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Chapter 1

Introduction

In 1994, when A. Wiles presented the proof of the Taniyama-Shimura conjecture, the whole math-
ematical community was in surprise and admiration. He had not only solved a problem that, for
centuries, withstood the attacks of some of the most brilliant, but he also had introduced an arsenal of
tools and methods that will certainly be useful for generations to come. This thesis is an attempt to
expose some of these ideas and see how they are applied in various settings. Indeed, given a number
field F and a Galois representation p : Gp — GL2(Q,) such that its reduction p : Gp — GLa(F,) is
known to be automorphic, one could ask as in the work of A. Wiles, what conditions should p satisfy
for it to also be automorphic. Results that go in this direction are called modularity lifting theorems.

In the first part of this thesis, we will present and prove an instance of these theorems. The general
strategy for the proof is to introduce a universal deformation ring R which in some sense encodes
the lifts of the residual representation p, and also a Hecke algebra T acting on a space of automor-
phic forms S together with a representation p™°? : Gp — GLo(T) that includes all the automorphic
Galois representations reducing to p. Universality of R implies that we have a surjective morphism
R — T which turns out to be an isomorphism, thereby giving us a morphism ¢ : T — @p such
that p = ¢ o p™°9d. This is exactly saying that our representation is automorphic, and so the whole
difficulty lies in showing the equality “R = T” which is done using the “Taylor-Wiles-Kisin method”.
The way this method works is that we carefully choose different sets ) of places of F', called sets of
Taylor-Wiles places, in a way that if we relax the conditions on the deformations of p at these primes,
we obtain a larger universal ring Rg which fits into a diagram

J[Ag] Rg End(Sg)

| |

R — End(S)

where J[Ag] is a group algebra with an augmentation ideal ag, and Sg is a space of automorphic
forms which is finite free over J[Ag| with Sg/ag = S and Rg/ag = R. In a process of taking the
limit of this diagram over various Taylor-Wiles sets, the algebra J[Aq] successively approximates a
power series algebra J,, with augmentation ideal a.,, and we get a diagram

To Roo End(S«)

| |

R — End(S)



with the same properties as the one above. Only this time, by careful considerations of the dimension
of Ry and using tools from commutative algebra, we are able to deduce that S, is finite free over
R~. Reducing modulo a,,, we get that S is finite free over R. But given that the action of R on S
factors through T, which acts faithfully on S, we deduce the equality R = T.

The subtleties that arise in using this method, notably in the choice of the Taylor-Wiles places, makes
it technically very difficult to work with reducible p, so one usually imposes many restrictions on the
residual representation.

In their recent work [NT20], J. Newton and J. Thorne used the Taylor-Wiles-Kisin method to prove,
under very weak conditions, the vanishing of the adjoint Bloch-Kato Selmer group for automorphic
Galois representations. In fact in their treatment, they were able to avoid imposing restrictions on
the residual representation. The content of their article will be the focus of the second part, which is
the core of this thesis. We will be interested in showing how they managed to surpass the technical
difficulties that arise when working with a reducible residual representation, in the hope of being able
to transpose the techniques they used to other problems and situations in the future.



Part 1

Some modularity lifting theorems



Chapter 2

Deformation of (zalois representations

One of the main tools in the proof of modularity lifting theorems is the use the deformation theory
of Galois representations introduced and developed by B. Mazur. The idea is that given a residual
representation p : I' — GL,, (k) of a group I" with coefficients in a field k, one can consider the functor
that associates to a local of all deformations of p. The universal deformation ring obtained is far too
big to be useful. However we will be able to cut it down by adding conditions on the deformations of
our residual representation. In particular, if F' is a number field and p : Gp — GL,(k), then we can
these conditions take place for the restriction of the lifts to each local Galois group associated to a
place.

2.1 Basic definitions and results

Let I" be a profinite group, and p : I' — GL, (k) be a continuous representation with coefficients
in a finite field k of characteristic p. Let A be a complete discrete valuation ring with residue field
k (e.g., W(k)). We let C} to be the category of Artinian local A-algebras of residue field k, with
local morphisms that induce the identity on k. Let Cp be the category which consists of complete
Noetherian local A-algebras with residue field k.

If A € Cp, we say that a continuous homomorphism

p:T'— GL,(A)
is a lift of p if m o p = p where 7 : A — k is the canonical quotient. We say that two lifts of p
p1,p2: I — GL,(A)

are strictly equivalent if there exists a matrix M € T',(A) = ker (GL,(A) — GLy(k)) such that
Mp1 = po M. This is an equivalence relation, and we define a deformation of p to be a strict equivalence
class of lifts of p. This way, we can define two functors:

D :Cpx — Sets
A +— { deformations of p with coefficients in A}

which is called the deformation functor of p, and

DY . Cp — Sets
A — { lifts of p with coefficients in A}

which is called the lifting functor of p.



D and D" are continuous functors, so they are completely determined by their values in the subcategory
cs.

Suppose that I' satisfies Mazur’s ®,-condition:
Condition @, : For each open subgroup I'' C T, there are only finitely
many continuous homomorphisms I'" — F),
Then, the functor DU is representable, i.e., there exists a ring R- . € Cy and a continuous represen-

univ
tation puniv : I' — GLn(REniV) such that for all A € Cp, we have a natural bijection

Homg, (R

univ’

A) = D (A)
f — f O Puniv

For example this is the case if I' = Gx where K is a local field , or if I' = G g for F' a number field
and S a finite set of places.

If moreover, p has trivial endomorphisms, which is the case if p is absolutely irreducible, then by
[Gou95, Theorem 3.10], we get that D is representable. So there exists a ring Runiv € Cp and a
deformation of 5, puniv : I' = GLp(Runiv) with Home, (Runiv, —) = D(—).

2.1.1 The tangent space

We now define the tangent space of the universal deformation ring which can be naturally identified
with certain cohomology groups. Using results from Galois cohomology, this allows us to find bounds
on the number of generators and relations of the universal deformation ring.

Let A € Cp. We define the cotangent space of A to be
th =my/(m4 +my)

Note that this has the structure of a A/my = k-vector space which is finite dimensional since A is
Noetherian. We define the Zariski tangent space of A to be the dual of the cotangent space, i.e.,

ta = Homy (ma/(m% + ma), k)
Proposition 2.1.1. t4 is naturally isomorphic to Homp (A, kle]).

Proof. A morphism of A-algebras A — kle] is given by z +— T + ¢(x)e where ¢ : A — k is a A-algebra
morphism. It is not hard to see that ¢ is determined by the image of m4 and that it kills my and
m?. O
Lemma 2.1.2. D"(k[¢]) is canonically isomorphic to Z'(T',ad p), and D(k[e]) is canonically isomor-
phic to H*(G, ad p).

Proof. Let p be a lift of p to k[e], then we can write p(v) = p(v) + c(v)p(7)e with ¢(y) € My, (k). One
can verify that v ~ ¢(v) defines an element of Z!(I',ad p). Conversely, for such a c, the formula gives
a lift of p. A strict equivalence in D" (k[e]) corresponds to adding a coboundary in Z'(I",ad p). O

Proposition 2.1.3. We have dimy, D" (k[e]) = dimy D(k[e]) + n? — dimy H(T, ad p).

Proof. The map D" (k[e]) — D(k[e]) corresponds to Z'(G,ad p) — H'(G,adp). Its kernel BY(T', ad p)
corresponds to the image of adp in Z!(I",ad p) via the map M s (v — p(v)Mp(y)~! — M). So it is
adp/adp'. O

Note that HO(T,adp) = {M € M,(k) | p(Y)M = Mp(y) ¥y € I'}, so if 5 is irreducible, then
dimy, HY(T',adp) = 1.



2.2 Deformation conditions

In practice, the universal deformation ring is too big to be useful. That is why we need to cut it
down by imposing several conditions on the deformation functor such as fixing the determinant of the
representations considered. In order for the obtained subfunctor to be represented in Cy, it needs to
satisfy certain properties which are given in the following definition:

Definition 2.2.1. A lifting problem P is the data, for all A C CY, of a subset D3(A) of D7(A)
satisfying the following properties:

1. p € DH(k).
2. Let f: A— B be amap in C{. If p € DH(A) then fop € D3(B).
3. D% is a continuous subfunctor of DH.

4. Let A — C and B — C be maps in C{, and let D = A x¢ B with maps p : D — A and
q: D — B. Then, p € DH(D) if and only if po p € D3(A) and qo p € D(B).

5. Let f: A — B be an injective map in C}. Then, p € D%(A) if and only if fop € D%(B).
A deformation problem is a lifting problem satisfying moreover
6. If p € DH(A) and g € I',(A), then gpg~* € D3(A).

This gives a functor

D5 : C} — Sets
which we extend to Cp by continuity.
Remark 2.2.2. Let D' be a subfunctor of D and assume they are both representable by R’ and R, then
there is a natural map R — R’. This map is surjective. Indeed, it suffices to check that the map on
the cotangent spaces is surjective. But the map on the cotangent spaces is dual to the map on the
tangent spaces which is injective since D’(k[e]) C D(k[e]).
We want for a deformation condition corresponds to a closed subspace of the space of all deformations

Spec R. This is given by the existence of an ideal I such that for any f: R — A, f o p"™IV A satisfies
the deformation condition if and only if f factors through R/I.

This idea is illustrated by the following proposition.
Proposition 2.2.3. Assume that D5 is represented by R".

1. Let P be a lifiting problem. There exists a closed ideal I(P) of R™ such that: for any object A
of Ca, p € D%(A) if and only if the map RP — A corresponding to p factors through RE/I(P).

2. If I be a closed ideal of R, we define P(I) by letting, for each object A of C3, D%(I)(A) to be

the set of p € DY(A) such that the corresponding map R® — A factors through I. Then, P(I)
s a lifting problem.

3. I(P(I)) =1 and P(I(P)) = P.

4. If P is a lifting condition, then D% is represented by R /I(P).



Proof. Let £ be the set of open ideals I of RY such that the representation given by the map R —
RY/T lies in DH(RY/I). Then, € is non-empty since it contains the maximal ideal by 1). Moreover,
given two ideals I; and I5 in &£, we have an injection

RY/(hN1Ty) = R/ X goy g, 41y R/ 2

so by conditions 4) and 5), we get that I N Iy € £ (The fiber product exists in C since all the rings
are Artinian).

Now, given a descending chain of ideals in £ Io D I1 D I O ..., we have R/, I; = @R/Ii. Hence,
condition 3) gives (), I; € £. We define I(P) to be the intersection of all the ideals in £. It is a closed
ideal since here, open ideals are closed. And by the above properties, I(P) € £.

Consider now an object A of Cx, and p € DY(A). Let u : R~ — A be the associated morphism. If
I(P) C ker(u), so that u factors through R/I(P) and p € D5(A) by property 2).

Conversely, suppose that p € D%(A). We have an injection R”/keru — A. So by property 5), the
representation corresponding to B2 — R”/ker u lies in D3(RY/ ker u). Hence, I(P) C ker(u). O

Remark 2.2.4. The same theorem hold if we assume that P is a deformation problem. Although we
additionally require that I is radical and 1 + M,,(mpzn)-stable (see [BLGHT1I, Lemma 3.2]).

2.3 Representations with values in a subring

In this section, we present a theorem due to Carayol which states that a deformation of an absolutely
irreducible representation is uniquely determined by its trace. Before stating and proving this theorem,
we need to introduce some other preliminary results.

Theorem 2.3.1 (Jacobson Density).

Let E be a simple R-module, and let D = Endg(FE). If f € Endp(F) and z1,...,x, € E, then there
exists v € R such that f(x;) =r-x; for all1 <i <n. Consequently, if E is finitely generated over R,
then the natural map R — Endp(E) is surjective.

Proof. Consider the following morphism
Fm o Er — BT
Y1 f(y1)

" Flgm)

Let D™ = Endg(E") which identifies with the ring M,,(D) of matrices with coefficients in D. Since
f commutes with the elements of D, then f(™ e Endpm) (E™). Now let = Yx1,...,x,), by semi-
simplicity of E™, we can write £ = R-x @& W. So let us denote by 7 the projection map of E onto
R - z. Therefore, 7 € D™ and

So f(z) € R -z, from which the theorem follows. O

Corollary 2.3.2 (Burnside). If p: I' = GLy, (k) is absolutely irreducible, then the map k[I'| — M, (k)
18 surjective.

Proof. We apply Theorem to R = k[I'] and E = k™. Since p is absolutely irreducible, we have
that D = k from which the corollary follows. O



Theorem 2.3.3. Let R € Cyp, and let p,p’ : T' — GL,(R) be two representations with coefficients in
R. Suppose that p is absolutely irreducible and that Tr p(y) = Tr p'(7) for all v € T. Then, p and p’
are equivalent.

Proof. The two representations p, p extend to R-algebra homomorphisms u,u’ : R[I'] — M, (R). We
will show that these two morphisms are conjugated by an element of GL,(R). Given that it is enough
to show this modulo m’jLz for ¢ > 1, we can suppose that R is Artinian.
We proceed by induction on the length of R, so let us first show the result for R = k a field. Consider
the linear map ¢ : R[['] — k,x — Tru(z). Then, by the fact that the trace map is a perfect pairing
on matrices and by surjectivity of u (Corollary 2.3.2), we have that keru = {z € R[I] | t(zy) =
0 Yy € R[['|}. This description shows that keru’ C kerw, so that we have a natural surjective
map R[[]/keru’ — R[[]/keru = M, (k). But since dimj R[[']/keruv’ = dimyim(u’) < n?, this
map is actually an isomorphism which implies that ker u = kerv’ and im(u') = M, (R). Now every
automorphism of M, (k) is given by conjugation by an element of GL, (k), applying this to the above
isomorphism gives the conjugation between u and v’ as desired.
Now assume that R is not a field, and let I = (a) be an ideal of R such that mrpl = 0. By the
induction hypothesis, we can suppose that p and p’ coincide modulo I. So let us write p = p' + ¢
with § : R[['] — MY(I) (trace 0 matrices) is an R-linear map. It is not hard to verify that §(zy) =
p(x)0(y) + 6(x)p(y) Va,y € R[T]. If y € kerp, then Tr (p(2)d(y)) = Tr (6(zy)) = 0 Vz € R[I']. Since u
is surjective (Corollary , we have that §(y) = 0. Therefore, ¢ factors through ker p so it induces
a k-linear map M, (k) — M, (k) = M,,(I) (I is principal) which is a derivation. But all derivations on
M,, (k) are given by conjugation by a matrix (in other words the first lie algebra cohomology group
Hl(gl,,ad gl,,) vanishes). So there exists M € M, (k) such that §(x) = p(x)M — Mp(x) Vz € R[T].
Therefore, (1+ M)p = p'(1 + M) as desired.

O

Let R € Cp and suppose that k = R/mp is finite. Let R’ be an R-algebra which is finite as an
R-module. Then, R’ is semi-local, and we can write R = [[;_, R; where R} is local R-algebra with
maximal ideal m/ and residual field &} D k.

Suppose that we have representations p} : I' — GL,,(R}), which give rise to a representation p' : I' —
GL,(R') = I[;_o GLn(R}). Furthermore, suppose that ¥y € T, Trp'(y) € R. In particular, we have
for all v € ', Tr (p;(7)) € k and is independent of i. Finally, suppose that for some i, the residual
representation p is absolutely irreducible.

Theorem 2.3.4. Under these hypotheses, p' is equivalent to a representation coming from a repre-
sentation p : I' = GL,(R). Moreover, p is unique up to strict equivalence.

Proof. Uniqueness follows from Theorem [2.3.3] so we only need to show existence.

First, suppose that R = k and R’ =k’ is a finite extension of k. The representation p’ : T' — GL, (k)
induces a morphism of k’-algebras u : k'[I'] — M, (k). Let e1,...,e,2 € p/(I') a basis of M, (k') as a
k'-vector space (which is possible by Corollary [2.3.2)), and let A = u(k[I']) so that Va € A, Tr(a) € k.
We want to show that dimy A = n?. Writing a € A as a = aje1 + - - - + a,,2¢,,2, this amounts to saying
that a; € k. But we have Tr(ye;) = >, a; Tr(eze;), and the matrix

(Tr(eiej))m € M,2(k)

is invertible in M, (k), hence in M, (k), since the trace pairing is a perfect pairing. So we get that
a; € k as desired.

Therefore, we have that A ®p k' = M, (k") which implies that A is a central simple algebra. Indeed,
Z(A) @k K C Z(A® k') =K -id, and comparing dimensions gives us Z(A) = k - id. Moreover, if [
is a two sided left ideal of A, then I ®j k' is a two sided left ideal of M, (k’), so I ®; k' = 0 which



implies that I = 0. However, since k is finite, Br(k¥'/k) = 0, so A = M, (k). Therefore, given that any
automorphism of M,, (k) is inner, p’ is conjugate to a representation with values in GL, (k).

Back to the general setting, the previous case tells us that the p} are all conjugate to the extension to
k! of some representation p : I' — GL,, (k). So up to conjugation, we can assume that all the 7 have
image in GL, (k) and are equal, in which case p’ takes values in GL,,(R”) where R" = {z = (2;) €
R' | 7; =T; € k Vi,j} is local with residue field k. Therefore, we can suppose that R’ is local with
residue field k, and by arguments of continuity we can also suppose that R’ is Artinian.

Now to prove the theorem, we proceed by induction on the length of R’. The case length(R’) = 0
i.,e. R’ = k has already been dealt with. So let us assume that R’ is not a field and let I be a
non-zero principal ideal such that mg I = 0. We have an injection R/(RNI) < R'/I, so by induction
hypothesis, we can assume that p’ : I' = GL,,(R'/I) has coefficients in R/(RNI). Up to changing R’ by
the subring R” = {z = (z;) € R' | z; = ; € R/(RNI) mod I}, we can assume that R'/I = R/(RNI).
If I C R, then we get R = R’, and the theorem is trivial. Otherwise, RN I = {0} (length(I) = 1).
So R’ = R @ I with multiplication given by (r,i)(r’,i') = (rr’,r"i + ri’), and we can write p'(y) =
po(y) + p1(y) with po : ' = GL,(R) a representation and p;(y) € M, (I). As Trp'(y) € R, we have
Tr p' = Tr pg, so by Theorem they are equivalent which is what we want to prove. O

2.4 Global deformation problems

Let F' be a number field, S a finite set of finite places of F' containing all places above p, and T a
subset of S. We fix an algebraic closure F of F, and we let Fg be the maximal subextension of F
which is unramified outside of S. We write G = Gal(F/F) and Gr g = Gal(Fs/F). We consider an
absolutely irreducible representation p : Gr s — GL, (k) and we let A = W (k).

The Galois representations that we will study have local properties which we want to single out (for
example properties related to ramification and p-adic Hodge theory which are satisfied by automorphic
Galois representations). Our goal in this section will be to set the right framework to do so by defining
a global deformation functor which encodes deformation conditions at different places of F'. The same
approach in a slightly more general setting can be found in [Thol6l §5.2 and §5.3].

Let ¢ : Gpg — A* be a lift of det p, I'y(A) = ker ( GL,(A) — GL,(k)), and suppose that (p,n) = 1.
The last condition implies that ad’s is a direct summand of adp.

For v € S, we write DY) : Cy — Sets for the lifting functor of Pla, with fixed determinant ) which is
represented by an object RL' € Cy. As a standard notation, we will write h?(---) for dimy H(---).

Definition 2.4.1. A global deformation problem is a tuple

§= (ﬁ? 7/)7 Sa {DU}UES})
where:
e p,2) and S are defined as above;

e For each v € S, D, C DY is a deformation problem for PG, called a local deformation problem.

Definition 2.4.2. Consider a global deformation problem S = (p,%,5,{Dy}ves}). Let A € Ca, and
let p: Gps — GL,(A) be a lift of p. We say that p is of type S if it satisfies the following conditions:

e detp =1, ie, detp: Gpg — A* agree with the composite of ¢ : Gr g — A* with the structural
morphism A* — AX;

e For each v € S, the restriction pig,, lies in D, (A).

9



We write D3 for the functor Cy — Sets that associates to A € Cy the set of liftings p : Gpg — GL,,(4)
of p that are of type S.

Definition 2.4.3. If A € Cp, we define a T-framed lifting of p to A to be a tuple (p, {ay }ver), Where
p: Grps — GL,(A) is a lifting of p and «, € GL,(A4). Two T-framed liftings (p, {ay}ver) and
(¢, {al }oer) are said to be strictly equivalent if there exists 8 € I',(A) such that p/ = BpB~! and
ol = Ba, for allv e T.

We write ’Dg for the functor Cy — Sets that associates to A € Cp the set of strict equivalence classes
of T-framed liftings (p, {cw }ver) such that p is of type S.

Theorem 2.4.4. Let S = (ﬁ,w, S, {Dv}ues}) be a global deformation problem. The functors DE and
Dg are represented by objects Rg‘ and Rg of Cy.

If T =0, we write R¥Y for RL. Let S = (ﬁ, ¥, S, {Dv}veS}) be a global deformation problem, then
D, C DY is represented by a ring R, which is a quotient of R'. There is a natural transformation
D:‘g — [Iyer Do, that sends (p, (av)veT) to (a;1p|Gvav)v€T. But the functor [],
by Rioc := Quer Ry (where the tensor product is taken over A). So we get a map of rings Rjoc — Rg.

Remark 2.4.5. Fix some vy € T, and let 7" = T — {vg}. We define a functor D’ by letting D'(A) =
DF(A) x [Iyeqv Tn(A), for A € Cy. Then, we have a natural transformation D' — D% sending
(p, (aU)UGT/) to (p, (av)veT) with o, = 1, which is actually an isomorphism. Since the functor
A Ty (A) is represented by A[[X1,..., X,2]], we get that the ring RL is a power series ring over RE
in n?(#T — 1) variables. On the other hand, the functor DE — Dg is formally smooth. So looking at
the description of the tangent spaces as k[e]-points, we get that Rg' is a power series ring over Rgni"
in n? — 1 variables (p has trivial endomorphisms). In conclusion, Rg is a power series ring over Rgniv
in n?#7T — 1 variables.

D, is represented

Presentation of the deformation ring

We want to compute the tangent space of the deformation ring Rg as an Rj,.-algebra. That is to
compute mpr / (méT, mp,.). Recall that we have canonical isomorphisms:
S

ZY(G,,ad"p) = Homy, (ng/(még,mA), k) = Home, (R, k[e])

We let £, C ZY(G,,ad’p) be the the preimage of the subspace Homy, (mg,/(m% ,mp), k) under the

above isomorphism. Since D, is a deformation problem, £, is the preimage of a subspace £, C
HY(Gy,ad"p).
For our purpose, we introduce some cohomology groups. So let us consider the following complexes:

@ C%G,,adp) if i =0
) veT _
Cloc(ad’p) = § BuerC (G, ad"p) B @ves - 1C (Gy,ad’p) /L, ifi=1
@ C(Gy,ad"p) otherwise
veES

where C*(G,,ad’p) is the cochain complex of continuous inhomogeneous cochains.

Denote by C*(GF,s,ad”p) the complex given by

CO(GF,S,adﬁ) ifi=0

i 05y — .
C*(Grs,ad’p) = { C'(Grs,ad’p) ifi>0

10



The inclusion G, — G, gives rise to a map of cochain complexes C*(G rs,ad’p) — Cp _(ad’p).
Taking the cone of this map, we obtain a cochain complex

C$r(ad’p) = C*(Gr.s,ad%) @ Cr(adp)

loc
where the boundary map is given by
Cs,7(ad’p) — C§'7 (ad’p)
(¢, (Po)o) = (09, (D, — Opu))

Later we will identify the tangent space of RL over Rjo. with H: (G, ad’p). Hence, computing its

dimension over k tells us the number of generators of Rg over R),c, which is what we will do next. So
consider the short exact sequence:

0 — Cpt(ad’p) = C& 1 (ad’h) — C*(Grs,ad’p) — 0

loc

which induces a long exact sequence of cohomology groups

0 —— HY 1 (Gps,ad’p) —— H°(Gps,adp) @ H(G,,adp) 7
veT

L Hé,T(GF,S7adOﬁ) — Hl(GF,Saa'doﬁ) B @ HI(G’I)?adOﬁ) S5 @ Hl(FvaadOﬁ)/ﬁv j
veT veS-T

L HZ 1 (Grs,ad’p) —— H?*(Grs,ad"p) P H%(G,,ad"p)
veS

Note that all the cohomology groups involved are finite. Moreover if ¢ > 3, for each finite place v we
have H'(G,,ad’p) = 0; and we have H* (G g,ad’p) = Bcs. H (G, ad’p). But given that p > 2, for
an infinite place v, the orders of G, and ad’p are coprime, so we have H Gy, adoﬁ) =0for¢>0. In
particular, Hi(GF,S, adoﬁ) =0 for 7 > 3. As a consequence, for ¢ > 3, we have HE,T(GF,S, adoﬁ) =0.
Taking the Euler characteristic of the above long exact sequence, we get a formula:

XS,T(GRs,adOﬁ):X(GES,adoﬁ)—ZX(Gpv,adoﬁ)— Z (dimkﬁv—hO(Gv,adOﬁ))—i—l—#T (2.1)
veS veS-=T

since h0(G,,adp) = h°(G,ad"p) +1 as well as h®(Grs,adp) = h°(GFs,ad’p) +1 (the identity matrix
is fixed by adp). By Tate’s global Euler characteristic formula [Mil06, Ch. I, Thm. 5.1] we have

X(Grs,ad’p) = > h(Gy,ad’p) — [F : Q](n® — 1)

’UGSOO

and by Tate’s local Euler characteristic formula [Mil06, Ch. I,Thm. 2.8], for a non-archimedean place
v, we have:

X(Gu,ad"p) = — dimy, ([0, : [ad®p|O,))

which equals to 0 if p{ v, so we have :

S x(Goad%p) = = 302~ 1)[F, @yl = —(n* ~ 1)[F: Q)

ves plv

11



Putting this in equation (2.1)), we get:

Xs1(Grs,ad’p) = > h%(Gy,ad%) — Y (dimg £, — h%(Gy,ad"p)) + 1 — #T
VESso veS-T

We will need to use Tate’s local Duality, for which we recall the statement:

Theorem 2.4.6. Let v be a finite place of F, F, an algebraic closure of F,, and jis the Gy-module
of all roots of unity in F,. If M a finite G,-module, let M* = Homgz(M, pis). Then, we have:

(1) Fori=0,1,2, the cup-product induced a perfect pairing:

HY Gy, M) x H* Gy, M*) = H*(Gy, tics) = Q/Z

(2) If char(k(v)) does not divide the order of M, then the unramified classes:
HY(Gy/1,,M") and HYG,/I,,M*™)
are the exact annihilators of each other under the pairing above.

We will also need The Poitou-Tate exact sequence given as follows (see [Mil06, Ch. 1, Thm. 4.10] for
a more general statement):

Theorem 2.4.7. Let M be a finite G s-module. We let Pi(F, M) = [Toes.. ﬁi(Gv, M) [T,es H(Gy, M)

such that for an archimedean place v, ﬁi(Gv,M) denotes the i-th Tate cohomology group. Then, we
have a nine term exact sequence:

0 —— H'Gps, M) —— Pg(F,M) —— H*(Gpg, M*)Y

!

HY(Gpgs,M*)V «—— PYF,M) «—— H'(Gpgs, M)

!

H*(Gps,M) —— P3(F,M) —— H°(Gpgs, M*)" —— 0
where for an abelian group A, AV = Hom(A, Q/Z).
Now given that p t n, we have a perfect pairing of Galois modules:
ad’s x ad’p(1) — k(1)
(X,Y) — Tr(XY)

~Y

Since k(1) = pyy as Galois modules, we get that ad’p(1) = (ad’p)*. So by Tate’s local duality, for
each finite place v of F, we have a perfect pairing between H'(G,,adp) and H'(G,,ad’s(1)). We
write £- C H'(F,,ad’s(1)) for the annihilator of £, under this pairing, and we define

HE (G, ad’p(1)) = ker <H1<GF,S, ad’p(1)) —» [ H'(F., ad%(l))/ci) (2.2)
veS-T

so that upon dualising, we get an exact sequence:

P £.— H' (Grs,ad’)” — Hi 7(Grs,ad’s(1))" — 0
veS-T

By the Poitou-Tate exact sequence, we get an exact sequence:
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HY(GFgs,ad’p) —— @ HY(Gy,ad%) @ @ H(F,,ad’p)/L,
veT veS-T ?

L H§ (Grs,ad’p(1))Y —— H?*(Grs,ad"p) s @ H2(G,,ad"p) j
vES

L H(Grs,ad%p(1))" ————— 0

where we ignored the infinite places thanks to the condition p > 2 (as mentioned before, the higher
cohomology groups at the infinite places with coefficients in ad’p vanish). If we compare this exact
sequence with the long exact sequence of the cohomology groups, we find that:

H} 1(Grs,ad’p) = H°(Grs,ad’p(1))"
HE (Grs,ad’p) = Hi 1(Gp,s,ad’p(1))"

Finally, note that since T' # (), we have hg’T(G F.S» adoﬁ) = 0, so putting everything together, we get:

hs7(Grs,ad’p) =hs 1(Grs,ad’p(1)) — B°(Grs,ad’p(1)) — > h’(Gy,ad"p)

v]oo

+ Y (dimg £, —h%(Gy,adp)) + #T 1
veS-T

(2.3)

Proposition 2.4.8. There is a canonical isomorphism

Hom;. (ng/(ng, leoc), k) = Héj(GRS’ ad0ﬁ>

i particular, Rg s a quotient of a power series ring over R, in hgT(GES, adoﬁ) variables.

Proof. By Proposition [2.1.1] we have an isomorphism between Homy, (m RT / (m?{f, mg,..)s k) and the
S

subgroup of morphisms f : Rg — kle] that send mp__ to zero, i.e., when restricted to Rjoc, f factor
through k. Having that in mind, it is not hard to see that Hom; (ng/(m%T, mp,.), k) is in bijection
S

with the subset of DL (k[e]) of lifts that map to trivial lifts when restricted to G,, for v € T

An element of the set DE(kle]) corresponds to an equivalence class ((1 + ec)p, (1 + €By)ver) with
ce 7zt (G FS, adoﬁ) and B, € adp. The condition that it gives a trivial lifting at v € T' is equivalent to
the condition

(1 —€B)(1 + e, )pic, (1 +€Bv) = Pia,

which is equivalent to ¢(g) = B, — p(9)Bup(9) ! = By — adp(g)(B,) for all g € G,.
Two pairs ((1 + €c)p, (14 €By)ver) and ((1+ ec)p, (1 4 €yu)ver) are equivalent if and only if there
exists m € adp such that

c(g) = clg) + (1 — ad’p(g))m’
/81) =yt m
where m/ the projection of m in ad’p. Indeed, since (p,n) = 1, we have that (1 — e%)(l +em) =
(1 4+ em’) Hence, conjugating by (1 4 em) is the same as conjugating by (1 + em’).
Therefore, the tuple (c, 5,) up to equivalence describes exactly an element of Hé}T(G F.S ad’p). O
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2.5 Taylor-Wiles primes

In this section we will present the notion of sets of Taylor-Wiles places and prove their existence.
Their interesting feature is that we will be able to have control over the size of the tangent space
of the global deformation functor as we relax the conditions at these places. We will work in the
GLy case, but one can find in [Thol2l §4] the GL,, case under stronger assumptions on the residual
representation. We are keeping the same notation and hypothesis as in section §2.4 but with n = 2.

Definition 2.5.1. A place v of F' is called a Taylor-Wiles place of level IV if it satisfies the following
conditions

(1) v¢ S,

(2) #k(v) =1 mod p",

(3) The eigenvalues of p(Frob, ) are distinct and belong to k.
where k(v) is the residual field of F,.
Lemma 2.5.2. Let R € Cx. Then, ker (GL,(R) = GLy(k)) is a pro-p group.
Proof. Since

ker (GLy(R) = GLy(k)) = limker (GL,(R/m") — GLn(k))
k

it suffices to show that ker ( GL,(R/m*) — GL,(k)) is a p-group. So suppose that R is an Artinian
ring with m* = 0 for some k > 0. We have ker ( GL,,(R) — GLy(k)) = id +mM,(R), and

!

(id +mM, (R))? = ﬁ: (Zj> m'M, (R)

1=0

[
By some theorem of Kummer, we have vp( <Iz> ) > | — wvy(i). So if we choose | = 2k, then for

!
i:l,...,pk—lfup( <€>)2k And since p € m, we have for i =1,...,p*

@l) mM,,(R) C m*M,,(R) = 0

Therefore, (id —i—mMn(R))pl = id. Since R is Artinian and k is finite, then so is R, and subsequently
M, (R). This shows that ker ( GL,(R/m*) — GL,(k)) is a p-group. O

The following lemma can be proved by a calculation trick and using Hensel’s lemma.

a 0
0 B

A B\ . . . . A B a 0 ~ 3
Suppose that <C D) is a lift of this matriz to My(R). Then, <C’ D> o~ <0 g) where a, B lift
a, .

Although we will relax the conditions at the Taylor-Wiles places, the

Lemma 2.5.3. Let R € Cy. Let ( > € My (k) be a matrix such that 8 # « and are both non-zero.

