Hida's paper

Mohamed Moakher

January 2022

1 Quadratic forms

Let F be a field of characteristic $\neq 2$. Let (V, Q) be a quadratic space over F of dimension m, S the associated symmetric bilinear form and suppose that it is non-degenerate. (V, Q) is called anisotropic if $Q(x) \Leftrightarrow x = 0$, otherwise it is called isotropic.

For a proof of the statements in this section, consult [Shi10].

Theorem 1.1 (Witt). Suppose that $(V,Q) = (V_1,Q_1) \oplus (V_2,Q_2) = (V'_1,Q'_1) \oplus (V'_2,Q'_2)$. If $(V_1,Q_1) \cong (V'_1,Q'_1)$, then $(V_2,Q_2) \cong (V'_2,Q'_2)$.

Theorem 1.2. Given (V,Q) with Q non-degenerate, there exist a decomposition called the Witt decomposition:

$$V = X \oplus \sum_{i=1}^{s} (Fe_i \oplus Ff_i)$$

such that

- $Q(e_i) = Q(f_i) = 0$ and $S(e_i, f_j) = \delta_{ij}$.
- $X = \left(\sum_{i=1}^{s} (Fe_i \oplus Ff_i)\right)^{\perp}$ and $(X, Q_{|X})$ is anisotropic.

Moreover, s and the isomorphism class of $(X, Q|_X)$ are completely determined by the isomorphism class of (V, Q).

Let M be a symmetric matrix representing the bilinear form S in a chosen basis of V. Then M is well defined up to conjugation $\alpha M^t \alpha$ by an element $\alpha \in \operatorname{Aut}(V)$. Thus the coset $(-1)^{n(n-1)/2} \det(M) F^{\times 2}$ in $F^{\times}/F^{\times 2}$ is completely determined by Q. We call this coset the discriminant of Q and denote it by $\delta_0(Q)$. Consider the field $K_0 = F[\delta_0(Q)^{1/2}]$, and define the discriminant algebra K of Q to be:

$$K = \begin{cases} K_0 & \text{if } K_0 \neq F \\ F \oplus F & \text{if } K_0 = F \end{cases}$$

which we equip with the canonical involution fixing F.

1.1 Clifford Algebra

There exist a unique pair (up to isomorphism) (A, p) consisting of a unital *F*-algebra A = A(V) and an *F*-linear map $p: V \to A$ such that:

- (1) As an *F*-algebra, *A* is generated by p(V).
- (2) $p(v)^2 = Q(v)\mathbf{1}_A$ for all $v \in V$.
- (3) If (A_1, p_1) is another pair satisfying (2), then there is an *F*-algebra homomorphism $f : A \to A_1$ such that $p_1 = f \circ p$.

We call A(V) the Clifford algebra associated to (V, Q).

Applying (3) to $A_1 = A$ and $p_1(v) = -p(v)$, we get an endomorphism $f : A \to A, a \mapsto a'$ satisfying v' = -v for every $v \in V$. We also let $* : A \to A$ be the canonical involution. We put:

$$A^{+}(V) = \{a \in A(V) \mid a' = a\}$$
$$A^{-}(V) = \{a \in A(V) \mid a' = -a\}$$

 $A^+(V)$ is a subalgebra called the even Clifford algebra.

Lemma 1.3. Let e_1, \dots, e_m be a basis of V, then the elements

$$e_{i_1} \cdots e_{i_s}$$
 with $i_1 < \cdots < i_s, \ 0 \le s \le m$

form a basis of A. In particular, $\dim_F(A) = 2^m$.

Theorem 1.4. Let $V = X \oplus \sum_{i=1}^{s} (Fe_i \oplus Ff_i)$ be a weak Witt decomposition, and let $n = 2^s$, then $A(V) \cong M_n(A(X))$. Moreover, we have that $A^+(V) \cong \begin{cases} M_n(A^+(X)) & \text{if } X \neq 0 \\ M_{n/2}(F) \oplus M_{n/2}(F) & \text{if } X = 0 \end{cases}$

Proof. The general case follows from the case s = 1 by induction. So suppose that s = 1 and define an *F*-linear map:

$$\Psi: V \to M_2(A(X))$$
$$x + re + tf \mapsto \begin{pmatrix} x & r \\ t & -x \end{pmatrix}$$

We have $\Psi(x + re + tf) = (x^2 + rt)$ id = Q(x + re + tf) id. Hence by the universal property of the Clifford algebra, we can extend this to an *F*-algebra homomorphism

$$\Psi: A(V) \to M_2(A(X))$$

Observing that $\Psi(e) = E_{12}$, $\Psi(f) = E_{21}$, $\Psi(ef) = E_{11}$, and $\Psi(fe) = E_{22}$ where E_{ij} are the elementary matrices, we easily see that $\Psi(A(V))$ generates all of $M_2(A(X))$. Since A(V) and $M_2(A(X))$ have the same dimension, we conclude that they are isomorphic.

Now put l = e - f, then $l^2 = -1$ and $lxl^{-1} = -x = x'$ for every $x \in X$, and so $lal^{-1} = a'$ for every $a \in A(X)$. So putting $\Lambda = \text{diag}(l, -l)$, we get that

$$\Lambda \Psi(a)\Lambda^{-1} = \Psi(a') \quad \text{for every } a \in A(V) \tag{1.1}$$

this follows from the fact that it is true for $a \in V$. Now we have that:

$$\Psi(A^{\pm}(V)) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, d \in A^{\pm}(X) \text{ and } b, c \in A^{\mp}(X) \right\}$$
(1.2)

Indeed, for $\Psi(\alpha) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, we have $\Psi(\alpha') = \begin{pmatrix} a' & -b' \\ -c' & d' \end{pmatrix}$ by (1.1). Thus $\alpha \in A^{\pm}(V)$ if and only if $a' = \pm a, b' = \mp b, c' = \mp c$, and $d' = \pm d$.

If $X \neq 0$, let $h \in X$ such that $h^2 \neq 0$. Then we define a new algebra isomorphism:

$$\Xi: A(V) \xrightarrow{\sim} M_2(A(X))$$
$$\alpha \mapsto \Delta^{-1} \Psi(\alpha) \Delta$$

with $\Delta = \text{diag}(h, 1)$. Then since $h^{-1}A^+(X) = A^{-1}(X)h = A^+(X)$ and $h^{-1}A^+(X)h = A^+(X)$, from (1.2) we obtain that

$$\Xi(A^+(V)) = M_2(A^+(X)) \quad \text{if } X \neq 0$$

Lemma 1.5. Given an orthogonal basis h_1, \ldots, h_m of V, put $z = h_1 \cdots h_m$. Then the following assertions hold:

(1) $z^{-1}vz = (-1)^{m-1}v$ for every $v \in V$.

(2)
$$z^2 = (-1)^{\frac{m(m-1)}{2}} h_1^2 \cdots h_m^2$$
 and $z^* = (-1)^{\frac{m(m-1)}{2}} z$.

- (3) Fz is independent of the choice of the basis $\{h_i\}_i$.
- (4) $F \oplus Fz$ is isomorphic to the discriminant algebra of Q.

Proof. Since the basis h_i is orthogonal, we easily see that $h_i z = (-1)^{m-1} z h_i$ for every *i*. Since the h_i span V, we get the first assertion. The second assertion is a straightforward calculation. Since $z^2 = F$ and $z \notin F$, we see that if $v \in F \oplus Fz$ and $v \notin F$, then $v \in Fz$. Hence (3) is a consequence of the following assertion proved in the next theorem: $F \oplus Fz$ is the center of A(V) or $A^+(V)$ according to whether *m* is odd or even. Finally, (4) follows easily from (2).

Theorem 1.6. Let \mathfrak{C} be the center of A(V), \mathfrak{C}^+ is the center of $A^+(V)$ and z be as in the previous lemma.

- (1) Suppose $m = \dim(V)$ is even strictly positive. Then A(V) is a central simple algebra over F and $\mathfrak{C}^+ = F \oplus Fz$. $A^+(V)$ is a central simple algebra over \mathfrak{C}^+ if \mathfrak{C}^+ is a field; otherwise, $A^+(V)$ is the direct sum of two central simple algebras over F of the same degree.
- (2) Suppose $m = \dim(V)$ is odd. Then $A^+(V)$ is a central simple algebra over F, $\mathfrak{C} = F \oplus Fz$, and $A(V) = A^+(V) \otimes_F \mathfrak{C}$.

Proof. Let \overline{F} be the algebraic closure of F. Suppose that m = 2s+1, then $V_{\overline{F}}$ has a Witt decomposition $V_{\overline{F}} = \overline{F}g \oplus \sum_{i=1}^{s} (\overline{F}e_i \oplus \overline{F}f_i)$ (recall that there is only one quadratic form up to iso in an algebraically closed field), and $A^+(\overline{F}g) = \overline{F}$. By theorem 1.4, $A^+(V_{\overline{F}})$ is isomorphic to $M_n(\overline{F})$ with $m = 2^s$. Since $A^+(V_{\overline{F}}) = A^+(V) \otimes_F \overline{F}$, we get that $A^+(V)$ is a central simple algebra. Now by lemma 1.5, zv = vz for all $v \in V$ and so $z \in \mathfrak{C}$. Since $z \in A^-(V)$ (given that m is odd) and that z is invertible, we have that $A(V) = A^+(V) \oplus A^+(V)z$. Now $F \oplus Fz$ is a commutative algebra, and so $A(V) = A^+(V) \otimes_F (F \oplus Fz)$. But since the center of $A^+(V)$ is F, we get that $\mathfrak{C} = F \oplus Fz$.

Now suppose that m = 2s, then we have a Witt decomposition $V_{\overline{F}} = \sum_{i=1}^{s} (Fe_i \oplus Ff_i)$, and $A(V_{\overline{F}})$ is isomorphic to $M_n(\overline{F})$ with $n = 2^s$. Hence A(V) is central simple over F. By theorem 1.4, $A^+(V_{\overline{F}})$ is isomorphic to $M_{n/2}(\overline{F}) \oplus M_{n/2}(\overline{F})$ whose center is $\overline{F} \oplus \overline{F}$ and so $[\mathfrak{C}^+ : F] = 2$. By lemma 1.5, we have that $z\alpha = \alpha z$ for all $\alpha \in A^+(V)$ and so $\mathfrak{C}^+ = F \oplus Fz$. If \mathfrak{C}^+ is a field, then $A^+(V)$ is central simple over \mathfrak{C}^+ . Otherwise, there is an element c of F such that $z^2 = c^2$. Put $\epsilon = (1 + c^{-1}z)/2$ and $\delta = (1 - c^{-1}z)/2$, then $1 = \epsilon + \delta$, $\epsilon^2 = \epsilon$, $\delta^2 = \delta$, and $\epsilon \delta = 0$. Therefore \mathfrak{C}^+ is isomorphic to the algebra $F \oplus F$ and $A^+(V)$ is the direct sum of two central simple algebras $A^+(V)\epsilon$ and $A^+(V)\delta$.

1.2 Clifford groups

We define:

$$G_V = \{ \alpha \in A(V)^{\times} \mid \alpha^{-1}V\alpha = V \}$$
$$G_V^+ = G_V \cap A^+(V) \qquad G_V^- = G_V \cap A^-(V)$$

We consider the group homomorphism $\tau_V: G_V \to O_V$ given for $\alpha \in G_V$ by:

 $\tau_V(\alpha): v \mapsto \alpha v \alpha^{-1}$

This is well defined since $Q(\tau_V(\alpha)v) = (\alpha v \alpha^{-1})^2 = v^2 = Q(v)$.

Suppose that we have an orthogonal decomposition $V = X \oplus_{\perp} Y$. Then we can easily verify that $\alpha\beta = \beta\alpha$ if $\alpha \in A^+(X)$ or $\beta \in A^+(Y)$ and $\alpha\beta = -\beta\alpha$ if $\alpha \in A^-(X)$ and $\beta \in A^-(Y)$. In particular, if $\alpha \in A^+(X)^{\times}$, then $\alpha^{-1}y\alpha = y$ for all $y \in Y$, and $\alpha^{-1}X\alpha = X$ if and only if $\alpha^{-1}V\alpha = V$. Therefore, we can view elements of G_X^+ as elements in G_V^+ (This is not the case for G_X).

Lemma 1.7. For $v, u \in V$, we have $vuv \in V$. Moreover, if $v^2 \neq 0$, then $v \in G_V^-$ and $v^{-1} \in V$.

Proof. Both v^2 and vu + uv belong to F, hence $vuv = (vu + uv)v - uv^2 \in V$. Suppose $v^2 \neq 0$, then v is invertible, $v^{-1} = (v^2)^{-1}v \in V$, and $v^{-1}Vv = v^{-2}vVv \subseteq V$ so that $v \in G_V$. Since $x \in A^-(V)$, we get that $v \in G_V^-$.

If v_1, \ldots, v_s are invertible elements of V, then the previous lemma shows that the product $v_1 \cdots v_s$ belong to G_V^+ or G_V^- according to whether s is even or odd.

To describe the action of these elements more precisely, let $v \in V$ such that $v^2 \neq 0$, and consider the hyperplane $H = (Fv)^{\perp}$. Then we have a decomposition $V = Fv \oplus H$ and the element $-\tau_V(v) \in O_V$ is the orthogonal symmetry of V with respect to H, i.e,

 $(-\tau_V(v))(v) = -v$ and $(-\tau_V(v))(h) = h$ $\forall h \in H$

Lemma 1.8. Every element of O_V is a product of orthogonal symmetries as described above.

Now let us put

$$G_V^{\cdot} = G_V^+ \cup G^-(V)$$

Theorem 1.9. (1) If m is odd, then $\tau_V(G_V^+) = \tau_V(G_V) = SO_V$ and $G_V = \mathfrak{C}^{\times}G_V^+$.

(2) If m > 0 is even, then $G_V = G_V^{\cdot}$, $[G_V : G_V^+] = 2$, $\tau_V(G_V) = O_V$, $\tau_V(G_V^+) = SO_V$, and $\tau_V(G_V^-) = \{g \in O_V \mid \det(g) = -1\}$. Moreover,

$$\mathfrak{C}^+ \cap G_V^+ = \left\{ \begin{array}{ll} \mathfrak{C}^{+,\times} = G_V^+ & \textit{if } m = 2\\ F^\times \cup F^\times z & \textit{if } m > 2 \end{array} \right.$$

- (3) For both m even and odd, τ_V gives an isomorphism of G^+/F^{\times} onto SO_V . For even $m \tau_V$ gives an isomorphism of G_V/F^{\times} onto O_V .
- (4) If $V = X \oplus_{\perp} Y$ is an orthogonal decomposition, then

$$G^+(X) = \{ \alpha \in G_V^+ \mid \tau_V(\alpha)y = y \text{ for all } y \in Y \}$$

Proof. Let $g \in O_V$. By lemma 1.8, $g = (-\tau_V(v_1)) \cdots (-\tau_V(v_k))$ for invertible $v_i \in V$. Since each orthogonal symmetry $(-\tau_V(v_1))$ has determinant -1, we have that $\det(g) = (-1)^k$. If $g \in SO_V$, then k is even, which shows that $SO_V \subseteq \tau_V(G_V^+)$.

Suppose m > 0 is even, then for every invertible $v \in V$, $\det(\tau_V(v)) = -1$. Since $v \in G_V$ and $[O_V : SO_V] = 2$, we see that $\tau_V(G_V) = O_V$. Suppose that $\tau_V(v) = \tau_V(\alpha)$ with $\alpha \in G_V^+$. Then $\alpha^{-1}v$ commutes with every element of V and hence is is the center of A(V) which is F by theorem 1.6. Therefore $v = c\alpha$ with $c \in F$, which is a contradiction, since $c\alpha \in A^+(V)$ and $0 \neq v \in A^-(V)$. Thus $\tau_V(v) \notin \tau_V(G_V^+)$, and so $\tau_V(G_V^+) = SO_V$. From the fact that $G_V^- = vG_V^+$, we get that $\tau_V(G_V^-) = \{g \in O_V \mid \det(g) = -1\}$.

