZR. Thus [n, z, z] =

S+(n,Re(p(z, z))) ∈ R. Hence,

|[z + n; z, z]|2 = ([n; z, z] + z(z − z))([n; z, z]− z(z − z)) = |[n; z, z]|2 − z2(z − z)2

Now set

ΨZ
j (τ)(z) = zje∞

(
z2τ± − i Im(τ)(z − z)2z2

2Im(z)2

)
=

{
zje∞(z2τ) in case +
zje∞(−z2τ) in case −
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and,

ΨD0
j (τ, z)(n) = (z − z)−j [n; z, z]je∞

(
N(n)τ± + i

Im(τ)|[n; z, z]|2

2Im(z)2

)
.

= (z − z)−jS+(n,Re(p(z, z)))je∞
(
N(n)τ± + i

Im(τ)S+(n,Re(p(z, z)))2

2Im(z)2

)
By the calculations above, we get that:

Im(τ)−1(z − z)kφk(τ ; z, z) =
k∑
j=0

(−1)j
(
k

j

)
φZΨZ

j (τ)⊗ φ0ΨD0
k−j(τ ; z) (6.6)

6.4 The period integral

We assume that the level of θ(φk) with respect to τ is of the form Γτ = Γ0(M) for some integerM > 0.
For α ∈ D±σ ∩D×E , let:

Γ̂α = {x ∈ Oα(A(∞)) | φ(∞)(xv) = φ(∞)(v) ∀v ∈ D0,A(∞)}

and Shα = Shα,φ = Oα(Q)\Oα(A)/Γ̂αCα where Cα is a maximal compact subgroup of Oα(R).
We write z = x+ iy, τ = ξ + iη, Sh = Shδ, and consider for F ∈ S∓k (Γτ , ϕχ

±
Dσ

) and n = k − 2:

P ′δ(F ) : =

∫
Sh

∫
Γτ\H

n!−2∇nΘ(τ ; z, z)F (τ)ηk−2 dξdη

=

∫
Sh

∫
Γτ\H

(z − z)nθ(φk)F (τ)ηk−2 dz ∧ dz dξdη

since dz ∧ dz = −2idx ∧ dy and −1
4(z − z)2y−2 = 1, the above integral is equal to:

i

2

∫
Γτ\H

(∫
Sh

(z − z)kθ(φk)(τ ; z, z)y−2 dxdy
)
F (τ)ηk−2 dξdη

Choose a lattice L of Dσ and assume L = LZ ⊕ L0 for lattices LZ ⊂ Z and L0 ⊂ D±0 . We take φ0 to
be the characteristic function of L̂0 ⊂ D0 ⊗Q A(∞) and we choose in subsection 6.5 the finite part φZ
of φZ which has open support in L̂∗Z .

6.5 Choice of φZ

6.6 Siegel Weil formula

Since OZ(R) = {±1}, the action of g ∈ OV (R) on ΨZ
j (i)(z) = zje∞(z2i) is trivial. For gτ =(

1 Re(τ)
0 1

)(
Im(τ)1/2 0

0 Im(τ)1/2

)
∈ SL2(R), we have that gτ (i) = τ , and so:

rZ(gτ )ΨZ
j (i)(z) = rZ(

(
1 Re(τ)
0 1

)
)Im(τ)

1+2j
4 zje∞(Im(τ)z2i)

= Im(τ)
1+2j

4 zje∞(z2(±Re(τ) + iIm(τ)))

= Im(τ)
1+2j

4 ΨZ
j (τ)(z)

Since the even Clifford algebra of D0 is D, we have by theorem 1.9 that SOD0(R) ∼= PGL2(R) by τD0

with the action on the matrices by conjugation, and for gz =

(
Im(z)

1
2 Re(z)Im(z)−

1
2

0 Im(z)
−1
2

)
∈ PGL2(R)

we have by (6.4):

rD0(gτ , gz)Ψ
D0
j (i; i)(n) = rD0(gτ )ΨD0

j (i; z)(n) = Im(τ)(3+2j)/4ΨD0
j (τ ; z)(n)
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As the Siegel-Weil formula is stated with respect to the theta series of variable g ∈ OD0(A) and not
with respect to z, we lift θ(φk)(τ ; z, z) to a function θ(φk)(τ ; g) on OD0(A) in the standard way by:

θ(φk)(τ ; g) = θ(φk)(τ ; g · i, g · i)|j(g, i)|−2k

then we have by (6.6) that:

θ(φk)(τ ; gz) = (z − z)kθ(φk)(τ ; z, z) = η

k∑
j=0

(−1)j
(
k

j

)
θ(φZj )(τ)θ(φD0

k−j)(τ ; z)

= η

k∑
j=0

(−1)j
(
k

j

)
θ(φZj )(τ)rD0(gz)θ(φ

D0
k−j)(τ ; i)

Hence,∫
Sh
η−1(z − z)kθ(φk)(τ ; z, z)

dxdy
y2

=
k∑
j=0

(−1)j
(
k

j

)
θ(φZj )(τ)

∫
OD0

(Q)\OD0
(A)/Γ̂δCδ

rD0(g)θ(φD0
k−j)(τ ; i) dµg

= m

k∑
j=0

(−1)j
(
k

j

)
θ(φZj )(τ)E(φD0

k−j)

by the Siegel-Weil formula (theorem 2.3). Here we normalize the Haar measure dµg on Oδ(A) so that
it has volume 1 on Γ̂δCδ, and m satisfies dµg = m

2 dωOδ for the Tamagawa measure dωδ of Oδ (the
factor of 1

2 is because
∫
dωOδ = 2).
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