Lemma 2.5.4. Let v be a Taylor-Wiles place, R € Cp, and p : Gp — GLo(R) be a lift of p. Then,
pPlap, s a sum of two tamely ramified characters m @ 2.
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Proof. Since p is unramified at v, the image of the inertia group at v Ip, lies in 1 + Ma(mpg). By
lemma, the latter is a pro-p group, and so p factors through the tame inertia subgroup of If,.
The tame Galois group is generated by ¢ = Frob,, and the tame inertia group I}U. For every T € I}U,
we have the relationship

orot = ()
By the Taylor-Wiles assumption on the Frobenius, p(o ) has distinct eigenvalues. So by Lemma [2.5.3
we can find a basis of My(R) such that p(o ( > for some «, 3 lifting the eigenvalues of p(o).

With respect to this basis, we can write

p(r) = ld+(a Z)

for 7 € I! and a,b,c,d € mg (since p is unramified at v). Now applying p to (x), we get
k
. a aB~ b _ d q\ {a b
(i )£ )

For k > 2, the top right and bottom left entries of the right side summands lie in mg/, where I is the
ideal generated by b and c. Therefore, the above equality gives

baf™ —q),c(Ba! — q) € mgl

But by assumption, o and 3 are residually distinct. And since ¢ =1 mod p, we get that

(@Bt —q),(Ba™t —q) £0 mod p

so they are both units in R. Thus, b,c € mgl, i.e., I = mgl; which, by Nakayama’s lemma, implies
that I = 0. Hence, b = ¢ = 0 and p(7) is diagonal. Since 7 was chosen arbitrarily, we get the desired
result. O

Lemma 2.5.5. Let v be a Taylor-Wiles place. Then, we have
dimk HO(Gk(U), adoﬁ) = dimk HO (sz(v)a adoﬁ(l)) =1

and
dimy, H' (Gyp), ad"p) = dimy, H' (G, ad’p(1)) = 1
. where G,y is the absolute Galois group of k(v).

Proof. Since xp(Frob,) = ¢ =1 mod p, the action of Gy, on ad’p(1) is the same as that on ad’p.
So it suffices to show the result on the latter.

By definition of the Taylor-Wiles primes and Lemma [2.5.3] p(Frob,) ~ <g g,) with a # . This

(1) _01> in ad’s. This gives the first equality.

For H'(k,,ad"p), a cocycle is determined only by the image of Frob,. Thus, dimy Z'(k,,ad’p) =
3. Since Bl(k,,ad’p) = {(g — g-m —m) | for m € ad’p}, we have dimy B'(k,,ad’p) = 3 —
dimy, (ad’p)f°P» = 2. Therefore, dimy H'(k,,ad"p) = 1. O

matrix only commutes with the subspace generated by <

One important hypothesis for the existence of Taylor-Wiles primes is the condition that
PiG e, 18 absolutely irreducible
v

This even implies the following stronger statement.
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1s absolutely irreducible for all n > 1.

Lemma 2.5.6. PlGrcm)
pn

Proof. Let G = Gp(,) and H =G F(Cpn)- Suppose that p|y is not irreducible, then there exists a line
L in k? which is invariant under H. And since k? is irreducible as a G-module, there exists ¢ € G such
that g - L # L. Moreover, g - L is invariant under H (since it is a normal subgroup of G). Therefore,
P i 1s the sum of two characters. By irreducibility of p over G, G /H must permute these characters.
But G/H is a p-group so it cannot act transitively on a set with 2 elements. Thus, the two characters
are equal.

This means that H stabilizes every line of k2, and there are |P(k)| = k + 1 of them which is not
divisible by p. So the size some orbit of the action of G/H on the set of lines of k2 must be prime to
p. However, the size of each orbit divides |G/H| = p*. So the only way this is possible is that the size
of this orbit is 1. This contradicts the irreducibility of k% as a G-module. Thus, pu 1s irreducible.
The same argument can be carried out if we first extend the scalars to a finite extension of k. Hence,
p i 1s absolutely irreducible. O

Let H = ker adoﬁ. We set Fpy = FH and F,, = Fy((pn) for n > 1.
Lemma 2.5.7. Let ¢ € H'(Gps,ad’p(1)) — {0} and n > 1. Then, ¥(GF,) is non-zero.

Proof. For n > 1, there is an inflation-restriction exact sequence

inf

0= H'(Gp,/r,ad’p(1)) = H' (Gp,ad"p(1))

res

== H'(Gp,,ad"p)

It suffices to show that H' (G Fo/Fs adoﬁ(l)) = 0. For then 1 would restrict to a non-zero element of
H! (G F,s adoﬁ), and in particular ¢¥(Gp,) # 0. So consider another inflation-restriction exact sequence

_ inf _ T _ G
0— H' (GFO/F7 (adop(l))GFO) — H' (GFn/F, adop(l)) = H' (GFn/Foa adop(l)) Fn/F (2.4)

where the action of g € G, /r on the rightmost term is given by 7 — (h — g_ln(ghg_l)). This allows
us to reduce to showing that the rightmost and the leftmost terms in (2.4)) are zero.
We begin by the rightmost term. There is a restriction-corestriction sequence

res

H'(Gp, /Ry, ad"p(1)) = H' (GF, /p,,2d°p) == H'(GR, /5. ad’p(1))

for which the composition is the multiplication by |G g, / F,| which is prime to p since it is < p — 1.
Hence, Res is injective. It also sends G'r, jp-invariants to G, /p-invariants. So it suffices to show that

H! (Gpn/Fl,adoﬁ(l))GF"/F = 0. Looking at the commutative diagram
Gp,)p — GF(gpn)/F
Gr,/F

we know that G F(¢n)/F 1 commutative so the action by conjugation of Gp,,r on G, /p, is trivial.

Moreover, G, /p, acts trivially on ad"p(1) by definition of Fy and by the fact that ¢, € F;. Combining
these two facts, we get

Hl (GFn/F17 adop(l))GFn/F = Hom (GFn/Fl y adoﬁ(l))GFn/F = Hom (GFn/Fl N ad0ﬁ<1)GFn/F)
However (adoﬁ(l))GF "/F = (. Indeed, any G, sp-invariant element of adoﬁ(l) is equivalently a trace

0 intertwining operator V' — V(1) (where V' is the underlying space of p). But since p is irreducible,
using Schur’s lemma we get that p ~ p(1). Thus, detp = XZ det p. So the square every element in k is

16



1 which can’t happen if p > 3 (which is our assumption). Hence, we just showed that the rightmost

term in is zero.

For the leftmost term, Note that if Fy 2 F((p), then (adoﬁ(l))GFO = 0. Indeed, the hypothesis tells
us that x,(GF,) # 1. But GF, acts trivially on ad’p, so it cannot fix a non-zero element of ad’s(1).
Therefore, we can assume that Fy O F((p).

Since (adoﬁ(l))cF ° has p-power order, we have an injection

res

0— H'(Gp,/p,ad’p(1)70) == H'(P,ad’p(1)%%)

where P is the p-Sylow subgroup of G, /p. Hence, we can assume that P is not trivial, i.e., p | |G, /p|.
Moreover, since Fy is the field cut out by ad’p, we have that p(Gg,) C {\id | A € k*}. Hence, G, /F
is isomorphic to the projective image of p. Using this information, we will try to determine this group.

Fact Let H C PGLy(F,) be a finite non trivial subgroup. Then, one of the following assertions is
true

1. H is conjugate to a subgroup of the upper triangular matrices.
2. H is conjugate to PGLa(Fpr) or PSLy(F,-) for some r > 1

3. H is isomorphic to Ay,As,S4, or Do, for 7 > 2. And if H ~ Dy, = (s,t | s> =t" = 1,sts = t71),
then it is conjugate to the image of Do, given by

s (1 o) (5 Y)

where ( is a primitive r-th root of unity.
Actually, Gg,,r can be none of the above:

— Gp,/r cannot be conjugate to a subgroup of the upper triangular matrices, since pjg, . is
P

absolutely irreducible.
— The assumption that p > 5 and the fact that p | |G,/ p| elliminates the possibilities A4, 45,54, D,
for p |/r.

— PSLy(Fyr) is simple for > 5. But Gp,/r has a non-trivial subgroup Gp,/p(,) (its order is
<p <|Ggyrl).

— Suppose that G, p =~ PGL2(F,r). The only non-trivial quotient of PGLy(Fyr) is of order 2.
But then in the exact sequence

0 — Z — im(p) — im(ad’p) — 0

where Z is group of scalar matrices, the order of im(adoﬁ) is either 1 or 2. Let A be a preimage
of the non trivial element of im(ad’s). Then, im(p) is generated by Z and A. But A has a non
trivial invariant subspace (after possibly base changing to a finite extension), then so does im(p).
This contradicts the absolute irreducibility of p. Thus, this possibility is ruled out.

This is a contradiction. Thus, the leftmost term in (2.4)) is zero. This implies that the middle term in
(2.4)) is zero, which in turn, implies that ¢(GF, ) is non-zero.
O

Proposition 2.5.8. Let r = dim;, H! (GF,S,adOﬁ(l)). For every N > 1, we can construct a set Qn
of Taylor-Wiles places of level N, i.e.,
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1. For each v € Qn, #k(v) =1 mod ",

2. For each v € Qn, p(Frob,) has two distinct eigenvalues in k,

3. |Qn| =r.

Proof. If v is a Taylor-Wiles place then by Lemma we have dimy, H' (kv, adoﬁ(l)) = 1. Thus, it
suffices to show that the restriction morphism

H'(Grs,ad’p(1)) » € dimg H' (ky,ad’s(1))
veQn

is an isomorphism, so that equating the dimensions would get us 3).

To prove this, we need to show that for any global cocycle 1, there exists a place vy, satisfying 1) and
2) such that Resy,, (1)) # 0. For then, the set of places corresponding to a basis of H 1 (G F.S adoﬁ(l))
would consitute the desired Taylor-Wiles set.

Actually, we can rephrace the problem as follows: we need to show that we can find o € G g satisfying

(a) U|GF(CPN) - 1’

(b) ad’s(o) has an eigenvalue other than one,

(c) (o) & (0 = 1)ad’B(1)

Indeed, all of these conditions are open conditions. So by Chebotarev’s density theorem, there exists
some Frob, satisfying them. So we can take v, = v. Now by Lemma (G Fy) is not trivial.
And we have for all 7,7’ € Gy, 0 € Gp )

P

Ploro™) = (o) + op(ro )
= (o) + ov(1) + oTep(0 )
=¢(0) + op(7) + opp(0") = o(7)

which holds because 7 acts trivially on ad’s. Also,
Y(r7') = (1) + (") = o(7) + ()

Therefore, k - ¢(Gry) is a non-zero G, /p(c ,)-submodule of ad’p.
D

We want to find an element g € G, /p(c ) such that p(g) has distinct eigenvalues and fixes an
P

element of k - ¢(GFy). In order to do this, we will verify that among the possible candidates H for
the projective image of Gy /r(¢ y) by P, there always exists an element of H with distinct eigenvalues
P

which fixes an elements of G, /p(c ). We use the list of finite subgroups of PGL2(F,) given in the
P
proof of Lemma [2.5.7}

— First note that if the property is true for a subgroup H, then it is also true for any subgroup H’
containing H. So it suffices to check the following cases.

— By absolute irreducibility of p|¢ . € n)? H cannot be conjugate to a subgroup of the upper trian-
p

gular matrices.

— ad"pis a simple PSLy(F,-)-module so we have k-1)(G ) = ad’p and <g ()491) fixes ((1] 01> e

k- (GFy). Since p > 5, we can take o # a1
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— For Dy, adoﬁ decomposes as Vi @ Vo @ V3 where

i (o)) w0 0) w0

with Dy acting on each subspace by £ id. Since there are three non trivial elements, for each irre-
ducible submodule one of them must act trivially. Note also that they have distinct eigenvalues
+1.

— For Dy, with r odd, adoﬁ decomposes as Wi @ Wy where

m=((h %)) (G 0)-( )

. ¢ 0 : 0 1 . 01
with <0 1 fixing W1 and 10 fixing 1 0 € Ws.

Thus, we get an element g € G, /p(c ) such that p(g) has distinct eigenvalues and fixes an element
p

of k- ¢(Gry). Actually p(g) even fixes an element of )(Gp, ). Indeed, if ki,...,k, forms a basis
of k over I, then for a non-zero element m € k- ¢(Gp, ) fixed by g, we can express it as m =
ki(m1) + - -+ + kpto(7,) with at least one of the 9 (7;) # 0. But then we get that

gm —m = ky ((g - 1)1/1(7'1)) + .- kr((g - 1)¢(Tr)> =0

and by linear independence, we get the desired element.
Now choose a lift o9 € Gpg of g. For 7 € GF,, we have

Y(100) = Y(1) + 79 (00) = ¥ (7) + ¥ (00)

If ¢(o0) & (09 — 1)adp(1), then choose T = 1.
Otherwise, let 79 € G, be such that p(op) fixes (79) # 0 (that we just proved its existence). Then,
Y(19) & (00 — 1)ad’p(1).Because otherwise, if we write (o9 — 1)z = (1), then

(00 — 1)%x = (00 — 1)1b(10) =0

but p(op) has distinct eigenvalues so it acts semi-simply on ad’p with the eigenvalue 1 occurring with
multiplicity 1. So we must have (og — 1)z = 0 = ¢ (79) which contradicts the choice of 7.
Either way, we get that

Y(1000) = Y (10) + ¥(00) & (00 — 1)ad’s = (100 — 1)ad’p

Therefore, the element T9oq verifies the conditions (a), (b) and (c) as we wanted (remember that p(7)
is a scalar matrix). This finishes the proof. O

Theorem 2.5.9. Suppose that F' is a totally real number field, let S = (p, 1, S, {Dy}ves) be a global
deformation problem, and set g = h! (GF,S, adoﬁ(l)) —[F: Q]+ #T —1. For each N > 0, there exists
a finite set of primes Qn of F', which is disjoint from S such that

1. Ifv € Qn, then #k(v) =1 mod p" and p(Frob,) has distinct eigenvalues.

2. |Qn| = ht (GEg,adoﬁ(l)) and RgQN is topologically generated by g elements as an Ry,.-algebra.

where Sq = (P10, S U QN,{Du}ves).
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Proof. The first part of the theorem follows from Proposition [2.5.8] For the last assertion, recall that
by Proposition [2.4.8[ and equation 1D Rg is generated by:
QN

g9 =hs7(Grg,ad’p(1))—h°(Grs,ad’p(1)) =Y h(Gy,ad’p)+ Y (dimg L,—h"(Gy,ad"p))+#T—1

v|oo veEQN
Let us study each term on the right hand side

— The first term:
By Proposition we have:

Hi 7 (Grs,ad’p(1)) = ker [ H'(Gpg,ad’p(1)) » € H'(Gy,ad’p(1)) | =0
veEQN

— The global term:
An element of H°(G F,s,adoﬁ(l)) corresponds to an intertwining operator p — p(1) between
irreducible G p(,)-modules. Either they are not isomorphic and so the intertwining operator is
0. Or they are isomorphic, and the intertwining operator is scalar. But since p > 2, the only
trace zero scalar matrix is 0.

-vel:
Since p > 2, ad’s is a direct summand of adp. So the term of the product corresponding for
v e T is |k|'~% where §, = dimy, H(G,, adp).

- v | oo
By hypothesis, p is odd, i.e., for v archimedean with Gr, = {id,c}, p(c) can be represented

. 1 . . _ . .
by the matrix <O _01> with respect to some basis. Hence, adop(c) can be diagonalized to

-1 0 0
0 1 0 |.Butsince G, is cyclic of order 2, we have that Z'(GF,,ad’p) = ker(ad’s(c)+1)
0 0 -1

which is 2-dimensional and BY(Gr,,ad’p) = im(ad’p(c) — 1) which is also 2-dimensional. Hence,
HY(GFp,,ad’s) = 0. Moreover, H*(GF,,ad"p) corresponds to the eigenspace of ad’p(c) with
eigenvalue 1, so it is 1-dimensional.

-V E Qn:

First note that £, = HY(G,, adoﬁ). By definition of the local Euler characteristic, we have that
|H'(GR,,ad’p)|
|HO(GF,,ad"p)]

By Tate duality, we have that h? (GFU,adOﬁ) = h! (Gpv,adoﬁ(l)) = 1 by Lemma (p is

unramified at v). And by the local Euler characteristic formula [Mil06, Ch. I, Thm. 5.1],

x(Gr,,ad’p) = [0, : |ad’p|O,]~" = 1 (since the order of ad’p is a power of p, hence prime

to v).

= ’H2(GF’U’ adop)| : X(GF’U7 adoﬁ)_l

Putting everything together, we have:

g=0-0=> 1+ > 1+#T -1

v]oo VEQN
= #Qn — [F: Q+#T -1
where we use the fact that F' is totally real. O
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Chapter 3

A modularity lifting theorem

Let us fix a prime p > 5. We let F' be a totally real number field and L/Q, a finite extension where
L has a ring of integers O, a maximal ideal A and a residue field F. We suppose that L is big enough
to contain the images of all embeddings F' — @p. The goal of this chapter is to prove the following
modularity lifting theorem.

Theorem 3.0.1. Let p,po : Gr — GL2(O) be two continuous representations such that reducing
modulo X we have p = py. Assume that po is modular and that p is geometric (i.e., it satisfies the
Fontaine-Mazur hypothesis). Assume moreover that we have:

(1) For allo: F — L, HT,(po) = HT+(p), and contains two distinct elements.

(2) e Forallv|p, p,, and pojg,, are crystalline;
e p is unramified in F';

e Forallo: F — L, the two elements of HT;(p) differ by at most p — 2;
(3) PlGrc,) absolutely irreducible.
P
Then, p is modular.

We will start by introducing the spaces of automorphic forms with which we will work. Then, we
will perform base change to reduce the hypotheses on the representation p. Finally, we will perform
a patching argument using ultrafilters to prove the theorem. The material presented in this chapter
will be largely based upon that of [Gee| and [Tay].

3.1 Automorphic forms on Quaternion algebras

We will work with Quaternionic automorphic forms. Although they were not present in Wiles’ original
work, they allow us to avoid using an argument involving étaleness properties of modular curves, which
we substitute by an easy group theoretic argument.

3.1.1 General definition

Let D be a quaternion algebra over F' with S(D) being the set of places at which D ramifies. Note
that by the fundamental exact sequence of class field theory, the map

D — S(D)
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gives a bijection

Quaternion algebras over F Finite subsets of places
up to isomorphism of F of even cardinality

We can define an algebraic group Gp over Q by letting Gp(R) = (D ®qg R)* for R a Q-algebra.

For each real place v, we define a subgroup U, of Gp(F),) by letting U, = Gp(F,) 2 H* if v € S(D),
and U, = R+(SO(2) C GLy(R) = Gp(F,) if v € S(D). We also fix the weights (ky,7,) € Z=2 x Z,
and we require that w = k, + 21, — 1 is independent of v.

For each real place v, we define a representation (7, W,,) of U, over C as follows:

e If v € S(D), we have U, — GLa(F,) = GLy(C) which acts on C? in the usual way, we let
(1, Wy) be the representation
(Sym*=2C2%) @ (A2C2)m

o If v ¢ S(D), then we have U, = R+(SO(2), and we let W, = C with the action given by
7o(v) = (7, 1) (det )™~

We Write UOO - H UU, Woo - ®’U‘QOW'U7 TOO - ®’U‘OOT'U'

v]oo

Finally, we define our space of automorphic forms Sp ., to be the set of function ¢ : D*\ Gp(Ag) —
W satisfying:

(1) p(guce) = Too(ties) "Lip(g) for all us € Us and g € Gp(Ag).

2) There is a non-empty open subset Uy, C Gp(A2) such that p(gu) = ¢(g) for all uw € U and
Q
g € GD(AQ).

(3) Let Soo denote the set of finite places, then if g € Gp(AF’) and heo € GLy(R)%>=5(P) € Gp(R),
then the function

(HE)==5D) W,
hoo(iy .« 3) > Too(hoo ) 0(ghoo)
which is well defined since Ug_ _g(p) is the stabilizer of (4,...,i), is holomorphic.

(4) If S(D) =0 (Gp = GLy), then for all g € Gp(Ag) = GL2(Ag), we have

fran? (o 7)g) =0

If moreover we have F' = Q, then we require that for all g € Gp(Ag), heo € GL2(R)*, the function
@(ghoo)| im (hoo(i))|¥/? is bounded on H*.

The group G'p(Ag’) acts by right translation on Sp k. In fact, can prove that Sp, is a semisimple
admissible representation of G D(A(of). Its irreducible constituents are called the cuspidal automorphic
representations of Gp(Ag) of weight (k,n).

3.1.2 The Jacquet-Langlands correspondence

In the case where S(D) = S, the algebraic group Gp is isomorphic to GLg which is a more convenient
setting to work with. In order to reduce to this case, we will use the Jacquet-Langlands correspondence
which relates automorphic representations on GGp to automorphic representations on GLs.
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The local statement

Let v be a place of F' such that v { p, and suppose that D, = D ®p F), is non-split (i.e. v € S(D)).
Before stating the theorem, we first give the definition of the Harish-Chandra character, which plays
the role of the trace function of a representation of GLa(F}).

If (7w, V) is an admissible representation of G := GLy(F}), then for any f in the Hecke algebra H(G),
the operator 7(f) : V — V has image contained in the finite dimensional subspace V¥ for any compact
open subgroup K such that f is left K-invariant. Thus, we can define Trrr(f) = Tr(w(f) | 7(f)V) =
Te(x(f) | VF)

Theorem 3.1.1. Let (m, V) be an irreducible smooth representation of G. Then, there is a unique
smooth function © : G — C called the Harish-Chandra character such that extending O arbitrarily
to G, ©y is locally integrable on G, and for any H(G), we have

Tra(f) = /G £(9)©x() dg

where G s is the set of semi-simple reqular elements of G. Moreover, \D|%@7r 18 bounded on G5, where

D(g) = 4 — det(g)~! Tr(g)? for g € G.

For regular semi-simple elements v € GLo(F,) and 7/ € DS, we write v ~ ~' if they have the same
trace and determinant.

Theorem 3.1.2 (Local JL correspondence).
Let w: F)* — C* be a smooth character. There is a unique bijection

{ irreducible discrete series representation of GLa(F,) with central character w }

!

{ irreducible smooth representations of D¢ with central character w }

such that for any ™ <> ' and regular semi-simple elements v € GLa(F,), v € D} with v ~ +', we
have

Or(y) = Tra'(v')
We have a compatibility with twists: if ™ <> 7', then 1 ® (o det) +> " @ (o Nm) for any smooth
character p : K* — C*.

Remark 3.1.3. The bijection assocliates the Steinberg representation to the trivial representation of
D*, or more generally, Spy(u|-|72) > poNm for p : K* — C* a smooth character. Hence, 7 is
supercuspidal if and only if its associated irreducible representation 7’ of D* has dimension > 1.

Global Statement

We have a global version of this correspondence which is compatible with the local one.

Theorem 3.1.4. Let w: F* \ Aj — C* be a smooth character. There is a unique injection

{ irreducible automorphic representations of (Ap @p D)™ of dimension > 1 with central character w }

l

{ irreducible cuspidal automorphic representations of GLa(Ap) with central character w }

such that ' < 7 if and only if 7|, ~ m, for allv & S(D), and wl, <+ m, for allv € S(D) in the sense of
Theorem . We also have compatibility with twists: if @ <> 7, then 7' @ (1o Nm) <> 7 ® (u o det)
for any smooth character p: F* \ Aj — C*.
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3.1.3 Galois representation associated to automorphic representations

Under conditions of algebraicity, we can attach a family of Galois representations to automorphic
forms on GLa(Ap). The precise result in the case that we will use is given as follows:

Theorem 3.1.5. Let m be a regular algebraic cuspidal automorphic representation of GL2(AY) of
weight (k,n). Then, there exists a CM field L, such that for each finite place A of L, there is a
continuous irreducible Galois representation

pa(m) : Gp — GL2(Lyx ))
satisfying:

(1) For each finite place v, we have

WD (pa(m), iy, )" 2 e, (w0 @ |- |2 o det)

(2) If v divides the residue characteristic of A, then p\(T),q,, 15 deRham, with T-Hodge- Tate weights

Ny Ny + ke — 1 where 7 : F < L C C an embedding lying over v. Moreover, if 7, is unramified,
then px(7),. s crystalline.

(3) If ¢, is a complex conjugation, then det py(7)(c,) = —1.

Definition 3.1.6. We say that a continuous Galois representation p : Gp — GLQ(@p) is modular of
weight (k,n) if it is isomorphic to py(m) for some cuspidal automorphic representation 7 of weight

(k).

3.2 Integral theory of automorphic forms

In this subsection, suppose that [F': Q] is even (we will reduce to this case by base change), and that
S(D) = Ss. In particular, we have Gp(AY) = GL2(AY).

Let us fix an isomorphism ¢ : L — C, and some k € Zggm(F’C), n € ZHoM(EC) with w = k, + 21, — 1

independent of 7 € Hom(F,C). Let U = [[, U, € GL2(A%) be a compact open subgroups such that
if v ¢ S then U, = GL2(OpF,), where S is a finite set of finite places of F' not containing any place
lying over p. Let Us = [],cg Uy and US = vas U, so that U = UgU?®.
We consider continuous homomorphism v : Us — O* and an algebraic grossencharacter yg : F* \
A% — C* such that

® o is unramified outside of S.

e For each place v | oo, XO‘(FUX)O('I) =zl

_ —1
® X0([1 F)ws = ¥

By the Langlands correspondence for GL1, we get a character

X

X0t A/ FX(FX)° — L

given by

z (] 7))t (( I1 T(:coo))“"lxo(x)>

T:F—L T7:F—C

24



Let A = @, .p.c Sym™2(0%) @ (A20%)7, and let GL2(OF,) =[]
v~ 17 on the 7-factor.
Let A be a finite O-module, we define S(U, A) = Sk ..4,x (U, A) to be the space of functions ¢ :

D* \ GL2(AY) = A ®o A such that for all g € GLy(AY), u € U, z € (A¥)*, we have

ojp GL2(OF,) which acts on A via

d(guz) = x0.(2)¥(us) " u, ' ¢(g)

3.2.1 Hecke algebras

We start by recalling basic facts about smooth irreducible representations of GLa(A%).

If v is a finite place of F, we define local Hecke algebra H(GL2(F,)) to be the set of locally constant
functions C2°(GLa(F}), C) equipped with the convolution product

(f * ')(g) = / S (h'g) djw for £, f € C°(CLa(F,), C)

GLa(Fy)

where p1,, is a Haar measure on GLa(F},), which we will normalize so that p,(GL2(OF,)) = 1. We can
also see H(GL2(F),)) as a convolution algebra of density measures with respect to .

If (7, V) is a smooth representation of GLa(F}) on a complex vector space V', we can equip V with
the structure of a smooth H(GL,,(F}))-module by setting

T(f) v = / f()m(g)vdp,  for v € V, g € GLy(F,) and, f € H(GLa(F,))
GL2(FU)

In fact, every smooth H(GLy(F,))-module is of this type, and irreducible smooth representations of
GL2(F,) are determined up to isomorphism by their H(GLy(F,))-module structure.

If K C GLy(F,) is a compact open subgroup, we have a unipotent element ey = u(K) 'l1x €
H(GL2(F,)). We define the K-invariant Hecke-algebra H(GLa(F}), K) to be the subalgebra

CX(K \ GLy(F,)/K,C) = ex * H(GLy(Fy)) * ex

The Spherical Hecke algebra

Let us take K = GL2(Op,). In this case, we call H(GL2(F},), K) the spherical Hecke algebra.
From the Cartan decomposition

wpt 0
GLy(F,) = | | K( . wn2> K (3.1)
ni1>ng v
where w, is a uniformizer of OF,, we see that H(GLa(F,), K) is generated by the characteristic
ni
functions 1(,, ) of the double cosets U <w6’ w(,’l”) U, for n1 > ns.

It is a standard notation to let T, and S, denote the function 1(; ) and 1 ;) respectively, where S,
is invertible with inverse S; ! = L(_1,—1). In fact one can prove the following theorem:

Theorem 3.2.1. We have an isomorphism of C-algebras H(GLa(F,), GLo(OF,))) = C[T,, SF].

An irreducible smooth representation (7, V) of GLa(F,) is called spherical if if VX # 0. In this case,
V& has the structure of a non-zero H(GLz(F,), K)-module, which is commutative, so we must have
dimc VE = 1. Now let us give examples of such representations
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— If p is an unramified character of F* i.e. it is trivial on O , then (u o det, C) is clearly a
spherical representation since det(K) C Of, .

— If x = (x1,x2) is a character of the diagonal torus T" with xi/x2 # |- |f!, we would like to
construct a non-trivial K-fixed element of IndgLQ(Fv) X (where B is the subgroup of upper trian-

gular matrix, and Ind is the normalized induction). For this, consider the Iwasawa decomposition
GLa(Fy) = B - K, so that for all g € GLy(F,), we can write

g:<a *)k‘ with k € K

0 b
Iffe IndgLZ(Fv) X is a fixed U-vector, then it satisfies f(g) = f ((g z> . u) = Xl(Q)XQ(b)’%|%f(id).
So if IndgLZ(F“) X is spherical, the space of K-fixed vectors, which is one dimensional, must be

generated by

1

Fra=(f 1) ke a@aol;l

But this formula only makes sense if x1(a)x2(b) = 1 for all a,b € Of, , ie., if x1 and x2 are

unramified. In this case, we say that f is the normalized spherical vector in Ind%LQ(F”) x. And

we see that IndgLQ(F”) X is spherical if and only if x; and y2 are unramified.

In fact, if (7, V) is an irreducible smooth spherical representation of G, then it is isomorphic to one
of the above examples.

Smooth irreducible representations of GLy(A%)

There exists a unique Haar measure 1 on GL2(A$) such that p([[, Xv) = [[, po(Xy) if Xy =
GL2(Op,) for almost all places v. As before, we define the global Hecke algebra to be H(GL2(AY) =
C°(GL2(A%),C) equipped with the convolution algebra with respect to . Then we have a natural
isomorphism
H(GLaAF) = &y, o yH(GLa(R) (3.2
where the symbol ®’{1GL ©n)} denotes the restricted tensor product with respect to the family of
2(0p,

idempotents {1gr,(oy,)}v- Therefore by [Bum97, Theorem 3.44], if 7 is an irreducible smooth repre-
sentation of GLa(A%), then there exist unique irreducible smooth representations m, of GLa(F},) such

that for almost all places v of I, there exists a non-zero element e, € TI'S L200m) ity

T ®f{eu}77v

Moreover, this decomposition is compatible with (3.2]).

Action of the Hecke algebra on the space of automorphic forms

Back to our setting, if v € S and v { p recall that U, = GL2(O,) and that S(U, A) is left invariant
by the action of U, by right translation. So if u € GLa(F,), we can define an operator [U,ulU,] on
S(U, A) by setting

([Uwul,]9)(9) = Z¢(9Uz)
where the u; € GLa(F,) are defined by the decomposition

U,ul, = |_| w;Uy
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For ¢ € S(U,A) and g € GLy(A%¥). Now let TV = O[T, S, : v & S,v { p] denote the universal
wy 0 . Ty 0

0 1) U,] and where S,, acts via [U, < 0 wv) U]
Let Ty be the image of T"™V in Endp (S (U, (’))) so that Ty is a commutative O-algebra which acts
faithfully on S(U, O).

Hecke algebra where T;, acts on S(U, A) via [U, (

We have a decomposition
GL2(AF) = |_| D*g;U(AF)*
i€l
where I is a finite set. This way we get an injective morphism S(U, A) < @;cr(A ®p A) sending a
function ¢ to (qb(gi))l.el. We would like to determine its image. So let w € A ®p A, a function ¢
sending g; to w and satisfying the desired properties is well defined on the double coset D* g;U (A%)*
if and only if for every §,0’ € D*, u,u’ € U and z,2" € (A%®)* such that dgjuz = ¢'g;u’7/,

YooY sy w = X () (s~ w

-1

, w = w. Therefore, the injection

this amounts to checking that for dgiuz = gi, x.0(2)¢(us) tu
induces an isomorphism:

o)

S(U,0) 2 @A 0o A)lor DXan (ag0)) /P> (3.3)
iel

The group Ay, v := (g; 'D*g;NU - (A)*)/F* is both discrete (D* is discrete inside Gp(A¥)) and
compact, so it is finite. We say that U is sufficiently small for p if p t #A, ¢ for all g.
Lemma 3.2.2. If [F((p), F] > 2, then U is sufficiently small.

Proof. Suppose that § € D* such that ¢~ 'ég € Ay and has order p, in other words, 0 € F*. Then,
we have 52 52
P
p pr— pr—
(det 5) det 0P

where the last equality is true because det 6? = 62 since 6?7 € F'*. Therefore, %:5 is a p-th root of

unity. If %ﬁd =1, then § € F* already. Otherwise, D> contain F'({p), but since D is four dimensional
over F', it can only contain a field extension of F' of degree 2 which contradicts the hypothesis. O

Note that this condition is satisfied if for example p is unramified at F', since in that case, FNQ((p) = Q
so [F((p) : Fl=p—1>2if p> 3 (as we are assuming).

Proposition 3.2.3. If U is sufficiently small, then we have the following properties:
1) S(U,0) is a free O-module,
2) S(U,0)®0 A = S(U, A),

3) If V is an open subgroup of U with #(U/V) a power of p, then S(V,O) is a free O[U/V - (U N
(A)*)]-module.

Proof. Since pt#Ag v, the latter is a unit in O, so we get a projection

A®Ro A= (Ao AU

1
T®ar Z d-rQa
#B8gU S€D,
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So (A ®p A)?9U is a direct summand of A ®p A. Tt follows that (A ®p A)2eU 22 AReU @ A from
which we get 2) (using equation (3.3)). Since A is a free O-module, and since O is a PID, we also get
that A%V is free. Thus, we also get 1).