Now let $\gamma \in G_V$. For $\det(\tau_V(\gamma)) = \pm 1$, we have that $\tau_V(\gamma) = \tau_V(\beta)$ for $\beta \in G_V^{\pm}$. Then $\beta^{-1}\gamma \in F^{\times}$ and so $\gamma \in G_V^{\pm}$. Thus $G_V = G_V$ and $[G_V : G_V^{\pm}] = 2$.

Now suppose that m is odd. Suppose that $\tau_V(\alpha) = -\operatorname{id}$ for some $\alpha \in G_V$. Then $\alpha^{-1}v\alpha = -v$ for every $v \in V$, so that $\alpha^{-1}y\alpha = y'$ for every $y \in A(V)$. Let z be as in lemma 1.5, Then z' = -z and z belongs to the center \mathfrak{C} of A(V). Thus $z = \alpha^{-1}z\alpha = z' = -z$ contradiction. Thus $-\operatorname{id} \notin \tau_V(G_V)$, so that $\tau_V(G_V) = \tau_V(G_V^+) = SO_V$. Take any $\gamma \in G_V$, then $\tau_V(\gamma) = \tau_V(\beta)$ with $\beta \in G_V^+$, and so $\beta^{-1}\gamma \in \mathfrak{C}$ so that $\gamma \in \mathfrak{C}^*G_V^+$. Clearly $\mathfrak{C}^* \subset G_V$, hence $G_V = \mathfrak{C}^*G_V^+$.

As for (3), if $\alpha \in G_V^+$ and $\tau_V(\alpha) = \text{id}$, then $\alpha \in F^{\times}$ as an immediate corollary of theorem 1.6 $(\mathfrak{C} \cap \mathfrak{C}^+ = F)$. If *n* is even, the same is true since $\mathfrak{C} = F$.

Now for (4), we saw that G_V^+ is contained in the RHS of the equality. For the other inclusion, let $\alpha \in G_V^+$ such that $\tau_V(\alpha)$ fixes Y. Then by applying (1) and (2) to V and X, we get that $\alpha \in SO_X$ and there exist $\beta \in G_X^+$ such that $\tau_V(\alpha) = \tau_V(\beta)$. Thus $\alpha = c\beta$ with $c \in F^\times$ by (3) and so $\alpha \in G_V^+$. \Box

Corollary 1.10. For $\alpha \in G^{\cdot}$, put $\nu(\alpha) = \alpha \alpha^*$.

- (1) G_V^+ (resp. G_V^-) consists of all the products of even (resp. odd) number of elements of V that are invertible in A(V).
- (2) G_V^{\cdot} is a subgroup of G_V , $[G^{\cdot}:G_V] = 2$, and we have a homomorphism $\nu: G^{\cdot} \to F^{\times}$. Moreover, $\nu(\alpha) = \nu(\alpha^*) = \nu(\alpha')$ for every $\alpha \in G_V^{\cdot}$.

Proof. We have $G_V = vG_V^+$ for any invertible $v \in V$. Therefore, it suffices to prove (1) for G_V^+ . If w_1, \ldots, w_k are invertible elements of V, then each v_i belongs to G_V by lemma 1.7 and so $w_1 \cdots w_k \in G_V^+$ if k is even. To prove the converse, let $\alpha \in G_V^+$. Then $\tau_V(\alpha) = \tau_V(v_1, \cdots, v_k)$ with $v_1, \cdots, v_k \in V \cap A(V)^{\times}$ and even k as shown in the proof of theorem 1.9. By (3) of the same theorem, $\alpha = cv_1, \cdots v_k$ with $c \in F^{\times}$ which proves (1). The first part of (2) is then clear, and if $\alpha = v_1 \cdots v_k$ with $v_i \in V \cap A(V)^{\times}$, then

$$\nu(\alpha) = \alpha \alpha^* = x_1 \cdots x_k x_k \cdots x_1 = x_1^2 \cdots x_k^2$$

from which the remaining part of (2) follows.

1.3 Lower dimensional cases

One can prove that a quadratic form on a space of dimension > 4 over a local field is always isotropic. Thus over a local field, we have a Witt decomposition with an anisotropic space Z of dimension ≤ 4 . Therefore it is important to investigate the Clifford algebra of such a Z. Here we will only consider the cases m = 2, 3.

First, let us give a few examples:

Take a couple (K, ι) consisting of an *F*-algebra *K* of rank 2 and an *F*-linear automorphism of *K* belonging to the following two types:

(I) K is a quadratic extension of F and ι is the generator of Gal(K/F).

(II)
$$K = F \oplus F$$
 and $\iota(a, b) = (b, a)$.

In both cases, we obtain a quadratic space (K, κ) of dimension two by putting $\kappa(x) = N_{K/F}(x) = xx^{\iota}$ for $x \in K$, and we have $2S(x, y) = \operatorname{Tr}_{K/F}(xy^{\iota})$. Clearly κ is anisotropic if and only if K is a field. Now take a quaternion algebra D over F and consider the main involution ι . We have a direct sum decomposition

$$D = F \oplus D^{\circ} \quad \text{with } D^{\circ} = \{x \in D \mid x^{\iota} = -x\}$$

Putting $N(x) = N_{D/K}(x) = xx^{\iota}$ for $x \in X$, we get quadratic spaces (D, N) and $(D^{\circ}, N^{\circ} = N_{|D^{\circ}})$ of dimension 4 and 3. We clearly have that D is a division algebra if and only if N is anisotropic, if and only if N° is anisotropic. We also see that $2S(x, y) = \text{Tr}_{D/K}(xy^{\iota})$ for $x, y \in D$. If $D = K \oplus Kw$ for an element w such that $w = \gamma^2 \in F^{\times}$, then $N(x + yw) = N_{K/F}(x) - \gamma N_{K/F}(y)$ for $x, y \in K$. Thus:

$$(D, N) \cong (K, \kappa) \oplus (K, -\gamma \kappa)$$

Lemma 1.11. Let K be the discriminant algebra of Q which we view as a subalgebra of A(Q) by lemma 1.5. Then the following assertions hold:

- (1) If m = 2, then (V, Q) is isomorphic to $(K, c\kappa)$ for some $c \in F^{\times}$. Moreover A(V) is the quaternion algebra $\left(\frac{\delta_0(Q), c}{F}\right)$, $A^+(V) = K$, $SO_V = \{x \in K^{\times} \mid xx^{\iota} = 1\}$, $G_V^+ = K^{\times}$, $G_V = K^{\times} \cup K^{\times}h$ for any $h \in V \setminus \{0\}$.
- (2) If m = 3, then there exists a quaternion algebra D over F such that (V,Q) is isomorphic to $(D^{\circ}, -\delta N^{\circ})$ with $\delta \in \delta_0(Q)$. Moreover $A(V) \cong A^+(V) \otimes_F K$, $A^+(V) \cong D$, $G_V^+ \cong D^{\times}$, $\tau_V(d)x = d^{-1}xd$ for $x \in D^{\circ}$ and $d \in D^{\times}$ and the canonical involution of A(V) restricted to $A^+(V)$ correspond to the main involution of D.

Proof. Suppose m = 2 and let $V = Fg \oplus Fh$ with elements g, h such that S(g, h) = 0. Put $b = g^2$, $c = h^2$, and as in lemma 1.5 z = gh. Then $Q(xg + yh) = bx^2 + cy^2$ for $x, y \in F$, $z^2 = -bc$, and V = Kh. By a dimension argument, we have that $A^+(V) = K = F \oplus Fz$ and so $A(V) = K \oplus Kh$. Since $z^* = -z$, we see that $\alpha^* = \alpha^i$ for $\alpha \in K$. We have by direct calculation that $Q(kh) = cN_{K/F}(k)$ for $k \in K$ and so $k \mapsto kh$ gives an isomorphism of $(K, c\kappa)$ onto (V, Q). Since $hk = k^i h$ for $k \in K$, we see that $A(V) = \left(\frac{-bc,c}{F}\right)$. We easily see that $K^{\times} = G_V^+ \subseteq G_V$ and $h \in G_V^-$ and so by (2) of theorem 1.9, $K^{\times} = G_V^+$ and $G_V = K^{\times} \cup K^{\times}h$.

Next, let $\alpha \in K^{\times} = G_V^+$ and $v = kh \in V$ for $k \in K$. Then $\tau_V(\alpha)(v) = \alpha kh\alpha^{-1} = \alpha \alpha^{\iota,-1}v$. Thus $\tau_V(\alpha)$ as an element of $\operatorname{End}_F(Kh)$ is multiplication by $\alpha \alpha^{\iota,-1}$. Therefore, $SO_V = \tau_V(G_V^+) = \{k/k^{\iota} \mid k \in K^{\times}\} = \{k \in K^{\times} \mid kk^{\iota} = 1\}$ (the last equality is an easy lemma).

Now suppose that m = 3. Let h_1, h_2, h_3 be an F-basis of V such that $S(h_i, h_j) = c_i \delta_{ij}$. We put:

$$g_1 = h_2 h_3$$
 $g_2 = h_3 h_1$ $g_3 = h_1 h_2$ $z = h_1 h_2 h_3$

$$c = c_1 c_2 c_3 \qquad \qquad T = F g_1 \oplus F g_2 \oplus F g_3 \qquad \qquad B = F \oplus T$$

Then $z^2 = -d \in \delta_0(Q)$, $A^+(V) = D$ is a quaternion algebra, $k = F \oplus Fz$, and $A(V) = D \otimes_F K$ by theorem 1.6. Since $g_i^* = -g_i$, and $A^+(V) = F \oplus T$, we see that the involution * coincides with the main involution of D and that $T = D^\circ$. Since V = Dz, and $Q(dz) = cdd^*$ for $d \in D^\circ$, (V,Q) is isomorphic to (D°, cN°) . We have $d^{-1}D^\circ d = D^\circ$ for every $d \in D^\times$ and so $G_V^+ = D^\times$.

Now let us suppose that $\dim(V) = 4$, then we have the following facts:

$$V = \{a \in A^{-}(V) \mid a^{*} = a\}$$
(1.3)

$$F \oplus Fz = \{a \in A^+(V) \mid a^* = a\}$$
(1.4)

$$G_V^{\pm} = \{ a \in A^{\pm}(V) \mid aa^* \in F^{\times} \}$$
(1.5)

where z is as in lemma 1.5. We easily derive the first equality from the fact that $A^-(V) = V \oplus \sum_{i < j < k} Fe_i e_j e_k$ with an orthogonal basis e_1, \ldots, e_4 of V and the second equality follows similarly. Now for the third equality, we have an obvious inclusion. Conversely, if $a \in A(V)^{\times} \cap A^{\pm}(V)$, then for $v \in V$ we have $a^*va \in A^-(V)$ and $(a^*va)^* = a^*va$ so that $a^*va \in V$ by the first equality. If $aa^* \in F^{\times}$, then $a^{-1}va \in V$ so that $a \in G_V$.

Now let us consider the case where Q is isotropic. We have a weak Witt decomposition $V = X \oplus (Fe \oplus Ff)$ for U a subspace of dimension 2. Then by theorem 1.4, A(V) (resp. $A^+(V)$) is isomorphic to $M_2(A(X))$ (resp. $M_2(A^+(X))$). Let K be the discriminant algebra of (V,Q) which is also the discriminant algebra of $(X,Q_{|X})$ (since the discriminant of a hyperbolic space is 1). By (1) of lemma 1.11 and its proof, we can put $A^+(X) = K$ and X = Kh with an element h such that $hk = k^*h$ for every $k \in K$. Define $\Xi : A(V) \xrightarrow{\sim} M_2(A(X))$ as in the proof of theorem 1.4, then we can easily verify that:

$$\Xi(\alpha^*) = J^{-1t} \Xi(\alpha') J \quad \forall \alpha \in A(V)$$
(1.6)

by verifying this for $\alpha \in V$. The map $M \mapsto J^t M J^{-1}$ with $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ is the main involution of $M_2(K)$. Therefore if we identify $A^+(V)$ with $M_2(K)$, then (1.6) shows that $\alpha \mapsto \alpha^*$ is the main involution of $M_2(K)$. Thus we get fro (1.5) that

$$\Xi(G_V^+) = \{ M \in \operatorname{GL}_2(K) \mid \det(M) \in F^{\times} \}$$

and $\nu(\alpha) = \det(\Xi(\alpha))$ for $\alpha \in G_V^+$.

Let D be a quaternion algebra over F and put (V,Q) = (D,cN) with $c \in F^{\times}$. We consider the linear map:

$$p: D \to M_2(D)$$

$$x \mapsto \begin{pmatrix} 0 & cx \\ x^{\iota} & 0 \end{pmatrix}$$
(1.7)

observe that $p(x)^2 = cxx^i$ id $= Q(x) \cdot id$. Now p(D) generates $M_2(D)$ as an *F*-algebra. Indeed, take $x, y \in D$ such that $xy = -yx \in D^{\times}$. Then $p(xy)p(1) = \begin{pmatrix} xy & 0 \\ 0 & y^ix^i \end{pmatrix}$ and $p(x)p(y^i) = c \begin{pmatrix} xy & 0 \\ 0 & -y^ix^i \end{pmatrix}$ so that:

$$p(xy)p(1) + p(x)p(y^{\iota}) = \begin{pmatrix} 2cxy & 0\\ 0 & 0 \end{pmatrix}$$

This way we can easily verify the claim. Since $\dim_F M_2(D) = 2^4$, we get by the above that $M_2(D) = A(V)$ with the identification $V = p(D) = \{\begin{pmatrix} 0 & cx \\ x^t & 0 \end{pmatrix} \mid x \in D\}$. Then $A^+(V) = \{\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \mid x, y \in D\} \cong D \times D$. For $\alpha = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in M_2(B) = A(V)$, we have:

$$\alpha^* = \begin{pmatrix} p^\iota & cr^\iota \\ c^{-1}q^\iota & s^\iota \end{pmatrix}$$
(1.8)

since this is true for $\alpha \in V$. Then if we identify $A^+(V)$ with $D \times D$, then

$$G_V^+ = \{(x,y) \in D \times D \mid xx^{\iota} = yy^{\iota} \in \mathbb{Q}^{\times}\}$$

and $\nu((x,y)) = xx^{\iota}$. We have that $\tau_V(\alpha)p(d) = p(xdy^{-1})$ for $d \in D$, $\alpha = (x,y) \in G_V^+$. Furthermore, $G_V = G_V^+ \cup G_V^+ \eta$ with $\eta = \begin{pmatrix} 0 & c \\ 1 & 0 \end{pmatrix}$ and $p(d)\tau_V(\eta) = p(x^{\eta})$ for all $d \in V$. The main involution ι of D belongs to O_V and has determinant -1. Thus O_V is generated by SO_V

The main involution ι of D belongs to O_V and has determinant -1. Thus O_V is generated by SO_V and ι .

2 The Weil representation

Let (V, Q) be a quadratic space over \mathbb{Q} with dimension m. The quadratic form produces a \mathbb{Q} -bilinear pairing S(x, y) = Q(x + y) - Q(x) - Q(y) which we suppose to be non-degenerate.

Let \mathbb{T} be the multiplicative group of complex numbers of absolute value 1, which we also identify with \mathbb{R}/\mathbb{Z} by $x \mapsto \exp(2i\pi x)$. Then for $? = p, \infty$, or \mathbb{A} , we identify the Pontryagin dual $V_?^* = \operatorname{Hom}_{\operatorname{cont}}(V_?, \mathbb{T})$ of $V_?$ with itself via the symmetric bilinear pairing:

$$egin{aligned} &\langle\cdot,\cdot
angle:V_? imes V_? o \mathbb{T}\ &(x,y)\mapsto \mathbf{e}_?(S(x,y)) \end{aligned}$$

where:

- For $x \in \mathbb{R}$, $\mathbf{e}_{\infty} = \exp(2i\pi x)$.
- For $x \in \mathbb{Q}_p$, write $x = \sum_{n \gg -\infty} c_n p^n$ with $0 \le c_p < p$. We let $[x]_p = \sum_{n < 0} c_p p^n \in \mathbb{Q}$ and $\mathbf{e}_p(-2i\pi[x]_p)$.
- For $x = (x_v) \in \mathbb{A}$, we let $\mathbf{e}_{\mathbb{A}}(x) = \prod_v e_v(x_v)$ which induces a character $\mathbf{e}_{\mathbb{A}} : \mathbb{A}/\mathbb{Q} \to \mathbb{T}$.

