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Chapter 1

Introduction

In 1994, when A. Wiles presented the proof of the Taniyama-Shimura conjecture, the whole math-
ematical community was in surprise and admiration. He had not only solved a problem that, for
centuries, withstood the attacks of some of the most brilliant, but he also had introduced an arsenal of
tools and methods that will certainly be useful for generations to come. This thesis is an attempt to
expose some of these ideas and see how they are applied in various settings. Indeed, given a number
field F and a Galois representation ρ : GF → GL2(Qp) such that its reduction ρ : GF → GL2(Fp) is
known to be automorphic, one could ask as in the work of A. Wiles, what conditions should ρ satisfy
for it to also be automorphic. Results that go in this direction are called modularity lifting theorems.

In the first part of this thesis, we will present and prove an instance of these theorems. The general
strategy for the proof is to introduce a universal deformation ring R which in some sense encodes
the lifts of the residual representation ρ, and also a Hecke algebra T acting on a space of automor-
phic forms S together with a representation ρmod : GF → GL2(T) that includes all the automorphic
Galois representations reducing to ρ. Universality of R implies that we have a surjective morphism
R � T which turns out to be an isomorphism, thereby giving us a morphism ϕ : T → Qp such
that ρ = ϕ ◦ ρmod. This is exactly saying that our representation is automorphic, and so the whole
difficulty lies in showing the equality “R = T” which is done using the “Taylor-Wiles-Kisin method”.
The way this method works is that we carefully choose different sets Q of places of F , called sets of
Taylor-Wiles places, in a way that if we relax the conditions on the deformations of ρ at these primes,
we obtain a larger universal ring RQ which fits into a diagram

J [∆Q] RQ End(SQ)

R End(S)

where J [∆Q] is a group algebra with an augmentation ideal aQ, and SQ is a space of automorphic
forms which is finite free over J [∆Q] with SQ/aQ = S and RQ/aQ = R. In a process of taking the
limit of this diagram over various Taylor-Wiles sets, the algebra J [∆Q] successively approximates a
power series algebra J∞ with augmentation ideal a∞, and we get a diagram

J∞ R∞ End(S∞)

R End(S)

1



with the same properties as the one above. Only this time, by careful considerations of the dimension
of R∞ and using tools from commutative algebra, we are able to deduce that S∞ is finite free over
R∞. Reducing modulo a∞, we get that S is finite free over R. But given that the action of R on S
factors through T, which acts faithfully on S, we deduce the equality R = T.
The subtleties that arise in using this method, notably in the choice of the Taylor-Wiles places, makes
it technically very difficult to work with reducible ρ, so one usually imposes many restrictions on the
residual representation.

In their recent work [NT20], J. Newton and J. Thorne used the Taylor-Wiles-Kisin method to prove,
under very weak conditions, the vanishing of the adjoint Bloch-Kato Selmer group for automorphic
Galois representations. In fact in their treatment, they were able to avoid imposing restrictions on
the residual representation. The content of their article will be the focus of the second part, which is
the core of this thesis. We will be interested in showing how they managed to surpass the technical
difficulties that arise when working with a reducible residual representation, in the hope of being able
to transpose the techniques they used to other problems and situations in the future.
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Part I

Some modularity lifting theorems
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Chapter 2

Deformation of Galois representations

One of the main tools in the proof of modularity lifting theorems is the use the deformation theory
of Galois representations introduced and developed by B. Mazur. The idea is that given a residual
representation ρ : Γ→ GLn(k) of a group Γ with coefficients in a field k, one can consider the functor
that associates to a local of all deformations of ρ. The universal deformation ring obtained is far too
big to be useful. However we will be able to cut it down by adding conditions on the deformations of
our residual representation. In particular, if F is a number field and ρ : GF → GLn(k), then we can
these conditions take place for the restriction of the lifts to each local Galois group associated to a
place.

2.1 Basic definitions and results

Let Γ be a profinite group, and ρ : Γ → GLn(k) be a continuous representation with coefficients
in a finite field k of characteristic p. Let Λ be a complete discrete valuation ring with residue field
k (e.g., W (k)). We let C0

Λ to be the category of Artinian local Λ-algebras of residue field k, with
local morphisms that induce the identity on k. Let CΛ be the category which consists of complete
Noetherian local Λ-algebras with residue field k.
If A ∈ CΛ, we say that a continuous homomorphism

ρ : Γ→ GLn(A)

is a lift of ρ if π ◦ ρ = ρ where π : A→ k is the canonical quotient. We say that two lifts of ρ

ρ1, ρ2 : Γ→ GLn(A)

are strictly equivalent if there exists a matrix M ∈ Γn(A) = ker
(

GLn(A) → GLn(k)
)

such that
Mρ1 = ρ2M . This is an equivalence relation, and we define a deformation of ρ to be a strict equivalence
class of lifts of ρ. This way, we can define two functors:

D : CΛ → Sets

A 7→ { deformations of ρ with coefficients in A}

which is called the deformation functor of ρ, and

D� : CΛ → Sets

A 7→ { lifts of ρ with coefficients in A}

which is called the lifting functor of ρ.
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D andD� are continuous functors, so they are completely determined by their values in the subcategory
C0

Λ.

Suppose that Γ satisfies Mazur’s Φp-condition:
Condition Φp : For each open subgroup Γ′ ⊆ Γ, there are only finitely

many continuous homomorphisms Γ′ → Fp
Then, the functor D� is representable, i.e., there exists a ring R�

univ ∈ CΛ and a continuous represen-
tation ρuniv : Γ→ GLn(R�

univ) such that for all A ∈ CΛ, we have a natural bijection

HomCΛ(R�
univ, A)

∼−→ D�(A)

f 7→ f ◦ ρuniv

For example this is the case if Γ = GK where K is a local field , or if Γ = GF,S for F a number field
and S a finite set of places.

If moreover, ρ has trivial endomorphisms, which is the case if ρ is absolutely irreducible, then by
[Gou95, Theorem 3.10], we get that D is representable. So there exists a ring Runiv ∈ CΛ and a
deformation of ρ, ρuniv : Γ→ GLn(Runiv) with HomCλ(Runiv,−) ∼= D(−).

2.1.1 The tangent space

We now define the tangent space of the universal deformation ring which can be naturally identified
with certain cohomology groups. Using results from Galois cohomology, this allows us to find bounds
on the number of generators and relations of the universal deformation ring.

Let A ∈ CΛ. We define the cotangent space of A to be

t∨A = mA/(m
2
A + mΛ)

Note that this has the structure of a Λ/mΛ = k-vector space which is finite dimensional since A is
Noetherian. We define the Zariski tangent space of A to be the dual of the cotangent space, i.e.,

tA = Homk

(
mA/(m

2
A + mΛ), k

)
Proposition 2.1.1. tA is naturally isomorphic to HomΛ(A, k[ε]).

Proof. A morphism of Λ-algebras A→ k[ε] is given by x 7→ x+ φ(x)ε where φ : A→ k is a Λ-algebra
morphism. It is not hard to see that φ is determined by the image of mA and that it kills mΛ and
m2
A.

Lemma 2.1.2. D�(k[ε]) is canonically isomorphic to Z1(Γ, ad ρ), and D(k[ε]) is canonically isomor-
phic to H1(G, ad ρ).

Proof. Let ρ be a lift of ρ to k[ε], then we can write ρ(γ) = ρ(γ) + c(γ)ρ(γ)ε with c(γ) ∈ Mn(k). One
can verify that γ 7→ c(γ) defines an element of Z1(Γ, ad ρ). Conversely, for such a c, the formula gives
a lift of ρ. A strict equivalence in D�(k[ε]) corresponds to adding a coboundary in Z1(Γ, ad ρ).

Proposition 2.1.3. We have dimk D�(k[ε]) = dimk D(k[ε]) + n2 − dimkH
0(Γ, ad ρ).

Proof. The map D�(k[ε])→ D(k[ε]) corresponds to Z1(G, ad ρ)→ H1(G, ad ρ). Its kernel B1(Γ, ad ρ)
corresponds to the image of ad ρ in Z1(Γ, ad ρ) via the map M 7→ (γ 7→ ρ(γ)Mρ(γ)−1 −M). So it is
ad ρ/ ad ρΓ.

Note that H0(Γ, ad ρ) = {M ∈ Mn(k) | ρ(γ)M = Mρ(γ) ∀γ ∈ Γ}, so if ρ is irreducible, then
dimkH

0(Γ, ad ρ) = 1.
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2.2 Deformation conditions

In practice, the universal deformation ring is too big to be useful. That is why we need to cut it
down by imposing several conditions on the deformation functor such as fixing the determinant of the
representations considered. In order for the obtained subfunctor to be represented in CΛ, it needs to
satisfy certain properties which are given in the following definition:

Definition 2.2.1. A lifting problem P is the data, for all A ⊆ C0
Λ, of a subset D�

P(A) of D�(A)
satisfying the following properties:

1. ρ ∈ D�
P(k).

2. Let f : A→ B be a map in C0
Λ. If ρ ∈ D�

P(A) then f ◦ ρ ∈ D�
P(B).

3. D�
P is a continuous subfunctor of D�.

4. Let A → C and B → C be maps in C0
Λ, and let D = A ×C B with maps p : D → A and

q : D → B. Then, ρ ∈ D�
P(D) if and only if p ◦ ρ ∈ D�

P(A) and q ◦ ρ ∈ D�
P(B).

5. Let f : A→ B be an injective map in C0
Λ. Then, ρ ∈ D�

P(A) if and only if f ◦ ρ ∈ D�
P(B).

A deformation problem is a lifting problem satisfying moreover

6. If ρ ∈ D�
P(A) and g ∈ Γn(A), then gρg−1 ∈ D�

P(A).

This gives a functor
D�
P : C0

Λ → Sets

which we extend to CΛ by continuity.

Remark 2.2.2. Let D′ be a subfunctor of D and assume they are both representable by R′ and R, then
there is a natural map R → R′. This map is surjective. Indeed, it suffices to check that the map on
the cotangent spaces is surjective. But the map on the cotangent spaces is dual to the map on the
tangent spaces which is injective since D′(k[ε]) ⊆ D(k[ε]).
We want for a deformation condition corresponds to a closed subspace of the space of all deformations
SpecR. This is given by the existence of an ideal I such that for any f : R → A, f ◦ ρunivA satisfies
the deformation condition if and only if f factors through R/I.

This idea is illustrated by the following proposition.

Proposition 2.2.3. Assume that D� is represented by R�.

1. Let P be a lifiting problem. There exists a closed ideal I(P) of R� such that: for any object A
of CΛ, ρ ∈ D�

P(A) if and only if the map R� → A corresponding to ρ factors through R�/I(P).

2. If I be a closed ideal of R�, we define P(I) by letting, for each object A of C0
Λ, D�

P(I)(A) to be

the set of ρ ∈ D�(A) such that the corresponding map R� → A factors through I. Then, P(I)
is a lifting problem.

3. I
(
P(I)

)
= I and P

(
I(P)

)
= P.

4. If P is a lifting condition, then D�
P is represented by R�/I(P).
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Proof. Let E be the set of open ideals I of R� such that the representation given by the map R� →
R�/I lies in D�

P(R�/I). Then, E is non-empty since it contains the maximal ideal by 1). Moreover,
given two ideals I1 and I2 in E , we have an injection

R�/(I1 ∩ I2) ↪→ R�/I1 ×R�/(I1+I2) R
�/I2

so by conditions 4) and 5), we get that I1 ∩ I2 ∈ E (The fiber product exists in C since all the rings
are Artinian).
Now, given a descending chain of ideals in E I0 ⊇ I1 ⊇ I2 ⊇ . . . , we have R/

⋂
i Ii = lim←−R/Ii. Hence,

condition 3) gives
⋂
i Ii ∈ E . We define I(P) to be the intersection of all the ideals in E . It is a closed

ideal since here, open ideals are closed. And by the above properties, I(P) ∈ E .
Consider now an object A of CΛ, and ρ ∈ D�(A). Let u : R� → A be the associated morphism. If
I(P) ⊆ ker(u), so that u factors through R�/I(P) and ρ ∈ D�

P(A) by property 2).
Conversely, suppose that ρ ∈ D�

P(A). We have an injection R�/ keru → A. So by property 5), the
representation corresponding to R� → R�/ keru lies in D�

P(R�/ keru). Hence, I(P) ⊆ ker(u).

Remark 2.2.4. The same theorem hold if we assume that P is a deformation problem. Although we
additionally require that I is radical and 1 + Mn(mR�)-stable (see [BLGHT11, Lemma 3.2]).

2.3 Representations with values in a subring

In this section, we present a theorem due to Carayol which states that a deformation of an absolutely
irreducible representation is uniquely determined by its trace. Before stating and proving this theorem,
we need to introduce some other preliminary results.

Theorem 2.3.1 (Jacobson Density).
Let E be a simple R-module, and let D = EndR(E). If f ∈ EndD(E) and x1, . . . , xn ∈ E, then there
exists r ∈ R such that f(xi) = r · xi for all 1 ≤ i ≤ n. Consequently, if E is finitely generated over R,
then the natural map R→ EndD(E) is surjective.

Proof. Consider the following morphism

f (n) : En → En y1
...
yn

 7→
 f(y1)

...
f(yn)


Let D(n) = EndR(En) which identifies with the ring Mn(D) of matrices with coefficients in D. Since
f commutes with the elements of D, then f (n) ∈ EndD(n)(En). Now let x = t(x1, . . . , xn), by semi-
simplicity of En, we can write En = R · x⊕W . So let us denote by π the projection map of E onto
R · x. Therefore, π ∈ D(n), and

f (n)(x) = f (n)(π(x)) = π(f (n)(x))

So f (n)(x) ∈ R · x, from which the theorem follows.

Corollary 2.3.2 (Burnside). If ρ : Γ→ GLn(k) is absolutely irreducible, then the map k[Γ]→ Mn(k)
is surjective.

Proof. We apply Theorem 2.3.1 to R = k[Γ] and E = kn. Since ρ is absolutely irreducible, we have
that D = k from which the corollary follows.
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Theorem 2.3.3. Let R ∈ CΛ, and let ρ, ρ′ : Γ → GLn(R) be two representations with coefficients in
R. Suppose that ρ is absolutely irreducible and that Tr ρ(γ) = Tr ρ′(γ) for all γ ∈ Γ. Then, ρ and ρ′

are equivalent.

Proof. The two representations ρ, ρ′ extend to R-algebra homomorphisms u, u′ : R[Γ] → Mn(R). We
will show that these two morphisms are conjugated by an element of GLn(R). Given that it is enough
to show this modulo mi

R for i ≥ 1, we can suppose that R is Artinian.
We proceed by induction on the length of R, so let us first show the result for R = k a field. Consider
the linear map t : R[Γ] → k, x 7→ Tru(x). Then, by the fact that the trace map is a perfect pairing
on matrices and by surjectivity of u (Corollary 2.3.2), we have that keru = {x ∈ R[Γ] | t(xy) =
0 ∀y ∈ R[Γ]}. This description shows that keru′ ⊆ keru, so that we have a natural surjective
map R[Γ]/ keru′ � R[Γ]/ keru ∼= Mn(k). But since dimk R[Γ]/ keru′ = dimk im(u′) ≤ n2, this
map is actually an isomorphism which implies that keru = keru′ and im(u′) = Mn(R). Now every
automorphism of Mn(k) is given by conjugation by an element of GLn(k), applying this to the above
isomorphism gives the conjugation between u and u′ as desired.
Now assume that R is not a field, and let I = (a) be an ideal of R such that mRI = 0. By the
induction hypothesis, we can suppose that ρ and ρ′ coincide modulo I. So let us write ρ = ρ′ + δ
with δ : R[Γ] → M0

n(I) (trace 0 matrices) is an R-linear map. It is not hard to verify that δ(xy) =
ρ(x)δ(y) + δ(x)ρ(y) ∀x, y ∈ R[Γ]. If y ∈ ker ρ, then Tr

(
ρ(x)δ(y)

)
= Tr

(
δ(xy)

)
= 0 ∀x ∈ R[Γ]. Since u

is surjective (Corollary 2.3.2), we have that δ(y) = 0. Therefore, δ factors through ker ρ so it induces
a k-linear map Mn(k)→ Mn(k) ∼= Mn(I) (I is principal) which is a derivation. But all derivations on
Mn(k) are given by conjugation by a matrix (in other words the first lie algebra cohomology group
H1(gln, ad gln) vanishes). So there exists M ∈ Mn(k) such that δ(x) = ρ(x)M −Mρ(x) ∀x ∈ R[Γ].
Therefore, (1 +M)ρ = ρ′(1 +M) as desired.

Let R ∈ CΛ and suppose that k = R/mR is finite. Let R′ be an R-algebra which is finite as an
R-module. Then, R′ is semi-local, and we can write R′ =

∏r
i=0R

′
i where R′i is local R-algebra with

maximal ideal m′i and residual field k′i ⊇ k.
Suppose that we have representations ρ′i : Γ→ GLn(R′i), which give rise to a representation ρ′ : Γ→
GLn(R′) =

∏r
i=0 GLn(R′i). Furthermore, suppose that ∀γ ∈ Γ, Tr ρ′(γ) ∈ R. In particular, we have

for all γ ∈ Γ, Tr
(
ρ′i(γ)

)
∈ k and is independent of i. Finally, suppose that for some i, the residual

representation ρ′i is absolutely irreducible.

Theorem 2.3.4. Under these hypotheses, ρ′ is equivalent to a representation coming from a repre-
sentation ρ : Γ→ GLn(R). Moreover, ρ is unique up to strict equivalence.

Proof. Uniqueness follows from Theorem 2.3.3, so we only need to show existence.
First, suppose that R = k and R′ = k′ is a finite extension of k. The representation ρ′ : Γ→ GLn(k′)
induces a morphism of k′-algebras u : k′[Γ] → Mn(k′). Let e1, . . . , en2 ∈ ρ′(Γ) a basis of Mn(k′) as a
k′-vector space (which is possible by Corollary 2.3.2), and let A = u(k[Γ]) so that ∀a ∈ A, Tr(a) ∈ k.
We want to show that dimk A = n2. Writing a ∈ A as a = α1e1 + · · ·+αn2en2 , this amounts to saying
that αi ∈ k. But we have Tr(yej) =

∑
i αi Tr(eiej), and the matrix(

Tr(eiej)
)
i,j
∈ Mn2(k)

is invertible in Mn(k′), hence in Mn(k), since the trace pairing is a perfect pairing. So we get that
αi ∈ k as desired.
Therefore, we have that A ⊗k k′ ∼= Mn(k′) which implies that A is a central simple algebra. Indeed,
Z(A) ⊗k k′ ⊆ Z(A ⊗k k′) = k′ · id, and comparing dimensions gives us Z(A) = k · id. Moreover, if I
is a two sided left ideal of A, then I ⊗k k′ is a two sided left ideal of Mn(k′), so I ⊗k k′ = 0 which
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implies that I = 0. However, since k is finite, Br(k′/k) = 0, so A ∼= Mn(k). Therefore, given that any
automorphism of Mn(k′) is inner, ρ′ is conjugate to a representation with values in GLn(k).
Back to the general setting, the previous case tells us that the ρ′i are all conjugate to the extension to
k′i of some representation ρ : Γ → GLn(k). So up to conjugation, we can assume that all the ρ′i have
image in GLn(k) and are equal, in which case ρ′ takes values in GLn(R′′) where R′′ = {x = (xi) ∈
R′ | xi = xj ∈ k ∀i, j} is local with residue field k. Therefore, we can suppose that R′ is local with
residue field k, and by arguments of continuity we can also suppose that R′ is Artinian.
Now to prove the theorem, we proceed by induction on the length of R′. The case length(R′) = 0
i.e. R′ = k has already been dealt with. So let us assume that R′ is not a field and let I be a
non-zero principal ideal such that mR′I = 0. We have an injection R/(R∩ I) ↪→ R′/I, so by induction
hypothesis, we can assume that ρ′ : Γ→ GLn(R′/I) has coefficients in R/(R∩I). Up to changing R′ by
the subring R′′ = {x = (xi) ∈ R′ | xi ≡ xj ∈ R/(R∩I) mod I}, we can assume that R′/I = R/(R∩I).
If I ⊆ R, then we get R = R′, and the theorem is trivial. Otherwise, R ∩ I = {0} (length(I) = 1).
So R′ = R ⊕ I with multiplication given by (r, i)(r′, i′) = (rr′, r′i + ri′), and we can write ρ′(γ) =
ρ0(γ) + ρ1(γ) with ρ0 : Γ → GLn(R) a representation and ρ1(γ) ∈ Mn(I). As Tr ρ′(γ) ∈ R, we have
Tr ρ′ = Tr ρ0, so by Theorem 2.3.4, they are equivalent which is what we want to prove.

2.4 Global deformation problems

Let F be a number field, S a finite set of finite places of F containing all places above p, and T a
subset of S. We fix an algebraic closure F of F , and we let FS be the maximal subextension of F
which is unramified outside of S. We write GF = Gal(F/F ) and GF,S = Gal(FS/F ). We consider an
absolutely irreducible representation ρ : GF,S → GLn(k) and we let Λ = W (k).

The Galois representations that we will study have local properties which we want to single out (for
example properties related to ramification and p-adic Hodge theory which are satisfied by automorphic
Galois representations). Our goal in this section will be to set the right framework to do so by defining
a global deformation functor which encodes deformation conditions at different places of F . The same
approach in a slightly more general setting can be found in [Tho16, §5.2 and §5.3].

Let ψ : GF,S → Λ× be a lift of det ρ, Γn(A) = ker
(

GLn(A)→ GLn(k)
)
, and suppose that (p, n) = 1.

The last condition implies that ad0ρ is a direct summand of adρ.
For v ∈ S, we write D�

v : CΛ → Sets for the lifting functor of ρ|Gv with fixed determinant ψ which is

represented by an object R�
v ∈ CΛ. As a standard notation, we will write hi(· · · ) for dimkH

i(· · · ).

Definition 2.4.1. A global deformation problem is a tuple

S =
(
ρ, ψ, S, {Dv}v∈S}

)
where:

• ρ,ψ and S are defined as above;

• For each v ∈ S, Dv ⊆ D�
v is a deformation problem for ρ|GFv , called a local deformation problem.

Definition 2.4.2. Consider a global deformation problem S =
(
ρ, ψ, S, {Dv}v∈S}

)
. Let A ∈ CΛ, and

let ρ : GF,S → GLn(A) be a lift of ρ. We say that ρ is of type S if it satisfies the following conditions:

• det ρ = ψ, i.e, det ρ : GF,S → A× agree with the composite of ψ : GF,S → Λ× with the structural
morphism Λ× → A×;

• For each v ∈ S, the restriction ρ|GFv lies in Dv(A).
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We write D�
S for the functor CΛ → Sets that associates to A ∈ CΛ the set of liftings ρ : GF,S → GLn(A)

of ρ that are of type S.

Definition 2.4.3. If A ∈ CΛ, we define a T -framed lifting of ρ to A to be a tuple (ρ, {αv}v∈T ), where
ρ : GF,S → GLn(A) is a lifting of ρ and αv ∈ GLn(A). Two T -framed liftings (ρ, {αv}v∈T ) and
(ρ′, {α′v}v∈T ) are said to be strictly equivalent if there exists β ∈ Γn(A) such that ρ′ = βρβ−1 and
α′v = βαv for all v ∈ T .

We write DTS for the functor CΛ → Sets that associates to A ∈ CΛ the set of strict equivalence classes
of T -framed liftings (ρ, {αv}v∈T ) such that ρ is of type S.

Theorem 2.4.4. Let S =
(
ρ, ψ, S, {Dv}v∈S}

)
be a global deformation problem. The functors D�

S and
DTS are represented by objects R�

S and RTS of CΛ.

If T = ∅, we write Runiv
S for RTS . Let S =

(
ρ, ψ, S, {Dv}v∈S}

)
be a global deformation problem, then

Dv ⊆ D�
v is represented by a ring Rv which is a quotient of R�

v . There is a natural transformation
DTS →

∏
v∈T Dv, that sends

(
ρ, (αv)v∈T

)
to (α−1

v ρ|Gvαv)v∈T . But the functor
∏
v∈T Dv is represented

by Rloc := ⊗̂v∈TRv (where the tensor product is taken over Λ). So we get a map of rings Rloc → RTS .

Remark 2.4.5. Fix some v0 ∈ T , and let T ′ = T − {v0}. We define a functor D′ by letting D′(A) =
D�
S (A) ×

∏
v∈T ′ Γn(A), for A ∈ CΛ. Then, we have a natural transformation D′ → DTS sending(

ρ, (αv)v∈T ′
)

to
(
ρ, (αv)v∈T

)
with αv0 = 1, which is actually an isomorphism. Since the functor

A 7→ Γn(A) is represented by Λ[[X1, . . . , Xn2 ]], we get that the ring RTS is a power series ring over R�
S

in n2(#T − 1) variables. On the other hand, the functor D�
S → D∅S is formally smooth. So looking at

the description of the tangent spaces as k[ε]-points, we get that R�
S is a power series ring over Runiv

S
in n2 − 1 variables (ρ has trivial endomorphisms). In conclusion, RTS is a power series ring over Runiv

S
in n2#T − 1 variables.

Presentation of the deformation ring

We want to compute the tangent space of the deformation ring RTS as an Rloc-algebra. That is to
compute mRTS

/(m2
RTS
,mRloc

). Recall that we have canonical isomorphisms:

Z1(Gv, ad0ρ) ∼= Homk

(
mR�

v
/(m2

R�
v
,mΛ), k

) ∼= HomCΛ(R�
v , k[ε])

We let L̃v ⊆ Z1(Gv, ad0ρ) be the the preimage of the subspace Homk

(
mRv/(m

2
Rv
,mΛ), k

)
under the

above isomorphism. Since Dv is a deformation problem, L̃v is the preimage of a subspace Lv ⊆
H1(Gv, ad0ρ).
For our purpose, we introduce some cohomology groups. So let us consider the following complexes:

Ciloc(ad0ρ) =


⊕
v∈T

C0(Gv, adρ) if i = 0

⊕v∈TC1(Gv, ad0ρ)
⊕
⊕v∈S−TC1(Gv, ad0ρ)/L̃v if i = 1⊕

v∈S
Ci(Gv, ad0ρ) otherwise

where C•(Gv, ad0ρ) is the cochain complex of continuous inhomogeneous cochains.
Denote by C̃•(GF,S , ad0ρ) the complex given by

C̃i(GF,S , ad0ρ) =

{
C0(GF,S , adρ) if i = 0
Ci(GF,S , ad0ρ) if i > 0

10



The inclusion Gv ↪→ GF,S gives rise to a map of cochain complexes C̃•(GF,S , ad0ρ) → C•loc(ad0ρ).
Taking the cone of this map, we obtain a cochain complex

C•S,T (ad0ρ) = C̃•(GF,S , ad0ρ)⊕ C•−1
loc (ad0ρ)

where the boundary map is given by

CiS,T (ad0ρ)→ Ci+1
S,T (ad0ρ)(

φ, (ϕv)v
)
7→
(
∂φ, (φ|Gv − ∂ϕv)v

)
Later we will identify the tangent space of RTS over Rloc with H1

S,T (GF,S , ad0ρ). Hence, computing its

dimension over k tells us the number of generators of RTS over Rloc, which is what we will do next. So
consider the short exact sequence:

0→ C•−1
loc (ad0ρ)→ C•S,T (ad0ρ)→ C̃•(GF,S , ad0ρ)→ 0

which induces a long exact sequence of cohomology groups

0 H0
S,T (GF,S , ad0ρ) H0(GF,S , adρ)

⊕
v∈T

H0(Gv, adρ)

H1
S,T (GF,S , ad0ρ) H1(GF,S , ad0ρ)

⊕
v∈T

H1(Gv, ad0ρ)⊕
⊕

v∈S−T
H1(Fv, ad0ρ)/Lv

H2
S,T (GF,S , ad0ρ) H2(GF,S , ad0ρ)

⊕
v∈S

H2(Gv, ad0ρ) · · ·

Note that all the cohomology groups involved are finite. Moreover if i ≥ 3, for each finite place v we
have H i(Gv, ad0ρ) = 0; and we have H i(GF,S , ad0ρ) ∼=

⊕
v∈S∞ H

i(Gv, ad0ρ). But given that p > 2, for

an infinite place v, the orders of Gv and ad0ρ are coprime, so we have H i(Gv, ad0ρ) = 0 for i > 0. In
particular, H i(GF,S , ad0ρ) = 0 for i ≥ 3. As a consequence, for i > 3, we have H i

S,T (GF,S , ad0ρ) = 0.
Taking the Euler characteristic of the above long exact sequence, we get a formula:

χS,T (GF,S , ad0ρ) = χ(GF,S , ad0ρ)−
∑
v∈S

χ(GFv , ad0ρ)−
∑

v∈S−T

(
dimk Lv−h0(Gv, ad0ρ)

)
+1−#T (2.1)

since h0(Gv, adρ) = h0(Gv, ad0ρ)+1 as well as h0(GF,S , adρ) = h0(GF,S , ad0ρ)+1 (the identity matrix
is fixed by adρ). By Tate’s global Euler characteristic formula [Mil06, Ch. I,Thm. 5.1] we have

χ(GF,S , ad0ρ) =
∑
v∈S∞

h0(Gv, ad0ρ)− [F : Q](n2 − 1)

and by Tate’s local Euler characteristic formula [Mil06, Ch. I,Thm. 2.8], for a non-archimedean place
v, we have:

χ(Gv, ad0ρ) = −dimk

(
[Ov : |ad0ρ|Ov]

)
which equals to 0 if p - v, so we have :∑

v∈S
χ(Gv, ad0ρ) = −

∑
p|v

(n2 − 1)[Fv : Qp] = −(n2 − 1)[F : Q]

11



Putting this in equation (2.1), we get:

χS,T (GF,S , ad0ρ) =
∑
v∈S∞

h0(Gv, ad0ρ)−
∑

v∈S−T

(
dimk Lv − h0(Gv, ad0ρ)

)
+ 1−#T

We will need to use Tate’s local Duality, for which we recall the statement:

Theorem 2.4.6. Let v be a finite place of F , Fv an algebraic closure of Fv, and µ∞ the Gv-module
of all roots of unity in Fv. If M a finite Gv-module, let M∗ = HomZ(M,µ∞). Then, we have:

(1) For i = 0, 1, 2, the cup-product induced a perfect pairing:

H i(Gv,M)×H2−i(Gv,M
∗)→ H2(Gv, µ∞) = Q/Z

(2) If char(k(v)) does not divide the order of M , then the unramified classes:

H1(Gv/Iv,M
Iv) and H1(Gv/Iv,M

∗Iv)

are the exact annihilators of each other under the pairing above.

We will also need The Poitou-Tate exact sequence given as follows (see [Mil06, Ch. 1, Thm. 4.10] for
a more general statement):

Theorem 2.4.7. Let M be a finite GF,S-module. We let P iS(F,M) =
∏
v∈S∞ Ĥ

i(Gv,M)
∏
v∈S H

i(Gv,M)

such that for an archimedean place v, Ĥ i(Gv,M) denotes the i-th Tate cohomology group. Then, we
have a nine term exact sequence:

0 H0(GF,S ,M) P 0
S(F,M) H2(GF,S ,M

∗)∨

H1(GF,S ,M
∗)∨ P 1

S(F,M) H1(GF,S ,M)

H2(GF,S ,M) P 2
S(F,M) H0(GF,S ,M

∗)∨ 0

where for an abelian group A, A∨ = Hom(A,Q/Z).

Now given that p - n, we have a perfect pairing of Galois modules:

ad0ρ× ad0ρ(1)→ k(1)

(X,Y ) 7→ Tr(XY )

Since k(1) ∼= µ#k as Galois modules, we get that ad0ρ(1) ∼= (ad0ρ)∗. So by Tate’s local duality, for
each finite place v of F , we have a perfect pairing between H1(Gv, ad0ρ) and H1(Gv, ad0ρ(1)). We
write L⊥v ⊆ H1(Fv, ad0ρ(1)) for the annihilator of Lv under this pairing, and we define

H1
S,T (GF,S , ad0ρ(1)) = ker

(
H1(GF,S , ad0ρ(1))→

∏
v∈S−T

H1(Fv, ad0ρ(1))/L⊥v

)
(2.2)

so that upon dualising, we get an exact sequence:⊕
v∈S−T

Lv → H1(GF,S , ad0ρ)∨ → H1
S,T (GF,S , ad0ρ(1))∨ → 0

By the Poitou-Tate exact sequence, we get an exact sequence:

12



H1(GF,S , ad0ρ)
⊕
v∈T

H1(Gv, ad0ρ)⊕
⊕

v∈S−T
H1(Fv, ad0ρ)/Lv

H1
S,T (GF,S , ad0ρ(1))∨ H2(GF,S , ad0ρ)

⊕
v∈S

H2(Gv, ad0ρ)

H0(GF,S , ad0ρ(1))∨ 0

where we ignored the infinite places thanks to the condition p > 2 (as mentioned before, the higher
cohomology groups at the infinite places with coefficients in ad0ρ vanish). If we compare this exact
sequence with the long exact sequence of the cohomology groups, we find that:

H3
S,T (GF,S , ad0ρ) ∼= H0(GF,S , ad0ρ(1))∨

H2
S,T (GF,S , ad0ρ) ∼= H1

S,T (GF,S , ad0ρ(1))∨

Finally, note that since T 6= ∅, we have h0
S,T (GF,S , ad0ρ) = 0, so putting everything together, we get:

h1
S,T (GF,S , ad0ρ) =h1

S,T (GF,S , ad0ρ(1))− h0(GF,S , ad0ρ(1))−
∑
v|∞

h0(Gv, ad0ρ)

+
∑

v∈S−T

(
dimk Lv − h0(Gv, ad0ρ)

)
+ #T − 1

(2.3)

Proposition 2.4.8. There is a canonical isomorphism

Homk

(
mRTS

/(m2
RTS
,mRloc

), k
) '−→ H1

S,T (GF,S , ad0ρ)

in particular, RTS is a quotient of a power series ring over Rloc in h1
S,T (GF,S , ad0ρ) variables.

Proof. By Proposition 2.1.1, we have an isomorphism between Homk

(
mRTS

/(m2
RTS
,mRloc

), k
)

and the

subgroup of morphisms f : RTS → k[ε] that send mRloc
to zero, i.e., when restricted to Rloc, f factor

through k. Having that in mind, it is not hard to see that Homk

(
mRTS

/(m2
RTS
,mRloc

), k
)

is in bijection

with the subset of DTS (k[ε]) of lifts that map to trivial lifts when restricted to Gv for v ∈ T .
An element of the set DTS (k[ε]) corresponds to an equivalence class

(
(1 + εc)ρ, (1 + εβv)v∈T

)
with

c ∈ Z1
(
GF,S , ad0ρ

)
and βv ∈ adρ. The condition that it gives a trivial lifting at v ∈ T is equivalent to

the condition
(1− εβv)(1 + εc|Gv)ρ|Gv(1 + εβv) = ρ|Gv

which is equivalent to c(g) = βv − ρ(g)βvρ(g)−1 = βv − adρ(g)(βv) for all g ∈ Gv.
Two pairs

(
(1 + εc)ρ, (1 + εβv)v∈T

)
and

(
(1 + εc′)ρ, (1 + εγv)v∈T

)
are equivalent if and only if there

exists m ∈ adρ such that

c′(g) = c(g) +
(
1− ad0ρ(g)

)
m′

βv = αv +m

where m′ the projection of m in ad0ρ. Indeed, since (p, n) = 1, we have that (1− εTr(m)
n )(1 + εm) =

(1 + εm′) Hence, conjugating by (1 + εm) is the same as conjugating by (1 + εm′).
Therefore, the tuple (c, βv) up to equivalence describes exactly an element of H1

S,T (GF,S , ad0ρ).
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2.5 Taylor-Wiles primes

In this section we will present the notion of sets of Taylor-Wiles places and prove their existence.
Their interesting feature is that we will be able to have control over the size of the tangent space
of the global deformation functor as we relax the conditions at these places. We will work in the
GL2 case, but one can find in [Tho12, §4] the GLn case under stronger assumptions on the residual
representation. We are keeping the same notation and hypothesis as in section §2.4 but with n = 2.

Definition 2.5.1. A place v of F is called a Taylor-Wiles place of level N if it satisfies the following
conditions

(1) v 6∈ S,

(2) #k(v) ≡ 1 mod pN ,

(3) The eigenvalues of ρ(Frobv) are distinct and belong to k.

where k(v) is the residual field of Fv.

Lemma 2.5.2. Let R ∈ CΛ. Then, ker
(

GLn(R)→ GLn(k)
)

is a pro-p group.

Proof. Since
ker
(

GLn(R)→ GLn(k)
)

= lim←−
k

ker
(

GLn(R/mk)→ GLn(k)
)

it suffices to show that ker
(

GLn(R/mk) → GLn(k)
)

is a p-group. So suppose that R is an Artinian
ring with mk = 0 for some k ≥ 0. We have ker

(
GLn(R)→ GLn(k)

)
= id +mMn(R), and

(id +mMn(R))p
l

=

pl∑
i=0

(
pl

i

)
miMn(R)

By some theorem of Kummer, we have vp
((pl

i

))
≥ l − vp(i). So if we choose l = 2k, then for

i = 1, . . . , pk − 1 vp
((pl

i

))
≥ k. And since p ∈ m, we have for i = 1, . . . , p2k

(
pl

i

)
miMn(R) ⊆ mkMn(R) = 0

Therefore, (id +mMn(R))p
l

= id. Since R is Artinian and k is finite, then so is R, and subsequently
Mn(R). This shows that ker

(
GLn(R/mk)→ GLn(k)

)
is a p-group.

The following lemma can be proved by a calculation trick and using Hensel’s lemma.

Lemma 2.5.3. Let R ∈ CΛ. Let

(
α 0
0 β

)
∈ M2(k) be a matrix such that β 6= α and are both non-zero.

Suppose that

(
A B
C D

)
is a lift of this matrix to M2(R). Then,

(
A B
C D

)
'
(
α̃ 0

0 β̃

)
where α̃, β̃ lift

α, β.

Although we will relax the conditions at the Taylor-Wiles places, the

Lemma 2.5.4. Let v be a Taylor-Wiles place, R ∈ CΛ, and ρ : GF → GL2(R) be a lift of ρ. Then,
ρ|GFv is a sum of two tamely ramified characters η1 ⊕ η2.
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Proof. Since ρ is unramified at v, the image of the inertia group at v IFv lies in 1 + M2(mR). By
lemma 2.5.2, the latter is a pro-p group, and so ρ factors through the tame inertia subgroup of IFv .
The tame Galois group is generated by σ = Frobv and the tame inertia group ItFv . For every τ ∈ ItFv ,
we have the relationship

στσ−1 = τ q (∗)

By the Taylor-Wiles assumption on the Frobenius, ρ(σ) has distinct eigenvalues. So by Lemma 2.5.3,

we can find a basis of M2(R) such that ρ(σ) =

(
α 0
0 β

)
for some α, β lifting the eigenvalues of ρ(σ).