To prove 3), let us write U = | |, ; u; V- (UN(A%)*). We claim that GLa(AY) = Uier jes 9iuV (AF)™
from which the result follows. Indeed, one would have:

S(V,0) = PP Ad e

i€l jeJ

but we have that A%V = uj_lAAgi’V. Therefore, we get:

S(V,0) =P u; A%

iel jeJ
=@ ow/v- (Un(AF)*)] @0 Al
i€l

To prove our claim, we need to show that if gju; = dgyujvz, then i = i’ and j = j/. The fact
that ¢ = ¢ follows immediately from the decomposition of GL2(A%) with respect to U. So we
get, g;légi = uj/vujflz € Ay vu. Since U is sufficiently small, there exists some N coprime to p

such that 6V € F*, so (uj/vuj_l)N € (A¥)*. But given that V' is normal in U, we can write

(ujrvuj_l)N = (ujruj_l)Nv’ for some v' € V| i.e., (uj/uj_l)N e V- (UN(AY)*). Given that #(U/V) is
a power of p, we get that uj/u]71 eV - (Un(A¥)*) so j =j as desired. O

Lemma 3.2.4. We have an isomorphism
~ _ S
S(U,0) @0, C = Homyyg (C(y), Sp pX0)
which is T¥"_equivariant.

S
Proof. Applying the definitions, we see that Homg (C(¢_1), Sg k”f;’) is equal to the set

©:D*\ Gp(Ar) — & (Sym™~2C?) ® (A2C?)™ such that
v]oo

® O(GUioo) = Too(Uoo) "1 0(9),  Use € DX, 9 € Gp(AF)

e o(gu) = (us)e(g), weUgeGp(Ap)

o v(g9z) = xo0(2)e(9), z€Af, g€ Gp(Ar)

For ¢ € S(U, ), the bijection is given by

19 Too(go0) " e(gp - D(97))
which one can verify that it lies in the set above. For example, let us verify the third condition (the
other two are easier calculations):
v(g2) = 7—00(200)_17'00(900)_15(917% : SO(QOOZOO))
= Zoiokv+272m7-oo(goo)ilb(gp ) Z£v72+2nv80(goozoc>))
= 200 t(2y T X0.(2%)) oo (9o0) M e(gp - (™))
= xo(2)¢(9)

where we use the expression of x( obtained from xo,. O
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From the description we gave in the last proof, we have that

GL2(OF,)

Homy, (C(yp ) Sg k”f?O @ Homy, (C(¢ 1), ms) ® RnygsTo (3.4)

where 7 ranges over the cuspidal automorphic representations of Gp(A%) of weight (k,7n) which have
central character xo and are unramified outside of S. This induces an isomorphism

Ty ®o, C = 11 C
m, Homyg (C($~1)m5) #(0)

which sends Ty, .S, to their eigenvalues in WS L2(Or) and where 7w are the same as above. This map is
in fact surjective, because if not, then it would lend in a subalgebra which must be defined by at least
two coordinates being equal. This would mean that there are m # 7’ that have the same T;,-eigenvalues
for almost all v which contradicts the strong multiplicity one theorem.

Note that this implies that Ty is reduced (since Ty is free over O, so it injects into Ty ®o, C).
Moreover, this gives a bijection:

cuspidal automorphic reps of
Gp(AY) of weight (k,n), of central character xg
and unramified outside of S

with Homy (C(¢y 1), ms) # (0)

O-linear ring homomorphisms
Ty — L
modulo Gy, action

1w

(3.5)
Since Ty ®e L is finite over L, a maximal ideal m of Ty®eo L is the kernel of a K-algebra homomorphism
Ty ®o L — L. And given that composition with the action of G;, does not change the kernel, we get
an identification:
{ maximal ideals of Ty ®o L} = Homp_ e (TU ®o L,f)/(GL-action)

But the inclusion Ty < Ty ®o L identifies maximal ideals of Ty ® o L with minimal prime ideals of
Ty thanks to the following lemma:

Lemma 3.2.5. The minimal prime ideals of Ty are those lying above the ideal (0) of O.

Proof. Let p be a minimal prime ideal of T;. Since Ty is finite flat over O, it satisfies the going down
property. Thus, we get that p N1 O = (0). Conversely, suppose that p N O = (0) and that there exists
a prime ideal p’ satisfying p’ C p, since Ty is an integral extension of @, there are no strict inclusions
between prime ideals lying over (0). So p = p’ and p is minimal. O

Therefore, if p is a minimal prime ideal of Ty, then by what we just proved, there is an injection

0, : Ty/p — L corresponding to some 7 as above (it sends T, and S, to the inverse image by ¢ of

. . . . GL2(O
their corresponding eigenvalues in 2(OF ”)) .

Now by finiteness of Ty as a O-module, it is semilocal and we have a decomposition

Ty = H Tum
m

where m ranges over the maximal ideals of Ty (there are finitely many of them). This shows in
particular that any minimal prime ideal p sits inside a unique maximal ideal of Ty.

For a fixed maximal ideal m, we will now construct representation

Pm : Gr — GL2(Ty/m)

29



and if p,, is absolutely irreducible, a lift

Pm : Gr — GL2(Tym)

For this, recall that one can associate to each 7w considered above a Galois representation. So upon
taking the product of these, we get a massive Galois representation:

pm°: Gp — [[ GL2(E) = GLa(Ty @0 L)

which is unramified outside of S U {v | p}, and for any v & S, v { p, Trp™°4(Frob,) = T, and
det p™°4(Frob,) = (#k,)S,. If p C m is a minimal prime ideal, let 7 be the corresponding automorphic
representation with the inclusion 6, : Ty /p < L. If pr : Gp — GLa(L) is the associated Galois
representation, taking the semisimplification of the mod p reduction gives a residual representation
Py i G — GLy(F) and we have:

Tr(px) € Ty/p C O = Trp, € Ty/mC F
By Theorem P can be conjugated to a representation
Pm : Gr — GL2(Ty/m)
as desired. Localizing at m, we obtain a Galois representation:

Pt s Gr — GLy(Tym ®0 L) = [ [ GLa(L)

where 7 ranges over the considered automorphic representations whose corresponding prime ideal lies
inside m (i.e., such that p, = p,,). If we moreover suppose that p,, is absolutely irreducible, then by
Theorem [2.3.4] again, we obtain a representation

Pm: Gp — GLQ(TU,WL)

To conclude this discussion, note that for our application, we will need to consider Hecke operators at
places in S. For this to work, we need a set of places 7' C S such that ¢y, = id. In this case, if we
choose g, € GL2(Op,) for v € T, then we set W, = [Uyg,U,| and define T}, € Endo(S(U, O)) to be
the algebra generated by Ty and the operators W, for v € T. Tensoring with C we get:

Ty ®o0, C = H ®@uer{ subalgebra of Endc(7l*) generated by W,}

™

This shows that we have a bijection between ¢-linear homomorphisms T}, — C and tuples (7, {a }oer)

where q, is an eigenvalue of W, on 7J.

3.3 Base change

Using base change, we will be able to simplify the hypotheses of theorem Let us first give the
cyclic base change theorem for GLs.

Theorem 3.3.1. Let E/F be a cyclic extension of totally real fields of prime degree. Let Gal(E/F) =
(0) and Gal(E/F)" = Hom(Gal(E/F),Z) = (0g/p). Let © be a cuspidal automorphic representation
of GLa(AF) of weight (k,n), then there exists a cuspidal automorphic representation BCg,p(m) of
GL2(A%) of weight (BCE/F(k:),BCE/F(n)) such that:
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(1) For all finite places v of F' and w | v of E, recg,,(BCg/p(7)w) = (recr, (my))wy,, ; in particular,
"A(BCg/p(m)) = rA(7) 6y -

(2) BCE/F(k)w = ky, BCE/F(n)w =Ny-
(3) BCg/r(m) = BCg/p(n’) if and only if m = 7' ® (5iE/F o Artodet) for some i.

(4) A cuspidal automorphic representation m of GLa(A%) is in the image of BCg,p if and only if
mToo =M.

Proposition 3.3.2. Suppose that p : Gr — GL2(Q,) is a continuous representation, and that E/F
is a finite solvable Galois extension of totally real fields. Then, piq, ts modular if and only if p is
modular.

Proof. Using induction, we can reduce to proving the proposition for a cyclic extension E/F of prime
degree. So let us write Gal(E/F) = (o) and let m be a cuspidal automorphic representation of
GL2(A%) such that pg, = pa(m). We first show that m = 7w oo.

Let X be a finite set of finite places of F outside of which 7 is unramified, let us also fix a finite place
w ¢ %, and write w’ = wo ol Then, 7, = Ind(x1,x2) (tesp. mw = Ind(x},X5)) for unramified
characters x1, x2 (resp. X1, x5) of GLa(E,,) (resp. GLa(FEy)), and (roo), is the representation whose
underlying vector space is that of 7, and where g € GLy(FE,,) acts on it via o(g). We can explicitly
verify that this implies that (7o ), = Ind(x} o 0, x4 0 o). Now looking at the Galois representation

attached to 7, the characteristic polynomial of py(m)(Frob,,) is given by
Pu(X) = X2 — t, X + #k(w)sy

where t,, = #k(w)%(m(w) + x2(w)) and s, = x1(@)x2(w), @ a uniformizer of E,,. Similarly, the
characteristic polynomial of py(7)(Frobl,) is given by

Py (X) = X? —tyX + #k(w)sy

where t, = #k(1)} (4 (0(2)) + Xb(0/()) and s, = x4 (0(@))x(0(9)) (#£k(w) = #k(u). To relate
both, we can write Frob,, = o Frob,, 0~!; and since p is defined over G, we get that P, = P/, (this is
where we use that hypothesis). Therefore, we have t,, = ¢, and and s,, = s},. Since all the characters
are unramified, this implies that (x1,x2) = (x} © 0, x5 © ) so that Ind(x1, x2) = Ind(x] o o, x5 0 o),
ie., (moo)y = my. We conclude by the strong multiplicity theorem that 7o o = 0.

O

The following lemma will be useful and is proved using class field theory.

Lemma 3.3.3. [Tay03, Lemma 2.2]

Let F' be a number field, and let 32 be a finite set of places of K. For each v € 3, let Ly, be a finite
Galois extension of E,. Then, there is a finite solvable Galois extension E/F such that for each place
w of E above v € X, there is an isomorphism L, = E,, as F,-algebras. Moreover, if F®°4/F is any
finite extension, then we can choose E to be linearly disjoint from F ",

Using these two results, we can reduce our hypothesis on Theorem Thereby, upon replacing F'
by a solvable totally real extension (this is possible by including the infinite primes in the set ¥ of the
previous lemma) which is unramified at all primes above p, we can assume that:

o [F:Q) is even.
e p is unramified outside of p (for each v at which p is unramified, we let L, = Fierﬁ i
Lemma [3.3.3)).
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e For all primes v 1 p, both p(Ip,) and po(Ip,) are unipotent (by Grothendieck’s monodromy
theorem).

e If p or pg are ramified at some place v { p, then Piar, is trivial, and #k(v) =1 mod p.
e det p = det pp.

Let us explain how we can realise the last condition. Given that p and pg are both crystalline with the
same Hodge-Tate weights for all the places above p, then det p/ det pg is crystalline with Hodge-Tate
weight 0, hence unramified for all the places above p (it is well known that crystalline + Cp,-admissible
= unramified). On the other hand, by the previous conditions, p(Ir,) and po(IF,) are both unipotent
for v 1 p, so we get that the character det p/ det pg is unramified at all primes. Therefore, it has a finite
order (the Hilbert class field of F' is finite over it). And since it is residually trivial, it has p-power
order, so it is trivial on all complex conjugations. The extension of F' cut out by its kernel is thereby
finite, abelian, totally real and unramified at all the places above p.

Note that all the hypothesis of Theorem are still satisfied, except for the conditions on |, )
_ P
To remedy this, when we use lemma we let Favoid to be errp(ﬁ’p). By linear disjointedness of

E and F2°id in the diagram

EFavoid

/ \
E( Cp) ravoid
\
F(

C)/

we get that Gal(EF®°d/E((,)) = Gal(F*°d/F((,)). But by definition of Faveid |Gy, factors
p
through Gal(F'°!4/F((,)), hence its image is left unchanged.

In what follows, we will assume that all these conditions hold. We will write xy = det p = det po.
Moreover, we will assume that L is large enough so that it contains a primitive p-th root of unity and
that F contains the eigenvalues of p(g) for all g € GF.

3.4 The Taylor-Wiles-Kisin method

3.4.1 Setup

Recall that we have a finite extension L/Q, with ring of integers O whose maximal ideal and residue
field are A and F respectively. We consider a quaternion algebra D over F' ramified exactly at the
infinite places (which exists since [F' : Q] is assumed to be even). Let T}, be the set of places of F lying
over p, T, be the set of primes not lying over p at which p or pg ramify, and T'= T, UT,. If v € T},
we fix a topological generator o, of I, /Pr, ( where Ir, and Pr, are respectively the inertia and the
wild inertia groups).

For each set of Taylor-Wiles primes (), consider the Global deformation problem Sg = (p,x,T U
Q,{Dy}) and Sg = (p, x, T U Q,{D,}, x) defined by the following conditions:

o If v € T}, we let D, = D), be the local deformation problem consisting of crystalline lifts with
the prescribed HT-weights {HT,(p)};

e If v € ), we do not impose any local conditions;
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o If v e T,, welet D, (resp. D)) be the local deformation problems consisting of all lifts p of pg Fv
with charg,)(X) = (X —1)? (resp. with charz,)(X) = (X — () (X — ¢ 1));

We will write Sp, S; for the similar global deformation problems without accounting for the Taylor-
Wiles primes. So that the difference between say Sg and Sy is that we allow ramification at the primes
in Q.
We let Rj,. and R] . be the universal rings corresponding to Sg and S’ respectively, as described
in section Given that ¢, = 1 mod A, we have that Rjo./\ = / A. Moreover, we have the
following facts which are highly non-trivial:

o (R

loc

loc

)red is irreducible, O-flat, and has Krull dimension 1+ 3#7T + [F : Q].

o (R )™ is O-flat, equidimensional of Krull dimension 1+ 3#7T +[F : Q], and reduction modulo
A gives a bijection between the irreducible components of Spec R°¢ and those of Spec R'°¢/ ).

The reason why we introduced the global deformation problem Sb is justified by the fact that (R} )rd

loc
is irreducible. Later, this will allow us to complete the patching argument for Sé?, and the relation

Rioe/X = Ry /X will serve as a bridge to complete the patching for Sgp.

Now for the sake of reducing notation, we will write R“ni" : R“m" and RY := Rg@ (same thing with
"and/or @Q = ()). Note that we have R‘m“’/)\ R“mv /)\ and R} /)\ R '/A. In addition, the natural
maps Rioc — Run“’ and R!

loc — Rum" agree after reducing modulo A. We fix universal deformations

univ uan

Py Py
and R“m" respectively, which are compatible with each other modulo A and compatible with p“m"

umv

Py

/ . . . : sl H
of R“m" and R“m" respectlvely, and choose universal deformations pg“", plém" of R“mV

so that we have surjections:

RHHIV Runlv and Rumv Runlv

which are equal modulo .

In lemma m we have shown that for v € @), we have a decomposition pg‘ﬁ(‘;’F = Xa @ xp for some

tamely ramified characters x.,xs : Gk, — R‘m“’ so let us choose one, say x. If we compose Xa|ps

with the Artin map Art : Op =1 2{’, we get a character ), : OF — Réniv. Now given that p is
unramified at v and by lemma 3, x/, has pro-p image. But 1 4 m, is pro-v, so this character factors
into a map xo : k(v)* — Rg‘i", where k(v) is the residue field of F,. The latter also factors through
the maximal p-power quotient of k(v)* which we denote by A,.

We let Ag = [] A, the choice of x, for each v € @ defines a morphism O[Ag] — R“m", and we
vEQR
have the following expected result:

Lemma 3.4.1. We have a surjective morphism g : Rgm’ —» R(}jm” whose kernel is (0 — 1>5€AQ R“"“’.

Proof. We prove this by showing that Rg‘i" /{6 = Dseng R‘m“’ satisfies the desired universal property.
[

Let J = O[[z1,. .. ,xj]] where j = 4T — 1. By Remark we have that RL = Rg‘i"géoj and the
morphism Ag — R§™ induces a morphism J[Ag] — Rg. If we denote ag = (z1,...,z;,0—1for 6 €
Ag) for the augmentation ideal of J[Ag], then by Lemma we have that RQT/ag = Ry™".

Let us now define the spaces of automorphic forms on which we will perform the patching. We let xq
be an algebraic grossencharacter such that ye = xo, (€ is the p-adic cyclotomic character) and define
k,n by HT(po) = {1, Mur + kir — 1}. For the compact open subgroup Ug = [[, Ug.,, we set:
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o Ugy=GLy(Op,) ifvg QUT,;
k ok .
°UQ,u:IWv:{<O *> mod v } if v € Tp;

. UQ’U:IW}’:{CCZ Z) €lw, |adt €k(v)* = 1€ A,}ifveQ.

And we let ¥ : [[,er, Ugw — O™ to be the trivial character. We also define a compact open subgroup
Uég = Ug but with a character ¢’ : HvETr Ugw — O defined as follows. For v € T, we have a

. . b L
group homomorphism Ug, — k(v)* sending (CCL d) to ad~! mod v, and we compose this with the

morphism k(v)* — O sending the image of o, to ¢, € O* (recall that for v € T, we assume that
#k(v) =1 mod p).

This data gives us spaces of modular forms S(Ug, O) and S(Ug,, O) with corresponding Hecke algebras
Ty, and TUé2 generated by the operators T, and S,, for v € Q U T, and operators Uy, for v € Q

defined by the double coset
wy 0
oo (5 o]

where w, is a uniformizer of F),. Note that by the isomorphism in the automorphic form associ-
ated to py induces a morphism Ty, — O sending T, to Tr(pg(Frob,)) and S, to #k(v) ! det po(Frob,)
for v  T. We let myp be maximal ideal of Ty, given by the kernel of the map Ty, — O — F, so it is
generated by A, Tr p(Frob,) — T, and det p(Frob,) — #k(v)S, for v € T'. Recall that since p is abso-
lutely irreducible, we also have a Galois representation pggd : Gp — GL2(Ty), where Ty := (Ty,)m,,
which is of type Sy. This gives a surjective morphism R(‘Dmi" — T,

Since ¢ = ¢’ mod A, we have S(Up, O)/\ = S(Uy, 0)/A, and Ty, /A = TUé/)\. So similarly, and we

have a surjective morphism RBniV, - T = (TUé)m@' We set Sy = S(Up, O)m, and S = S(Up, O)m,
and the isomorphism Sp/A = Sj /X is compatible with Rj™" /X = Rb‘ni"/ /A

Let m be a cuspidal automorphic representation such that the corresponding Galois representation
pr. : Gp — GLa(L) satisfies Pr, = P, and consider the associated t-linear ring map 6 : Ty, — C,
and such . For each v € QUT, 0, sends Ty, to ¢(Tr pr,(Frob,)) and S, to ¢(det pr,(Frob,)). It also

. . . U,
sends Uy, , for v € @, to «, where «, is one of its eigenvalues on 75

1
Given that for v € @, ml,w” = (0, we investigate thle possibilities of m, using Langlands reciprocity. By
local-global compatibility, we have rec(m, ® | - |72 odet) = WD(pm‘GF )Fss. But given that Pr|G
is the sum of two tamely ramified characters, then by construction of (-)wp, so is WD(me'GF )Ess,

Therefore, we can write WD(px, e )F-ss

= Xa ® xp for xa,xs tamely ramified (we use the same
notation as for the characters of the universal representation, because later we will see that the
nilpotent endomorphism N = 0 so the characters will agree), and we get that m, is a subquotient of
X1 X x2 whith x1 = (1o xq 0 Artp,) - |- \% and x2 = (toxgoArtp,) - |- ]%

Using the Bruhat decomposition, we have:

GLy(F,) = B(F,) Iw, | | B(F,) <(1) (1)) Tw,

Since Iw, = | |5¢ A, (g (1]) IW}), we deduce another decomposition:

GLy(F,) = B(F,)Iw, | | B(F,) <(1) é) Twl
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which shows that we have an injection

wlwl) and

10

1
¢ g — ¢(wg) also belong to WII;WU. From this, we get that the above morphism is actually an
isomorphism, and that

where w = (0 1>. It is not hard to show that if ¢ € ml,wi, then ¢lppywl: ?Llp(r,)

0 = Cgy @ Céhyy

where ¢1(id) = ¢ (w) = 1, Supp(¢1) = B(F,)Iw! and Supp(¢y,) = B(F,)wIw).
To compute the action of U, on 7%, we use the following lemma:

Lemma 3.4.2. There is a partition
1 { Wo 0 1 _ Wy & 1
va<0 1)va— |_| (0 1>IWU
ack(v)
where & is a lift of a to Op,.

Proof. Since Twl C GL2(OF,), and given that we have a partition

w, 0 (1 0 Wy «
GLy(Op,) < 0 1) GLy(OF,) = <O wy) GL2(0g,)| | | ] ( 0 1) GL2(OF,) (3.6)
ack(v)
an element U <T)v (1)> U’ with U, U’ € Tw)] must land in one of the above cosest. First, note that it

cannot land in the first coset since

~1
<(1) £> <CCL Z) (US ?)=(wg“ w;)ld) ¢ GLy(Op,)

where U = <Z Z) and d € O, . Similarly, if U <% ?) U e <w” i‘) GLy(Op,), then

0
wv&flab wy, 0\ [d UV * * 1
= e lw
0 1 c d 0 1)\ d ad'wyc+cdd * v
/ /
where U’ = (Z, g,) which shows the lemma. O

1
Using this partition, we can get a description of the action of Ug,. Concretely, for ¢ € WE,W”, we have:

Us, - ¢(id) = Z)‘b((? ?>>

ack(v

= > xa(@o)#k() 2(id) = #k(0) 2 x1 (@) élid)

ack(v)
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and,

ack(v)

st £v)< >> 2% DY)

= #k(v) 2 xa(w + D0 #k©) 2y () (xe/x1) (@) e(id)
ack(v)*

These calculations show us that

Uwv '¢1 #k( )

m;_-

(wv)d)l + X w
and,
1
Uw, " ¢uw = #k(v) 2X2(wv)¢w
Note that if x1/x2 is ramified (which will be the case), then it induces a non-zero character of k(v)*

(using the Teichmuller lift), which is a finite group. Hence, > cj()x (X1/x2)(@) =0, and X = 0.
The eigenvalues of p, ,(Frob,) are {xq(Frob,), xg(Frob,)}, which are equal to

_ 1 _ 1
{7 (#R ) 2 xa (@), 0 ([#E ()2 x2(w0)) }
so they reduce modulo A to @, and f3,. If x1/x2 = | - |**, then we would get

aU/Bv = Xl(wv)/XZ(wv) = ’wv‘il #k( )il =1 mod A\

which contradicts the fact that v is a Taylor-Wiles prime. Therefore, x1/x2 # |- #1150 My = x1 X X2 =
X1 X X2, and we can assume that Y1(w,) = B, X2(wy) = Q.
We see finally that Uy, acts on mU @ with eigenvalues that are lifts of @, and 3,. Reducing the

morphism ¢ o f; modulo the maximal ideal, we get a maximal ideal mg of TUQ given by:

mg = (X ; T, — Tr(p(Froby), #kyS, — det p(Frob,) for v  TUQ ; —a, for v € Q)

Le us write Tg = (Tyg)m, and Sg = S(Ug, O)mg- We have an action of AQ on Sg where § € A,
acts via <g (1)> € Iw, for a lift 5 of 4. Concretely, note that from equation 1} we have Sg®p, C =

Q
@w(®;§sz)U‘~? ®veq@ Xv Where X, is the one dimensional space on which Ug, acts via a lift of @,,.
Since X, is spanned by ¢,,, and that we have

<§ ?) Suw = x2(0)du

we see that A, acts on Sg via x2 = xa© Art;j. On the other hand, we have another action of Ag on
Sq given by .
AQ — Rlémv —» TQ — Endo(SQ)

univ

By construction of the map Ag — RG™, we get that the two actions that we just defined are equal.

We define a new compact subgroup of GLo(A%) by setting Ug := va Ugw HUGQ Iw,. Since
Iw, /Iwy = A,, we have that Ugo/Ug = Ag. Then, by 3) of Proposition we get that Sg is
finite free over O[Ag].

Now for a place v € @, given that @, # 3,, by Hensel’s lemma, the characteristic polynomial of
p&r;"(Frob ) is of the form (X — A,)(X — B,) where A,, B, € Ty are lifts of &, 3,.
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Proposition 3.4.3. We have an isomorphism [[,co(Us, — By) : Sp = S(Uq,0,0)mg -

Proof. First note that the above morphism is well defined as we can see the source and the target
as submodules of S(Uq,0, O)gs, Where my is the ideal generated by A and T3, — Trp(Frob,), #k(v) —
det p(Frob,) for v ¢ T'U Q. We will use the following fact from algebra: if X,Y are finite free O-
module, and X — Y is a morphism such that it is an isomorphism after tensoring with L, and is
injective after tensoring with IF, then it is an isomorphism.

So let us check that it is an isomorphism after tensoring with L, or equivalently with C. We have
S(Uq,0,0)a, ®0,.C = EDW(®;€Q7TU)U8 ® (®yeq@mi¥) where the sum is taken over the cuspidal auto-
morphic representation 7 such that py(7) = p. So first things first, we need to investigate when do
Iwo —£ 0 for v € Q. Fix such 7, by the Langlands correspondence we either have:

rec(m,) = <<XSM 2) ’ (8 (1)>>

in which case if ﬁ(;b/v is a lift of the Frobenius to Gp,, then py(m)(Frob,) has eigenvalues o and
#k(v)a. But that would imply that p(Frob,) has eigenvalues @ and #k(v)a = @ which contradicts
the fact that v is a Taylor Wiles prime.

Or we have that m, = Ind(x1, x2) with x1/x2 # | - ]% Using the Bruhat decomposition

we have

GLy(F,) = B(F,) Tw, |_| B(F,)wIw,
we get an injective homomorphism:
7r11,W711 — C?
¢~ (6(id), p(w))

Note that since Ty := T'N GL2(OF,) is a subgroup of Iw, and satisfies w1y = Tpw, for 7711)‘”“ #£0
we must have that (x1,4,x20)(T0) = 1, i.e. that x1, and x2, are unramified. And in that case,
by the same computations done for Iw} earlier, 7/"* = C¢; ® C¢,, where ¢;(id) = ¢u(w) = 1,
Supp(¢1) = B(F,)Iw, and Supp(¢y) = B(F,)wIw,. In particular, we have shown that if 7.Wv # 0,
then 7, is spherical.

Now back to the proof, the spaces we are considering are:

Q GL2 (O Q
5480,C = Br (@ g0m0) 2 0(Dpeqmy 2 O™)) and S(Ug,0, O)ng®0,C = Br(@gqm) Ve @(©ueo M,)

where M, is the subspace of 7"* on which Uy, acts by a lift of @,, so it is the one dimensional space
generated by ¢,, (this is seen using the same calculations as in the case of Iw}).

For v € @, we let ¢¢ be the generator of WSLQ(OF”) with ¢g(1) = 1. By definition of B,, we have:
Bj¢o — ByTydo + #k(v)Sygho = 0

. . 1
but as seen in Section we have T,¢0 = #k(v)2 (X1,0(@y)+X2,0 ()P0 and Sydo = X1,0(@w) X2, (@w) P00,
so the equation above becomes:

(By — #k(0) 2 X2.0(@0)) (By — #k(0)2 x1.0(w)) b0 = 0

but we have B, — #k(v)%xgm(wv) ¢ my, so inverting it we get By¢pp = #k(v)%xlm(wv)gbo.
Now since w € GL2(OF, ), we get ¢p(w) = 1, so ¢ = ¢1 + ¢y, and we have :

(Uwv - Bv)(bO - Uwv¢0 + Uwvd)w) - Bv¢0
= #k(v)%xl,v(wv)(ﬁl + #k(v)%XLv(wv)d)w + #k(v)%XQ,v(wv)wa - #k(v)
= #k(0) 2 X2.0(70)bu

=

X1,0(@0) (01 + B2)
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which shows that we have the desired isomorphism Sy ®o,, C = S(Ug,0, O)m, ®0,. C.

Finally, we need to check that the morphism is injective after tensoring with F. The kernel would be
a finite module for the Artinian local ring Ty/\ so for it to be zero, it suffices to prove that it does
not have nonzero my-torsion. Thus, it suffices to show that the map:

[[ W=, — B : (Sy @ F)[mg] = S(Ug0, Oy @ F
vEQR

is injective. Arguing by induction on the size of @), we can suppose that @ = {v}. Suppose that

there exists a non-zero x € (Sy ® F)[my] such that (Ug, — By)z = 0. On the other hand, we have

Tyx = (A, + By)x, we will show that these two equations lead to a contradiction.

Lemma and equation give us the explicit description of the action of Uy, and T, from
hich t that L

which we ge 0 w,

w € GL2(OF,) we have that:

) x = Tyx — Ugp,x = a,x (here we use that = is my-torsion). And since

@y 0 T =w L0 WET = Qpk
0 1 o 0 w, oY

Wy @ 1 a\ [(w, O _ _
and Uz, T = 3~ cp(w) < 0 1) T = aek) <O 1> ( 0 1) x = #k(v)ay,xr = a,x. But we have

Uy, r = B,z implying that @, = f,, which is a contradiction. O

3.4.2 The patching argument
We set SCTQ =So® Ry Rg which is finite free over J[Ag], and we have

Aqg

Recall that for all N > 1, there exists a set of Taylor-Wiles primes Qy of order r = h' (G F.S» adoﬁ(l))
such that there is a surjective morphism

R := Rioc[[z1, ..., 24]] = RgN
where g =7 + #T — 1 — [F,Q]. Moreover, if we write Qn = {v1,...,v,}, we get a map:

f : O[yl,---,yr] - O[AQN]
Yi n—>5@-— 1

where §; is a generator of A,,. This morphism is continuous if we equip O[Ag,| with the p-adic
topology (for which it is complete). Indeed, if o is the order of ¢;, then f(y;") = (1 — &;)* € (p),
so f~1 ((p)) D mX % where m is the maximal ideal of O[y, ..., y,]. Therefore, we can extend f to a
surjective morphism:

O[[ylv--wyr]] - O[AQN] (3'7)

If we let Joo = J|[y1,---,¥yr]], this induces a surjective morphism Jo — J[Aq,], which fits in the
following commutative diagram:



where the dashed arrow exists since J is a power-series ring. Let us also write as = (1,..., 2, Y1,...,¥r)<

Joo, then Sgw/aOO = Sp, RgN/aoo = Ry™™. We define the ideals Iy = ker(Jo — J[Aqy]). Given

that for v € Qu, #k(v) is congruent to 1 modulo p”, we have Iy C {(y; — l)pN =1, (yr— 1)pN —1)
which shows that () In = 0. Thus, we can see J[Ag,] as successive approximations of Ju, and
knowing that Sg, is finite free over J/In, our goal is to construct a module “So,” which is finite
free over J where the action is compatible with that on the ground level Sy. The whole picture can
be summarized in the following diagram:

Joo — J[Aqy]

| |

Reo —» Rb, ( Sou

| |

Rbmiv C S@
From which we only need to retain the following for the patching

Jso — R C SQn

L

R\émiv C S@

Note that the map R, — lemi" depends on N, and in general, the diagrams considered are not
compatible for varying IV, which is why we use the ultraproduct formalism to find a way to connect
them. In that setting, we work with finite rings, so let us consider an open ideal J < 7,, which implies
that J/J is finite. We will need the following lemma:

Lemma 3.4.4. For N > 0, we have Iy C J.

Proof. Since 1+ mj__ is pro-p, its image in Jo,/J (which is finite) is a finite p-group. So given that
1+y; €1+my_, there exist some n > 0 such that (1 +;)?" =1 mod J for all i. Therefore,

INC{p =1 —1,..., (g — 1P —1)CJ
for all N > n. ]

Now let F be a non-principal ultrafilter on N; using Proposition we get:

(11 T/ ) yr) = T/ I (3.8)
N

The ring [[ Jx/J acts componentwise on [[ Sg, /J, so using the isomorphism 1} we get an action
N

N
of Joo/J on
Soo,J = (HSQN/‘]);J(]-‘)
N

Proposition 3.4.5. We have the following properties:
(1) Seo,s is finite free over Jso/J;
(2) Sco,1/000 = Sp/J;
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(3) If J C J' are open ideals, then the diagram

SOO,J//J i> Soo,J

! !

Se/J Se/J

commutes;

(4) Roo acts on Seo 1 Joo/J -linearly, and the induced action of Jso factors through a map Joo — Reo-
Moreover, for J 2 J' open ideals, the diagram

R C Soo,J’

| !
Reo (7 Seoy

commutes;

(5) The action of R is compatible with the change of level, i.e., we have a commuting diagram

Roo C Soo,J

L

Ry 2 S

Proof. 1) Let d = rankp Sy and pick an isomorphism J[Ag,]? = Sox- Modding out by J, we get:
(Joo/ DT = Squ /7

inducing a surjective morphism
®d
(1;[ Joo/ T) iy = (1;[ San /7))

which is actually an isomorphism. Indeed, for injectivity, suppose that we have a tuple of the form

(z',.. 2y s 0
where y & p(F). Then, there exists z ¢ p(F) such that (zyzk,...,2n2%) — 0 for all N € N.
Lemma implies that for N > 0, J/J = J[Aqy]/J, on which Sq, /J is free. So in that case
the maps are levelwise injective, and we get zyz%; = 0 for all i and N > 0. Thereby we define

gl AN for N >0
N 0  otherwise.

so that 2jx’, = 0 for all N € N. But Z(2') ¢ F since it differs from Z(z) by a finite set, so 2’ & p(F),
which implies that 2! = --- = 2" = 0.