Let dv be a Haar measure on V. For $\phi: V \to \mathbb{C}$ an integrable function, we define its Fourier transform:

$$\widehat{\phi}(x) = \int_{V} \phi(y) \langle y, x \rangle \mathrm{d}y$$

and we normalize dv so that $\widehat{\phi}(x) = \phi(-x)$ (it is the unique Haar measure satisfying this).

We let $W = V \times V$ which inherits a non-degenerate bilinear pairing $\langle \cdot, \cdot \rangle$ from V given coordinate-wise. We can write an automorphism $\sigma : W_? \to W_?$ as a matrix:

$$(x,y) \mapsto (x,y) \begin{pmatrix} a_{\sigma} & b_{\sigma} \\ c_{\sigma} & d_{\sigma} \end{pmatrix}$$

with $a_{\sigma}, b_{\sigma}, c_{\sigma}, d_{\sigma} \in \text{End}(V)$. We then define an alternating bilinear form $J : W_{?} \times W_{?} \to \mathbb{T}, J((x, y), (x', y')) = \langle -y, x' \rangle \langle x, y' \rangle$ which we can write symbolically:

$$(x,y)\begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}\begin{pmatrix} x'\\ y' \end{pmatrix} = \langle -y, x' \rangle \langle x, y' \rangle$$

We then define the group $Sp(W_?) \subset Aut(W_?)$ to be the stabilizer of J. From this definition, we get that for $\sigma \in Aut(W_?)$,

$$\sigma^{-1} = \begin{pmatrix} d_\sigma & -b_\sigma \\ -c_\sigma & a_\sigma \end{pmatrix}$$

A continuous function $f: W_? \to \mathbb{T}$ is called a multiplicative quadratic form if the map:

$$(w, w') \mapsto f(w + w')f(w)^{-1}f(w')^{-1}$$

is a bicharacter. In this case, there is a unique symmetric endomorphism $\rho \in \text{End}(W_2)$ such that:

$$f(w+w')f(w)^{-1}f(w')^{-1} = \langle w, \rho(w') \rangle$$

2.1 The Heisenberg group

For each $w = (v_1, v_2) \in W_?$, we define the unitary operator U(w) on $L^2(V_?)$ by:

$$(U(w)\Phi)(v) = \Phi(v+v_1)\langle v, v_2 \rangle$$

For $\Phi \in L^2(V_2)$. Then for $w' = (v'_1, v'_2) \in W_2$, we get by direct computation:

$$U(w')U(w) = \langle v_1, v'_2 \rangle U(w + w') = F(w, w')U(w + w')$$

where we set $F(w, w') = \langle v_1, v'_2 \rangle$. Thus $H(V_?) = \{tU(w) \mid t \in \mathbb{T}, w \in W_?\}$ is a subgroup of unitary operators acting on $L^2(V_?)$ called the Heisenberg group.

Since U(w)U(w') = U(w')U(w) implies that $\langle v_1, v'_2 \rangle = \langle v_2, v'_1 \rangle$, if U(w) commutes with all other elements of the Heisenberg group, then w = 0. Thus the center is given by $Z(H(V_2)) = \{tU(0) \mid t \in \mathbb{T}\} \cong \mathbb{T}$, and so we have a central extension:

$$1 \to \mathbb{T} \to H(V_?) \to W_? \to 1$$

We write $B(V_2)$ for the automorphism group of $H(V_2)$ which induce the identity on \mathbb{T} . Let $s \in B(V_2)$ and let:

$$s(U(w)) = f(w)U(\sigma w)$$

for $\sigma \in \operatorname{Aut}(W_2)$ and $f(w) \in \mathbb{T}$ and so we write $s = (\sigma, f)$. The composition formula is given by:

$$(\sigma',f'(w))=(\sigma\circ\sigma',f(w)f'(\sigma w))$$

Note that we have we have:

$$f(w')f(w)F(\sigma w', \sigma w)U(\sigma w' + \sigma w) = f(w')U(\sigma w')f(w)U(\sigma w)$$

= $s(U(w'))s(U(w))$
= $s(U(w')U(w))$
= $F(w', w)f(w' + w)U(\sigma w' + \sigma w)$

By the composition law for the Heisenberg group, we get that:

$$f(w'+w)f(w')^{-1}f(w)^{-1} = F(\sigma w', \sigma w)F(w', w)^{-1}$$
(2.1)

This shows that f is a multiplicative quadratic form on $W_{?}$. Conversely, one can check that for any function f on $W_{?}$ satisfying the above formula, the couple (σ, f) defines an element of $B(V_{?})$.

Given that the right-hand-side of the equation 2.1 is symmetric with respect to w and w', we get that:

$$F(\sigma w', \sigma w)F(w', w)^{-1} = F(\sigma w, \sigma w')F(w, w')^{-1}$$

Since $J(w, w') = F(w, w')F(w', w)^{-1}$, σ preserves J and so $\sigma \in Sp(V_?)$. Therefore we have a group homomorphism $\pi : B(V_?) \to Sp(V_?)$ given by the projection to the first coordinate. Its kernel consists of couples (1, f) where f is a character of $W_?$ and so is of the form:

$$f(w) = \langle w, w_f \rangle$$

Calculations show that the automorphism of $H(V_{?})$ associated to the couple (1, f) is the conjugation by $U(w_f)$. Hence the kernel of π consists of interior automorphisms of $H(V_{?})$, and since its center is \mathbb{T} , we get that ker $(\pi) \cong H(V_{?})/\mathbb{T} \cong W_{?}$.

On the other hand, one can check that by defining

$$f_{\sigma}((v_1, v_2)) = \langle v_1, 2^{-1} a_{\sigma}^* b_{\sigma} v_1 \rangle \langle 2^{-1} d_{\sigma}^* c_{\sigma} v_2, v_2 \rangle \langle c_{\sigma} v_2, b_{\sigma} v_1 \rangle$$

for $\sigma = \begin{pmatrix} a_{\sigma} & b_{\sigma} \\ c_{\sigma} & d_{\sigma} \end{pmatrix} \in Sp(V_{?})$, we get a section of π given by $\sigma \mapsto (\sigma, f_{\sigma})$. Thus we find that $B(V_{?}) \cong Sp(V_{?}) \ltimes W_{?}$.

Theorem 2.1. Let $\mathbb{B}(V_?)$ be the normalizer of $H(V_?)$ in $Aut(L^2(V_?))$. Then we have a canonical exact sequence

$$1 \to \mathbb{T} \to \mathbb{B}(V_?) \xrightarrow{\mu} B(V_?) \to 1$$

We define the metaplectic group $Mp(V_{?})$ by:

$$Mp(V_?) = \{u \in \mathbb{B}(V_?) \mid \mu(u) = s = (\sigma, f_s) \text{ for } \sigma \in Sp(V_?) \text{ and } f_s \text{ homogenious multiplicative} \}$$

By definition $Mp(V_{?})$ is a central extension of $Sp(V_{?})$ and we have a short exact sequence:

$$1 \to \mathbb{T} \to Mp(V_?) \xrightarrow{\pi} Sp(V_?) \to 1$$

In general, this extension is non-trivial. However, over some subset of $Sp(V_{?})$, one can define a section **r** of π .

Let

$$U(V_?) = \left\{ egin{pmatrix} 1 &
ho \ 0 & 1 \end{pmatrix} \in Sp(V_?) \mid
ho \in \operatorname{End}(V_?)
ight\}$$

then since it is a subgroup of the symplectic group, ρ is symmetric with respect to $\langle \cdot, \cdot \rangle$ and so we can associate to it a multiplicative quadratic form $f_{\rho}(v) = \langle v, 2^{-1}\rho v \rangle$. Then we define a section $\mathbf{r} : U(V_{?}) \to B(V_{?})$ by:

$$\mathbf{r} \begin{pmatrix} 1 & \rho \\ 0 & 1 \end{pmatrix}) = \begin{pmatrix} 1 & \rho \\ 0 & 1 \end{pmatrix}, f_{\rho}$$

which we extend to $\mathbf{r}: U(V_?) \to Mp(V_?)$ by:

$$\begin{pmatrix} \mathbf{r} \begin{pmatrix} 1 & \rho \\ 0 & 1 \end{pmatrix} \end{pmatrix} \Phi (v) = \Phi(v) f_{\rho}(v) \quad \text{for } \Phi \in L^2(V_?)$$

For the subgroup

$$L(V_{?}) = \{ \begin{pmatrix} a & 0 \\ 0 & a^{*,-1} \end{pmatrix} \mid a \in \operatorname{Aut}(V_{?}) \}$$

of $Sp(V_?)$, we also define a section $\mathbf{r}: L(V_?) \to B(V_?)$

$$\mathbf{r}\begin{pmatrix} a & 0\\ 0 & a^{*,-1} \end{pmatrix}) = \begin{pmatrix} a & 0\\ 0 & a^{*,-1} \end{pmatrix}, 1)$$

and we extend it to $\mathbf{r}: L(V_?) \to Mp(V_?)$ via:

$$\begin{pmatrix} \mathbf{r} \begin{pmatrix} a & 0 \\ 0 & a^{*,-1} \end{pmatrix} \phi \end{pmatrix} (v) = \sqrt{|a|} \phi(a^{-1}v) \quad \text{for } \Phi \in L^2(V_?)$$

Finally for $c \in Aut(V_?)$, we let:

$$\left(\mathbf{r}\begin{pmatrix} 0 & -c^{*,-1} \\ c & 0 \end{pmatrix}\right)\Phi\left(v\right) = \sqrt{|c|}^{-1}\widehat{\Phi}(-c^*v) \quad \text{for } \Phi \in L^2(V_?)$$

where we fix a Haar measure dv on $V_{?}$ and $\widehat{\Phi}$ is the Fourier transform on Φ . Let $\Omega = \Omega(V_{?})$ be the collection of all the $\sigma = \begin{pmatrix} a_{\sigma} & b_{\sigma} \\ c_{\sigma} & d_{\sigma} \end{pmatrix} \in Sp(V_{?})$ with $c_{\sigma} \in \operatorname{Aut}(V_{?})$. Then using the decomposition:

$$\sigma = \begin{pmatrix} a_{\sigma} & b_{\sigma} \\ c_{\sigma} & d_{\sigma} \end{pmatrix} = \begin{pmatrix} 1 & a_{\sigma}c_{\sigma}^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -c_{\sigma}^{-1,*} \\ c_{\sigma} & 0 \end{pmatrix} \begin{pmatrix} 1 & c_{\sigma}^{-1}d_{\sigma} \\ 0 & 1 \end{pmatrix}$$

(the equality $a_{\sigma}c_{\sigma}^{*,-1}d_{\sigma} - c_{\sigma}^{*,-1} = b_{\sigma}$ follows from the formula of the inverse of σ), we can extend the section to $\mathbf{r} : \Omega \to Mp(V_2)$. Explicitly, we have:

Lemma 2.2. [Wei64, Lem. 6] The group $Sp(V_?)$ is the group generated by the elements $\Omega(V_?)$ subject to the relations $\sigma\sigma' = \sigma''$ for $\sigma, \sigma', \sigma'' \in \Omega(V_?)$ if the same equality holds in $Sp(V_?)$.

2.2 The Siegel-Weil formula

For $\Phi \in \mathcal{S}(V_{\mathbb{A}_F})$, we can form a theta series as a function on $\mathrm{SL}_2(F) \setminus \widetilde{\mathrm{SL}}_2(\mathbb{A}_F) \times O_V(F) \setminus O_V(\mathbb{A}_F)$:

$$\theta(g,h,\Phi) = \sum_{(x,u) \in V \times F^{\times}} \mathbf{r}(g,h) \quad (g,h) \in \widetilde{\operatorname{SL}}_2(\mathbb{A}_F) \times O_V(\mathbb{A}_F)$$

When V has even dimension, we can define the theta series for $\Phi \in \widetilde{S}(V_{\mathbb{A}_F} \times \mathbb{A}_F^{\times})$ as an automorphic form on $\operatorname{GL}_2(F) \setminus \operatorname{GL}_2(\mathbb{A}) \times GO_V(F) \setminus GO_V(\mathbb{A})$:

$$\theta(g,h,\Phi) = \sum_{(x,u) \in V \times F^{\times}} \mathbf{r}(g,h)$$

Now we introduce the Siegel Eisenstein series. For $\Phi \in \mathcal{S}(V_{\mathbb{A}_F})$ and $s \in \mathbb{C}$, we have a section:

$$g \mapsto \delta(g)^s \mathbf{r}(g) \Phi(0)$$

in

$$\operatorname{Ind}_{P^{1}(\mathbb{A}_{F})}^{\widetilde{\operatorname{SL}}_{2}(\mathbb{A}_{F})}(\chi_{V}|\cdot|^{s+m/2}) = \{f: \widetilde{\operatorname{SL}}_{2}(\mathbb{A}) \to \mathbb{C} \mid f(\begin{pmatrix} a & b\\ 0 & a^{-1} \end{pmatrix} g) = |a|^{s+m/2}\chi_{V}(a)f(g)\}$$

Here the modulus function δ is defined as follows: first we let

$$\delta_v: B(F_v) \to \mathbb{R}^{\times}, \quad \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto \left| \frac{a}{d} \right|_v^{1/2}$$

which we extend to a function $\delta_v : \operatorname{GL}_2(F_v) \to \mathbb{R}^{\times}$ by Iwasawa decomposition, and we led $\delta = \prod_v \delta_v$. Thus we can form the Eisenstein series:

$$E(s, g, \Phi) = \sum_{\gamma \in B(F) \setminus \operatorname{SL}_2(F)} \delta(\gamma g)^s \mathbf{r}(\gamma g) \Phi(0)$$

It has a meromorphic continuation to $s \in \mathbb{C}$ and a functional equation with center s = 1 - m/2. Let r be the Witt index of V, i.e., the maximal dimension of F-subspaces of V consisting of elements of norm 0 (it is denoted by s in theorem 1.1). Then we always have $r \leq m/2$.

Theorem 2.3. (Siegel-Weil) Assume that (V,Q) is anisotropic or m-r > 2, then:

$$E(0,g,\Phi) = \kappa \frac{1}{Vol(SO_V(F) \setminus SO_V(\mathbb{A}_F))} \int_{SO_V(F) \setminus SO_V(\mathbb{A}_F)} \theta(g,h,\Phi) dh$$

with $\kappa = \begin{cases} 2 & \text{if } m = 1, 2 \\ 1 & \text{if } m > 2 \end{cases}$, and the integration uses the Haar measure of total volume 1.

Remark 2.4. The theorem implicitly states that the Eisenstein series is analytic at s = 0 and the integral on the RHS converges absolutely.

2.3 Explicit form of the metaplectic groups

We view the group $SL_2(\mathbb{A})$ (and similarly for other coefficient rings) as the subgroup of $Sp(V_{\mathbb{A}})$ given by $\sigma = \begin{pmatrix} a_{\sigma} & b_{\sigma} \\ c_{\sigma} & d_{\sigma} \end{pmatrix}$ with $a_{\sigma}, b_{\sigma}, c_{\sigma}, d_{\sigma} \in \mathbb{A}$. We let $Mp_1(V_{\mathbb{A}})$ to be the inverse image of $SL_2(\mathbb{A})$ inside $Mp(V_{\mathbb{A}})$.

Recall that for a group G, the set of isomorphism classes of central extensions

$$1 \to A \to E \to G \to 1$$

i.e., $A \subseteq Z(E)$ is classified by $H^2(G, A)$. Setting $E = A \times G$, this is given explicitly by defining the composition law on E for a cocycle $\alpha \in H^2(G, A)$ by:

$$(a,e) \cdot (a',e') = (\alpha(e,e')aa',ee')$$

Moreover, if G and A are locally compact topological groups, then a measurable cocycle α induces a unique locally compact topology on E compatible with the exact sequence.

Weil [Wei64] showed that there is a subgroup $\widetilde{SL}_2(\mathbb{A})$ of $Mp_1(\mathbb{A})$ satisfying the following commutative diagram:

In other words, the 2-cocycle $\mathrm{SL}_2(\mathbb{A})^2 \to \mathbb{T}$ giving rise to the metaplectic extension is cohomologous to another one with values in μ_2 .