With respect to this basis, we can write

ρ(τ) = id +

(
a b
c d

)
for τ ∈ Itv and a, b, c, d ∈ mQ (since ρ is unramified at v). Now applying ρ to (∗), we get

id +

(
a αβ−1b

βα−1c d

)
=

q∑
k=0

(
q
k

)(
a b
c d

)k
For k ≥ 2, the top right and bottom left entries of the right side summands lie in mQI, where I is the
ideal generated by b and c. Therefore, the above equality gives

b(αβ−1 − q), c(βα−1 − q) ∈ mQI

But by assumption, α and β are residually distinct. And since q ≡ 1 mod p, we get that

(αβ−1 − q), (βα−1 − q) 6≡ 0 mod p

so they are both units in R. Thus, b, c ∈ mQI, i.e., I = mQI; which, by Nakayama’s lemma, implies
that I = 0. Hence, b = c = 0 and ρ(τ) is diagonal. Since τ was chosen arbitrarily, we get the desired
result.

Lemma 2.5.5. Let v be a Taylor-Wiles place. Then, we have

dimkH
0(Gk(v), ad0ρ) = dimkH

0
(
Gk(v), ad0ρ(1)

)
= 1

and
dimkH

1(Gk(v), ad0ρ) = dimkH
1
(
Gk(v), ad0ρ(1)

)
= 1

. where Gk(v) is the absolute Galois group of k(v).

Proof. Since χp(Frobv) = q ≡ 1 mod p, the action of Gk(v) on ad0ρ(1) is the same as that on ad0ρ.
So it suffices to show the result on the latter.

By definition of the Taylor-Wiles primes and Lemma 2.5.3, ρ(Frobv) ∼
(
α 0
0 β

)
with α 6= β. This

matrix only commutes with the subspace generated by

(
1 0
0 −1

)
in ad0ρ. This gives the first equality.

For H1(kv, ad0ρ), a cocycle is determined only by the image of Frobv. Thus, dimk Z
1(kv, ad0ρ) =

3. Since B1(kv, ad0ρ) = {(g 7→ g · m − m) | for m ∈ ad0ρ}, we have dimk B
1(kv, ad0ρ) = 3 −

dimk(ad0ρ)Frobv = 2. Therefore, dimkH
1(kv, ad0ρ) = 1.

One important hypothesis for the existence of Taylor-Wiles primes is the condition that

ρ|GF (ζp)
is absolutely irreducible

This even implies the following stronger statement.
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Lemma 2.5.6. ρ|GF (ζpn )
is absolutely irreducible for all n ≥ 1.

Proof. Let G = GF (ζp) and H = GF (ζpn ). Suppose that ρ|H is not irreducible, then there exists a line

L in k2 which is invariant under H. And since k2 is irreducible as a G-module, there exists g ∈ G such
that g · L 6= L. Moreover, g · L is invariant under H (since it is a normal subgroup of G). Therefore,
ρ|H is the sum of two characters. By irreducibility of ρ over G, G/H must permute these characters.
But G/H is a p-group so it cannot act transitively on a set with 2 elements. Thus, the two characters
are equal.
This means that H stabilizes every line of k2, and there are |P(k)| = k + 1 of them which is not
divisible by p. So the size some orbit of the action of G/H on the set of lines of k2 must be prime to
p. However, the size of each orbit divides |G/H| = pk. So the only way this is possible is that the size
of this orbit is 1. This contradicts the irreducibility of k2 as a G-module. Thus, ρ|H is irreducible.
The same argument can be carried out if we first extend the scalars to a finite extension of k. Hence,
ρ|H is absolutely irreducible.

Let H = ker ad0ρ. We set F0 = F
H

and Fn = F0(ζpn) for n ≥ 1.

Lemma 2.5.7. Let ψ ∈ H1
(
GF,S , ad0ρ(1)

)
− {0} and n ≥ 1. Then, ψ(GFn) is non-zero.

Proof. For n ≥ 1, there is an inflation-restriction exact sequence

0→ H1
(
GFn/F , ad0ρ(1)

) inf−→ H1
(
GF , ad0ρ(1)

) res−−→ H1
(
GFn , ad0ρ

)
It suffices to show that H1

(
GFn/F , ad0ρ(1)

)
= 0. For then ψ would restrict to a non-zero element of

H1
(
GFn , ad0ρ

)
, and in particular ψ(GFn) 6= 0. So consider another inflation-restriction exact sequence

0→ H1
(
GF0/F , (ad0ρ(1))GF0

) inf−→ H1
(
GFn/F , ad0ρ(1)

) res−−→ H1
(
GFn/F0

, ad0ρ(1)
)GFn/F (2.4)

where the action of g ∈ GFn/F on the rightmost term is given by η 7→
(
h 7→ g−1η(ghg−1)

)
. This allows

us to reduce to showing that the rightmost and the leftmost terms in (2.4) are zero.
We begin by the rightmost term. There is a restriction-corestriction sequence

H1
(
GFn/F0

, ad0ρ(1)
) res−−→ H1

(
GFn/F1

, ad0ρ
) cores−−−→ H1

(
GFn/F0

, ad0ρ(1)
)

for which the composition is the multiplication by |GF1/F0
| which is prime to p since it is ≤ p − 1.

Hence, Res is injective. It also sends GFn/F -invariants to GFn/F -invariants. So it suffices to show that

H1
(
GFn/F1

, ad0ρ(1)
)GFn/F = 0. Looking at the commutative diagram

GFn/F GF (ζpn )/F

GFn/F1

we know that GF (ζpn )/F is commutative so the action by conjugation of GFn/F on GFn/F1
is trivial.

Moreover, GFn/F1
acts trivially on ad0ρ(1) by definition of F0 and by the fact that ζp ∈ F1. Combining

these two facts, we get

H1
(
GFn/F1

, ad0ρ(1)
)GFn/F = Hom

(
GFn/F1

, ad0ρ(1)
)GFn/F = Hom

(
GFn/F1

, ad0ρ(1)GFn/F
)

However
(
ad0ρ(1)

)GFn/F = 0. Indeed, any GFn/F -invariant element of ad0ρ(1) is equivalently a trace
0 intertwining operator V → V (1) (where V is the underlying space of ρ). But since ρ is irreducible,
using Schur’s lemma we get that ρ ' ρ(1). Thus, det ρ = χ2

p det ρ. So the square every element in k is
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1 which can’t happen if p > 3 (which is our assumption). Hence, we just showed that the rightmost
term in (2.4) is zero.

For the leftmost term, Note that if F0 6⊇ F (ζp), then
(
ad0ρ(1)

)GF0 = 0. Indeed, the hypothesis tells
us that χp(GF0) 6= 1. But GF0 acts trivially on ad0ρ, so it cannot fix a non-zero element of ad0ρ(1).
Therefore, we can assume that F0 ⊇ F (ζp).

Since
(
ad0ρ(1)

)GF0 has p-power order, we have an injection

0→ H1
(
GF0/F , ad0ρ(1)GF0

) res−−→ H1
(
P, ad0ρ(1)GF0

)
where P is the p-Sylow subgroup of GF0/F . Hence, we can assume that P is not trivial, i.e., p | |GF0/F |.
Moreover, since F0 is the field cut out by ad0ρ, we have that ρ(GF0) ⊆ {λ id | λ ∈ k×}. Hence, GF0/F

is isomorphic to the projective image of ρ. Using this information, we will try to determine this group.

Fact Let H ⊆ PGL2(Fp) be a finite non trivial subgroup. Then, one of the following assertions is
true

1. H is conjugate to a subgroup of the upper triangular matrices.

2. H is conjugate to PGL2(Fpr) or PSL2(Fpr) for some r ≥ 1

3. H is isomorphic to A4,A5,S4, or D2r for r ≥ 2. And if H ' D2r = 〈s, t | s2 = tr = 1, sts = t−1〉,
then it is conjugate to the image of D2r given by

s 7→
(

0 1
1 0

)
, t 7→

(
ζ 0
0 1

)
where ζ is a primitive r-th root of unity.

Actually, GF0/F can be none of the above:

– GF0/F cannot be conjugate to a subgroup of the upper triangular matrices, since ρ|GF (ζp)
is

absolutely irreducible.

– The assumption that p > 5 and the fact that p | |GF0/F | elliminates the possibilitiesA4,A5,S4,D2,r

for p 6| r.

– PSL2(Fpr) is simple for r > 5. But GF0/F has a non-trivial subgroup GF0/F (ζp) (its order is
≤ p ≤ |GF0/F |).

– Suppose that GF0/F ' PGL2(Fpr). The only non-trivial quotient of PGL2(Fpr) is of order 2.
But then in the exact sequence

0→ Z → im(ρ)→ im(ad0ρ)→ 0

where Z is group of scalar matrices, the order of im(ad0ρ) is either 1 or 2. Let A be a preimage
of the non trivial element of im(ad0ρ). Then, im(ρ) is generated by Z and A. But A has a non
trivial invariant subspace (after possibly base changing to a finite extension), then so does im(ρ).
This contradicts the absolute irreducibility of ρ. Thus, this possibility is ruled out.

This is a contradiction. Thus, the leftmost term in (2.4) is zero. This implies that the middle term in
(2.4) is zero, which in turn, implies that ψ(GFn) is non-zero.

Proposition 2.5.8. Let r = dimkH
1
(
GF,S , ad0ρ(1)

)
. For every N ≥ 1, we can construct a set QN

of Taylor-Wiles places of level N , i.e.,
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1. For each v ∈ QN , #k(v) ≡ 1 mod pN ,

2. For each v ∈ QN , ρ(Frobv) has two distinct eigenvalues in k,

3. |QN | = r.

Proof. If v is a Taylor-Wiles place then by Lemma 2.5.5, we have dimkH
1
(
kv, ad0ρ(1)

)
= 1. Thus, it

suffices to show that the restriction morphism

H1
(
GF,S , ad0ρ(1)

)
→
⊕
v∈Qn

dimkH
1
(
kv, ad0ρ(1)

)
is an isomorphism, so that equating the dimensions would get us 3).
To prove this, we need to show that for any global cocycle ψ, there exists a place vψ satisfying 1) and
2) such that Resvψ(ψ) 6= 0. For then, the set of places corresponding to a basis of H1

(
GF,S , ad0ρ(1)

)
would consitute the desired Taylor-Wiles set.
Actually, we can rephrace the problem as follows: we need to show that we can find σ ∈ GF,S satisfying

(a) σ|GF (ζ
pN

)
= 1,

(b) ad0ρ(σ) has an eigenvalue other than one,

(c) ψ(σ) 6∈ (σ − 1)ad0ρ(1)

Indeed, all of these conditions are open conditions. So by Chebotarev’s density theorem, there exists
some Frobv satisfying them. So we can take vψ = v. Now by Lemma 2.5.7, ψ(GFN ) is not trivial.
And we have for all τ, τ ′ ∈ GFN , σ ∈ GF (ζ

pN
):

ψ(στσ−1) = ψ(σ) + σψ(τσ−1)

= ψ(σ) + σψ(τ) + στψ(σ−1)

= ψ(σ) + σψ(τ) + σψ(σ−1) = σψ(τ)

which holds because τ acts trivially on ad0ρ. Also,

ψ(ττ ′) = ψ(τ) + τψ(τ ′) = ψ(τ) + ψ(τ ′)

Therefore, k · ψ(GFN ) is a non-zero GFN/F (ζ
pN

)-submodule of ad0ρ.

We want to find an element g ∈ GFN/F (ζ
pN

) such that ρ(g) has distinct eigenvalues and fixes an

element of k · ψ(GFN ). In order to do this, we will verify that among the possible candidates H for
the projective image of GFN/F (ζ

pN
) by ρ, there always exists an element of H with distinct eigenvalues

which fixes an elements of GFN/F (ζ
pN

). We use the list of finite subgroups of PGL2(Fp) given in the

proof of Lemma 2.5.7:

– First note that if the property is true for a subgroup H, then it is also true for any subgroup H ′

containing H. So it suffices to check the following cases.

– By absolute irreducibility of ρ|GF (ζ
pN

)
, H cannot be conjugate to a subgroup of the upper trian-

gular matrices.

– ad0ρ is a simple PSL2(Fpr)-module so we have k·ψ(GFN ) = ad0ρ and

(
α 0
0 α−1

)
fixes

(
1 0
0 −1

)
∈

k · ψ(GFN ). Since p > 5, we can take α 6= α−1.
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– For D4, ad0ρ decomposes as V1 ⊕ V2 ⊕ V3 where

V1 =

〈(
0 1
1 0

)〉
, V2 =

〈(
0 −1
1 0

)〉
, V3 =

〈(
1 −1
0 1

)〉
with D4 acting on each subspace by ± id. Since there are three non trivial elements, for each irre-
ducible submodule one of them must act trivially. Note also that they have distinct eigenvalues
±1.

– For D2r with r odd, ad0ρ decomposes as W1 ⊕W2 where

W1 =

〈(
1 0
0 −1

)〉
, W2 =

〈(
0 1
0 0

)
,

(
0 0
1 0

)〉

with

(
ζ 0
0 1

)
fixing W1 and

(
0 1
1 0

)
fixing

(
0 1
1 0

)
∈W2.

Thus, we get an element g ∈ GFN/F (ζ
pN

) such that ρ(g) has distinct eigenvalues and fixes an element

of k · ψ(GFN ). Actually ρ(g) even fixes an element of ψ(GFN ). Indeed, if k1, . . . , kr forms a basis
of k over Fp, then for a non-zero element m ∈ k · ψ(GFN ) fixed by g, we can express it as m =
k1ψ(τ1) + · · ·+ krψ(τr) with at least one of the ψ(τi) 6= 0. But then we get that

gm−m = k1

(
(g − 1)ψ(τ1)

)
+ · · · kr

(
(g − 1)ψ(τr)

)
= 0

and by linear independence, we get the desired element.
Now choose a lift σ0 ∈ GF,S of g. For τ ∈ GFN , we have

ψ(τσ0) = ψ(τ) + τψ(σ0) = ψ(τ) + ψ(σ0)

If ψ(σ0) 6∈ (σ0 − 1)ad0ρ(1), then choose τ = 1.
Otherwise, let τ0 ∈ GFN be such that ρ(σ0) fixes ψ(τ0) 6= 0 (that we just proved its existence). Then,
ψ(τ0) 6∈ (σ0 − 1)ad0ρ(1).Because otherwise, if we write (σ0 − 1)x = ψ(τ0), then

(σ0 − 1)2x = (σ0 − 1)ψ(τ0) = 0

but ρ(σ0) has distinct eigenvalues so it acts semi-simply on ad0ρ with the eigenvalue 1 occurring with
multiplicity 1. So we must have (σ0 − 1)x = 0 = ψ(τ0) which contradicts the choice of τ0.
Either way, we get that

ψ(τ0σ0) = ψ(τ0) + ψ(σ0) 6∈ (σ0 − 1)ad0ρ = (τσ0 − 1)ad0ρ

Therefore, the element τ0σ0 verifies the conditions (a), (b) and (c) as we wanted (remember that ρ(τ0)
is a scalar matrix). This finishes the proof.

Theorem 2.5.9. Suppose that F is a totally real number field, let S = (ρ, ψ, S, {Dv}v∈S) be a global
deformation problem, and set g = h1

(
GF,S , ad0ρ(1)

)
− [F : Q] + #T − 1. For each N ≥ 0, there exists

a finite set of primes QN of F , which is disjoint from S such that

1. If v ∈ QN , then #k(v) ≡ 1 mod pN and ρ(Frobv) has distinct eigenvalues.

2. |QN | = h1
(
GF,S , ad0ρ(1)

)
and RTSQN

is topologically generated by g elements as an Rloc-algebra.

where SQN = (ρ, ψ, S ∪QN , {Dv}v∈S).
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Proof. The first part of the theorem follows from Proposition 2.5.8. For the last assertion, recall that
by Proposition 2.4.8 and equation (2.3), RTSQN

is generated by:

g = h1
S,T (GF,S , ad0ρ(1))−h0(GF,S , ad0ρ(1))−

∑
v|∞

h0(Gv, ad0ρ)+
∑
v∈QN

(
dimk Lv−h0(Gv, ad0ρ)

)
+#T−1

Let us study each term on the right hand side

– The first term:
By Proposition 2.5.8, we have:

H1
S,T (GF,S , ad0ρ(1)) = ker

H1(GF,S , ad0ρ(1))→
⊕
v∈QN

H1(Gv, ad0ρ(1))

 = 0

– The global term:
An element of H0

(
GF,S , ad0ρ(1)

)
corresponds to an intertwining operator ρ → ρ(1) between

irreducible GF (ζp)-modules. Either they are not isomorphic and so the intertwining operator is
0. Or they are isomorphic, and the intertwining operator is scalar. But since p > 2, the only
trace zero scalar matrix is 0.

– v ∈ T :
Since p > 2, ad0ρ is a direct summand of adρ. So the term of the product corresponding for
v ∈ T is |k|1−δv where δv = dimkH

0(Gv, adρ).

– v | ∞:
By hypothesis, ρ is odd, i.e., for v archimedean with GFv = {id, c}, ρ(c) can be represented

by the matrix

(
1 0
0 −1

)
with respect to some basis. Hence, ad0ρ(c) can be diagonalized to−1 0 0

0 1 0
0 0 −1

. But since GFv is cyclic of order 2, we have that Z1(GFv , ad0ρ) = ker(ad0ρ(c)+1)

which is 2-dimensional and B1(GFv , ad0ρ) = im(ad0ρ(c)−1) which is also 2-dimensional. Hence,
H1(GFv , ad0ρ) = 0. Moreover, H0(GFv , ad0ρ) corresponds to the eigenspace of ad0ρ(c) with
eigenvalue 1, so it is 1-dimensional.

– v ∈ Qn:
First note that Lv = H1(Gv, ad0ρ). By definition of the local Euler characteristic, we have that

|H1(GFv , ad0ρ)|
|H0(GFv , ad0ρ)|

= |H2(GFv , ad0ρ)| · χ(GFv , ad0ρ)−1

By Tate duality, we have that h2
(
GFv , ad0ρ

)
= h1

(
GFv , ad0ρ(1)

)
= 1 by Lemma 2.5.5 (ρ is

unramified at v). And by the local Euler characteristic formula [Mil06, Ch. I, Thm. 5.1],
χ(GFv , ad0ρ) = [Ov : |ad0ρ|Ov]−1 = 1 (since the order of ad0ρ is a power of p, hence prime
to v).

Putting everything together, we have:

g = 0− 0−
∑
v|∞

1 +
∑
v∈QN

1 + #T − 1

= #QN − [F : Q] + #T − 1

where we use the fact that F is totally real.
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Chapter 3

A modularity lifting theorem

Let us fix a prime p > 5. We let F be a totally real number field and L/Qp a finite extension where
L has a ring of integers O, a maximal ideal λ and a residue field F. We suppose that L is big enough
to contain the images of all embeddings F ↪→ Qp. The goal of this chapter is to prove the following
modularity lifting theorem.

Theorem 3.0.1. Let ρ, ρ0 : GF → GL2(O) be two continuous representations such that reducing
modulo λ we have ρ = ρ0. Assume that ρ0 is modular and that ρ is geometric (i.e., it satisfies the
Fontaine-Mazur hypothesis). Assume moreover that we have:

(1) For all σ : F ↪→ L, HTσ(ρ0) = HTσ(ρ), and contains two distinct elements.

(2) • For all v | p, ρ|GFv and ρ0|GFv are crystalline;

• p is unramified in F ;

• For all σ : F ↪→ L, the two elements of HTσ(ρ) differ by at most p− 2;

(3) ρ|GF (ζp)
is absolutely irreducible.

Then, ρ is modular.

We will start by introducing the spaces of automorphic forms with which we will work. Then, we
will perform base change to reduce the hypotheses on the representation ρ. Finally, we will perform
a patching argument using ultrafilters to prove the theorem. The material presented in this chapter
will be largely based upon that of [Gee] and [Tay].

3.1 Automorphic forms on Quaternion algebras

We will work with Quaternionic automorphic forms. Although they were not present in Wiles’ original
work, they allow us to avoid using an argument involving étaleness properties of modular curves, which
we substitute by an easy group theoretic argument.

3.1.1 General definition

Let D be a quaternion algebra over F with S(D) being the set of places at which D ramifies. Note
that by the fundamental exact sequence of class field theory, the map

D 7→ S(D)
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gives a bijection {
Quaternion algebras over F

up to isomorphism

}
↔
{

Finite subsets of places
of F of even cardinality

}
We can define an algebraic group GD over Q by letting GD(R) = (D ⊗Q R)× for R a Q-algebra.
For each real place v, we define a subgroup Uv of GD(Fv) by letting Uv = GD(Fv) ∼= H× if v ∈ S(D),
and Uv = R>0SO(2) ⊆ GL2(R) ∼= GD(Fv) if v 6∈ S(D). We also fix the weights (kv, ηv) ∈ Z≥2 × Z,
and we require that w = kv + 2ηv − 1 is independent of v.

For each real place v, we define a representation (τv,Wv) of Uv over C as follows:

• If v ∈ S(D), we have Uv ↪→ GL2(F v) ∼= GL2(C) which acts on C2 in the usual way, we let
(τv,Wv) be the representation

(Symkv−2 C2)⊗ (∧2C2)ηv

• If v 6∈ S(D), then we have Uv ∼= R>0SO(2), and we let Wv = C with the action given by

τv(γ) = j(γ, i)kv(det γ)ηv−1

We write U∞ =
∏
v|∞ Uv, W∞ = ⊗v|∞Wv, τ∞ = ⊗v|∞τv.

Finally, we define our space of automorphic forms SD,k,η to be the set of function ϕ : D× \GD(AQ)→
W∞ satisfying:

(1) ϕ(gu∞) = τ∞(u∞)−1ϕ(g) for all u∞ ∈ U∞ and g ∈ GD(AQ).

(2) There is a non-empty open subset U∞ ⊆ GD(A∞Q ) such that ϕ(gu) = ϕ(g) for all u ∈ U∞ and
g ∈ GD(AQ).

(3) Let S∞ denote the set of finite places, then if g ∈ GD(A∞Q ) and h∞ ∈ GL2(R)S∞−S(D) ⊆ GD(R),
then the function

(H±)S∞−S(D) →W∞

h∞(i, . . . , i) 7→ τ∞(h∞)ϕ(gh∞)

which is well defined since US∞−S(D) is the stabilizer of (i, . . . , i), is holomorphic.

(4) If S(D) = ∅ (GD ∼= GL2), then for all g ∈ GD(AQ) = GL2(AQ), we have∫
F\AF

ϕ

((
1 x
0 1

)
g

)
dx = 0

If moreover we have F = Q, then we require that for all g ∈ GD(A∞Q ), h∞ ∈ GL2(R)+, the function

ϕ(gh∞)| im
(
h∞(i)

)
|k/2 is bounded on H±.

The group GD(A∞Q ) acts by right translation on SD,k,η. In fact, can prove that SD,k,η is a semisimple
admissible representation of GD(A∞Q ). Its irreducible constituents are called the cuspidal automorphic
representations of GD(A∞Q ) of weight (k, η).

3.1.2 The Jacquet-Langlands correspondence

In the case where S(D) = S∞, the algebraic group GD is isomorphic to GL2 which is a more convenient
setting to work with. In order to reduce to this case, we will use the Jacquet-Langlands correspondence
which relates automorphic representations on GD to automorphic representations on GL2.
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The local statement

Let v be a place of F such that v - p, and suppose that Dv = D ⊗F Fv is non-split (i.e. v ∈ S(D)).
Before stating the theorem, we first give the definition of the Harish-Chandra character, which plays
the role of the trace function of a representation of GL2(Fv).

If (π, V ) is an admissible representation of G := GL2(Fv), then for any f in the Hecke algebra H(G),
the operator π(f) : V → V has image contained in the finite dimensional subspace V K for any compact
open subgroup K such that f is left K-invariant. Thus, we can define Trπ(f) = Tr

(
π(f) | π(f)V

)
=

Tr
(
π(f) | V K

)
Theorem 3.1.1. Let (π, V ) be an irreducible smooth representation of G. Then, there is a unique
smooth function Θπ : Grs → C called the Harish-Chandra character such that extending Θπ arbitrarily
to G, Θπ is locally integrable on G, and for any H(G), we have

Trπ(f) =

∫
G
f(g)Θπ(g) dg

where Grs is the set of semi-simple regular elements of G. Moreover, |D|
1
2 Θπ is bounded on Grs, where

D(g) = 4− det(g)−1 Tr(g)2 for g ∈ G.

For regular semi-simple elements γ ∈ GL2(Fv) and γ′ ∈ D×v , we write γ ∼ γ′ if they have the same
trace and determinant.

Theorem 3.1.2 (Local JL correspondence).
Let ω : F×v → C× be a smooth character. There is a unique bijection

{ irreducible discrete series representation of GL2(Fv) with central character ω }

{ irreducible smooth representations of D×v with central character ω }

such that for any π ↔ π′ and regular semi-simple elements γ ∈ GL2(Fv), γ
′ ∈ D×v with γ ∼ γ′, we

have
Θπ(γ) = Trπ′(γ′)

We have a compatibility with twists: if π ↔ π′, then π ⊗ (µ ◦ det) ↔ π′ ⊗ (µ ◦ Nm) for any smooth
character µ : K× → C×.

Remark 3.1.3. The bijection associates the Steinberg representation to the trivial representation of
D×, or more generally, Sp2(µ| · |−

1
2 ) ↔ µ ◦ Nm for µ : K× → C× a smooth character. Hence, π is

supercuspidal if and only if its associated irreducible representation π′ of D× has dimension > 1.

Global Statement

We have a global version of this correspondence which is compatible with the local one.

Theorem 3.1.4. Let ω : F× \ A×F → C× be a smooth character. There is a unique injection

{ irreducible automorphic representations of (AF ⊗F D)× of dimension > 1 with central character ω }

{ irreducible cuspidal automorphic representations of GL2(AF ) with central character ω }

such that π′ ↔ π if and only if π′v ' πv for all v 6∈ S(D), and π′v ↔ πv for all v ∈ S(D) in the sense of
Theorem 3.1.2. We also have compatibility with twists: if π′ ↔ π, then π′ ⊗ (µ ◦Nm)↔ π ⊗ (µ ◦ det)
for any smooth character µ : F× \ A×F → C×.
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3.1.3 Galois representation associated to automorphic representations

Under conditions of algebraicity, we can attach a family of Galois representations to automorphic
forms on GL2(AF ). The precise result in the case that we will use is given as follows:

Theorem 3.1.5. Let π be a regular algebraic cuspidal automorphic representation of GL2(A∞F ) of
weight (k, η). Then, there exists a CM field Lπ such that for each finite place λ of Lπ there is a
continuous irreducible Galois representation

ρλ(π) : GF → GL2(Lπ,λ)

satisfying:

(1) For each finite place v, we have

WD
(
ρλ(π)|GFv

)F-ss ∼= recFv(πv ⊗ | · |
1
2 ◦ det)

(2) If v divides the residue characteristic of λ, then ρλ(π)|GFv
is deRham, with τ -Hodge-Tate weights

ητ , ητ + kτ − 1 where τ : F ↪→ Lπ ⊆ C an embedding lying over v. Moreover, if πv is unramified,
then ρλ(π)|GFv

is crystalline.

(3) If cv is a complex conjugation, then det ρλ(π)(cv) = −1.

Definition 3.1.6. We say that a continuous Galois representation ρ : GF → GL2(Qp) is modular of
weight (k, η) if it is isomorphic to ρλ(π) for some cuspidal automorphic representation π of weight
(k, η).

3.2 Integral theory of automorphic forms

In this subsection, suppose that [F : Q] is even (we will reduce to this case by base change), and that
S(D) = S∞. In particular, we have GD(A∞F ) = GL2(A∞F ).

Let us fix an isomorphism ι : L → C, and some k ∈ ZHom(F,C)
≥2 , η ∈ ZHom(F,C) with w = kτ + 2ητ − 1

independent of τ ∈ Hom(F,C). Let U =
∏
v Uv ⊆ GL2(A∞F ) be a compact open subgroups such that

if v 6∈ S then Uv = GL2(OFv), where S is a finite set of finite places of F not containing any place
lying over p. Let US =

∏
v∈S Uv and US =

∏
v 6∈S Uv so that U = USU

S .

We consider continuous homomorphism ψ : US → O× and an algebraic grossencharacter χ0 : F× \
A×F → C× such that

• χ0 is unramified outside of S.

• For each place v | ∞, χ0|(F×v )◦(x) = x1−w.

• χ0|(
∏
v∈S

F×v )∩US = ψ−1

By the Langlands correspondence for GL1, we get a character

χ0,ι : A×F /F×(F×∞)◦ → L
×

given by

x 7→ (
∏

τ :F ↪→L
τ(xp)

1−w)ι−1

(( ∏
τ :F ↪→C

τ(x∞
))w−1

χ0(x)

)
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Let Λ =
⊗

τ :F ↪→C Symkv−2(O2)⊗ (∧2O2)ηv , and let GL2(OF,p) =
∏
v|p GL2(OFv) which acts on Λ via

ι−1τ on the τ -factor.
Let A be a finite O-module, we define S(U,A) = Sk,η,ι,ψ,χ0(U,A) to be the space of functions φ :
D× \GL2(A∞F )→ Λ⊗O A such that for all g ∈ GL2(A∞F ), u ∈ U , z ∈ (A∞F )×, we have

φ(guz) = χ0,ι(z)ψ(uS)−1u−1
p φ(g)

3.2.1 Hecke algebras

We start by recalling basic facts about smooth irreducible representations of GL2(A∞F ).

If v is a finite place of F , we define local Hecke algebra H(GL2(Fv)) to be the set of locally constant
functions C∞c (GL2(Fv),C) equipped with the convolution product

(f ∗ f ′)(g) =

∫
GL2(Fv)

f(h)f ′(h−1g) dµv for f, f ′ ∈ C∞c (GL2(Fv),C)

where µv is a Haar measure on GL2(Fv), which we will normalize so that µv(GL2(OFv)) = 1. We can
also see H(GL2(Fv)) as a convolution algebra of density measures with respect to µv.
If (π, V ) is a smooth representation of GL2(Fv) on a complex vector space V , we can equip V with
the structure of a smooth H(GLn(Fv))-module by setting

π(f) · v =

∫
GL2(Fv)

f(g)π(g)vdµv for v ∈ V, g ∈ GL2(Fv) and, f ∈ H(GL2(Fv))

In fact, every smooth H(GL2(Fv))-module is of this type, and irreducible smooth representations of
GL2(Fv) are determined up to isomorphism by their H(GL2(Fv))-module structure.

If K ⊂ GL2(Fv) is a compact open subgroup, we have a unipotent element eK = µ(K)−1
1K ∈

H(GL2(Fv)). We define the K-invariant Hecke-algebra H(GL2(Fv),K) to be the subalgebra

C∞c (K \GL2(Fv)/K,C) = eK ∗ H(GL2(Fv)) ∗ eK

The Spherical Hecke algebra

Let us take K = GL2(OFv). In this case, we call H(GL2(Fv),K) the spherical Hecke algebra.
From the Cartan decomposition

GL2(Fv) =
⊔

n1≥n2

K

(
$n1
v 0
0 $n2

v

)
K (3.1)

where $v is a uniformizer of OFv , we see that H(GL2(Fv),K) is generated by the characteristic

functions 1(n1,n2) of the double cosets U

(
$n1
v 0
0 $n2

v

)
U , for n1 ≥ n2.

It is a standard notation to let Tv and Sv denote the function 1(1,0) and 1(1,1) respectively, where Sv
is invertible with inverse S−1

v = 1(−1,−1). In fact one can prove the following theorem:

Theorem 3.2.1. We have an isomorphism of C-algebras H(GL2(Fv),GL2(OFv))) ∼= C[Tv, S
±1
v ].

An irreducible smooth representation (π, V ) of GL2(Fv) is called spherical if if V K 6= 0. In this case,
V K has the structure of a non-zero H(GL2(Fv),K)-module, which is commutative, so we must have
dimC V

K = 1. Now let us give examples of such representations
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– If µ is an unramified character of F×v i.e. it is trivial on O×Fv , then (µ ◦ det, C) is clearly a

spherical representation since det(K) ⊆ O×Fv .

– If χ = (χ1, χ2) is a character of the diagonal torus T with χ1/χ2 6= | · |±1
v , we would like to

construct a non-trivial K-fixed element of Ind
GL2(Fv)
B χ (where B is the subgroup of upper trian-

gular matrix, and Ind is the normalized induction). For this, consider the Iwasawa decomposition
GL2(Fv) = B ·K, so that for all g ∈ GL2(Fv), we can write

g =

(
a ∗
0 b

)
· k with k ∈ K

If f ∈ Ind
GL2(Fv)
B χ is a fixed U -vector, then it satisfies f(g) = f

((
a ∗
0 b

)
· u
)

= χ1(a)χ2(b)|ab |
1
2 f(id).

So if Ind
GL2(Fv)
B χ is spherical, the space of K-fixed vectors, which is one dimensional, must be

generated by

f : g =

(
a ∗
0 b

)
· k 7→ χ1(a)χ2(b)|a

b
|

1
2
v

But this formula only makes sense if χ1(a)χ2(b) = 1 for all a, b ∈ O×Fv , i.e., if χ1 and χ2 are

unramified. In this case, we say that f is the normalized spherical vector in Ind
GL2(Fv)
B χ. And

we see that Ind
GL2(Fv)
B χ is spherical if and only if χ1 and χ2 are unramified.

In fact, if (π, V ) is an irreducible smooth spherical representation of G, then it is isomorphic to one
of the above examples.

Smooth irreducible representations of GL2(A∞F )

There exists a unique Haar measure µ on GL2(A∞F ) such that µ(
∏
vXv) =

∏
v µv(Xv) if Xv =

GL2(OFv) for almost all places v. As before, we define the global Hecke algebra to be H(GL2(A∞F ) =
C∞c (GL2(A∞F ),C) equipped with the convolution algebra with respect to µ. Then we have a natural
isomorphism

H(GL2(A∞F )) ∼= ⊗′{1GL2(OFv )}H(GL2(Fv)) (3.2)

where the symbol ⊗′{1GL2(OFv )}
denotes the restricted tensor product with respect to the family of

idempotents {1GL2(OFv )}v. Therefore by [Bum97, Theorem 3.44], if π is an irreducible smooth repre-
sentation of GL2(A∞F ), then there exist unique irreducible smooth representations πv of GL2(Fv) such

that for almost all places v of F , there exists a non-zero element ev ∈ π
GL2(OFv )
v with

π ∼= ⊗′{ev}πv

Moreover, this decomposition is compatible with (3.2).

Action of the Hecke algebra on the space of automorphic forms

Back to our setting, if v 6∈ S and v - p recall that Uv = GL2(Ov) and that S(U,A) is left invariant
by the action of Uv by right translation. So if u ∈ GL2(Fv), we can define an operator [UvuUv] on
S(U,A) by setting

([UvuUv]φ)(g) =
∑
i

φ(gui)

where the ui ∈ GL2(Fv) are defined by the decomposition

UvuUv =
⊔
i

uiUv

26



For φ ∈ S(U,A) and g ∈ GL2(A∞F ). Now let Tuniv = O[Tv, Sv : v 6∈ S, v - p] denote the universal

Hecke algebra where Tv acts on S(U,A) via [Uv

(
$v 0
0 1

)
Uv] and where Sv acts via [Uv

(
$v 0
0 $v

)
Uv].

Let TU be the image of Tuniv in EndO
(
S(U,O)

)
so that TU is a commutative O-algebra which acts

faithfully on S(U,O).

We have a decomposition

GL2(A∞F ) =
⊔
i∈I

D×giU(A∞F )×

where I is a finite set. This way we get an injective morphism S(U,A) ↪→ ⊕i∈I(Λ ⊗O A) sending a
function φ to

(
φ(gi)

)
i∈I . We would like to determine its image. So let ω ∈ Λ ⊗O A, a function φ

sending gi to ω and satisfying the desired properties is well defined on the double coset D×giU(A∞F )×

if and only if for every δ, δ′ ∈ D×, u, u′ ∈ U and z, z′ ∈ (A∞F )× such that δgiuz = δ′giu
′z′,

χι,0(z)ψ−1(uS)u−1
p ω = χι,0(z′)ψ−1(u′S)u′p

−1
ω

this amounts to checking that for δgiuz = gi, χι,0(z)ψ(uS)−1u−1
p ω = ω. Therefore, the injection

induces an isomorphism:

S(U,O)
∼=−→
⊕
i∈I

(Λ⊗O A)

(
g−1
i D×gi∩U ·(A∞F )×

)
/F× (3.3)

The group ∆gi,U :=
(
g−1
i D×gi ∩ U · (A∞F )×

)
/F× is both discrete (D× is discrete inside GD(A∞F )) and

compact, so it is finite. We say that U is sufficiently small for p if p - #∆g,U for all g.

Lemma 3.2.2. If [F (ζp), F ] > 2, then U is sufficiently small.

Proof. Suppose that δ ∈ D× such that g−1δg ∈ ∆g,U and has order p, in other words, δp ∈ F×. Then,
we have

(
δ2

det δ
)p =

δ2p

det δp
= 1

where the last equality is true because det δp = δ2p since δp ∈ F×. Therefore, δ2

det δ is a p-th root of

unity. If δ2

det δ = 1, then δ ∈ F× already. Otherwise, D× contain F (ζp), but since D is four dimensional
over F , it can only contain a field extension of F of degree 2 which contradicts the hypothesis.

Note that this condition is satisfied if for example p is unramified at F , since in that case, F∩Q(ζp) = Q
so [F (ζp) : F ] = p− 1 > 2 if p > 3 (as we are assuming).

Proposition 3.2.3. If U is sufficiently small, then we have the following properties:

1) S(U,O) is a free O-module,

2) S(U,O)⊗O A
∼=−→ S(U,A),

3) If V is an open subgroup of U with #(U/V ) a power of p, then S(V,O) is a free O[U/V ·
(
U ∩

(A∞F )×
)
]-module.

Proof. Since p - #∆g,U , the latter is a unit in O, so we get a projection

Λ⊗O A→ (Λ⊗O A)∆g,U

x⊗ a 7→ 1

#∆g,U

∑
δ∈∆g,U

δ · x⊗ a
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So (Λ ⊗O A)∆g,U is a direct summand of Λ ⊗O A. It follows that (Λ ⊗O A)∆g,U ∼= Λ∆g,U ⊗O A from
which we get 2) (using equation (3.3)). Since Λ is a free O-module, and since O is a PID, we also get
that Λ∆g,U is free. Thus, we also get 1).
To prove 3), let us write U =

⊔
j∈J ujV ·

(
U∩(A∞F )×

)
. We claim that GL2(A∞F ) =

⊔
i∈I,j∈J giujV (A∞F )×

from which the result follows. Indeed, one would have:

S(V,O) ∼=
⊕
i∈I

⊕
j∈J

Λ
∆giuj,V

but we have that Λ
∆giuj,V = u−1

j Λ∆gi,V . Therefore, we get:

S(V,O) ∼=
⊕
i∈I

⊕
j∈J

u−1
j Λ∆gi,V

=
⊕
i∈I
O[U/V ·

(
U ∩ (A∞F )×

)
]⊗O Λ∆gi,V

To prove our claim, we need to show that if giuj = δgi′uj′vz, then i = i′ and j = j′. The fact
that i = i′ follows immediately from the decomposition of GL2(A∞F ) with respect to U . So we
get, g−1

i δgi = uj′vu
−1
j z ∈ ∆gi,U . Since U is sufficiently small, there exists some N coprime to p

such that δN ∈ F×, so (uj′vu
−1
j )N ∈ (A∞F )×. But given that V is normal in U , we can write

(uj′vu
−1
j )N = (uj′u

−1
j )Nv′ for some v′ ∈ V , i.e., (uj′u

−1
j )N ∈ V ·

(
U ∩ (A∞F )×

)
. Given that #(U/V ) is

a power of p, we get that uj′u
−1
j ∈ V ·

(
U ∩ (A∞F )×

)
so j = j′ as desired.