2)&3) Follows immediately from 1).

4) Let my, be the maximal ideal of R. Since for N > 0, Sg, /J is finite free over J/J of rank
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rankp Sy, then the sequence (#(SQN/J))NeN* is stationary, so it is bounded by some integer k£ € N.
By Nakayama’s lemma, we get that m* (Sg, /J) = 0 for all N € N*. Now consider the ring

R = H(Roo/mléo)
N

For the same ultrafilter F as considered before, we have a prime p’(F) C R and an action

Ryr) C Soo

given componentwise. So by Proposition we get the desired action
Ry — Roo/moo = Rp’(]—‘) C Soo,J

On each component N, we have a map Joo — Roo/Moo which is compatible with the action on
Soy/J. This induces a map Jo — R /Mo which is compatible with the action on Sy ;. Since Juo
is a powerseries ring, we lift it to a map Joo = Reo. 0

Now we define Sy, = I'&nSOO, 7 where the limit is take over the open ideals of [J4. This is a finite

J
free Joo-module, and by (2) of Proposition we have So /000 = Sy. Moreover, Ry, acts on S

Joo-linearly, and we have the following commutative diagram:

Jos —— Reo S0

| L]

Tso/lcc = O —— Ry™ S

It is time we finished the proof, and thankfully only a bit of commutative algebra is left. First note
that the whole work can be done in the setting where we add a ’ to everything, and in a way that is
compatible with what we have done modulo A. Secondly, we have the following equalities:

dim Ry, = dim Rjpc + ¢
=3#T+1+[F:Q+r+#T —-1-[F:Q]
=H#4T +r

Similarly we have dim R, = 4#T +r, and dim Joo = 1+ j 4+ 1 = 4#T +r. Since J is a power series
ring over O, it is Cohen-Macaulay, and given that S, finite free over 7, we have:

depth s Seo = depth;  Joo = dim Joo = 4#T + 7

But the action of Jw on S factors through Ry, so we must have depthp So > 4#T +r. If
I = Anng_ (S), then Spec Ry /I = Supppg_ S, and we have:

4#T +r = dim Ry, > dim Ry /1 > depthy  Soo > 4#T +r

then all the inequalities are equalities. In particular, we get that dim R /I = dim R, from which we
see that Suppp_ S is the union of irreducible components of Spec R. Using the same argument,
we also get that Suppp,_S7, is the union of irreducible components of Spec Rf,. But Spec Rj . is
irreducible, hence so is Spec R, and we must have Supp R S’ = Spec R._. In particular, we get that

Suppp_/AS%/A = Spec R /A, and by compatibility of the two pictures, we have:

Suppp_ /xSs0/A = Spec Roo /A
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To sum up, Suppg_ S is a union of irreducible components of Spec Ry, and contains Spec R /.
But there is a bijection between irreducible components of Spec R, /A and irreducible components of
Spec Ry (by a property of Rj,. seen before) , thus we have Suppgr_ Soc = Spec Roo. Then, we have
that Suppp__ /.. Soo/ 00 = Spec Roo /0, in other words:

Supp Ryniv Sp = Spec RB“iV

But the action of R(‘ami" on Sy factors through Ty, and Sp is a faithful Ty-module. Thus, ker(R(‘Blniv —
Ty) is nilpotent, which means that (R}omi")red = Ty. Note that p corresponds to a morphism R(lz,mi" —
O, which factors through (Rb‘ni")red and thus gives a morphism Ty — O. Composing this with
t: O <= C, we see by (3.5) that it corresponds to an automorphic representation 7 of weight (k,n)
with p 2 py (7). This finishes the proof of Theorem [3.0.1]
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Part 11

Vanishing of the adjoint Bloch-Kato
Selmer group of automorphic Galois
representations
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Introduction

In this part, we study the paper Adjoint Selmer groups of automorphic Galois representations of
unitary type [NT20] by J. Newton and J. Thorne, adapting their exposition by giving additional
details and explanations depending on my knowledge and understanding of the subject. The goal is
to prove the vanishing of the adjoint Bloch-Kato Selmer group attached to an automorphic Galois
representation, a result which is used by the same authors in their paper Symmetric power functoriality
for holomorphic modular forms [NT19] to embed an “eigencurve” in a certain trianguline variety.
This process allows them to prove that the symmetric power of an automorphic representation is still
automorphic as predicted by the Langlands program.

To put things in context, consider a non-archimedean local field K of characteristic 0 with residue
characteristic [, and V' a continuous p-adic representation of Gx. We want to define the Bloch-Kato
Selmer group as a subspace H} (Gk,V) of HY (G, V) capturing some good “geometric conditions”.
In the case [ # p, the only reasonable condition seems to let H}(GK,V) = H!(Gg,V). Indeed,
If V.= H}(X%,Qp) is the étale cohomology of a smooth proper K-scheme, then it is unramified
whenever X has good reduction, i.e., if it is the generic fiber of a smooth proper Og-scheme.

If | = p, the story is different. In fact, it is known that if V = H} (X3, Q,), and if X is :

(i) a smooth proper K-scheme,
(ii) the generic fiber of a smooth proper Og-scheme,

(iii) a smooth proper K-scheme admitting a semistable proper flat Op-model.

then V is (i) Bgqr-admissible, (ii) Beys-admissible, (iii) Bgsi-admissible, where we recall that V' B;-
admissible (1 is either ét,crys or st) if

dimeK D;(V) = dimg, V'

with Dy(V) = (V ®q, By)°x.
Under this point of view, the crystalline condition is the p-adic analogue of the unramified condition
in the case | # p. Consequently, we define

Hi(Gk,V) =ker (H'(Gg,V) = H'(Gk,V ®g, Berys))
Alternatively, an element € H' (G, V), which corresponds to an extension
0=V -=>W-=0Q,—0
is in H}(G i, V) if and only if the sequence
0 = Derys(V) = Derys(W) = Derys(Qp) = Qp — 0

is exact. In particular, if V' is crystalline, then z is in H}(G K, V) if and only if W is crystalline.

Similarly, we define the geometric Bloch Selmer group H gl(G K, V) to be:
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o H'(Gk,V)ifl#p,
e ker(H'(Gg,V) — HY(Gk,V ®q, Bar)) if | = p.

If ] = p and V is deRham, then elements of H, gl(G K, V') correspond to de Rham extensions of V' by
Qp-

Now, if '™ is a number field with S a finite set of places of F* containing those above p, and if V is
a p-adic Galois representation of G+ g, the global Bloch-Kato Selmer groups are defined by

H{(F*,V) =ker <H1(FS+/F+, V) — H HY(Ff,V)/H}(F/, V))
veS

HY (P4 V) = ke <H1<FS+/F+, V) o T H' (R V) HAES, v>)
vES

where we denote by H'! (Fgf JE* %) and H(E}, ) for the continuous group cohomology of G F+ g and
G Ff respectively.

In [BKO7], Bloch and Kato defined these Selmer groups and conjectured that if V' is geometric, then
we have the following equality:

ords—o L(V, 5) = dimg, H(F, V(1)) — dimg, H*(F¢ /F*, V(1))

Here L(V,s) is the L-function associated to V' which is defined by:
L(V.s) =[] Lo(V.5)

where if we let ¢, be the size of the residue field of Ff, then

: 1 -1
L,(V,s) = det (id —(Frob, ' g, S)IVIFJ)

if v 1 p and,
. — —s -1
LU(‘/, S) = det (ld _(80 quv )‘Dcrys(‘/\GF+))

v

if v | p, with ¢ the crystalline Frobenius and ¢, = p/v.

Note that it is only conjectured in general that L(V, s) is well defined at s = 1. In fact, if V' is moreover
pure of weight w, L(V, s) is expected to admit a meromorphic continuation to all of the complex plane
and has no zeros on the domain Res > w/2 + 1.

Let us now suppose that F* is totally real, F/F* a CM extension, and 7 is a RACSDC automor-
phic representation of GL,(Ar). Then for any isomorphism ¢ : Q, — C, we can attach a Galois
representation

Tre - GF,S — GLn(@p)

which is known to be Geometric and pure. Applying the Bloch-Kato conjecture for ad (1), which
is pure of weight —2, we would expect that

H}(F+, adr,,) =0

In fact, under a weak hypothesis on the image of the representation 7.,, J.Newton and J.Thorne
proved:
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Theorem 3.4.6. [NT20, Theorem A] Let F/F* be a CM extension, and 7 a reqular algebraic conju-
gate self-dual cuspidal automorphic representation of GL,,(Ar). Let p be a prime and ¢ : Q, = C bean

isomorphism. If rﬁ,L(GF(CpOO)) s enormous in the sense of definition|.4.11), then H}(F*‘, adry,) =0.

By identifying H} (Fy,adr, ) with the tangent space of a universal pseudodeformation ring of r, ,, we
will be able to prove the theorem using an equality of the form “R = T”. However, since we do not
impose any condition on the residual Galois representation, we can no longer work with the theory
of deformations of Galois representations. Instead, we will use pseudorepresentations which are more
adapted to this setting.
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Chapter 4

Pseudocharacters and
Pseudorepresentations

Pseudorepresentations form a particular case of a more general notion which is that of polynomial
laws. In this chapter, we introduce both of these objects and study some of their properties. In
particular, we will study the theory of deformations of pseudorepresentations and see how one can
impose conditions just like in the classical setting of representations. Using these results, we will be
able to find sets of Taylor-Wiles places with good properties with which we will do the patching.

To get more details about the subject, one can consult C.W.Erickson’s Ph.D thesis [Eril3] or the
original source in [Che0§].

4.1 Polynomial laws

Let A be a commutative ring. We denote by Alg, the category of commutative A-algebras. Each
A-module M gives rise to a functor M : Alg, — Ens, B — M ®4 B. Given two A-modules M and
N, a polynomial law P : M — N is simply a natural transformation M — N. In other words, for
each B, B’ € Alg, and u € Homyyg, (B, B), we have a commutative diagram

M®sB 25 NoyB

lid Qu lid Ru

Pry
M@y B —25 N@y B

The set of all polynomial laws from M to N is denoted P4(M,N). For d > 1, a polynomial law
P : M — N is homogenious of degree d if for all B € Alg,, 2 € M ®4 B, and b € B, we have

Pg(bz) = b Pg(2)

We denote by P4(M, N) the A-module of homogeneous of degree d A-polynomial laws from M to N.
If M and N are A-algebras, we say that a polynomial law P : M — N is multiplicative if for all
B e Alg,, Pg(1) =1 and for all z,y € M ®4 B,

Pp(zy) = Pp(x)Pp(y)

We write M% (M, N) for the set of all multiplicative, homogenious of degree d A-polynomial laws.

Note that by functoriality, a polynomial law P : M — N is determined by the maps

PA[Tl,...,Tn] : M[Tl, .. .Tn] — N[Tl, . ,Tn]
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for all n > 1. In particular, if P is homogenious of degree d, then it is uniquely determined by the
map Pair, .. 1, Indeed, let Iy = {(a1,...,aq) € N? | ap + -+ ag = d}, then for all z1,...,24 € M,
we have:

PA[TIV’WTd} : M[Tl, e ,Td] — N[Tl, e ,Td]
T+ -+ xgdy— Z P[a] (:UZ ‘ ; # O)Ta (4'1)

acly

To see that the polynomial is homogenious, we apply the functoriality of P to the map A[T1,...,Ty] —
AlTh, ..., Ty, X] sending T; to XT;. And to see the map only depends on Py . 1, note that the

coefficient Pl®l(z; | a; # 0) can be recovered using the functoriality of P to the map A[Ty, ..., Ty] —
A[Ty, ..., Ty] sending T; to 0 if o; = 0.

Therefore, if X C M generates M as an A-module, then P is uniquely determined by the finite set of
functions Pl : X4 5 N for a € 1.

Definition 4.1.1. If M, N are two A-modules and P € P4(M,N) we define ker(P) C M as the
subset whose elements are the € M such that for every commutative A-algebra B,

Vb e B,Ym € M ®4 B, Pg(x @ b+ m) = Pg(m)
From the definition, we see that ker(P) is an A-submodule of M. We say that P is faithful if ker(P) = 0.
Lemma 4.1.2. With the same notation as before

(1) ker(P) is the biggest A-submodule K C M such that P admits a factorisation P = P o where
m: M — M/K is the canonical projection and P € Pa(M/K,N).

(2) P: M)/ker(P) — N is faithful.
(3) If B is a commutative A-algebra, then

im(ker(P)®4 B — M ®4 B) C ker(P ®4 B)

Proof. (3) is clear from the transitivity of the tensor product.

(1) It is immediate that if P = Pox for K C M as in the definition, then K C ker(P).

On the other hand, let K C ker(P) and define for B a commutative A-algebra Kp = im(K ®4 B —
M®aB). Then, 7®aB: (M®aB)/Kp = (M/K)®4B, and by (3) Kp C ker(P®4 B). In particular,
the map Pp : M®4B — N® 4B satisfies Pg(k+m) = Pg(m) for k € Kp and m € M ®4B. Therefore,
we can define a map Pp : (M/K)®4 B — N @4 B by setting

Pg((m @4 B)(m)) = Pg(m), Ym € M ®4 B (4.2)

The collection of maps Pp define a polynomial law P e PA(M/K,N).
(2) From (4.2), we see that ker(P) = ker(P)/K which gives (2). O

Lemma 4.1.3. Let R, S be two A-algebras and P € M%(R, S).
(1) ker(P) = {r € R,VB,Vr' € R®aB, P(1+rr') =1} = {r € R,VB, V' € R®aB, P(14+rr') = 1}.

(2) ker(P) is a two sided ideal of R, it is proper if d > 0 and R # 0. It is the biggest two sided
ideal K C R such that P admits a factorisation P = P om with 7 is the canonical surjection
R — R/K and P € M%(R/K,S).
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Proof. (1) Let r € ker(P), B a commutative A-algebra and m =1+ h € R®4 B. We want to show
that
Pp(1+ (1 +th)) = Pg(1+ (1 +th)r) = 1

in S ®4 B[t]. Since they are polynomials of degree d, it is enough to check this in S ®4 B[t]/(t41).
Since (1 +th) € R®4 B[t]/(t%!) is invertible, we have

P(1+7r(14th))=P((1+th) L +r)P(1L+th)=P((1+th) " H)P(1+th)=P(1) =1

and similarly we see that P(1 + (14 th)r) = 1. From this we also see that an element in the sets on
the right hand side of (1) lie in ker(P), so we get the desired equalities.

(2) By (1), ker(P) is a two sided ideal of R. Since P(1) = 1, we have P(1 —t) = (1 — t)¢ and so
1 & ker(P) if d > 0. The rest follows similarly to (2) of the previous lemma from (4.2). O

Remark 4.1.4. Note that by the previous lemma, r € ker(P) if and only if for any ry,...,r, € R, we
have
P(I+r(tiri+ - +tyrm)) =1

So if A =S is an infinite domain, we have ker(P) = {r € R,Vr' € R, P(1+rr’) = 1}. Indeed, in this
case the polynomial P(1+ r(tyr1 + -+ + t,ry)) — 1 € Alty,. .., t,] would have infinitely many roots
(by functoriality of P) so it must be zero.

4.1.1 Representability

Definition 4.1.5. The A-algebra of divided powers on M, denoted I" 4(M) is the A-algebra generated
by the symbols mld for m € M, i € N which is subject to the following relations:

e ml% =1forallme M.

o (am)ll = a'mll for all a € A, m € M.

o mlilmll = %ﬁmﬁﬂ] for all ,j € N, m € M.

o (m+m)l = Zp+q:im[p]m’[q] for all i € N, m,m' € M.

Definition 4.1.6. Let B be a commutative A-algebra. We define the B-module exp(B) to be the
subgroup of the power series algebra over B consisting of elements f € B[[t]]* satisfying

. f(0)=1
o f(t1+t2) = f(t1)f(t2) for free commutative variables ¢y, to.
with the b-module structure given by (b- f)(t) = f(bt).

Proposition 4.1.7. The functors I'y : Mods = Alg, : exp are adjoint to each other. In other
words, we have a natural bijection

Hom a9, (T 4(M), B) = Homsoa, (M, exp(B))
sending f:Ta(M) — B to g :m s 350, f(ml)n.

Corollary 4.1.8. Let A be a commutative ring. Then, the algebra of divided powers over A satisfies
the following properties:
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(1) If B is a commutative A-algebra, and M an A-modules, then we have a canonical isomorphism
of B-algebras

T4(M)®a4 B = Tp(M ®aB)
m @1 (me 1)l

(2) If M = hAlMZ s a colimit of A-modules, then we have an isomorphism of A-algebras
lim T4 (M;) = T4 (lim M;)

(3) If My and My are two A-modules, then there is a canonical isomorphism
La(My ® Mz) = Ta(M1) @4 Ta(Mo)
(ml,mg)m — Z m[lp] ®m[2q]
ptq=i
which respects grading, i.e., for each d > 0, it induces an isomorphism

T9(M; @ M) = @D TH(My) @ I (My)
ptg=d

Given two A-modules M, N, a polynomial law P € P4(M,N), and an A-algebra B, we define the
Taylor expansion of P at a point z € M ®4 B with respect to m € M to be

Sm(P)p(z) :== Pgy(m®t+z) € N ®4 Blt]
For any morphism of A-algebras u : B — B’, by functoriality of P, we have a commutative diagram:

met+r ——— Ppy(met+x)

| !

m®t+u(r) — Pppy(met+u(z))

which shows that S,,(P) € Pa(M,N @4 A[t]). Therefore, the composition of the polynomial law
Sy (P) with the linear polynomial law N ®4 B[t] — N ®4 B, nit' +— n; gives a polynomial law
which we denote 9% (P) € Pa(M,N). It is straightforward to check that 8¢ : P(M,N) — P(M, N)
is an A-linear map. We denote by D the A-subalgebra of End4(P(M, N)) generated by the ¢ for
m € M and i € N. Now given an A-algebra B, mi,ms € M and P € P4(M, N), we have

PB[tth](ml Rt +mo Rty + CC) = PB[thtﬂ(mQ Rta+m; @t + a:)
Sy (P) Blty) (M2 @ t2 + ) = S, (P) g, (M1 @ 1 + )
S (Smy (P))B(2) = Sy (S, (P)) B()

comparing the coefficients in t1,%2 we find that afnz(?%ltét{ = 8,];118;1215{75% for all 7,5 > 0 which shows
that D is commutative.

Lemma 4.1.9. The map Sy : M — D[[t] defines an A-linear map S : M — exp(D).

Proof. We need to show that for m € M, S, = Y22, 0%t lies in exp(D). First, note that for
an A-algebra B, by applying the functoriality of P for the map B[t] — B : ¢t — 0, we get that
9% (P)(z) = Pp(x) for z € M ®4 B. So 8% (P) = P, and 8%, =1 € D.

Now for m € M, B an A-algebra and P € P4(M,N), the functoriality of P applied for the map
B[t] — Blti,ta] : t — t1 + t2 gives a commutative diagram
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met+x » Ppy(m @t +x)

| !

met+mte+r —— Ppy, ) (Mm@t +mety+ 1)

which shows that Sy, (t1+t2)(P)5(x) = Ppjt, 1,)(m®@t1+m®@ta+z) = (Sm(t1)Sm(t2)) (P)p(x). Thus,
Sm(t1 + t2) = Sm(t1) - Sp(t2) as desired. It remains to show that S is an A-linear map which follows
the same ideas. ]

Definition 4.1.10. We define the universal homogenious of degree d polynomial law P;ni" M —
I'4 (M) by setting for each A-algebra B,

PP M ®aB—Tp(M®aB)=Ty(M)®4B
m &b (meb)ld = mldgp

Theorem 4.1.11. [Rob80, Theorem III.1] Let M be an A-module and d > 1, then T'% (M) represents
the functor N — Pﬁ(M, N). In other words, we have a bijection

f — f o Pdumv
Proof. Let us first show the injectivity of the defined map. Solet P € Pfl(M , N) such that P = f onm"

for some f € Homa(T'% (M), N). Since T4 (M @4 Alt1, ..., tq]) 2 T49(M) @4 Alt1, ..., t4], for all a € 14
and my,...,mg € M, we have

P&lniv(m1®t1+"'+md®td):(m1®t1+"'+md®td)[d]

-5 1w
acld 1<i<d
then by definition of the Pl (see equation ), we get that f(m[lal] . -m([iad]) = Pld(my, ..., myg).
But I'% (M) is generated as an A-module by the [Ti<i<q mEa"] for o € I% and my, ..., mg € M which
shows that P determines f, i.e., the map is injective.

To prove surjectivity, let P € Pff‘(M ,N), we need to show that there exists an A-linear map f :
I'4 (M) — N such that

Fm - mlry = POy, )

for all a € Ig and myq,...,mqg € M. From now on we will write m = (my,...,mq) € M? for briefty.
By the previous lemma, we have an A-linear map S : M — exp(D) which by adjointness gives us a
map of A-algebras S : T'4(M) — D. One can check that S(ml1) = & . On the other hand, the data
of P induces an A-algebra morphism a

evp:D— N
0+ 9(P)a(0)

evaluating the differential operators at 0. Setting f = evp o S, we get that f(ml¥) = O, (P) 4(0) But
for an A-algebra B and x € M ® 4 B, we have

Ppjty,gg (M1 @ 1 4+ +mg @ tg+ 1) = > 0(P)p(x)t"

evaluating at 0, we get that:

Ppjty,. (M1 @1+ +mg @tg) = Y _ O (P)p(0)t
by definition of Pl we get that Pl)(m) = f(m!) as desired. O
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4.2 Pseudorepresentations

Informally, a pseudorepresentation D : G — A of a group G with coefficients in A is the data for each
g € G of a characteristic polynomial xp(g,t) € A[t] subject to conditions making these polynomials
behave as the characteristic polynomials of a representation p : G — GL,(A). Note that in [Che0§],
this notion is called group determinant.

Definition 4.2.1. Let R be an A-algebra, G be a group, and d > 1.

(1) A pseudorepresentation of dimension d, denoted D : R — A, or (R,D) is an element of
M4 (R, A).

(2) A pseudorepresentation of G, denoted D : G — A is a pseudo-representation of A[G].

(3) If D : R — A is a pseudo-representation, and x € R, we define the characteristic polynomial
xp(z,t) € Alt] by xp(x,t) = Dyp(t — )

Let D: R — Aand D' : R — A’ be pseudorepresentations. A morphism of pseudorepresentations
p: (R,D) = (R',D) is the data of a pair (f,g) where f : A — A’ is a ring homomorphism, and
g: R4 A — A’ is an A’-algebra homomorphism such that fo D = D’og.

Note that xp(z,t) is the image under R[t,¢'] — R][t], sending t' to z, of the polynomial D 41, 4)(t —1') =
Z;‘i:o DU (") (=t')'t%* where DI)(#) =1 (as seen via the map R[T,t'] — R[T] sending ¢’ to 0 and by
multiplicativity of D). Therefore, we can write:

d
Xp(@,t) =Y (1) Ay(a)t?
i=0
This defines A-polynomial laws A; : R — A of degree i, for 0 < i < d, where Ag =1 and Ay = D. We
define the trace of D by Tr D = A;.

We let dets(R,d) : Alg, — Sets be the covariant functor associating to any commutative A-algebra
B, the set of B-valued pseudorepresentations R ® 4 B — B of dimension d. By Corollary we
have that M4 (R, B) 2 M%4(R®4 B, B). So actually, this functor sends B to the set of homogenious
multiplicative A-polynomial laws R — B of dimension d. But thanks to Theorem this is
equivalent to giving an A-algebra homomorphism I'4 (R) — B, which factors through I'Y (R)2® by
commutativity of B. Hence, we get that:

Proposition 4.2.2. The functor deta(R,d) is represented by the A-algebra T4 (R)®.
If G is a group, we denote I'4(Z[G])*" by Z(G, d).

4.2.1 Universal polynomial identities

Let X be a totally ordered finite set, and let X be the monoid of words with letters in this set
equipped with the induced total lexicographic order. We say that a word w € X is a Lyndon word
if w is less or equal any of its rotations (or equivalently if w = zw’ with z € X+, then w < w’). We
denote by Lx the set of Lyndon words on X. By the Chen-Fox-Lyndon theorem, any word w € X+
can be uniquely factored into a Lyndon decomposition

w:wlll"'wésv wieﬁXWithw1>w2>...>ws

There is a unique function e : Xt — {£1} which is defined by e(w) = (=1)!™) =1 if w € Lx, and by

e(w) =[5 e(w)l if w e XT and w = fwlll ...wls is its Lyndon factorisation.
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Proposition 4.2.3. [Che08, 1.12] Let A be a ring, R be an A-algebra, andd > 1. Consider D : R — B
a homogenious of degree d polynomial law into a commutative A-algebra B, and let A; g : R — B be the
induced characteristic polynomial coefficient polynomial law. Then, we have the following polynomial
identities

(1) For allr,v' € R, D(147r'") = D(1 +r'r).

(2) The A; satisfy Amistur’s formula, i.e., for any finite subset X = {r1,...,r,} C R, totally ordered
by the indices, we have

Aialri+-4m)= Y 'e(w)A(w)

where A(w) := Ay, (ws) - - - Ay, (wy), with w = w' ... w's is the Lyndon decomposition of w € X 7.
(3) Tr satisfies the d-dimensional pseudocharacter identity.

Proof. 1) First note that if r is invertible, then by commutativity of B and multiplicativity of D we
get the result, since

D(1+7r") = D) Dt ++") =D~ ++)D(r) = D(1 +v'r)
Now for the general case, let us work in R[t], and set r = 1 4+ u. If we show that
D(1+7r(1+wut)) =D+ (14 ut)r) € Blt]

then specializing to ¢t = 1 gives us the result. Now since both polynomials are of degree < d, it suffices
to show the equality in B[t]/(t%T!). But (1 4 tu) is invertible in R[t]/(t**1) so we can apply the
previous case.

2) Let ry,...,7, € R, and consider the A-algebra A,, = Alt1,...,t,]/(t1,...,ty)™. We have the
following equality in R ® 4 Ap:

1
1-— (tlrl, . ,tn’l"n)

-1

=14 (t171, .. tporn) + -+ (G171, -« tprn)™

- T
weX T, l(w)<m
1
— 1 . m=1y _ -
I a+w+ o +wm? 11 —
weLx, L(w)<m weLx, L(w)<m
where X = {t171,...,tyrn}, and the last product is taken in the decreasing lexicographic order. Note
that the third equality follows from the existence and unicity of the Lyndon decomposition. Applying
D and inverting, we get

d

D+ tir)= [[ xotw, )= [T (Q_(=1)'Ai(w)) (4.3)
=1 i=0

weLx weELyx i=

where we now take the product over all Lyndon words, (we previously restricted ourselves to words
of length < m because the determinant commutes only to finite products). This equation does not
depend on m, hence it holds in Bl[ti,...,t,]]. If we take an integer ¢ > 0, the homogenious part of
the equality of degree i writes as

Ai(tiry+ -+ tarn) = Y e(w)A(w) (4.4)
L(w)=1
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Indeed for each word w in the sum, we have f(w) = i = Y ;_; [pl(wy), where w = wlt - wls s

the Lyndon decomposition of w. Hence, e(w) = (—1)2x%~% The equality in holds a priori in
Bl[t1,...,t,]], but both sides live inside BJt1,...,t,], so it is also an equality in B[t1,...,t,]. Sending
each t; to 1 gives us the desired formula in B.

3) Applying equation (4.4) with i =n =d+ 1, we get

IT (i(—l)i/\i(w)) =0

weLlyx i=0

If we consider the component which is homogenious of degree 1 in each t;, then we are actually taking
the sum over the words of length d + 1 that are written with distinct letters, so each w of these words
correspond to a permutation o € G411 with €(w) = €(0). The equation that we obtain this way
correspond to the d-dimensional character identity for Ay = Tr. O

Corollary 4.2.4. Let D be an A-valued determinant on a group I' of dimension d, and B C A the
subgring generated by the coefficients Ai(7v) of xp(7y,t) for ally € T'. Then, D factors through a unique
B-valued determinant on I' of dimension d.

Proof. We need to show that for all vi,...,7, € T, D(yit1 + -+ + Yntn) € Blt1,...,t,]. But by
Amitsur’s formula (4.4)), such a determinant is a signed sum of monomials in A;(w) where w is a word
in y1,...,7%n, in particular w € I', hence the result. O

Remark 4.2.5. One interesting and useful fact is that the polynomial identities between the \;(w)
(where w is a word in elements of R) which hold for the determinant of a matrix algebra, also
hold for a general pseudorepresentation. To see this, let X be a set, and consider the Z-algebra
Fx(d) =Zlz;; : 1<1i,j <d,x € X]. We have a universal representation:

PV Z{X} — Fx(d)
defined by x — (z; ;)i ;. By Corollary we get a pseudorepresentation:
det op™V : Z{X} — Ex(d)

where Ex(d) is the subring of Fx(d) generated by the coefficients of the polynomials of the p™™V(w)
for w € Z{X}. This induces an isomorphism I'%(Z{X})*" = Ex(d) ([Che08, Theorem 1.15]).

It is also a fact that if X is finite, then Ex(d) is actually a finite type Z-algebra (see [Che08| §2.7]).
But if G is a finitely generated group, with set of generators X C GG, and A is a commutative ring, we
have a surjective map

A®zTE(Z{X}) — T4(A[G])
so we get that 'Y (A[G]) is a finite type A-algebra.

4.2.2 Deformation theory of pseudorepresentations

Before we dig into the deformation theory of pseudorepresentations, we need to be able to say when
a pseudorepresentation is continuous. For this, we have the following definition:

Definition 4.2.6. Let G be a topological group, and A a topological ring. A pseudorepresentation
D : A[G] — A of dimension d is said to be continuous if for each a € I, the map DI : G — A is
continuous.
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Note that by Amitsur’s formula, D is continuous if and only if A; : G — A is continuous for all i < d.

For our purposes, we suppose that G is profinite. So in the case where A is equipped with the
discrete topology, D is continuous if and only if the characteristic polynomial map

G — Alt]
g— D(1+tg)

factors through G — G/H for some normal open subgroup H. For such a subgroup, we define the
ideal
J(H) :=ker(A|G] — A|G/H))

and we equip A[G] with the topology generated by this set of ideals.

Lemma 4.2.7. A B-valued determinant D on G, viewed as an element P € D% (A[G], B), is contin-
uous if and only if, ker(P) C A[G] is open for the topology defined as above. In this case, the natural
representation

G — (B[G]/ ker(D))*
factors through a finite quotient G/H of G for some normal open subgroup H.

Proof. If J(H) C ker(P), then by Lemma P factors through P € M%(A[G/H], B) and D is
obviously continuous. Conversely, suppose that D is continuous. Given that B is discrete and G is
profinite, there is a normal open subgroup H of G such that A; : G — B factor through G/H. Hence,
by Amitsur’s formula, we get for g € G,h € H:

D(t(g — gh) + Z tigi) = D(Z ti9:)

which means that g — gh € ker(P), and J(H) = >_ c; ey Ag(h — 1) C ker(P). O

Let us fix a profinite group G, a prime number p, and a finite extension F/Q, with ring of integers O
and residue field k. Recall that C(% is the category of Artinian local O-algebras with residue field k,
and we let 5@ be the category of pro-Artinian local (J-algebras with residue field & whose morphisms
are local O-algebra homomorphisms. We fix a continuous pseudorepresentation of dimension d

D k[G] — k

and we denote Def7 : 5(\9 — Sets for the functor which associates to A € é(; the set of continuous
pseudorepresentations D of G over A such that D @4 k = D.

Lemma 4.2.8. If A = lim A; for A; € Co, then the natural map Def5(A) — @Defﬁ(Ai) is an
isomorphism.

Proof. Since the functor M%(O[G], —) from O-algebras to sets is representable, it commutes with any
projective limit. Hence, the lemma follows from the fact that a map G — @Ai is continuous if and
i

only if G — A; is continuous for each i. O

Proposition 4.2.9. The functor Defy is representable by a ring Ry € E(\')
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Proof. Welet B = (I'4(O[G]))*" representing the functor deto(O[G], d), and we consider the universal
multiplicative polynomial law P" : O[G] — B (see Proposition[£.2.2). Let ¢ : B — k be the O-algebra
morphism corresponding to the pseudorepresentation D.