Theorem 2.5. [Kub67] Let $v = \infty$, p be a place of \mathbb{Q} , and $(\cdot, \cdot)_v : \mathbb{Q}_v^{\times} \times \mathbb{Q}_v^{\times} \to \mu_2$ be the Hilbert symbol. For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Q}_v)$, set $x(\gamma) = c$ or d according to whether $c \neq 0$ or = 0. Then the map:

$$a_p : \operatorname{SL}_2(\mathbb{Q}_v) \times \operatorname{SL}_2(\mathbb{Q}_v) \to \mu_2$$
$$(\gamma, \mu) \mapsto (x(\gamma), x(\delta))_v (-x(\gamma)^{-1} x(\delta), x(\gamma \delta))_v$$

defines a (measurable) cohomologically non-trivial 2-cocycle.

Proposition 2.6 ([Gel76]Prop 2.3). Let $v = \infty$, p be a place of \mathbb{Q} . Then

$$H^2(\mathrm{SL}_2(\mathbb{Q}_v),\mu_2)=\mu_2$$

In other words, there exists a unique (up to isomorphism) extension $SL_2(\mathbb{Q}_v)$ of $SL_2(\mathbb{Q}_v)$ by μ_2 .

Remark 2.7. The topology on $\widetilde{\operatorname{SL}}_2(\mathbb{Q}_v)$ is not the product topology. If $\{U_n\}_n$ is a basis of neighborhoods of the identity in $\operatorname{SL}_2(\mathbb{Q}_v)$, then a basis of neighborhoods of the identity in $\widetilde{\operatorname{SL}}_2(\mathbb{Q}_v)$ is of the form $(U_n, 1)$ for U_n such that $\alpha(U_n, U_n)$ is identically one.

We modify Kubolta's cocycle by a coboundary as follows: let $s_p : SL_2(\mathbb{Q}_p) \to \mu_2$ for a prime p be given by

$$s_p\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{cases} (c,d)_p & \text{if } c \neq d \text{ and } \operatorname{ord}_p(c) \equiv 1 \mod 2\\ 1 & \text{otherwise} \end{cases}$$

and for $\mathbb{Q}_{\infty} = \mathbb{R}$, set $s_{\infty} = 1$. Then we define a new 2-cocycle:

$$\kappa_v(\gamma, \delta) = a_v(\gamma, \delta) s_v(\gamma) s_v(\delta) s_v(\gamma \delta)$$

By [Gel76, Prop 2.8] for a prime p, κ_p is trivial on $\Gamma_1(4)_p = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Q}_p) \mid c \equiv 0, a \equiv 1 \mod 4 \}$. Therefore the product $\kappa^{(\infty)}(\gamma, \delta) = \prod_p \kappa_p(\gamma_p, \delta_p)$ is well defined for $\gamma, \delta \in \mathrm{SL}_2(\mathbb{A}^{(\infty)})$ and gives the metaplectic extension

$$1 \to \mu_2 \to \widetilde{\operatorname{SL}}_2(\mathbb{A}^{(\infty)}) \to \operatorname{SL}_2(\mathbb{A}^{(\infty)}) \to 1$$

For the infinite place, we will choose another cocycle defined by Shimura [Shi73]. We first define Shimura's symbol $\left(\frac{a}{b}\right)$ for an integer a and an odd integer $b \neq 0$ by:

- (1) $\left(\frac{a}{b}\right) = 0$ if $(a; b) \neq 1$.
- (2) If b is an odd prime, then $\left(\frac{a}{b}\right)$ is the Legendre symbol.
- (3) If b > 0, $a \mapsto \left(\frac{a}{b}\right)$ is a character modulo b.
- (4) If $a \neq 0, b \mapsto \left(\frac{a}{b}\right)$ is a character modulo 4a whose conductor is the conductor of $\mathbb{Q}[\sqrt{a}]/\mathbb{Q}$.
- (5) $\left(\frac{a}{-1}\right) = 1$ or -1 according to whether a > 0 or a < 0. (6) $\left(\frac{0}{\pm 1}\right) = 1$

Consider the theta function $\theta : \mathfrak{H} \to \mathbb{C}, \tau \mapsto \sum_{n \in \mathbb{Z}} \mathbf{e}_{\infty}(n^2 \tau)$. We define for $\gamma \in \Gamma_0(4), h(\gamma, \tau) := \theta(\gamma(\tau))/\theta(\tau)$. Then by [Shi73, 1.10],

$$h\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \tau) = \epsilon_d^{-1} \begin{pmatrix} c \\ \overline{d} \end{pmatrix} j \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \tau)^{1/2} \quad \text{with } j \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \tau) = c\tau + d$$

where we choose a square root function $z^{1/2} = \sqrt{|z|}e^{i\pi\theta}$ for $z = |z|\mathbf{e}_{\infty}(\theta)$ with $-\pi < \theta \le \pi$, and $\epsilon_d = i$ or 1 according to whether $d \equiv 3$ or 1 mod 4. We can now realize

$$\widetilde{\operatorname{SL}}_2(\mathbb{R}) = \{(g, J(g, \tau)) \mid g \in \operatorname{SL}_2(\mathbb{R}), J(g, -) \text{ is holomorphic and } J^2(g, \tau) = j(g, \tau)\}$$

with multiplication given by $(g, J(g, \tau)(h, J(h, \tau)) = (gh, J(g, h(\tau))J(h, \tau))$ (because j is a cocycle). We thus have a central extension $\mu_2 \stackrel{\iota}{\hookrightarrow} \widetilde{\operatorname{SL}}_2(\mathbb{R}) \twoheadrightarrow \operatorname{SL}_2(\mathbb{R})$ with $\iota(-1) = (\operatorname{id}, -1)$. The above calcualtion shows that we have a section $\Gamma_0(4) \to \widetilde{\operatorname{SL}}_2(\mathbb{R}), \gamma \mapsto (\gamma, h(\gamma, \tau))$.

3 Waldspurger's formula

Let F be a number field and D be a quaternion algebra with ramification set Σ . Fix an embedding $K \hookrightarrow D$ for a quadratic extension K/F, then we have a decomposition:

$$D = K \oplus Kj$$
 with $j^2 \in F^{\times}$

We let $\eta: F^{\times} \setminus \mathbb{A}_F^{\times} \to \mathbb{C}^{\times}$ be the quadratic character associated to the extension K/F.

Consider the orthogonal space (V,Q) = (D,N) and the orthogonal decomposition $V = V_1 \oplus V_2$ for $V_1 = K$ and $V_2 = Kj$.

Let π be an irreducible cuspidal automorphic representation of $D^{\times}_{\mathbb{A}}$ with central character $\omega_{\pi} : F^{\times} \setminus \mathbb{A}_{F}^{\times} \to \mathbb{C}^{\times}$, and let $\chi : K^{\times} \setminus \mathbb{A}_{K}^{\times} \to \mathbb{C}^{\times}$ be a character with $\omega_{\pi} \cdot \chi_{|\mathbb{A}_{F}^{\times}} = 1$. We define the toric period integral:

$$P_{\chi}(f) = \int_{K^{\times} \backslash \mathbb{A}_{K}^{\times} / \mathbb{A}_{F}^{\times}} f(t)\chi(t) \, \mathrm{d}t \quad \text{ for } f \in \pi$$

then $P_{\chi} \in \operatorname{Hom}_{K^{\times}}(\pi \otimes \chi, \mathbb{C}).$

For any $\Phi \in \mathcal{S}(V_{\mathbb{A}_F} \times \mathbb{A}_F^{\times})$, we have a theta series:

$$\theta(g,h,\Phi) = \sum_{x \in V, u \in F^{\times}} \mathbf{r}(g,h) \Phi(x,u) \quad \text{ for } g \in \mathrm{GL}_2(\mathbb{A}_F), h \in D_{\mathbb{A}_F}^{\times} \times D_{\mathbb{A}_F}^{\times}$$

Let σ be the Jacquet-Langlands transfer of π to GL_2/F . For any $\varphi \in \sigma$, we define the normalized global Shimizu lifting:

$$\Theta(\Phi,\varphi)(h): \frac{\zeta(2)}{L(1,\pi,\mathrm{ad})} \int_{\mathrm{GL}_2(F)\backslash \operatorname{GL}_2(\mathbb{A}_F)} \varphi(g)\theta(g,h,\Phi) \,\mathrm{d}g \quad \text{ for } h \in D^{\times}_{\mathbb{A}_F} \times D^{\times}_{\mathbb{A}_F}$$

This defines an automorphic form $\Theta(\Phi, \varphi) \in \pi \otimes \tilde{\pi}$ (the reason for this normalisation will be appearent in the next lemma). Let

$$\mathcal{F}:\pi\otimes\widetilde{\pi}\to\mathbb{C}$$

be the canonical bilinear map defined by the Petersson pairing.

For an additive character $\psi : F \setminus \mathbb{A}_F \to \mathbb{C}$, we consider the Whittaker model $\mathcal{W}(\psi, \sigma)$ of σ . For $\varphi \in \sigma$ and $x \in F^{\times}$, let:

$$W_{x,\varphi}(g) = \int_{F \setminus \mathbb{A}_F} \varphi(\begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} g) \mathbf{e}_{\mathbb{A}_F}(-x\alpha) \, \mathrm{d}\alpha$$

then the map $\varphi \mapsto W_{x,\varphi}$ induces a Hecke equivariant isomorphism $\sigma \xrightarrow{\sim} \mathcal{W}(\sigma, \mathbf{e}_{\mathbb{A}_F}(x-)).$

Lemma 3.1. For any $\varphi \in \sigma$ and decomposable $\Phi = \bigotimes_v \Phi_v \in \mathcal{S}(V_{\mathbb{A}_F} \times \mathbb{A}_F^{\times})$, we have:

$$\mathcal{F}(\Theta(\Phi,\varphi)) = \prod_{v} \frac{\zeta_{v}(2)}{L(1,\pi_{v},\mathrm{ad})} \int_{N(F_{v})\backslash \operatorname{GL}_{2}(F_{v})} W_{\varphi,-1,v}(g) \mathbf{r}(g) \Phi_{v}(1,1) \ dg$$

For $\Phi \in \mathcal{S}(V_{\mathbb{A}_F} \times \mathbb{A}_F^{\times})$, we can form the mixed theta-Eisenstein series:

$$I(s,g,\Phi) = \sum_{\gamma \in P(F) \setminus GL_2(F)} \delta(\gamma g)^s \sum_{(x_1,u) \in V_1 \times F^{\times}} \mathbf{r}(\gamma g) \Phi(x_1,u)$$

Define its χ -component:

$$I(s, g, \chi, \Phi) = \int_{T(F) \setminus T(\mathbb{A}_F)} \chi(t) I(s, g, \mathbf{r}(t, 1)\Phi) \, \mathrm{d}t$$

(Here (t, 1) is seen as an element of O_V). For any $\varphi \in \sigma$, we introduce the Petersson pairing:

$$P(s,\chi,\Phi,\varphi) = \int_{Z(\mathbb{A}_F)\operatorname{GL}_2(F)\backslash\operatorname{GL}_2(\mathbb{A}_F)} \varphi(g) I(s,g,\chi,\Phi) \, \mathrm{d}g$$

Proposition 3.2. [Wal85, Prop. 4] If we have decomposable $\Phi = \otimes_v \Phi_v$ and $\varphi = \otimes_v \varphi_v$, then:

$$P(s,\chi,\Phi,\varphi) = \prod_{v} P_v(s,\chi_v,\Phi_v,\varphi_v)$$

where:

$$P_{v}(s,\chi_{v},\Phi_{v},\varphi_{v}) = \int_{Z(F_{v})\backslash T(F_{v})} \chi(t) \int_{N(F_{v})\backslash \operatorname{GL}_{2}(F_{v})} \delta_{v}(g)^{s} W_{-1,\varphi_{v}}(g) \mathbf{r}(g) \Phi_{v}(t^{-1},Q(t)) \, dg \, dt$$

Proof. Writing the explicit formula for $I(s, g, \chi, \Phi)$, we get that $P(s, \chi, \Phi, \varphi)$ is equal to:

$$\int_{Z(\mathbb{A}_F)P(F)\backslash\operatorname{GL}_2(\mathbb{A}_F)}\varphi(g)\delta(g)^s\int_{T(F)\backslash T(\mathbb{A}_F)}\chi(t)\sum_{(x_1,u)\in V_1\times F^{\times}}\mathbf{r}(g,(t,1))\Phi(x_1,u)\,\mathrm{d}g\mathrm{d}t$$

We decompose the first integral as a double integral:

$$\int_{Z(\mathbb{A}_F)P(F)\backslash\operatorname{GL}_2(\mathbb{A}_F)} \mathrm{d}g = \int_{Z(\mathbb{A}_F)N(\mathbb{A}_F)P(F)\backslash\operatorname{GL}_2(\mathbb{A}_F)} \int_{N(F)\backslash N(\mathbb{A}_F)} \mathrm{d}n \mathrm{d}g$$

and using the expression of the Whittaker model and of **r** on elements of $N(\mathbb{A}_F)$, we get:

$$\int_{Z(\mathbb{A}_F)N(\mathbb{A}_F)P(F)\backslash\operatorname{GL}_2(\mathbb{A}_F)} \delta(g)^s \int_{T(F)\backslash T(\mathbb{A}_F)} \chi(t) \sum_{(x_1,u)\in V_1\times F^{\times}} W_{-Q(x_1)u,\varphi}(g)\mathbf{r}(g,(t,1))\Phi(x_1,u)\mathrm{d}t\mathrm{d}g$$

Since φ is cuspidal, $W_{0,\varphi} = 0$. This way we can change variables $(x_1, u) \mapsto (x, Q(x_1^{-1})u)$ to obtain the following expression:

$$\sum_{(x_1,u)\in K^{\times}\times F^{\times}} W_{-u,\varphi}(g)\mathbf{r}(g,(t,1))\Phi(x_1,Q(x_1)^{-1}u) = \sum_{(x_1,u)\in K^{\times}\times F^{\times}} W_{-u,\varphi}(g)\mathbf{r}(g,(tx_1,1))\Phi(1,u)$$

Since $T(F) = K^{\times}$ and $\int_{T(F)\setminus T(\mathbb{A}_F)} \sum_{x_1\in T(F)} = \int_{T(\mathbb{A}_F)}$, the integral becomes:

$$\int_{Z(\mathbb{A}_F)N(\mathbb{A}_F)P(F)\backslash\operatorname{GL}_2(\mathbb{A}_F)} \delta(g)^s \int_{T(\mathbb{A}_F)} \chi(t) \sum_{u \in F^{\times}} W_{-u,\varphi}(g) \mathbf{r}(g,(t,1)) \Phi(1,u) \, \mathrm{d}t \mathrm{d}g$$

By a straightforward calculation, we have $W_{-u,\varphi}\begin{pmatrix} 1 & 0 \\ 0 & u^{-1} \end{pmatrix}g = W_{-1,\varphi}(g)$ and $|u|_{\mathbb{A}_F} = 1$, the integral is equal to:

$$\int_{Z(\mathbb{A}_F)N(\mathbb{A}_F)P(F)\backslash\operatorname{GL}_2(\mathbb{A}_F)} \delta(g)^s \int_{T(\mathbb{A}_F)} \chi(t) \sum_{u \in F^{\times}} W_{-1,\varphi}(\begin{pmatrix} 1 & 0\\ 0 & u^{-1} \end{pmatrix} g) \mathbf{r}(\begin{pmatrix} 1 & 0\\ 0 & u^{-1} \end{pmatrix} g, (t,1)) \Phi(1,1) \, \mathrm{d}t \mathrm{d}g$$

The sum over $u \in F^{\times}$ collapses with the quotient over P(F), thus we get the following expression:

$$P(s,\chi,\Phi,\varphi) = \int_{Z(\mathbb{A}_F)N(\mathbb{A}_F)\backslash\operatorname{GL}_2(\mathbb{A}_F)} \delta(g)^s \int_{T(\mathbb{A}_F)} \sum_{u\in F^{\times}} \chi(t)W_{-1,\varphi}(g)\mathbf{r}(g)\Phi(t^{-1},Q(t)) \,\mathrm{d}t\mathrm{d}g$$