Lemma 3.2.4. We have an isomorphism

S(U,O)⊗O,ι C
'−→ HomUS

(
C(ψ−1), SU

S ,χ0

D,k,η

)
which is Tuniv-equivariant.

Proof. Applying the definitions, we see that HomUS

(
C(ψ−1), SU

S ,χ0

D,k,η

)
is equal to the set

ϕ : D× \GD(AF )→
⊗
v|∞

(Symkv−2 C2)⊗ (∧2C2)ηv such that

• ϕ(gu∞) = τ∞(u∞)−1ϕ(g), u∞ ∈ D×∞, g ∈ GD(AF )
• ϕ(gu) = ψ−1(uS)ϕ(g), u ∈ U, g ∈ GD(AF )
• ϕ(gz) = χ0(z)ϕ(g), z ∈ A×F , g ∈ GD(AF )


For φ ∈ S(U,O), the bijection is given by

ϕ : g 7→ τ∞(g∞)−1ι
(
gp · φ(g∞)

)
which one can verify that it lies in the set above. For example, let us verify the third condition (the
other two are easier calculations):

ϕ(gz) = τ∞(z∞)−1τ∞(g∞)−1ι
(
gpzp · ϕ(g∞z∞)

)
= z−kv+2−2ηv
∞ τ∞(g∞)−1ι

(
gp · zkv−2+2ηv

p ϕ(g∞z∞)
)

= z1−w
∞ ι

(
zw−1
p χ0,ι(z

∞)
)
τ∞(g∞)−1ι

(
gp · ϕ(g∞)

)
= χ0(z)ϕ(g)

where we use the expression of χ0 obtained from χ0,ι.
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From the description we gave in the last proof, we have that

HomUS

(
C(ψ−1), SU

S ,χ0

D,k,η

) ∼= ⊕
π

HomUS

(
C(ψ−1), πS

)
⊗⊗′v 6∈Sπ

GL2(OFv )
v (3.4)

where π ranges over the cuspidal automorphic representations of GD(A∞F ) of weight (k, η) which have
central character χ0 and are unramified outside of S. This induces an isomorphism

TU ⊗O,ι C
∼=−→

∏
π, HomUS

(
C(ψ−1),πS

)
6=(0)

C

which sends Tv, Sv to their eigenvalues in π
GL2(OFv )
v and where π are the same as above. This map is

in fact surjective, because if not, then it would lend in a subalgebra which must be defined by at least
two coordinates being equal. This would mean that there are π 6= π′ that have the same Tv-eigenvalues
for almost all v which contradicts the strong multiplicity one theorem.
Note that this implies that TU is reduced (since TU is free over O, so it injects into TU ⊗O,ι C).
Moreover, this gives a bijection:

cuspidal automorphic reps of
GD(A∞F ) of weight (k, η), of central character χ0

and unramified outside of S
with HomUS

(
C(ψ−1), πS

)
6= (0)


∼=−→


O-linear ring homomorphisms

TU → L
modulo GL action


(3.5)

Since TU⊗OL is finite over L, a maximal ideal m of TU⊗OL is the kernel of aK-algebra homomorphism
TU ⊗O L→ L. And given that composition with the action of GL does not change the kernel, we get
an identification:

{ maximal ideals of TU ⊗O L} = HomL−alg

(
TU ⊗O L,L

)
/(GL-action)

But the inclusion TU ↪→ TU ⊗O L identifies maximal ideals of TU ⊗O L with minimal prime ideals of
TU thanks to the following lemma:

Lemma 3.2.5. The minimal prime ideals of TU are those lying above the ideal (0) of O.

Proof. Let p be a minimal prime ideal of TU . Since TU is finite flat over O, it satisfies the going down
property. Thus, we get that p ∩ O = (0). Conversely, suppose that p ∩ O = (0) and that there exists
a prime ideal p′ satisfying p′ ⊆ p, since TU is an integral extension of O, there are no strict inclusions
between prime ideals lying over (0). So p = p′ and p is minimal.

Therefore, if p is a minimal prime ideal of TU , then by what we just proved, there is an injection
θπ : TU/p ↪→ L corresponding to some π as above (it sends Tv and Sv to the inverse image by ι of

their corresponding eigenvalues in π
GL2(OFv )
v ) .

Now by finiteness of TU as a O-module, it is semilocal and we have a decomposition

TU =
∏
m

TU,m

where m ranges over the maximal ideals of TU (there are finitely many of them). This shows in
particular that any minimal prime ideal p sits inside a unique maximal ideal of TU .

For a fixed maximal ideal m, we will now construct representation

ρm : GF → GL2(TU/m)
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and if ρm is absolutely irreducible, a lift

ρm : GF → GL2(TU,m)

For this, recall that one can associate to each π considered above a Galois representation. So upon
taking the product of these, we get a massive Galois representation:

ρmod : GF →
∏
π

GL2(L) = GL2(TU ⊗O L)

which is unramified outside of S ∪ {v | p}, and for any v 6∈ S, v - p, Tr ρmod(Frobv) = Tv and
det ρmod(Frobv) = (#kv)Sv. If p ⊆ m is a minimal prime ideal, let π be the corresponding automorphic
representation with the inclusion θπ : TU/p ↪→ L. If ρπ : GF → GL2(L) is the associated Galois
representation, taking the semisimplification of the mod p reduction gives a residual representation
ρπ : GF → GL2(F) and we have:

Tr(ρπ) ∈ TU/p ⊆ OL ⇒ Tr ρπ ∈ TU/m ⊆ F

By Theorem 2.3.4, ρπ can be conjugated to a representation

ρm : GF → GL2(TU/m)

as desired. Localizing at m, we obtain a Galois representation:

ρmod
m : GF → GL2(TU,m ⊗O L) =

∏
π

GL2(L)

where π ranges over the considered automorphic representations whose corresponding prime ideal lies
inside m (i.e., such that ρπ

∼= ρm). If we moreover suppose that ρm is absolutely irreducible, then by
Theorem 2.3.4 again, we obtain a representation

ρm : GF → GL2(TU,m)

To conclude this discussion, note that for our application, we will need to consider Hecke operators at
places in S. For this to work, we need a set of places T ⊆ S such that ψ|UT = id. In this case, if we
choose gv ∈ GL2(OFv) for v ∈ T , then we set Wv = [UvgvUv] and define T′U ⊆ EndO(S(U,O)) to be
the algebra generated by TU and the operators Wv for v ∈ T . Tensoring with C we get:

T′U ⊗O,ι C
∼−→
∏
π

⊗v∈T { subalgebra of EndC(πUvv ) generated by Wv}

This shows that we have a bijection between ι-linear homomorphisms T′U → C and tuples (π, {αv}v∈T )
where αv is an eigenvalue of Wv on πUvv .

3.3 Base change

Using base change, we will be able to simplify the hypotheses of theorem 3.0.1. Let us first give the
cyclic base change theorem for GL2.

Theorem 3.3.1. Let E/F be a cyclic extension of totally real fields of prime degree. Let Gal(E/F ) =
〈σ〉 and Gal(E/F )∨ = Hom(Gal(E/F ),Z) = 〈δE/F 〉. Let π be a cuspidal automorphic representation
of GL2(A∞F ) of weight (k, η), then there exists a cuspidal automorphic representation BCE/F (π) of
GL2(A∞E ) of weight

(
BCE/F (k),BCE/F (η)

)
such that:
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(1) For all finite places v of F and w | v of E, recEw(BCE/F (π)w) = (recFv(πv))WEw
; in particular,

rλ(BCE/F (π)) ∼= rλ(π)|GE .

(2) BCE/F (k)w = kv, BCE/F (η)w = ηv.

(3) BCE/F (π) ∼= BCE/F (π′) if and only if π ∼= π′ ⊗ (δiE/F ◦Art ◦ det) for some i.

(4) A cuspidal automorphic representation π of GL2(A∞E ) is in the image of BCE/F if and only if
π ◦ σ ∼= π.

Proposition 3.3.2. Suppose that ρ : GF → GL2(Qp) is a continuous representation, and that E/F
is a finite solvable Galois extension of totally real fields. Then, ρ|GE is modular if and only if ρ is
modular.

Proof. Using induction, we can reduce to proving the proposition for a cyclic extension E/F of prime
degree. So let us write Gal(E/F ) = 〈σ〉 and let π be a cuspidal automorphic representation of
GL2(A∞E ) such that ρ|GE

∼= ρλ(π). We first show that π ∼= π ◦ σ.
Let Σ be a finite set of finite places of E outside of which π is unramified, let us also fix a finite place
w 6∈ Σ, and write w′ = w ◦ σ−1. Then, πw ∼= Ind(χ1, χ2) (resp. πw′ ∼= Ind(χ′1, χ

′
2)) for unramified

characters χ1, χ2 (resp. χ′1, χ
′
2) of GL2(Ew) (resp. GL2(Ew′)), and (π◦σ)w is the representation whose

underlying vector space is that of πw′ and where g ∈ GL2(Ew) acts on it via σ(g). We can explicitly
verify that this implies that (π ◦ σ)w ∼= Ind(χ′1 ◦ σ, χ′2 ◦ σ). Now looking at the Galois representation
attached to π, the characteristic polynomial of ρλ(π)(Frobw) is given by

Pw(X) = X2 − twX + #k(w)sw

where tw = #k(w)
1
2 (χ1($) + χ2($)) and sw = χ1($)χ2($), $ a uniformizer of Ew. Similarly, the

characteristic polynomial of ρλ(π)(Frob′w) is given by

Pw′(X) = X2 − tw′X + #k(w)sw′

where tw = #k(w)
1
2 (χ′1(σ($))+χ′2(σ($)) and sw′ = χ′1(σ($))χ′2(σ($)) (#k(w) = #k(w′)). To relate

both, we can write Frob′w = σ Frobw σ
−1; and since ρ is defined over GF , we get that Pw = P ′w (this is

where we use that hypothesis). Therefore, we have tw = t′w and and sw = s′w. Since all the characters
are unramified, this implies that (χ1, χ2) = (χ′1 ◦ σ, χ′2 ◦ σ) so that Ind(χ1, χ2) ∼= Ind(χ′1 ◦ σ, χ′2 ◦ σ),
i.e., (π ◦ σ)w ∼= πw. We conclude by the strong multiplicity theorem that π ◦ σ ∼= σ.

The following lemma will be useful and is proved using class field theory.

Lemma 3.3.3. [Tay03, Lemma 2.2]
Let F be a number field, and let Σ be a finite set of places of K. For each v ∈ Σ, let Lv be a finite
Galois extension of Ev. Then, there is a finite solvable Galois extension E/F such that for each place
w of E above v ∈ Σ, there is an isomorphism Lv ∼= Ew as Fv-algebras. Moreover, if F avoid/F is any
finite extension, then we can choose E to be linearly disjoint from F avoid.

Using these two results, we can reduce our hypothesis on Theorem 3.0.1. Thereby, upon replacing F
by a solvable totally real extension (this is possible by including the infinite primes in the set Σ of the
previous lemma) which is unramified at all primes above p, we can assume that:

• [F : Q] is even.

• ρ is unramified outside of p (for each v at which ρ is unramified, we let Lv = F
ker ρ
v in

Lemma 3.3.3).
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• For all primes v - p, both ρ(IFv) and ρ0(IFv) are unipotent (by Grothendieck’s monodromy
theorem).

• If ρ or ρ0 are ramified at some place v - p, then ρ|GFv is trivial, and #k(v) ≡ 1 mod p.

• det ρ = det ρ0.

Let us explain how we can realise the last condition. Given that ρ and ρ0 are both crystalline with the
same Hodge-Tate weights for all the places above p, then det ρ/ det ρ0 is crystalline with Hodge-Tate
weight 0, hence unramified for all the places above p (it is well known that crystalline + Cp-admissible
= unramified). On the other hand, by the previous conditions, ρ(IFv) and ρ0(IFv) are both unipotent
for v - p, so we get that the character det ρ/ det ρ0 is unramified at all primes. Therefore, it has a finite
order (the Hilbert class field of F is finite over it). And since it is residually trivial, it has p-power
order, so it is trivial on all complex conjugations. The extension of F cut out by its kernel is thereby
finite, abelian, totally real and unramified at all the places above p.

Note that all the hypothesis of Theorem 3.0.1 are still satisfied, except for the conditions on ρ|GF (ζp)
.

To remedy this, when we use lemma 3.3.3, we let F avoid to be F
ker ρ

(ζp). By linear disjointedness of
E and F avoid in the diagram

EF avoid

E(ζp) F avoid

F (ζp)

we get that Gal(EF avoid/E(ζp)) ∼= Gal(F avoid/F (ζp)). But by definition of F avoid, ρ|GF (ζp)
factors

through Gal(F avoid/F (ζp)), hence its image is left unchanged.

In what follows, we will assume that all these conditions hold. We will write χ = det ρ = det ρ0.
Moreover, we will assume that L is large enough so that it contains a primitive p-th root of unity and
that F contains the eigenvalues of ρ(g) for all g ∈ GF .

3.4 The Taylor-Wiles-Kisin method

3.4.1 Setup

Recall that we have a finite extension L/Qp with ring of integers O whose maximal ideal and residue
field are λ and F respectively. We consider a quaternion algebra D over F ramified exactly at the
infinite places (which exists since [F : Q] is assumed to be even). Let Tp be the set of places of F lying
over p, Tr be the set of primes not lying over p at which ρ or ρ0 ramify, and T = Tr ∪ Tp. If v ∈ Tr,
we fix a topological generator σv of IFv/PFv ( where IFv and PFv are respectively the inertia and the
wild inertia groups).
For each set of Taylor-Wiles primes Q, consider the Global deformation problem SQ = (ρ, χ, T ∪
Q, {Dv}) and S ′Q = (ρ, χ, T ∪Q, {D′v}, χ) defined by the following conditions:

• If v ∈ Tp, we let Dv = D′v be the local deformation problem consisting of crystalline lifts with
the prescribed HT-weights {HTσ(ρ)};

• If v ∈ Q, we do not impose any local conditions;
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• If v ∈ Tr, we let Dv (resp. D′v) be the local deformation problems consisting of all lifts ρ̃ of ρGFv
with charρ̃(σ)(X) = (X − 1)2 (resp. with charρ̃(σ)(X) = (X − ζp)(X − ζ−1

p ));

We will write S∅, S ′∅ for the similar global deformation problems without accounting for the Taylor-
Wiles primes. So that the difference between say SQ and S∅ is that we allow ramification at the primes
in Q.
We let Rloc and R′loc be the universal rings corresponding to SQ and S ′Q respectively, as described
in section 2.4. Given that ζp ≡ 1 mod λ, we have that Rloc/λ ∼= R′loc/λ. Moreover, we have the
following facts which are highly non-trivial:

• (R′loc)
red is irreducible, O-flat, and has Krull dimension 1 + 3#T + [F : Q].

• (Rloc)
red is O-flat, equidimensional of Krull dimension 1 + 3#T + [F : Q], and reduction modulo

λ gives a bijection between the irreducible components of SpecRloc and those of SpecRloc/λ.

The reason why we introduced the global deformation problem S ′Q is justified by the fact that (R′loc)
red

is irreducible. Later, this will allow us to complete the patching argument for S ′Q, and the relation
Rloc/λ ∼= R′loc/λ will serve as a bridge to complete the patching for SQ.

Now for the sake of reducing notation, we will write Runiv
Q := Runiv

SQ and RTQ := RTSQ (same thing with
′ and/or Q = ∅). Note that we have Runiv

Q /λ ∼= Runiv
Q
′
/λ and RTQ/λ

∼= RTQ
′
/λ. In addition, the natural

maps Rloc → Runiv
Q and R′loc → Runiv

Q
′

agree after reducing modulo λ. We fix universal deformations

ρuniv
∅ , ρuniv

∅
′

of Runiv
∅ and Runiv

∅
′

respectively, and choose universal deformations ρuniv
Q , ρuniv

Q
′

of Runiv
Q

and Runiv
Q
′

respectively, which are compatible with each other modulo λ and compatible with ρuniv
∅ ,

ρuniv
∅
′

so that we have surjections:

Runiv
Q � Runiv

∅ and Runiv
Q
′
� Runiv

∅
′

which are equal modulo λ.

In lemma 2.5.4, we have shown that for v ∈ Q, we have a decomposition ρuniv
Q|GFv

= χα ⊕ χβ for some

tamely ramified characters χα, χβ : GFv → Runiv
Q , so let us choose one, say χα. If we compose χα|Iab

Fv

with the Artin map Art : O×Fv
'−→ Iab

Fv
, we get a character χ′α : O×v → Runiv

Q . Now given that ρ is
unramified at v and by lemma 3, χ′α has pro-p image. But 1 + mv is pro-v, so this character factors
into a map χα : k(v)× → Runiv

Q , where k(v) is the residue field of Fv. The latter also factors through

the maximal p-power quotient of k(v)× which we denote by ∆v.
We let ∆Q =

∏
v∈Q

∆v, the choice of χα for each v ∈ Q defines a morphism O[∆Q] → Runiv
Q , and we

have the following expected result:

Lemma 3.4.1. We have a surjective morphism ϕQ : Runiv
Q � Runiv

∅ whose kernel is 〈δ− 1〉δ∈∆Q
Runiv
Q .

Proof. We prove this by showing that Runiv
Q /〈δ− 1〉δ∈∆Q

Runiv
Q satisfies the desired universal property.

Let J = O[[x1, . . . , xj ]] where j = 4T − 1. By Remark 2.4.5, we have that RTQ = Runiv
Q ⊗̂OJ and the

morphism ∆Q → Runiv
Q induces a morphism J [∆Q]→ RTQ. If we denote aQ = 〈x1, . . . , xj , δ−1 for δ ∈

∆Q〉 for the augmentation ideal of J [∆Q], then by Lemma 3.4.1 we have that RQT/aQ = Runiv
∅ .

Let us now define the spaces of automorphic forms on which we will perform the patching. We let χ0

be an algebraic grossencharacter such that χε = χ0,ι (ε is the p-adic cyclotomic character) and define
k, η by HT(ρ0) = {ηιτ , ηιτ + kιτ − 1}. For the compact open subgroup UQ =

∏
v UQ,v, we set:
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• UQ,v = GL2(OFv) if v 6∈ Q ∪ Tr;

• UQ,v = Iwv = {
(
∗ ∗
0 ∗

)
mod v } if v ∈ Tr;

• UQ,v = Iw1
v = {

(
a b
c d

)
∈ Iwv | ad−1 ∈ k(v)× 7→ 1 ∈ ∆v} if v ∈ Q.

And we let ψ :
∏
v∈Tr UQ,v → O

× to be the trivial character. We also define a compact open subgroup
U ′Q = UQ but with a character ψ′ :

∏
v∈Tr UQ,v → O

× defined as follows. For v ∈ Tr, we have a

group homomorphism UQ,v → k(v)× sending

(
a b
c d

)
to ad−1 mod v, and we compose this with the

morphism k(v)× → O× sending the image of σv to ζp ∈ O× (recall that for v ∈ Tr, we assume that
#k(v) ≡ 1 mod p).

This data gives us spaces of modular forms S(UQ,O) and S(U ′Q,O) with corresponding Hecke algebras
TUQ and TU ′Q

generated by the operators Tv and Sv, for v 6∈ Q ∪ T , and operators U$v for v ∈ Q
defined by the double coset

U$v =

[
UQ,v

(
$v 0
0 1

)
UQ,v

]
where $v is a uniformizer of Fv. Note that by the isomorphism in (3.5) the automorphic form associ-
ated to ρ0 induces a morphism TU∅ → O sending Tv to Tr(ρ0(Frobv)) and Sv to #k(v)−1 det ρ0(Frobv)
for v 6∈ T . We let m∅ be maximal ideal of TU∅ given by the kernel of the map TU∅ → O � F, so it is
generated by λ, Tr ρ(Frobv) − Tv and det ρ(Frobv) −#k(v)Sv for v 6∈ T . Recall that since ρ is abso-
lutely irreducible, we also have a Galois representation ρmod

m∅
: GF → GL2(T∅), where T∅ := (TU∅)m∅ ,

which is of type S∅. This gives a surjective morphism Runiv
∅ � T∅.

Since ψ ∼= ψ′ mod λ, we have S(U∅,O)/λ ∼= S(U ′∅,O)/λ, and TU∅/λ
∼= TU ′∅

/λ. So similarly, and we

have a surjective morphism Runiv
∅
′
� T′∅ := (TU ′∅

)m∅ . We set S∅ = S(U∅,O)m∅ and S′∅ = S(U ′∅,O)m∅

and the isomorphism S∅/λ ∼= S′∅/λ is compatible with Runiv
∅ /λ ∼= Runiv

∅
′
/λ.

Let π be a cuspidal automorphic representation such that the corresponding Galois representation
ρπ,ι : GF → GL2(L) satisfies ρπ,ι = ρ, and consider the associated ι-linear ring map θπ : TUQ → C,
and such . For each v 6∈ Q ∪ T , θπ sends Tv to ι(Tr ρπ,ι(Frobv)) and Sv to ι(det ρπ,ι(Frobv)). It also

sends U$v , for v ∈ Q, to αv where αv is one of its eigenvalues on π
UQ,v
v .

Given that for v ∈ Q, π
Iw1
v

v 6= 0, we investigate the possibilities of πv using Langlands reciprocity. By
local-global compatibility, we have rec(πv ⊗ | · |−

1
2 ◦ det) = WD(ρπ,ι|GFv

)F-ss. But given that ρπ,ι|GFv
is the sum of two tamely ramified characters, then by construction of (·)WD, so is WD(ρπ,ι|GFv

)F-ss.

Therefore, we can write WD(ρπ,ι|GFv
)F-ss = χα ⊕ χβ for χα, χβ tamely ramified (we use the same

notation as for the characters of the universal representation, because later we will see that the
nilpotent endomorphism N = 0 so the characters will agree), and we get that πv is a subquotient of

χ1 × χ2 whith χ1 = (ι ◦ χα ◦ArtFv) · | · |
1
2 and χ2 = (ι ◦ χβ ◦ArtFv) · | · |

1
2 .

Using the Bruhat decomposition, we have:

GL2(Fv) = B(Fv) Iwv

⊔
B(Fv)

(
0 1
1 0

)
Iwv

Since Iwv =
⊔
δ∈∆v

(
δ 0
0 1

)
Iw1

v, we deduce another decomposition:

GL2(Fv) = B(Fv) Iw1
v

⊔
B(Fv)

(
0 1
1 0

)
Iw1

v
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which shows that we have an injection

πIw1
v

v ↪→ C2

φ 7→
(
φ(id), φ(w)

)
where w =

(
0 1
1 0

)
. It is not hard to show that if φ ∈ π

Iw1
v

v , then φ1B(Fv) Iw1
v
, φ1B(Fv)w Iw1

v
, and

φ′ : g 7→ φ(wg) also belong to π
Iw1
v

v . From this, we get that the above morphism is actually an
isomorphism, and that

πIw1
v

v = Cφ1 ⊕ Cφw

where φ1(id) = φw(w) = 1, Supp(φ1) = B(Fv) Iw1
v and Supp(φw) = B(Fv)w Iw1

v.
To compute the action of U$v on πIw1

v , we use the following lemma:

Lemma 3.4.2. There is a partition

Iw1
v

(
$v 0
0 1

)
Iw1

v =
⊔

α∈k(v)

(
$v α̃
0 1

)
Iw1

v

where α̃ is a lift of α to OFv .

Proof. Since Iw1
v ⊆ GL2(OFv), and given that we have a partition

GL2(OFv)
(
$v 0
0 1

)
GL2(OFv) =

(
1 0
0 $v

)
GL2(OFv)

⊔ ⊔
α∈k(v)

(
$v α̃
0 1

)
GL2(OFv) (3.6)

an element U

(
$v 0
0 1

)
U ′ with U,U ′ ∈ Iw1

v must land in one of the above cosest. First, note that it

cannot land in the first coset since(
1 0
0 $v

)−1(
a b
c d

)(
$v 0
0 1

)
=

(
$va b
c $−1

v d

)
6∈ GL2(OFv)

where U =

(
a b
c d

)
and d ∈ O×Fv . Similarly, if U

(
$v 0
0 1

)
U ′ ∈

(
$v α̃
0 1

)
GL2(OFv), then

(
$v α̃
0 1

)−1(
a b
c d

)(
$v 0
0 1

)(
a′ b′

c′ d′

)
=

(
∗ ∗

a′$vc+ c′d ∗

)
∈ Iw1

v

where U ′ =

(
a′ b′

c′ d′

)
which shows the lemma.

Using this partition, we can get a description of the action of U$v . Concretely, for ϕ ∈ πIw1
v

v , we have:

U$v · ϕ(id) =
∑
α∈k(v)

φ

((
$v α̃
0 1

))
=
∑
α∈k(v)

χ1($v)#k(v)−
1
2φ(id) = #k(v)

1
2χ1($v)φ(id)

35



and,

U$v · φ(w) =
∑
α∈k(v)

φ

((
0 1
$v α̃

))

= φ

((
1 0
0 $v

)(
0 1
1 0

))
+

∑
α∈k(v)×

φ

((
−α̃−1$v 1

0 α̃

)(
1 0

α̃−1$v 1

))
= #k(v)

1
2χ2($v)φ(w) +

∑
α∈k(v)×

#k(v)−
1
2χ1($v)(χ2/χ1)(α̃)φ(id)

These calculations show us that

U$v · φ1 = #k(v)
1
2χ1($v)φ1 +Xφw

and,

U$v · φw = #k(v)
1
2χ2($v)φw

Note that if χ1/χ2 is ramified (which will be the case), then it induces a non-zero character of k(v)×

(using the Teichmuller lift), which is a finite group. Hence,
∑

α∈k(v)×(χ1/χ2)(α̃) = 0, and X = 0.
The eigenvalues of ρπ,ι(Frobv) are {χα(Frobv), χβ(Frobv)}, which are equal to

{ι−1
(
#k(v)

1
2χ1($v)

)
, ι−1

(
#k(v)

1
2χ2($v)

)
}

so they reduce modulo λ to αv and βv. If χ1/χ2 = | · |±1, then we would get

αv/βv = χ1($v)/χ2($v) = |$v|±1 = #k(v)±1 ≡ 1 mod λ

which contradicts the fact that v is a Taylor-Wiles prime. Therefore, χ1/χ2 6= | · |±1, so πv = χ1×χ2
∼=

χ1 × χ2, and we can assume that χ1($v) = βv, χ2($v) = αv.

We see finally that U$v acts on π
UQ,v
v with eigenvalues that are lifts of αv and βv. Reducing the

morphism ι ◦ θπ modulo the maximal ideal, we get a maximal ideal mQ of TUQ given by:

mQ = 〈λ ; Tv − Tr(ρ(Frobv),#kvSv − det ρ(Frobv) for v 6∈ T ∪Q ; U$v − αv for v ∈ Q〉

Le us write TQ = (TUQ)mQ and SQ = S(UQ,O)mQ . We have an action of ∆Q on SQ where δ ∈ ∆v

acts via

(
δ̃ 0
0 1

)
∈ Iwv for a lift δ̃ of δ. Concretely, note that from equation (3.4), we have SQ⊗O,ιC =

⊕π(⊗′v 6∈Qπv)
UQQ ⊗v∈Q Xv where Xv is the one dimensional space on which U$v acts via a lift of αv.

Since Xv is spanned by φw, and that we have(
δ̃ 0
0 1

)
φw = χ2(δ̃)φw

we see that ∆v acts on SQ via χ2 = χα ◦Art−1
Fv

. On the other hand, we have another action of ∆Q on
SQ given by

∆Q → Runiv
Q � TQ → EndO(SQ)

By construction of the map ∆Q → Runiv
Q , we get that the two actions that we just defined are equal.

We define a new compact subgroup of GL2(A∞F ) by setting UQ,0 :=
∏
v 6∈Q UQ,v

∏
v∈Q Iwv. Since

Iwv / Iw1
v = ∆v, we have that UQ,0/UQ = ∆Q. Then, by 3) of Proposition 3.2.3, we get that SQ is

finite free over O[∆Q].

Now for a place v ∈ Q, given that αv 6= βv, by Hensel’s lemma, the characteristic polynomial of
ρuniv
m∅

(Frobv) is of the form (X −Av)(X −Bv) where Av, Bv ∈ T∅ are lifts of αv, βv.
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Proposition 3.4.3. We have an isomorphism
∏
v∈Q(U$v −Bv) : S∅

∼−→ S(UQ,0,O)mQ.

Proof. First note that the above morphism is well defined as we can see the source and the target
as submodules of S(UQ,0,O)m̃∅ where m̃∅ is the ideal generated by λ and Tv − Tr ρ(Frobv),#k(v) −
det ρ(Frobv) for v 6∈ T ∪ Q. We will use the following fact from algebra: if X,Y are finite free O-
module, and X → Y is a morphism such that it is an isomorphism after tensoring with L, and is
injective after tensoring with F, then it is an isomorphism.
So let us check that it is an isomorphism after tensoring with L, or equivalently with C. We have

S(UQ,0,O)m̃∅ ⊗O,ι C = ⊕π(⊗′v 6∈Qπv)
UQQ ⊗ (⊗v∈QπIwv

v ) where the sum is taken over the cuspidal auto-
morphic representation π such that ρλ(π) ∼= ρ. So first things first, we need to investigate when do
we have πIwv 6= 0 for v ∈ Q. Fix such π, by the Langlands correspondence we either have:

rec(πv) ∼=
((

χpµ 0
0 µ

)
,

(
0 1
0 0

))
in which case if F̃robv is a lift of the Frobenius to GFv , then ρλ(π)(F̃robv) has eigenvalues α and
#k(v)α. But that would imply that ρ(Frobv) has eigenvalues α and #k(v)α = α which contradicts
the fact that v is a Taylor Wiles prime.
Or we have that πv ∼= Ind(χ1, χ2) with χ1/χ2 6= | · |

1
2 . Using the Bruhat decomposition

GL2(Fv) = B(Fv) Iwv

⊔
B(Fv)w Iwv

we get an injective homomorphism:

πIw1
v

v ↪→ C2

φ 7→
(
φ(id), φ(w)

)
Note that since T0 := T ∩ GL2(OFv) is a subgroup of Iwv and satisfies wT0 = T0w, for πIwv

v 6= 0
we must have that (χ1,v, χ2,v)(T0) = 1, i.e. that χ1,v and χ2,v are unramified. And in that case,
by the same computations done for Iw1

v earlier, πIwv
v = Cφ1 ⊕ Cφw where φ1(id) = φw(w) = 1,

Supp(φ1) = B(Fv) Iwv and Supp(φw) = B(Fv)w Iwv. In particular, we have shown that if πIwv
v 6= 0,

then πv is spherical.

Now back to the proof, the spaces we are considering are:

S∅⊗O,ιC = ⊕π(⊗′v 6∈Qπv)
UQQ⊗(⊗v∈Qπ

GL2(OFv )
v ) and S(UQ,0,O)mQ⊗O,ιC = ⊕π(⊗′v 6∈Qπv)

UQQ⊗(⊗v∈QMv)

where Mv is the subspace of πIwv
v on which U$v acts by a lift of αv, so it is the one dimensional space

generated by φw (this is seen using the same calculations as in the case of Iw1
v).

For v ∈ Q, we let φ0 be the generator of π
GL2(OFv )
v with φ0(1) = 1. By definition of Bv, we have:

B2
vφ0 −BvTvφ0 + #k(v)Svφ0 = 0

but as seen in Section 3.2.1, we have Tvφ0 = #k(v)
1
2 (χ1,v($v)+χ2,v($v))φ0 and Svφ0 = χ1,v($v)χ2,v($v)φ0,

so the equation above becomes:

(Bv −#k(v)
1
2χ2,v($v))(Bv −#k(v)

1
2χ1,v($v))φ0 = 0

but we have Bv −#k(v)
1
2χ2,v($v) 6∈ m∅, so inverting it we get Bvφ0 = #k(v)

1
2χ1,v($v)φ0.

Now since w ∈ GL2(OFv), we get φ0(w) = 1, so φ0 = φ1 + φw, and we have :

(U$v −Bv)φ0 = U$vφ0 + U$vφw)−Bvφ0

= #k(v)
1
2χ1,v($v)φ1 + #k(v)

1
2χ1,v($v)φw + #k(v)

1
2χ2,v($v)φw −#k(v)

1
2χ1,v($v)(φ1 + φ2)

= #k(v)
1
2χ2,v($v)φw
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which shows that we have the desired isomorphism S∅ ⊗O,ι C
∼−→ S(UQ,0,O)mQ ⊗O,ι C.

Finally, we need to check that the morphism is injective after tensoring with F. The kernel would be
a finite module for the Artinian local ring T∅/λ so for it to be zero, it suffices to prove that it does
not have nonzero m∅-torsion. Thus, it suffices to show that the map:∏

v∈Q
(U$v −Bv) : (S∅ ⊗ F)[m∅]→ S(UQ,0,O)mQ ⊗ F

is injective. Arguing by induction on the size of Q, we can suppose that Q = {v}. Suppose that
there exists a non-zero x ∈ (S∅ ⊗ F)[m∅] such that (U$v − Bv)x = 0. On the other hand, we have
Tvx = (Av +Bv)x, we will show that these two equations lead to a contradiction.
Lemma 3.4.2 and equation (3.6) give us the explicit description of the action of U$v and Tv from

which we get that

(
1 0
0 $v

)
x = Tvx − U$vx = αvx (here we use that x is m∅-torsion). And since

w ∈ GL2(OFv) we have that: (
$v 0
0 1

)
x = w

(
1 0
0 $v

)
wx = αvx

and U$vx =
∑

α∈k(v)

(
$v a
0 1

)
x =

∑
α∈k(v)

(
1 a
0 1

)(
$v 0
0 1

)
x = #k(v)αvx = αvx. But we have

U$vx = βvx implying that αv = βv, which is a contradiction.

3.4.2 The patching argument

We set STQ = SQ ⊗Runiv
Q

RTQ which is finite free over J [∆Q], and we have

STQ/aQ = SQ ⊗Runiv
Q

RTQ/aQ = SQ/⊗Runiv
Q

Runiv
∅ = S

∆Q

Q = S(UQ,0,O)mQ
'−→ S∅

Recall that for all N ≥ 1, there exists a set of Taylor-Wiles primes QN of order r = h1
(
GF,S , ad0ρ(1)

)
such that there is a surjective morphism

R∞ := Rloc[[x1, . . . , xg]] � RTQN

where g = r + #T − 1− [F,Q]. Moreover, if we write QN = {v1, . . . , vr}, we get a map:

f : O[y1, . . . , yr] � O[∆QN ]

yi 7→ δi − 1

where δi is a generator of ∆vi . This morphism is continuous if we equip O[∆QN ] with the p-adic
topology (for which it is complete). Indeed, if αi is the order of δi, then f(yαii ) = (1 − δi)αi ∈ (p),
so f−1

(
(p)
)
⊇ m

∑
αi where m is the maximal ideal of O[y1, . . . , yr]. Therefore, we can extend f to a

surjective morphism:
O[[y1, . . . , yr]] � O[∆QN ] (3.7)

If we let J∞ = J [[y1, . . . , yr]], this induces a surjective morphism J∞ � J [∆QN ], which fits in the
following commutative diagram:

J∞ J [∆QN ]

R∞ RTQN
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where the dashed arrow exists since J∞ is a power-series ring. Let us also write a∞ = 〈x1, . . . , xj , y1, . . . , yr〉/
J∞, then STQN /a∞ = S∅, R

T
QN
/a∞ = Runiv

∅ . We define the ideals IN = ker(J∞ → J [∆QN ]). Given

that for v ∈ QN , #k(v) is congruent to 1 modulo pN , we have IN ⊆ 〈(y1−1)p
N −1, . . . , (yr−1)p

N −1〉
which shows that

⋂
N IN = 0. Thus, we can see J [∆QN ] as successive approximations of J∞, and

knowing that SQN is finite free over J∞/IN , our goal is to construct a module “S∞” which is finite
free over J∞ where the action is compatible with that on the ground level S∅. The whole picture can
be summarized in the following diagram:

J∞ J [∆QN ]

R∞ RTQN SQN

Runiv
∅ S∅

From which we only need to retain the following for the patching

J∞ R∞ SQN

Runiv
∅ S∅

Note that the map R∞ � Runiv
∅ depends on N , and in general, the diagrams considered are not

compatible for varying N , which is why we use the ultraproduct formalism to find a way to connect
them. In that setting, we work with finite rings, so let us consider an open ideal J /J∞, which implies
that J∞/J is finite. We will need the following lemma:

Lemma 3.4.4. For N � 0, we have IN ⊆ J .

Proof. Since 1 + mJ∞ is pro-p, its image in J∞/J (which is finite) is a finite p-group. So given that
1 + yi ∈ 1 + mJ∞ , there exist some n ≥ 0 such that (1 + yi)

pn ≡ 1 mod J for all i. Therefore,

IN ⊆ 〈(y1 − 1)p
n − 1, . . . , (yr − 1)p

n − 1〉 ⊆ J

for all N ≥ n.

Now let F be a non-principal ultrafilter on N; using Proposition A.0.9, we get:(∏
N

J∞/J
)
p(F)
∼= J∞/J (3.8)

The ring
∏
N

J∞/J acts componentwise on
∏
N

SQN /J , so using the isomorphism (3.8), we get an action

of J∞/J on

S∞,J :=
(∏
N

SQN /J
)
p(F)

Proposition 3.4.5. We have the following properties:

(1) S∞,J is finite free over J∞/J ;

(2) S∞,J/a∞ ∼= S∅/J ;
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(3) If J ⊆ J ′ are open ideals, then the diagram

S∞,J ′/J S∞,J

S∅/J S∅/J

'

commutes;

(4) R∞ acts on S∞,J J∞/J-linearly, and the induced action of J∞ factors through a map J∞ → R∞.
Moreover, for J ⊇ J ′ open ideals, the diagram

R∞ S∞,J ′

R∞ S∞,J

commutes;

(5) The action of R∞ is compatible with the change of level, i.e., we have a commuting diagram

R∞ S∞,J

Runiv
∅ S∅/J

Proof. 1) Let d = rankOS∅ and pick an isomorphism J [∆QN ]d
'−→ SQN . Modding out by J , we get:

(J∞/J)d � SQN /J

inducing a surjective morphism (∏
N

J∞/J
)⊕d
p(F)

�
(∏
N

SQN /J
)
p(F)

which is actually an isomorphism. Indeed, for injectivity, suppose that we have a tuple of the form

(x1, . . . , xd) · y−1 7→ 0

where y 6∈ p(F). Then, there exists z 6∈ p(F) such that (zNx
1
N , . . . , zNx

d
N ) 7→ 0 for all N ∈ N.