We say that an ideal I C Bisopen if I C ker, B/I is a finite local ring, and the induced multiplicative
law Pr: O|G] — B/I is continuous. Note that if I, J are two open ideals, then so is I N J. Indeed, we
have an injection B/(I NJ) < B/I x B/J which is a homeomorphism (since everything is discrete).
Therefore, these ideals define a topology for which they form a basis. We consider the completion of
B for this topology:

Rp= lm B /1
I open

and the pseudorepresentation P(D) = to P : O[G] = Ry where ¢ : B — Ry is the natural map.
Then, Ry € 5@, and by Lemma we have:

P(D) = (Pr); € Defp(Rp) = lim Def(B/I)

I open

Now if A € C%, and P € Def5(A), then there is a unique O-algebra morphism ¢4 : B — A such that
4 mod my =1 and P = 14 o P*. Hence, kery4 C ker, and B/ keri 4 C A is necessarily finite
local. By continuity of P, we get that ker 4 is open, hence the result. O

Remark 4.2.10. Suppose that G is topologically finitely generated, and let H C G be a finitely
generated dense subgroup. By definition of the continuity of pseudorepresentations, the natural trans-
formation:

Defﬁ — Defﬁ‘H

is injective. In particular, we have Def5(k[e]) C Defﬁ‘H(k[e]), which implies that

dimk(mRﬁ/mﬁ%) < dimk(mRﬁlH/m%EH)
But by construction, Rp, is topologically generated by I'4(O[H]) which is a finite O-algebra by

Remark |4.2.5, Therefore, dimk(mRﬁ‘H

/m%ﬁlH) < 0o, which implies that Rz is topologically finitely

generated.

Lemma 4.2.11. Let A € CA@, and let D : G — k be a continuous pseudorepresentation deforming D.

Then, D factors through A|[G] — A|G/H] where H C J :=ker(p : G — GLg4(k)) is the smallest closed
normal subgroup such that J/H is pro-p.

Proof. We need to verify that D(T — gh) = D(T — g) for all g € G, h € H. This can be checked on
the finite quotients of A, so we can assume that A is finite. By Lemma [£.2.7] we can assume that D
factors through a finite quotient G’. The ring B := A[G']/ ker(D) = A[G]/ ker(D) is finite, and we
have an induced pseudorepresentation

D' B®ak/ker(D) — k

such that D = D' o (k[G] = B ®4 k/ker(D)). By [Che08, Theorem 2.16], B ®4 k/ker(D) is a finite

semisimple k-algebra, so extending the scalars to k, we get by the unicity in [BC09, Theorem 2.12]
the following commutative diagram

k[G], —— B ®4 k/ker(D)

| !

E[G] — 2 My(k)
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This shows that the image of J — 1 in B lies in ker (B — B ®4 k/ker(D)), which is equal to the
Jacobson radical Rad(B) of B by [Che(08, Lemma 2.10]. Hence, the image of J — B> lies in the
p-group 1 + Rad(B) which gives us our result. (Note that the difficulty was in the fact that we don’t
necessarily have ker(p) C ker(D)). O

Proposition 4.2.12. If G satisfies Mazur’s ®, condition, then Ry € Co.

Proof. If G is topologically finitely generated, then the result was already established in Remark [£.2.10]
The general case follows from this by considering Lemma @l Indeed, if Def%; : Co — Sets is the
deformation functor of the determinant of p seen as a G/ H representation, then as a consequence of
this lemma, the natural functor Def% — Def7 is an equivalence. Moreover, the condition ®, exactly
implies that G/H is topologically finitely generated. O

4.2.3 Cayley-Hamilton representations

If G is a group and D : G — A is a pseudorepresentation, it is not always true that it can be written
of the form D = detop where p : G — GL,(A) is a representation of G, or equivalently that there
is a morphism of pseudorepresentations (A[G], D) — (M,,(A),det). However, one can always find a
morphism of pseudorepresentations (A[G], D) — (E,D’) where (E,D’) is a Cayley-Hamilton pseu-
dorepresentation. This is good enough for us since a Cayley-Hamilton pseudorepresentation behaves
well under many operations, and as the name suggests, satisfies the Cayley-Hamilton theorem. In
some sense, it can be though of as a generalisation of the pseudorepresentation (M, (A4), det).

Definition 4.2.13. We call a pseudorepresentation D : F — A Cayley-Hamilton when F is finitely
generated as an A-algebra, and, for every commutative A-algebra B, and every x € E ®4 B, the
element z satisfies the characteristic polynomial xp(z,t) € B[t]. In this case, we call the pair (£, D)
a Cayley-Hamilton A-algebra.

Remark 4.2.14. If D : E — A is a pseudorepresentation, we denote by CH(D) C E the two sided ideal
of E generated by the coefficients of the polynomial

xp(tir1 + -+ tarn) € Rlty, . .., 1]

for r1,...,7, € R, n > 1. Then, we see that (£, D) is Cayley-Hamilton if and only if CH(D) = 0.
Also by [Che08| Lemma 1.21], we have that CH(D) C ker(D). In particular, (E/CH(D),D) is a
Cayley-Hamilton A-algebra.

Remark 4.2.15. If (E, D) is a Cayley-Hamilton A-algebra, then F is finitely generated as an A-module
(see [IWWE19, Proposition 2.1.7]).

If G is a group, we define a Cayley-Hamilton representation of G of dimension d to be triple (4, (E, D), p)
where A is a commutative ring, (E, D) is a Cayley-Hamilton A-algebra of dimension d and p : G — E*

is a group homomorphism.

A morphism (A, (E,D),p) — (A, (E',D’),p’) of Cayley-Hamilton representations is a morphism of
pseudorepresentations (E, D) — (E’, D’) such that p' = (E — E') o p.

We let CH4(G) be the category of Cayley-Hamilton representations of G of dimension d with mor-

phisms as we just defined.

Recall that by Proposition we have a universal determinant of dimension d:

D" : Z(G, d)[G] — Z(G, d)
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We define the universal Cayley-Hamilton algebra to be
R(G,d) = Z(G, d)[G]/ ker(D")

which is equipped with a natural group homomorphism p* : G — R(G,d)*.
Using the universality of Z(G, d), it is not hard to see that:

Proposition 4.2.16. The Cayley-Hamilton representation (Z(G,d), (R(G,d), DY), p") is the initial
object in CHq(G).

Deformation of Cayley-Hamilton representations

We keep the notations of subsection and assume moreover that G satisfies Mazur’s ®,-condition.
Recall that this implies that the universal deformation ring Rz lies in Co.

A Cayley-Hamilton pseudorepresentation (A, (E,D),p) of G over A € Co has residual representation
D if its induced pseudorepresentation Dop : G — A has residual representation D. We let CH4(G, D)
be the full subcategory of CH4(G) whose objects have residual representation D.

The universal continuous pseudodeformation of D:
D% : O[[G]] ®o Ry — Ry
induces the universal Cayley-Hamilton algebra
Ep = (O[G]] ®0 Ryy) /CH(DY)
And as in Proposition 4.2.16, we have the following fact (see [WWE19, 2.2.10]):

Proposition 4.2.17. The Cayley-Hamilton representation (Rp, (Ep, D}j’;ﬁ),p“) is an initial object
in CH4(G, D). In particular, Eg is a finitely generated Ry-module. The map p" : Rp[G] — Ep is
surjective, and D%ﬁ — Ry is a factorisation of the universal pseudorepresentation D% :G = Ry
through Et5.

Deformation conditions

As in the case of deformations of Galois representations, we would like to impose certain deformation
conditions. For instance in [Ram93|, the author observed that on the Artinian level, a deformation
defines an element belonging to the category of continuous Z,[G]-modules whose objects are finite
as sets, which we denote by Mod%’;[q. And if P C Mod%;m is a full subcategory which preserved

under isomorphisms, subquotients and finite direct sums in Mod%;[G], he was able to prove that the
functor of deformations which belong to this subcategory is representable. We say that P is a stable
condition.

In [WWE19], the authors were able to extend this result to the case of pseudorepresentations. The
main task is to find a nice way to attach a finite Z,[G]-module to a pseudorepresentation. Here is
where Cayley-Hamilton representations come into play as we will now see.

For A € Co, we extend the definition of a stable condition P to A[G]-modules which may not be
finite sets as follows: for an A[G]-module which is finitely generated as an A-module, we say that M
satisfies condition P if M/m’ M satisfies P for all i > 1.

This way, we can impose a deformation condition on Cayley-Hamilton representations by setting:
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Definition 4.2.18. If A € Cp, and (A, (E, D), p) is a Cayley-Hamilton representation of G over A
with residual representation D, we say that (A, (E, D), p) satisfies the condition P if E satisfies P as
an A[G]-module (it is a finitely generated A-module by Remark [4.2.15)).

We let CH’ (G, D) be the full subcategory of CH4(G, D) whose objects satisfy condition P. As

explained in [WWEIL9] §2.4 & §2.5], we have the following result:
Proposition 4.2.19. There is a Cayley-Hamilton representation (R% E%,
D

S (
versal in CHY (G, D). In other words, a Cayley-Hamilton algebra (A, (F,
if and only if there exists a morphism of Cayley-Hamilton algebras

DE%),pP) which is uni-

,p) satisfies condition P

(RE: (ED, Dir), p7) = (A, (B, D), p)
Now we are able to define the condition P on pseudorepresentations.

Definition 4.2.20. Let A € Co, and D : G — A a pseudorepresentation with residual pseudorepresen-
tation D. Then, we say that D satisfies condition P if there exists a Cayley-Hamilton representation
(A, (E,D"), p) satisfying P such that D = D’ o p.

We define the P-pseudodeformation functor Def% : C5 — Sets by sending A € Co to the set of
pseudodeformations D : G — A of D satisfying P.

Theorem 4.2.21. The functor Def% 1s represented by a ring R% € Co.

Proof. Let A € Co and D € Def5(A). If pp : Ry — A is the morphism induced by D, we need to
show that D satisfies condition P if and only if ¢p factors through Ry — R%.

If ¢p factors through Rz — R%, then the Cayley-Hamilton algebra

(A, (E%@R% A,DE% ®R% A),p73 ®R% A)

satisfies condition P by Proposition 4.2.19, and induced D via (R% — A)o Dpp o p”.
D

On the other hand, assume that D satisfies condition P, i.e., there exists a Cayley-Hamilton repre-

sentation (A, (E,D’),p) such that D = D’ o p. By Proposition [4.2.19 there exists a morphism of

pseudorepresentations (E%, Dygr) — (E, D) such that p = (E’% — E) o p”. In particular, the implicit
D

morphism of rings R% — A factors ¢p. O

4.3 Pseudocharacters

Pseudocharacters were first introduced by A.Wiles for GLo, and later were generalized to GL,, by
R.Taylor, in order to construct some Galois representations with certain properties. Given a group
I', a pseudocharacter of I' with coefficients in a ring A is a function 7" : I' — A that satisfies certain
conditions making it behave similarly to the trace function of a representation p : I' = GL,,(A). The
exact conditions are the following:

o T'(1) =mn;
o For all v1,7v2 € I', T(7172) = T(v271):

e For vi,...,vm4+1 €T,

S )T (s mer) =0

a’GGnJrl

where T (v1,.. ., Ynt1) = T(Viy -+ Viny,) if 0 is the cycle (i,...,ip41), and in general 77 =
[[,7¢ if 0 = ¢ -- - ¢ is the cycle decomposition of o.
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As one might expect, the trace function of a representation p : I' — A is a pseudocharacter, and the
converse holds in various situations such as when A is an algebraically closed field and n! € A*.

In [Lafl8] §11], the author introduced a new notion of pseudocharacters adapted for reductive groups.
We give the definition in the special case of the general linear group.

Definition 4.3.1. A pseudocharacter of I of dimension n over a ring A is a collection © = (Oy,)m>1
of algebra homomorphisms ©,, : Z[GL™]S — Map(I'™, A) satisfying the following conditions:

(1) For all k,1 > 1, and each map ¢ : {1,...,k} — {1,...,1}, and each f € Z[GLE]Sn and each
Y1,--.,v € ', we have

Ou(f) (71, - ) = Ok(FH)(Verys - - Yew)

where fc(gb s agl) = f(gC(l)a s 7gC(k))

(2) For each k > 1, for each 7y1,...,v41 € I', and for each f € Z[GLF]SM | we have

~

Orr1(f)(15 -5 er1) = Or(f) 015+ - Ve VE41)

~

where f(g1,...,9k+1) = f(91,- -, GrGr+1)-

Just to clarify things, Z[GL]"] is the algebra of regular function on the Z-group scheme GL!", on which
GL,, acts by conjugation on each coordinate.
For each 1 < i < n, let \; € Z[GL,]%"" be the function defined by the equation

n

det(X — g) = 3 (1) Ai(g) X"
=0

We have that \;(g) = Tr(A’g) where A’g is the i-th exterior power of g. By [Don92, §3.1], for any
m > 1, Z[GL™]Sn is generated as a ring by the functions

(9155 9m) = Xi(giy -+ 9i,.)

for r € N, 1 <'iy,...,i, < m, together with (g1,...,gm) — det " *(g1,...,gm). So if t is a pseudochar-

acter, the functions A
t[z] = tl()\i) :I'—- A (4.5)

for 0 < i < n determine ¢. Indeed, by the axioms defining a pseudocharacter, we have
tm (Ni(giy -+ 90,)) (71, ) = t1(Ni(9)) (i -+ i) (4.6)

By a result of Procesi [Pro76, Theorem 1.3], the algebra Q[GL,]%" = Z[GL,]%" @z Q (by [Don92,
§3.1]) is generated by the functions
Ty, : g = Tr(g")

together with the inverse of the determinant.So if A is Z-torsion free, a pseudocharacter ¢ is determined
by the functions
t(Ti) iy — A

or even just t1(Tr). Indeed, by the axioms defining a pseudocharacter, we have

t1(Tk) () = t1(T1) (") (4.7)
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On the other hance, since /\"+1 St = 0 where St is the standard representation of GL,,, we get that
the following function

(91,2 gnt1) = Trgenin | (Y €(0)0) (1@ ® gni1) (4.8)

St

is zero (the linear map considered is zero on the symmetric tensors). But one can check that

TrSt®n+1 (U . (91 (SRR gn—i-l)) = H Tr(glk T gll)

(41,...,ix) cycle of o

So developing in (4.8) and applying t1, we get that
S o) (T (1, mst) = 0

U€6n+1

which is exactly the relation for the definition of a pseudocharacter by R. Taylor. In fact, if A is a
Q-algebra, both definitions of R. Taylor and V. Lafforgue give the same thing.

Remark 4.3.2. We can define operations of twisting and duality on the pseudocharacters which are
compatible with the usual operations on representations. For instance, consider the involution ¢ :
GL,, — GL,, defined by ‘g := tg_l, then for a pseudocharacter ¢, we define its dual ¢V by the formula:

tyn(f)(’ylw . ;'Yn) = tm(f/)(717 cee 7'771)

where f'(g1,...,9m) = f(tg1,- -, tgn). Moreover, if x : T' — A* is a character, we can define the twist
t ® x of a pseudocharacter ¢ by the formula:

(t®X)m<f)(’Yl, <o 77”) = f/(717 R ,’Ym)

where [/ € A[GL,":]GL" is defined by f'(g1,---,92) = f(x(71)g15- -+ X(Vn)gn)-

If we work with a topological group I' and a topological ring A, we have a notion of continuity for
pseudocharacters.

Definition 4.3.3. Let t = (,,,)>1 be a pseudocharacter. We say that ¢ is continuous if for each m > 1,

tm takes values in the set Maps (I, A) of continuous functions I'"* — A.

The following theorem proved in [Emel8] says that the notions of pseudocharacter and pseudorepresen-
tations we defined are equivalent. Therefore, we will use them throughout the thesis interchangeably.

Theorem 4.3.4. For any group I" and ring A, the pseudocharacters t of dimension n are in canonical
bijection with the group determinants D of dimension n. Under this bijection, t is associated to D if
and only if 'l = DU for each 0 < i < n, and t is continuous if and only if D is.

The purpose of introducing Lafforgue’s pseudocharacters is that in [NT20, §2], the authors are able
to prove that if p : I' — GL,(O) is a continuous homomorphism which is absolutely irreducible over
E, and t = (tp,)m>1 = Trp is the pseudocharacter associated to p, then deforming p infinitesimally is
not far from deforming t. More concretely, let A = O @ eE/O and let o : A — A be the O-algebra
homomorphism sending e to p*e, then we have the following result:

Proposition 4.3.5. [NT20, 2.9] There exists an integer ko > 0, depending only on p(T") such that:

(1) For any lifting t' of t to A, there exists a homomorphism p' : T' — GL,(A) lifting p such that
Trp = ay, ot’. Moreover, if t' is continuous, we can take p' to be continuous as well.

(2) If pl, ph : T — GL,(A) are two liftings of p with Tr py = Tr pl,, then ay, o p} and ax, o ph are
conjugate under the action of the group 1+ eM,(E/O) C GL,(A); and if X € M,(E/O) is such
that 1+ eX centralizes p, then P X is a scalar matriz.
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4.4 Galois deformation theory of pseudocharacters

We fix again a prime number p, and a finite extension E/Q, with ring of integers O and residue field
k. We also consider a CM extension F//FT of a totally real field.

We let S be a finite set of places of F' containing S, (the set of places above p), and we assume that
each place of S splits in F T. So we fix for each v € S, a choice of a place v of F' above it, and we let
S={v|veStand S,={v|veS,}

We consider a Galois representation p : Gp g — GL,(O) satisfying the following properties:

e p®p F is absolutely irreducible,

e For each v € §p, PlGy. ®o I is semistable with Hodge-Tate weights in the interval [a, b].

As in [CHTOS8, §2.1], we let G,, be the group scheme over Z defined as the semi-direct product of
GY = GL, x GL; by the group {1, } acting on G° by

-1 1

W)yt =(u-tg )

The adjoint action of G,, on g = Lie GL,, is given by

(ad(g, u))(x) = gzg~"

and
(ad(9))(z) = ~"=
We let v : G, — GLj be the homomorphism sending (g, 1) to p and j to —1.
If Ris aring and 7 : Gp+ — Gn(R) is a homomorphism with 7~1(GY(R)) = G, by abuse of notation
we denote 7|, the composition of 7|, with the projection Gp(R) — GLy(R).

We suppose that there exits a character x : Grg — O such that p® = p¥ ® x, then by [CHTOS,
Lemma 2.1.4], p extends to a continuous representation:

r:Gprg — Gu(O)

such that x = v or. Note that x|, is semistable, and there exists w € Z such that xe" has finite
order (where € is the cyclotomic character). We assume that w = a + b.
We write W = adr, Wg =W ®0 E, Wg,0o = Wg/W, and Wy, = W ®0 O/=™.

Let D : G r,s — O be the pseudorepresentation associated to p, and we consider the deformation
functor Defﬁ g : Co — Sets which is represented by a ring Rﬁ g € Co (see Proposition . The
following lemma gives us control over the size of the deformation rings when we will later add various
Taylor-Wiles sets.

Lemma 4.4.1. Fiz an integer ¢ > 0. There exists an integer go = go(S, D, q) such that for any set of
finite places Q of F' outside of S with |Q| = q, there exists a surjection

O[[le B XQOH - R57SUQ

Proof. Let L/F be the extension cut out by p (it is finite), and let Mgyg be the maximal pro-p
extension of L unramified outside SUQ. We want to show that Gal(Mguq/L) is topologically finitely
generated by ¢ elements, where g; only depends on ¢g. This amounts to showing (see for example
[Gou95, Lemma 2.1]) that

Homcont(Gal(MSUQ/L)v k) = Homcont(GL,SUQv k) = Hl(GLSUQa k)
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is bounded dependently only on ¢q. We get this by noticing that in the exact sequence

0— H'(GLsug k) = H' (GLs, k) » @ H' (I, k)
vveQ

the size of H'(I Ly, k) does not depend on v, since v { p so that each morphism I;_ — k factors through
the tame quotient I, — Z,.

Now by Proposition 4.2.12) any deformation of D to Grgsuq factors through Gal(Mgyug/L). We
conclude using the argument in Remark [4.2.10] O

Let us now fix integers a < b, and let £ Ef g] be the category of finite cardinality Z,[GF s]-modules M

such that for each place v € gp, M is isomorphic as a Zy[Gr,]-module to a subquotient of a lattice
in a semistable Galois representation of G, with Hodge-Tate weights in [a,b]. This defines a stable

condition, in the sense of (4.2.3), and the corresponding subfunctor Def[a bl C Defy D.g 18 represented

by an object R[ ] € Co (see Theorem 4.2.21]).

IfD:Gps — (’) 1s the pseudorepresentation associated to p, then by hypothesis on p, D determines

a homomorphism R%S] — O, we write q for its kernel. We define Selmer group Hg[a’b] (F,Wy,) by

F,S

considering the following local conditions:

o Ifv € gp, we take the subspace of H!(Fj, W,,) corresponding to self-extensions of PG RO /™
which are subquotients of lattices in semistable representations with Hodge-Tate Welghts in the
interval [a, b].

o ifv & §p we do not impose any condition.
The following proposition is a consequence of Proposition [4.3.5

Proposition 4.4.2. There exists a canonical homomorphism

o+ H oy (F, W) — Homo(q/q2, O/=™) (4.9)

gF, S

Moreover, there exists a constant ¢ > 1 depending only on p such that for any m > 1, the kernel and
cokernel of try, are both annihilated by p°.

Proof. Let Ay, = O ® ew ™O/O C A and let ay : A, — A, as in Proposition As in
Lemma [2.1.2] a class [¢] € H;l[g e (F, Wy,) corresponds to an equivalence class of liftings

o GF,S — GLn(Am)

[a b]

such that p, mod € = pand for each N > 1, ps mod w” € £¢’. On the other hand, Homep(q/q%, O /™)

identifies with the preimage in
[a,b] [a,b]
Homo (R5 s Am) = Hom@(R ,0)

of the classifying morphism of D. We define tr,, to be the map sending [¢] to the classifying map

of the pseudocharacter trpy in Hom@(R[; I;],, A,,) which lies in Homp(q/q%, O/w™) under the above
identification. Note that p,rg = ai o py and that if ¢y € Hom@(R[ﬁa’Ig,Am) is the image of f €

Homo(q/92, O/w™), then pkf = QO Pf.
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We want to find a power of p which kills ker tr,,, and which only depends on p. So let [¢] be in the
kernel of tr,,, which means that tr p; = trp. By (2) of Proposition there exists a constant kg
which depends only on p(Grs) C GL,(O), and an element X € M,,(E/O) such that

(14 €X)pyp05(1 = €X) = p

this means that p*0¢ is a coboundary in H'(F, W /O). But from the short exact sequence

0= Wi = Wrjo <25 Wgjo — 0 (4.10)

we get that the kernel of H'(F,W,,) — H!(F, Wg/o) is isomorphic to HO(F, Wg0) ® O/w™. The
latter is killed by some p® where ¢y € N is independent of m (all the w-divisible elements are killed
after tensoring with O/w™). Therefore, ker tr,, is killed by p*0+. We may assume without loss of
generality that r is surjective

Now we want to do the same thing for cokertr,,. So let D’ be an element in the right hand side
of . By hypothesis, there exists a Cayley-Hamilton representation (B, D", r) of G F,s such that
D’ = D" or and that the finite quotients of B lie in El[gig}.

By (1) of Proposition there exists a homomorphism py : Gps — GL,(A) such that oy, o D' =
tr py. But since tr pgmg = B o D' = trp where ,,, : A — A is the ring homomorphism sending e
to w™e, we get from (2) of the same proposition that [¢] € H'(F, W /o) is killed by multiplication
by @w™p*0. So by the exact sequence in , the element p*o [#] lies in the image of H'(F,W,,) in
H'(F,Wg)0). Therefore, we can assume that there exists a representation pg : Grg — GLyn(Am)
such that tr py, = agg, o D'.

It remains to show that there exists a constant ¢; € N such that a., o p, mod @ lies in S%g]
(in this case p°[¢] is in the preimage under of the morphism associated to agk,4c, © D').

So let Ay = py(Am|Grs]) € Mu(Ap). By Burnside’s lemma (Corollary , since p Qo F is
absolutely irreducible, p(E[GFrs]) = M, (E), so p(O[GFrs]) is a lattice inside M, (E) which means
that there exists an integer k; > 0 such that p*1 M, (O) C p(O[GFs]). Let us show that Apk1¢) con-
tains p*1M,,(A,,): since pM E; ; € p(O[Grs]) (E;; is the usual elementary matrix in M, (0)), there
exists a matrix X;; € M, (O/w™) such that p*' E; ; + €X;; € Ay, then applying ay,, we get that
pk E;; + eplei,j € A,k Multiplying by €, we get that epk Eij € Ap, for all (4, j), in particular,
Eplem‘ € Apk1¢ so that pklEm' € Apk1¢ as desired.

Let D" : Ar, 5 — Am be the determinant induced by the inclusion A, < My (Ap). If 2 € ker D",
then by (1) of Lemma Tr(zp* E; ;) = 0 where Tr is the usual trace on matrices. Thus, ker D"
is contained in M, (A,,)[p™] and so is annihilated by the homomorphism ag, : My, (Ay) — My (A4y).
It follows that there exists a commutative diagram of A,,-algebras:

Ppk1g

Am[GF,S] » 'Ap’“hﬁ € ” Mn(Am)

! i 1

B —— Am[GF,S]/ker(a2k0+k1 OD,) — Mn(Am)

where the quotient map A,,[Grs] = Am|[Grs]/ ker(agg,+k, © D’) factors through B since ker(r) C
ker(D') C ker(agk,+k, © D') (by (1) of Lemma [4.1.3) and the bottom right arrow exists because
Qpkit2kg © D = D" o Ppk1p- From this diagram, we get that My(A;,) equipped with the action

of Ay [Grs] induced by pex,, has finite quotients which lie in € fg ’g] (since this hold for the finite

quotients of B). Therefore, we get that agy, o py mod ol €& Lfl é’]. In conclusion, we get that the

cokernel of tr,, is annihilated by p?*1+2ko, O
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Let Rg be the quotient of R[ ! ¢ corresponding to pseudocharacters D' such that (D')¢ = (D')Y ®@X|ap.s-
Then, p determines a morphlsm Rg — O, and we write qg for its kernel.

We define local Selmer conditions Lg = {L£,} = {L, n} for Wy, by setting:
e If v ¢S, then £, ,, is the unramified subgroup of H(E,", Wy,).
e Ifv e S—S,, then L, is the whole space H'(F,", Wy,).

o Ifve Sp, then L, ,, is the subspace of H YE;F, W,,) corresponding to self-extensions of PGr, O
O/w™ which are subquotients of lattices in semlstable representations with Hodge-Tate Welghts
in [a, b].

The dual Selmer conditions £g = {£y} = {L;,,} are defined to be the duals of Lg under Tate’s
duality. Thus, we have the following Selmer groups:

Hp (Ft, Wp,) = ker (Hl (FT, Wp) — HH1 m)/ Loy m>

H%(Ft Win(1)) = ker (Hl(F+ ) — HH1 (1)/Ly; )
All the finiteness results that we will implicitly assume on the Galois cohomology groups follow from
the following proposition, which is due to J.Tate, and whose proof can be found in [Bel09].

Proposition 4.4.3. Let G be a profinite group which satisfies Mazur’s ®,-condition, V be a continuous
representation of G, and A CV be a G-stable O-lattice in V. Then, we have the following:

(1) The continuous cohomology group H'(G,A) (with A given its w-adic topology) is a finite O-
module, and we have a canonical isomorphism

HY(G, V)= H(G,A) @0 E

(2) We have a canonical isomorphism H'(G,A) = @Hi(G,A/w”A).

In particular, the Selmer groups defined are finite length O-modules. We denote their respective
lengths by hy (F*,Wp,) and hj., (F*, Wp(1)).
We let °

H (F*, W) = (Jm He (F7, W) @0 B

where the inverse limit is taken with respect to the projections Wy,41 — Wy, and

HE (FF, Wyo) = lim B} (FF, Wiy)

where the direct limit is taken with respect to the injections W, &£ wW,, 11 C Wint1.

Proposition 4.4.4. For each m > 1, there is a canonical morphism:
trm,s : Hpg (F, W) — Homo(qs/q%, O/=™) (4.11)

Moreover, there exists a constant d > 0 depending only on r such that p* annihilates the kernel and
cokernel of try, s.
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Proof. The non-trivial element ¢ € Gal(F/F*) acts on H;[a’b] (F,W,,) via its action on W,,. On
F,S

o]
S
(D)%Y ®@X|pg (note that the condition w = a+b ensures that this pseudorepresentation satisfies the

condition & }3 ’g]). This gives an action of ¢ on the right-hand-side of 1) and we have that

the other hand, we also have an action of ¢ on R[Ea’ given by sending a pseudorepresentation D’ to

Homo(qs/q§, O/w™) = Homo(a/4*, O/w™)*

The map tr,, is c-equivariant, and we get the map tr,, g by composing f : H}S (FT, W) — H;.[a,b] (F, W)
F,S

with tr,,. By the inflation-restriction exact sequence, the kernel and cokernel of the map f lie respec-
tively in H'(Gal(F/F*), WgFS) and H?(Gal(F/F7), WgFS) which sizes are bounded independently
of m by absolute irreducibility of p. O

Proposition 4.4.5. (1) There is an isomorphism trp g : HES(FJF, Wg) — Homo(qs/9%, E),

(2) The natural map Hy (F*,Wg) — H'(Fs/F*,Wg) identifies Hy (F*,Wg) with the geometric
Selmer group H;S(FJF, Wg).

(3) Assume that for each v € S, PG, IS generic. Then H;,S(FJ“,WE) = H}(FJF,WE).

Proof. 1) This follows by taking the inverse limit of over m and then inverting p.

2) By the main result in [Liu07], HES(F +t Wg) classifies semistable self-extensions of pr. But by
[Nek93| Corollary 1.27], a de Rham self-extension of p ® E is semistable. Hence the result.

3) This follows from [All14] Lemma 1.1.7] and the equality

dimg, Hg{ s(FT, Wg) = dimg, H}(Ft W) + dimg, Derys(Wg(1))9~

Lemma 4.4.6. For m' > m, the inverse image of Ly s in HY(F};, W,,) under the map
HYES , W,,) — HY(FF, W)
induced by the injection Wy, — Wy, is Ly . Consequently, the natural map
Hp (FF W) = Hp (F7, Wgo)[e™)
18 surjective.

Proof. The natural map H(F,F, W,,) — H'(F,5, W) corresponds to the push-forward of a lift with

m’'—m

values in GL,,(A4,,) to a lift with values in GL,,(A,,) via the map A,, — A, sending € to @ €.
Now A7, is finitely generated as an A}, -module, so there is a surjective map of O[Gf,]-modules

(An)k — A, So in case v € Sp, by the fact that &£ Lf ’; is stable under direct sums and quotients, we
see that the semi-stability condition is satisfied.

Now we have a commutative diagram

0 ———— Hp (F*\Wy) —————— HY(Fs/F",Wy) ———— @,es, H' (FF, Win)/Lom

| | |

0 —— Hp (FF, Wg)o)[@™] —— H'(Fs/F*, Wg0)[@"] —— @yes, im H' (F7 Wi/ Lo
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where the top row is exact by definition of the local Selmer conditions, and the bottom row is also
exact since it comes from taking the colimit of the top row for varying m (cohomology commutes with
colimits). Looking at the long exact sequence of cohomology, we see that the middle vertical arrow is
surjective. Moreover, by what we proved above, the rightmost vertical arrow is surjective. Therefore,
by a diagram chase, we get that the leftmost vertical arrow is surjective as desired. O

4.4.1 Taylor-Wiles primes

Since we do not assume that p is absolutely irreducible, we need to introduce an adapted notion of a
Taylor-Wiles place.

Definition 4.4.7. If Q) is a finite place of F* and N > 1, we say that Q is a set of Taylor-Wiles
places of level N if it satisfies the following conditions:

e QNS=10
e For each v € Q, v = ww® splits in F, and p(Frob,,) has n distinct eigenvalues ay, 1, . .., pn € O.
e For cach v € Q, ¢, =1 mod p'.

We say that a tuple (Q, Q, (ag1,...,05,)) is a Taylor-Wiles datum of level IV if @ is a set Taylor-Wiles

places of level N, @ is a set consisting of a choice, for each v € @, of a place v of F' above v, and
(031, .-.,05,) is a choice of ordering of the eigenvalues of p(Froby).

Lemma 4.4.8. Suppose that the following conditions are satisfied:
(1) For each v € S, pg,  1is generic.
(2) For each place vt oo, x(cy) = —1.

then_there exists d > 0 with the following property: for every N > 1, every Taylor-Wiles datum
(Q,Q,(az1,...,05,)), and every 1 <m < N, we have

hegoq(FTs W) Sdthpy (F5 W (1)) +mnlQ| + Y orde (a5 — asi)
vEQ 1#£]

Proof. By the Greenberg-Wiles formula (which is the equivalent of (2.3 without the simplifications
in that case), we have

Mg g (FFs Won) =hipy (7 Won(1)) + BO(E Won) = BE, Win (1)
+ Z (Ev,m — hO(F5, Wm)) — Zﬁ(ﬂ + )W) (4.12)

vESUQ v]oo

where £, ,, = {(Ly,m) with £ denoting the length of an O-module. For an infinite place v, the description
of the cohomology of a cyclic group shows that

E((l + Cv>Wm) = E(Wr(iz)) - hQ(sz_7 Wm)

Looking at the action of ¢,, we see that Wy consists of anti-symmetric matrices (up to an inner
automorphism); moreover, h?(F,", W,,) can be bounded independently of m. Thus, the contribution
of the infinite places to equals to [Ft : Q]m@ up to a uniformly bounded error.