We may decompose the inside integral as $\int_{Z(\mathbb{A}_F \setminus T(\mathbb{A}_F)} \int_{Z(\mathbb{A}_F)} dr$ and move the first integral outside. Then using the fact that $\omega_{\sigma} \cdot \chi_{\mathbb{A}_F^{\times}} = 1$, we obtain:

$$P(s,\chi,\Phi,\varphi) = \int_{Z(\mathbb{A}_F)\backslash T(\mathbb{A}_F)} \chi(t) \int_{N(\mathbb{A}_F)\backslash \operatorname{GL}_2(\mathbb{A}_F)} \delta(g)^s W_{-1,\varphi}(g) \mathbf{r}(g) \Phi(t^{-1},Q(t)) \, \mathrm{d}t \mathrm{d}g$$

When everything is unramified, Waldspurger computed these integrals (cf. lemma 2 in [Wal85]) and got: L((-i, 1)/2)

$$P_v(s, \chi_v, \Phi_v, \varphi_v) = \frac{L((s+1)/2, \pi_v, \chi_v)}{L(s+1, \eta_v)}$$

So we may define a normalised integral P_v° by:

$$P_v^{\circ}(s, \chi_v, \Phi_v, \varphi_v) = \frac{L(s+1, \eta_v)}{L((s+1)/2, \pi_v, \chi_v)} P_v(s, \chi_v, \Phi_v, \varphi_v)$$

This normalized integral P_v° will be regular at s = 0 and equal to

$$\frac{L(1/2,\pi_v,\chi_v)L(1,\pi_v,\mathrm{ad})}{\zeta_v(2)L(1,\eta_v)}\int_{Z(F_v)\setminus T(F_v)}\chi_v(t)\mathcal{F}(\pi(t)\Theta(\Phi_v,\varphi_v))\mathrm{d}t$$

by lemma 3.1. This can be written as $\alpha_v(\Theta(\Phi_v, \varphi_v))$ with $\alpha_v \in \operatorname{Hom}(\pi_v \otimes \widetilde{\pi}_v, \mathbb{C})$ given by integration of matrix coefficients:

$$\alpha_v(f_1 \otimes f_2) = \frac{L(1/2, \pi_v, \chi_v)L(1, \pi_v, \mathrm{ad})}{\zeta_v(2)L(1, \eta_v)} \int_{Z(F_v) \setminus T(F_v)} \chi(t) \mathcal{F}\chi_v(t) \langle \pi(t)f_1, f_2 \rangle \,\mathrm{d}t$$

and we define the global element $\alpha := \otimes_v \alpha_v \in \operatorname{Hom}(\pi \otimes \widetilde{\pi}, \mathbb{C})$. We thus get:

Proposition 3.3. We have that:

$$P(0,\chi,\Phi,\varphi) = \frac{L(1/2,\pi,\chi)}{L(1,\eta)} \prod_{v} \alpha_{v}(\Theta(\Phi_{v},\varphi_{v}))$$

We thus get to the main theorem of [Wal85]:

Theorem 3.4. For $f_1 \in \pi$ and $f_2 \in \widetilde{\pi}$, we have:

$$P_{\chi}(f_1) \cdot P_{\chi^{-1}}(f_2) = \frac{\zeta_F(2)L(1/2, \pi, \chi)}{8L(1, \eta)^2 L(1, \pi, \mathrm{ad})} \alpha(f_1 \otimes f_2)$$

4 Doi-Naganuma Lift

Let E/\mathbb{Q} be a real quadratic field extension so that $E = \mathbb{Q}(\sqrt{\Delta})$ with $\Delta > 0$ squarefree. We write $\operatorname{Gal}(E/\mathbb{Q}) = \{1, \sigma\}$ and note that we fixed an embedding $E \hookrightarrow \mathbb{R}$ so that the set of embeddings of E in \mathbb{R} is identified with $\operatorname{Gal}(E/\mathbb{Q})$. Let D be a quaternion algebra over \mathbb{Q} and $D_E = D \otimes_{\mathbb{Q}} E$. We will consider the following quadratic spaces (V, Q):

$$(D^{\pm}_{\sigma})$$
 Let $(D^{\pm}_{\sigma}) = \{x \in D_E \mid x^{\sigma} = \pm x^{\iota}\}$, and $Q^{\pm}(x) = xx^{\sigma} = \pm xx^{\iota} = \pm N(x) \in \mathbb{Q}$. Then,
 $S(x, y) = S^{\pm}(x, y) = \pm \operatorname{Tr}_{D_E/E}(xy^{\iota}) = \operatorname{Tr}_{D_E/E}(xy^{\sigma}) \in \mathbb{Q}$

We have m = 4. Indeed, we have a decomposition over \mathbb{C} :

$$D_E \otimes_{\mathbb{Q}} \mathbb{C} = M_2(\mathbb{C}) \oplus M_2(\mathbb{C})$$

with σ interchanging the components $M_2(\mathbb{C})$, and we have:

 $D_{\sigma}^{\pm} \otimes_{\mathbb{Q}} \mathbb{C} = \{ (X, \pm X^{\iota}) \in M_2(\mathbb{C}) \oplus M_2(\mathbb{C}) \mid X \in M_2(\mathbb{C}) \}$

which has dimension 4 over \mathbb{C} .

- (D_0^{\pm}) Let $D_0^{\pm} = \{x \in D_{\sigma}^{\pm} \mid \operatorname{Tr}(x) = x + x^{\iota} = 0\}$ and $Q^{\pm}(x) = xx^{\sigma} = \pm N(x)$. Note that $D_0^- = \{x \in D \mid \operatorname{Tr}(x) = 0\}$ and that $D_0^+ = \sqrt{\Delta}D_0^- \subset D_E$ (so that as quadratic spaces D_0^+ is isomorphic to D_0^- with the norm multiplied by $-\Delta$). Then the lemma 1.11 gives the Clifford algebras and groups associated to these spaces. In particular, the even Clifford group is isomorphic to D^{\times} and the morphism of algebraic groups $\tau_{D_0} : D^{\times} \twoheadrightarrow SO_{D_0}$ is given by $a \mapsto (v \mapsto ava^{-1})$.
- (Z^{\pm}) Let $Z^{\pm} = \{x \in D^{\pm}_{\sigma} \mid x^{\iota} = x\} = \delta_{\pm}\mathbb{Q}$ with $\delta_{+} = 1$ and $\delta_{-} = \sqrt{\Delta}$ with $S^{\pm}(\delta_{\pm}x, \delta_{\pm}y) = \operatorname{Tr}(\delta_{\pm}x(\delta_{\pm}y)^{\sigma}) = \pm 2\delta_{\pm}^{2}xy$. So $Q^{\pm}(\delta_{\pm}x) = \pm \delta_{\pm}^{2}x^{2}$, the space (Z^{+}, Q^{+}) is positive definite, and (Z^{-}, Q^{-}) is negative definite.

Note that if we don't need to refer to the sign of D_{σ}^{\pm} we just write D_{σ} instead.

We may let $a \in D_E$ act on D^{\pm}_{σ} by $v \mapsto a^{\iota} v a^{\sigma}$ as:

$$(a^{\iota}va^{\sigma})^{\sigma} = a^{\iota\sigma}v^{\sigma}a = \pm a^{\iota\sigma}v^{\iota}a = \pm (a^{\iota}va^{\sigma})^{\iota}$$

This preserves Q up to a scalar $N(a)N(a)^{\sigma} \in \mathbb{Q}$, and so we get a morphism of linear algebraic groups:

$$\widetilde{\tau}: D_E^{\times} \to GO_{D_{\sigma}} \tag{4.1}$$

Given the inclusion of quadratic spaces $(D_{\sigma}^{\pm}, \pm N) \subseteq (D_E, \pm N)$ and following (1.7), we define the \mathbb{Q} -linear map:

$$p: D_{\sigma}^{\pm} \to R \subset M_2(D_E) = A(D_E)$$
$$x \mapsto \begin{pmatrix} 0 & \pm x \\ x^{\iota} & 0 \end{pmatrix}$$

where $R = \{ \begin{pmatrix} a & b \\ b^{\sigma} & a^{\sigma} \end{pmatrix} \mid a, b \in D_E \}$. Since $\dim_{\mathbb{Q}} R = 2^4$, we get that $R = A(D_{\sigma})$. We also have that $A^+(D_{\sigma}) = \{ \begin{pmatrix} a & 0 \\ 0 & a^{\sigma} \end{pmatrix} \mid a \in D_E \} \cong D_E$ where we make the identification by the projection $\begin{pmatrix} a & 0 \\ 0 & a^{\sigma} \end{pmatrix} \mapsto a^{\sigma}$. By (1.8) and (1.5), the even Clifford group is equal to:

$$G_{D_{\sigma}}^{+} = \{ a \in D_E \mid N(a) \in \mathbb{Q}^{\times} \}$$

and the morphism to the special orthogonal group is given explicitly by:

$$\tau_{D_{\sigma}}: G^+_{D_{\sigma}} \to SO_{D_{\sigma}}$$
$$a \mapsto (x \mapsto a^{\sigma} x a^{-1})$$

By lemma 1.9, this map is surjective with kernel \mathbb{Q}^{\times} .

4.1 Choices of D for a fixed D_E

Pick $\alpha \in D_{\sigma}^{\pm} \cap D_{E}^{\times}$, and consider $x^{\sigma_{\alpha}} = \alpha x^{\sigma} \alpha^{-1}$. Then,

$$(x^{\sigma_{\alpha}})^{\sigma_{\alpha}} = \alpha(\alpha^{\sigma}(x^{\sigma})^{\sigma}\alpha^{\sigma,-1})\alpha^{-1} = \alpha(\pm\alpha^{\iota}x \pm \alpha^{\iota,-1})\alpha^{-1} = x$$

Thus we get a new action of $\operatorname{Gal}(E/\mathbb{Q})$ on D_E , and the fixed points $D_{\alpha} = H^0(E/\mathbb{Q}, D_E) = \{x \in D_E \mid x\alpha = \alpha x^{\sigma}\}$ under this new action is a quaternion algebra over \mathbb{Q} with $D_E = D_{\alpha} \otimes_{\mathbb{Q}} E$.

Lemma 4.1. With the above notation we have:

- (1) If B is a central simple \mathbb{Q} -subalgebra of D_E of dimension 4, then there exists $\alpha \in D_{\sigma} \cap D_E^{\times}$ such that $B = D_{\alpha}$.
- (2) We have that $\alpha = x\beta x^{\iota\sigma}$ for $\beta \in D_{\sigma} \cap D^{\times}E$ and $x \in D_E^{\times}$ if and only if $D_{\alpha} \cong D_{\beta}$ as quaternion algebras over \mathbb{Q} , and in this case, we have $D_{\alpha} = xD_{\beta}x^{-1}$ inside D_E .
- (3) We have that $D_{\alpha} = D$ if and only if $\alpha \in D_{\sigma} \cap E^{\times}$.

Proof. Let D be a quaternion \mathbb{Q} -subalgebra $B \subseteq D_E$. Then we have an action of $\sigma \in \operatorname{Gal}(E/\mathbb{Q})$ on D_E such that $H^0(E/\mathbb{Q}, D_E) = B$. This is given by the action on the second factor in $D_E = B \otimes_{\mathbb{Q}} E$. Write this action by α_{σ} , then $x \mapsto (x^{\sigma})^{\sigma_{\alpha}}$ is an E-linear automorphism of D_E . By the Noether-Skolem theorem, it is an inner automorphism, and so there exists $\alpha \in D_E^{\times}$ such that:

$$x^{\sigma} = \alpha x^{\sigma_{\alpha}} \alpha^{-1} \quad \forall x \in E$$

Since $(x^{\sigma_{\alpha}})^{\sigma_{\alpha}} = x$, we see that $\alpha^{\sigma} \alpha \in Z(D_E) = E$. In particular $(\alpha^{\sigma} \alpha)\alpha = \alpha(\alpha^{\sigma} \alpha)$, and so dividing on both sides by α , we get that α and α^{σ} commute. Then $(\alpha \alpha^{\sigma})^{\sigma} = \alpha^{\sigma} \alpha = \alpha \alpha^{\sigma}$ which shows that $\alpha \alpha^{\sigma} \in \mathbb{Q}$. Thus $\alpha^{\sigma} = z \alpha^{\iota}$ for some $z \in \mathbb{Q}^{\times}$, and $\alpha^{\sigma\iota} = z \alpha$. Therefore α is an eigenvalue of $\sigma\iota$ which is of order 2 (σ and ι commute), and so $z = \pm 1$ which gives that $\alpha^{\sigma} = \pm \alpha^{\iota}$. If z does not match with the sign of D^{\pm}_{σ} , we replace α with $\sqrt{\Delta}\alpha$. We have $B = D_{\alpha}$ which shows (1).

5 Rankin convolution

5.1 Adelic fourier expansion of cuspforms of integral weight

Let $F \in S_{\kappa}(\Gamma_0(C), \varphi)$ be a cusp form of weight $\kappa \in \mathbb{N}, \varphi : (\mathbb{Z}/C\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character where we let $\varphi\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \varphi(d)$ for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(C)$. Then we have:

$$F(\gamma(\tau)) = \varphi(\gamma)F(\tau)j(\gamma,\tau)^{\kappa} \quad \text{ for all } \gamma \in \Gamma_0(C)$$

Since $\mathbb{A}^{\times}/\mathbb{Q}^{\times}\mathbb{R}^{\times}_{+} \cong \widehat{\mathbb{Z}}^{\times}$, by composing with the projection map $\widehat{\mathbb{Z}}^{\times} \twoheadrightarrow (\mathbb{Z}/C\mathbb{Z})^{\times}$ we extend φ to a character $\varphi : \mathbb{A}^{\times}/\mathbb{Q}^{\times} \to \mathbb{C}^{\times}$. Using strong approximation, $\mathrm{SL}_{2}(\mathbb{A}) = \mathrm{SL}_{2}(\mathbb{Q})\widehat{\Gamma}_{0}(C) \mathrm{SL}_{2}(\mathbb{R})$ and we lift F to $\mathbf{F} : \mathrm{SL}_{2}(\mathbb{Q}) \setminus \mathrm{SL}_{2}(\mathbb{A}) \to \mathbb{C}$ by putting:

$$\mathbf{F}(\alpha u) = \varphi^*(u) F(u_\infty \cdot i) j(u_\infty, i)^{-\kappa}$$

for $\alpha \in \mathrm{SL}_2(\mathbb{Q})$, $u \in \widehat{\Gamma}_0(C) \operatorname{SL}_2(\mathbb{R})$, and $\varphi^* = \varphi^{-1}$. Define an idele character $\varphi : \mathbb{A}^{\times}/\mathbb{Q}^{\times} \to \mathbb{C}^{\times}$ by $\varphi(x) = \varphi^*(x)|x|_{\mathbb{A}}^{-\kappa}$. Write the Fourier expansion of F as $F(\tau) = \sum_{n=1}^{\infty} a_n(F) \mathbf{e}_{\infty}(n\tau)$. For $g \in B(\widehat{\mathbb{Z}}) B(\mathbb{R})$ with $g = \begin{pmatrix} x & yx^{-1} \\ 0 & x^{-1} \end{pmatrix}$ with $x \in \widehat{\mathbb{Z}}^{\times} \mathbb{R}_+^{\times}$, we find for $\tau = g_{\infty} \cdot i = x_{\infty}^2 i + y_{\infty}$,

$$\mathbf{F}(g) = \varphi^*(x^\infty)^{-1} x_\infty^\kappa \sum_{n=1}^\infty a_n(F) \mathbf{e}_\infty(n\tau) = \varphi(x)^{-1} \sum_{n=1}^\infty a_n(F) \exp(-2\pi n x_\infty^2) \mathbf{e}_\infty(ny_\infty)$$

Let $v(y) = \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} \in N(\mathbb{A})$, then for $g = v(y) \operatorname{diag}[x, x^{-1}]$, write $\mathbf{F}(x, y) := \mathbf{F}(g)$. Since $\mathbf{F}(x, y + u) = \mathbf{F}(v(u)g) = \mathbf{F}(g) = \mathbf{F}(x, y)$ for $u \in \mathbb{Q}$, we have the adelic Fourier expansion of $\mathbf{F}(x, y)$ with respect to $y \in \mathbb{A}$:

$$\mathbf{F}(x,y) = \sum_{u \in \mathbb{Q}} a_{\mathbf{F}}(u;x) \mathbf{e}_{\mathbb{A}}(uy)$$