Lemma 3.4.4 implies that for N � 0, J∞/J = J [∆QN ]/J , on which SQN /J is free. So in that case
the maps are levelwise injective, and we get zNx

i
N = 0 for all i and N � 0. Thereby we define

z′N =

{
zN for N � 0
0 otherwise.

so that z′Nx
i
N = 0 for all N ∈ N. But Z(z′) 6∈ F since it differs from Z(z) by a finite set, so z′ 6∈ p(F),

which implies that x1 = · · · = xr = 0.
2)&3) Follows immediately from 1).
4) Let m∞ be the maximal ideal of R∞. Since for N � 0, SQN /J is finite free over J∞/J of rank
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rankOS∅, then the sequence
(
#(SQN /J)

)
N∈N∗ is stationary, so it is bounded by some integer k ∈ N.

By Nakayama’s lemma, we get that mk
∞(SQN /J) = 0 for all N ∈ N∗. Now consider the ring

R =
∏
N

(R∞/m
k
∞)

For the same ultrafilter F as considered before, we have a prime p′(F) ⊆ R and an action

Rp′(F) S∞,J

given componentwise. So by Proposition A.0.9, we get the desired action

R∞ � R∞/m∞ ∼= Rp′(F) S∞,J

On each component N , we have a map J∞ → R∞/m∞ which is compatible with the action on
SQN /J . This induces a map J∞ → R∞/m∞ which is compatible with the action on S∞,J . Since J∞
is a powerseries ring, we lift it to a map J∞ → R∞.

Now we define S∞ = lim←−
J

S∞,J where the limit is take over the open ideals of J∞. This is a finite

free J∞-module, and by (2) of Proposition 3.4.5, we have S∞/a∞ ∼= S∅. Moreover, R∞ acts on S∞
J∞-linearly, and we have the following commutative diagram:

J∞ R∞ S∞

J∞/a∞ = O Runiv
∅ S∅

It is time we finished the proof, and thankfully only a bit of commutative algebra is left. First note
that the whole work can be done in the setting where we add a ′ to everything, and in a way that is
compatible with what we have done modulo λ. Secondly, we have the following equalities:

dimR∞ = dimRloc + g

= 3#T + 1 + [F : Q] + r + #T − 1− [F : Q]

= #4T + r

Similarly we have dimR′∞ = 4#T + r, and dimJ∞ = 1 + j+ r = 4#T + r. Since J∞ is a power series
ring over O, it is Cohen-Macaulay, and given that S∞ finite free over J∞, we have:

depthJ∞ S∞ = depthJ∞ J∞ = dimJ∞ = 4#T + r

But the action of J∞ on S∞ factors through R∞, so we must have depthR∞ S∞ ≥ 4#T + r. If
I = AnnR∞(S∞), then SpecR∞/I = SuppR∞S∞, and we have:

4#T + r = dimR∞ ≥ dimR∞/I ≥ depthR∞ S∞ ≥ 4#T + r

then all the inequalities are equalities. In particular, we get that dimR∞/I = dimR∞ from which we
see that SuppR∞S∞ is the union of irreducible components of SpecR∞. Using the same argument,
we also get that SuppR′∞S

′
∞ is the union of irreducible components of SpecR′∞. But SpecR′loc is

irreducible, hence so is SpecR′∞ and we must have SuppR′∞S
′
∞ = SpecR′∞. In particular, we get that

SuppR′∞/λS
′
∞/λ = SpecR′∞/λ, and by compatibility of the two pictures, we have:

SuppR∞/λS∞/λ = SpecR∞/λ
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To sum up, SuppR∞S∞ is a union of irreducible components of SpecR∞ and contains SpecR∞/λ.
But there is a bijection between irreducible components of SpecR∞/λ and irreducible components of
SpecR∞ (by a property of Rloc seen before) , thus we have SuppR∞S∞ = SpecR∞. Then, we have
that SuppR∞/a∞S∞/a∞ = SpecR∞/a∞, in other words:

SuppRuniv
∅

S∅ = SpecRuniv
∅

But the action of Runiv
∅ on S∅ factors through T∅, and S∅ is a faithful T∅-module. Thus, ker(Runiv

∅ �
T∅) is nilpotent, which means that (Runiv

∅ )red ∼= T∅. Note that ρ corresponds to a morphism Runiv
∅ →

O, which factors through (Runiv
∅ )red and thus gives a morphism T∅ → O. Composing this with

ι : O ↪→ C, we see by (3.5) that it corresponds to an automorphic representation π of weight (k, η)
with ρ ∼= ρλ(π). This finishes the proof of Theorem 3.0.1.
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Part II

Vanishing of the adjoint Bloch-Kato
Selmer group of automorphic Galois

representations
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Introduction

In this part, we study the paper Adjoint Selmer groups of automorphic Galois representations of
unitary type [NT20] by J. Newton and J. Thorne, adapting their exposition by giving additional
details and explanations depending on my knowledge and understanding of the subject. The goal is
to prove the vanishing of the adjoint Bloch-Kato Selmer group attached to an automorphic Galois
representation, a result which is used by the same authors in their paper Symmetric power functoriality
for holomorphic modular forms [NT19] to embed an “eigencurve” in a certain trianguline variety.
This process allows them to prove that the symmetric power of an automorphic representation is still
automorphic as predicted by the Langlands program.

To put things in context, consider a non-archimedean local field K of characteristic 0 with residue
characteristic l, and V a continuous p-adic representation of GK . We want to define the Bloch-Kato
Selmer group as a subspace H1

f (GK , V ) of H1(GK , V ) capturing some good “geometric conditions”.

In the case l 6= p, the only reasonable condition seems to let H1
f (GK , V ) = H1

ur(GK , V ). Indeed,
If V = Hn

ét(XK ,Qp) is the étale cohomology of a smooth proper K-scheme, then it is unramified
whenever X has good reduction, i.e., if it is the generic fiber of a smooth proper OK-scheme.
If l = p, the story is different. In fact, it is known that if V = Hn

ét(XK ,Qp), and if X is :

(i) a smooth proper K-scheme,

(ii) the generic fiber of a smooth proper OK-scheme,

(iii) a smooth proper K-scheme admitting a semistable proper flat OK-model.

then V is (i) BdR-admissible, (ii) Bcrys-admissible, (iii) Bst-admissible, where we recall that V B†-
admissible († is either ét,crys or st) if

dim
B
GK
†

D†(V ) = dimQp V

with D†(V ) = (V ⊗Qp B†)
GK .

Under this point of view, the crystalline condition is the p-adic analogue of the unramified condition
in the case l 6= p. Consequently, we define

H1
f (GK , V ) = ker

(
H1(GK , V )→ H1(GK , V ⊗Qp Bcrys)

)
Alternatively, an element x ∈ H1(GK , V ), which corresponds to an extension

0→ V →W → Qp → 0

is in H1
f (GK , V ) if and only if the sequence

0→ Dcrys(V )→ Dcrys(W )→ Dcrys(Qp) = Qp → 0

is exact. In particular, if V is crystalline, then x is in H1
f (GK , V ) if and only if W is crystalline.

Similarly, we define the geometric Bloch Selmer group H1
g (GK , V ) to be:
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• H1(GK , V ) if l 6= p,

• ker(H1(GK , V )→ H1(GK , V ⊗Qp BdR)
)

if l = p.

If l = p and V is deRham, then elements of H1
g (GK , V ) correspond to de Rham extensions of V by

Qp.

Now, if F+ is a number field with S a finite set of places of F+ containing those above p, and if V is
a p-adic Galois representation of GF+,S , the global Bloch-Kato Selmer groups are defined by

H1
f (F+, V ) = ker

(
H1(F+

S /F
+, V )→

∏
v∈S

H1(F+
v , V )/H1

f (F+
v , V )

)

H1
g,S(F+, V ) = ker

(
H1(F+

S /F
+, V )→

∏
v∈S

H1(F+
v , V )/H1

g (F+
v , V )

)

where we denote by H1(F+
S /F

+, ∗) and H1(F+
v , ∗) for the continuous group cohomology of GF+,S and

GF+
v

respectively.
In [BK07], Bloch and Kato defined these Selmer groups and conjectured that if V is geometric, then
we have the following equality:

ords=0 L(V, s) = dimQp H
1
f (F+, V ∨(1))− dimQp H

0(F+
S /F

+, V ∨(1))

Here L(V, s) is the L-function associated to V which is defined by:

L(V, s) =
∏
v

Lv(V, s)

where if we let qv be the size of the residue field of F+
v , then

Lv(V, s) = det
(

id−(Frob−1
v q−sv )

|V
I
F+
v

)−1

if v - p and,

Lv(V, s) = det
(

id−(ϕ−fvq−sv )|Dcrys(V|G
F+
v

)

)−1

if v | p, with ϕ the crystalline Frobenius and qv = pfv .
Note that it is only conjectured in general that L(V, s) is well defined at s = 1. In fact, if V is moreover
pure of weight w, L(V, s) is expected to admit a meromorphic continuation to all of the complex plane
and has no zeros on the domain Res ≥ w/2 + 1.

Let us now suppose that F+ is totally real, F/F+ a CM extension, and π is a RACSDC automor-
phic representation of GLn(AF ). Then for any isomorphism ι : Qp

∼−→ C, we can attach a Galois
representation

rπ,ι : GF,S → GLn(Qp)

which is known to be Geometric and pure. Applying the Bloch-Kato conjecture for ad rπ,ι(1), which
is pure of weight −2, we would expect that

H1
f (F+, ad rπ,ι) = 0

In fact, under a weak hypothesis on the image of the representation rπ,ι, J.Newton and J.Thorne
proved:
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Theorem 3.4.6. [NT20, Theorem A] Let F/F+ be a CM extension, and π a regular algebraic conju-
gate self-dual cuspidal automorphic representation of GLn(AF ). Let p be a prime and ι : Qp

∼−→ C be an
isomorphism. If rπ,ι(GF (ζp∞ )) is enormous in the sense of definition 4.4.11, then H1

f (F+, ad rπ,ι) = 0.

By identifying H1
f (F+, adrι,π) with the tangent space of a universal pseudodeformation ring of rπ,ι, we

will be able to prove the theorem using an equality of the form “R = T”. However, since we do not
impose any condition on the residual Galois representation, we can no longer work with the theory
of deformations of Galois representations. Instead, we will use pseudorepresentations which are more
adapted to this setting.
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Chapter 4

Pseudocharacters and
Pseudorepresentations

Pseudorepresentations form a particular case of a more general notion which is that of polynomial
laws. In this chapter, we introduce both of these objects and study some of their properties. In
particular, we will study the theory of deformations of pseudorepresentations and see how one can
impose conditions just like in the classical setting of representations. Using these results, we will be
able to find sets of Taylor-Wiles places with good properties with which we will do the patching.
To get more details about the subject, one can consult C.W.Erickson’s Ph.D thesis [Eri13] or the
original source in [Che08].

4.1 Polynomial laws

Let A be a commutative ring. We denote by AlgA the category of commutative A-algebras. Each
A-module M gives rise to a functor M : AlgA → Ens, B 7→ M ⊗A B. Given two A-modules M and
N , a polynomial law P : M → N is simply a natural transformation M → N . In other words, for
each B,B′ ∈ AlgA and u ∈ HomAlgA(B,B′), we have a commutative diagram

M ⊗A B N ⊗A B

M ⊗A B′ N ⊗A B′

PB

id⊗u id⊗u
PB′

The set of all polynomial laws from M to N is denoted PA(M,N). For d ≥ 1, a polynomial law
P : M → N is homogenious of degree d if for all B ∈ AlgA, z ∈M ⊗A B, and b ∈ B, we have

PB(bz) = bdPB(z)

We denote by PdA(M,N) the A-module of homogeneous of degree d A-polynomial laws from M to N .
If M and N are A-algebras, we say that a polynomial law P : M → N is multiplicative if for all
B ∈ AlgA, PB(1) = 1 and for all x, y ∈M ⊗A B,

PB(xy) = PB(x)PB(y)

We write Md
A(M,N) for the set of all multiplicative, homogenious of degree d A-polynomial laws.

Note that by functoriality, a polynomial law P : M → N is determined by the maps

PA[T1,...,Tn] : M [T1, . . . Tn]→ N [T1, . . . , Tn]
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for all n ≥ 1. In particular, if P is homogenious of degree d, then it is uniquely determined by the
map PA[T1,...,Td]. Indeed, let Id = {(α1, . . . , αd) ∈ Nd | α1 + · · ·+ αd = d}, then for all x1, . . . , xd ∈M ,
we have:

PA[T1,...,Td] : M [T1, . . . , Td]→ N [T1, . . . , Td]

x1T1 + · · ·+ xdTd 7→
∑
α∈Id

P [α](xi | αi 6= 0)Tα (4.1)

To see that the polynomial is homogenious, we apply the functoriality of P to the map A[T1, . . . , Td]→
A[T1, . . . , Td, X] sending Ti to XTi. And to see the map only depends on PA[T1,...,Td], note that the

coefficient P [α](xi | αi 6= 0) can be recovered using the functoriality of P to the map A[T1, . . . , Td]→
A[T1, . . . , Td] sending Ti to 0 if αi = 0.
Therefore, if X ⊆M generates M as an A-module, then P is uniquely determined by the finite set of
functions P [α] : Xd → N for α ∈ Id.

Definition 4.1.1. If M,N are two A-modules and P ∈ PA(M,N) we define ker(P ) ⊆ M as the
subset whose elements are the x ∈M such that for every commutative A-algebra B,

∀b ∈ B, ∀m ∈M ⊗A B,PB(x⊗ b+m) = PB(m)

From the definition, we see that ker(P ) is anA-submodule ofM . We say that P is faithful if ker(P ) = 0.

Lemma 4.1.2. With the same notation as before

(1) ker(P ) is the biggest A-submodule K ⊆M such that P admits a factorisation P = P̃ ◦ π where
π : M →M/K is the canonical projection and P̃ ∈ PA(M/K,N).

(2) P̃ : M/ ker(P )→ N is faithful.

(3) If B is a commutative A-algebra, then

im(ker(P )⊗A B →M ⊗A B) ⊆ ker(P ⊗A B)

Proof. (3) is clear from the transitivity of the tensor product.
(1) It is immediate that if P = P̃ ◦ π for K ⊆M as in the definition, then K ⊆ ker(P ).
On the other hand, let K ⊆ ker(P ) and define for B a commutative A-algebra KB = im(K ⊗A B →
M⊗AB). Then, π⊗AB : (M⊗AB)/KB

∼= (M/K)⊗AB, and by (3) KB ⊆ ker(P⊗AB). In particular,
the map PB : M⊗AB → N⊗AB satisfies PB(k+m) = PB(m) for k ∈ KB and m ∈M⊗AB. Therefore,
we can define a map P̃B : (M/K)⊗A B → N ⊗A B by setting

P̃B
(
(π ⊗A B)(m)

)
= PB(m), ∀m ∈M ⊗A B (4.2)

The collection of maps P̃B define a polynomial law P̃ ∈ PA(M/K,N).
(2) From (4.2), we see that ker(P̃ ) = ker(P )/K which gives (2).

Lemma 4.1.3. Let R,S be two A-algebras and P ∈Md
A(R,S).

(1) ker(P ) = {r ∈ R,∀B, ∀r′ ∈ R⊗AB, P (1+rr′) = 1} = {r ∈ R,∀B, ∀r′ ∈ R⊗AB,P (1+rr′) = 1}.

(2) ker(P ) is a two sided ideal of R, it is proper if d > 0 and R 6= 0. It is the biggest two sided
ideal K ⊆ R such that P admits a factorisation P = P̃ ◦ π with π is the canonical surjection
R→ R/K and P̃ ∈Md

A(R/K,S).
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Proof. (1) Let r ∈ ker(P ), B a commutative A-algebra and m = 1 + h ∈ R ⊗A B. We want to show
that

PB(1 + r(1 + th)) = PB(1 + (1 + th)r) = 1

in S ⊗A B[t]. Since they are polynomials of degree d, it is enough to check this in S ⊗A B[t]/(td+1).
Since (1 + th) ∈ R⊗A B[t]/(td+1) is invertible, we have

P (1 + r(1 + th)) = P ((1 + th)−1 + r)P (1 + th) = P ((1 + th)−1)P (1 + th) = P (1) = 1

and similarly we see that P (1 + (1 + th)r) = 1. From this we also see that an element in the sets on
the right hand side of (1) lie in ker(P ), so we get the desired equalities.
(2) By (1), ker(P ) is a two sided ideal of R. Since P (1) = 1, we have P (1 − t) = (1 − t)d and so
1 6∈ ker(P ) if d > 0. The rest follows similarly to (2) of the previous lemma from (4.2).

Remark 4.1.4. Note that by the previous lemma, r ∈ ker(P ) if and only if for any r1, . . . , rn ∈ R, we
have

P (1 + r(t1r1 + · · ·+ tnrn)) = 1

So if A = S is an infinite domain, we have ker(P ) = {r ∈ R,∀r′ ∈ R, P (1 + rr′) = 1}. Indeed, in this
case the polynomial P (1 + r(t1r1 + · · · + tnrn)) − 1 ∈ A[t1, . . . , tn] would have infinitely many roots
(by functoriality of P ) so it must be zero.

4.1.1 Representability

Definition 4.1.5. The A-algebra of divided powers on M , denoted ΓA(M) is the A-algebra generated
by the symbols m[i] for m ∈M , i ∈ N which is subject to the following relations:

• m[0] = 1 for all m ∈M .

• (am)[i] = aim[i] for all a ∈ A, m ∈M .

• m[i]m[j] = (i+j)!
i!j! m

[i+j] for all i, j ∈ N, m ∈M .

• (m+m′)[i] =
∑

p+q=im
[p]m′[q] for all i ∈ N, m,m′ ∈M .

Definition 4.1.6. Let B be a commutative A-algebra. We define the B-module exp(B) to be the
subgroup of the power series algebra over B consisting of elements f ∈ B[[t]]× satisfying

• f(0) = 1

• f(t1 + t2) = f(t1)f(t2) for free commutative variables t1, t2.

with the b-module structure given by (b · f)(t) = f(bt).

Proposition 4.1.7. The functors ΓA : ModA � AlgA : exp are adjoint to each other. In other
words, we have a natural bijection

HomAlgA(ΓA(M), B)
'−→ HomModA(M, exp(B))

sending f : ΓA(M)→ B to g : m 7→
∑∞

i=0 f(m[i])tn.

Corollary 4.1.8. Let A be a commutative ring. Then, the algebra of divided powers over A satisfies
the following properties:
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(1) If B is a commutative A-algebra, and M an A-modules, then we have a canonical isomorphism
of B-algebras

ΓA(M)⊗A B
'−→ ΓB(M ⊗A B)

m[i] ⊗ 1 7→ (m⊗ 1)[i]

(2) If M = lim−→
i

Mi is a colimit of A-modules, then we have an isomorphism of A-algebras

lim−→
i

ΓA(Mi) ∼= ΓA(lim−→
i

Mi)

(3) If M1 and M2 are two A-modules, then there is a canonical isomorphism

ΓA(M1 ⊕M2)
'−→ ΓA(M1)⊗A ΓA(M2)

(m1,m2)[i] 7→
∑
p+q=i

m
[p]
1 ⊗m

[q]
2

which respects grading, i.e., for each d ≥ 0, it induces an isomorphism

Γd(M1 ⊕M2)
'−→

⊕
p+q=d

ΓpA(M1)⊗ ΓqA(M2)

Given two A-modules M,N , a polynomial law P ∈ PA(M,N), and an A-algebra B, we define the
Taylor expansion of P at a point x ∈M ⊗A B with respect to m ∈M to be

Sm(P )B(x) := PB[t](m⊗ t+ x) ∈ N ⊗A B[t]

For any morphism of A-algebras u : B → B′, by functoriality of P , we have a commutative diagram:

m⊗ t+ x PB[t](m⊗ t+ x)

m⊗ t+ u(x) PB′[t](m⊗ t+ u(x))

which shows that Sm(P ) ∈ PA(M,N ⊗A A[t]). Therefore, the composition of the polynomial law
Sm(P ) with the linear polynomial law N ⊗A B[t] → N ⊗A B,

∑
i nit

i 7→ ni gives a polynomial law
which we denote ∂im(P ) ∈ PA(M,N). It is straightforward to check that δim : P(M,N) → P(M,N)
is an A-linear map. We denote by D the A-subalgebra of EndA(P(M,N)) generated by the δim for
m ∈M and i ∈ N. Now given an A-algebra B, m1,m2 ∈M and P ∈ PA(M,N), we have

PB[t1,t2](m1 ⊗ t1 +m2 ⊗ t2 + x) = PB[t1,t2](m2 ⊗ t2 +m1 ⊗ t1 + x)

Sm1(P )B[t2](m2 ⊗ t2 + x) = Sm2(P )B[t1](m1 ⊗ t1 + x)

Sm2(Sm1(P ))B(x) = Sm1(Sm2(P ))B(x)

comparing the coefficients in t1, t2 we find that ∂im2
∂jm1t

i
2t
j
1 = ∂jm1∂

i
m2
tj1t

i
2 for all i, j ≥ 0 which shows

that D is commutative.

Lemma 4.1.9. The map S(·) : M → D[[t]] defines an A-linear map S : M → exp(D).

Proof. We need to show that for m ∈ M , Sm =
∑∞

i=0 ∂
i
mt

i lies in exp(D). First, note that for
an A-algebra B, by applying the functoriality of P for the map B[t] → B : t 7→ 0, we get that
∂0
m(P )(x) = PB(x) for x ∈M ⊗A B. So ∂0

m(P ) = P , and ∂0
m = 1 ∈ D.

Now for m ∈ M , B an A-algebra and P ∈ PA(M,N), the functoriality of P applied for the map
B[t]→ B[t1, t2] : t 7→ t1 + t2 gives a commutative diagram

50



m⊗ t+ x PB[t](m⊗ t+ x)

m⊗ t1 +m⊗ t2 + x PB[t1,t2](m⊗ t1 +m⊗ t2 + x)

which shows that Sm(t1 + t2)(P )B(x) = PB[t1,t2](m⊗ t1 +m⊗ t2 +x) =
(
Sm(t1)Sm(t2)

)
(P )B(x). Thus,

Sm(t1 + t2) = Sm(t1) · Sm(t2) as desired. It remains to show that S is an A-linear map which follows
the same ideas.

Definition 4.1.10. We define the universal homogenious of degree d polynomial law P univ
d : M →

ΓdA(M) by setting for each A-algebra B,

P univ
d,B : M ⊗A B → ΓB(M ⊗A B) ∼= ΓA(M)⊗A B

m⊗ b 7→ (m⊗ b)[d] ∼= m[d] ⊗ bd

Theorem 4.1.11. [Rob80, Theorem III.1] Let M be an A-module and d ≥ 1, then ΓdA(M) represents
the functor N 7→ PdA(M,N). In other words, we have a bijection

HomA(ΓdA(M), N)
'−→ PdA(M,N)

f 7→ f ◦ P univ
d

Proof. Let us first show the injectivity of the defined map. So let P ∈ PdA(M,N) such that P = f◦P univ
d

for some f ∈ HomA(ΓdA(M), N). Since ΓdA(M⊗AA[t1, . . . , td]) ∼= ΓdA(M)⊗AA[t1, . . . , td], for all α ∈ Idd
and m1, . . . ,md ∈M , we have

P univ
d (m1 ⊗ t1 + · · ·+md ⊗ td) = (m1 ⊗ t1 + · · ·+md ⊗ td)[d]

=
∑
α∈Idd

∏
1≤i≤d

m
[αi]
i tαii

then by definition of the P [α] (see equation (4.1)), we get that f(m
[α1]
1 · · ·m[αd]

d ) = P [α](m1, . . . ,md).

But ΓdA(M) is generated as an A-module by the
∏

1≤i≤dm
[αi]
i for α ∈ Idd and m1, . . . ,md ∈ M which

shows that P determines f , i.e., the map is injective.
To prove surjectivity, let P ∈ PdA(M,N), we need to show that there exists an A-linear map f :
ΓdA(M)→ N such that

f(m
[α1]
1 · · ·m[αd]

d ) = P [α](m1, . . . ,md)

for all α ∈ Idd and m1, . . . ,md ∈ M . From now on we will write m = (m1, . . . ,md) ∈ Md for briefty.
By the previous lemma, we have an A-linear map S : M → exp(D) which by adjointness gives us a
map of A-algebras S̃ : ΓA(M) → D. One can check that S̃(m[i]) = ∂im. On the other hand, the data
of P induces an A-algebra morphism

evP : D → N

∂ 7→ ∂(P )A(0)

evaluating the differential operators at 0. Setting f = evP ◦ S̃, we get that f(m[α]) = ∂αm(P )A(0) But
for an A-algebra B and x ∈M ⊗A B, we have

PB[t1,...,td](m1 ⊗ t1 + · · ·+md ⊗ td + x) =
∑
α

∂αm(P )B(x)tα

evaluating at 0, we get that:

PB[t1,...,td](m1 ⊗ t1 + · · ·+md ⊗ td) =
∑
α

∂αm(P )B(0)tα

by definition of P [α], we get that P [α](m) = f(m[α]) as desired.
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4.2 Pseudorepresentations

Informally, a pseudorepresentation D : G→ A of a group G with coefficients in A is the data for each
g ∈ G of a characteristic polynomial χD(g, t) ∈ A[t] subject to conditions making these polynomials
behave as the characteristic polynomials of a representation ρ : G → GLn(A). Note that in [Che08],
this notion is called group determinant.

Definition 4.2.1. Let R be an A-algebra, G be a group, and d ≥ 1.

(1) A pseudorepresentation of dimension d, denoted D : R → A, or (R,D) is an element of
Md

A(R,A).

(2) A pseudorepresentation of G, denoted D : G→ A is a pseudo-representation of A[G].

(3) If D : R → A is a pseudo-representation, and x ∈ R, we define the characteristic polynomial
χD(x, t) ∈ A[t] by χD(x, t) = DA[t](t− x)

Let D : R → A and D′ : R′ → A′ be pseudorepresentations. A morphism of pseudorepresentations
ρ : (R,D) → (R′, D′) is the data of a pair (f, g) where f : A → A′ is a ring homomorphism, and
g : R⊗A A′ → A′ is an A′-algebra homomorphism such that f ◦D = D′ ◦ g.

Note that χD(x, t) is the image under R[t, t′]→ R[t], sending t′ to x, of the polynomial DA[t,t′](t−t′) =∑d
i=0D

[i](t′)(−t′)itd−i where D[0](t′) = 1 (as seen via the map R[T, t′]→ R[T ] sending t′ to 0 and by
multiplicativity of D). Therefore, we can write:

χD(x, t) =

d∑
i=0

(−1)iΛi(x)td−i

This defines A-polynomial laws Λi : R→ A of degree i, for 0 ≤ i ≤ d, where Λ0 = 1 and Λd = D. We
define the trace of D by TrD = Λ1.

We let detA(R, d) : AlgA → Sets be the covariant functor associating to any commutative A-algebra
B, the set of B-valued pseudorepresentations R ⊗A B → B of dimension d. By Corollary 4.1.8, we
have that Md

A(R,B) ∼=Md
B(R⊗A B,B). So actually, this functor sends B to the set of homogenious

multiplicative A-polynomial laws R → B of dimension d. But thanks to Theorem 4.1.11, this is
equivalent to giving an A-algebra homomorphism ΓdA(R) → B, which factors through ΓdA(R)ab by
commutativity of B. Hence, we get that:

Proposition 4.2.2. The functor detA(R, d) is represented by the A-algebra ΓdA(R)ab.

If G is a group, we denote ΓdZ(Z[G])ab by Z(G, d).

4.2.1 Universal polynomial identities

Let X be a totally ordered finite set, and let X+ be the monoid of words with letters in this set
equipped with the induced total lexicographic order. We say that a word w ∈ X+ is a Lyndon word
if w is less or equal any of its rotations (or equivalently if w = xw′ with x ∈ X+, then w ≤ w′). We
denote by LX the set of Lyndon words on X. By the Chen-Fox-Lyndon theorem, any word w ∈ X+

can be uniquely factored into a Lyndon decomposition

w = wl11 . . . w
ls
s , wi ∈ LX with w1 > w2 > · · · > ws

There is a unique function ε : X+ → {±1} which is defined by ε(w) = (−1)`(w)−1 if w ∈ LX , and by
ε(w) =

∏s
i=1 ε(wi)

li if w ∈ X+ and w = wl11 . . . w
ls
s is its Lyndon factorisation.
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Proposition 4.2.3. [Che08, 1.12] Let A be a ring, R be an A-algebra, and d ≥ 1. Consider D : R→ B
a homogenious of degree d polynomial law into a commutative A-algebra B, and let Λi,B : R→ B be the
induced characteristic polynomial coefficient polynomial law. Then, we have the following polynomial
identities

(1) For all r, r′ ∈ R, D(1 + rr′) = D(1 + r′r).

(2) The Λi satisfy Amistur’s formula, i.e., for any finite subset X = {r1, . . . , rn} ⊆ R, totally ordered
by the indices, we have

Λi,A(r1 + · · ·+ rn) =
∑
`(w)=i

ε(w)Λ(w)

where Λ(w) := Λls(ws) · · ·Λl1(w1), with w = wl11 . . . w
ls
s is the Lyndon decomposition of w ∈ X+.

(3) Tr satisfies the d-dimensional pseudocharacter identity.

Proof. 1) First note that if r is invertible, then by commutativity of B and multiplicativity of D we
get the result, since

D(1 + rr′) = D(r)D(r−1 + r′) = D(r−1 + r′)D(r) = D(1 + r′r)

Now for the general case, let us work in R[t], and set r = 1 + u. If we show that

D(1 + r(1 + ut)) = D(1 + (1 + ut)r) ∈ B[t]

then specializing to t = 1 gives us the result. Now since both polynomials are of degree ≤ d, it suffices
to show the equality in B[t]/(td+1). But (1 + tu) is invertible in R[t]/(td+1) so we can apply the
previous case.
2) Let r1, . . . , rn ∈ R, and consider the A-algebra Am = A[t1, . . . , tn]/(t1, . . . , tn)m. We have the
following equality in R⊗A Am:

1

1− (t1r1, . . . , tnrn)
= 1 + (t1r1, . . . , tnrn) + · · ·+ (t1r1, . . . tnrn)m−1

=
∑

w∈X+, `(w)<m

w

=
∏

w∈LX , `(w)<m

(1 + w + · · ·+ wm−1) =
∏

w∈LX , `(w)<m

1

1− w

where X = {t1r1, . . . , tnrn}, and the last product is taken in the decreasing lexicographic order. Note
that the third equality follows from the existence and unicity of the Lyndon decomposition. Applying
D and inverting, we get

D(1 +

n∑
i=1

tiri) =
∏
w∈LX

χD(w, 1) =
∏
w∈LX

( d∑
i=0

(−1)iΛi(w)
)

(4.3)

where we now take the product over all Lyndon words, (we previously restricted ourselves to words
of length < m because the determinant commutes only to finite products). This equation does not
depend on m, hence it holds in B[[t1, . . . , tn]]. If we take an integer i ≥ 0, the homogenious part of
the equality of degree i writes as

Λi(t1r1 + · · ·+ tnrn) =
∑
`(w)=i

ε(w)Λ(w) (4.4)
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Indeed for each word w in the sum, we have `(w) = i =
∑s

k=1 lk`(wk), where w = wl11 · · ·wlss is
the Lyndon decomposition of w. Hence, ε(w) = (−1)

∑
k lk−i. The equality in (4.4) holds a priori in

B[[t1, . . . , tn]], but both sides live inside B[t1, . . . , tn], so it is also an equality in B[t1, . . . , tn]. Sending
each ti to 1 gives us the desired formula in B.
3) Applying equation (4.4) with i = n = d+ 1, we get

∏
w∈LX

( d∑
i=0

(−1)iΛi(w)
)

= 0

If we consider the component which is homogenious of degree 1 in each tj , then we are actually taking
the sum over the words of length d+ 1 that are written with distinct letters, so each w of these words
correspond to a permutation σ ∈ Sd+1 with ε(w) = ε(σ). The equation that we obtain this way
correspond to the d-dimensional character identity for Λ1 = Tr.

Corollary 4.2.4. Let D be an A-valued determinant on a group Γ of dimension d, and B ⊆ A the
subgring generated by the coefficients Λi(γ) of χD(γ, t) for all γ ∈ Γ. Then, D factors through a unique
B-valued determinant on Γ of dimension d.

Proof. We need to show that for all γ1, . . . , γn ∈ Γ, D(γ1t1 + · · · + γntn) ∈ B[t1, . . . , tn]. But by
Amitsur’s formula (4.4), such a determinant is a signed sum of monomials in Λi(w) where w is a word
in γ1, . . . , γn, in particular w ∈ Γ, hence the result.

Remark 4.2.5. One interesting and useful fact is that the polynomial identities between the λi(w)
(where w is a word in elements of R) which hold for the determinant of a matrix algebra, also
hold for a general pseudorepresentation. To see this, let X be a set, and consider the Z-algebra
FX(d) = Z[xi,j : 1 ≤ i, j ≤ d, x ∈ X]. We have a universal representation:

ρuniv : Z{X} → FX(d)

defined by x 7→ (xi,j)i,j . By Corollary 4.2.4, we get a pseudorepresentation:

det ◦ρuniv : Z{X} → EX(d)

where EX(d) is the subring of FX(d) generated by the coefficients of the polynomials of the ρuniv(w)
for w ∈ Z{X}. This induces an isomorphism ΓdZ(Z{X})ab ∼= EX(d) ([Che08, Theorem 1.15]).

It is also a fact that if X is finite, then EX(d) is actually a finite type Z-algebra (see [Che08, §2.7]).
But if G is a finitely generated group, with set of generators X ⊆ G, and A is a commutative ring, we
have a surjective map

A⊗Z ΓdZ(Z{X}) � ΓdA(A[G])

so we get that ΓdA(A[G]) is a finite type A-algebra.

4.2.2 Deformation theory of pseudorepresentations

Before we dig into the deformation theory of pseudorepresentations, we need to be able to say when
a pseudorepresentation is continuous. For this, we have the following definition:

Definition 4.2.6. Let G be a topological group, and A a topological ring. A pseudorepresentation
D : A[G] → A of dimension d is said to be continuous if for each α ∈ Id, the map D[α] : Gd → A is
continuous.
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Note that by Amitsur’s formula, D is continuous if and only if Λi : G→ A is continuous for all i ≤ d.

For our purposes, we suppose that G is profinite. So in the case where A is equipped with the
discrete topology, D is continuous if and only if the characteristic polynomial map

G→ A[t]

g 7→ D(1 + tg)

factors through G → G/H for some normal open subgroup H. For such a subgroup, we define the
ideal

J(H) := ker(A[G]→ A[G/H])

and we equip A[G] with the topology generated by this set of ideals.

Lemma 4.2.7. A B-valued determinant D on G, viewed as an element P ∈ DdA(A[G], B), is contin-
uous if and only if, ker(P ) ⊆ A[G] is open for the topology defined as above. In this case, the natural
representation

G→ (B[G]/ ker(D))×

factors through a finite quotient G/H of G for some normal open subgroup H.

Proof. If J(H) ⊆ ker(P ), then by Lemma 4.1.3, P factors through P̃ ∈ Md
A(A[G/H], B) and D is

obviously continuous. Conversely, suppose that D is continuous. Given that B is discrete and G is
profinite, there is a normal open subgroup H of G such that Λi : G→ B factor through G/H. Hence,
by Amitsur’s formula, we get for g ∈ G, h ∈ H:

D(t(g − gh) +
∑
i

tigi) = D(
∑
i

tigi)

which means that g − gh ∈ ker(P ), and J(H) =
∑

g∈G,h∈H Ag(h− 1) ⊆ ker(P ).

Let us fix a profinite group G, a prime number p, and a finite extension E/Qp with ring of integers O
and residue field k. Recall that C0

O is the category of Artinian local O-algebras with residue field k,

and we let ĈO be the category of pro-Artinian local O-algebras with residue field k whose morphisms
are local O-algebra homomorphisms. We fix a continuous pseudorepresentation of dimension d

D : k[G]→ k

and we denote DefD : ĈO → Sets for the functor which associates to A ∈ ĈO the set of continuous
pseudorepresentations D of G over A such that D ⊗A k = D.

Lemma 4.2.8. If A = lim←−
i

Ai for Ai ∈ ĈO, then the natural map DefD(A) → lim←−
i

DefD(Ai) is an

isomorphism.

Proof. Since the functorMd
O(O[G],−) from O-algebras to sets is representable, it commutes with any

projective limit. Hence, the lemma follows from the fact that a map G→ lim←−
i

Ai is continuous if and

only if G→ Ai is continuous for each i.

Proposition 4.2.9. The functor DefD is representable by a ring RD ∈ ĈO.
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Proof. We let B = (ΓdO(O[G]))ab representing the functor detO(O[G], d), and we consider the universal
multiplicative polynomial law P u : O[G]→ B (see Proposition 4.2.2). Let ψ : B → k be the O-algebra
morphism corresponding to the pseudorepresentation D.
We say that an ideal I ⊆ B is open if I ⊆ kerψ, B/I is a finite local ring, and the induced multiplicative
law PI : O[G]→ B/I is continuous. Note that if I, J are two open ideals, then so is I ∩ J . Indeed, we
have an injection B/(I ∩ J) ↪→ B/I ×B/J which is a homeomorphism (since everything is discrete).
Therefore, these ideals define a topology for which they form a basis. We consider the completion of
B for this topology:

RD = lim←−
I open

B/I

and the pseudorepresentation P (D) = ι ◦ P u : O[G] → RD where ι : B → RD is the natural map.

Then, RD ∈ ĈO, and by Lemma 4.2.8 we have:

P (D) = (PI)I ∈ DefD(RD) = lim←−
I open

DefD(B/I)

Now if A ∈ C0
O, and P ∈ DefD(A), then there is a unique O-algebra morphism ψA : B → A such that

ψA mod mA = ψ and P = ψA ◦ P u. Hence, kerψA ⊆ kerψ, and B/ kerψA ⊆ A is necessarily finite
local. By continuity of P , we get that kerψA is open, hence the result.

Remark 4.2.10. Suppose that G is topologically finitely generated, and let H ⊆ G be a finitely
generated dense subgroup. By definition of the continuity of pseudorepresentations, the natural trans-
formation:

DefD → DefD|H

is injective. In particular, we have DefD(k[ε]) ⊆ DefD|H (k[ε]), which implies that

dimk(mRD
/m2

RD
) ≤ dimk(mRD|H

/m2
RD|H

)

But by construction, RD|H is topologically generated by ΓdO(O[H]) which is a finite O-algebra by

Remark 4.2.5. Therefore, dimk(mRD|H
/m2

RD|H
) < ∞, which implies that RD is topologically finitely

generated.