Now since p is absolutely irreducible, we have that HY(FT, W) = 0, so we get that H*(F+,W,,) =
HY(FT, W)[@w™]. But H'(F+,W) is a finitely generated module, so h’(F*,W,,) can be bounded
uniformly. Similarly, since p is generic, H*(F+, W (1)) = 0 ([AIl14, Lemma 1.1.5]) and we can bound
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RO(F+, W,,) uniformly.
Now if v € @, then by the formula for the Euler characteristic and the local Tate duality, we have that

Com — O (F5, W) = B (F5, Wy,) = h%(Fy, Wy, (1))

But since ¢, = 1 mod p"¥ and N > m, the action of Froby on W,, via the cyclotomic char-
acter is trivial, so we have h®(F5, W,,(1)) = h°(F3, W,,). The latter is bounded from above by

mn + Zz;é] ordw(agﬂ- — a’g?j).
Finally, suppose that v € S,,. We consider the following lifting functor
Dbl ¢y — Sets

sending A € Co to the set of lifts of g, to GL,,(A) whose projections to Artinian quotients are lattices

in semistable representations with Hodge-Tate weights in [a, b]. This functor is represented by RD leb] ¢

Co, and the representation P\Gr. determines a morphism RD et o 1 gy denotes the kernel of

~

this homomorphism, then as in the proof of Proposition u we have that Homep(q,/q2, O/™) =
(90/q0)" ® O/w™ equals to the preimage of L, , under the map Z'(Fy, W,,,) — H*(F5, W,,) (since
we are considering the lifting functor). Therefore, we get that

€'L),m - hO(Fﬂa Wm) = E(qv/q?) ® O/wm) - an

To finish the proof, we want to show that &, ,, — h®(F5, W,,) — [F+ : Q]m@ can be bounded

independently of m. This will be achieved if we can show that dimg(q,/q2Q0F) = n?+[F," : Q] M
which we will do now.

So let Cg be the category of local Noetherian E-algebras with residue field E. We follow [Kis09, (2.3)]
and define for B € Cg the category Intp whose objects are finitely generated O-subalgebras A C FE
such that A ®p E = B such that b(A) = O, where b : B — E is the canonical projection. The
morphisms in this category are given by the natural inclusion, and we note that Intp is ordered by
inclusion. We define C;, to be the category consisting of O-algebras A in Co equipped with a map of
O-algebras A — O. In particular, Intp is a subcategory of C/,.
We have a functor

DE’([Z)’Z)] : Cp — Sets
sending a couple (4, A — O) to the set of representations p4 € pb) (A) such that p = (A — O)opa.
This functor allows us to define another functor:

D4 Cp — Sets

by setting for B € Cg:
0,[a,b |:| ab
D,4(B) = 21% A A 0)
ntp

Now any representation p’ € D, Bila, b](B) is induced by a map ¢, : Ry e84 for some A € Int B

with b o (ppr = ¢,. Thus, by locahsatlon and then completion, ¢, extends to a continuous morphism
q

A of B, so that A € Intp. Therefore, we see that (R,
other hand, we can define another functor:

— B. Conversely, any continuous (RD o, b])Ul — B sends (RD o, b])A to a compact subring

v
Cla, b]) q, represents the functor DD([;L)’b]- On the

Dgga’b} :Cg — Sets
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sending B € Cg to the set of lifts of p,. ®o F to GL, (B) whose Artinian quotients are semistable with
all Hodge-Tate weights in [a, b]. Thanks to [Liu07, Conjecture 1.0.1], we have a natural transformation:

0,[a,b] 0,[a,b
Dy — Db

which is actually a natural isomorphism. Indeed, let B € C and A° € Intp. Set n = ker(b: B — E)
and n° = nN A° and consider for each n > 1 the algebra:

4= p ey 4 A
j=1

,la,b]

-, and since a representation pp € DE » (B)

which lies in Intg. We have that b~'(0) = U,> 45,
factors by definitions through 6=1(0), it must factor through A2 for some sufficiently large n (by
compactness of Gr,).

In conclusion, we get that (RE ’[a’b])qu represents the functor DE ’p[a’b]; which by [All14, Theorem 1.2.7],
implies that (Rg ’[a’b])é\v is formally smooth of dimension n? + [F)f : Qp]@ which gives us the
result. O

Lemma 4.4.9. Consider a finitely generated O-module M, and let N > 1 and d,g > 0 be integers.
Suppose that for all m < N, we have:

UM/w™) < gm+d
then there is a map O9 — M /@™ with cokernel of length < d.

Proof. We use induction on the number of generators of M. First if M is cyclic, then the lemma is
trivial. Next, for a general M, note that nothing changes if we replace M by M/w”, so we do that
so that M has finite length. Let C be a cyclic submodule of M of maximal length, and let N’ < N be
the maximal length of a cyclic submodule of M’ = M/C. For all m < N’ we have by additivity of the
length that ¢(M'/w™) = {(M/w™) —m < (g — 1)m + d. By the induction hypothesis, we get a map
091 & M’/ = M'/w" with cokernel of length < d. This map extends to a map 09 — M /=¥
with the same cokernel. O

Corollary 4.4.10. With the same hypotheses as in Lemma[{.4.8, there exists an integer d € N such
that for all N > 1 and every Taylor-Wiles datum of level N, there is a map

On|Q| SN HESUQ (F+, WN)

with cokernel of length < d + hlﬂéuQ (FHWa(1) + 3,0 > iz orde (a5, — ag ;)

Proof. Thanks to Lemma [4.4.9/and (4.4.8)), we see that to prove this statement, it suffices to find two
integers dg, d; > 0 such that for any 1 <m < N we have:

((Hpg o (FF W) [@™) < do+hpg o (FF W) (4.13)
and,
hzéuQ(Fﬂ Win(1)) < dy + hzéuQ(Ft Wy (1)) (4.14)

Let us first treat (4.13). From the exact sequence

0= HY(F" Wg0)/@™ = H' (F©, Wy,) = H (FT,Wg0)[@"] = 0 (4.15)
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and the diagram in Lemma, we see that the map
Hpg o (FY W) = Hp o (F5 W o) [@™]

is surjective, with kernel a subquotient of HY(F T, Wy, /O). Applying this for m = N, we get a surjective
morphism
H}:SUQ (F+’ WN)/wm - H}:SUQ (F+’ WE/O)[WN]/wm

But we have that H}SUQ (F+,WE/@)[’WN]/wm = H1115UQ (F*, Wg/0)l@™], so | holds for dy =
WY (F*, W) (which is finite since H*(F, Wg/) is torsion and embeds into H' (F*, W)).

For the second inequality, note that since inclusion W, (1) < Wg,0(1) factors through Wx(1), the
kernel of the map
HY(Fs/F*, W,,(1)) — H (Fs/F*, Wx(1)) (4.16)

is contained in the kernel of the map

H'(Fs/F",Wn(1)) = H'(Fs/F*, Wgjo(1))

which is subquotient of HY(F*, Wg,0(1)) (by the exact sequence similar to (4.15))). But HO(F", Wg/o(1))
is torsion and embeds into H'(F+, W (1)) (by the same argument as in Lemmal.4.8)). Therefore, (4.14])

will hold with dy = h(F", Wg/o(1)) if we can show that the map l) sends H}:SUQ(FJF, Wi (1)) to
HESUQ(FJ“, Wi (1)). This means that for v € Sy, the map H'(F,f, W,,,(1)) — HY(F,", Wx(1)) should
send Ev{m to L - But by duality we see that this is immediate from the definitions. O

v,

4.4.2 Enormous subgroups

In order to find a set of Taylor-Wiles places with prescribed properties, one usually puts some technical
restrictions on the residual image of p. Namely one requires p(G F(Cp)) to act absolutely irreducibly as
in the first part of the thesis, or for it to be “big” in the sense of [CHT08|, §2.5], or “enormous” in the
sense of [KT17, Definition 4.10]. We adapt the last notion to the characteristic zero case, and give the
following definition:

Definition 4.4.11. A subgroup H C GL,(0O) is said to be enormous if for all simple E[H]-submodule
V C Wg, we can find h € H with n distinct eigenvalues in E and an eigenvalue o € E of h such that
trep oV # 0, where ep, o € Wg is the h-equivariant projection to the a-eigenspace.

Note that unlike [KT17, Definition 4.10], we do not require the vanishing of the zeroth and first
cohomology groups of H with the adjoint action. In fact this will be a consequence of the purity of
the considered Galois representation (see Corollary [4.4.15)), and the following lemma:

Lemma 4.4.12. If H C GL,(O) is an enormous subgroup, then H acts absolutely irreducibly on E™.
In particular, we have H(H,W2) = 0.

Proof. Since E™ has no stable subspace under the action of Wg, it suffices to show that H spans Wg
as an FE-vector space. So for the sake of contradiction, suppose that

U={ueWg, tr(huy=0Vh e H}

is non-zero, and let V' C U be a simple E[H]-submodule. Since H is enormous, there exists h € H,
and a € F an eigenvalue of H such that trep oV # 0. This is a contradiction since e, , is a polynomial
in h. O
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The following lemmas give various reformulations of our definition which we will use, and also an
interesting condition for a subgroup of GL,(O) to be enormous.

Lemma 4.4.13. Let H C GL,(O) be a compact subgroup, and suppose that the characteristic poly-
nomial of every element in H splits over E. Then, the following conditions are equivalent:

(1) H is enormous,

(2) For all simple E[H]-submodules V.C W% = ad’ ® E, we can find h € H with n-distinct
eigenvalues and oo € E such that o is an eigenvalue of h and trep oV # 0.

(3) For all non-zero E[H|-submodules V. C Wg, there exists h € H with n distinct eigenvalues such
that V ¢ (h — 1)WE.

(4) For all non-divisible O[H]-submodules V. C Wg 0, there exists h € H with n-distinct eigenvalues
such that V ¢ (h — 1)Wg 0.

Proof. First note that (1) and (2) are equivalent since the subspace of scalar matrices Zp C Wg form
a complement to Wg inside Wg, and clearly trej oz # 0 for all z € Zg and any h € H with eigenvalue
acFE.

Now if h € H has n distinct eigenvalues, then it acts semisimply on Wg. Hence, there is a unique
h-equivariant direct sum decomposition Wg = W2 @ (h — 1)Wg (WEN (h — 1)Wg = 0 since ker(h —
1)2 = ker(h — 1)). If V. C Wg is an h-invariant subspace, then we also have a decomposition V =
VP& (h—1)V. Since eh,o for an eigenvalue o € E commutes with h, we have that trey o(h—1)V = 0.
On the other hand, if v € V", then v commutes with h, so it stabilizes the eigenspaces of h. In
particular, if v # 0, then there exists an eigenvalue o € E such that trey v # 0. Therefore, we get
that tres oV # 0 for some o € E if and only if V", which in turn, is equivalent to V' ¢ (h — 1)Wg.
This shows that (1) and (3) are equivalent.

It remains to show that (3) and (4) are equivalent. To do this, note that we have a GL,,(O)-equivariant
bijection between the E-subspaces of Wk and the divisible submodules of Wg/o. This bijection sends
VCEtoV+W/W,and V' € Wy, to

V={veWg|w ™ modW eV’ ¥n>0}
In particular, it sends (h — 1)Wg to (h — 1)Wg,o which gives the desired equivalence. O

Lemma 4.4.14. Let H C GL,,(O) be a compact subgroup such that for each h € H, the characteristic
polynomial of h splits in E.

(1) If H' C H is closed subgroup such that H' is enormous, then so is H.

(2) Let G C GL, be the Zariski closure of H. If G° (the connected component containing the
identity) contains regular semisimple elements and acts absolutely irreducibly on E™, then H is
ENOTmous.

Proof. (2) We can assume that G = G°, in particular G is irreducible (by [Mill8| 2.6]). Let H™¢ C H
be the set of regular semisimple elements of H, and similarly for G*® C G. Then, by hypothesis, G**®
is a non-empty Zariski open subset of G, and the Zariski closure of H is contained in the union of the
Zariski closure of H™® and G — G™&. By irreducibility of GG, this forces H™8 to be Zariski dense in G.
Now let v € Wg, and suppose that for each h € H™®, tr hv = 0, then by Zariski density of H"™&, we
must have tr gv = 0 for all g € G. But G acts absolutely irreducibly, so by Lemma [2.3.2] G(FE) spans
Wg which implies that v = 0. ]
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Some vanishing of the cohomology result

The goal of this subsection is to prove Corollary which we will be using for the existence of the
Taylor-Wiles primes. The proof is based on the article [Ser71] where the author proves the result for

Galois representations associated to the p-divisible group of an Abelian Variety.

If g is a Lie algebra over a field £ and M is a g-module, we define the n-th cohomology group of g
with coefficients in M to be the n-th left derived functor of the functor of invariants M +— M?$9. In

other words, it is given by:
H"(g,M) = Ext’[}g(k, M)

Concretely, we define the space of n-cochains on g with coefficients in M to be C"(g, M) = Homy(A™g,

complex whose differential map d : C™(g, M) — C"*!(g, M) is given by

df(gla'-'vgn-l-l): Z (_1)i+jf([mi7xj]7x17~"7@7"'7@7"'7xn+1)
1<i<j<n+1
n+1

z+1 -
+§ xla‘”axia"'axn-ﬁ-l)

for f € C™(g,M). This cochain complex is called the Chevalley-Eilenberg complex and taking its

cohomology we recover the H"(g, M)’s. For each x € g, we can also define two maps of complexes:

e The interior product: (iz), : C"(g, M) — C" (g, M) given by (iz)nf (g1, gn_1) = f(x,91,. ..

for f € C™(g, M) and g; € g.
e The lie derivative: (0), : C™(g, M) — C™(g, M) given by

(ex)nf(glw--:gn)_x fgl')'-'?g?’b Zf gt .- 1‘ gz] "7gn)

for f € C™(g, M) and g; € g.
Note that both maps are related by the Cartan magic formula
dig +iyd = 0,

which says that 6, is null homotopic.

In what follows, we give a criterion, due to Serre [Ser7l1], for the vanishing of the cohomology groups
of a lie algebra g C gl(V') with coefficients in a k-vector space V. If x € g, we let L, be the set of
eigenvalues of x acting on V' (taken inside the algebraic closure k of k). We say that L, satisfies Serre’s
condition for N > 1, which we write (SCy) if for each tuple (A1,..., An11, 1, -, un) € L2V we

have
AMA AN F At aN

It is clear that if n < N, (SCy) implies (SC,,).

Theorem 4.4.15. Let N > 1, if g contains an element x such that L, satisfies (SCy), then

H"(g,V) =0 for alln < N.

Proof. Since 0, : C*(g,V) — C*(g,V) is null homotopic, it suffices to show that each (6,), is an

isomorphism for n < N.

Seeing C™(g, V') as a subspace of T"(g')®V (g’ = Homy(g, k)) identifies (6,),, with the diagonal action
= —¢([z,y]) (the lie dual of the adjoint action). On the other

of x such that for ¢ € ¢/, (z - ¢)(y)
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hand, g can be identified with a subspace of V ® V' where the adjoint action of z on g is compatible
with the action of x on V ® V' given by

z-(a®@d)=x-aRp—aQRpox

Hence, ¢ is a quotient of V' ® V' compatibly with the actions defined above. In total, C"(g, V') can be
seen as a subquotient of 7""(V) ® T™(V') which implies that the eigenvalues of (6,.), on C"(g,V)
are of the form

(>‘1++)‘n+1)_(#1++/‘n)7 Aia”iELx

but L, satisfies (SC,,) by hypothesis, so the eigenvalues of (), are non-zero, which means that it is
an isomorphism as desired. O

This theorem has the following consequence which will be of interest to us. But before stating it,
recall that a Galois representation p : Gp — GL(V) ( V is a finite dimensional Q,-vector space) is
pure of weight w if there exists a finite set of places S of F' such that for each place v &€ S, p is
unramified at v and each eigenvalue « of p(Frob,) (the geometric Frobenius) is a Weil number, i.e.,
for each embedding ¢ : @p — C, we have

a3, = (Nw)*
(in particular « is algebraic).

Corollary 4.4.16. [Kis0j, Lemma 6.2]
Let p : Gp — GL(V) be a pure Galois representation over a finite dimensional Qp-vector space V. If
we let G be the image of Gp in GL(V), then H™(G,V) =0 for alln > 0.

Proof. We let v be a place of F' such that ptvand v & S. If a1,...,an,01 ..., m are eigenvalues of
p(Frob,) with n # m, then aj---a,B; " --- B! is a Weil number of weight (n — m)w # 0, hence it
is not a root of unity. But G is a compact p-adic lie group with lie algebra g C gl(V), so the p-adic
logarithm

log: G —g

is well defined over G. We consider z = log(p(Frob,)) € g whose set of eigenvalues L, is formed by
the log(a) for eigenvalues a of p(Frob,). Then, by the above considerations, we see that L, satisfies
(SCy) for all n > 0. Therefore, by Theorem [1.4.15 we get that H"(g,V) = 0 for all n > 0. But
by a theorem due to Lazard [Laz65, Theorem V.2.4.10(iii)], H"(G,V) is a sub-Q,-vector space of
H"™(g,V) hence the result. O

4.4.3 Existence of the Taylor-Wiles primes

We now have all the ingredients to find a set of Taylor-Wiles places with nices properties.

Lemma 4.4.17. Let q > corankp H'(Fs/F*,Wg/0(1)) (= ranko Homo (H'(Fs/Ft, Wg,0(1)), E/O))
and suppose that p satisfies the following conditions

(1) p is pure of some weight.

(2) p(GF(c,00)) 15 enormous.

then there exists d € N, such that for any N € N we can find a Taylor- Wiles datum (Q, @, (a5 1,5 05p)
of level N with |Q| = q and

’ﬁe@)
(i) for allv € Q and i # j, we have ordg(ag; — a5 ;) < d
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(i) h,, (Ft,Wn(1)) <d
sSuUQ
Proof. By definition of the Selmer groups, for a set of Taylor-Wiles places (2 we have an exact sequence

0= Hyy (F5,Wn(1) = Hy (F5,Wx(1) — €D H' (k(v), Wi (1)
vEQR

If we show that there exists o1, ...0¢ € Gp(¢,0) such that

- for each 1 <i < g, p(o;) has n distinct eigenvalues in F,

- the kernel of the map H'(Fs/F*,Wg/o(1)) — éHl(@o(oi)% Wgo(1)) = E'EWE/@(I)/(ai —

1)Wg/o is a finite length O-module, where (p(ai)fg GL,,(0) is the procyclic group topologically
generated by p(o;).

then from the long exact sequence of cohomology coming from the short exact sequence

0 = Wi (1) = Wayo(1) <=5 Wi o(1) = 0

we get the following Cartesian diagram

0 —— H(Fs/F* Wgo(1)) /@ ———— H'(Fs/F*,Wy(1)) ————— H'(Fs/F*,Wg,0(1))[@"] —— 0

| | |

0 —— DL H((p(01)), Wjo(1)) /@ —— @iy H' ((p(e:)), Wn (1)) —— ©L H' ((p(03)), Wrjo(1))[@"] —— 0

Note that since Wg(1) is pure of weight —2, we have by Corollary [4.4.16|that H°(Fs/F*, Wg(1)) =0,
hence H° (Fg JFT Wy /(9) is a finite length O-module. Using the snake lemma in the above diagram,
we conclude that the kernel of

H'(Fg/F*, Wxn(1)) = € H' ((p(0:)), Wn (1))
=1

has length which is bounded independently of N. Now by Chebotarev’s density theorem, for each
N > 1, we can find places vy, . .. vy of F'™ such that Frob,,, ... , Froby,, € GF(CpN) and foreach 1 < i < g,
Frob,, is sufficiently close to o; so that p(Frob,,) has n distinct eigenvalues, and (o; — 1)Wg/0(1) =
(Frob,, =1)Wg,0(1) (Wg/0(1) has the discrete topology).

It remains to show the existence of the o; with the mentioned properties. Noting that a divisible
O-module of corank d can be written in the form (E/0O)? x N where N is a finite length O-module, it
suffices to show that for each nonzero morphism f : E/O — H'(Fs/F*,Wy(1)), we can find a o €
GF(¢,) such that p(o) has distinct eigenvalues and Resij(j)’f of 1 E/O = Wgo(1)/(0 —1)Wg/0(1)
is still non-zero.

Now let L. /FT be the extension cut out by Wg(1) and let Lo, = L. - F({p>). By Corollary [4.4.16
we have H'(Fg/LL,,Wg(1)) = 0. But since the extension cut out by the cyclotomic character is
FT({p~), we have that FT((y) C L. and the extension Lo/L., is finite. Since Wg(1) is Z-
divisible, we have that H'(Lo/LL,,Wg(1)) = 0 and by the inflation-restriction exact sequence, we
get that H'(Loo/FT,Wg(1)) = 0. Thus, from the long exact sequence of cohomology, we see that
H'(Loo/FT, WE/O(l)) is a finite length O-module, and in particular it is killed by p¢ for some d > 1.
From the inflation-restriction exact sequence

0= H' (Loo/F", Wgo(1)) = H (Fs/F*, Wg0(1)) = H' (Fs/Loo, Wi o (1)) “7*s
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and the fact that H'(Fg/ Lo, WE/@(l))GF+’S = Homg,, (GLows1.. - WE/0(1)) (Wg/o(1) is a trivial
GLy,s,. -module ) we see that :

G
Resaf;’,s of : E/O — Homg,,, (GLo.st0: WE/0(1)

SLeo

is still non-zero since E/Q is p?-divisible. We let M C W /0(1) be the O-submodule generated by the
f(z)(o) for z € E/O and 0 € G . It is non-zero by what we have just proved, and it is a divisible
O[G F(¢,00)|-submodule of Wi 0 (1). Then, since p(Gr(¢,«)) is enormous, there exists o € Gp(¢ ) such
that p(o) has n-distinct eigenvalues in £ and M ¢ (0—1)Wg/o(1). In other words, there exists m > 0,

r € Gy, suchthat f(1/%™)(r) & (6~ 1)Wijo(1). I f(1/=™)(0) & (6-1)Wp/o(1), then Res, ;" of

is non-zero and we are done. Otherwise, f(1/@™)(70) & (0 — 1)Wg,0(1) = (10 — 1)Wg/0(1) (since
G
T acts trivially) and Res <T§ ;r’s of is non-zero. O

Finally, we have the following result which summarized all the work we have done up until now :

Theorem 4.4.18. [NT2(, 2.31]
Let q¢ > corankoH'(Fs/F™, Wg/0(1)), and suppose that p satisfies the following conditions:

(1) p is pure of some weight.
(2) For eachv € S, P|Gp. S generic.
(3) For each place v | oo of FT, x(c,) = —1.

(4) P(GF(¢)) 15 enormous.

then there exists d € N such that for each N € N, we can find a Taylor-Wiles datum Qpn of level N,
with |Qn| = q and a map
(’)[[:):1, R ,:L'nq]] — RSUQN

such that the images of the x; are in qsug,, and
2
qSUQN/(qSUQvilv T aan)

is a quotient of (O/w?)%, where go = go(S,p,q) as in Lemma|4.4. 1
Proof. Recall that by Corollary that for all N > 1 there is a map

O™ HE, (FFWy)

whose cokernel is of length < d; for some d; € N which is independent of N thanks to Lemma
Hence, by Proposition composing this map with tr,, sug, and using the O-module isomorphism
qSUQN/q%'UQN ®o O/w Vo Homo(qSUQN/q?S‘UQNv O/wN) we get a map

O™ = qsuqy /9500y ®o O/

whose cokernel is killed by w? for some d € N independent of N. Therefore, we can define a map
Ol[z1, ..., Tng]] = Rsugy sending the z; to the images of the generators of O™ in quQN/q%UQN Qo
O/ such that

qSUQN/(qquNv T1y--- 7$nq) ®0 O/wN
is killed by w?. We claim that qsuQn/ q%UQN is a quotient of O%. Indeed, it is a finitely generated
O-module, and qSUQN/q%'UQN ® O/w = Mg, /(MRg g, @) which is generated by go elements by
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Lemma So applying Nakayama’s lemma, we get our claim.

Therefore, we have an O-module M = qSUQN/(q%UQN,a:l, ..., Tpg) which is a quotient of 0% and
such that M /w™ M is killed by w?. Up to shifting the Taylor-Wiles sets, we can assume that N > d.
In this case, the fact that M/ is killed by @? can only happen if M itself is killed by w? which
gives the result. O
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Chapter 5

The Iwahori-Hecke algebra

5.1 The Bernstein presentation

The goal of this section is to give a presentation, due to Bernstein, of the Iwahori Hecke algebra of
GL,, (which easily generalized to a split p-adic group). This will later be useful in our treatment of
the automorphic theory.

First, we will recall some facts about split semisimple reductive groups. Then, we will introduce the
Iwahori-Matsumoto presentation of the Iwahori Hecke algebra from which we will derive our desired
presentation.

To write this section, we mainly used the references [Lus89, Bum10), Kir97].

We fix once and for all a field K which is a finite extension of Q; for a prime /, with ring of integers
Ok and residue field k. We let qr = #k, and we fix a uniformizer 7.

5.1.1 The root system of a split reductive group

Let (G,T) be a split reductive group over K with lie algebra g = ker (G(K[e]) — G(K)), and let
ad : G — GLg be the adjoint representation. Since T is diagonalizable its action on g induces a direct

sum decomposition
g=00® P g
aeX*(T)

where go = g7 = Lie(GT) and g, is the subspace on which T acts via a non-trivial character a.
The characters occurring in this decomposition are called the roots of (G,T) and form a finite set
®(G,T) C X*(T). Since G = Cq(T) =T (its centralizer) so that go = Lie(T) = t, we can write

The Weyl group W (G, T) is defined to be the quotient Ng(T')/Cq(T) = Na(T)/T. For an element
o € W, represented by n € Ng(T'), we have a morphism 7' — T given by conjugation by n which only
depends on o. Therefore, we have an action of W(G,T) on X*(T) given by (ca)(t) = a(n~'tn) for
a € X*(T'), which can be seen to preserve ®. Similarly, we also have an action of W(G,T) on X, (T)
given by (oA)(z) = nA(z)n~L.

If « is a root of (G,T), we let T, = ker(a) and G = Cg(Ty) . The pair (Gq,T) is a split reductive
group of semisimple rank 1 with Lie algebra

Lie(Go) =t D g D -0
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where dim g, = dimg_, = 1. Moreover, there exists a unique algebraic subgroup U, of G, called the
root group, which is normalized by T" and isomorphic to G,. For every isomorphism u : G, — Uy, we
have

t-u(a) -t =u(a(t)a), VteT(R),ac Gy(R), R K-algebra

The Weyl group W (G, T') contains only one non-trivial element s, and there exists a unique cochar-
acter ¥ € X, (T) such that

sa(z) =2 — (r,0") - Voe X*(T)

The set of coroots ®¥(G,T) is the subset of X,(T) consisting of the cocharacters " for each a €
®(G,T). In fact, the tuple R(G,T) = (X.(T),®(G,T),X*(T),®V(T)) is a reduced root datum
attached to (G,T'), and the above observation identifies the abstract Weyl group attached to R(G,T)
with W(G,T).

The proof of these statements can be found in [Mill5, 22.43].

Example: Root datum associated to GL,:

Let T be the diagonal torus consisting of diagonal entries in G = GL,. The character group
X*(T) identifies with Z™ via the map sending the character x; : diag(zy,...,x,) — z; to the tu-
ple ¢, = (0,---,1,---,0) (e1,...,ey, is the standard basis if Z™). Similarly, we identify the cochar-
acter grpup X.(7) with Z"™ by sending the cocharacter \; : t — diag(1,...,t,...,1) to the tuple
e; =(0,...,1,...,0). The Lie algebra g = M, (E) decomposes as a direct sum

g=1to @ Ba;
1#]
where t is the vector space generated by the E;; for 1 <1i < n, and g, ; is the vector space generated
by the matrix E; ; on which T" acts via «;; = x; — x;j. Thus, the set of roots is

With respect to the Borel subgroup B consisting of upper triangular matrices, the set of positive roots
is equal to
Pt ={xi—x;|1<i<j<n}

and A = {o; = xi —Xit1 | 1 < i < n—1} C & is a set of simple roots. Therefore, a weight
T =x1X1+ "+ TnXn is dominant if and only if z; > --- > x,.
For 1 <i <n —1, we have that

T, = {diag(x1, ..., i1, T, 2, Tiy2, ..., Tpn) | T1- -2 -2y # 0}
and,
x 0 0 1 0 0
0 0
Go, = * * : with ng, = 0 1
: * * 1 0
.. .0
0 0 * 0 0 1

The action of n,, on T' consists of switching the i-th and the (i + 1)-th coordinate. One easily verifies
that if 2 € X*(T), sax =  — (M — Aig1,2) - (Xi — Xi+1)- In general, the coroot of o;; € ® is
a\/ )\i — /\j.

i
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5.1.2 The extended affine Weyl group
Let T be an abstract torus and write X = X*(T), XV = X,(T) with the perfect paring

XxXV:(,) =7

We let (X, ®,a — a) be a reduced root datum as in [Mil18, 19]. We decompose ® into positive
and negative roots @1, &~ and we fix a set of simple roots A = {aq,...,a,} C ®T. We will use the
element p = > 4+ a which satisfies (o, p) = 1for 1 < i <r. Welet Q" = @, Za; € XV be
the coroot lattice. For reasons which will become apparent later, we will assume that for any a € &,
a ¢ 2X. We will also assume that ® is irreducible, which implies the existence of a (unique) highest
root 0 € P.

Let X = X & Z6 whose elements are interpreted as function on XV via (z,k)(2') = (z,2) + k. We
define the affine root system ® = ® x Z4, its subset of positive affine roots ot = {a+kd e o | k>
0or k=0,a € ®}, and its subset of simple affine roots A = {ag = (=6, 1), (a1,0),... (ar,0)}.

For each a € :IS, we define the reflections 75 : X=X by

~

ra =T — (x,a’)-a

where ¥ = z +md and & = o + k6. We will write sg, $1,...,$ for roy,7ay,---,7a,. The affine Weyl
group Wag is defined to be the subgroup of GL()? ) generated by the reflections rg for a € ®. The
Weyl group W associated to ® identifies as the subgroup of W,g generated by s1,...,s,.. We have the
following standard facts about the affine Weyl group:

Proposition 5.1.1. 1. Weg=W x 7(QV), where the action of A € Q" over X is given by
TA):Z—Z—(z,\)-0
Concretely, we have wr(\) - w'T(N) = ww'T(w' " (A) + X), for w e W and A, X € QV.
2. Wyg is a Cozeter group with generators {so,...,s,}.
3. For every wr(\) € Wy, its length ((wT(\)) with respect to the generators s, ..., sy is equal to
Hwr(N) =127 N (wr(A) '@
= Y a1+ Y e (5.1)

acdt acd™

w(a)ed™ w(a)edt

Now we define the extended affine Weyl group W to be the semi-direct product W = W x 7(XV)
where the action of X v on X is given by the same formula as in 1. of the previous proposition. The
action of W on X preserves ®, and Wyg is a normal subgroup of W with W /Wag = XV/QV. Although

W is not a Coxeter group, we can extend the definition of the length ¢ to all of w using the formula
(5.1). To ease the notation, we will write £()\) for £(7(\)) if A € XV.
The element of length O :

Q={weW | @) =0}={weW|w)=A}

form a subgroup of W, and we have that W = Wag x Q so that Q = XV/QV. We have the following
properties of the length function:

o U(rW) = l(®) for T €EQWEW.
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o I(Ws;) = lw)+1, w(w) e ot
YT @) -1, @) € B

The Braid group B is defined to be the group generated by the symbols T for w € w subject to the
relations
Tl = Tae  if L(ww') = () + ()

In particular, the elements T, for m € €, form a subgroup of B isomorphic to 2. We will write T;
instead of T}, for 0 < i < r, and T) instead of T, (y) for A € XV.

Let ¢ be an indetemrninate.1 Weldeﬁne the affine Hecke algebra H,g to be the quotient of the group
algebra of B over L := Z[q?,q~ 2] by the two-sided ideal generated by the elements

(T, +1)(T; —q), 0<i<r

It is a fact that the elements Ty, w € W form a basis of H.g over L.

Remark 5.1.2. Note that in the special case where ¢ = 1, we get that TZ-2 =1foralll <i<r. Soin
this case, H,g identifies with the group algebra of W with coefficients in L.

Letting XY = {z € XV | (z,a;) >0, 1 < i < r} be the set of dominant coweights, we see from the
formula (5.1)) that for p e XY,

)= (pa) =2(p, 1)

acedt

so that if we let 1/ € XY and w € W, then

Cp+p') =Lp) + L) and  L(wr () = L(w) +L(u)
This allows us to define elements e* € H,g for A € XV by setting

A (Z(V);Z(H))

et =g T.(T,) ! (5.2)

(
where A = 1 — v with p,v € XY. In particular, if 4 € XY, then e = q_gTu)Tu. The above formulas
also show that e*e? = M for A\, X' € XV, and that for w € W and p € XY, e# - T,, = T () Where
T, = _@Tw (renormalization).
It is shown in [Lus89, 2.8] that Hyg is generated as an algebra by the T}, for 4 € XY and the T,, for
weWw.

Lemma 5.1.3. Let A € XY and a; € A.
1. If (N, a;) = 0, then Tie* = T;.
2. If (\, ;) = 1, then qe* = T;e5iNT; .

Proof. 1) First note that we can write A = p — v with p,v € XY and (i, ;) = (v, ;) = 0, so we can
suppose that A € PY. Next, from the formula , we see that £(s;7(X)) = £(\) + 1 and we also get
from the properties of the length function we mentioned that ¢(7(\)s;) = ¢(A) + 1. So by the braid
relations, we get that Ty - (n) = ;1) = T)\T;. We conclude by noting that since we supposed that A is
dominant, e* = ¢*™/2Ty.