For $t \in \mathbb{Q}^{\times}$, we have diag $[t, t^{-1}]v(y)$ diag $[x, x^{-1}] = v(t^2x)$ diag $[tx, (tx)^{-1}]$ we have:

$$\sum_{u \in \mathbb{Q}} a_{\mathbf{F}}(u, x) \mathbf{e}_{\mathbb{A}}(uy) = \mathbf{F}(x, y) = \mathbf{F}(tx, t^2 y) = \sum_{u \in \mathbb{Q}} a_{\mathbf{F}}(u, tx) \mathbf{e}_{\mathbb{A}}(ut^2 y)$$

By the uniqueness of the Fourier expansion, we get:

$$a_{\mathbf{F}}(u,x) = a_{\mathbf{F}}(t^{-2}u,tx) \quad \text{for } t \in \mathbb{Q}^{\times}, u \in \mathbb{Q}$$
$$a_{\mathbf{F}}(u,x) = \begin{cases} \varphi(x)^{-1}a_u(F)\exp(-2\pi u x_{\infty}^2) & \text{if } u \in \mathbb{N}^{\times} \\ 0 & \text{if } u \notin \mathbb{N}^{\times} \end{cases} \quad \text{for } x \in \widehat{\mathbb{Z}}^{\times} \mathbb{R}_+^{\times} \end{cases}$$
(5.1)

Suppose that $t \in \widehat{\mathbb{Z}}^{\times} \mathbb{R}_{+}^{\times}$, then given that $\operatorname{diag}[t, t^{-1}] \in \widehat{\Gamma}_{0}(C) \operatorname{SL}_{2}(\mathbb{R})$, we get by definition of \mathbf{F} :

$$\mathbf{F}(xt,y) = \mathbf{F}(v(y) \begin{pmatrix} xt & 0\\ 0 & (xt)^{-1} \end{pmatrix}) = \mathbf{F}(g \begin{pmatrix} t & 0\\ 0 & t^{-1} \end{pmatrix})) = \varphi^*(t)^{-1} \mathbf{F}(g \begin{pmatrix} t_\infty & 0\\ 0 & t_\infty^{-1} \end{pmatrix}) = \varphi^*(t)^{-1} \mathbf{F}(xt_\infty, y)$$

so that

$$\sum_{u \in \mathbb{Q}} a_{\mathbf{F}}(u, xt) \mathbf{e}(uy) = \varphi^*(t)^{-1} \sum_{u \in \mathbb{Q}} a_{\mathbf{F}}(u, xt_{\infty}) \mathbf{e}(uy)$$

By unicity of the Fourier expansion, we get that

$$a_{\mathbf{F}}(u, xt) = \varphi^*(t)^{-1} a_{\mathbf{F}}(u, xt_{\infty})$$
(5.2)

For $x \in \mathbb{Q}^{\times}(\mathbb{A}^{\times})^2 = \mathbb{Q}^{\times}(\widehat{\mathbb{Z}}^{\times})^2 \mathbb{R}_+^{\times}$, write $x = ua^2$ for $u \in \mathbb{Q}^{\times}$ with $a \in \mathbb{A}^{\times}$, and define:

$$a_{\mathbf{F}}(ua^2) := \boldsymbol{\varphi}(a)a_{\mathbf{F}}(u,a)\exp(2\pi a_{\infty}^2 u_{\infty})$$

Note that by comparing the two Fourier expansions, we have that if $a \in \widehat{\mathbb{Z}}^{\times} \mathbb{R}_{+}^{\times}$,

$$a_{\mathbf{F}}(ua^2) = \begin{cases} a_u(F) & \text{if } u \in \mathbb{N}^\times \\ 0 & \text{if } u \notin \mathbb{N}^\times \end{cases}$$

If $ua^2 = tb^2$ for some $t \in \mathbb{Q}^{\times}$ and $b \in \mathbb{A}^{\times}$, then there exists $q \in \mathbb{Q}^{\times}$ and $s \in \mathbb{A}^{\times}$ with $s^2 = 1$, $s_{\infty} = 1$, $q^2 = u/t$, and b = qsa. Then we get that:

$$a_{\mathbf{F}}(ua^2) = \varphi(a)a_{\mathbf{F}}(u,a)\exp(2\pi a_{\infty}^2 u_{\infty})$$

= $\varphi(aqs)\varphi^*(s)^{-1}a_{\mathbf{F}}(q^{-2}u,qs_{\infty}a)\exp(2\pi (a_{\infty}s_{\infty}q_{\infty})^2 q_{\infty}^{-2}u_{\infty})$
= $\varphi(b)a_{\mathbf{F}}(t,b)\exp(2\pi b_{\infty}^2 t_{\infty}) = a_{\mathbf{F}}(tb^2)$

by (5.4) and (5.2). This shows that $a_{\mathbf{F}}(x)$ is well defined, and we get that for $x \in \widehat{\mathbb{Z}}^{\times} \mathbb{R}^{\times}_{+}$ and $y \in \mathbb{Q}^{\times}$,

$$\mathbf{F}(x,y) = \mathbf{F}(v(y)\operatorname{diag}(x,x^{-1})) = \boldsymbol{\varphi}^{-1}(x)\sum_{u\in\mathbb{Q}}a_{\mathbf{F}}(ux^2)\exp(-2\pi nx_{\infty}^2)\mathbf{e}_{\mathbb{A}}(uy)$$

5.2 Adelic Fourier expansion of cuspforms of half integral weight

Let $f \in S_{k/2}(\Gamma_0(M), \psi)$ for k odd and ψ an even Dirichet character modulo M. Then $f(\gamma \cdot \tau) = \psi(\gamma)f(\tau)h(\gamma,\tau)^k$ for $\gamma \in \Gamma_0(M)$, $h(\gamma,\tau) = \frac{\theta(\gamma \cdot \tau)}{\theta(\tau)}$ and $\psi(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = \psi(d)$. We extend ψ to a character $\psi : \mathbb{A}^{\times}/\mathbb{Q}^{\times} \to \mathbb{C}^{\times}$, and we lift f to $\mathbf{f} : \mathrm{SL}_2(\mathbb{Q}) \setminus Mp(\mathbb{A}) \to \mathbb{C}$ by putting:

$$\mathbf{f}(\alpha(u,\zeta J(u_{\infty},\tau))) = \psi^*(u)f(u_{\infty}\cdot i)\zeta^k J(u_{\infty},i)^{-k}$$
(5.3)

for $\alpha \in \mathrm{SL}_2(\mathbb{Q}) \subset Mp(\mathbb{A})$, $(u, J(u_{\infty}, \tau)) \in \widehat{\Gamma}_0(M)Mp(\mathbb{R})$, and $\zeta \in \mathbb{T}$; regarding $\widetilde{\mathrm{SL}}_2(\mathbb{R}) \subset \widetilde{\mathrm{SL}}_2(\mathbb{A}) \subset Mp(\mathbb{A})$.

Note that $B(\mathbb{A})$ is canonically lifted to $Mp(\mathbb{A})$ by the Weil representation, and this lifting coincides with the splitting $\operatorname{SL}_2(\mathbb{Q}) \hookrightarrow Mp(\mathbb{A})$. Define the idele character $\psi : \mathbb{A}^{\times}/\mathbb{Q}^{\times} \to \mathbb{C}^{\times}$ by $\psi(a) = \psi^*(a)|a|_{\mathbb{A}}^{-k/2}$. Then letting $f(\tau) = \sum_{n=1}^{\infty} a_n(f) \mathbf{e}_{\infty}(n\tau)$, we put for $v(y) \operatorname{diag}[x, x^{-1}] = \begin{pmatrix} x & yx^{-1} \\ 0 & x^{-1} \end{pmatrix} \in B(\widehat{\mathbb{Z}})B(\mathbb{R}) \subset \widetilde{\operatorname{SL}}_2(\mathbb{A})$:

$$\mathbf{f}(x,y) := \mathbf{f}(v(y) \operatorname{diag}[x,x^{-1}]) = \psi^*(x^{-1}) f(x_{\infty}^2 i + y_{\infty}) x_{\infty}^{k/2} = \psi^{-1}(x) \sum_{n=1}^{\infty} a_n(f) \exp(-2\pi n x_{\infty}^2) \mathbf{e}_{\infty}(ny_{\infty})$$

Noting that $\mathbf{f}(x, y + u) = \mathbf{f}(x, y)$ for $u \in \mathbb{Q}$, $\mathbf{f}(a, u)$ has a Fourier expansion over $y \in \mathbb{A}$ of the form:

$$\mathbf{f}(x,y) = \sum_{u \in \mathbb{Q}} a_{\mathbf{f}}(u;x) \mathbf{e}_{\mathbb{A}}(uy)$$

As before, we get by uniqueness of the Fourier expansion that:

$$a_{\mathbf{f}}(u,x) = a_{\mathbf{f}}(t^{-2}u,tx) \quad \text{for } t \in \mathbb{Q}^{\times}, u \in \mathbb{Q}$$
$$a_{\mathbf{f}}(u,x) = \begin{cases} \psi(x)^{-1}a_u(F)\exp(-2\pi u x_{\infty}^2) & \text{if } u \in \mathbb{N}^{\times} \\ 0 & \text{if } u \notin \mathbb{N}^{\times} \end{cases} \text{ for } x \in \widehat{\mathbb{Z}}^{\times} \mathbb{R}_+^{\times} \end{cases}$$
(5.4)

Define

5.3 Adelic Rankin product

Lemma 5.1. The natural map $\pi: B(\mathbb{Q}) \setminus B(\mathbb{A})C_{\infty} \twoheadrightarrow SL_2(\mathbb{Q}) \setminus Mp(\mathbb{A})$ is an isomorphism.

Proof. By strong approximation, $\operatorname{SL}_2(\mathbb{A}^{(\infty)}) = \operatorname{SL}_2(\mathbb{Q})K$ for an open subgroup K of $\widehat{\Gamma}_0(4)$. By Iwasawa decomposition, we have that $B(\mathbb{R})C_{\infty} = Mp(\mathbb{R})$ so that $Mp(\mathbb{A}) = \operatorname{SL}_2(\mathbb{Q})B(\mathbb{A})KC_{\infty}$. Thus we have a natural continuous surjection:

$$\pi_K : B_K := B(\mathbb{Q}) \backslash B(\mathbb{A}) K C_{\infty} \twoheadrightarrow \mathrm{SL}_2(\mathbb{Q}) \backslash Mp(\mathbb{A})$$

For $x \in Mp(\mathbb{A})$ and an open neighborhood U of x, there exists a compact open $K \subset \widehat{\Gamma}_0(4)$ such that $xK \subseteq U$. But knowing that π_K is surjective, we have $xK \cap \pi_1(B(\mathbb{Q}) \setminus B(\mathbb{A})C_{\infty}) \neq \emptyset$, which shows that π_1 has dense image. Since $\operatorname{SL}_2(\mathbb{Q}) \setminus Mp(\mathbb{A})$ is locally compact, we can consider a system of open neighborhoods $\{X_n\}_{n\geq 0}$ of a point $x \in \operatorname{SL}_2(\mathbb{Q}) \setminus Mp(\mathbb{A})$. Let $\{Y_n\}_{n\geq 0}$ be a system of open compact subsets of $B(\mathbb{Q}) \setminus B(\mathbb{A})C_{\infty}$ such that $Y_{n+1} \subset Y_n$ and $Y_n \subset \pi^{-1}(X_n)$. Then given that $\operatorname{SL}_2(\mathbb{Q}) \setminus Mp(\mathbb{A})$ is Hausdorff, we get that $\bigcap_{n\geq 0}\pi_1(Y_n) = \{x\}$ and so π_1 is surjective.

Now if $\pi_1(bu) = \pi_1(b'u')$ for $b, b' \in B(\mathbb{A})$ and $u, u' \in C_{\infty}$, then there is a $\gamma \in SL_2(\mathbb{Q})$ such that $\gamma bu = b'u'$. By projecting down to $SL_2(\mathbb{A})$ and comparing the finite part, we find that $\gamma \in B(\mathbb{Q})$ which shows the injectivity of π_1 .

6 Computing the Period

6.1 Symmetric domain for O(n, 2)

Suppose that $m = \dim V = n + 2$ and that $V_{\mathbb{R}}$ has signature (n, 2). We would like to make explicit the symmetric domain $GO_V^+(\mathbb{R})/\mathbb{R}^{\times}C$ for a maximal compact subgroup $C \subset GO_V^+(\mathbb{R})$. We start with the following complex submanifold of $V_{\mathbb{C}}$:

$$\mathcal{Y}(Q) = \{ v \in V_{\mathbb{C}} \mid Q(v) = 0 \text{ and } S(v, \overline{v}) < 0 \}$$

Since S is indefinite over \mathbb{C} , the space $\mathcal{Y}(Q)$ is always non-empty, and $g \in GO_V^+(\mathbb{R})$ acts on $\mathcal{Y}(Q)$ by $v \mapsto gv$.

Take $v \in \mathcal{Y}(Q)$ and write W for the subspace of $V_{\mathbb{R}}$ spanned over \mathbb{R} by $2\operatorname{Re}(v) = v + \overline{v}$ and $2\operatorname{Im}(v) = iv - i\overline{v}$. Then we have:

$$\begin{split} Q(v+\overline{v}) &= 2S(v,\overline{v}) < 0\\ Q(iv-i\overline{v}) &= 2S(v,\overline{v}) < 0\\ S(v+\overline{v},iv-i\overline{v}) &= -iS(v,\overline{v}) + iS(\overline{v},v) = 0 \end{split}$$

This shows that $S_{|W}$ is negative definite, and so $S_{|W^{\perp}}$ is positive definite. Now define the positive linear bilinear form:

$$P_v(x,y) = S(x_{W^\perp}, y_{W^\perp}) - S(x_W, y_W)$$

for the orthogonal projections x_W to W and $x_{W^{\perp}}$ to W^{\perp} of x. If $g \in GO_V^+(\mathbb{R})$ fixes $v \in \mathcal{Y}(Q)$, then g fixes by definition the positive definite form P_v . Thus g has to be in the compact subgroup O_{P_v} made up of orthogonal matrices preserving P_v . On the other hand, if we have to $v, w \in \mathcal{Y}(Q)$, then by Sylvester's theorem, we can find $g \in GO_V^+(\mathbb{R})$ such that gv = w and hence $GO_V^+(\mathbb{R})/O_{P_v} \cong \mathcal{Y}(Q)$.

Now we make explicit the domain $\mathcal{Y}(Q)$ as a hermitian bounded matrix domain:

Proposition 6.1. [Hid06, Prop. 2.1] There is a \mathbb{C} -linear isomorphism $A: V_{\mathbb{C}} \xrightarrow{\sim} \mathbb{C}^{n+2}$ such that:

$$S(x,y) = {}^{t}(Ax)R(Ay)$$
 and $S(\overline{x},y) = {}^{t}(\overline{Ax})T(Ay)$

where R and T are real symmetric matrices given by:

$$R = \begin{pmatrix} \operatorname{id}_{n} & 0 & 0\\ 0 & 0 & -1\\ 0 & -1 & 0 \end{pmatrix} \quad and \quad T = \begin{pmatrix} \operatorname{id}_{n} & 0\\ 0 & -\operatorname{id}_{2} \end{pmatrix}$$

With A as in the proposition, the map $g \mapsto AgA^{-1}$ gives an isomorphism of Lie groups:

$$\iota: GO_V^+(\mathbb{R}) \xrightarrow{\sim} G(Q,T) = \{g \in \operatorname{GL}_{n+2}(\mathbb{C}) \mid {}^t gRg = \nu(g)R, \; {}^t \overline{g}Tg = \nu(g)Q \text{ for some } \nu(g) \in \mathbb{R}^\times \}$$

and the map $v \mapsto Av$ gives an isomorphism of complex manifolds:

$$j: \mathcal{Y}^+(Q) \xrightarrow{\sim} \mathcal{Y}(R,T) = \{ u \in \mathbb{C}^{n+2} \mid {}^t u R u = 0 \text{ and } {}^t u T u < 0 \}$$

These two maps are equivariant, i.e, $\iota(g)j(v) = j(gv)$. Let us show that $\mathcal{Y}(Q,T)$ has two connected components. So writing $u = {}^{t}(u_1, \cdots, u_{n+2}) \in \mathcal{Y}(R,T)$, we get:

$$\left(\sum_{i=1}^{n} u_i^2\right) - 2u_{n+1}u_{n+2} = {}^t uRu = 0$$
$$\sum_{i=1}^{n} |u_i|^2 < |u_{n+1}|^2 + |u_{n+2}|^2 = {}^t \overline{u}Qu < 0$$

If we suppose that $|u_{n+1}| = |u_{n+2}|$, then

$$\sum_{i=1}^{n} |u_i|^2 > |\sum_{i=1}^{n} u_i^2| = 2|u_{n+1}u_{n+2}| = |u_{n+1}|^2 + |u_{n+2}|^2$$

a contradiction. Thus we either have $|u_{n+1}| > |u_{n+2}|$ or $|u_{n+2}| > |u_{n+1}|$. These two cases split the domain $\mathcal{Y}(Q,T)$ into two pieces of connected components.