Lemma 4.2.11. Let A ∈ ĈO, and let D : G→ k be a continuous pseudorepresentation deforming D.
Then, D factors through A[G]→ A[G/H] where H ⊆ J := ker(ρ : G→ GLd(k)) is the smallest closed
normal subgroup such that J/H is pro-p.

Proof. We need to verify that D(T − gh) = D(T − g) for all g ∈ G, h ∈ H. This can be checked on
the finite quotients of A, so we can assume that A is finite. By Lemma 4.2.7, we can assume that D
factors through a finite quotient G′. The ring B := A[G′]/ ker(D) = A[G]/ ker(D) is finite, and we
have an induced pseudorepresentation

D
′
: B ⊗A k/ ker(D)→ k

such that D = D
′ ◦ (k[G] → B ⊗A k/ ker(D)). By [Che08, Theorem 2.16], B ⊗A k/ ker(D) is a finite

semisimple k-algebra, so extending the scalars to k, we get by the unicity in [BC09, Theorem 2.12]
the following commutative diagram

k[G], B ⊗A k/ ker(D)

k[G] Md(k)
ρ
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This shows that the image of J − 1 in B lies in ker
(
B → B ⊗A k/ ker(D)

)
, which is equal to the

Jacobson radical Rad(B) of B by [Che08, Lemma 2.10]. Hence, the image of J → B× lies in the
p-group 1 + Rad(B) which gives us our result. (Note that the difficulty was in the fact that we don’t
necessarily have ker(ρ) ⊆ ker(D)).

Proposition 4.2.12. If G satisfies Mazur’s Φp condition, then RD ∈ CO.

Proof. If G is topologically finitely generated, then the result was already established in Remark 4.2.10.
The general case follows from this by considering Lemma 4.2.11. Indeed, if Def∗

D
: CO → Sets is the

deformation functor of the determinant of ρ seen as a G/H representation, then as a consequence of
this lemma, the natural functor Def∗

D
→ DefD is an equivalence. Moreover, the condition Φp exactly

implies that G/H is topologically finitely generated.

4.2.3 Cayley-Hamilton representations

If G is a group and D : G→ A is a pseudorepresentation, it is not always true that it can be written
of the form D = det ◦ρ where ρ : G → GLn(A) is a representation of G, or equivalently that there
is a morphism of pseudorepresentations (A[G], D) → (Mn(A),det). However, one can always find a
morphism of pseudorepresentations (A[G], D) → (E,D′) where (E,D′) is a Cayley-Hamilton pseu-
dorepresentation. This is good enough for us since a Cayley-Hamilton pseudorepresentation behaves
well under many operations, and as the name suggests, satisfies the Cayley-Hamilton theorem. In
some sense, it can be though of as a generalisation of the pseudorepresentation (Mn(A),det).

Definition 4.2.13. We call a pseudorepresentation D : E → A Cayley-Hamilton when E is finitely
generated as an A-algebra, and, for every commutative A-algebra B, and every x ∈ E ⊗A B, the
element x satisfies the characteristic polynomial χD(x, t) ∈ B[t]. In this case, we call the pair (E,D)
a Cayley-Hamilton A-algebra.

Remark 4.2.14. If D : E → A is a pseudorepresentation, we denote by CH(D) ⊆ E the two sided ideal
of E generated by the coefficients of the polynomial

χD(t1r1 + · · ·+ tnrn) ∈ R[t1, . . . , tn]

for r1, . . . , rn ∈ R, n ≥ 1. Then, we see that (E,D) is Cayley-Hamilton if and only if CH(D) = 0.
Also by [Che08, Lemma 1.21], we have that CH(D) ⊆ ker(D). In particular, (E/CH(D), D̃) is a
Cayley-Hamilton A-algebra.

Remark 4.2.15. If (E,D) is a Cayley-Hamilton A-algebra, then E is finitely generated as an A-module
(see [WWE19, Proposition 2.1.7]).

IfG is a group, we define a Cayley-Hamilton representation ofG of dimension d to be triple (A, (E,D), ρ)
where A is a commutative ring, (E,D) is a Cayley-Hamilton A-algebra of dimension d and ρ : G→ E×

is a group homomorphism.
A morphism (A, (E,D), ρ) → (A′, (E′, D′), ρ′) of Cayley-Hamilton representations is a morphism of
pseudorepresentations (E,D)→ (E′, D′) such that ρ′ = (E → E′) ◦ ρ.
We let CHd(G) be the category of Cayley-Hamilton representations of G of dimension d with mor-
phisms as we just defined.

Recall that by Proposition 4.2.2, we have a universal determinant of dimension d:

Du : Z(G, d)[G]→ Z(G, d)
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We define the universal Cayley-Hamilton algebra to be

R(G, d) = Z(G, d)[G]/ ker(Du)

which is equipped with a natural group homomorphism ρu : G→ R(G, d)×.
Using the universality of Z(G, d), it is not hard to see that:

Proposition 4.2.16. The Cayley-Hamilton representation (Z(G, d), (R(G, d), Du), ρu) is the initial
object in CHd(G).

Deformation of Cayley-Hamilton representations

We keep the notations of subsection 4.2.2, and assume moreover that G satisfies Mazur’s Φp-condition.
Recall that this implies that the universal deformation ring RD lies in CO.

A Cayley-Hamilton pseudorepresentation (A, (E,D), ρ) of G over A ∈ CO has residual representation
D if its induced pseudorepresentation D ◦ρ : G→ A has residual representation D. We let CHd(G,D)
be the full subcategory of CHd(G) whose objects have residual representation D.

The universal continuous pseudodeformation of D:

Du
D

: O[[G]]⊗O RD → RD

induces the universal Cayley-Hamilton algebra

ED :=
(
O[[G]]⊗O RD

)
/CH(Du

D
)

And as in Proposition 4.2.16, we have the following fact (see [WWE19, 2.2.10]):

Proposition 4.2.17. The Cayley-Hamilton representation (RD, (ED, D
u
ED

), ρu) is an initial object

in CHd(G,D). In particular, ED is a finitely generated RD-module. The map ρu : RD[G] → ED is
surjective, and Du

ED
→ RD is a factorisation of the universal pseudorepresentation Du

D
: G → RD

through ED.

Deformation conditions

As in the case of deformations of Galois representations, we would like to impose certain deformation
conditions. For instance in [Ram93], the author observed that on the Artinian level, a deformation
defines an element belonging to the category of continuous Zp[G]-modules whose objects are finite
as sets, which we denote by Modfin

Zp[G]. And if P ⊂ Modfin
Zp[G] is a full subcategory which preserved

under isomorphisms, subquotients and finite direct sums in Modfin
Zp[G], he was able to prove that the

functor of deformations which belong to this subcategory is representable. We say that P is a stable
condition.
In [WWE19], the authors were able to extend this result to the case of pseudorepresentations. The
main task is to find a nice way to attach a finite Zp[G]-module to a pseudorepresentation. Here is
where Cayley-Hamilton representations come into play as we will now see.

For A ∈ CO, we extend the definition of a stable condition P to A[G]-modules which may not be
finite sets as follows: for an A[G]-module which is finitely generated as an A-module, we say that M
satisfies condition P if M/mi

AM satisfies P for all i ≥ 1.
This way, we can impose a deformation condition on Cayley-Hamilton representations by setting:
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Definition 4.2.18. If A ∈ CO, and (A, (E,D), ρ) is a Cayley-Hamilton representation of G over A
with residual representation D, we say that (A, (E,D), ρ) satisfies the condition P if E satisfies P as
an A[G]-module (it is a finitely generated A-module by Remark 4.2.15).

We let CHPd (G,D) be the full subcategory of CHd(G,D) whose objects satisfy condition P. As
explained in [WWE19, §2.4 & §2.5], we have the following result:

Proposition 4.2.19. There is a Cayley-Hamilton representation (RP
D
, (EP

D
, DEP

D
), ρP) which is uni-

versal in CHPd (G,D). In other words, a Cayley-Hamilton algebra (A, (E,D), ρ) satisfies condition P
if and only if there exists a morphism of Cayley-Hamilton algebras

(RP
D
, (EP

D
, DEP

D
), ρP)→ (A, (E,D), ρ)

Now we are able to define the condition P on pseudorepresentations.

Definition 4.2.20. Let A ∈ CO, and D : G→ A a pseudorepresentation with residual pseudorepresen-
tation D. Then, we say that D satisfies condition P if there exists a Cayley-Hamilton representation
(A, (E,D′), ρ) satisfying P such that D = D′ ◦ ρ.

We define the P-pseudodeformation functor DefP
D

: CO → Sets by sending A ∈ CO to the set of

pseudodeformations D : G→ A of D satisfying P.

Theorem 4.2.21. The functor DefP
D

is represented by a ring RP
D
∈ CO.

Proof. Let A ∈ CO and D ∈ DefD(A). If ϕD : RD → A is the morphism induced by D, we need to
show that D satisfies condition P if and only if ϕD factors through RD � RP

D
.

If ϕD factors through RD � RP
D

, then the Cayley-Hamilton algebra(
A, (EP

D
⊗RP

D
A,DEP

D
⊗RP

D
A), ρP ⊗RP

D
A
)

satisfies condition P by Proposition 4.2.19, and induced D via (RP
D
→ A) ◦DEP

D
◦ ρP .

On the other hand, assume that D satisfies condition P, i.e., there exists a Cayley-Hamilton repre-
sentation (A, (E,D′), ρ) such that D = D′ ◦ ρ. By Proposition 4.2.19, there exists a morphism of
pseudorepresentations (EP

D
, DEP

D
)→ (E,D) such that ρ = (EP

D
→ E) ◦ ρP . In particular, the implicit

morphism of rings RP
D
→ A factors ϕD.

4.3 Pseudocharacters

Pseudocharacters were first introduced by A.Wiles for GL2, and later were generalized to GLn by
R.Taylor, in order to construct some Galois representations with certain properties. Given a group
Γ, a pseudocharacter of Γ with coefficients in a ring A is a function T : Γ → A that satisfies certain
conditions making it behave similarly to the trace function of a representation ρ : Γ→ GLn(A). The
exact conditions are the following:

• T (1) = n;

• For all γ1, γ2 ∈ Γ, T (γ1γ2) = T (γ2γ1);

• For γ1, . . . , γn+1 ∈ Γ, ∑
σ∈Sn+1

ε(σ)T σ(γ1, . . . , γn+1) = 0

where T σ(γ1, . . . , γn+1) = T (γi1 · · · γin+1) if σ is the cycle (i1, . . . , in+1), and in general T σ =∏
i T

ci if σ = c1 · · · cr is the cycle decomposition of σ.
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As one might expect, the trace function of a representation ρ : Γ → A is a pseudocharacter, and the
converse holds in various situations such as when A is an algebraically closed field and n! ∈ A×.
In [Laf18, §11], the author introduced a new notion of pseudocharacters adapted for reductive groups.
We give the definition in the special case of the general linear group.

Definition 4.3.1. A pseudocharacter of Γ of dimension n over a ring A is a collection Θ = (Θm)m≥1

of algebra homomorphisms Θm : Z[GLmn ]GLn → Map(Γm, A) satisfying the following conditions:

(1) For all k, l ≥ 1, and each map ζ : {1, . . . , k} → {1, . . . , l}, and each f ∈ Z[GLkn]GLn , and each
γ1, . . . , γl ∈ Γ, we have

Θl(f
ζ)(γ1, . . . , γl) = Θk(f)(γζ(1), . . . , γζ(k))

where f ζ(g1, . . . , gl) = f(gζ(1), . . . , gζ(k)).

(2) For each k ≥ 1, for each γ1, . . . , γk+1 ∈ Γ, and for each f ∈ Z[GLkn]GLn , we have

Θk+1(f̂)(γ1, . . . , γk+1) = Θk(f)(γ1, . . . , γkγk+1)

where f̂(g1, . . . , gk+1) = f(g1, . . . , gkgk+1).

Just to clarify things, Z[GLmn ] is the algebra of regular function on the Z-group scheme GLmn , on which
GLn acts by conjugation on each coordinate.
For each 1 ≤ i ≤ n, let λi ∈ Z[GLn]GLn be the function defined by the equation

det(X − g) =
n∑
i=0

(−1)iλi(g)Xn−i

We have that λi(g) = Tr(
∧i g) where

∧i g is the i-th exterior power of g. By [Don92, §3.1], for any
m ≥ 1, Z[GLmn ]GLn is generated as a ring by the functions

(g1, . . . , gm) 7→ λi(gi1 · · · gir)

for r ∈ N, 1 ≤ i1, . . . , ir ≤ m, together with (g1, . . . , gm) 7→ det−1(g1, . . . , gm). So if t is a pseudochar-
acter, the functions

t[i] := t1(λi) : Γ→ A (4.5)

for 0 ≤ i ≤ n determine t. Indeed, by the axioms defining a pseudocharacter, we have

tm
(
λi(gi1 · · · gir)

)
(γ1, . . . , γn) = t1

(
λi(g)

)
(γi1 · · · γir) (4.6)

By a result of Procesi [Pro76, Theorem 1.3], the algebra Q[GLn]GLn ∼= Z[GLn]GLn ⊗Z Q (by [Don92,
§3.1]) is generated by the functions

Tk : g 7→ Tr(gk)

together with the inverse of the determinant.So if A is Z-torsion free, a pseudocharacter t is determined
by the functions

t1(Tk) : γ → A

or even just t1(Tr). Indeed, by the axioms defining a pseudocharacter, we have

t1(Tk)(γ) = t1(T1)(γk) (4.7)
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On the other hance, since
∧n+1 St = 0 where St is the standard representation of GLn, we get that

the following function

(g1, . . . , gn+1) 7→ TrSt⊗n+1

( ∑
Sn+1

ε(σ)σ
)
(g1 ⊗ · · · ⊗ gn+1)

 (4.8)

is zero (the linear map considered is zero on the symmetric tensors). But one can check that

TrSt⊗n+1

(
σ · (g1 ⊗ · · · ⊗ gn+1)

)
=

∏
(i1,...,ik) cycle of σ

Tr(gik · · · gi1)

So developing in (4.8) and applying t1, we get that∑
σ∈Sn+1

ε(σ)t1(Tr)σ(γ1, . . . , γn+1) = 0

which is exactly the relation for the definition of a pseudocharacter by R. Taylor. In fact, if A is a
Q-algebra, both definitions of R. Taylor and V. Lafforgue give the same thing.

Remark 4.3.2. We can define operations of twisting and duality on the pseudocharacters which are
compatible with the usual operations on representations. For instance, consider the involution ι :
GLn → GLn defined by ιg :=

t
g−1, then for a pseudocharacter t, we define its dual t∨ by the formula:

t∨m(f)(γ1, . . . , γn) = tm(f ′)(γ1, . . . , γn)

where f ′(g1, . . . , gm) = f(ιg1, . . . , ιgn). Moreover, if χ : Γ→ A× is a character, we can define the twist
t⊗ χ of a pseudocharacter t by the formula:

(t⊗ χ)m(f)(γ1, . . . , γn) = f ′(γ1, . . . , γm)

where f ′ ∈ A[GLmn ]GLn is defined by f ′(g1, . . . , gn) = f(χ(γ1)g1, . . . , χ(γn)gn).

If we work with a topological group Γ and a topological ring A, we have a notion of continuity for
pseudocharacters.

Definition 4.3.3. Let t = (tm)≥1 be a pseudocharacter. We say that t is continuous if for each m ≥ 1,
tm takes values in the set Mapscont(Γ

m, A) of continuous functions Γm → A.

The following theorem proved in [Eme18] says that the notions of pseudocharacter and pseudorepresen-
tations we defined are equivalent. Therefore, we will use them throughout the thesis interchangeably.

Theorem 4.3.4. For any group Γ and ring A, the pseudocharacters t of dimension n are in canonical
bijection with the group determinants D of dimension n. Under this bijection, t is associated to D if
and only if t[i] = D[i] for each 0 ≤ i ≤ n, and t is continuous if and only if D is.

The purpose of introducing Lafforgue’s pseudocharacters is that in [NT20, §2], the authors are able
to prove that if ρ : Γ → GLn(O) is a continuous homomorphism which is absolutely irreducible over
E, and t = (tm)m≥1 = Tr ρ is the pseudocharacter associated to ρ, then deforming ρ infinitesimally is
not far from deforming t. More concretely, let A = O ⊕ εE/O and let αk : A → A be the O-algebra
homomorphism sending ε to pkε, then we have the following result:

Proposition 4.3.5. [NT20, 2.9] There exists an integer k0 ≥ 0, depending only on ρ(Γ) such that:

(1) For any lifting t′ of t to A, there exists a homomorphism ρ′ : Γ → GLn(A) lifting ρ such that
Tr ρ′ = αk0 ◦ t′. Moreover, if t′ is continuous, we can take ρ′ to be continuous as well.

(2) If ρ′1, ρ
′
2 : Γ → GLn(A) are two liftings of ρ with Tr ρ′1 = Tr ρ′2, then αk0 ◦ ρ′1 and αk0 ◦ ρ′2 are

conjugate under the action of the group 1 + εMn(E/O) ⊂ GLn(A); and if X ∈ Mn(E/O) is such
that 1 + εX centralizes ρ′1, then pk0X is a scalar matrix.
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4.4 Galois deformation theory of pseudocharacters

We fix again a prime number p, and a finite extension E/Qp with ring of integers O and residue field
k. We also consider a CM extension F/F+ of a totally real field.
We let S be a finite set of places of F containing Sp (the set of places above p), and we assume that
each place of S splits in F+. So we fix for each v ∈ S, a choice of a place ṽ of F above it, and we let
S̃ = {ṽ | v ∈ S} and S̃p = {ṽ | v ∈ Sp}.
We consider a Galois representation ρ : GF,S → GLn(O) satisfying the following properties:

• ρ⊗O E is absolutely irreducible,

• For each ṽ ∈ S̃p, ρ|GFṽ ⊗O E is semistable with Hodge-Tate weights in the interval [a, b].

As in [CHT08, §2.1], we let Gn be the group scheme over Z defined as the semi-direct product of
G0
n = GLn×GL1 by the group {1, } acting on G0

n by

(g, µ)−1 = (µ · tg−1, µ)

The adjoint action of Gn on g = Lie GLn is given by

(ad(g, µ))(x) = gxg−1

and
(ad())(x) = −tx

We let ν : Gn → GL1 be the homomorphism sending (g, µ) to µ and  to −1.
If R is a ring and r : GF+ → Gn(R) is a homomorphism with r−1(G0

n(R)) = GF , by abuse of notation
we denote r|GF the composition of r|GF with the projection G0

n(R)→ GLn(R).

We suppose that there exits a character χ : GF,S → O× such that ρc ∼= ρ∨ ⊗ χ, then by [CHT08,
Lemma 2.1.4], ρ extends to a continuous representation:

r : GF+,S → Gn(O)

such that χ = ν ◦ r. Note that χ|Fṽ is semistable, and there exists w ∈ Z such that χεw has finite
order (where ε is the cyclotomic character). We assume that w = a+ b.
We write W = ad r, WE = W ⊗O E, WE/O = WE/W , and Wm = W ⊗O O/$m.

Let D : GF,S → O be the pseudorepresentation associated to ρ, and we consider the deformation
functor DefD,S : CO → Sets which is represented by a ring RD,S ∈ CO (see Proposition 4.2.12). The
following lemma gives us control over the size of the deformation rings when we will later add various
Taylor-Wiles sets.

Lemma 4.4.1. Fix an integer q ≥ 0. There exists an integer g0 = g0(S,D, q) such that for any set of
finite places Q of F outside of S with |Q| = q, there exists a surjection

O[[X1, . . . , Xg0 ]] � RD,S∪Q

Proof. Let L/F be the extension cut out by ρ (it is finite), and let MS∪Q be the maximal pro-p
extension of L unramified outside S ∪Q. We want to show that Gal(MS∪Q/L) is topologically finitely
generated by g1 elements, where g1 only depends on q. This amounts to showing (see for example
[Gou95, Lemma 2.1]) that

Homcont(Gal(MS∪Q/L), k) ∼= Homcont(GL,S∪Q, k) ∼= H1(GL,S∪Q, k)
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is bounded dependently only on q. We get this by noticing that in the exact sequence

0→ H1(GL,S∪Q, k)→ H1(GL,S , k)→
⊕
ṽ|v∈Q

H1(ILṽ , k)

the size of H1(ILṽ , k) does not depend on ṽ, since ṽ - p so that each morphism ILṽ → k factors through
the tame quotient ILṽ � Zp.
Now by Proposition 4.2.12, any deformation of D to GF,S∪Q factors through Gal(MS∪Q/L). We
conclude using the argument in Remark 4.2.10.

Let us now fix integers a ≤ b, and let E [a,b]
F,S be the category of finite cardinality Zp[GF,S ]-modules M

such that for each place ṽ ∈ S̃p, M is isomorphic as a Zp[GFṽ ]-module to a subquotient of a lattice
in a semistable Galois representation of GFṽ with Hodge-Tate weights in [a, b]. This defines a stable

condition, in the sense of (4.2.3), and the corresponding subfunctor Def
[a,b]

D,S
⊆ DefD,S is represented

by an object R
[a,b]

D,S
∈ CO (see Theorem 4.2.21).

If D : GF,S → O is the pseudorepresentation associated to ρ, then by hypothesis on ρ, D determines

a homomorphism R
[a,b]
F,S → O, we write q for its kernel. We define Selmer group H1

E [a,b]
F,S

(F,Wm) by

considering the following local conditions:

• If ṽ ∈ S̃p, we take the subspace of H1(Fṽ,Wm) corresponding to self-extensions of ρ|GFṽ
⊗OO/$m

which are subquotients of lattices in semistable representations with Hodge-Tate weights in the
interval [a, b].

• if ṽ 6∈ S̃p we do not impose any condition.

The following proposition is a consequence of Proposition 4.3.5.

Proposition 4.4.2. There exists a canonical homomorphism

trm : H1

E [a,b]
F,S

(F,Wm)→ HomO(q/q2,O/$m) (4.9)

Moreover, there exists a constant c ≥ 1 depending only on ρ such that for any m ≥ 1, the kernel and
cokernel of trm are both annihilated by pc.

Proof. Let Am = O ⊕ ε$−mO/O ⊆ A and let αk : Am → Am as in Proposition 4.3.5. As in
Lemma 2.1.2, a class [φ] ∈ H1

E [a,b]
F,S

(F,Wm) corresponds to an equivalence class of liftings

ρφ : GF,S → GLn(Am)

such that ρφ mod ε = ρ and for eachN ≥ 1, ρφ mod $N ∈ E [a,b]
F,S . On the other hand, HomO(q/q2,O/$m)

identifies with the preimage in

HomO(R
[a,b]

D,S
, Am)→ HomO(R

[a,b]

D,S
,O)

of the classifying morphism of D. We define trm to be the map sending [φ] to the classifying map

of the pseudocharacter tr ρφ in HomO(R
[a,b]

D,S
, Am) which lies in HomO(q/q2,O/$m) under the above

identification. Note that ρpkφ = αk ◦ ρφ and that if ϕf ∈ HomO(R
[a,b]

D,S
, Am) is the image of f ∈

HomO(q/q2,O/$m), then ϕpkf = αk ◦ ϕf .
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We want to find a power of p which kills ker trm and which only depends on ρ. So let [φ] be in the
kernel of trm, which means that tr ρφ = tr ρ. By (2) of Proposition 4.3.5, there exists a constant k0

which depends only on ρ(GF,S) ⊆ GLn(O), and an element X ∈ Mn(E/O) such that

(1 + εX)ρpk0φ(1− εX) = ρ

this means that pk0φ is a coboundary in H1(F,WE/O). But from the short exact sequence

0→Wm →WE/O
×$m−−−→WE/O → 0 (4.10)

we get that the kernel of H1(F,Wm) → H1(F,WE/O) is isomorphic to H0(F,WE/O) ⊗ O/$m. The
latter is killed by some pc0 where c0 ∈ N is independent of m (all the $-divisible elements are killed
after tensoring with O/$m). Therefore, ker trm is killed by pk0+c0 . We may assume without loss of
generality that r is surjective

Now we want to do the same thing for coker trm. So let D′ be an element in the right hand side
of (4.9). By hypothesis, there exists a Cayley-Hamilton representation (B,D′′, r) of GF,S such that

D′ = D′′ ◦ r and that the finite quotients of B lie in E [a,b]
F,S .

By (1) of Proposition 4.3.5, there exists a homomorphism ρφ : GF,S → GLn(A) such that αk0 ◦D′ =
tr ρφ. But since tr ρ$mφ = βm ◦ D′ = tr ρ where βm : A → A is the ring homomorphism sending ε
to $mε, we get from (2) of the same proposition that [φ] ∈ H1(F,WE/O) is killed by multiplication

by $mpk0 . So by the exact sequence in (4.10), the element pk0 [φ] lies in the image of H1(F,Wm) in
H1(F,WE/O). Therefore, we can assume that there exists a representation ρφ : GF,S → GLn(Am)
such that tr ρφ = α2k0 ◦D′.

It remains to show that there exists a constant c1 ∈ N such that αc1 ◦ ρφ mod $N lies in E [a,b]
F,S

(in this case pc1 [φ] is in the preimage under (4.9) of the morphism associated to α2k0+c1 ◦D′).
So let Aφ = ρφ(Am[GF,S ]) ⊆ Mn(Am). By Burnside’s lemma (Corollary 2.3.2), since ρ ⊗O E is
absolutely irreducible, ρ(E[GF,S ]) = Mn(E), so ρ(O[GF,S ]) is a lattice inside Mn(E) which means
that there exists an integer k1 ≥ 0 such that pk1Mn(O) ⊆ ρ(O[GF,S ]). Let us show that Apk1φ con-

tains pk1Mn(Am): since pk1Ei,j ∈ ρ(O[GF,S ]) (Ei,j is the usual elementary matrix in Mn(O)), there
exists a matrix Xi,j ∈ Mn(O/$m) such that pk1Ei,j + εXi,j ∈ Aφ, then applying αk1 , we get that
pk1Ei,j + εpk1Xi,j ∈ Apk1φ. Multiplying by ε, we get that εpk1Ei,j ∈ Apk1φ for all (i, j), in particular,

εpk1Xi,j ∈ Apk1φ so that pk1Ei,j ∈ Apk1φ as desired.
Let D′′′ : Apk1φ → Am be the determinant induced by the inclusion Apk1φ ↪→ Mn(Am). If x ∈ kerD′′′,

then by (1) of Lemma 4.1.3, Tr(xpk1Ei,j) = 0 where Tr is the usual trace on matrices. Thus, kerD′′′

is contained in Mn(Am)[pk1 ] and so is annihilated by the homomorphism αk1 : Mn(Am) → Mn(Am).
It follows that there exists a commutative diagram of Am-algebras:

Am[GF,S ] Apk1φ Mn(Am)

B Am[GF,S ]/ ker(α2k0+k1 ◦D′) Mn(Am)

r

ρ
pk1φ

αk1

where the quotient map Am[GF,S ] → Am[GF,S ]/ ker(α2k0+k1 ◦ D′) factors through B since ker(r) ⊆
ker(D′) ⊆ ker(α2k0+k1 ◦ D′) (by (1) of Lemma 4.1.3) and the bottom right arrow exists because
αpk1+2k0 ◦ D = D′′′ ◦ ρpk1φ. From this diagram, we get that Mn(Am) equipped with the action

of Am[GF,S ] induced by ρp2k1φ has finite quotients which lie in E [a,b]
F,S (since this hold for the finite

quotients of B). Therefore, we get that α2k1 ◦ ρφ mod $N ∈ E [a,b]
F,S . In conclusion, we get that the

cokernel of trm is annihilated by p2k1+2k0 .
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Let RS be the quotient of R
[a,b]

D,S
corresponding to pseudocharacters D′ such that (D′)c = (D′)∨⊗χ|GF,S .

Then, ρ determines a morphism RS → O, and we write qS for its kernel.

We define local Selmer conditions LS = {Lv} = {Lv,m} for Wm by setting:

• If v 6∈ S, then Lv,m is the unramified subgroup of H1(F+
v ,Wm).

• If v ∈ S − Sp, then Lv,m is the whole space H1(F+
v ,Wm).

• If v ∈ Sp, then Lv,m is the subspace of H1(F+
v ,Wm) corresponding to self-extensions of ρGFṽ ⊗O

O/$m which are subquotients of lattices in semistable representations with Hodge-Tate weights
in [a, b].

The dual Selmer conditions L⊥S = {L⊥v } = {L⊥v,m} are defined to be the duals of LS under Tate’s
duality. Thus, we have the following Selmer groups:

H1
LS (F+,Wm) = ker

(
H1(F+,Wm)→

∏
v

H1(F+
v ,Wm)/Lv,m

)

H1
L⊥S

(F+,Wm(1)) = ker

(
H1(F+,Wm(1))→

∏
v

H1(F+
v ,Wm(1))/L⊥v,m

)

All the finiteness results that we will implicitly assume on the Galois cohomology groups follow from
the following proposition, which is due to J.Tate, and whose proof can be found in [Bel09].

Proposition 4.4.3. Let G be a profinite group which satisfies Mazur’s Φp-condition, V be a continuous
representation of G, and Λ ⊆ V be a G-stable O-lattice in V . Then, we have the following:

(1) The continuous cohomology group H i(G,Λ) (with Λ given its $-adic topology) is a finite O-
module, and we have a canonical isomorphism

H i(G,V ) ∼= H i(G,Λ)⊗O E

(2) We have a canonical isomorphism H i(G,Λ) = lim←−H
i(G,Λ/$nΛ).

In particular, the Selmer groups defined are finite length O-modules. We denote their respective
lengths by h1

LS (F+,Wm) and h1
L⊥S

(F+,Wm(1)).

We let
H1
LS (F+,WE) =

(
lim←−
m

H1
LS (F+,Wm)

)
⊗O E

where the inverse limit is taken with respect to the projections Wm+1 →Wm, and

H1
LS (F+,WE/O) = lim−→

m

H1
LS (F+,Wm)

where the direct limit is taken with respect to the injections Wm
∼= $Wm+1 ⊂Wm+1.

Proposition 4.4.4. For each m ≥ 1, there is a canonical morphism:

trm,S : H1
LS (F+,Wm)→ HomO(qS/q

2
S ,O/$m) (4.11)

Moreover, there exists a constant d ≥ 0 depending only on r such that pd annihilates the kernel and
cokernel of trm,S.
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Proof. The non-trivial element c ∈ Gal(F/F+) acts on H1

E [a,b]
F,S

(F,Wm) via its action on Wm. On

the other hand, we also have an action of c on R
[a,b]

D,S
given by sending a pseudorepresentation D′ to

(D′)c,∨⊗χ|GF,S (note that the condition w = a+ b ensures that this pseudorepresentation satisfies the

condition E [a,b]
F,S ). This gives an action of c on the right-hand-side of (4.9) and we have that

HomO(qS/q
2
S ,O/$m) = HomO(q/q2,O/$m)c

The map trm is c-equivariant, and we get the map trm,S by composing f : H1
LS (F+,Wm)→ H1

E [a,b]
F,S

(F,Wm)c

with trm. By the inflation-restriction exact sequence, the kernel and cokernel of the map f lie respec-

tively in H1(Gal(F/F+),W
GF,S
m ) and H2(Gal(F/F+),W

GF,S
m ) which sizes are bounded independently

of m by absolute irreducibility of ρ.

Proposition 4.4.5. (1) There is an isomorphism trE,S : H1
LS (F+,WE)→ HomO(qS/q

2
S , E),

(2) The natural map H1
LS (F+,WE)→ H1(FS/F

+,WE) identifies H1
LS (F+,WE) with the geometric

Selmer group H1
g,S(F+,WE).

(3) Assume that for each v ∈ S, ρ|GFṽ
is generic. Then H1

g,S(F+,WE) = H1
f (F+,WE).

Proof. 1) This follows by taking the inverse limit of (4.11) over m and then inverting p.
2) By the main result in [Liu07], H1

LS (F+,WE) classifies semistable self-extensions of ρE . But by
[Nek93, Corollary 1.27], a de Rham self-extension of ρ⊗O E is semistable. Hence the result.
3) This follows from [All14, Lemma 1.1.7] and the equality

dimQp H
1
g,S(F+,WE) = dimQp H

1
f (F+,WE) + dimQp Dcrys(WE(1))ϕ=1

Lemma 4.4.6. For m′ ≥ m, the inverse image of Lv,m′ in H1(F+
v ,Wm) under the map

H1(F+
v ,Wm)→ H1(F+

v ,Wm′)

induced by the injection Wm ↪→Wm′ is Lv,m. Consequently, the natural map

H1
LS (F+,Wm)→ H1

LS (F+,WE/O)[$m]

is surjective.

Proof. The natural map H1(F+
v ,Wm)→ H1(F+

v ,Wm′) corresponds to the push-forward of a lift with
values in GLn(Am) to a lift with values in GLn(Am′) via the map Am → Am′ sending ε to $m′−mε.
Now Anm′ is finitely generated as an Anm-module, so there is a surjective map of O[GFṽ ]-modules

(Anm)k � Am′ . So in case v ∈ Sp, by the fact that E [a,b]
F,S is stable under direct sums and quotients, we

see that the semi-stability condition is satisfied.

Now we have a commutative diagram

0 H1
LS (F+,Wm) H1(FS/F

+,Wm)
⊕

v∈Sp H
1(F+

v ,Wm)/Lv,m

0 H1
LS (F+,WE/O)[$m] H1(FS/F

+,WE/O)[$m]
⊕

v∈Sp lim−→
m′

H1(F+
v ,W

′
m)/Lv,m′
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where the top row is exact by definition of the local Selmer conditions, and the bottom row is also
exact since it comes from taking the colimit of the top row for varying m (cohomology commutes with
colimits). Looking at the long exact sequence of cohomology, we see that the middle vertical arrow is
surjective. Moreover, by what we proved above, the rightmost vertical arrow is surjective. Therefore,
by a diagram chase, we get that the leftmost vertical arrow is surjective as desired.

4.4.1 Taylor-Wiles primes

Since we do not assume that ρ is absolutely irreducible, we need to introduce an adapted notion of a
Taylor-Wiles place.

Definition 4.4.7. If Q is a finite place of F+ and N ≥ 1, we say that Q is a set of Taylor-Wiles
places of level N if it satisfies the following conditions:

• Q ∩ S = ∅

• For each v ∈ Q, v = wwc splits in F , and ρ(Frobw) has n distinct eigenvalues αw,1, . . . , αw,n ∈ O.

• For each v ∈ Q, qv ≡ 1 mod pN .

We say that a tuple (Q, Q̃, (αṽ,1, . . . , αṽ,n)) is a Taylor-Wiles datum of level N if Q is a set Taylor-Wiles

places of level N , Q̃ is a set consisting of a choice, for each v ∈ Q, of a place ṽ of F above v, and
(αṽ,1, . . . , αṽ,n) is a choice of ordering of the eigenvalues of ρ(Frobṽ).

Lemma 4.4.8. Suppose that the following conditions are satisfied:

(1) For each v ∈ S, ρ|GFṽ
is generic.

(2) For each place v -∞, χ(cv) = −1.

then there exists d ≥ 0 with the following property: for every N ≥ 1, every Taylor-Wiles datum
(Q, Q̃, (αṽ,1, . . . , αṽ,n)), and every 1 ≤ m ≤ N , we have

h1
LS∪Q(F+,Wm) ≤ d+ h1

L⊥S∪Q
(F+,Wm(1)) +mn|Q|+

∑
v∈Q

∑
i 6=j

ord$(αṽ,i − αṽ,j)

Proof. By the Greenberg-Wiles formula (which is the equivalent of (2.3) without the simplifications
in that case), we have

h1
LS∪Q(F+,Wm) =h1

L⊥S∪Q
(F+,Wm(1)) + h0(F+,Wm)− h0(F+,Wm(1))

+
∑

v∈S∪Q

(
`v,m − h0(Fṽ,Wm)

)
−
∑
v|∞

`((1 + cv)Wm) (4.12)

where `v,m = `(Lv,m) with ` denoting the length of anO-module. For an infinite place v, the description
of the cohomology of a cyclic group shows that

`((1 + cv)Wm) = `(W cv
m )− h2(F+

v ,Wm)

Looking at the action of cv, we see that W cv
m consists of anti-symmetric matrices (up to an inner

automorphism); moreover, h2(F+
v ,Wm) can be bounded independently of m. Thus, the contribution

of the infinite places to (4.12) equals to [F+ : Q]mn(n−1)
2 up to a uniformly bounded error.

Now since ρ is absolutely irreducible, we have that H0(F+,W ) = 0, so we get that H0(F+,Wm) =
H1(F+,W )[$m]. But H1(F+,W ) is a finitely generated module, so h0(F+,Wm) can be bounded
uniformly. Similarly, since ρ is generic, H0(F+,W (1)) = 0 ([All14, Lemma 1.1.5]) and we can bound
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h0(F+,Wm) uniformly.
Now if v ∈ Q, then by the formula for the Euler characteristic and the local Tate duality, we have that

`v,m − h0(Fṽ,Wm) = h2(Fṽ,Wm) = h0(Fṽ,Wm(1))

But since qv ≡ 1 mod pN and N ≥ m, the action of Frobṽ on Wm via the cyclotomic char-
acter is trivial, so we have h0(Fṽ,Wm(1)) = h0(Fṽ,Wm). The latter is bounded from above by
mn+

∑
i 6=j ord$(αṽ,i − αṽ,j).

Finally, suppose that v ∈ Sp. We consider the following lifting functor

D�,[a,b]
v : CO → Sets

sending A ∈ CO to the set of lifts of ρ|GFṽ
to GLn(A) whose projections to Artinian quotients are lattices

in semistable representations with Hodge-Tate weights in [a, b]. This functor is represented by R
�,[a,b]
v ∈

CO, and the representation ρ|GFṽ
determines a morphism R

�,[a,b]
v → O. If qv denotes the kernel of

this homomorphism, then as in the proof of Proposition 4.9, we have that HomO(qv/q
2
v,O/$m) ∼=

(qv/qv)
∨ ⊗ O/$m equals to the preimage of Lm,v under the map Z1(Fṽ,Wm) → H1(Fṽ,Wm) (since

we are considering the lifting functor). Therefore, we get that

`v,m − h0(Fṽ,Wm) = `(qv/q
2
v ⊗O/$m)−mn2

To finish the proof, we want to show that `v,m − h0(Fṽ,Wm) − [F+ : Q]mn(n−1)
2 can be bounded

independently ofm. This will be achieved if we can show that dimE(qv/q
2
v⊗OE) = n2+[F+

v : Qp]
n(n−1)

2
which we will do now.