2) Same as before, we can write A = p — v with p,v € XY, (u, ;) = 1 and (v,a;) = 0. So we can
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suppose that A € XY. Let € = A+ s;(\) = 2\ — o, then given that if 3 € A with 8 # «; we have
(B, i) <0, we see that e € XY. So we have:

Ue) = 2(e, p) = 4(\, p) — 2(a, p) = 2(\) — 2

Moreover, since 7(A)(e;) € @, we have £(7(A)s;) = £(\) — 1, and since (e, a;) =
above argument that ¢(s;7(¢)) = £(e) + 1. Thus, from the identity s;7(€) = (7(\)s
can easily verify), we get by the Braid relations that

0 we have from the
) (7(X)) (which one

TiTe = Tr(ns, T = TOT; ' Ty

where the second equality follows from the equality ¢(7(\)s;) = ¢(A) — 1. Since € and A are dominant,
esiN) = g1 =t/ QTET/\_ 1 S0 the above equality gives us our desired formula. O

Lemma 5.1.4. The elements Ty, -e* (resp. e*-Ty), forw € W and X\ € XV, are linearly independent
over L.

Proof. Suppose that we have a relation Y & | fiTy, - €M = 0 where (wy, A1), ..., (wn, Ay) are distinct
elements of W x PV and fi,..., f, € L. We can find an element ¢ € X such that for all ¢, \j+p € X
Multiplying the relation by e* on the right, we get

n n
_ Tt s _ )
0= E q 2 szwl e = § q 2 fiTwiT()\iJru)
i=1

i=1
but the Ty for w € W are linearly independent, so we must have fi = --- = f, = 0. This shows
that the family of elements T, - e* are linearly independent (the argument for the second family is
similar). O

Let © be the £-submodule of H,g generated by the elements e* for A\ € XV. This is a subalgebra of
H. ¢ isomorphic to £[XV].

Proposition 5.1.5. Let A € XV and o € A. Then, e* — e5XN) s divisible by 1 — e inside © and

A A A A et — e
A = Ty = T — VT = (g - 1) ———
1—e™%
Proof. 1t is enough to show the equality
A osi(AN)
. et —e
T = T = (g = 1) T =7

since the other one follows from it by substituting A with s;(\) and multiplying by -1.
Now suppose that the formula is true for a fixed o; € A and for A\, ) € XV, then using the formula in

the equality
€A+xTi _ Tiesi()\—i-)\’) _ e*[e”Ti _ Tiesi(X)] n [eATi _ ﬂesi(A)]esi(A,)

and simplifying, we see that it is also true for A + \. Similarly we show that if it is true for A € XV,
then it is also true for —\. Therefore, it suffices to show the equality for a set of generators of XV.
By our assumption that a; ¢ 2X, there exists A\; € X" such that (a;, \1) =1 and XV is generated by
A1 and the elements M € XV such that {a;, ') = 0.

If (a;, A) = 0, then s;(\) = A and the formula reduces to e*T; = T;e* which follows from Lemma
Similarly, if (o, A\) = 1, then s;(\) = A — a and the equality reduces to e*T; — Tje®N) = (g — 1)e?.
This follows from Lemma and the identity T, " = ¢~ 'T; + (¢~! — 1). O]
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Proposition 5.1.6. The elements Ty, - e (resp. e -Ty), for w € W and A\ € XV, form a basis of
H g over L.

Proof. Tt remains to show that they are a spanning family. So let us consider Hy (resp. Hj) to be
the £-submodule of H,g generated by the Ty,e* (resp. e*T,). Using Proposition we prove by
induction on £(w) that T,,e* € Hy and Ty, € Hy for any w € W, A € XV. Hence, H; = Ho, but
H, is stable by left multiplication by T, and H, is stable by left multiplication by e*. But since
H.g is generated as an algebra by these elements and 1 € H; = Hs, we get that H; = Ho = H.g as

desired. O

From this, we see that we have an isomorphism of £-modules H,g = © ®, H(W), where Hy is
the Hecke algebra associated to the Coxeter group W with coefficients in £. Note that this is not a
L-algebra homomorphism.

Proposition 5.1.7. The center of H,g is equal to e,

Proof. Note that ©" is generated by the elements z); = Y e e where M is a W-orbit in XV.
From the formula in Proposition we see that e + e5(N) commutes with T; for 1 < ¢ < r. This
shows that zp; commutes with the T, for w € W, and consequently that ©" lies in the center of
H.g. Using the specialisation ¢ — 1, H,g identifies with £[B]. In this case it is not hard to see that
LB = L£[XV]W. A fortiori, the same must be true for H,g. O

5.1.3 The Iwahori Hecke algebra for GL,

Let I C G = GL,, be the Iwahori subgroup, and U = GL,,(Ok) be the maximal compact subgroup
of G. We consider H(G,I) to be the convolution Z-algebra of compactly supported, I-biinvariant
functions f : G — Z, where the Haar measure p on G is normalized so that p(I) = 1.

The goal of this subsection is to identify this algebra with the affine Hecke algebra H,g associated to
the root datum of G, after extending the scalars to L.

First, note that we can make an identification
W = N (T)(K)/T(Ox) (5-3)

Indeed there is an isomorphism X,.(T) = T(K)/T(Ok) sending a cocharacter A to A(7~!) (which
does not depend on the choice of the uniformizer 7 since we quotient by T(Ok)). So to prove
it suffices to show that the action of W = Ng(T)(K)/T(K) on both sides is compatible which is
straightforward.

Since sg = r_g7(—6") where 6 = x1 — X, is the longest root, it is identified via with

0 a1
1
so =
1
s 0
We also choose the matrix
0 1
0 1
t =
0 1
s 0
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which corresponds to the element s,_7---s17(\1) where A1 is a representative of the generator of
XV/QV = 7Z. t is chosen so that it normalizes I, and we have that W is generated by sg, ..., Sy, t with
tsit7l=g;foralll <i<n-—1.

By the example in [Iwa66, 2], we have a Bruhat decomposition

G= || 11 (5.4)
weWw
Therefore, the Iwahori-Hecke algebra H(G, I) is freely generated as a Z-module by the characteristic
functions fz of double cosets [[wlI] for w € w. Using the Iwahori factorisation, calculations show
that fG fo du = qﬁ(w). As a consequence, we have the following relations:

Lemma 5.1.8. (1) If {(ww') = l(w) + L(w), then fz* for = faw -
(2) fsi * sz' = (Qk’ - 1)f3i +q}<:fid-

From these relations, we see that H(G, I) ®z L is isomorphic to H,g under the specialisation g — gy.
In this setting, the subalgebra H (U, ) ® L is sent to H(W).

5.2 A result about the Iwahori Hecke algebras

Let p # [ be a prime number. We will work with a coefficient field £ which is a finite extension of Q,
with ring of integers O and a chosen uniformizer w. Suppose that O contains a square root of g so
that by the work we did previously, the Iwahori Hecke algebra H; = H(G,I) @z O has the following
presentation

Hr =2 O[X.(T)] @0 O[T\ U/I|
which we recall is not an O-algebra isomorphism.
Using the identification S := O[X.(T)] = O[zF, ..., 2], by Proposition the center of #H; iden-
tifies with R := O[X.(T)]®* = Oley,...,en, e, '] where e1,...,e, are the elementary symmetric
polynomials in z1,...,x,. The ring § is a free R-module of rank n!, with a basis given by the
monomials z, = z{'---z% for a = (a1,...,a,) € Z" satisfying 0 < a; < ¢ — 1 (we will write A
for the set of these tuples). Indeed, the minimal polynomial of z; in Oles,...,en,21,...,xi—1] is
Ji(X) = (X = 2) (X — 20).

Denoting Hy = H(G,U) ®z O, by [HKP10, 4.6] there is a canonical isomorphism Hy = Z(H;) =R
with 2z € Z(H;) corresponding to h = 1y * 2. So if M is a O[G(K)]-module, MY can be seen as an
R-submodule of M', and there is a canonical morphism

MY 9r S - M! (5.5)

given by the formula m®s — s-m. Since S is free over R with basis z,,a € A, we have an isomorphism
MY @r S = @acaMY, and the above map sends (173 )acA to Y acA Ta: Ma.

Lemma 5.2.1. Consider the n!xn! matric P = (Pya)sa foro € &,, a € A, with Pyq = 0(x,). Then,
there exists a unique matriz Q = (Qa,o)a,s With coefficients in Z[xy, . .., xy) such that PQ = QP = A™

Proof. The uniqueness follows from considering P and () as matrices with coefficients in the field
Q(x1,...,xn), so it suffices to prove existence. Now note that the square of the determinant of P is
equal to the determinant of the finite ring extension R = Zley, ...,e,] = R = Z[z1,...,x,]. We have
the following presentation R’ = R[X1, ..., Xpn]/(f1(X1), ..., fa(Xy)) where fi(X) = (X —a;) -+ (X —
Tp), then by [Stal8 Tag 0BVZ] and [Stal8, Tag 0BWG], we see that the different of R’ over R equals
to A. But by [Stal8, Tag 0C17], we see that the determinant of this ring extension is A™. Hence, the

determinant of P equals to +AS. Therefore, there exists a matrix @' with coefficients in Z[x1, . .., 2]
(which is the adjugate matrix up to a sign) such that PQ’ = AT, so we take Q = A3 Q. O
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Proposition 5.2.2. Let N > 1, and let M be an O/w [GL,(K)]-module. If gz =1 mod w', then
the morphism f : MY ®@r S — M! has kernel and cokernel annihilated by A™.

Proof. By Remark given that ¢, = 1 mod @, we can identify H; ® O/ with the group
algebra O/wN[W]. In particular, O/ [I \ U/I] identifies with O/w™ [S,]. We let e = Y ves, 0 €
O/w™[&,], then e = 1y (note that e is not necessarily an idempotent since u is normalized with
respect to I).

Now define a morphism g : M! — ©acaMV =2 MY @z S by the formula g(m) = (eQa,1m)aca, then
by the description of f given before, we have

flg(m)) = Z$aeQa,lm = Z Z Ta0(Qa,1)o(m)

acA acAoceG,

From the identity o(P)o(Q) = A™ and the uniqueness of the inverse, we get that 0(Qa1) = Qas. S0
we can write

f(g(m)) = Z Z Pl,aQa,aU(m) = A"m

ceG, acA

From this, we see that the cokernel of f is killed by A™. On the other hand, we have for m =
(ma)aeA S MY ®r S:

(9(f(m)))a = eQa,1 Z Tp - Mp = Z Z QaoPrbo(m)

beA c€6, beA

Since &,, C O[I \ U/I] acts trivially on MY, we get that:

(g(f(m)))a = Z Z Qa,UPU,bm = An!7na

bceAoce&,

This shows that the kernel of f is also killed by A™. O

5.3 The Tame Hecke algebra

The tame subgroup I; consists of the matrices in I which reduce to unipotent upper triangular matrices
modulo 7. One can ask whether the Hecke algebra H(G, I;) has a similar presentation to H(G,I).
The answer to this question is found in the paper [F1il1] where the author gives a presentation of this
algebra in terms of generators and relations, building on ideas used in [HKP10] to prove the Bernstein
presentation. We will summarized the results of this paper, which we will need later on.

To make the notation less cumbersome, we will write in this exposition G,T, ... for G(K),T(K)...
From the Bruhat decomposition in (5.4]), we have:

G=1 Ng(T) - I=1I-NgT)- I,

So to obtain a decompositon similar to (5.4), we define the tame affine Weyl group W; to be W; =
Na(T)/Ti(Ok) where Ty (Ok) = T(Ok) N I, and we get:

G = I_I Itht

weWy

We let H; = H(G, I;) ®z C to be the tame Hecke algebra. By the above decomposition, it is a free
O-module with basis given by the T, the characteristic function of Iywl; divided by pu(Iy), for w € W;.
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To ease the notation, we will assume that p(l;) = 1.
With respect to these generators, the relations are given by:

TwTw = Ty if L(ww') = L(w) + L(w'), w,w € W;

where we extend the length function to W; by setting for w € Wy, ¢(w) = ¢(w) with w being the image
of w in W, and also by:
T2 = gTia + Z Tops; for1<i<mn
zekX

where ; , = diag(1,...,1,—[2]71,[2],1,...,1) with 27! being in the i-th position and [] : k¥ — O}
being the Teichmuller lift.

Let us now give presentation of H; rather with respect to the decomposition W; = T'/T;(O) x W. For
this, NV be the group of unipotent upper triangular matrices and consider the universal tame principal
series module M; which is defined by M; = C.(T:(Ox)N \ G/I;). It is the set of I;-fixed vectors in
the smooth G-module C°(T3(Ok )N \ G) (where G acts by left translation). Consequently, M; can be
equipped with a right H;-action. Moreover, the natural map

Wiy = T,(Or) \ G/ 1}

is actually an isomorphism, a basis of M; as a C-vector space is given by the characteristic functions
Vw = ]]'Tt(OK)N'lUIt for w € Wt.

The group algebra R; = C.(T/T(Ok)) = C[T/T:(0)] = C[T/T(Ok) x T(k)] (via the non-canonical
factorisation K* = k* x Z) has a left action on M; given by the following: for a € T/T;(O), let

Aq to be the unique cocharacter such that a — A (7) under 7'/T,(O) — T/T(0O) = X,.(T), we then

Set a- vy = qk_<p 7/\a>

—{p' Aa 1/2
g\ = 52

Vaw Where p’ is the half sum of the roots of T' in Lie(N) (note that we have

. The actions of R; and H; commute, so we get a structure of R; ®p " Hs-module on
M;, where the group algebra Ry, = C[T'(k)] is contained in both R; and H;.

There is also another interpretation of the module M; which is given follows. The representation
CX(T,(Or)N \ G) is compactly induced from the trivial representation of T;(Ox)N. Inducing in
stages, we have:

CX(TH(Ok)N \ G) = Indf, )y (id) = IndF o IndF, ),y y (id) = IndG(R;)

where R; is viewed as a T-module via x L : T/T;(Ok) — R}, a — a. Concretely, Ind%(R;) consists

of functions ¢ : G — R; such that ¢(aug) = (5;/2 -a~t-¢(g) for a € T,u € N, g € G with the action of
G by right translation. We also have an R;-module structure on Ind%(R;) given by (r$)(g) = - ¢(g).
In fact, the isomorphism C°(T;(Ox N\ G) = Ind%(R;) induces an isomorphism of R; @ 1. Hi-modules
M; = IndG(Ry)".

Note that if we have a character x : T/T3(Og) — C* which extends to a C-algebra morphism
R; — C*, we have an isomorphism of H;-modules:

C O Ry,x M =C ®Re,x Indg(Rt)It = Indg(X_l)It

Proposition 5.3.1. The map H¢ — M; : h — vih is an isomorphism of right Hy-modules. In
particular, we have Hy = Endy, (My) identifying n € H; with the morphism ¢y, : vih — vinh.

85



This way, we can embed R; inside H; by viewing it as a subalgebra of H:-equivariant endomorphisms
of M;. More precisely we have:

Rt — Ht
(' Aag—Aay)
arr e’ :=gq E 1TalTa_Q1
where a = ajay ' € T(K)/T;(O) with A, and )., being dominant cocharacters.
Now we are able to describe our presentation, which is given by the isomorphism of C-modules

Hi = Ry ®g,, C[I \ U/

induced by multiplication inside H;. Note that C[I; \ U/I;] is generated by the T, for w € Wy, =
Ny(T(0))/Ti(O). But since we are taking the tensor product with respect to Ry, to finish giving
the presentation we only need to describe the relations between the generators e® for a € T'(K)/T:(O)
of R; and the T; for 1 <4 < n. This is given by

{ (@)
TS;ea _ esz'(a)TS_ = (esz'(a) _ 6“) erkx ej o
i [3 1 o eo‘i (ﬂ)

Moreover, the center Z(H;) of H; equals to RXV b,

Finally, let us give a characterization of tamely ramified representations. So consider an admissible
irreducible representation IT of GL, (/) over C which is tamely ramified ( i.e. II’t # 0). Since I; is
normal in I, the finite abelian group I/I; acts on IT’t, so the latter splits into a sum of eigenspaces
spaces

X = {v e " | gv = x(g)v Vg € I}

indexed by the characters of I/, = T(O)/Ti(O) = T'(k).

Theorem 5.3.2. The space II'X is non-zero if and only if Il embeds in Indg(XT) for some character
xt of T(F) whose restriction to T(O) is x. In particular 11 is tamely ramified if and only if it is a
constituent of Ind%(xr) for some tamely ramified xr.
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Chapter 6

The Automorphic theory

Let F be CM number field with a maximal totally real subfield F™ such that F//FT is everywhere
unramified and [F" : Q] is even. We denote by dp/p+ the non trivial character of Gal(F/F*) valued
in {1}, which we also see as a character of F* \ Ap+ via the composition with Artz.

We fix a prime number p, an isomorphism ¢ : @p — C, and a finite extension E over QQ, with ring of
integers O such that E contains every embedding F' — @Q,. We consider a finite set S of finite places
of F™ containing the set S, of places above p. We assume that each place v € S splits in F, and we
choose a place ¥ of F lying above v. Weset S = {0 |ve S}, S, ={v|ve Sp}, and we let fp be the
set of embeddings F' — FE inducing the places in §p,

We let Z% = {(a1,...,a,) € Z" | a1 > --- > a,} be the set of dominant weights of GL,. If =
is a cuspidal automorphic representation of GL,(Afp), we say that 7 is regular algebraic of weight
A€ (Zﬁ)Hom(F ©) if 7°° has the same infinitesimal character as the dual of the algebraic representa-
tion of Resp/q(GLn/r) X@ C = [Tnom(p,c)(GLn/c) of highest weight A. A pair (m, x) is said to be a
polarized automorphic representation of GL,,(Afp) if:

e 7 is an automorphic representation of GL,,(AF),
e x: AL, /(Ft)* — Cis a continuous character such that y,(—1) = (—1)",
o =71V ® (xoNpg/p+ odet).

where 7¢ denotes the composition of 7 with the complex conjugation on GL,,(Ar).
From now on, we fix a cuspidal polarized regular algebraic automorphic representation (, d% / ) of

GLy(Ar) of weight A € (Z7)Hom(F'C) (we say that 7 is RACSDC: regular algebraic conjugate self dual
cuspidal [AIl14) 2.1]). We assume that for each place w | p of F, m, has an Iwahori-fixed vector and
that S contains all the places above which 7 is ramified.

We have the following instance of a theorem which we used before in the particular case n = 2 and F

totally real (Theorem [3.1.5).

Theorem 6.0.1. [BLGGT1j, Theorem 2.1.1] There exists a continuous semi-simple representation
rp.(m) : Gp — GLn(@p)
and and integer m with the following properties:

(1) For each finite place w, we have
(W D(rp (7). ) 2 ree(my @] |u 0 det =)

and the Weil-Deligne representations are pure of weight m.
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(2) If w| p, then rp,L(ﬁ)K;w is de Rham such that for 7 : F — Q,, we have

HT (rpu(m)) = {Arj + 1 = jhi<jcn
Moreover, if m, is unramified, then Tp’L(W)|GF s crystalline.

After possibly enlarging E, we can suppose that there exists a model p : Gp — GL,(O) of rp, (7). By
conjugate self-duality, p extends to a homomorphism r : Gp+ g — Gn(O) such that vor = el=n jLyT
By the condition imposed on the image of 7, ,(7) in theorem we can suppose by lemma
that rp,(7) is absolutely irreducible. Consequently, we can apply results of section In particular,
if we denote by D the group determinant of p, then we have pseudodeformation rings Rﬁ g and Rg,
with p inducing a morphism Rg — O.

We define additional deformation rings as follows: for a Taylor-Wiles datum (Q, @, (051, ag’n)veQ),
we have a deformation ring Rsug. We let Rgugan be the maximal quotient of Rgyg such that for
each v € @, the restriction of the universal pseudocharacter in Rgug b to the Weil group Wg, factors
through W}}s Since Q@ N S = () by definition, we get a composition of surjections

Rsug — Rsug,an — Rs

6.1 Definite unitary groups

Let A denote the matrix algebra M,,(F). An involution i of the second kind on A (i.e., which restricts
to ¢ on F)) gives rise to a reductive algebraic group Gy over F* by setting

Gi(R)={g€ A®p+ R| gtg=1}

for any F'T-algebra R. It is called the unitary group attached to (F'*, F, A, 1).
We have the following classification theorem for unitary groups over F''.

Theorem 6.1.1. [Bel, Theorem 1.1]
1. If G and G’ are two unitary groups such that G, = G, for all place v of F*, then G = G'.

2. Let (Gy)y be a family of unitary groups such that G, is attached to the extension F @ F,S /F.f.
Suppose that G is quasi-split for almost all places v. Then, if n is odd, there exists a unitary
group G attached to F/F* such that for every place of FT, Gy = Gy. And if n is even, then
the same is true if and only if we have [], €, = 1, where for a finite place v €, = 1 if Gy s
quasi-split and €, = —1 otherwise, and €, = p, —n/2 if v is real with G, = U(py,n — py).

Following this theorem, and our hypothesis that [F'T : Q] is even, we may choose an involution I
satisfying:

e For every infinite place v of F'*, we have Gy(F,}) = U, (R),
e For every finite place v of F't, Gy is quasi-split at v.

We choose an order O 4 of A such that OZ = 04 and Oy, is a maximal order of B,, for every place
w € F which is split over F*. This allows us to view Gy as an algebraic group over Op+, which we
denote from now on by G.

For every finite place v of F* which splits as ww® in F, we let us an isomorphism

by © OA,v l> Mn(OF,v) = Mn(OF,w) S¥ Mn(OF,wC)
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such that ¢, (2%) = 4, (2)¢. This induces an isomorphism
tw : G(Op+) = GLn(OF,)

sending ;! (z,'27¢) to x and which extends to an isomorphism G(F;) =5 GLy(Fy).
Now if v is a real place of F'™, we let k : F™ < R be an embedding inducing v. For each % : F — C
extending x, we choose an isomorphism

1z A OF+ k RS A OF & C= Mn((C)
such that (%) = “(1z(2)¢). Then, % identifies G(F,;F) with U,(R).

Let T, B C GL,, be respectively the maximal torus consisting of diagonal matrices, and the Borel
subgroup of upper triangular matrices. If A € X, (7T') is a dominant character of T', we can form the
induced representation

Vi = Indg"" (wod) jo = {f € O[GLa] | f(bg) = (woM)(b)f(9), VO = R,g € GLy(R),b € B(R)}

with GL,, acting by right translation and where wq is the longest element in the Weyl group. This is
an algebraic representation of GL,,/o. Since F is a flat O-module, we have V) ®o E = Indggn(wo)\) /E
which is the irreducible representation of GL,,/r of highest weight A.

We let M) be the finite free O-module obtained by evaluating V) on O. It carries and action of
GL,(0), and W), := M) ®p K carries an action of GL,,(K).

A dominant weight for G is a tuple \ € (Zi)fp, and for such a tuple, we let

M)y = My and W,=® Wy, =M\Q0 F

®Tefp,0 TETP,O

and we define the representation
V>\ : G(F;) — GL(W)\)
9+ @1 U, (T(15(n)9))
where v(7) € §p is the place induced by 7. This restricts to a representation

Vy: G(Op+ ) — GL(M,)

6.2 Automorphic data

Up until now, we fixed an RACSDC automorphic representation 7w of weight A, and chose a unitary
group G. We now define the space of algebraic automorphic forms with which we will work: for any
O-algebra, we let S\(A) be the space of functions

J i GEN)\ GATP) = My 80 A
such that there exists a compact open subgroup (depending on f)
U C GAT?) x GO+ )

with u, f(gu) = f(g) for all u € U, g € G(A%,).
The group G(AZ") x G(Op+ ) acts on Sy(A) via the formula

(g-1)(h) = gpf(hg)
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If U is a compact open subgroup of G(A;o;p) xG(Op+ ), we define Sy (U, A) to be the space of invariants
Sx(A)Y. If we take two of such groups Uy, Uz and g € G(AT) x G(Op+ ), then #U1gUs/Us < 00
(it is compact and discrete) and we can define a linear map

[UlgUg] : S)\(UQ,A) — S)\(Ul,A)
frr (b D (9i)pf (hgi))
where Ui1gUs = | |, giUs.

In this setting, we say that compact open subgroup U C G(A%,) is sufficiently small if for all g €
G(A%,), gUg ' N G(F*) = {1}. This condition allows us to prove the following:

Lemma 6.2.1. [CHT0S, 3.3.1] Let U C G(AYTY) x G(Op+ ;) be a sufficiently small open compact
subgroup, V. C U be a normal open subgroup, and A an O-algebra. Then, S\(V,A) is a finite free
A[U/V]-module and the trace map Try vy induces an isomorphism Sx\(V, A)yy = S\(U, A).

For each embedding  : F* < R, there is a unique complex embedding % : F' < C such that 1'% € 1:;,,
inducing a map Fix = FF ®gR — C. Then, W) ®g, C can be equipped with the following continuous
G(F)-action

g~ @V, (15(0:(9))

where V,-1,, is regarded as an algebraic representation of GL,(C). We denote this representation by
Vy.. Let A be the space of automorphic forms on G(FT)\ G(Ap+). We have an isomorphism of
G(AZS")-modules

c 2 S\Qy) ®g, . cS Homg py ) (WX, A) (6.1)

given by
e (F)()(g) = a(Vailge0) " (9p£(9™)))

There exists an automorphic representation of G(Ap+) with the following properties:

o + GOpt)
e For each finite inert place v of F7, 0, @ F#0.
e For each split place v = ww® of F*, 0y, & Ty 0 Ly.

e For each embedding x : F* — R inducing a place v of '™ and each & : F' — C extending x, we
have 0, 2 VY ouzor (where V) . is a representation of GL,(C)).

Taking the U-invariants in the isomorphism (6.1)), we get an isomorphism of G(A}”)-modules
S\(U,0) ®0, C = @,(u>)Y (6.2)

where the sum is over automorphic representations of G(Ap+) with multiplicity, such that peo = 0.

6.3 Setup for patching

From now on we will work with a fixed open compact subgroup U = [], U, of G(AY) x G(Op+ ;)
which satisfies:

e For each place v of S, U, = Lgl(IWg),

e For each inert place v of F'™, U, = G(Op+),
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o (0™)V #0,
e U is sufficiently small.

Let V =], Vi is a compact open subgroup of U with 7' is a finite set of places of F'* containing all
the places v such that V,, # G(O Fj)v and let w be a place of F split over F™ and lying over a place

v T of F*. For each i =1,...,n we let TS’ denote the endomorphism

[L;l <GLn(OFw) <w”~512' 0 )GLH(OFw)> x V”}

ln—i

of S\(V, A), where w,, is a uniformizer of Op,. The operators 7, ) for varying w and i all commute
with each other and we write T% (V, A) for the A-subalgebra of End(Sy\(V, A)) generated by these
operators.

Recall that since 7y, is an irreducible unramified representation GL,, (F},), then there exists unramified
characters x1,..., xn of Fj; such that

Tw Zx1 8B xn

where x1H- - -Hy,, is the unique unramified constituent of x1 X - - - X x,,. By the Iwasawa decomposition

GL,(Fy) = B(Fy) GL,(OF,), we have that dimc rgln(©@r) 1, hence we get a character

¢7rw : H(G(FJ), %) Xz @p — @p
sending Tl(lf) to its eigenvalue which equals to ¢, * e;, where e;, is the i-th symmetric polyno-
mial in ¢+ 71 (x1(@w)), - -, ¢ (xn(@w)). So by Langlands reciprocity, the characteristic polynomial of
rp. () (Froby,) is given by

X" = (TO) X" o (= 1) "o, (TSY)
Therefore, after possibly enlarging F, we get a homomorphism
hve : TR (V,0) — O

We let my be the unique maximal ideal containing ker hy,;. By the isomorphism (6.2), we get that
T3 (V,0)m, ®0Q, =[] .. By is a product of fields indexed by automorphic representations y of G(Ap+)
with NKV # 0 and pieo = 00o. By [Alll4, Corollary 2.2.4] for each of these u, the induced morphism
Yy TE(V,O)my [1/p] — E,, gives rise to a Galois representation

ry: Grs = GL,(E,) (6.3)
such that for every finite place w of F' which is split over v € S in F'", the characteristic polynomial
of r,(Frob,,) is

X" — g (TINX" o+ (1) (TEY) (6.4)

Therefore, we get a huge Galois representation

pmod Grg — HGLn(Eu) = GLn(Tf(V, O)my ®0 @p)
“w

such that the coefficients of the characteristic polynomial of r™°4(Froby,) lie in TZ(V, O)w, < [] uEu
(the embedding is given by the 1,,) for almost all finite places w of F'. Since the residual representation
is not absolutely irreducible, Carayol’s result does not apply and we do not necessarily get a Galois
representation with coefficients in T% (V, O)u,,. However, by Chebotarev’s density theorem and Corol-
lary the group determinant det or™°¢ factors through a group determinant of G F,s with values in
T{(V, O)m, which we denote Dy ). Consequently, there is a surjective morphism Rﬁ g = T:‘\F(V, O)my
that classifies Dy .

91



Lemma 6.3.1. The map Ry 5 — TL(V,O)m, factors through the quotient Rg.

Proof. As seen above, T1(V,0)n, ®0 @p = Hu E,, is a product of fields indexed by automorphic
representations p. So it suffices to show that each induced map Ry ¢ — E, factors through Rg. But
this map classifies the determinant of the Galois representation r,, associated to p which satisfies the
conjugate-self duality and the semi-stability conditions. O

Let us now consider a set @ of Taylor-Wiles places, and define the open compact subgroups Up(Q) =

[L, Uo(Q)y and Ui (Q) =[], U1(Q)» given by:
o Ifv g Q,let Up(Q) =Ui(Q) = Uy,

o if v e, let Up(Q)y, = Lgl(Ivm) and let U1(Q), be the smallest open subgroup of Uy(Q), such
that Up(Q),/U1(Q)y is a p-group.
(

We set Ag = Up(Q)/U1(Q) which is naturally isomorphic to [[,cq k(v)*(p)", where k(v)*(p) is the
maximal p-quotient of k(v)*.
To ease the notation, we set

Sp = S\(U,O)m, and Ty =T5(U,O)m,

We also let mg = my N TfUQ(U, 0), we denote by mg ¢ the pre-image of mg in TfUQ(UO(Q), O) and
by m; o the pre-image of mg ¢ in TfUQ(Ul(Q), 0). We define:

Too = T %(Uo(Q), O)my,  and T = T ?(U1(Q), O)mi 0

For a Taylor-Wiles place v, let Z, be the quotient of (F:*)™ corresponding to (k(v)(p)*)"™ x Z"™ under
the noncanonical isomorphism (F>)" = (k(v)*)" x Z". We also let 2} C E, be the submonoid corre-
sponding to (k(v)(p)*)"™ x Z".. We can define a multiplicative map O[Z}] — H(G(F;"),U1(Q)y) ®z O
sending A € = to qf,/\l’pﬂn*l)/mew [Lgl(lt)\lt)} where X' is the image of A under the projection
EF — 2% = X}(T) and p is the halft sum of the positive roots. By the results in Section
and the fact that g, is a unit in O, these elements are invertible, thus we can uniquely extend this

map to an O-algebra morphism:
O] = H(G(F,), U1(Q)v) ®2 O (6.5)

Given a € I, we let t, () € H(G(F, ), U1(Q)v) ®z O be the image under this isomorphism of the
element (1,...,1,a,1,...,1) where a is in the i-th position. We also let e, ;(a) € H(G(F,"),U1(Q)y)®z
O be the term corresponding to (—1)’X"™ % in the polynomial [, (X — t,;(«)). The results of
Section [5.3| give us the following proposition:

Proposition 6.3.2. [ACCT 18] Let m, be an irreducible admissible Q|G (F;)]-module.

(1) We have Trgl(Q)” £ 0 if and only if m, o Lgl s isomorphic to a subquotient of a representation
Indg%;f)%) X1® - ®Xn, where X : X1 ®---Qxn : (FZ)" — C is a smooth character which factors

through the quotient (FX)" — Z,.

(2) Suppose that 71 QDY L0, then for any o € FX, eyi(a) acts on 71O 4 a scalar eyi(a,my) €
Q-
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(8) Suppose that r 1@ # 0, and let (rz, Ny) = rec?ﬁ(m o L%l). Then, for any o € Wg,, the
characteristic polynomial of o in 3 is

X" —ep (e, m) X" 4 (= 1) e, )
where o = Art ! (J|W;E).

We define Tg’%Q C End (S,\(UO(Q), O)mo,Q) to be the subalgebra generated by Tg o and the elements
tyi(a) forallv € Q, 1 <i < n, and o € F. Similarly, we define Tg C End (SA(Ul(Q), O)mLQ).

For each v € (), the universal pseudocharacter over Rgyq b determines by restriction an n-dimentional
pseudocharacter ~, of Wgﬁb with values in Rgug,an. Each restriction Yol I factors through the quotient

corresponding to k(v)* (p) under Artp. : Op — Ip..
On the other hand, for each 1 < i < n, there is a character ay,; : Wl‘;l? — (Tg)X sending Artp, («)

to ty,i(a) for o € Fg We let o, be the pseudocharacter o, = tray, 1 @ -+ @ @y . By local-global
compatibility, we can relate these two pseudocharacters of Wf,i? via the following lemma:

Lemma 6.3.3. (1) The map Rsug — Tq factors through the quotient Rguq, qb-

2) For v € Q, the composite of v, with the map Rsuo.ap — To — TY equals to ay,.
Q, Q Q

(3) The image of the map Rsug,ap — T — Tg contains the Hecke operators e, ;(a) for eachv € Q,
1<i<mn,and o€ F.