To see that each component is connected, we may assume that $|u_{n+2}| > |u_{n+1}|$ by interchanging the coordinates if necessary, and so $u_{n+2} \neq 0$. Put $z_i = \frac{u_i}{u_{n+2}}$ for $i \leq n$ and define $z = {}^t(z_1, \ldots, z_n)$. Then $\frac{u_{n+1}}{u_{n+2}} = \frac{{}^tz_2}{2}$, and defining:

$$\mathfrak{Z} = \mathfrak{Z}_n = \{ z \in \mathbb{C}^n \mid {}^t z \overline{z} < 1 + \frac{1}{4} |{}^t z z|^2 < 2 \}$$

we see that $\mathbb{C}^{\times} \times \mathfrak{Z}$ is isomorphic to the component of $\mathcal{Y}(R,T)$ given by $|u_{n+2}| > |u_{n+1}|$ via

$$(\lambda, z) \mapsto \lambda \mathcal{P}(z)$$

where $\mathcal{P}(z) = {}^{t}(z, \frac{{}^{t}zz}{2}, 1)$. We define an action of $g \in GO_{V}^{+}(\mathbb{R})$ on \mathfrak{Z} and a factor of automorphic $\mu(g, z)$ for $z \in \mathfrak{Z}$ by:

$$\iota(g)\mathcal{P}(z) = \mathcal{P}(g(z))\mu(g,z)$$

We now look into spherical functions on $V_{\mathbb{C}}$. Choose a basis v_1, \ldots, v_m of V so that we have an identification of $V_{\mathbb{R}}$ with \mathbb{R}^m by $v \mapsto (x_1, \ldots, x_m)$ for $v = \sum_i x_i v_i$. We take the dual basis v_j^* so that $S(v_j^*, v_i) = \delta_{ij}$, and define a second degree homogenious differential operator Δ by:

$$\Delta = \sum_{ij} S(v_i^*, v_j^*) \frac{\partial^2}{\partial x_i \partial x_j}$$

A polynomial function $\eta: V_{\mathbb{R}} \to \mathbb{C}$ is called a spherical function if $\Delta \eta = 0$. Writing $S = (S(v_i, v_j))$, we have that this definition does not depend on the choice of the basis v_i because $\Delta = {}^t \partial S^{-1} \partial$ for $\partial = {}^t (\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_m})$. And since $\partial ({}^t w S x) = {}^t S w = S w$ for a constant vector w, we find that for $k \geq 2$,

$$\Delta ({}^{t}wSx)^{k} = {}^{t}\partial S^{-1}\partial ({}^{t}wSx)^{k}$$
$$= k^{t}\partial (S^{-1}Sw)({}^{t}wSx)^{k-1}$$
$$= k^{t}({}^{t}w\partial ({}^{t}wSx)^{k-1})$$
$$= k(k-1)({}^{t}wSw)({}^{t}wSx)^{k-2}$$

Thus the polynomial function $x \mapsto S(w, x)^k$ for $k \ge 2$ is spherical if and only if Q(w) = 0. In fact, all homogenious spherical polynomials of degree $k \ge 2$ are a linear combination of $S(w, x)^k$ for a finite set of spherical vectors w with Q(w) = 0. In particular, for $v \in \mathcal{Y}^+(Q)$, then function $x \mapsto S(v, x)^k$ is a spherical function. We define a Schwartz function Ψ on $V_{\mathbb{R}}$ for each $\tau = x + iy \in \mathfrak{H}$ and $v \in \mathcal{Y}(Q)$ by:

$$\Psi(\tau; v)(w) = \mathbf{e}(\frac{1}{2}(S[w]x + iP_v[w]y)) = \exp(i\pi(S[w]x + iP_v[w]y))$$
(6.1)

where S[w] = S(w, w).

Now we go back to our case and suppose that D is indefinite, so that we can fix an isomorphism $D_E \otimes_{\mathbb{Q}} \mathbb{R} \cong M_2(\mathbb{R}) \oplus M_2(\mathbb{R})$ and,

$$V_{\mathbb{R}} = D_{\sigma}^{\pm} \otimes_{\mathbb{Q}} \mathbb{R} \cong \{ (X, \pm X^{\iota}) \in M_2(\mathbb{R}) \oplus M_2(\mathbb{R}) \mid X \in M_2(\mathbb{R}) \} \cong M_2(\mathbb{R}) \}$$

which has signature (2, 2). With these identifications, the morphism (4.1) becomes:

$$(\operatorname{GL}_2(\mathbb{R}) \times \operatorname{GL}_2(\mathbb{R})) / \{ \pm (1,1) \} \hookrightarrow GO_V(\mathbb{R}) (X_1, X_2) \mapsto (M \mapsto X_2 M X_1^{\iota})$$

with $\nu((X_1, X_2)) = \det(X_1X_2)$. Since the symmetric space of $GO_V(\mathbb{R})$ has dimension 2 over \mathbb{C} , the above morphism has to be onto on the identity connected component. Also the symmetric space of $GO_V(\mathbb{R})$ has four connected components ($\mathcal{Y}(Q)$ has two), the above morphism has to be surjective and so it is an isomorphism. Given that the symmetric space of $\operatorname{GL}_2^+(\mathbb{R}) \times \operatorname{GL}_2^+(\mathbb{R})$ is $\mathfrak{H} \times \mathfrak{H}$, we find that $\mathfrak{Z} = \mathfrak{H} \times \mathfrak{H}$. But let us make this more explicit.

Since $V_{\mathbb{C}} \cong M_2(\mathbb{C})$ with $S^{\pm} = \pm \text{Tr}$, we have from the definition that:

$$\mathcal{Y}^{+} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2}(\mathbb{C}) \mid ad = bc, \ a\overline{d} - b\overline{c} + d\overline{a} - c\overline{b} < 0 \right\}$$
$$\mathcal{Y}^{-} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2}(\mathbb{C}) \mid ad = bc, \ a\overline{d} - b\overline{c} + d\overline{a} - c\overline{b} > 0 \right\}$$

Pick $v = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{Y}^- \sqcup \mathcal{Y}^+$ and suppose that c = 0. Then by the defining equation of \mathcal{Y}^{\pm} , ad = 0 and so $0 = a\overline{d} + d\overline{a} > 0$ (or < 0) which is a contradiction. Thus $c \neq 0$, and define $z = \frac{a}{c}$ and $w = \frac{-d}{c}$. Then $-zw = \frac{b}{c}$ and,

$$v = cp(z, w)$$
 with $p(z, w) = \begin{pmatrix} z & -wz \\ 1 & -w \end{pmatrix} = -^t(z, 1)(w, 1)J$

where $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. By the equation defining \mathcal{Y}^{\pm} , we have:

$$S^{\pm}(p(z,w),\overline{p(z,w)}) = \pm (z-\overline{z})(w-\overline{w}) = \pm 4\mathrm{Im}(z)\mathrm{Im}(w) \neq 0$$
(6.2)

Then we clearly have that $\mathcal{Y}^- \sqcup \mathcal{Y}^+ \cong \mathbb{C}^{\times} \times (\mathbb{C} - \mathbb{R})^2$ via $cp(z, w) \leftrightarrow (c, (z, w))$. The action of $(X_1, X_2) \in GO_{D_{\sigma}}(\mathbb{R})$ is given explicitly by:

$$X_2 p(z, w) X_1^{\iota} = p(X_2 \cdot z, X_1 \cdot w) j(X_2, z) j(X_1, w)$$
(6.3)

Thus $(X_1, X_2) \cdot (z, w) = (X_2 \cdot z, X_1 \cdot w)$ and the factor of automorphy $\mu((X_1, X_2), (z, w)) = j(X_2, z)j(X_1, w)$. Let us also define a spherical function:

$$v \mapsto [v; z, w]^k = S^+ [v, p(z, w)]^k$$

for a positive integer k > 0.

As before, let W be the subspace of $V_{\mathbb{R}}$ generated by $\operatorname{Re}(p(z,w))$ and $\operatorname{Im}(p(z,w))$ and decompose $V_{\mathbb{R}} = W \oplus W^{\perp}$. A direct calculation shows that W^{\perp} is generated by the real and imaginary part of $p(z,\overline{w})$. If $\operatorname{Im}(z)\operatorname{Im}(w) > 0$, then by (6.2), we have that S^+ is > 0 on W and S^+ is < 0 on W^{\perp} (the opposite for S^-). Let P^{\pm} be the positive majorant of S^{\pm} given by the above decomposition (cf [Hid20]), then we have that:

$$P^{\pm}(x,y) = \pm S^{\pm}(x_W, y_W) \mp S^{\pm}(x_{W^{\perp}}, y_{W^{\perp}})$$

To compute $P^{\pm}[v]$, note that $P^{\pm}[v] \pm S^{\pm}[v] = \pm 2S^{\pm}(v_W, v_W)$. So writing $v = cp(z, w) + \overline{c}p(\overline{z}, \overline{w}) + x$ with $x \in W^{\perp}$ and $c \in \mathbb{C}$, we have:

$$P^{\pm}[v] \pm S^{\pm}[v] = \pm 2S^{\pm}(cp(z+w) + \overline{c}p(\overline{z},\overline{w}), cp(z+w) + \overline{c}p(\overline{z},\overline{w}))$$
$$= \pm 4|c|^2S^{\pm}(p(z,w), p(\overline{z},\overline{w}))$$
$$= 4|c|^2(w-\overline{w})(z-\overline{z}) \ge 0$$

Now if $\operatorname{Im}(z)\operatorname{Im}(w) < 0$, then replacing W by W^{\perp} , w by \overline{w} , and repeating the calculations, we get that $P^{\pm}[v] \pm S^{\pm}[v] = 4|c|^2(\overline{w}-w)(z-\overline{z}) \geq 0$.

Since $S^{\pm}(v, p(z, w)) = \overline{c}S^{\pm}(p(z, w), \overline{p(z, w)}) = \pm \overline{c}(w - \overline{w})(z - \overline{z})$, we get that:

$$P^{\pm}[v] = \mp S^{\pm}[v] + \frac{|[v, z, w]|^2}{|\mathrm{Im}(z)\mathrm{Im}(w)|}$$

Write $\tau^{\pm} = \begin{cases} \overline{\tau} & \text{in case } + \\ -\tau & \text{in case } - \end{cases}$ and define a Schwartz function Ψ_k on $V_{\mathbb{R}}$ for $(\tau, z, w) \in \mathfrak{H} \times (\mathbb{C} - \mathbb{R})^2$ and $0 \leq k \in \mathbb{Z}$:

$$\Psi_k(\tau;z,w)(v) = \operatorname{Im}(\tau) \frac{[v,\overline{z},w]^k}{(z-\overline{z})^k (w-\overline{w})^k} \mathbf{e}_{\infty} \left(N(v)\tau^{\pm} + i \frac{\operatorname{Im}(\tau)}{2|\operatorname{Im}(z)\operatorname{Im}(w)|} |[v,z,\overline{w}]|^2 \right)$$

We choose a Bruhat function $\phi^{(\infty)}: D_{\sigma,\mathbb{A}^{(\infty)}} \to \mathbb{C}$, and put:

$$\phi = \phi_k = \phi^{(\infty)} \otimes \Psi_k$$

and consider Siegel's theta series $\theta(\phi_k) = \theta(\phi_k)(\tau, z, w) = \sum_{v \in D_{\sigma}} \phi(v)$. From (6.3), we have by direct computation that for $g \in D_E^{\times}$:

$$[g^{\sigma,-1}vg^{\iota,-1};z,w] = N(gg^{\sigma})^{-1}j(g^{\sigma}z)j(g,w)[v;g^{\sigma}z,gw]$$
(6.4)

and since $\operatorname{Im}(gz) = N(g) \frac{\operatorname{Im}(z)}{|j(g,z)|^2}$, we get that:

$$\frac{[v; g^{\sigma}\overline{z}, g\overline{w}]}{\mathrm{Im}(g^{\sigma}z)\mathrm{Im}(gw)} = j(g^{\sigma}, z)j(g, w)\frac{[g^{\sigma, -1}vg^{\iota, -1}; \overline{z}, \overline{w}]}{\mathrm{Im}(z)\mathrm{Im}(w)}$$

multiplying on both sides with $[v; g^{\sigma}z, gw]$, we get:

$$\frac{|[v; g^{\sigma}z, gw]|^2}{\operatorname{Im}(g^{\sigma}z)\operatorname{Im}(gw)} = N(gg^{\sigma})\frac{|[g^{\sigma, -1}vg^{\iota, -1}; z, w]|^2}{\operatorname{Im}(z)\operatorname{Im}(w)}$$

Thus for $\gamma \in D_E^{\times}$ with $N(\gamma) = 1$ and $\phi^{(\infty)}(\gamma^{\sigma,-1}v\gamma^{\iota,-1}) = \phi^{(\infty)}(v)$, we have:

$$\theta(\phi_k)(\gamma^{\sigma}z,\gamma w) = \theta(\phi_k)(z,w)j(\gamma^{\sigma},z)^k j(\gamma,\overline{w})^k$$
(6.5)

6.2 Differential form coming from theta series

Let $L_E(n; A)$ be the space of homogenious polynomials for each pari (X, Y) and (X', Y') of variables of degree n with coefficients in A for an E-algebra A. Suppose that $D_E \otimes_{\mathbb{Q}} A \cong M_2(A) \times M_2(A)$ for two projections inducing the identity and σ . We let $\gamma \in D_E$ act on $P(X, Y; X', Y') \in L_E(n; A)$ via $(\gamma \cdot P)(X, Y; X', Y') = P((X, Y)^t \gamma^\iota; (X', Y')^t \gamma^{\sigma\iota})$. Then,

$$\Theta(z,w) = \Theta(\tau;z,w) := \theta(\phi_k)(\tau;z,w)(X-\overline{w}Y)^{k-2}(X'-zY')^{k-2} \, \mathrm{d}z \wedge \mathrm{d}\overline{w}$$

is a \mathcal{C}^{∞} differential form with values in $L_E(k-2,\mathbb{C})$. Since $\gamma \cdot (X-zY)^{k-2} = j(\gamma,z)^{k-2}(X-\gamma(z)Y)^{k-2}$ and $d\gamma(z) = \det(\gamma)j(\gamma,z)^{-2}dz$, we have that:

$$\gamma^* \Theta(z, w) = \Theta(\gamma^{\sigma}(z), \gamma(w))$$

= $\theta(\tau; \gamma^{\sigma}(z), \gamma(w))(X - \gamma(w)Y)^{k-2}(X' - \gamma^{\sigma}(z)Y')^{k-2} d\gamma^{\sigma}(z)d\gamma(\overline{w})$
= $\gamma \cdot \Theta(z, w)$

where we write $\gamma \cdot \Theta$ for the action of γ on the value in $L_E(k-2, \mathbb{C})$. We write $\Theta(\tau; z); = \Theta(\tau; z, z)$. We let $L(n; A) = L_{\mathbb{Q}}(n; A)$ be the space of homogenious polynomials of degree n in the variables (X, Y) with coefficients in A. If $D \otimes_{\mathbb{Q}} A \cong M_2(A)$, we let $\gamma \in D$ act on $P(X, Y) \in L(n, A)$ via $(\gamma \cdot P)(X, Y) = P((X, Y)^t \gamma^\iota)$. Then by the Clebsch-Gordan decomposition, we have:

$$L_E(n,A)_{|D^{\times}} \cong L_{\mathbb{Q}}(n;A) \otimes L_{\mathbb{Q}}(n;A) \cong \bigoplus_{j=0}^n L_{\mathbb{Q}}(2n-2j;A)$$