So let CE be the category of local Noetherian E-algebras with residue field E. We follow [Kis09, (2.3)]
and define for B ∈ CE the category IntB whose objects are finitely generated O-subalgebras A ⊆ E
such that A ⊗O E = B such that b(A) = O, where b : B → E is the canonical projection. The
morphisms in this category are given by the natural inclusion, and we note that IntB is ordered by
inclusion. We define C′O to be the category consisting of O-algebras A in CO equipped with a map of
O-algebras A→ O. In particular, IntB is a subcategory of C′O.
We have a functor

D�,[a,b]
v,(ρ) : C′O → Sets

sending a couple (A,A→ O) to the set of representations ρA ∈ D�,[a,b]
v (A) such that ρ = (A→ O)◦ρA.

This functor allows us to define another functor:

D�,[a,b]
v,(ρ) : CE → Sets

by setting for B ∈ CE :

D�,[a,b]
v,(ρ) (B) = lim−→

A∈IntB

D�,[a,b]
v,(ρ) (A, b : A→ O)

Now any representation ρ′ ∈ D�,[a,b]
v,(ρ) (B) is induced by a map ϕρ′ : R

�,[a,b]
v → A for some A ∈ IntB

with b ◦ ϕρ′ = ϕρ. Thus, by localisation and then completion, ϕρ′ extends to a continuous morphism

(R
�,[a,b]
v )∧qv → B. Conversely, any continuous (R

�,[a,b]
v )∧qv → B sends (R

�,[a,b]
v )∧qv to a compact subring

A of B, so that A ∈ IntB. Therefore, we see that (R
�,[a,b]
v )∧qv represents the functor D�,[a,b]

v,(ρ) . On the
other hand, we can define another functor:

D�,[a,b]
v,ρ : CE → Sets
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sending B ∈ CE to the set of lifts of ρ|GFṽ
⊗OE to GLn(B) whose Artinian quotients are semistable with

all Hodge-Tate weights in [a, b]. Thanks to [Liu07, Conjecture 1.0.1], we have a natural transformation:

D�,[a,b]
v,(ρ) → D

�,[a,b]
v,ρ

which is actually a natural isomorphism. Indeed, let B ∈ CE and A◦ ∈ IntB. Set n = ker(b : B → E)
and n◦ = n ∩A◦ and consider for each n ≥ 1 the algebra:

A◦n =

∞∑
j=1

p−nj(n◦)j +A◦

which lies in IntB. We have that b−1(O) =
⋃
n≥1A

◦
n, and since a representation ρB ∈ D�,[a,b]

v,ρ (B)

factors by definitions through b−1(O), it must factor through A◦n for some sufficiently large n (by
compactness of GFṽ).

In conclusion, we get that (R
�,[a,b]
v )∧qv represents the functor D�,[a,b]

v,ρ ; which by [All14, Theorem 1.2.7],

implies that (R
�,[a,b]
v )∧qv is formally smooth of dimension n2 + [F+

v : Qp]
n(n−1)

2 which gives us the
result.

Lemma 4.4.9. Consider a finitely generated O-module M , and let N ≥ 1 and d, g ≥ 0 be integers.
Suppose that for all m ≤ N , we have:

`(M/$m) ≤ gm+ d

then there is a map Og →M/$N with cokernel of length ≤ d.

Proof. We use induction on the number of generators of M . First if M is cyclic, then the lemma is
trivial. Next, for a general M , note that nothing changes if we replace M by M/$N , so we do that
so that M has finite length. Let C be a cyclic submodule of M of maximal length, and let N ′ ≤ N be
the maximal length of a cyclic submodule of M ′ = M/C. For all m ≤ N ′, we have by additivity of the
length that `(M ′/$m) = `(M/$m)−m ≤ (g − 1)m+ d. By the induction hypothesis, we get a map
Og−1 → M ′/$N ′ = M ′/$N with cokernel of length ≤ d. This map extends to a map Og → M/$N

with the same cokernel.

Corollary 4.4.10. With the same hypotheses as in Lemma 4.4.8, there exists an integer d ∈ N such
that for all N ≥ 1 and every Taylor-Wiles datum of level N , there is a map

On|Q| → H1
LS∪Q(F+,WN )

with cokernel of length ≤ d+ h1
L⊥S∪Q

(F+,WN (1)) +
∑

v∈Q
∑

i 6=j ord$(αṽ,i − αṽ,j)

Proof. Thanks to Lemma 4.4.9 and (4.4.8), we see that to prove this statement, it suffices to find two
integers d0, d1 ≥ 0 such that for any 1 ≤ m ≤ N we have:

`
(
H1
LS∪Q(F+,WN )/$m

)
≤ d0 + h1

LS∪Q(F+,Wm) (4.13)

and,
h1
L⊥S∪Q

(F+,Wm(1)) ≤ d1 + h1
L⊥S∪Q

(F+,WN (1)) (4.14)

Let us first treat (4.13). From the exact sequence

0→ H0(F+,WE/O)/$m → H1(F+,Wm)→ H1(F+,WE/O)[$m]→ 0 (4.15)
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and the diagram in Lemma 4.4.6, we see that the map

H1
LS∪Q(F+,Wm)→ H1

LS∪Q(F+,WE/O)[$m]

is surjective, with kernel a subquotient of H0(F+,WE/O). Applying this for m = N , we get a surjective
morphism

H1
LS∪Q(F+,WN )/$m → H1

LS∪Q(F+,WE/O)[$N ]/$m

But we have that H1
LS∪Q(F+,WE/O)[$N ]/$m ∼= H1

LS∪Q(F+,WE/O)[$m], so (4.13) holds for d0 =

h0(F+,WE/O) (which is finite since H0(F+,WE/O) is torsion and embeds into H1(F+,W )).

For the second inequality, note that since inclusion Wm(1) ↪→ WE/O(1) factors through WN (1), the
kernel of the map

H1(FS/F
+,Wm(1))→ H1(FS/F

+,WN (1)) (4.16)

is contained in the kernel of the map

H1(FS/F
+,Wm(1))→ H1(FS/F

+,WE/O(1))

which is subquotient ofH0(F+,WE/O(1)) (by the exact sequence similar to (4.15)). ButH0(F+,WE/O(1))
is torsion and embeds into H1(F+,W (1)) (by the same argument as in Lemma 4.4.8). Therefore, (4.14)
will hold with d1 = h0(F+,WE/O(1)) if we can show that the map (4.16) sends H1

LS∪Q(F+,Wm(1)) to

H1
LS∪Q(F+,WN (1)). This means that for v ∈ Sp, the map H1(F+

v ,Wm(1))→ H1(F+
v ,WN (1)) should

send L⊥v,m to L⊥v,N . But by duality we see that this is immediate from the definitions.

4.4.2 Enormous subgroups

In order to find a set of Taylor-Wiles places with prescribed properties, one usually puts some technical
restrictions on the residual image of ρ. Namely one requires ρ(GF (ζp)) to act absolutely irreducibly as
in the first part of the thesis, or for it to be “big” in the sense of [CHT08, §2.5], or “enormous” in the
sense of [KT17, Definition 4.10]. We adapt the last notion to the characteristic zero case, and give the
following definition:

Definition 4.4.11. A subgroup H ⊆ GLn(O) is said to be enormous if for all simple E[H]-submodule
V ⊆WE , we can find h ∈ H with n distinct eigenvalues in E and an eigenvalue α ∈ E of h such that
tr eh,αV 6= 0, where eh,α ∈WE is the h-equivariant projection to the α-eigenspace.

Note that unlike [KT17, Definition 4.10], we do not require the vanishing of the zeroth and first
cohomology groups of H with the adjoint action. In fact this will be a consequence of the purity of
the considered Galois representation (see Corollary 4.4.15), and the following lemma:

Lemma 4.4.12. If H ⊆ GLn(O) is an enormous subgroup, then H acts absolutely irreducibly on En.
In particular, we have H0(H,W 0

E) = 0.

Proof. Since En has no stable subspace under the action of WE , it suffices to show that H spans WE

as an E-vector space. So for the sake of contradiction, suppose that

U = {u ∈WE , tr(hu) = 0 ∀h ∈ H}

is non-zero, and let V ⊆ U be a simple E[H]-submodule. Since H is enormous, there exists h ∈ H,
and α ∈ E an eigenvalue of H such that tr eh,αV 6= 0. This is a contradiction since eh,α is a polynomial
in h.
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The following lemmas give various reformulations of our definition which we will use, and also an
interesting condition for a subgroup of GLn(O) to be enormous.

Lemma 4.4.13. Let H ⊆ GLn(O) be a compact subgroup, and suppose that the characteristic poly-
nomial of every element in H splits over E. Then, the following conditions are equivalent:

(1) H is enormous,

(2) For all simple E[H]-submodules V ⊆ W 0
E = ad0ρ ⊗ E, we can find h ∈ H with n-distinct

eigenvalues and α ∈ E such that α is an eigenvalue of h and tr eh,αV 6= 0.

(3) For all non-zero E[H]-submodules V ⊆WE, there exists h ∈ H with n distinct eigenvalues such
that V 6⊂ (h− 1)WE.

(4) For all non-divisible O[H]-submodules V ⊆WE/O, there exists h ∈ H with n-distinct eigenvalues
such that V 6⊂ (h− 1)WE/O.

Proof. First note that (1) and (2) are equivalent since the subspace of scalar matrices ZE ⊆WE form
a complement to W 0

E inside WE , and clearly tr eh,αz 6= 0 for all z ∈ ZE and any h ∈ H with eigenvalue
α ∈ E.
Now if h ∈ H has n distinct eigenvalues, then it acts semisimply on WE . Hence, there is a unique
h-equivariant direct sum decomposition WE = W h

E ⊕ (h− 1)WE (W h
E ∩ (h− 1)WE = 0 since ker(h−

1)2 = ker(h − 1)). If V ⊆ WE is an h-invariant subspace, then we also have a decomposition V =
V h⊕ (h−1)V . Since eh,α for an eigenvalue α ∈ E commutes with h, we have that tr eh,α(h−1)V = 0.
On the other hand, if v ∈ V h, then v commutes with h, so it stabilizes the eigenspaces of h. In
particular, if v 6= 0, then there exists an eigenvalue α ∈ E such that tr eh,αv 6= 0. Therefore, we get
that tr eh,αV 6= 0 for some α ∈ E if and only if V h, which in turn, is equivalent to V 6⊂ (h − 1)WE .
This shows that (1) and (3) are equivalent.

It remains to show that (3) and (4) are equivalent. To do this, note that we have a GLn(O)-equivariant
bijection between the E-subspaces of WE and the divisible submodules of WE/O. This bijection sends
V ⊆ E to V +W/W , and V ′ ∈WE/O to

V = {v ∈WE | $−nv mod W ∈ V ′, ∀n ≥ 0}

In particular, it sends (h− 1)WE to (h− 1)WE/O which gives the desired equivalence.

Lemma 4.4.14. Let H ⊆ GLn(O) be a compact subgroup such that for each h ∈ H, the characteristic
polynomial of h splits in E.

(1) If H ′ ⊆ H is closed subgroup such that H ′ is enormous, then so is H.

(2) Let G ⊆ GLn be the Zariski closure of H. If G◦ (the connected component containing the
identity) contains regular semisimple elements and acts absolutely irreducibly on En, then H is
enormous.

Proof. (2) We can assume that G = G◦, in particular G is irreducible (by [Mil18, 2.6]). Let Hreg ⊆ H
be the set of regular semisimple elements of H, and similarly for Greg ⊆ G. Then, by hypothesis, Greg

is a non-empty Zariski open subset of G, and the Zariski closure of H is contained in the union of the
Zariski closure of Hreg and G−Greg. By irreducibility of G, this forces Hreg to be Zariski dense in G.
Now let v ∈ WE , and suppose that for each h ∈ Hreg, trhv = 0, then by Zariski density of Hreg, we
must have tr gv = 0 for all g ∈ G. But G acts absolutely irreducibly, so by Lemma 2.3.2, G(E) spans
WE which implies that v = 0.
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Some vanishing of the cohomology result

The goal of this subsection is to prove Corollary 4.4.15 which we will be using for the existence of the
Taylor-Wiles primes. The proof is based on the article [Ser71] where the author proves the result for
Galois representations associated to the p-divisible group of an Abelian Variety.

If g is a Lie algebra over a field k and M is a g-module, we define the n-th cohomology group of g
with coefficients in M to be the n-th left derived functor of the functor of invariants M 7→ Mg. In
other words, it is given by:

Hn(g,M) = ExtnUg
(k,M)

Concretely, we define the space of n-cochains on g with coefficients inM to be Cn(g,M) = Homk(Λ
ng,M)

which is the space of n-linear alternating forms on M and we set C0(g,M) = M . This defines a cochain
complex whose differential map d : Cn(g,M)→ Cn+1(g,M) is given by

df(g1, . . . , gn+1) =
∑

1≤i<j≤n+1

(−1)i+jf([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xn+1)

+
n+1∑
i=1

(−1)i+1xi · f(x1, . . . , x̂i, . . . , xn+1)

for f ∈ Cn(g,M). This cochain complex is called the Chevalley-Eilenberg complex and taking its
cohomology we recover the Hn(g,M)’s. For each x ∈ g, we can also define two maps of complexes:

• The interior product: (ix)n : Cn(g,M)→ Cn−1(g,M) given by (ix)nf(g1, . . . , gn−1) = f(x, g1, . . . , gn−1),
for f ∈ Cn(g,M) and gi ∈ g.

• The lie derivative: (θx)n : Cn(g,M)→ Cn(g,M) given by

(θx)nf(g1, . . . , gn) = x · f(g1, . . . , gn)−
n∑
i=1

f(g1, . . . , [x, gi], . . . , gn)

for f ∈ Cn(g,M) and gi ∈ g.

Note that both maps are related by the Cartan magic formula

dix + ixd = θx

which says that θx is null homotopic.
In what follows, we give a criterion, due to Serre [Ser71], for the vanishing of the cohomology groups
of a lie algebra g ⊆ gl(V ) with coefficients in a k-vector space V . If x ∈ g, we let Lx be the set of
eigenvalues of x acting on V (taken inside the algebraic closure k of k). We say that Lx satisfies Serre’s
condition for N ≥ 1, which we write (SCN ) if for each tuple (λ1, . . . , λN+1, µ1, . . . , µN ) ∈ L2N+1

x , we
have

λ1 + · · ·+ λN+1 6= µ1 + · · ·+ µN

It is clear that if n ≤ N , (SCN ) implies (SCn).

Theorem 4.4.15. Let N ≥ 1, if g contains an element x such that Lx satisfies (SCN ), then
Hn(g, V ) = 0 for all n ≤ N .

Proof. Since θx : C•(g, V ) → C•(g, V ) is null homotopic, it suffices to show that each (θx)n is an
isomorphism for n ≤ N .
Seeing Cn(g, V ) as a subspace of Tn(g′)⊗V (g′ = Homk(g, k)) identifies (θx)n with the diagonal action
of x such that for φ ∈ g′, (x · φ)(y) = −φ([x, y]) (the lie dual of the adjoint action). On the other
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hand, g can be identified with a subspace of V ⊗ V ′ where the adjoint action of x on g is compatible
with the action of x on V ⊗ V ′ given by

x · (a⊗ φ) = x · a⊗ φ− a⊗ φ ◦ x

Hence, g′ is a quotient of V ′⊗V compatibly with the actions defined above. In total, Cn(g, V ) can be
seen as a subquotient of Tn+1(V ) ⊗ Tn(V ′) which implies that the eigenvalues of (θx)n on Cn(g, V )
are of the form

(λ1 + · · ·+ λn+1)− (µ1 + · · ·+ µn), λi, µi ∈ Lx
but Lx satisfies (SCn) by hypothesis, so the eigenvalues of (θx)n are non-zero, which means that it is
an isomorphism as desired.

This theorem has the following consequence which will be of interest to us. But before stating it,
recall that a Galois representation ρ : GF → GL(V ) ( V is a finite dimensional Qp-vector space) is
pure of weight w if there exists a finite set of places S of F such that for each place v 6∈ S, ρ is
unramified at v and each eigenvalue α of ρ(Frobv) (the geometric Frobenius) is a Weil number, i.e.,
for each embedding ι : Qp ↪→ C, we have

|ια|2∞ = (Nv)w

(in particular α is algebraic).

Corollary 4.4.16. [Kis04, Lemma 6.2]
Let ρ : GF → GL(V ) be a pure Galois representation over a finite dimensional Qp-vector space V . If
we let G be the image of GF in GL(V ), then Hn(G,V ) = 0 for all n ≥ 0.

Proof. We let v be a place of F such that p - v and v 6∈ S. If α1, . . . , αn, β1 . . . , βm are eigenvalues of
ρ(Frobv) with n 6= m, then α1 · · ·αnβ−1

1 · · ·β−1
m is a Weil number of weight (n −m)w 6= 0, hence it

is not a root of unity. But G is a compact p-adic lie group with lie algebra g ⊆ gl(V ), so the p-adic
logarithm

log : G→ g

is well defined over G. We consider x = log(ρ(Frobv)) ∈ g whose set of eigenvalues Lx is formed by
the log(α) for eigenvalues α of ρ(Frobv). Then, by the above considerations, we see that Lx satisfies
(SCn) for all n ≥ 0. Therefore, by Theorem 4.4.15, we get that Hn(g, V ) = 0 for all n ≥ 0. But
by a theorem due to Lazard [Laz65, Theorem V.2.4.10(iii)], Hn(G,V ) is a sub-Qp-vector space of
Hn(g, V ) hence the result.

4.4.3 Existence of the Taylor-Wiles primes

We now have all the ingredients to find a set of Taylor-Wiles places with nices properties.

Lemma 4.4.17. Let q ≥ corankOH
1(FS/F

+,WE/O(1)) (= rankO HomO
(
H1(FS/F

+,WE/O(1)), E/O
)
)

and suppose that ρ satisfies the following conditions

(1) ρ is pure of some weight.

(2) ρ(GF (ζp∞ )) is enormous.

then there exists d ∈ N, such that for any N ∈ N we can find a Taylor-Wiles datum
(
Q, Q̃, (αṽ,1, . . . , αṽ,n)

ṽ∈Q̃
)

of level N with |Q| = q and

(i) for all v ∈ Q and i 6= j, we have ord$(αṽ,i − αṽ,j) ≤ d
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(ii) h1
L⊥S∪Q

(
F+,WN (1)

)
≤ d

Proof. By definition of the Selmer groups, for a set of Taylor-Wiles places Q we have an exact sequence

0→ H1
L⊥S∪Q

(F+,WN (1))→ H1
L⊥S

(F+,WN (1))→
⊕
v∈Q

H1(k(v),WN (1))

If we show that there exists σ1, . . . σq ∈ GF (ζp∞ ) such that

- for each 1 ≤ i ≤ q, ρ(σi) has n distinct eigenvalues in E,

- the kernel of the map H1
(
FS/F

+,WE/O(1)
)
→

q⊕
i=1

H1
(
〈ρ(σi)〉,WE/O(1)

) ∼= q⊕
i=1

WE/O(1)/(σi −

1)WE/O is a finite length O-module, where 〈ρ(σi)〉 ⊆ GLn(O) is the procyclic group topologically
generated by ρ(σi).

then from the long exact sequence of cohomology coming from the short exact sequence

0→WN (1)→WE/O(1)
×$N−−−→WE/O(1)→ 0

we get the following Cartesian diagram

0 H0
(
FS/F

+,WE/O(1)
)
/$N H1

(
FS/F

+,WN (1)
)

H1
(
FS/F

+,WE/O(1)
)
[$N ] 0

0
⊕q

i=1H
0
(
〈ρ(σi)〉,WE/O(1)

)
/$N

⊕q
i=1H

1
(
〈ρ(σi)〉,WN (1)

) ⊕q
i=1H

1
(
〈ρ(σi)〉,WE/O(1)

)
[$N ] 0

Note that since WE(1) is pure of weight −2, we have by Corollary 4.4.16 that H0
(
FS/F

+,WE(1)
)

= 0,
hence H0

(
FS/F

+,WE/O
)

is a finite length O-module. Using the snake lemma in the above diagram,
we conclude that the kernel of

H1
(
FS/F

+,WN (1)
)
→

q⊕
i=1

H1
(
〈ρ(σi)〉,WN (1)

)
has length which is bounded independently of N . Now by Chebotarev’s density theorem, for each
N ≥ 1, we can find places v1, . . . vq of F+ such that Frobv1 , . . . ,Frobvq ∈ GF (ζ

pN
) and for each 1 ≤ i ≤ q,

Frobvi is sufficiently close to σi so that ρ(Frobvi) has n distinct eigenvalues, and (σi − 1)WE/O(1) =
(Frobvi −1)WE/O(1) (WE/O(1) has the discrete topology).
It remains to show the existence of the σi with the mentioned properties. Noting that a divisible
O-module of corank d can be written in the form (E/O)d×N where N is a finite length O-module, it
suffices to show that for each nonzero morphism f : E/O → H1

(
FS/F

+,WN (1)
)
, we can find a σ ∈

GF (ζp∞ ) such that ρ(σ) has distinct eigenvalues and Res
GF+,S

〈ρ(σ)〉 ◦f : E/O →WE/O(1)/(σ − 1)WE/O(1)
is still non-zero.
Now let L′∞/F

+ be the extension cut out by WE(1) and let L∞ = L′∞ · F (ζp∞). By Corollary 4.4.16,
we have H1

(
FS/L

′
∞,WE(1)

)
= 0. But since the extension cut out by the cyclotomic character is

F+(ζp∞), we have that F+(ζp∞) ⊆ L′∞ and the extension L∞/L
′
∞ is finite. Since WE(1) is Z-

divisible, we have that H1(L∞/L
′
∞,WE(1)) = 0 and by the inflation-restriction exact sequence, we

get that H1(L∞/F
+,WE(1)) = 0. Thus, from the long exact sequence of cohomology, we see that

H1
(
L∞/F

+,WE/O(1)
)

is a finite length O-module, and in particular it is killed by pd for some d ≥ 1.
From the inflation-restriction exact sequence

0→ H1
(
L∞/F

+,WE/O(1)
)
→ H1

(
FS/F

+,WE/O(1)
)
→ H1

(
FS/L∞,WE/O(1)

)GF+,S
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and the fact that H1
(
FS/L∞,WE/O(1)

)GF+,S ∼= HomGF+,S

(
GL∞,SL∞ ,WE/O(1)

)
( WE/O(1) is a trivial

GL∞,SL∞ -module ) we see that :

Res
GF+,S

GL∞,SL∞
◦f : E/O → HomGF+,S

(
GL∞,SL∞ ,WE/O(1)

)
is still non-zero since E/O is pd-divisible. We let M ⊆WE/O(1) be the O-submodule generated by the
f(x)(σ) for x ∈ E/O and σ ∈ GL∞ . It is non-zero by what we have just proved, and it is a divisible
O[GF (ζp∞ )]-submodule of WE/O(1). Then, since ρ(GF (ζp∞ )) is enormous, there exists σ ∈ GF (ζp∞ ) such
that ρ(σ) has n-distinct eigenvalues in E and M 6⊂ (σ−1)WE/O(1). In other words, there exists m ≥ 0,

τ ∈ GL∞ such that f(1/$m)(τ) 6∈ (σ−1)WE/O(1). If f(1/$m)(σ) 6∈ (σ−1)WE/O(1), then Res
GF+,S

〈σ〉 ◦f
is non-zero and we are done. Otherwise, f(1/$m)(τσ) 6∈ (σ − 1)WE/O(1) = (τσ − 1)WE/O(1) (since

τ acts trivially) and Res
GF+,S

〈τσ〉 ◦f is non-zero.

Finally, we have the following result which summarized all the work we have done up until now :

Theorem 4.4.18. [NT20, 2.31]
Let q ≥ corankOH

1(FS/F
+,WE/O(1)), and suppose that ρ satisfies the following conditions:

(1) ρ is pure of some weight.

(2) For each v ∈ S, ρ|GFṽ
is generic.

(3) For each place v | ∞ of F+, χ(cv) = −1.

(4) ρ(GF (ζp∞ )) is enormous.

then there exists d ∈ N such that for each N ∈ N, we can find a Taylor-Wiles datum QN of level N ,
with |QN | = q and a map

O[[x1, . . . , xnq]]→ RS∪QN

such that the images of the xi are in qS∪QN , and

qS∪QN /(q
2
S∪QN , x1, · · · , xqn)

is a quotient of (O/$d)g0, where g0 = g0(S, ρ, q) as in Lemma 4.4.1.

Proof. Recall that by Corollary 4.4.10 that for all N ≥ 1 there is a map

Onq → H1
LS∪QN

(F+,WN )

whose cokernel is of length ≤ d1 for some d1 ∈ N which is independent of N thanks to Lemma 4.4.17.
Hence, by Proposition 4.4.4, composing this map with trm,S∪QN and using the O-module isomorphism
qS∪QN /q

2
S∪QN ⊗O O/$

N ∼= HomO(qS∪QN /q
2
S∪QN ,O/$

N ) we get a map

Onq → qS∪QN /q
2
S∪QN ⊗O O/$

N

whose cokernel is killed by $d for some d ∈ N independent of N . Therefore, we can define a map
O[[x1, . . . , xnq]]→ RS∪QN sending the xi to the images of the generators of Onq in qS∪QN /q

2
S∪QN ⊗O

O/$N such that
qS∪QN /(q

2
S∪QN , x1, . . . , xnq)⊗O O/$N

is killed by $d. We claim that qS∪QN /q
2
S∪QN is a quotient of Og0 . Indeed, it is a finitely generated

O-module, and qS∪QN /q
2
S∪QN ⊗O/$

∼= mRS∪QN
/(mRS∪QN

, $) which is generated by g0 elements by
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Lemma 4.4.1. So applying Nakayama’s lemma, we get our claim.
Therefore, we have an O-module M = qS∪QN /(q

2
S∪QN , x1, . . . , xnq) which is a quotient of Og0 and

such that M/$NM is killed by $d. Up to shifting the Taylor-Wiles sets, we can assume that N > d.
In this case, the fact that M/$N is killed by $d can only happen if M itself is killed by $d which
gives the result.
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Chapter 5

The Iwahori-Hecke algebra

5.1 The Bernstein presentation

The goal of this section is to give a presentation, due to Bernstein, of the Iwahori Hecke algebra of
GLn (which easily generalized to a split p-adic group). This will later be useful in our treatment of
the automorphic theory.
First, we will recall some facts about split semisimple reductive groups. Then, we will introduce the
Iwahori-Matsumoto presentation of the Iwahori Hecke algebra from which we will derive our desired
presentation.
To write this section, we mainly used the references [Lus89, Bum10, Kir97].

We fix once and for all a field K which is a finite extension of Ql for a prime l, with ring of integers
OK and residue field k. We let qk = #k, and we fix a uniformizer π.

5.1.1 The root system of a split reductive group

Let (G,T ) be a split reductive group over K with lie algebra g = ker
(
G(K[ε]) → G(K)

)
, and let

ad : G→ GLg be the adjoint representation. Since T is diagonalizable its action on g induces a direct
sum decomposition

g = g0 ⊕
⊕

α∈X∗(T )

gα

where g0 = gT = Lie(GT ) and gα is the subspace on which T acts via a non-trivial character α.
The characters occurring in this decomposition are called the roots of (G,T ) and form a finite set
Φ(G,T ) ⊂ X∗(T ). Since GT = CG(T ) = T (its centralizer) so that g0 = Lie(T ) = t, we can write

g = t⊕
⊕

α∈Φ(G,T )

gα

The Weyl group W (G,T ) is defined to be the quotient NG(T )/CG(T ) = NG(T )/T . For an element
σ ∈W , represented by n ∈ NG(T ), we have a morphism T → T given by conjugation by n which only
depends on σ. Therefore, we have an action of W (G,T ) on X∗(T ) given by (σα)(t) = α(n−1tn) for
α ∈ X∗(T ), which can be seen to preserve Φ. Similarly, we also have an action of W (G,T ) on X∗(T )
given by (σλ)(x) = nλ(x)n−1.
If α is a root of (G,T ), we let Tα = ker(α) and Gα = CG(Tα) . The pair (Gα, T ) is a split reductive
group of semisimple rank 1 with Lie algebra

Lie(Gα) = t⊕ gα ⊕ g−α
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where dim gα = dim g−α = 1. Moreover, there exists a unique algebraic subgroup Uα of G, called the
root group, which is normalized by T and isomorphic to Ga. For every isomorphism u : Ga → Uα, we
have

t · u(a) · t−1 = u(α(t)a), ∀t ∈ T (R), a ∈ Gm(R), R K-algebra

The Weyl group W (Gα, T ) contains only one non-trivial element sα, and there exists a unique cochar-
acter α∨ ∈ X∗(T ) such that

sα(x) = x− 〈x, α∨〉 · α ∀x ∈ X∗(T )

The set of coroots Φ∨(G,T ) is the subset of X∗(T ) consisting of the cocharacters α∨ for each α ∈
Φ(G,T ). In fact, the tuple R(G,T ) = (X∗(T ),Φ(G,T ), X∗(T ),Φ∨(T )) is a reduced root datum
attached to (G,T ), and the above observation identifies the abstract Weyl group attached to R(G,T )
with W (G,T ).
The proof of these statements can be found in [Mil15, 22.43].

Example: Root datum associated to GLn:
Let T be the diagonal torus consisting of diagonal entries in G = GLn. The character group
X∗(T ) identifies with Zn via the map sending the character χi : diag(x1, . . . , xn) 7→ xi to the tu-
ple ei = (0, · · · , 1, · · · , 0) (e1, . . . , en is the standard basis if Zn). Similarly, we identify the cochar-
acter grpup X∗(T ) with Zn by sending the cocharacter λi : t 7→ diag(1, . . . , t, . . . , 1) to the tuple
ei = (0, . . . , 1, . . . , 0). The Lie algebra g = Mn(E) decomposes as a direct sum

g = t⊕
⊕
i 6=j

gαi,j

where t is the vector space generated by the Ei,i for 1 ≤ i ≤ n, and gαi,j is the vector space generated
by the matrix Ei,j on which T acts via αi,j = χi − χj . Thus, the set of roots is

Φ(G,T ) = {χi − χj | 1 ≤ i, j ≤ n, i 6= j}

With respect to the Borel subgroup B consisting of upper triangular matrices, the set of positive roots
is equal to

Φ+ = {χi − χj | 1 ≤ i < j ≤ n}

and ∆ = {αi = χi − χi+1 | 1 ≤ i ≤ n − 1} ⊂ Φ+ is a set of simple roots. Therefore, a weight
x = x1χ1 + · · ·+ xnχn is dominant if and only if x1 ≥ · · · ≥ xn.
For 1 ≤ i ≤ n− 1, we have that

Tα = {diag(x1, . . . , xi−1, x, x, xi+2, . . . , xn) | x1 · · ·x · x · · ·xn 6= 0}

and,

Gαi =



∗ 0 · · · 0

0
. . .

∗ ∗
...

... ∗ ∗
. . . 0

0 · · · 0 ∗


with nαi =



1 0 · · · 0

0
. . .

0 1
...

... 1 0
. . . 0

0 · · · 0 1


The action of nαi on T consists of switching the i-th and the (i+ 1)-th coordinate. One easily verifies
that if x ∈ X∗(T ), sαx = x − 〈λi − λi+1, x〉 · (χi − χi+1). In general, the coroot of αi,j ∈ Φ is
α∨i,j = λi − λj .

78



5.1.2 The extended affine Weyl group

Let T be an abstract torus and write X = X∗(T ), X∨ = X∗(T ) with the perfect paring

X ×X∨ : 〈·, ·〉 → Z

We let (X,Φ, α 7→ α∨) be a reduced root datum as in [Mil18, 19]. We decompose Φ into positive
and negative roots Φ+,Φ− and we fix a set of simple roots ∆ = {α1, . . . , αr} ⊂ Φ+. We will use the
element ρ = 1

2

∑
α∈Φ+ α which satisfies 〈α∨i , ρ〉 = 1 for 1 ≤ i ≤ r. We let Q∨ =

⊕
i Zαi ⊆ X∨ be

the coroot lattice. For reasons which will become apparent later, we will assume that for any α ∈ Φ,
α 6∈ 2X. We will also assume that Φ is irreducible, which implies the existence of a (unique) highest
root θ ∈ Φ.
Let X̂ = X ⊕ Zδ whose elements are interpreted as function on X∨ via (x, k)(x′) = 〈x, x′〉 + k. We
define the affine root system Φ̂ = Φ × Zδ, its subset of positive affine roots Φ̂+ = {α + kδ ∈ Φ̂ | k >
0 or k = 0, α ∈ Φ+}, and its subset of simple affine roots ∆̂ = {α0 = (−θ, 1), (α1, 0), . . . (αr, 0)}.
For each α̂ ∈ Φ̂, we define the reflections rα̂ : X̂ → X̂ by

rα̂ : x̂ 7→ x̂− 〈x, α∨〉 · α̂

where x̂ = x + mδ and α̂ = α + kδ. We will write s0, s1, . . . , sr for rα0 , rα1 , . . . , rαr . The affine Weyl
group Waff is defined to be the subgroup of GL(X̂) generated by the reflections rα̂ for α̂ ∈ Φ̂. The
Weyl group W associated to Φ identifies as the subgroup of Waff generated by s1, . . . , sr. We have the
following standard facts about the affine Weyl group:

Proposition 5.1.1. 1. Waff = W n τ(Q∨), where the action of λ ∈ Q∨ over X̂ is given by

τ(λ) : x̂ 7→ x̂− 〈x, λ〉 · δ

Concretely, we have wτ(λ) · w′τ(λ′) = ww′τ(w′−1(λ) + λ′), for w ∈W and λ, λ′ ∈ Q∨.

2. Waff is a Coxeter group with generators {s0, . . . , sr}.

3. For every wτ(λ) ∈Waff, its length `(wτ(λ)) with respect to the generators s0, . . . , sr is equal to

`(wτ(λ)) = |Φ̂+ ∩ (wτ(λ))−1Φ̂−|

=
∑
α∈Φ+

w(α)∈Φ−

|〈λ, α∨〉+ 1|+
∑
α∈Φ+

w(α)∈Φ+

|〈λ, α∨〉| (5.1)

Now we define the extended affine Weyl group W̃ to be the semi-direct product W̃ = W n τ(X∨)
where the action of X∨ on X̂ is given by the same formula as in 1. of the previous proposition. The
action of W̃ on X̂ preserves Φ̂, and Waff is a normal subgroup of W̃ with W̃/Waff = X∨/Q∨. Although

W̃ is not a Coxeter group, we can extend the definition of the length ` to all of W̃ using the formula
(5.1). To ease the notation, we will write `(λ) for `(τ(λ)) if λ ∈ X∨.
The element of length 0 :

Ω = {w̃ ∈ W̃ | `(w̃) = 0} = {w̃ ∈ W̃ | w̃(∆̂) = ∆̂}

form a subgroup of W̃ , and we have that W̃ = Waff o Ω so that Ω ∼= X∨/Q∨. We have the following
properties of the length function:

• `(πw̃) = `(w̃) for π ∈ Ω, w̃ ∈ W̃ .
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• l(w̃si) =

{
`(w̃) + 1, w̃(αi) ∈ Φ̂+

`(w̃)− 1, w̃(αi) ∈ Φ̂−

The Braid group B is defined to be the group generated by the symbols Tw̃ for w̃ ∈ W̃ subject to the
relations

Tw̃Tw̃′ = Tw̃w̃′ if `(w̃w̃′) = `(w̃) + `(w̃′)

In particular, the elements Tπ, for π ∈ Ω, form a subgroup of B isomorphic to Ω. We will write Ti
instead of Tsi for 0 ≤ i ≤ r, and Tλ instead of Tτ(λ) for λ ∈ X∨.

Let q be an indeterminate. We define the affine Hecke algebra Haff to be the quotient of the group
algebra of B over L := Z[q

1
2 , q−

1
2 ] by the two-sided ideal generated by the elements

(Ti + 1)(Ti − q), 0 ≤ i ≤ r

It is a fact that the elements Tw̃, w̃ ∈ W̃ form a basis of Haff over L.

Remark 5.1.2. Note that in the special case where q = 1, we get that T 2
i = 1 for all 1 ≤ i ≤ r. So in

this case, Haff identifies with the group algebra of W̃ with coefficients in L.

Letting X∨+ = {x ∈ X∨ | 〈x, αi〉 ≥ 0, 1 ≤ i ≤ r} be the set of dominant coweights, we see from the
formula (5.1) that for µ ∈ X∨+,

`(µ) =
∑
α∈Φ+

〈µ, α∨〉 = 2〈ρ, µ〉

so that if we let µ′ ∈ X∨+ and w ∈W , then

`(µ+ µ′) = `(µ) + `(µ′) and `(wτ(µ)) = `(w) + `(µ)

This allows us to define elements eλ ∈ Haff for λ ∈ X∨ by setting

eλ := q(
`(ν)−`(µ)

2
)Tµ(Tν)−1 (5.2)

where λ = µ − ν with µ, ν ∈ X∨+. In particular, if µ ∈ X∨+, then eµ = q−
`(µ)

2 Tµ. The above formulas

also show that eλeλ
′

= eλ+λ′ for λ, λ′ ∈ X∨, and that for w ∈W and µ ∈ X∨+, eµ · T̃w = T̃τ(µ)w where

T̃w := q−
`(w)

2 Tw (renormalization).
It is shown in [Lus89, 2.8] that Haff is generated as an algebra by the Tµ for µ ∈ X∨+ and the Tw for
w ∈W .

Lemma 5.1.3. Let λ ∈ X∨ and αi ∈ ∆.

1. If 〈λ, αi〉 = 0, then Tie
λ = eλTi.

2. If 〈λ, αi〉 = 1, then qeλ = Tie
si(λ)Ti.

Proof. 1) First note that we can write λ = µ− ν with µ, ν ∈ X∨+ and 〈µ, αi〉 = 〈ν, αi〉 = 0, so we can
suppose that λ ∈ P∨+ . Next, from the formula (5.1), we see that `(siτ(λ)) = `(λ) + 1 and we also get
from the properties of the length function we mentioned that `(τ(λ)si) = `(λ) + 1. So by the braid
relations, we get that Tsiτ(λ) = TiTλ = TλTi. We conclude by noting that since we supposed that λ is

dominant, eλ = q`(λ)/2Tλ.
2) Same as before, we can write λ = µ − ν with µ, ν ∈ X∨+, 〈µ, αi〉 = 1 and 〈ν, αi〉 = 0. So we can
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suppose that λ ∈ X∨+. Let ε = λ + si(λ) = 2λ − α∨i , then given that if β ∈ ∆ with β 6= αi we have
〈β, αi〉 ≤ 0, we see that ε ∈ X∨+. So we have:

`(ε) = 2〈ε, ρ〉 = 4〈λ, ρ〉 − 2〈α∨i , ρ〉 = 2`(λ)− 2

Moreover, since τ(λ)(αi) ∈ Φ̂−, we have `(τ(λ)si) = `(λ) − 1, and since 〈ε, αi〉 = 0 we have from the
above argument that `(siτ(ε)) = `(ε) + 1. Thus, from the identity siτ(ε) = (τ(λ)si)(τ(λ)) (which one
can easily verify), we get by the Braid relations that

TiTε = Tτ(λ)siTλ = TλT
−1
i Tλ

where the second equality follows from the equality `(τ(λ)si) = `(λ)− 1. Since ε and λ are dominant,
esi(λ) = q1−`(λ)/2TεT

−1
λ . So the above equality gives us our desired formula.