Proof. Tg embeds into Tg ®o @p = Hu E,, which is a product of fields indexed by automorphic
representations g such that there exists a Galois representation 7, : Gpg — E, as in (6.3) with
det or,, inducing the morphism Rsug — Tg — E,,. Therefore, to prove (1), it suffices to show that for
each v € @, the restriction of det or,, to Wg, factors through Wlil'vf But by (3) of Proposition the
coefficients of the characteristic polynomial of an element o € W, in WD(T‘“|GF17) depends only on

its restriction to W;};‘, hence the result. (2) and (3) follow similarly, by comparing the characteristic
polynomials in (6.4) and in (3) of Proposition [6.3.2] O

Using the morphism 1' we can give Tg the structure of a O[Ag]-algebra, with the image of O[Ag]

in Tg being generated by the t,;(«) with o € O;ﬂ. We denote by ag the augmentation ideal of
O[Ag]. Then, by Lemma SA(U1(Q), O) is a finite free O[Ag]-module and the trace map induces

an isomorphism

Sx(U1(Q), 0)/aq = S\(Un(Q), 0) (6.6)

Let Ag = ®v€Q(9[(t£}))i1, el (t,ﬂ"))ﬂ] which, by sending (tl(,i)) to the Hecke operator ¢, ;(w,), can be
identified as in Section [5.2] with a subalgebra of

RueM(G(F)),U6(Q),) @z O

on which we have an action of the group Wg = HUEQ S,. Asin (5.5), for every m > 1, we have a
morphism of T g-modules

Mo : SHU, O/ )y @ g Aq = SH(Un(Q), 0/ g (6.7)

The goal of Section [5.2]is to prove the following result:
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Proposition 6.3.4. Let d € N, there exists a constant ¢ € N such that for each N and each Taylor-
Wiles datum (Q, Q,(ag1,... 70‘5771)’56@) for r,p(m) of level N satisfying

> Y ordg(an; —ay,) <d

veQR 1<i<j<n
there is an element fg € RsuQ,ay such that
(1) fq kills the kernel and cokernel of ngm, for allm < N,

(2) the image fq . of fo under the composition

huy(@).0
RSUQ,ab — TQ — 0

satisfies ord(fg,») < c.

Proof. Let

n!

fo=1I II Gwilm) —tui(m)) ETS

veQR 1<i<i<n

By (3) of Lemma fQ lies in the image of Rgug.ab, 50 let fo be in its pre-image. By Proposi-
tion fo Kills both the kernel and cokernel of nq ,, for all n < M. If we set ¢ = nld, then the
second part of the proposition follows by (2) of Lemma m ]

6.4 The patching argument

Let us fix ¢ = corankp H'(Fs/F*,adp(1) ®o E/O). Applying theorem [4.4.18, we consider a Taylor-
Wiles datum Qn of level N for each N > 1, and to simplify the notation, we write Ay = Agy,

h o
ay =agy, Tn = Tg, and Ry = Rsugy ab With Ry = Rg. We set qn = ker(Ry _hene, O) and

Jo = ker(Ro hU—U> O)

We let g = ng, and Ry = Ol[z1,...,24]] and oo = (x1,...,24). For each N > 1, there exists a
morphism R., — Ry such that o Ry C qn and qN/(q?V,qoo) is killed by a power of w which is
independent of N.

We fix an ordering on each Qun and generators of k(v)*(p) for all N and all v € Qu, and we let
Soo = O[[yy), . ,y(gi) : 1 < i < nj] so that we have a fixed surjective homomorphism S, — O[AN]
for each N > 1 as in 1) We let as = <yj(l) |1 <j<gq, 1<i<mn)bethe augmentation ideal of
Sso Wwhich corresponds to the inverse image of ay under each of these morphisms.

Using the fixed ordering on the @, we can identify all the Weyl groups Wg,, = HveQN G, and we
will denote them by W. Then, W acts on S, by permutation of the coordinates, and we can write
SW — O[[egi), . ,e((]i) : 1 <4 < n]] where eg-i) is the i-th symmetric polynomial in yj(-l), ceey ](-n). This
is a regular local 0-algebra with Ss, being a finite free S/ -algebra.

If we fix a uniformizer w, for every v € Qx and every N > 1, then we can think of the pseudocharacters
v as pseudocharacters of k(v)*(p) x Z. And since we have fixed a generator of k(v)*(p), which
corresponds to a surjection Z, — k(v)*(p), we get by pullback for every N a g-tuple (yi,n,...,7,N)
of pseudocharacters of (Z, x Z) with coefficients in Ry.

Thanks to the following lemma, we get for each N > 1 a homomorphism S — Ry classifying the

g-tuple (V1N -+ YgN)-
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Lemma 6.4.1. The functor of deformation of the pseudocharacter of Z, attached to the trivial rep-
resentation of dimension n is represented by O[[X1,..., X,]|®", with the univeresal characteristic
polynomial of 1 € Zj, is equal to

n

= J ()

i=1

Proof. Let © be a continuous pseudocharacter of Z, over A € Co, f € Z[GLy)%" and k > 1.
Recursively applying (2) of Definition we get that

O1(F) () = Ok(FF) (Y1s- )

where fk(gl, ooy 9k) = f(g1---gr). Also applying (1) of the same definition for the function ¢ :
{1,...,k} — {1} defined in the obvious way, we get

01((F)) () = Ou(F) (v, -, 7)

So after combining the two equalities, we get that for each k > 1,

OL((/M))(1) = ©1(f)(k)

Since a pseudocharacter is uniquely determined by the morphism O, we conclude by continuity of ©
and equation (4.6) that it is uniquely determined by the ring homomorphism

0:Z[A,..., ] = A
Ai — @1(AZ)(1)

where the \; are algebraically independent (the restriction of \; to the diagonal torus is equal to the i-
th symmetric function). Therefore, we see that a residually trivial pseudocharacter of Z,, of dimension
n over a ring A € Cop corresponds to such a 6 with its reduction modulo m4 being the morphism

ZA1,. . ] = k

This is equivalent to giving a continuous O-algebra morphism O[[X1, ..., X,]]®" — A. O
Using the ordering on (), we obtain an action of A = ®?:1(’)[(t§-1))i, e (t;n))i] on the spaces

Sx(Uo(@N), O)mg q,, and Sx(U1(@n), O)m, o, via the identification of A with Ag,. We have char-
acters a() Zp X 7 — (Soc ®0 A)* defined in the obvious way for 1 < i <nand 1 < j <gq. By

Lemma|6.3.3} the pushforward of the pseudocharacter a;; = Tr Oc;-l)@- . ~@a§n) to Endo (Sx(U1(Qn), (’))mLQN)
lies in Ty and is equal to the pushforward of vy ; there.

The patching techniques that we are going to use where developed in [Luel9] for completed cohomology,
but were adapted to our setting in [NT20]. We will work with ultrafilters, so let F be a non-principal
ultrafilter of N, and let R = [y O- Then, the localisation R, () is a quotient of R, and the quotient
map R — Ry (7) factors through the projection [[y5; O = [[ys,, O for all m > 1.

Lemma 6.4.2. Suppose for any i € N, M; is an O-module with decreasing filtrations of O-modules
M; O M;1 O M;o D ---. Then, the natural map

H M; — m ((H M;/M; ) @R Rp(]:))

i€EN n ieN

is surjective. Then, kernel consists of all the elements of the form (m;)ien such that for any n, there
exists I,, € F with m; € M;,, for any i € I,.
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Proof. An element m = (m;);en of [] M; is in the kernel of the above map if and only if for every
€N
n > 1, m is sent to zero in (( II Mi/Mim)@RRp(;)), i.e., if there exists I,, € F such that for all i € I,,,
€N
m; = 0 in M;/M;y, in other words, m; € M;,,. To prove surjectivity, let [(m;):]n be an element of
the right hand side, with m;,, € M;/M;,. By compatibility in the projective limits, for each n > 1,
there exists I,, € F such that for all i € I,,, a;, = a; n41 mod M; ,,. Since F is stable by intersections
and is a non principal ultrafilter, we can assume that I,, O I,,11, and that the intersection of all the I,
is empty (for example we can replace I, by I, \ {n}). For any i € I, \ I;,41, let m; be a lift of m; 5,41
to M;, and for any i ¢ I1, set m; = 0. Then, the element (m;); € [[ M; is sent to [(min)i]n- O
ieN
Remark 6.4.3. Since O/(w™) has finite cardinality, we have an isomorphism induced by the diagonal
map
% H O/ ®R R ))

ieN

Thus, taking the inverse limit of the maps [] O — ([ O/(@™) ®r Ry(F)) we get a map
ieN ieN

[[o—o0

1€EN

which is surjective by Lemma and whose kernel is formed by the tuples (a;)ien € [[;cy O such
that for any m € N, there exists I, € F with a; € (w™) for any i € I,,,.

Definition 6.4.4. We let:
o M; =lim <Rp(]-') AR [Tvsm (SA(U1(QN); Oy g, /mg;)),

o Mo =lim (Ryr) OR [z HU6(QN), O/F o, ).

M = lim (Ry(z @R [ys S (U, O/5™hmy @y Acy ):

The action of AZ)VN on S)\(U,O/@w™)m,, is via the spherical Hecke algebra at the places in Q. Via
the identification A = Ag, for each IV > 1, we obtain compatible actions of A on M;, My and M.
Since Sy(U, O/w™)m,, is finite, we have an isomorphism

S\, 0/ ™)my = Ryr) ©r [ 2 (U1(QN), O/ )y

N>m
and we get that
AU, 0/ )y = lim | Ryry @r [ SAU1(Qw), O/,
m N>m

So we can equip Sy(U, O/@™ )y, with an AW-action (on each factor it acts via AS/N), and we have
an isomorphism M = Sy (U, O)m @ 4w A.

We give the following technical lemmas that we will be using.

Lemma 6.4.5. Let R be a complete Noetherian local ring.
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(1) Suppose {M;}ien is a projective system of flat R-modules. Then, M = l&lMl is also flat over
R and M/JM = @MZ/JMZ for any ideal J of R.

(2) Let I be an ideal of R, and {N;}ien be a projective system of R-modules such that N; is a flat
R/I'-module and the transition maps induce isomorphisms N; = Niy1/I'N;11. Then, N =
l'&nNi is a flat R-module and N; = N/I'N. Moreover, for every ideal J of R, we have N/JN =

Lemma 6.4.6. Let R be a Noetherian ring, and M = [] M; be a product of R-modules M;. Then,

i€l
M/IM =[] M;/IM; for every ideal I of R.
el
Proof. We have a canonical surjective morphism
f:M/IM — HMZ-/IMi
el

to show that it is injective, consists of showing that (a;);c; € IM for a; € IM;. But since [ is finitely
generated, say by fi,..., fr, we can write (a;);c; = f1(a§1))iel + - 'fr(aZ(T))l-el € IM as desired. [

Lemma 6.4.7. Let R be a Noetherian ring and {M;}ien — {N;}ien be a map between two projective
systems of R-modules. Suppose that there exists an element f € R that kills the kernel and the cokernel
of M; — N; for every i € N. Then, f? kills the kernel and cokernel ofLiLnMi — @NZ

Proof. Let (n;); € @Ni, then by hypothesis, for every i, there exists b; € M; mapping to fa; € N;.
Since the maps are compatible and their kernels are killed by f, we get that fb,11 = fb;, so (fb;);
is a well defined element of l&lMZ which is sent to f2(a;); € l&an The statement on the kernels is
straightforward. O

Proposition 6.4.8. The following properties are true:

(1) M is a flat Sec-module.

(2) The trace map induces M /as = M.

(3) There is a map n : M — My induced by the 1q, m, which has kernel and cokernel killed by f,

where f = (féN) € [Inen BN, fon as in the statement of Proposition W
Proof. We let for each m,
My =Ryr @r [ (SAUL(QN)), O)moy /mE.)
N>m

1) & 2) Since Sy(U1(Qn), O) is a free O[An]| module, and that So/mg _ for m < N is a quotient of

O[AN], we get that Sx(U1(QnN), O)my.@x /mE._ is aflat Soo/m%_-module. Hence, [y, (Sx(U1(QN)), O)mqy/m¥
is flat over Soo/mg‘oo, and by flatness of Ry,(7) over R, we see that M, is a flat Soo/mgloo—module.

Moreover, by Lemma [6.4.6], we have

Myimi/mE, =Ryrm @r  [[ (SxU1(QN)), O)mqy/mE.) = My
N>m+1
and,
Mim/asx = Rp(}') ®RrR H (SA(UI(QN))v O)thN/(aooamgLoo))

N>m

= Ry7) ®r H (S)\(UI(QN>)7 O/wm)meN)

N>m
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So using (2) of Lemma we conclude that M; is a flat Soo-module and that M /a., = M.
3) This follows from (6.4.7)). O

Definition 6.4.9 (The patched pseudo-deformation ring).
For m > 1, we define R}, = Rp(]:) QR H RN/(mRNfQN)m, and RP = lglR%
N>1 m

Thanks to the following lemma, we have an action of RP over Mj.

Lemma 6.4.10. For each m > 1, there exists an integer n(m) which is independent of N, such that
(mRNfQN)”(m) annihilates S\(U1(Q), O)thN/m?oo for all N > m.

Proof. Since as, C me, it suffices to prove that there exists an integer n(m) which is independent of
N such that for all N > m, Sy(Up(Q), O/@™ ), o, = SA(Uo(Q), O)my o, ® O/w™ is annihilated by

(mRNfQN)n(m)'

Now since fg, annihilates the cokernel of the map , the length of fgo,Sx\(Un(Q), (’)/wm)mo,QN
as an O-module is bounded by gn! times the length of S)\(U, O/@w™ )m,,. Its length as an Ry-module
is bounded independently of IV, so it is annihilated by some power of mg, which is independent of
N. O

We have a natural map [[y~; Ry — RP which is surjective thanks to Lemma Moreover, taking
the limit of the maps

R, — Ryr) @R || Ro/mE, = Ro/mi,
N>1

(the last equality holds since Ry/ mp s finite), we get a natural map R? — Ry. This map is surjective,
since by Lemma [6.4.2] we have a surjection

I &~ — Hm | Ryr) ®r 1T Ro/m%,
N>1 m N>1

which factors through RP.

For 1 < j < g, let 7o ; be the n-dimensional pseudocharacter of Z, x Z with coefficients in RP given
by the composition of the pseudo-character (yn,;)n>1 with the map [[y~; Rnv — RP.

Lemma 6.4.11. Let 1 < j <gq.

(1) Composing Yoo,j with the map RP — Ry gives a pseudocharacter which is inflated from the
‘unramified quotient’ Z, x Z — 7 (it is the projection on the second factor).

(2) The module My has a natural structure of (Sec ®0o A)-module, and the composite of Voo ; with
the map RP — End(M;) equals to the composition of a; with the map Sec ®0 A — End(M).
Consequently, the map RP — End(M,) is a homomorphism of SY -algebras.

Proof. 1) This holds thanks to the analogous statement for the vy ; which is true since Ry classifies

pseudorepresentations which are unramified at the places in Qn.
2) This follows from the definition of the a;; and Lemma m O

We let the ideal q, be the inverse image of qo under the morphism RP — Ry.

Lemma 6.4.12. The image of || qn under [[ Ry — RP is qP.
N>1 N>1

Proof. We have commutative diagram
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I Ry » [[ O

N>1 N>1

l b

RP ——» R() —_—> Ro/qO%O

where the map ¢ is defined in Remark We let I = ker (HN>1 Ry — Rp) and I’ be the
image of I inside [[y~; O. Then, by commutativity of the diagram, we have that inside []y~; Rn,
((HN>1 qn ), ker (;5) = (I, qp). So to prove the lemma, it is enough to show that I’ = ker ¢.

By Lemma I is consists of elements (xy)n>1 € [[ Ry such that for each m > 1, there exists
Iy, € F with zn € (foympy )™ for all N € Ip,,. But by definition of qx, we have that

(fonmry)" +anv = (foy@)™ +anv € (@™) +qn

This shows that I’ C ker ¢. For the other inclusion, let (yn)n>1 € ker ¢. By Proposition there
exists a constant ¢ € N such that for each N > 1, the image of fg, inside Ry/qny = O has w-adic
valuation < ¢. For m > 1, we let I, = {N > 1| ordg(yn) > m(c+ 1)} so that I, € F (since
(yn)n>1 €ker¢), 1 DI, C I3 2 ---, and Nyy>11, = 0. Since (foymry)™ + a8 = (foy@)™ +aqn 2
(wm(HC)) + qn, for each m > 1, and N € I,,,, there exists 2y, € (foymgy)™ such that 2y, = yn
mod qy. Define (znx)n>1 € [[ Ry by letting xn be any lift of yn to Ry for N € I) and zn = xn
for N € I,, = I,4+1. Then, (xn)n>1 lies inside I and maps to (yn)n>1. This shows the second equality
ker ¢ C I’, and the lemma. O

Lemma 6.4.13. Let m > 1.
(1) We have HNZl ay = (HN21 an)™ in HNzl Ry.
(2) The image of [ [y, di inside RP is equal to (q°)™.

Proof. Since the image of [[y~;qn in RP is qp, the first statement implies the second. Now by
theorem there exists an integer gy such that for every N > 1, qn/ q?v is generated by go
elements. Thus, for every N > 1, there exists a surjection O[[x1,...,24]] - Rx where the image of
the x; lies in qn. So the result follows from the equality

H (@1, 2ge)" = (21,00, xgy)™ H Ollz1, ..., Tg)]

N>1 N>1
= | (@1, xg) - [] Ollwns--zgll | = | [[ (21 200)
N>1 N>1
where the first and last equality follows from the fact that (z1,...,z4,) is a finitely generated ideal of
HN21O[[$1a---v$goH- O

Proposition 6.4.14. (1) The O-module
a°/ (), 9oc)
is killed by @€, where c is as in theorem |4.4.18,

(2) The natural map of completed local rings

(ROO)QOO - (Rp)é\r’
A

g0 s a complete noetherian local E-algebra with residue field E.

is surjective. In particular, (RP)
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Proof. 1) From theorem 4.4.18 we have that the cokernel of the map

IT a0/ (as0)® = T an/(an)?

N>1 N>1

is killed by w®. So using Lemma [6.4.13, we only need to show that the images of qoo/(qoo)? and

[Ty>1 oo/ (qoc)? coincide inside qP/(qP)2. First note that the map [Ir>1 Goo/ (do0)? = qP/(qP)? is a
morphism of [] N>1 O-modules. But since we have a composition of O-modules

HO%RP%RO/qOHO
N>1

(which is equal to the morphism defined in Remark [6.4.3)), the two actions of [[y~; O on RP, where
one factors through [[y-; O — O, coincide modulo gP. Hence, the action of [[y~; O on qP/(qP)?
factors through [] N>1 O — O. Therefore, it suffices to show that the composition

Goo/ (doo)? — H oo/ (o) = O ® 1o H Goo/ (doo)”

N>1 Nzl N>1

is surjective. But this follows from the next Lemma [6.4.15)
2) By (1), for each i > 1 the O-module qP/((qP)?, qoo) is killed by a power of @, so it becomes zero
after inverting wo. This implies that the map

9i + (Roo/dbo)qm — (RP/(a°))gp

is surjective for all ¢ > 1. Since the sequence (ker g;);>1 consists of finite length ideals (they are
contained inside Artinian rings), it satisfies the Mittag-Leffler condition which implies that lim g; is
i

surjective as desired. O

Lemma 6.4.15. Let R be a commutative ring, and M a finitely generated R-module. Suppose we
have an R-algebra map HNzl R R. Then, the composite map

M= J[M->Reqr][M
N>1 Nzl nN>1

18 surjective.

Proof. If M = R? for some d > 1, then we have a composition of maps

R = [[RrR'=(][ "= Re r(]] R)*=R
N>1 N>1 Nzl N>1

which is just the identity since A is R-linear. For the general case, M is a quotient of a finite free
R-module F. The map F' — R® ] g Il F— R® IR [I M is surjective and factors through
N>1 N2>1 N>1 N2>1
M. O
Now let us define the following modules:
e Imj = (M1/Clgo)qp,

® Iy = (M())qp,

e m = Mgp = My,.
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Lemma 6.4.16. (1) m; is a finite free Soo a., /a2 -module.
(2) The trace map induces an isomorphism m; /as = mg.
(8) The map n induces an isomorphism 1 : m = my.

Proof. 2) This follows immediately from localizing the isomorphism in Proposition m

3) By Proposition the kernel and cokernel of the map n : M — My are killed by f € [] N>1 BN
such that the image of f under the map HNzl Ry — HNzl O — O is non-zero by Proposition
and Remark Therefore, the image of f in RP does not lie inside qP, which means that localizing
the map 7 at qP induces the desired isomorphism.

1) By definition of the ideal qp, its inverse image in SY is a¥. So by the consequence of (2) in
Lemma the action of So on m; factors through Se ®gw (Sovg)ag = Soca., (this equality is
justified by the next Lemma. By Proposition M /a2 is a flat S /a2, so its localisation
my is a flat Soo a,, /a% -module. Now since M is a finite O-module, m 2 m; /a (by (2) and (3)) is a
finite dimensional E-vector space, and we get that m; is finitely generated over S a_ / aZ,. O

Lemma 6.4.17. Let A be a ring and G be a finite group acting by ring automorphisms on A. Let AS
be the subring of invariant elements and 7 : Spec A — Spec A® the induced morphism. Then, 7 is a
finite morphism and the fibers of m are precisely the G-orbits of the natural action of G on Spec A.

Note that since m; is a finite dimensional E-vector space, the action of the local E-algebra Ré’p factors
through an Artinian quotient. Hence we get an action of (Rp)é\p on myj.

Now we go back to the pseudorepresentations v ;j of Z, x Z with coefficients in RP for 1 < j < g.
We let 0; € RP be the discriminant of the characteristic polynomial x;(t) € RP[t] of the element
(0,1) € Z, x Z (corresponding to the Frobenius) under the pseudorepresentation s ;.

Lemma 6.4.18. For1<j <q, 6; € qp and x;(t) mod qp splits into linear factors in E|t].

Proof. To show that d; € qp, it suffices to show that there exists an integer m > 1 such that the image
of §; under the map

hu,o
RP = Ry —% O — O)w™

is non-zero. By the Lemma if we choose m > dn(n — 1) (where d is as in the statement of the
lemma), and if we can identify the image of §; in O/w™ with the discriminant of the characteristic
polynomial of a Frobenius element Frobg for some v € Qp, then we are done. Let m’ be an integer
such that the map Ry — O/w™ factors through R/ m’ﬁé. And we can identify the image of §; with
the image of (6;n) € [[n>; Ro/m% in Ry(7) @R [[y>1 Ro/m’ﬁé = Ro/m%, with d; n is the image of
the discriminant of the characteristic polynomial for the Frobenius element corresponding to the j-th
place of Q. Therefore, the image of §; in Ry/ m%(; coincides with one of these discriminants.

Moreover, by hypothesis on O, the characetristic polynomial of Frobg splits in O[t], thus x;(t) splits
in O/@™[t]. Hence, the second statement follows using Hensel’s lemma. O

For 1 <j <gq, let 3:5-1), . ,:cg.n) be the pairwise distinct roots of x;(t) mod qp in E. Then, by [NT20,
Lemma 4.28], there is a unique collection of continuous characters
W Zy x T ((RP)M)
such that ’yj(-i) mod (p, is the character (a, b) — (arg-i))b and (Yoo,j)q, = tr ’yj(»l)@- : -@’y](-n)
is the composite of Ve ; With RP — (RP)g .
(@)

The characters ; Z,x0 ° Zp — (RP)y induce a morphism Soo — (RP); which extends the morphism
P

» where (Yoo, j)q,
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SW — RP. Given that as C qp, this morphism extends to a map from the formally smooth E-algebra
(Se0)4.., and we can choose a lift of this map through the surjective map in Proposition [6.4.14
(Roo)g, = (RP)gp

to get a morphism (Seo)a. — (Roo)q., - Welet A’ be the localisation of A at the prime ideal (t;i) —xy) :
1<j<gq, 1<i<n)and define

e m) =m; 44,
° n16 =mo®4A4".

Lemma 6.4.19. (1) For each 1 < i < n and 1 < j < q, the pushforwards of agi) and ’y](.i) to
End(m}) are equal.

(2) The natural structure of Sso-module on m} coincides with that induced by morphism Soo —

A
(]%p)QP'

(3) The map (RP)y — (Ro)y, factors through the quotient (RP)y /aco.

(4) The trace map induces an isomorphism m} /as = my,.

(5) m} is a non-zero finite free S a.. /a% -module.

Proof. 1) Let X = {agl)(z),'yj(-z)(z) € End(m}) | 2 € Zy xZ,1 <i<mn, 1 <j<q}andlet L be
the E-subalgebra of End(m]) generated by the elements of X. Then, L is commutative, and is an
Artinian FE-algebra; so we can write L = [[, L, where Ly is a local E-algebra. The pushforwards
of the characters a§l) and fy(»l) take value in L, and the pseudocharacters tr a§-l) S EERNS o™ and

J J
tr 73(1) D-- '697(»”) are equal to the same pseudocharacter after pushforward to L, which we call 7). To

J
prove (1) it suffices to show that the pushforward of ay) and 'yj(.l) agree on each localisation Ly, of L. For

this, we use [BC09, Proposition 1.5.1] which, when applied to the pseudocharacter T} : Zy, x Z — Ly,
states that there exists unique characters Tj(z) : Zyp X Z — Ly, such that:

() T; = trTj(l) - @Tj(")?

(i) 7V £ 7" mod my if i # 4.

where my, is the maximal ideal of Ly (this is because in loc.cit. Ip = 0, also note that the two notions

of pseudocharacters agree since we are working with Q-algebras). Therefore, it suffices to show that
ag-i) and ’yj(-i)
the element aéi)(o, 1) —mé- = tg-i) —xg-i) € my is a nilpotent element of End(m/). Similarly, the action of
(RP)g» on my factors through an Artinian quotient, so the element VJ@(O, 1) — afg-i) € ¢P is a nilpotent
element of End(m]). Therefore, the difference ozg-i)(O, 1) — 'y]@(O, 1) lie in the Jacobson radical of L,
and this implies (1).

agree after pushforward to each residue field of L. But since m) is an Artinian A’-module,

2) Since both Ss-module structures are induced by the two set of characters ag»i) and ’y](-i), then (2)
follows immediately from (1).

3) The statement follows if we show that the pushforward of the character *yj(.‘%pxo through the map

(Rp)é\p — (Ro)y, is trivial. But by (1) of Lemma |6.4.11} the pushforward of the pseudocharacter

tr 'yj(l) ®-- _@W](n) to (RO)QO factors through the projection Z, x Z — Z. Therefore, we get the result by
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applying the previous argument that uses [BC09, Proposition 1.5.1], to the two families of characters
'yj@ and ’y;(’) = ,y](;) o(Z—Zy X 7).
4) This follows immediately from (2) of Lemma [6.4.16]

5) Given that m} is a direct summand of m;, we only need to prove that m) is non-zero, or even
that my is non-zero. But by (2) of Lemma [6.4.11} the characteristic polynomial [, (¢t — ty)) of (0,1)

under «; pushes forward to [[,(t — a:y)) = x;(t) mod P in End(mg). This is because thanks to (3)

of Lemma [6.4.16] the action of (RP)g on mg = m factors through

(RP)g, = (Ro)g, = (Tg)ge = E
Therefore, the action of AW on mg factors through AW — E sending ty) to acgz) Since we have an
isomorphism of Ay-modules mg 22 S\ (U, O)q, @ q4w A, we get that the localisation my, is nonzero. [

In order to complete the patching argument, we will use the following theorem

Theorem 6.4.20. [Brol, Theorem 1.1] Let A — B be a local morphism of noetherian local rings
satisfying
edim(B) < edim(A)

where edim s the embedding dimension, i.e. the minimal number of generators of the mazximal ideal.
If M is a non-zero A-flat B-module which is finitely generated over B, then M is finite free over B.

We are now finally able to prove Theorem [3.4.6] announced in the introduction. So let us apply
Theorem for A = Seam/800, B = (Reo)j. /2%, and M = m). In fact, Sea./ax has
embedding dimension ng, and (R )y /a3, has embedding dimension < ng since (Roo)j. is a power
series ring over E in ng variables. Thus we get that m/ is a finite free module over (Roo)quo /a2, and
in particular my is finite free over (Roo)y /aco. Since the action of (R )y /@ on mg factors through
the surjective maps

(Roc)qus /800 = (BP)q, /800 = (Ro)g, = (Tplgg = E

we get that each of these maps is an isomorphism. In particular, (RO)/\C = F. We deduce our theorem
by identifying it with the tangent space of (Rg)~

qu Via proposition 4.4.5*
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Appendix A

Ultrafilters

Definition A.0.1. A filter is a set F of subsets of N such that:
(1) Ne F, and 0 ¢ F;
(2) if AC B and A € F, then B € F;
(3) If A,Be F,then ANB € F.
An ultrafilter is a filter with the following additional property:
If ACN, then either A € F or A F
Lemma A.0.2. A filter F is an ultrafilter if and only if the following property holds:
AUBe F=AcForBeF
The examples to keep in mind are the following :
- ForneN, F,, ={A CN | ne A} is an ultrafilter called a principal ultrafilter.
- Feot = {A C N | A€ is finite } is a filter called the cofinite filter.
Lemma A.0.3. An ultrafilter F is principal if and only if F 2 Feof.

Proof. It F = F, is principal, then N\ {n} & F, so F 2 Feor. Conversely, if F 2 Feof, then by the
definition of an ultrafilter, there exists a finite subset A € F. By the previous lemma, this implies
that there is some n € N, such that {n} € F. Therefore, F is principal. O

Lemma A.0.4. An ultrafilter is a maximal filter, with the order given by inclusion.

Proof. Suppose that F is a maximal filter which is not an ultrafilter. Then, there exists a subset A € N
such that A, A° ¢ F. The set of subsets 7' = {C D AN B for some B € F} is a filter containing F:
contradiction. O

Corollary A.0.5. There exist non-principal ultrafilters.

Proof. By Zorn’s lemma, and the previous lemma, any filter is contained in an ultrafilter. Applying
this to the filter F.of, we get the result. ]

Next, we will show how ultrafilters allow us to study the spectrum of countable products of rings. So
consider for all n € N a local Artinian ring R, with maximal ideal m,, and let R =[], .y Rn. To an
element © = (z,,)n, € R, we associate the set

Z(x)={neN|z, em,}

which satisfy the following properties:
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o Z(z+vy) 2 Z(x) N Z(y);
o Z(xy) = Z(z) U Z(y).
And to a subset A C N, we associate the idempotent:

(ea)n = 1 ifneA,
€A =1 0 otherwise.

which in turn satisfies the following properties:
o Z(es) = A
® CANB = €AE€RB;

® cAUB = €A+ €B — €A€R.
Now given a prime ideal, we define
Fp) :={Z(z) |z ep}={A" | ea€p}
Lemma A.0.6. For any prime ideal p C R, F(p) is an ultrafilter.
Proof. Since 0 € p, we have N € F, and since 1 ¢ p, ) ¢ F(p). Now if A C B, then egcege = epe,
so A € F(p) = B € F(p). Given that eqeqc = 0 € p, we either have A € F(p) or A° € F(p).

Together with esnp = eaep, this implies that if A, B € F(p), then AN B € F(p). Therefore, F(p) is
an ultrafilter. ]

Conversely, we easily check that given an ultrafilter F, we get a prime ideal defined by:
p(F)={zeR| Z(z) e 7}

Theorem A.0.7. These two constructions are inverse to each other, and induce a bijection between
the set of ultrafilters of N and the set of prime ideals of R.

Remark A.0.8. Note that two elements (z,,), (yn) € R agree in Ry () if and only if z,, = y,, for F-many
n.

Proposition A.0.9. Suppose that R, = Ry for all but finitely many n, with #Ry < oco. If F is a
non-principal ultrafilter, then we have an isomorphism

f : R[) i) Rp(]:)
xo = = (Tp)n
where x, = xg if R, = Ry and 0 otherwise.
Proof. Let us start by proving injectivity. Suppose that xg # 0 € Ry maps to 0, i.e., that there exists
Y = (Yn)n & P(F) such that yf(xo) = (ynf(x0)n) = 0. If y, & my, for n > 0, then it is invertible
and we get f(zo)n = xo = 0. Therefore, for n > 0, y, € m,, so Z(y) is cofinite hence in F, which
contradicts the choice of y.

For surjectivity, let us first fix an integer ng such that for n > ng, R, = Rg. Suppose that we have an
element x/y € R,r) with y & p(F), we need to show that there exists r € Rp and z ¢ p(F) such that

f(ryz = xz.
For r € Ry, consider the set {n > ng | y,r = x,}. Since Z(y) € F, for n € Z(y)¢ and n > ng, yy is
invertible in Ry, and we can find some r € Ry such that y,r = z,,. Thus, we have:

Z(y)N{neN|n>np} C U{n2n0|yn7“:xn}6.7:

reRg
By Lemma since Ry is finite, there exist some r € Ry such that A ={n >ng | yor = x,} € F.
Letting z = e4, we trivially have yf(r)z = zz, and Z(z) = A° € F, so z & p(F). O
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