We write $\pi: L_E(n, A) \to L_{\mathbb{Q}}(0, A) = A$ for the $SL_2(\mathbb{R})$ -equivariant projection given by:

$$\pi(P) = \frac{1}{n!^2} \nabla^n P \quad \text{where } \nabla = \frac{\partial^2}{\partial X \partial Y'} - \frac{\partial^2}{\partial Y \partial X'}$$

Then we have that:

$$\begin{split} \frac{1}{n!^2} \nabla^n (X^{n-i} Y^i X'^{n-j} Y'^j) &= \frac{1}{n!^2} \sum_{k=0}^n (-1)^k \binom{n}{k} \frac{\partial^{2k}}{(\partial X)^k (\partial Y')^k} \frac{\partial^{2(n-k)}}{(\partial Y)^{n-k} (\partial X')^{n-k}} (X^{n-i} Y^i X'^{n-j} Y'^j) \\ &= \begin{cases} (-1)^j \binom{n}{i}^{-1} & \text{if } n=i+j \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Thus we get from $(X - zY)^n (X' - \overline{z}Y')^n = \sum_{i,j=0}^n (-1)^{i+j} {n \choose i} {n \choose j} z^i \overline{z}^j X^{n-i} Y^i X'^{n-j} Y'^j$ that:

$$\pi((X - zY)^n (X' - \overline{z}Y')^n) = \sum_{i=0}^n \binom{n}{i} (-1)^i z^i \overline{z}^{n-i} = (\overline{z} - z)^n$$

6.3 Factoring the Theta series

We split the quadratic space as:

$$(D_{\sigma}^{\pm}, \pm N) = (Z^{\pm}, \pm N_{|Z^{\pm}}) \oplus (D_{0}^{\pm}, \pm N_{|D_{0}^{\pm}})$$

Then D_0^+ (resp. D_0^-) is 3 dimensional of signature (1,2) (resp. (2,1)) and Z^+ (resp. Z^-) has signature (1,0) (resp. (0,1)). We assume that there are Schwartz-Bruhat functions $\phi_Z \in \mathcal{S}(Z_{\mathbb{A}}^{(\infty)})$ and $\phi_0 \in \mathcal{S}(D_{0,\mathbb{A}}^{(\infty)})$ such that for $\mathfrak{z} \in Z_{\mathbb{A}}^{(\infty)}$ and $\mathfrak{n} \in D_{0,\mathbb{A}}^{(\infty)}$, we have a tensor product decomposition:

$$\phi^{(\infty)}(\mathfrak{z}+\mathfrak{n})=(\phi_Z\otimes\phi_0)(\mathfrak{z}+\mathfrak{n}):=\phi_Z(\mathfrak{z})\phi_0(\mathfrak{n})$$

of the Schwartz-Bruhat function in order to factor the theta series.

Next we study the decomposition of the infinite part. First decompose the spherical polynomial $[v; z, \overline{z}]$. For $\mathfrak{z} \in Z^{\pm} = \mathbb{Q}\delta_{\pm}$ and $\mathfrak{n} \in D_0$, we have:

$$[\mathfrak{z}+\mathfrak{n};\overline{z},z]^k = ([\mathfrak{z};\overline{z},z]+[\mathfrak{n};\overline{z},z])^k = \sum_{j=0}^k \binom{k}{j} \mathfrak{z}^j (\overline{z}-z)^j [\mathfrak{n};\overline{z},z]^{k-j}$$

Note that since $p(\overline{z}, z) = \begin{pmatrix} \overline{z} & -\overline{z}z \\ 1 & -z \end{pmatrix}$ so that $\operatorname{Re}(p(\overline{z}, z)) \in D_{0,\mathbb{R}}$ and $\operatorname{Im}(p(\overline{z}, z)) \in Z_{\mathbb{R}}$. Thus $[\mathfrak{n}, \overline{z}, z] = S^+(\mathfrak{n}, \operatorname{Re}(p(\overline{z}, z))) \in \mathbb{R}$. Hence,

$$|[\mathfrak{z}+\mathfrak{n};z,\overline{z}]|^2 = ([\mathfrak{n};\overline{z},z]+\mathfrak{z}(z-\overline{z}))([\mathfrak{n};\overline{z},z]-\mathfrak{z}(z-\overline{z})) = |[\mathfrak{n};z,\overline{z}]|^2 - \mathfrak{z}^2(z-\overline{z})^2$$

Now set

$$\Psi_{j}^{Z}(\tau)(\mathfrak{z}) = \mathfrak{z}^{j} \mathbf{e}_{\infty} \left(\mathfrak{z}^{2} \tau^{\pm} - i \frac{\mathrm{Im}(\tau)(z - \overline{z})^{2} \mathfrak{z}^{2}}{2\mathrm{Im}(z)^{2}} \right) = \begin{cases} \mathfrak{z}^{j} \mathbf{e}_{\infty}(\mathfrak{z}^{2} \tau) & \text{in case } + \\ \mathfrak{z}^{j} \mathbf{e}_{\infty}(-\mathfrak{z}^{2} \overline{\tau}) & \text{in case } - \end{cases}$$

and,

$$\begin{split} \Psi_{j}^{D_{0}}(\tau,z)(\mathfrak{n}) &= (z-\overline{z})^{-j}[\mathfrak{n};\overline{z},z]^{j}\mathbf{e}_{\infty}\left(N(\mathfrak{n})\tau^{\pm} + i\frac{\mathrm{Im}(\tau)|[\mathfrak{n};z,\overline{z}]|^{2}}{2\mathrm{Im}(z)^{2}}\right).\\ &= (z-\overline{z})^{-j}S^{+}(\mathfrak{n},\mathrm{Re}(p(\overline{z},z)))^{j}\mathbf{e}_{\infty}\left(N(\mathfrak{n})\tau^{\pm} + i\frac{\mathrm{Im}(\tau)S^{+}(\mathfrak{n},\mathrm{Re}(p(\overline{z},z)))^{2}}{2\mathrm{Im}(z)^{2}}\right) \end{split}$$

By the calculations above, we get that:

$$\operatorname{Im}(\tau)^{-1}(z-\overline{z})^{k}\phi_{k}(\tau;z,z) = \sum_{j=0}^{k} (-1)^{j} \binom{k}{j} \phi_{Z} \Psi_{j}^{Z}(\tau) \otimes \phi_{0} \Psi_{k-j}^{D_{0}}(\tau;z)$$
(6.6)

6.4 The period integral

We assume that the level of $\theta(\phi_k)$ with respect to τ is of the form $\Gamma_{\tau} = \Gamma_0(M)$ for some integer M > 0. For $\alpha \in D_{\sigma}^{\pm} \cap D_E^{\times}$, let:

$$\widehat{\Gamma}_{\alpha} = \{ x \in O_{\alpha}(\mathbb{A}^{(\infty)}) \mid \phi^{(\infty)}(xv) = \phi^{(\infty)}(v) \; \forall v \in D_{0,\mathbb{A}^{(\infty)}} \}$$

and $\operatorname{Sh}_{\alpha} = \operatorname{Sh}_{\alpha,\phi} = O_{\alpha}(\mathbb{Q}) \setminus O_{\alpha}(\mathbb{A}) / \widehat{\Gamma}_{\alpha} C_{\alpha}$ where C_{α} is a maximal compact subgroup of $O_{\alpha}(\mathbb{R})$. We write z = x + iy, $\tau = \xi + i\eta$, $\operatorname{Sh} = \operatorname{Sh}_{\delta}$, and consider for $F \in S_k^{\mp}(\Gamma_{\tau}, \varphi \chi_{D_{\sigma}}^{\pm})$ and n = k - 2:

$$P_{\delta}'(F) := \int_{\mathrm{Sh}} \int_{\Gamma_{\tau} \setminus \mathfrak{H}} n!^{-2} \nabla^{n} \Theta(\tau; z, z) F(\tau) \eta^{k-2} \, \mathrm{d}\xi \mathrm{d}\eta$$
$$= \int_{\mathrm{Sh}} \int_{\Gamma_{\tau} \setminus \mathfrak{H}} (\overline{z} - z)^{n} \theta(\phi_{k}) F(\tau) \eta^{k-2} \, \mathrm{d}z \wedge \mathrm{d}\overline{z} \, \mathrm{d}\xi \mathrm{d}\eta$$

since $dz \wedge d\overline{z} = -2idx \wedge dy$ and $-\frac{1}{4}(\overline{z}-z)^2 y^{-2} = 1$, the above integral is equal to:

$$\frac{i}{2} \int_{\Gamma_{\tau} \setminus \mathfrak{H}} \left(\int_{\mathrm{Sh}} (\overline{z} - z)^k \theta(\phi_k)(\tau; z, z) y^{-2} \, \mathrm{d}x \mathrm{d}y \right) F(\tau) \eta^{k-2} \, \mathrm{d}\xi \mathrm{d}\eta$$

Choose a lattice L of D_{σ} and assume $L = L_Z \oplus L_0$ for lattices $L_Z \subset Z$ and $L_0 \subset D_0^{\pm}$. We take ϕ_0 to be the characteristic function of $\hat{L}_0 \subset D_0 \otimes_{\mathbb{Q}} \mathbb{A}^{(\infty)}$ and we choose in subsection 6.5 the finite part ϕ_Z of ϕ^Z which has open support in \hat{L}_Z^* .

6.5 Choice of ϕ_Z

6.6 Siegel Weil formula

Since $O_Z(\mathbb{R}) = \{\pm 1\}$, the action of $g \in O_V(\mathbb{R})$ on $\Psi_j^Z(i)(\mathfrak{z}) = \mathfrak{z}^j \mathbf{e}_\infty(\mathfrak{z}^2 i)$ is trivial. For $g_\tau = \begin{pmatrix} 1 & \operatorname{Re}(\tau) \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \operatorname{Im}(\tau)^{1/2} & 0 \\ 0 & \operatorname{Im}(\tau)^{1/2} \end{pmatrix} \in \operatorname{SL}_2(\mathbb{R})$, we have that $g_\tau(i) = \tau$, and so: $\mathbf{r}_Z(g_\tau) \Psi_j^Z(i)(\mathfrak{z}) = \mathbf{r}_Z(\begin{pmatrix} 1 & \operatorname{Re}(\tau) \\ 0 & 1 \end{pmatrix}) \operatorname{Im}(\tau)^{\frac{1+2j}{4}} \mathfrak{z}^j \mathbf{e}_\infty(\operatorname{Im}(\tau) \mathfrak{z}^2 i)$ $= \operatorname{Im}(\tau)^{\frac{1+2j}{4}} \mathfrak{z}^j \mathbf{e}_\infty(\mathfrak{z}^2(\pm \operatorname{Re}(\tau) + i\operatorname{Im}(\tau)))$ $= \operatorname{Im}(\tau)^{\frac{1+2j}{4}} \Psi_j^Z(\tau)(\mathfrak{z})$

Since the even Clifford algebra of D_0 is D, we have by theorem 1.9 that $SO_{D_0}(\mathbb{R}) \cong PGL_2(\mathbb{R})$ by τ_{D_0} with the action on the matrices by conjugation, and for $g_z = \begin{pmatrix} \operatorname{Im}(z)^{\frac{1}{2}} & \operatorname{Re}(z)\operatorname{Im}(z)^{-\frac{1}{2}} \\ 0 & \operatorname{Im}(z)^{\frac{-1}{2}} \end{pmatrix} \in PGL_2(\mathbb{R})$ we have by (6.4):

$$\mathbf{r}_{D_0}(g_{\tau}, g_z)\Psi_j^{D_0}(i; i)(\mathfrak{n}) = \mathbf{r}_{D_0}(g_{\tau})\Psi_j^{D_0}(i; z)(\mathfrak{n}) = \operatorname{Im}(\tau)^{(3+2j)/4}\Psi_j^{D_0}(\tau; z)(\mathfrak{n})$$

As the Siegel-Weil formula is stated with respect to the theta series of variable $g \in O_{D_0}(\mathbb{A})$ and not with respect to z, we lift $\theta(\phi_k)(\tau; z, z)$ to a function $\theta(\phi_k)(\tau; g)$ on $O_{D_0}(\mathbb{A})$ in the standard way by:

$$\boldsymbol{\theta}(\phi_k)(\tau;g) = \theta(\phi_k)(\tau;g \cdot i,g \cdot i)|j(g,i)|^{-2k}$$

then we have by (6.6) that:

$$\begin{aligned} \boldsymbol{\theta}(\phi_k)(\tau;g_z) &= (z-\overline{z})^k \boldsymbol{\theta}(\phi_k)(\tau;z,z) = \eta \sum_{j=0}^k (-1)^j \binom{k}{j} \boldsymbol{\theta}(\phi_j^Z)(\tau) \boldsymbol{\theta}(\phi_{k-j}^{D_0})(\tau;z) \\ &= \eta \sum_{j=0}^k (-1)^j \binom{k}{j} \boldsymbol{\theta}(\phi_j^Z)(\tau) \mathbf{r}_{D_0}(g_z) \boldsymbol{\theta}(\phi_{k-j}^{D_0})(\tau;i) \end{aligned}$$

Hence,

$$\begin{split} \int_{\mathrm{Sh}} \eta^{-1} (z - \overline{z})^k \theta(\phi_k)(\tau; z, z) \frac{\mathrm{d}x \mathrm{d}y}{y^2} &= \sum_{j=0}^k (-1)^j \binom{k}{j} \theta(\phi_j^Z)(\tau) \int_{O_{D_0}(\mathbb{Q}) \setminus O_{D_0}(\mathbb{A}) / \widehat{\Gamma}_{\delta} C_{\delta}} \mathbf{r}_{D_0}(g) \theta(\phi_{k-j}^{D_0})(\tau; i) \, \mathrm{d}\mu_g \\ &= \mathfrak{m} \sum_{j=0}^k (-1)^j \binom{k}{j} \theta(\phi_j^Z)(\tau) E(\phi_{k-j}^{D_0}) \end{split}$$

by the Siegel-Weil formula (theorem 2.3). Here we normalize the Haar measure $d\mu_g$ on $O_{\delta}(\mathbb{A})$ so that it has volume 1 on $\widehat{\Gamma}_{\delta}C_{\delta}$, and \mathfrak{m} satisfies $d\mu_g = \frac{\mathfrak{m}}{2}d\omega_{O_{\delta}}$ for the Tamagawa measure $d\omega_{\delta}$ of O_{δ} (the factor of $\frac{1}{2}$ is because $\int d\omega_{O_{\delta}} = 2$).

References

- [Gel76] S.S. Gelbart. Weil's representation and the spectrum of the Metaplectic group. Lecture notes in Math.530 Springer, 1976.
- [Hid06] H. Hida. Anticyclotomic main conjectures. Documenta Math., Volume Coates: 465–532, 2006.
- [Hid20] H. Hida. Siegel-weil formulas. https://www.math.ucla.edu/~hida/RT01F.pdf, 2020.
- [Kub67] Tomio Kubota. Topological covering of SL(2) over a local field. Journal of the Mathematical Society of Japan, 19(1):114 – 121, 1967.
- [Shi73] Goro Shimura. On modular forms of half integral weight. Annals of Mathematics, 97(3):440– 481, 1973.
- [Shi10] Goro Shimura. Arithmetic of Quadratic Forms. Springer, 2010.
- [Wal85] J.L. Waldspurger. Sur les valeurs de certaines fonctions l-automorphes en leur centre de symétrie. *Compositio Mathematica*, 54:173–242, 1985.
- [Wei64] A. Weil. Sur certains groupes d'opérateurs unitaires. Acta Math., 111:143–211, 1964.