Lemma 5.1.4. The elements Tw · eλ (resp. eλ ·Tw), for w ∈W and λ ∈ X∨, are linearly independent
over L.

Proof. Suppose that we have a relation
∑n

i=1 fiTwi · eλi = 0 where (w1, λ1), . . . , (wn, λn) are distinct
elements of W×P∨ and f1, . . . , fn ∈ L. We can find an element µ ∈ X∨+ such that for all i, λi+µ ∈ X∨+.
Multiplying the relation by eµ on the right, we get

0 =
n∑
i=1

q−
τ(λi+µ)

2 fiTwi · eλi+µ =

n∑
i=1

q−
`(λi+µ)

2 fiTwiτ(λi+µ)

but the Tw̃ for w̃ ∈ W̃ are linearly independent, so we must have f1 = · · · = fn = 0. This shows
that the family of elements Tw · eλ are linearly independent (the argument for the second family is
similar).

Let Θ be the L-submodule of Haff generated by the elements eλ for λ ∈ X∨. This is a subalgebra of
Haff isomorphic to L[X∨].

Proposition 5.1.5. Let λ ∈ X∨ and αi ∈ ∆. Then, eλ − esi(λ) is divisible by 1− e−α∨i inside Θ and

eλTi − Tiesi(λ) = Tie
λ − esi(λ)Ti = (q − 1)

eλ − esi(λ)

1− e−α∨i

Proof. It is enough to show the equality

eλTi − Tiesi(λ) = (q − 1)
eλ − esi(λ)

1− e−α∨i

since the other one follows from it by substituting λ with si(λ) and multiplying by -1.
Now suppose that the formula is true for a fixed αi ∈ ∆ and for λ, λ′ ∈ X∨, then using the formula in
the equality

eλ+λ′Ti − Tiesi(λ+λ′) = eλ[eλ
′
Ti − Tiesi(λ

′)] + [eλTi − Tiesi(λ)]esi(λ
′)

and simplifying, we see that it is also true for λ+ λ′. Similarly we show that if it is true for λ ∈ X∨,
then it is also true for −λ. Therefore, it suffices to show the equality for a set of generators of X∨.
By our assumption that αi 6∈ 2X, there exists λ1 ∈ X∨ such that 〈αi, λ1〉 = 1 and X∨ is generated by
λ1 and the elements λ′ ∈ X∨ such that 〈αi, λ′〉 = 0.
If 〈αi, λ〉 = 0, then si(λ) = λ and the formula reduces to eλTi = Tie

λ which follows from Lemma 5.1.3.
Similarly, if 〈αi, λ〉 = 1, then si(λ) = λ − α∨i and the equality reduces to eλTi − Tiesi(λ) = (q − 1)eλ.
This follows from Lemma 5.1.3 and the identity T−1

i = q−1Ti + (q−1 − 1).
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Proposition 5.1.6. The elements Tw · eλ (resp. eλ · Tw), for w ∈ W and λ ∈ X∨, form a basis of
Haff over L.

Proof. It remains to show that they are a spanning family. So let us consider H1 (resp. H2) to be
the L-submodule of Haff generated by the Twe

λ (resp. eλTw). Using Proposition 5.1.5, we prove by
induction on `(w) that Twe

λ ∈ H2 and eλTw ∈ H1 for any w ∈ W , λ ∈ X∨. Hence, H1 = H2, but
H1 is stable by left multiplication by Tw and H2 is stable by left multiplication by eλ. But since
Haff is generated as an algebra by these elements and 1 ∈ H1 = H2, we get that H1 = H2 = Haff as
desired.

From this, we see that we have an isomorphism of L-modules Haff
∼= Θ ⊗L H(W ), where HW is

the Hecke algebra associated to the Coxeter group W with coefficients in L. Note that this is not a
L-algebra homomorphism.

Proposition 5.1.7. The center of Haff is equal to ΘW .

Proof. Note that ΘW is generated by the elements zM =
∑

λ∈M eλ where M is a W -orbit in X∨.

From the formula in Proposition 5.1.5, we see that eλ + esi(λ) commutes with Ti for 1 ≤ i ≤ r. This
shows that zM commutes with the Tw for w ∈ W , and consequently that ΘW lies in the center of
Haff. Using the specialisation q 7→ 1, Haff identifies with L[B]. In this case it is not hard to see that
L[B]W = L[X∨]W . A fortiori, the same must be true for Haff.

5.1.3 The Iwahori Hecke algebra for GLn

Let I ⊆ G = GLn be the Iwahori subgroup, and U = GLn(OK) be the maximal compact subgroup
of G. We consider H(G, I) to be the convolution Z-algebra of compactly supported, I-biinvariant
functions f : G→ Z, where the Haar measure µ on G is normalized so that µ(I) = 1.
The goal of this subsection is to identify this algebra with the affine Hecke algebra Haff associated to
the root datum of G, after extending the scalars to L.

First, note that we can make an identification

W̃ ∼= NG(T )(K)/T (OK) (5.3)

Indeed there is an isomorphism X∗(T ) ∼= T (K)/T (OK) sending a cocharacter λ to λ(π−1) (which
does not depend on the choice of the uniformizer π since we quotient by T (OK)). So to prove (5.3)
it suffices to show that the action of W = NG(T )(K)/T (K) on both sides is compatible which is
straightforward.
Since s0 = r−θτ(−θ∨) where θ = χ1 − χn is the longest root, it is identified via (5.3) with

s0 =


0 π−1

1
. . .

1
π 0


We also choose the matrix

t =


0 1

0 1
. . .

0 1
π 0


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which corresponds to the element sn−1 · · · s1τ(λ1) where λ1 is a representative of the generator of

X∨/Q∨ ∼= Z. t is chosen so that it normalizes I, and we have that W̃ is generated by s0, . . . , sn, t with
tsit
−1 = si for all 1 ≤ i ≤ n− 1.

By the example in [Iwa66, 2], we have a Bruhat decomposition

G =
⊔
w̃∈W̃

Iw̃I (5.4)

Therefore, the Iwahori-Hecke algebra H(G, I) is freely generated as a Z-module by the characteristic

functions fw̃ of double cosets [Iw̃I] for w̃ ∈ W̃ . Using the Iwahori factorisation, calculations show

that
∫
G fw̃ dµ = q

`(w)
k . As a consequence, we have the following relations:

Lemma 5.1.8. (1) If `(w̃w̃′) = `(w̃) + `(w̃′), then fw̃ ∗ fw̃′ = fw̃w̃′.

(2) fsi ∗ fsi = (qk − 1)fsi + qkfid.

From these relations, we see that H(G, I)⊗Z L is isomorphic to Haff under the specialisation q 7→ qk.
In this setting, the subalgebra H(U, I)⊗ L is sent to H(W ).

5.2 A result about the Iwahori Hecke algebras

Let p 6= l be a prime number. We will work with a coefficient field E which is a finite extension of Qp

with ring of integers O and a chosen uniformizer $. Suppose that O contains a square root of qk so
that by the work we did previously, the Iwahori Hecke algebra HI = H(G, I)⊗Z O has the following
presentation

HI ∼= O[X∗(T )]⊗O O[I \ U/I]

which we recall is not an O-algebra isomorphism.
Using the identification S := O[X∗(T )] = O[x±1 , . . . , x

±
n ], by Proposition 5.1.7 the center of HI iden-

tifies with R := O[X∗(T )]Sn = O[e1, . . . , en, e
−1
n ] where e1, . . . , en are the elementary symmetric

polynomials in x1, . . . , xn. The ring S is a free R-module of rank n!, with a basis given by the
monomials xa = xa1

1 · · ·xann for a = (a1, . . . , an) ∈ Zn satisfying 0 ≤ ai ≤ i − 1 (we will write A
for the set of these tuples). Indeed, the minimal polynomial of xi in O[e1, . . . , en, x1, . . . , xi−1] is
fi(X) = (X − xi) · · · (X − xn).

Denoting HU = H(G,U)⊗Z O, by [HKP10, 4.6] there is a canonical isomorphism HU ∼= Z(HI) ∼= R
with z ∈ Z(HI) corresponding to h = 1U ∗ z. So if M is a O[G(K)]-module, MU can be seen as an
R-submodule of M I , and there is a canonical morphism

MU ⊗R S →M I (5.5)

given by the formula m⊗s 7→ s·m. Since S is free overR with basis xa,a ∈ A, we have an isomorphism
MU ⊗R S ∼= ⊕a∈AM

U , and the above map sends (ma)a∈A to
∑

a∈A xa ·ma.

Lemma 5.2.1. Consider the n!×n! matrix P = (Pσ,a)σ,a for σ ∈ Sn, a ∈ A, with Pσ,a = σ(xa). Then,
there exists a unique matrix Q = (Qa,σ)a,σ with coefficients in Z[x1, . . . , xn] such that PQ = QP = ∆n!.

Proof. The uniqueness follows from considering P and Q as matrices with coefficients in the field
Q(x1, . . . , xn), so it suffices to prove existence. Now note that the square of the determinant of P is
equal to the determinant of the finite ring extension R = Z[e1, . . . , en]→ R′ = Z[x1, . . . , xn]. We have
the following presentation R′ = R[X1, . . . , Xn]/

(
f1(X1), . . . , fn(Xn)

)
where fi(X) = (X −xi) · · · (X −

xn), then by [Sta18, Tag 0BVZ] and [Sta18, Tag 0BWG], we see that the different of R′ over R equals
to ∆. But by [Sta18, Tag 0C17], we see that the determinant of this ring extension is ∆n!. Hence, the

determinant of P equals to ±∆
n!
2 . Therefore, there exists a matrix Q′ with coefficients in Z[x1, . . . , xn]

(which is the adjugate matrix up to a sign) such that PQ′ = ∆
n!
2 , so we take Q = ∆

n!
2 Q′.
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Proposition 5.2.2. Let N ≥ 1, and let M be an O/$N [GLn(K)]-module. If qk ≡ 1 mod $N , then
the morphism f : MU ⊗R S →M I has kernel and cokernel annihilated by ∆n!.

Proof. By Remark 5.1.2, given that qk ≡ 1 mod $N , we can identify HI ⊗ O/$N with the group

algebra O/$N [W̃ ]. In particular, O/$N [I \ U/I] identifies with O/$N [Sn]. We let e =
∑

σ∈Sn σ ∈
O/$N [Sn], then e = 1U (note that e is not necessarily an idempotent since µ is normalized with
respect to I).
Now define a morphism g : M I → ⊕a∈AM

U ∼= MU ⊗R S by the formula g(m) = (eQa,1m)a∈A, then
by the description of f given before, we have

f(g(m)) =
∑
a∈A

xaeQa,1m =
∑
a∈A

∑
σ∈Sn

xaσ(Qa,1)σ(m)

From the identity σ(P )σ(Q) = ∆n! and the uniqueness of the inverse, we get that σ(Qa,1) = Qa,σ. So
we can write

f(g(m)) =
∑
σ∈Sn

∑
a∈A

P1,aQa,σσ(m) = ∆n!m

From this, we see that the cokernel of f is killed by ∆n!. On the other hand, we have for m =
(ma)a∈A ∈MU ⊗R S:

(g(f(m)))a = eQa,1

∑
b∈A

xb ·mb =
∑
σ∈Sn

∑
b∈A

Qa,σPσ,bσ(m)

Since Sn ⊆ O[I \ U/I] acts trivially on MU , we get that:

(g(f(m)))a =
∑
b∈A

∑
σ∈Sn

Qa,σPσ,bm = ∆n!ma

This shows that the kernel of f is also killed by ∆n!.

5.3 The Tame Hecke algebra

The tame subgroup It consists of the matrices in I which reduce to unipotent upper triangular matrices
modulo π. One can ask whether the Hecke algebra H(G, It) has a similar presentation to H(G, I).
The answer to this question is found in the paper [Fli11] where the author gives a presentation of this
algebra in terms of generators and relations, building on ideas used in [HKP10] to prove the Bernstein
presentation. We will summarized the results of this paper, which we will need later on.

To make the notation less cumbersome, we will write in this exposition G,T, . . . for G(K), T (K) . . .
From the Bruhat decomposition in (5.4), we have:

G = I ·NG(T ) · I = It ·NG(T ) · It

So to obtain a decompositon similar to (5.4), we define the tame affine Weyl group Wt to be Wt =
NG(T )/Tt(OK) where Tt(OK) = T (OK) ∩ It, and we get:

G =
⊔

w∈Wt

ItwIt

We let Ht = H(G, It) ⊗Z C to be the tame Hecke algebra. By the above decomposition, it is a free
O-module with basis given by the Tw, the characteristic function of ItwIt divided by µ(It), for w ∈Wt.
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To ease the notation, we will assume that µ(It) = 1.
With respect to these generators, the relations are given by:

TwTw′ = Tww′ if `(ww′) = `(w) + `(w′), w, w′ ∈Wt

where we extend the length function to Wt by setting for w ∈Wt, `(w) = `(w) with w being the image

of w in W̃ , and also by:

T 2
si = qkTid +

∑
x∈k×

Tαi,xsi for 1 ≤ i < n

where αi,x = diag(1, . . . , 1,−[x]−1, [x], 1, . . . , 1) with x−1 being in the i-th position and [·] : k× → O×K
being the Teichmuller lift.

Let us now give presentation of Ht rather with respect to the decomposition Wt = T/Tt(O)oW . For
this, N be the group of unipotent upper triangular matrices and consider the universal tame principal
series module Mt which is defined by Mt = Cc(Tt(OK)N \ G/It). It is the set of It-fixed vectors in
the smooth G-module C∞c (Tt(OK)N \G) (where G acts by left translation). Consequently, Mt can be
equipped with a right Ht-action. Moreover, the natural map

Wt → Tt(OK) \G/It

is actually an isomorphism, a basis of Mt as a C-vector space is given by the characteristic functions
vw = 1Tt(OK)NwIt for w ∈Wt.
The group algebra Rt = Cc(T/T (OK)) = C[T/Tt(O)] ∼= C[T/T (OK) × T (k)] (via the non-canonical
factorisation K× ∼= k× × Z) has a left action on Mt given by the following: for a ∈ T/Tt(O), let
λa to be the unique cocharacter such that a 7→ λa(π) under T/Tt(O) → T/T (O) ∼= X∗(T ), we then

set a · vw = q
−〈ρ′,λa〉
k vaw where ρ′ is the half sum of the roots of T in Lie(N) (note that we have

q
−〈ρ′,λa〉
k = δ

1/2
B ). The actions of Rt and Ht commute, so we get a structure of Rt ⊗Rf,t Ht-module on

Mt, where the group algebra Rf,t = C[T (k)] is contained in both Rt and Ht.

There is also another interpretation of the module Mt which is given follows. The representation
C∞c (Tt(OK)N \ G) is compactly induced from the trivial representation of Tt(OK)N . Inducing in
stages, we have:

C∞c (Tt(OK)N \G) = IndGTt(OK)N (id) = IndGB ◦ IndBTt(OK)N (id) = IndGB(Rt)

where Rt is viewed as a T -module via χ−1
univ : T/Tt(OK)→ R×t , a 7→ a. Concretely, IndGB(Rt) consists

of functions φ : G→ Rt such that φ(aug) = δ
−1/2
B ·a−1 ·φ(g) for a ∈ T, u ∈ N, g ∈ G with the action of

G by right translation. We also have an Rt-module structure on IndGB(Rt) given by (rφ)(g) = r ·φ(g).
In fact, the isomorphism C∞c (Tt(OKN \G) = IndGB(Rt) induces an isomorphism of Rt⊗Rf,tHt-modules

Mt
∼= IndGB(Rt)

It .

Note that if we have a character χ : T/Tt(OK) → C× which extends to a C-algebra morphism
Rt → C×, we have an isomorphism of Ht-modules:

C⊗Rt,χMt
∼= C⊗Rt,χ IndGB(Rt)

It = IndGB(χ−1)It

Proposition 5.3.1. The map Ht → Mt : h 7→ v1h is an isomorphism of right Ht-modules. In
particular, we have Ht = EndHt(Mt) identifying η ∈ Ht with the morphism ϕη : v1h 7→ v1ηh.

85



This way, we can embed Rt inside Ht by viewing it as a subalgebra of Ht-equivariant endomorphisms
of Mt. More precisely we have:

Rt ↪→ Ht

a 7→ ea := q
〈ρ′,λa2−λa1 〉

2 Ta1T
−1
a2

where a = a1a
−1
2 ∈ T (K)/Tt(O) with λa1 and λa2 being dominant cocharacters.

Now we are able to describe our presentation, which is given by the isomorphism of C-modules

Ht ∼= Rt ⊗Rf,t C[It \ U/It]

induced by multiplication inside Ht. Note that C[It \ U/It] is generated by the Tw for w ∈ Wf,t =
NU (T (O))/Tt(O). But since we are taking the tensor product with respect to Rf,t, to finish giving
the presentation we only need to describe the relations between the generators ea for a ∈ T (K)/Tt(O)
of Rt and the Ti for 1 ≤ i < n. This is given by

Tsie
a − esi(a)Tsi = (esi(a) − ea)

∑
x∈k× e

α∨i (xπ)

1− eα∨i (π)

Moreover, the center Z(Ht) of Ht equals to R
Wf,t

t .

Finally, let us give a characterization of tamely ramified representations. So consider an admissible
irreducible representation Π of GLn(K) over C which is tamely ramified ( i.e. ΠIt 6= 0). Since It is
normal in I, the finite abelian group I/It acts on ΠIt , so the latter splits into a sum of eigenspaces
spaces

ΠIt,χ = {v ∈ ΠIt | gv = χ(g)v ∀g ∈ I}

indexed by the characters of I/It = T (O)/Tt(O) = T (k).

Theorem 5.3.2. The space ΠIt,χ is non-zero if and only if Π embeds in IndGB(χT ) for some character
χT of T (F ) whose restriction to T (O) is χ. In particular Π is tamely ramified if and only if it is a
constituent of IndGB(χT ) for some tamely ramified χT .
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Chapter 6

The Automorphic theory

Let F be CM number field with a maximal totally real subfield F+ such that F/F+ is everywhere
unramified and [F+ : Q] is even. We denote by δF/F+ the non trivial character of Gal(F/F+) valued
in {±1}, which we also see as a character of F× \ AF+ via the composition with ArtF+ .

We fix a prime number p, an isomorphism ι : Qp → C, and a finite extension E over Qp with ring of

integers O such that E contains every embedding F ↪→ Qp. We consider a finite set S of finite places
of F+ containing the set Sp of places above p. We assume that each place v ∈ S splits in F , and we

choose a place ṽ of F lying above v. We set S̃ = {ṽ | v ∈ S}, S̃p = {ṽ | v ∈ Sp}, and we let Ĩp be the

set of embeddings F ↪→ E inducing the places in S̃p.

We let Zn+ = {(a1, . . . , an) ∈ Zn | a1 ≥ · · · ≥ an} be the set of dominant weights of GLn. If π
is a cuspidal automorphic representation of GLn(AF ), we say that π is regular algebraic of weight
λ ∈ (Zn+)Hom(F,C) if π∞ has the same infinitesimal character as the dual of the algebraic representa-
tion of ResF/Q(GLn/F ) ×Q C =

∏
Hom(F,C)(GLn/C) of highest weight λ. A pair (π, χ) is said to be a

polarized automorphic representation of GLn(AF ) if:

• π is an automorphic representation of GLn(AF ),

• χ : A×
F+/(F

+)× → C is a continuous character such that χv(−1) = (−1)n,

• πc ∼= π∨ ⊗ (χ ◦NF/F+ ◦ det).

where πc denotes the composition of π with the complex conjugation on GLn(AF ).
From now on, we fix a cuspidal polarized regular algebraic automorphic representation (π, δnF/F+) of

GLn(AF ) of weight λ ∈ (Zn+)Hom(F,C) (we say that π is RACSDC: regular algebraic conjugate self dual
cuspidal [All14, 2.1]). We assume that for each place w | p of F , πw has an Iwahori-fixed vector and
that S contains all the places above which π is ramified.
We have the following instance of a theorem which we used before in the particular case n = 2 and F
totally real (Theorem 3.1.5).

Theorem 6.0.1. [BLGGT14, Theorem 2.1.1] There exists a continuous semi-simple representation

rp,ι(π) : GF → GLn(Qp)

and and integer m with the following properties:

(1) For each finite place w, we have

ιWD(rp,ι(π)|GFw
)F-ss ∼= rec(πw ⊗ | · |w ◦ det

1−n
2 )

and the Weil-Deligne representations are pure of weight m.
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(2) If w | p, then rp,ι(π)|Gw is de Rham such that for τ : F → Qp, we have

HTτ (rp,ι(π)) = {λιτ,j + n− j}1≤j≤n

Moreover, if πw is unramified, then rp,ι(π)|GFw
is crystalline.

After possibly enlarging E, we can suppose that there exists a model ρ : GF → GLn(O) of rp,ι(π). By
conjugate self-duality, ρ extends to a homomorphism r : GF+,S → Gn(O) such that ν ◦ r = ε1−nδnF/F+ .

By the condition imposed on the image of rp,ι(π) in theorem 3.4.6, we can suppose by lemma 4.4.12
that rp,ι(π) is absolutely irreducible. Consequently, we can apply results of section 4.4. In particular,
if we denote by D the group determinant of ρ, then we have pseudodeformation rings RD,S and RS ,
with ρ inducing a morphism RS → O.

We define additional deformation rings as follows: for a Taylor-Wiles datum
(
Q, Q̃, (αṽ,1, . . . , αṽ,n)v∈Q

)
,

we have a deformation ring RS∪Q. We let RS∪Q,ab be the maximal quotient of RS∪Q such that for
each v ∈ Q, the restriction of the universal pseudocharacter in RS∪Q,ab to the Weil group WFṽ factors
through W ab

Fṽ
. Since Q ∩ S = ∅ by definition, we get a composition of surjections

RS∪Q → RS∪Q,ab → RS

6.1 Definite unitary groups

Let A denote the matrix algebra Mn(F ). An involution ‡ of the second kind on A (i.e., which restricts
to c on F ) gives rise to a reductive algebraic group G‡ over F+ by setting

G‡(R) = {g ∈ A⊗F+ R | g‡g = 1}

for any F+-algebra R. It is called the unitary group attached to (F+, F,A, ‡).
We have the following classification theorem for unitary groups over F+.

Theorem 6.1.1. [Bel, Theorem 1.1]

1. If G and G′ are two unitary groups such that Gv ∼= G′v for all place v of F+, then G ∼= G′.

2. Let (Gv)v be a family of unitary groups such that Gv is attached to the extension F ⊗ F+
v /F

+
v .

Suppose that Gv is quasi-split for almost all places v. Then, if n is odd, there exists a unitary
group G̃ attached to F/F+ such that for every place of F+, G̃v = Gv. And if n is even, then
the same is true if and only if we have

∏
v εv = 1, where for a finite place v εv = 1 if Gv is

quasi-split and εv = −1 otherwise, and εv = pv − n/2 if v is real with Gv = U(pv, n− pv).

Following this theorem, and our hypothesis that [F+ : Q] is even, we may choose an involution ‡
satisfying:

• For every infinite place v of F+, we have G‡(F
+
v ) ∼= Un(R),

• For every finite place v of F+, G‡ is quasi-split at v.

We choose an order OA of A such that O‡A = OA and OA,w is a maximal order of Bw for every place
w ∈ F which is split over F+. This allows us to view G‡ as an algebraic group over OF+ , which we
denote from now on by G.
For every finite place v of F+ which splits as wwc in F , we let us an isomorphism

ιv : OA,v
∼−→ Mn(OF,v) = Mn(OF,w)⊕Mn(OF,wc)
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such that ιv(x
‡) = tιv(x)c. This induces an isomorphism

ιw : G(OF+
v

)
∼−→ GLn(OFw)

sending ι−1
v (x,

t
x−c) to x and which extends to an isomorphism G(F+

v )
∼−→ GLn(Fw).

Now if v is a real place of F+, we let κ : F+ ↪→ R be an embedding inducing v. For each κ̃ : F ↪→ C
extending κ, we choose an isomorphism

ικ̃ : A⊗F+,κ R
∼−→ A⊗F,κ̃ C = Mn(C)

such that ικ̃(x‡) = t(ικ̃(x)c). Then, κ̃ identifies G(F+
v ) with Un(R).

Let T,B ⊂ GLn be respectively the maximal torus consisting of diagonal matrices, and the Borel
subgroup of upper triangular matrices. If λ ∈ X∗(T ) is a dominant character of T , we can form the
induced representation

Vλ := IndGLn
B (w0λ)/O = {f ∈ O[GLn] | f(bg) = (w0λ)(b)f(g), ∀O → R, g ∈ GLn(R), b ∈ B(R)}

with GLn acting by right translation and where w0 is the longest element in the Weyl group. This is
an algebraic representation of GLn/O. Since E is a flat O-module, we have Vλ⊗OE = IndGLn

Bn
(w0λ)/E

which is the irreducible representation of GLn/E of highest weight λ.
We let Mλ be the finite free O-module obtained by evaluating Vλ on O. It carries and action of
GLn(O), and Wλ := Mλ ⊗O K carries an action of GLn(K).

A dominant weight for G is a tuple λ ∈ (Zn+)Ĩp , and for such a tuple, we let

Mλ = ⊗
τ∈Ĩp,OMλτ and Wτ = ⊗

τ∈Ĩp,OWλτ = Mλ ⊗O E

and we define the representation

Vλ : G(F+
p )→ GL(Wλ)

g 7→ ⊗
τ∈ĨpVλτ

(
τ(ιṽ(τ)g)

)
where ṽ(τ) ∈ S̃p is the place induced by τ . This restricts to a representation

Vλ : G(OF+,p)→ GL(Mλ)

6.2 Automorphic data

Up until now, we fixed an RACSDC automorphic representation π of weight λ, and chose a unitary
group G. We now define the space of algebraic automorphic forms with which we will work: for any
O-algebra, we let Sλ(A) be the space of functions

f : G(F+) \G(A∞,p
F+ )→Mλ ⊗O A

such that there exists a compact open subgroup (depending on f)

U ⊆ G(A∞,p
F+ )×G(OF+,p)

with upf(gu) = f(g) for all u ∈ U, g ∈ G(A∞F+).
The group G(A∞,p

F+ )×G(OF+,p) acts on Sλ(A) via the formula

(g · f)(h) = gpf(hg)

89



If U is a compact open subgroup ofG(A∞,p
F+ )×G(OF+,p), we define Sλ(U,A) to be the space of invariants

Sλ(A)U . If we take two of such groups U1, U2 and g ∈ G(A∞,p
F+ ) × G(OF+,p), then #U1gU2/U2 < ∞

(it is compact and discrete) and we can define a linear map

[U1gU2] : Sλ(U2, A)→ Sλ(U1, A)

f 7→
(
h 7→

∑
i

(gi)pf(hgi)
)

where U1gU2 =
⊔
i giU2.

In this setting, we say that compact open subgroup U ⊆ G(A∞F+) is sufficiently small if for all g ∈
G(A∞F+), gUg−1 ∩G(F+) = {1}. This condition allows us to prove the following:

Lemma 6.2.1. [CHT08, 3.3.1] Let U ⊆ G(Ap,∞
F+ ) × G(OF+,p) be a sufficiently small open compact

subgroup, V ⊆ U be a normal open subgroup, and A an O-algebra. Then, Sλ(V,A) is a finite free
A[U/V ]-module and the trace map TrU/V induces an isomorphism Sλ(V,A)U/V ∼= Sλ(U,A).

For each embedding κ : F+ ↪→ R, there is a unique complex embedding κ̃ : F ↪→ C such that ι−1κ̃ ∈ Ĩp,
inducing a map F∞ = F ⊗Q R→ C. Then, Wλ ⊗E,ι C can be equipped with the following continuous
G(F+

∞)-action
g 7→ ⊗κVλι−1κ̃

(
ικ̃(κ(g))

)
where Vι−1κ is regarded as an algebraic representation of GLn(C). We denote this representation by
Vλ,ι. Let A be the space of automorphic forms on G(F+) \ G(AF+). We have an isomorphism of
G(A∞,p

F+ )-modules

cι : Sλ(Qp)⊗Qp,ι
C ∼−→ HomG(F+

∞)

(
V∨λ,ι,A

)
(6.1)

given by
cι(f)(α)(g) = α

(
Vλ,ι(g∞)−1

(
gpf(g∞)

))
There exists an automorphic representation of G(AF+) with the following properties:

• For each finite inert place v of F+, σ
G(O

F+
v

)

v 6= 0.

• For each split place v = wwc of F+, σv ∼= πw ◦ ιw.

• For each embedding κ : F+ ↪→ R inducing a place v of F+ and each κ̃ : F ↪→ C extending κ, we
have σv ∼= V∨λι−1κ̃

◦ ικ̃ ◦ κ (where Vλικ̃ is a representation of GLn(C)).

Taking the U -invariants in the isomorphism (6.1), we get an isomorphism of G(A∞,p
F+ )-modules

Sλ(U,O)⊗O,ι C ∼= ⊕µ(µ∞)U (6.2)

where the sum is over automorphic representations of G(AF+) with multiplicity, such that µ∞ ∼= σ∞.

6.3 Setup for patching

From now on we will work with a fixed open compact subgroup U =
∏
v Uv of G(Ap,∞

F+ ) × G(OF+,p)
which satisfies:

• For each place v of Sp, Uv = ι−1
ṽ (Iwṽ),

• For each inert place v of F+, Uv = G(OF+
v

),
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• (σ∞)U 6= 0,

• U is sufficiently small.

Let V =
∏
v Vv is a compact open subgroup of U with T is a finite set of places of F+ containing all

the places v such that Vv 6= G(OF+
v

), and let w be a place of F split over F+ and lying over a place

v 6∈ T of F+. For each i = 1, . . . , n we let T
(i)
w denote the endomorphism[

ι−1
w

(
GLn(OFw)

(
$w1i 0

0 1n−i

)
GLn(OFw)

)
× V v

]
of Sλ(V,A), where $w is a uniformizer of OFw . The operators T

(i)
w for varying w and i all commute

with each other and we write TT
λ (V,A) for the A-subalgebra of EndA(Sλ(V,A)) generated by these

operators.

Recall that since πw is an irreducible unramified representation GLn(Fw), then there exists unramified
characters χ1, . . . , χn of F×w such that

πw ∼= χ1 � · · ·� χn

where χ1�· · ·�χn is the unique unramified constituent of χ1×· · ·×χn. By the Iwasawa decomposition

GLn(Fw) = B(Fw) GLn(OFw), we have that dimC π
GLn(OFw )
w = 1, hence we get a character

ψπw : H(G(F+
v ), Vv)⊗Z Qp → Qp

sending T
(i)
w to its eigenvalue which equals to q

i(n−i)
2

v ei,v where ei,v is the i-th symmetric polyno-
mial in ι−1(χ1($w)), . . . , ι−1(χn($w)). So by Langlands reciprocity, the characteristic polynomial of
rp,ι(π)(Frobw) is given by

Xn − ψπw(T (1)
w )Xn−1 + · · ·+ (−1)nψπw(T (n)

w )

Therefore, after possibly enlarging E, we get a homomorphism

hV,σ : TT
λ (V,O)→ O

We let mV be the unique maximal ideal containing kerhV,σ. By the isomorphism (6.2), we get that
TT
λ (V,O)mV ⊗OQp =

∏
µEµ is a product of fields indexed by automorphic representations µ of G(AF+)

with µVmV 6= 0 and µ∞ ∼= σ∞. By [All14, Corollary 2.2.4] for each of these µ, the induced morphism
ψµ : TT

λ (V,O)mV [1/p]→ Eµ gives rise to a Galois representation

rµ : GF,S → GLn(Eµ) (6.3)

such that for every finite place w of F which is split over v 6∈ S in F+, the characteristic polynomial
of rµ(Frobw) is

Xn − ψµ(T (i)
w )Xn−1 + · · ·+ (−1)nψµ(T (n)

w ) (6.4)

Therefore, we get a huge Galois representation

rmod : GF,S →
∏
µ

GLn(Eµ) = GLn(TR
λ (V,O)mV ⊗O Qp)

such that the coefficients of the characteristic polynomial of rmod(Frobw) lie in TT
λ (V,O)mV ↪→

∏
µEµ

(the embedding is given by the ψµ) for almost all finite places w of F . Since the residual representation
is not absolutely irreducible, Carayol’s result does not apply and we do not necessarily get a Galois
representation with coefficients in TT

λ (V,O)mV . However, by Chebotarev’s density theorem and Corol-
lary 4.2.4, the group determinant det ◦rmod factors through a group determinant of GF,S with values in
TT
λ (V,O)mV which we denote DV,λ. Consequently, there is a surjective morphism RD,S → TT

λ (V,O)mV
that classifies DV,λ.
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Lemma 6.3.1. The map RD,S → TT
λ (V,O)mV factors through the quotient RS.

Proof. As seen above, TT
λ (V,O)mV ⊗O Qp =

∏
µEµ is a product of fields indexed by automorphic

representations µ. So it suffices to show that each induced map RD,S → Eµ factors through RS . But
this map classifies the determinant of the Galois representation rµ associated to µ which satisfies the
conjugate-self duality and the semi-stability conditions.

Let us now consider a set Q of Taylor-Wiles places, and define the open compact subgroups U0(Q) =∏
v U0(Q)v and U1(Q) =

∏
v U1(Q)v given by:

• If v 6∈ Q, let U0(Q) = U1(Q) = Uv,

• if v ∈ Q, let U0(Q)v = ι−1
ṽ (Iwṽ) and let U1(Q)v be the smallest open subgroup of U0(Q)v such

that U0(Q)v/U1(Q)v is a p-group.

We set ∆Q = U0(Q)/U1(Q) which is naturally isomorphic to
∏
v∈Q k(v)×(p)n, where k(v)×(p) is the

maximal p-quotient of k(v)×.
To ease the notation, we set

S∅ = Sλ(U,O)mU and T∅ = TS
λ(U,O)mU

We also let mQ = mU ∩TS∪Q
λ (U,O), we denote by m0,Q the pre-image of mQ in TS∪Q

λ (U0(Q),O) and

by m1,Q the pre-image of m0,Q in TS∪Q
λ (U1(Q),O). We define:

T0,Q = TS∪Q
λ (U0(Q),O)m0,Q and TQ = TS∪Q

λ (U1(Q),O)m1,Q

For a Taylor-Wiles place v, let Ξv be the quotient of (F×ṽ )n corresponding to (k(v)(p)×)n × Zn under
the noncanonical isomorphism (F×ṽ )n ∼= (k(v)×)n×Zn. We also let Ξ+

v ⊂ Ξv be the submonoid corre-
sponding to (k(v)(p)×)n×Zn+. We can define a multiplicative map O[Ξ+

v ]→ H(G(F+
v ), U1(Q)v)⊗ZO

sending λ ∈ Ξ+
v to q

〈λ′,ρ+(n−1)/2 det〉
v [ι−1

ṽ (ItλIt)] where λ′ is the image of λ under the projection
Ξ+
v → Zn+ ∼= X+

∗ (T ) and ρ is the halft sum of the positive roots. By the results in Section 5.3
and the fact that qv is a unit in O, these elements are invertible, thus we can uniquely extend this
map to an O-algebra morphism:

O[Ξv]→ H(G(F+
v ), U1(Q)v)⊗Z O (6.5)

Given α ∈ F×ṽ , we let tv,i(α) ∈ H(G(F+
v ), U1(Q)v)⊗Z O be the image under this isomorphism of the

element (1, . . . , 1, α, 1, . . . , 1) where α is in the i-th position. We also let ev,i(α) ∈ H(G(F+
v ), U1(Q)v)⊗Z

O be the term corresponding to (−1)iXn−i in the polynomial
∏n
i=1(X − tv,i(α)). The results of

Section 5.3 give us the following proposition:

Proposition 6.3.2. [ACC+18] Let πv be an irreducible admissible Qp[G(F+
v )]-module.

(1) We have π
U1(Q)v
v 6= 0 if and only if πv ◦ ι−1

ṽ is isomorphic to a subquotient of a representation

Ind
GLn(Fṽ)
B(Fṽ) χ1⊗· · ·⊗χn, where χ : χ1⊗· · ·⊗χn : (F×ṽ )n → C is a smooth character which factors

through the quotient (F×ṽ )n → Ξv.

(2) Suppose that π
U1(Q)v
v 6= 0, then for any α ∈ F×ṽ , ev,i(α) acts on π

U1(Q)v
v as a scalar ev,i(α, πv) ∈

Qp.
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(3) Suppose that π
U1(Q)v
v 6= 0, and let (rṽ, Nṽ) = recTFṽ(πv ◦ ι

−1
ṽ ). Then, for any σ ∈ WFṽ , the

characteristic polynomial of σ in rṽ is

Xn − e1,v(α, πv)X
n−1 + · · ·+ (−1)nen,v(α, πv)

where α = Art−1
Fṽ

(σ|W ab
Fṽ

).

We define TQ
0,Q ⊆ End

(
Sλ(U0(Q),O)m0,Q

)
to be the subalgebra generated by T0,Q and the elements

tv,i(α) for all v ∈ Q, 1 ≤ i ≤ n, and α ∈ F×ṽ . Similarly, we define TQ
Q ⊆ End

(
Sλ(U1(Q),O)m1,Q

)
.

For each v ∈ Q, the universal pseudocharacter over RS∪Q,ab determines by restriction an n-dimentional
pseudocharacter γv of W ab

Fṽ
with values in RS∪Q,ab. Each restriction γv |IFṽ

factors through the quotient

corresponding to k(v)×(p) under ArtFṽ : OFṽ
∼−→ IFṽ .

On the other hand, for each 1 ≤ i ≤ n, there is a character αv,i : W ab
Fṽ
→ (TQ

Q)× sending ArtFṽ(α)

to tv,i(α) for α ∈ F×ṽ . We let αv be the pseudocharacter αv = trαv,1 ⊕ · · · ⊕ αv,n. By local-global
compatibility, we can relate these two pseudocharacters of W ab

Fṽ
via the following lemma:

Lemma 6.3.3. (1) The map RS∪Q → TQ factors through the quotient RS∪Q,ab.

(2) For v ∈ Q, the composite of γv with the map RS∪Q,ab → TQ ↪→ TQ
Q equals to αv.

(3) The image of the map RS∪Q,ab → TQ ↪→ TQ
Q contains the Hecke operators ev,i(α) for each v ∈ Q,

1 ≤ i ≤ n, and α ∈ F×ṽ .

Proof. TQ embeds into TQ ⊗O Qp
∼=
∏
µEµ which is a product of fields indexed by automorphic

representations µ such that there exists a Galois representation rµ : GF,S → Eµ as in (6.3) with
det ◦rµ inducing the morphism RS∪Q → TQ → Eµ. Therefore, to prove (1), it suffices to show that for
each v ∈ Q, the restriction of det ◦rµ to WFṽ factors through W ab

Fṽ
. But by (3) of Proposition 6.3.2, the

coefficients of the characteristic polynomial of an element σ ∈ WFṽ in WD(rµ|GFṽ
) depends only on

its restriction to W ab
Fṽ

, hence the result. (2) and (3) follow similarly, by comparing the characteristic
polynomials in (6.4) and in (3) of Proposition 6.3.2.

Using the morphism (6.5), we can give TQ
Q the structure of a O[∆Q]-algebra, with the image of O[∆Q]

in TQ
Q being generated by the tv,i(α) with α ∈ O×Fṽ . We denote by aQ the augmentation ideal of

O[∆Q]. Then, by Lemma 6.2.1, Sλ(U1(Q),O) is a finite free O[∆Q]-module and the trace map induces
an isomorphism

Sλ(U1(Q),O)/aQ ∼= Sλ(U0(Q),O) (6.6)

Let AQ = ⊗v∈QO[(t
(1)
v )±1, . . . , (t

(n)
v )±1] which, by sending (t

(i)
v ) to the Hecke operator tv,i($v), can be

identified as in Section 5.2 with a subalgebra of

⊗v∈QH(G(F+
v ), U0(Q)v)⊗Z O

on which we have an action of the group WQ =
∏
v∈QSn. As in (5.5), for every m ≥ 1, we have a

morphism of TQ-modules

ηQ,m : Sλ(U,O/$m)mU ⊗AWQQ
AQ → Sλ(U0(Q),O/$m)m0,Q (6.7)

The goal of Section 5.2 is to prove the following result:
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Proposition 6.3.4. Let d ∈ N, there exists a constant c ∈ N such that for each N and each Taylor-
Wiles datum

(
Q, Q̃, (αṽ,1, . . . , αṽ,n)

ṽ∈Q̃
)

for rι,p(π) of level N satisfying∑
v∈Q

∑
1≤i<j≤n

ord$(αṽ,i − αṽ,j) ≤ d

there is an element fQ ∈ RS∪Q,ab such that

(1) fQ kills the kernel and cokernel of ηQ,m for all m ≤ N ,

(2) the image fQ,σ of fQ under the composition

RS∪Q,ab → TQ

hU1(Q),σ−−−−−→ O

satisfies ord$(fQ,σ) ≤ c.

Proof. Let

fQ =

∏
v∈Q

∏
1≤i<j≤n

(tv,i($v)− tv,i($v))

n!

∈ TQ
Q

By (3) of Lemma 6.3.3, fQ lies in the image of RS∪Q,ab, so let fQ be in its pre-image. By Proposi-
tion 5.2.2, fQ kills both the kernel and cokernel of ηQ,m for all n ≤ M . If we set c = n!d, then the
second part of the proposition follows by (2) of Lemma 6.3.3.

6.4 The patching argument

Let us fix q = corankOH
1(FS/F

+, adρ(1)⊗O E/O). Applying theorem 4.4.18, we consider a Taylor-
Wiles datum QN of level N for each N ≥ 1, and to simplify the notation, we write ∆N = ∆QN ,

aN = aQN , TN = TQN and RN = RS∪QN ,ab with R0 = RS . We set qN = ker(RN
hU1(QN ),σ−−−−−−→ O) and

q0 = ker(R0
hU,σ−−−→ O).

We let g = nq, and R∞ = O[[x1, . . . , xg]] and q∞ = (x1, . . . , xg). For each N ≥ 1, there exists a
morphism R∞ → RN such that q∞RN ⊆ qN and qN/(q

2
N , q∞) is killed by a power of $ which is

independent of N .

We fix an ordering on each QN and generators of k(v)×(p) for all N and all v ∈ QN , and we let

S∞ = O[[y
(i)
1 , . . . , y

(i)
q : 1 ≤ i ≤ n]] so that we have a fixed surjective homomorphism S∞ → O[∆N ]

for each N ≥ 1 as in (3.7). We let a∞ = 〈y(i)
j | 1 ≤ j ≤ q, 1 ≤ i ≤ n〉 be the augmentation ideal of

S∞ which corresponds to the inverse image of aN under each of these morphisms.
Using the fixed ordering on the QN , we can identify all the Weyl groups WQN =

∏
v∈QN Sn, and we

will denote them by W . Then, W acts on S∞ by permutation of the coordinates, and we can write

SW∞ = O[[e
(i)
1 , . . . , e

(i)
q : 1 ≤ i ≤ n]] where e

(i)
j is the i-th symmetric polynomial in y

(1)
j , . . . , y

(n)
j . This

is a regular local O-algebra with S∞ being a finite free SW∞ -algebra.

If we fix a uniformizer $v for every v ∈ QN and every N ≥ 1, then we can think of the pseudocharacters
γv as pseudocharacters of k(v)×(p) × Z. And since we have fixed a generator of k(v)×(p), which
corresponds to a surjection Zp → k(v)×(p), we get by pullback for every N a q-tuple (γ1,N , . . . , γq,N )
of pseudocharacters of (Zp × Z) with coefficients in RN .
Thanks to the following lemma, we get for each N ≥ 1 a homomorphism SW∞ → RN classifying the
q-tuple (γ1,N , . . . , γq,N ).
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Lemma 6.4.1. The functor of deformation of the pseudocharacter of Zp attached to the trivial rep-
resentation of dimension n is represented by O[[X1, . . . , Xn]]Sn, with the univeresal characteristic
polynomial of 1 ∈ Zp is equal to

χ(1, t) =
n∏
i=1

(
(t− 1)−Xi

)
Proof. Let Θ be a continuous pseudocharacter of Zp over A ∈ CO, f ∈ Z[GLn]GLn and k ≥ 1.
Recursively applying (2) of Definition 4.3.1, we get that

Θ1(f)(γ1 · · · γk) = Θk(f̂
k)(γ1, . . . , γk)

where f̂k(g1, . . . , gk) = f(g1 · · · gk). Also applying (1) of the same definition for the function ζ :
{1, . . . , k} → {1} defined in the obvious way, we get

Θ1((f̂k)ζ)(γ) = Θk(f̂
k)(γ, . . . , γ)

So after combining the two equalities, we get that for each k ≥ 1,

Θ1((f̂k)ζ)(1) = Θ1(f)(k)

Since a pseudocharacter is uniquely determined by the morphism Θ1, we conclude by continuity of Θ
and equation (4.6) that it is uniquely determined by the ring homomorphism

θ : Z[λ1, . . . , λn]→ A

λi 7→ Θ1(λi)(1)

where the λi are algebraically independent (the restriction of λi to the diagonal torus is equal to the i-
th symmetric function). Therefore, we see that a residually trivial pseudocharacter of Zp of dimension
n over a ring A ∈ CO corresponds to such a θ with its reduction modulo mA being the morphism

Z[λ1, . . . , λn]→ k

λi 7→ λi(id)

This is equivalent to giving a continuous O-algebra morphism O[[X1, . . . , Xn]]Sn → A.

Using the ordering on QN , we obtain an action of A = ⊗qj=1O[(t
(1)
j )±, . . . , (t

(n)
j )±] on the spaces

Sλ(U0(QN ),O)m0,QN
and Sλ(U1(QN ),O)m1,QN

via the identification of A with AQN . We have char-

acters α
(i)
j : Zp × Z → (S∞ ⊗O A)× defined in the obvious way for 1 ≤ i ≤ n and 1 ≤ j ≤ q. By

Lemma 6.3.3, the pushforward of the pseudocharacter αj = Trα
(1)
j ⊕· · ·⊕α

(n)
j to EndO(Sλ(U1(QN ),O)m1,QN

)
lies in TN and is equal to the pushforward of γN,j there.

The patching techniques that we are going to use where developed in [Lue19] for completed cohomology,
but were adapted to our setting in [NT20]. We will work with ultrafilters, so let F be a non-principal
ultrafilter of N, and let R =

∏
N∈NO. Then, the localisation Rp(F) is a quotient of R, and the quotient

map R→ Rp(F) factors through the projection
∏
N≥1O →

∏
N≥mO for all m ≥ 1.

Lemma 6.4.2. Suppose for any i ∈ N, Mi is an O-module with decreasing filtrations of O-modules
Mi ⊇Mi,1 ⊇Mi,2 ⊇ · · · . Then, the natural map∏

i∈N
Mi → lim←−

n

(
(
∏
i∈N

Mi/Mi,n)⊗R Rp(F)

)
is surjective. Then, kernel consists of all the elements of the form (mi)i∈N such that for any n, there
exists In ∈ F with mi ∈Mi,n for any i ∈ In.
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Proof. An element m = (mi)i∈N of
∏
i∈N

Mi is in the kernel of the above map if and only if for every

n ≥ 1, m is sent to zero in
(
(
∏
i∈N

Mi/Mi,n)⊗RRp(F)

)
, i.e., if there exists In ∈ F such that for all i ∈ In,

mi = 0 in Mi/Mi,n, in other words, mi ∈ Mi,n. To prove surjectivity, let [(mi,n)i]n be an element of
the right hand side, with mi,n ∈ Mi/Mi,n. By compatibility in the projective limits, for each n ≥ 1,
there exists In ∈ F such that for all i ∈ In, ai,n ≡ ai,n+1 mod Mi,n. Since F is stable by intersections
and is a non principal ultrafilter, we can assume that In ⊇ In+1, and that the intersection of all the In
is empty (for example we can replace In by In \ {n}). For any i ∈ In \ In+1, let mi be a lift of mi,n+1

to Mi, and for any i 6∈ I1, set mi = 0. Then, the element (mi)i ∈
∏
i∈N

Mi is sent to [(mi,n)i]n.

Remark 6.4.3. Since O/($m) has finite cardinality, we have an isomorphism induced by the diagonal
map

O/($m) ∼= (
∏
i∈N
O/($m)⊗R Rp(F))

Thus, taking the inverse limit of the maps
∏
i∈N
O → (

∏
i∈N
O/($m)⊗R Rp(F)) we get a map

∏
i∈N
O → O

which is surjective by Lemma 6.4.2, and whose kernel is formed by the tuples (ai)i∈N ∈
∏
i∈NO such

that for any m ∈ N, there exists Im ∈ F with ai ∈ ($m) for any i ∈ Im.

Definition 6.4.4. We let:

• M1 = lim←−
m

(
Rp(F) ⊗R

∏
N≥m

(
Sλ(U1(QN ),O)m1,QN

/mm
S∞

))
,

• M0 = lim←−
m

(
Rp(F) ⊗R

∏
N≥m Sλ(U0(QN ),O/$m)m0,QN

)
,

• M = lim←−
m

(
Rp(F) ⊗R

∏
N≥m Sλ(U,O/$m)mU ⊗AWQN

AQN

)
.

The action of AWQN on Sλ(U,O/$m)mU is via the spherical Hecke algebra at the places in QN . Via
the identification A = AQN for each N ≥ 1, we obtain compatible actions of A on M1,M0 and M .
Since Sλ(U,O/$m)mU is finite, we have an isomorphism

Sλ(U,O/$m)mU = Rp(F) ⊗R

∏
N≥m

Sλ(U1(QN ),O/$m)mU

and we get that

Sλ(U,O/$m)mU
∼= lim←−

m

Rp(F) ⊗R

∏
N≥m

Sλ(U1(QN ),O/$m)mU


So we can equip Sλ(U,O/$m)mU with an AW -action (on each factor it acts via AWQN ), and we have
an isomorphism M ∼= Sλ(U,O)m ⊗AW A.

We give the following technical lemmas that we will be using.

Lemma 6.4.5. Let R be a complete Noetherian local ring.
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(1) Suppose {Mi}i∈N is a projective system of flat R-modules. Then, M = lim←−Mi is also flat over
R and M/JM ∼= lim←−Mi/JMi for any ideal J of R.

(2) Let I be an ideal of R, and {Ni}i∈N be a projective system of R-modules such that Ni is a flat
R/Ii-module and the transition maps induce isomorphisms Ni

∼= Ni+1/I
iNi+1. Then, N =

lim←−Ni is a flat R-module and Ni
∼= N/IiN . Moreover, for every ideal J of R, we have N/JN ∼=

lim←−Ni/JNi.

Lemma 6.4.6. Let R be a Noetherian ring, and M =
∏
i∈I

Mi be a product of R-modules Mi. Then,

M/IM ∼=
∏
i∈I

Mi/IMi for every ideal I of R.

Proof. We have a canonical surjective morphism

f : M/IM �
∏
i∈I

Mi/IMi

to show that it is injective, consists of showing that (ai)i∈I ∈ IM for ai ∈ IMi. But since I is finitely

generated, say by f1, . . . , fr, we can write (ai)i∈I = f1(a
(1)
i )i∈I + · · · fr(a(r)

i )i∈I ∈ IM as desired.

Lemma 6.4.7. Let R be a Noetherian ring and {Mi}i∈N → {Ni}i∈N be a map between two projective
systems of R-modules. Suppose that there exists an element f ∈ R that kills the kernel and the cokernel
of Mi → Ni for every i ∈ N. Then, f2 kills the kernel and cokernel of lim←−Mi → lim←−Ni.

Proof. Let (ni)i ∈ lim←−Ni, then by hypothesis, for every i, there exists bi ∈ Mi mapping to fai ∈ Ni.
Since the maps are compatible and their kernels are killed by f , we get that fbi+1 = fbi, so (fbi)i
is a well defined element of lim←−Mi which is sent to f2(ai)i ∈ lim←−Ni. The statement on the kernels is
straightforward.

Proposition 6.4.8. The following properties are true:

(1) M1 is a flat S∞-module.

(2) The trace map induces M1/a∞ ∼= M0.

(3) There is a map η : M → M0 induced by the ηQN ,m, which has kernel and cokernel killed by f ,
where f = (f2

QN
) ∈

∏
N∈NRN , fQN as in the statement of Proposition 6.3.4.

Proof. We let for each m,

M1,m = Rp(F) ⊗R

∏
N≥m

(
Sλ(U1(QN )),O)m,QN /m

m
S∞

)
1) & 2) Since Sλ(U1(QN ),O) is a free O[∆N ] module, and that S∞/m

m
S∞

for m ≤ N is a quotient of
O[∆N ], we get that Sλ(U1(QN ),O)m1,QN /m

m
S∞

is a flat S∞/m
m
S∞

-module. Hence,
∏
N≥m

(
Sλ(U1(QN )),O)m,QN /m

m
S∞

)
is flat over S∞/m

m
S∞

, and by flatness of Rp(F) over R, we see that M1,m is a flat S∞/m
m
S∞

-module.
Moreover, by Lemma 6.4.6, we have

M1,m+1/m
m
S∞ = Rp(F) ⊗R

∏
N≥m+1

(
Sλ(U1(QN )),O)m,QN /m

m
S∞

)
= M1,m

and,

M1,m/a∞ = Rp(F) ⊗R

∏
N≥m

(
Sλ(U1(QN )),O)m1,QN /(a∞,m

m
S∞)

)
= Rp(F) ⊗R

∏
N≥m

(
Sλ(U1(QN )),O/$m)m0,QN

)
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So using (2) of Lemma 6.4.5, we conclude that M1 is a flat S∞-module and that M1/a∞ ∼= M0.
3) This follows from (6.4.7).

Definition 6.4.9 (The patched pseudo-deformation ring).
For m ≥ 1, we define Rp

m = Rp(F) ⊗R
∏
N≥1

RN/(mRN fQN )m, and Rp = lim←−
m

Rp
m.

Thanks to the following lemma, we have an action of Rp over M1.

Lemma 6.4.10. For each m ≥ 1, there exists an integer n(m) which is independent of N , such that
(mRN fQN )n(m) annihilates Sλ(U1(Q),O)m1,QN /m

m
S∞

for all N ≥ m.

Proof. Since a∞ ⊆ m∞, it suffices to prove that there exists an integer n(m) which is independent of
N such that for all N ≥ m, Sλ(U0(Q),O/$m)m0,QN

= Sλ(U0(Q),O)m0,QN
⊗O/$m is annihilated by

(mRN fQN )n(m).
Now since fQN annihilates the cokernel of the map (6.7), the length of fQNSλ(U0(Q),O/$m)m0,QN

as an O-module is bounded by qn! times the length of Sλ(U,O/$m)mU . Its length as an RN -module
is bounded independently of N , so it is annihilated by some power of mRN which is independent of
N .

We have a natural map
∏
N≥1RN → Rp which is surjective thanks to Lemma 6.4.2. Moreover, taking

the limit of the maps

Rp
m → Rp(F) ⊗R

∏
N≥1

R0/m
m
R0

= R0/m
m
R0

(the last equality holds since R0/m
m
R0

is finite), we get a natural map Rp → R0. This map is surjective,
since by Lemma 6.4.2, we have a surjection

∏
N≥1

RN → lim←−
m

Rp(F) ⊗R

∏
N≥1

R0/m
m
R0


which factors through Rp.

For 1 ≤ j ≤ q, let γ∞,j be the n-dimensional pseudocharacter of Zp × Z with coefficients in Rp given
by the composition of the pseudo-character (γN,j)N≥1 with the map

∏
N≥1RN → Rp.

Lemma 6.4.11. Let 1 ≤ j ≤ q.

(1) Composing γ∞,j with the map Rp → R0 gives a pseudocharacter which is inflated from the
’unramified quotient’ Zp × Z→ Z (it is the projection on the second factor).

(2) The module M1 has a natural structure of (S∞ ⊗O A)-module, and the composite of γ∞,j with
the map Rp → End(M1) equals to the composition of αj with the map S∞ ⊗O A→ End(M1).
Consequently, the map Rp → End(M1) is a homomorphism of SW∞ -algebras.

Proof. 1) This holds thanks to the analogous statement for the γN,j which is true since R0 classifies
pseudorepresentations which are unramified at the places in QN .
2) This follows from the definition of the αj and Lemma 6.3.3.

We let the ideal qp be the inverse image of q0 under the morphism Rp → R0.

Lemma 6.4.12. The image of
∏
N≥1

qN under
∏
N≥1

RN → Rp is qp.

Proof. We have commutative diagram
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∏
N≥1

RN
∏
N≥1

O

Rp R0 R0/q0
∼= O

φ

where the map φ is defined in Remark 6.4.3. We let I = ker
(∏

N≥1RN → Rp
)

and I ′ be the
image of I inside

∏
N≥1O. Then, by commutativity of the diagram, we have that inside

∏
N≥1RN ,(

(
∏
N≥1 qN ), kerφ

)
=
(
I, qp

)
. So to prove the lemma, it is enough to show that I ′ = kerφ.

By Lemma 6.4.2, I is consists of elements (xN )N≥1 ∈
∏
RN such that for each m ≥ 1, there exists

Im ∈ F with xN ∈ (fQNmRN )m for all N ∈ Im. But by definition of qN , we have that

(fQNmRN )m + qN = (fQN$)m + qN ⊆ ($m) + qN

This shows that I ′ ⊆ kerφ. For the other inclusion, let (yN )N≥1 ∈ kerφ. By Proposition 6.3.4, there
exists a constant c ∈ N such that for each N ≥ 1, the image of fQN inside RN/qN = O has $-adic
valuation ≤ c. For m ≥ 1, we let Im = {N ≥ 1 | ord$(yN ) ≥ m(c + 1)} so that Im ∈ F (since
(yN )N≥1 ∈ kerφ), I1 ⊇ I2 ⊂ I3 ⊇ · · · , and ∩m≥1Im = ∅. Since (fQNmRN )m + qN = (fQN$)m + qN ⊇
($m(1+c)) + qN , for each m ≥ 1, and N ∈ Im, there exists xN,m ∈ (fQNmQN )m such that xN,m ≡ yN
mod qN . Define (xN )N≥1 ∈

∏
RN by letting xN be any lift of yN to RN for N 6∈ I1 and xN = xN,m

for N ∈ Im−Im+1. Then, (xN )N≥1 lies inside I and maps to (yN )N≥1. This shows the second equality
kerφ ⊆ I ′, and the lemma.

Lemma 6.4.13. Let m ≥ 1.

(1) We have
∏
N≥1 q

m
N = (

∏
N≥1 qN )m in

∏
N≥1RN .

(2) The image of
∏
N≥1 q

m
N inside Rp is equal to (qp)m.

Proof. Since the image of
∏
N≥1 qN in Rp is qp, the first statement implies the second. Now by

theorem 4.4.18, there exists an integer g0 such that for every N ≥ 1, qN/q
2
N is generated by g0

elements. Thus, for every N ≥ 1, there exists a surjection O[[x1, . . . , xg0 ]] � RN where the image of
the xi lies in qN . So the result follows from the equality∏

N≥1

(x1, . . . , xg0)m = (x1, . . . , xg0)m ·
∏
N≥1

O[[x1, . . . , xg0 ]]

=

(x1, . . . , xg0) ·
∏
N≥1

O[[x1, . . . , xg0 ]]

m

=

∏
N≥1

(x1, . . . , xg0)

m

where the first and last equality follows from the fact that (x1, . . . , xg0) is a finitely generated ideal of∏
N≥1O[[x1, . . . , xg0 ]].

Proposition 6.4.14. (1) The O-module

qp/
(
(qp)2, q∞

)
is killed by $c, where c is as in theorem 4.4.18.

(2) The natural map of completed local rings

(R∞)∧q∞ → (Rp)∧qp

is surjective. In particular, (Rp)∧qp is a complete noetherian local E-algebra with residue field E.
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Proof. 1) From theorem 4.4.18, we have that the cokernel of the map∏
N≥1

q∞/(q∞)2 →
∏
N≥1

qN/(qN )2

is killed by $c. So using Lemma 6.4.13, we only need to show that the images of q∞/(q∞)2 and∏
N≥1 q∞/(q∞)2 coincide inside qp/(qp)2. First note that the map

∏
N≥1 q∞/(q∞)2 → qp/(qp)2 is a

morphism of
∏
N≥1O-modules. But since we have a composition of O-modules∏

N≥1

O → Rp → R0/q0 → O

(which is equal to the morphism defined in Remark 6.4.3), the two actions of
∏
N≥1O on Rp, where

one factors through
∏
N≥1O → O, coincide modulo qp. Hence, the action of

∏
N≥1O on qp/(qp)2

factors through
∏
N≥1O → O. Therefore, it suffices to show that the composition

q∞/(q∞)2 →
∏
N≥1

q∞/(q∞)2 → O⊗ ∏
N≥1

O
∏
N≥1

q∞/(q∞)2

is surjective. But this follows from the next Lemma 6.4.15.
2) By (1), for each i ≥ 1 the O-module qp/((qp)i, q∞) is killed by a power of $, so it becomes zero
after inverting $. This implies that the map

gi : (R∞/q
i
∞)q∞ → (Rp/(qp)i)qp

is surjective for all i ≥ 1. Since the sequence (ker gi)i≥1 consists of finite length ideals (they are
contained inside Artinian rings), it satisfies the Mittag-Leffler condition which implies that lim←−

i

gi is

surjective as desired.

Lemma 6.4.15. Let R be a commutative ring, and M a finitely generated R-module. Suppose we

have an R-algebra map
∏
N≥1R

λ−→ R. Then, the composite map

M →
∏
N≥1

M → R⊗ ∏
N≥1

R

∏
N≥1

M

is surjective.

Proof. If M ∼= Rd for some d ≥ 1, then we have a composition of maps

Rd →
∏
N≥1

Rd = (
∏
N≥1

R)d → R⊗ ∏
N≥1

R (
∏
N≥1

R)d ∼= Rd

which is just the identity since λ is R-linear. For the general case, M is a quotient of a finite free
R-module F . The map F → R ⊗ ∏

N≥1

R

∏
N≥1

F → R ⊗ ∏
N≥1

R

∏
N≥1

M is surjective and factors through

M .

Now let us define the following modules:

• m1 = (M1/a
2
∞)qp ,

• m0 = (M0)qp ,

• m = Mqp = Mq0 .

100



Lemma 6.4.16. (1) m1 is a finite free S∞,a∞/a
2
∞-module.

(2) The trace map induces an isomorphism m1 /a∞ ∼= m0.

(3) The map η induces an isomorphism η : m ∼= m0.

Proof. 2) This follows immediately from localizing the isomorphism in Proposition 6.4.8.
3) By Proposition 6.4.8 the kernel and cokernel of the map η : M → M0 are killed by f ∈

∏
N≥1RN

such that the image of f under the map
∏
N≥1RN →

∏
N≥1O → O is non-zero by Proposition 6.3.4

and Remark 6.4.3. Therefore, the image of f in Rp does not lie inside qp, which means that localizing
the map η at qp induces the desired isomorphism.
1) By definition of the ideal qp, its inverse image in SW∞ is aW∞ . So by the consequence of (2) in
Lemma 6.4.11, the action of S∞ on m1 factors through S∞ ⊗SW∞ (SW∞ )aW∞ = S∞,a∞ (this equality is

justified by the next Lemma 6.4.17). By Proposition 6.4.8, M1/a
2
∞ is a flat S∞/a

2
∞, so its localisation

m1 is a flat S∞,a∞/a
2
∞-module. Now since M is a finite O-module, m ∼= m1 /a∞ (by (2) and (3)) is a

finite dimensional E-vector space, and we get that m1 is finitely generated over S∞,a∞/a
2
∞.

Lemma 6.4.17. Let A be a ring and G be a finite group acting by ring automorphisms on A. Let AG

be the subring of invariant elements and π : SpecA → SpecAG the induced morphism. Then, π is a
finite morphism and the fibers of π are precisely the G-orbits of the natural action of G on SpecA.

Note that since m1 is a finite dimensional E-vector space, the action of the local E-algebra Rp
qp factors

through an Artinian quotient. Hence we get an action of (Rp)∧qp on m1.

Now we go back to the pseudorepresentations γ∞,j of Zp × Z with coefficients in Rp for 1 ≤ j ≤ q.
We let δj ∈ Rp be the discriminant of the characteristic polynomial χj(t) ∈ Rp[t] of the element
(0, 1) ∈ Zp × Z (corresponding to the Frobenius) under the pseudorepresentation γ∞,j .

Lemma 6.4.18. For 1 ≤ j ≤ q, δj 6∈ qp and χj(t) mod qp splits into linear factors in E[t].

Proof. To show that δj 6∈ qp, it suffices to show that there exists an integer m ≥ 1 such that the image
of δj under the map

Rp → R0
hU,σ−−−→ O → O/$m

is non-zero. By the Lemma 4.4.17, if we choose m > dn(n− 1) (where d is as in the statement of the
lemma), and if we can identify the image of δj in O/$m with the discriminant of the characteristic
polynomial of a Frobenius element Frobṽ for some v ∈ QN , then we are done. Let m′ be an integer
such that the map R0 → O/$m factors through R0/m

m′
R0

. And we can identify the image of δj with

the image of (δj,N ) ∈
∏
N≥1R0/m

m′
R0

in Rp(F) ⊗R
∏
N≥1R0/m

m′
R0
∼= R0/m

m′
R0

, with δj,N is the image of
the discriminant of the characteristic polynomial for the Frobenius element corresponding to the j-th
place of QN . Therefore, the image of δj in R0/m

m′
R0

coincides with one of these discriminants.
Moreover, by hypothesis on O, the characetristic polynomial of Frobṽ splits in O[t], thus χj(t) splits
in O/$m[t]. Hence, the second statement follows using Hensel’s lemma.

For 1 ≤ j ≤ q, let x
(1)
j , . . . , x

(n)
j be the pairwise distinct roots of χj(t) mod qp in E. Then, by [NT20,

Lemma 4.28], there is a unique collection of continuous characters

γ
(i)
j : Zp × Z→

(
(Rp)∧qp

)×
such that γ

(i)
j mod qp is the character (a, b) 7→ (x

(i)
j )b and (γ∞,j)qp = tr γ

(1)
j ⊕· · ·⊕γ

(n)
j , where (γ∞,j)qp

is the composite of γ∞,j with Rp → (Rp)∧qp
.

The characters γ
(i)
j |Zp×0

: Zp → (Rp)∧qp
induce a morphism S∞ → (Rp)∧qp

which extends the morphism
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SW∞ → Rp. Given that a∞ ⊆ qp, this morphism extends to a map from the formally smooth E-algebra
(S∞)∧a∞ , and we can choose a lift of this map through the surjective map in Proposition 6.4.14

(R∞)∧q∞ → (Rp)∧qp

to get a morphism (S∞)∧a∞ → (R∞)∧q∞ . We let A′ be the localisation of A at the prime ideal (t
(i)
j −x

(i)
j :

1 ≤ j ≤ q, 1 ≤ i ≤ n) and define

• m′1 = m1⊗AA′,

• m′0 = m0⊗AA′.

Lemma 6.4.19. (1) For each 1 ≤ i ≤ n and 1 ≤ j ≤ q, the pushforwards of α
(i)
j and γ

(i)
j to

End(m′1) are equal.

(2) The natural structure of S∞-module on m′1 coincides with that induced by morphism S∞ →
(Rp)∧qp

.

(3) The map (Rp)∧qp
→ (R0)∧q0

factors through the quotient (Rp)∧qp
/a∞.

(4) The trace map induces an isomorphism m′1 /a∞
∼= m′0.

(5) m′1 is a non-zero finite free S∞,a∞/a
2
∞-module.

Proof. 1) Let X = {α(i)
j (z), γ

(i)
j (z) ∈ End(m′1) | z ∈ Zp × Z, 1 ≤ i ≤ n, 1 ≤ j ≤ q} and let L be

the E-subalgebra of End(m′1) generated by the elements of X. Then, L is commutative, and is an
Artinian E-algebra; so we can write L =

∏
k Lk where Lk is a local E-algebra. The pushforwards

of the characters α
(i)
j and γ

(i)
j take value in L, and the pseudocharacters trα

(1)
j ⊕ · · · ⊕ α

(n)
j and

tr γ
(1)
j ⊕· · ·⊕γ

(n)
j are equal to the same pseudocharacter after pushforward to L, which we call Tj . To

prove (1) it suffices to show that the pushforward of α
(i)
j and γ

(i)
j agree on each localisation Lk of L. For

this, we use [BC09, Proposition 1.5.1] which, when applied to the pseudocharacter Tj : Zp × Z→ Lk,

states that there exists unique characters T
(i)
j : Zp × Z→ Lk such that:

(i) Tj = trT
(1)
j ⊕ · · · ⊕ T (n)

j ,

(ii) T
(i)
j 6≡ T

(i′)
j mod mk if i 6= i′.

where mk is the maximal ideal of Lk (this is because in loc.cit. IP = 0, also note that the two notions
of pseudocharacters agree since we are working with Q-algebras). Therefore, it suffices to show that

α
(i)
j and γ

(i)
j agree after pushforward to each residue field of L. But since m′1 is an Artinian A′-module,

the element α
(i)
j (0, 1)−xij = t

(i)
j −x

(i)
j ∈ mA′ is a nilpotent element of End(m′1). Similarly, the action of

(Rp)∧qp on m1 factors through an Artinian quotient, so the element γ
(i)
j (0, 1)− x(i)

j ∈ qp is a nilpotent

element of End(m′1). Therefore, the difference α
(i)
j (0, 1) − γ(i)

j (0, 1) lie in the Jacobson radical of L,
and this implies (1).

2) Since both S∞-module structures are induced by the two set of characters α
(i)
j and γ

(i)
j , then (2)

follows immediately from (1).

3) The statement follows if we show that the pushforward of the character γ
(i)
j|Zp×0 through the map

(Rp)∧qp
→ (R0)∧q0

is trivial. But by (1) of Lemma 6.4.11, the pushforward of the pseudocharacter

tr γ
(1)
j ⊕· · ·⊕γ

(n)
j to (R0)∧q0

factors through the projection Zp×Z→ Z. Therefore, we get the result by
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applying the previous argument that uses [BC09, Proposition 1.5.1], to the two families of characters

γ
(i)
j and γ′j

(i) = γ
(i)
j ◦ (Z→ Zp × Z).

4) This follows immediately from (2) of Lemma 6.4.16.
5) Given that m′1 is a direct summand of m1, we only need to prove that m′1 is non-zero, or even

that m′0 is non-zero. But by (2) of Lemma 6.4.11, the characteristic polynomial
∏
i(t − t

(i)
j ) of (0, 1)

under αj pushes forward to
∏
i(t − x

(i)
j ) ≡ χj(t) mod qp in End(m0). This is because thanks to (3)

of Lemma 6.4.16, the action of (Rp)∧qp
on m0

∼= m factors through

(Rp)∧qp
→ (R0)∧q0

→ (T∅)q0 = E

Therefore, the action of AW on m0 factors through AW → E sending t
(i)
j to x

(i)
j . Since we have an

isomorphism of AW -modules m0
∼= Sλ(U,O)q0 ⊗AW A, we get that the localisation m′0 is nonzero.

In order to complete the patching argument, we will use the following theorem

Theorem 6.4.20. [Bro17, Theorem 1.1] Let A → B be a local morphism of noetherian local rings
satisfying

edim(B) ≤ edim(A)

where edim is the embedding dimension, i.e. the minimal number of generators of the maximal ideal.
If M is a non-zero A-flat B-module which is finitely generated over B, then M is finite free over B.

We are now finally able to prove Theorem 3.4.6 announced in the introduction. So let us apply
Theorem 6.4.20 for A = S∞,a∞/a∞, B = (R∞)∧q∞/a

2
∞, and M = m′1. In fact, S∞,a∞/a∞ has

embedding dimension nq, and (R∞)∧q∞/a
2
∞ has embedding dimension ≤ nq since (R∞)∧q∞ is a power

series ring over E in nq variables. Thus we get that m′1 is a finite free module over (R∞)∧q∞/a
2
∞, and

in particular m′0 is finite free over (R∞)∧q∞/a∞. Since the action of (R∞)∧q∞/a∞ on m′0 factors through
the surjective maps

(R∞)∧q∞/a∞ � (Rp)∧qp
/a∞ � (R0)∧q0

� (T∅)q0 = E

we get that each of these maps is an isomorphism. In particular, (R0)∧q0
∼= E. We deduce our theorem

by identifying it with the tangent space of (R0)∧q0
via proposition 4.4.5.
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Appendix A

Ultrafilters

Definition A.0.1. A filter is a set F of subsets of N such that:

(1) N ∈ F , and ∅ 6∈ F ;

(2) if A ⊆ B and A ∈ F , then B ∈ F ;

(3) If A,B ∈ F , then A ∩B ∈ F .

An ultrafilter is a filter with the following additional property:

If A ⊆ N, then either A ∈ F or Ac ∈ F

Lemma A.0.2. A filter F is an ultrafilter if and only if the following property holds:

A ∪B ∈ F ⇒ A ∈ F or B ∈ F

The examples to keep in mind are the following :

- For n ∈ N, Fn = {A ⊆ N | n ∈ A} is an ultrafilter called a principal ultrafilter.

- Fcof = {A ⊆ N | Ac is finite } is a filter called the cofinite filter.

Lemma A.0.3. An ultrafilter F is principal if and only if F 6⊇ Fcof.

Proof. If F = Fn is principal, then N \ {n} 6∈ F , so F 6⊇ Fcof. Conversely, if F 6⊇ Fcof, then by the
definition of an ultrafilter, there exists a finite subset A ∈ F . By the previous lemma, this implies
that there is some n ∈ N, such that {n} ∈ F . Therefore, F is principal.

Lemma A.0.4. An ultrafilter is a maximal filter, with the order given by inclusion.

Proof. Suppose that F is a maximal filter which is not an ultrafilter. Then, there exists a subset A ∈ N
such that A,Ac 6∈ F . The set of subsets F ′ = {C ⊇ A ∩ B for some B ∈ F} is a filter containing F :
contradiction.

Corollary A.0.5. There exist non-principal ultrafilters.

Proof. By Zorn’s lemma, and the previous lemma, any filter is contained in an ultrafilter. Applying
this to the filter Fcof, we get the result.

Next, we will show how ultrafilters allow us to study the spectrum of countable products of rings. So
consider for all n ∈ N a local Artinian ring Rn with maximal ideal mn, and let R =

∏
n∈NRn. To an

element x = (xn)n ∈ R, we associate the set

Z(x) = {n ∈ N | xn ∈ mn}

which satisfy the following properties:
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• Z(x+ y) ⊇ Z(x) ∩ Z(y);

• Z(xy) = Z(x) ∪ Z(y).

And to a subset A ⊆ N, we associate the idempotent:

(eA)n =

{
1 if n ∈ A,
0 otherwise.

which in turn satisfies the following properties:

• Z(eA) = Ac;

• eA∩B = eAeB;

• eA∪B = eA + eB − eAeB.
Now given a prime ideal, we define

F(p) := {Z(x) | x ∈ p} = {Ac | eA ∈ p}

Lemma A.0.6. For any prime ideal p ⊆ R, F(p) is an ultrafilter.

Proof. Since 0 ∈ p, we have N ∈ F , and since 1 6∈ p, ∅ 6∈ F(p). Now if A ⊆ B, then eAceBc = eBc ,
so A ∈ F(p) ⇒ B ∈ F(p). Given that eAeAc = 0 ∈ p, we either have A ∈ F(p) or Ac ∈ F(p).
Together with eA∩B = eAeB, this implies that if A,B ∈ F(p), then A ∩B ∈ F(p). Therefore, F(p) is
an ultrafilter.

Conversely, we easily check that given an ultrafilter F , we get a prime ideal defined by:

p(F) = {x ∈ R | Z(x) ∈ F}

Theorem A.0.7. These two constructions are inverse to each other, and induce a bijection between
the set of ultrafilters of N and the set of prime ideals of R.

Remark A.0.8. Note that two elements (xn), (yn) ∈ R agree in Rp(F) if and only if xn = yn for F-many
n.

Proposition A.0.9. Suppose that Rn = R0 for all but finitely many n, with #R0 < ∞. If F is a
non-principal ultrafilter, then we have an isomorphism

f : R0
'−→ Rp(F)

x0 7→ x = (xn)n

where xn = x0 if Rn = R0 and 0 otherwise.

Proof. Let us start by proving injectivity. Suppose that x0 6= 0 ∈ R0 maps to 0, i.e., that there exists
y = (yn)n 6∈ p(F) such that yf(x0) = (ynf(x0)n) = 0. If yn 6∈ mn for n � 0, then it is invertible
and we get f(x0)n = x0 = 0. Therefore, for n � 0, yn ∈ mn, so Z(y) is cofinite hence in F , which
contradicts the choice of y.
For surjectivity, let us first fix an integer n0 such that for n ≥ n0, Rn = R0. Suppose that we have an
element x/y ∈ Rp(F) with y 6∈ p(F), we need to show that there exists r ∈ R0 and z 6∈ p(F) such that
f(r)yz = xz.
For r ∈ R0, consider the set {n ≥ n0 | ynr = xn}. Since Z(y) 6∈ F , for n ∈ Z(y)c and n ≥ n0, yn is
invertible in R0, and we can find some r ∈ R0 such that ynr = xn. Thus, we have:

Z(y)c ∩ {n ∈ N | n ≥ n0} ⊆
⋃
r∈R0

{n ≥ n0 | ynr = xn} ∈ F

By Lemma A.0.2, since R0 is finite, there exist some r ∈ R0 such that A = {n ≥ n0 | ynr = xn} ∈ F .
Letting z = eA, we trivially have yf(r)z = xz, and Z(z) = Ac 6∈ F , so z 6∈ p(F).
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