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1 Preliminaries

Let A be a ring. We de fine quotient category K(A) is to be the category whose ob-
jects are cochain complexes of A-modules (the objects of Comp(ModA)) and whose
morphisms are the chain homotopy equivalence classes of maps in Comp(ModA).
That is, HomK(A)(A,B) is the set HomComp(ModA)(A,B)/ ∼ of homotopy equiva-
lence classes of maps in Comp(ModA).
The derived category D(A) is defined to be the localisation S−1K(A) of the category
K(A) with respect to the collection S of quasi-isomorphisms. K(A) and D(A) are
both triangulated categories.
In D(A), there exist a functor

−⊗L
A − : D(A)→ D(A), (L,K) 7→ L⊗L

A K

called the derived tensor product which is an exact functor of triangulated categories.
We also have a functor

RHom : D(A)op ×D(A)→ D(A), (L,K) 7→ RHomA(K,L)

which is characterised by the formula

HomD(A)(K,RHomA(L,M) = HomD(A)(K ⊗L
A L,M)

For L,K ∈ D(A), we define the i-th extension group of L by K to be

ExtiA(L,K) := HomD(A)(L,K[i]) = HomD(A)(L[−i],K)

We have that ExtiA(L,K) = H i(RHomA(L,K))

2 Derived completion

Let K ∈ D(A) and f ∈ A. We denote T (K, f) the derived limit of the system

· · · → K
f−→ K

f−→ K

Lemma 2.1. The following are equivalent

1. ExtnA(Af ,K) = 0 for all n,

2. HomD(A)(E,K) = 0 for all E in D(Af ),

3. T (K, f) = 0,

4. for every p ∈ Z we have T (Hp(K), f) = 0,
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5. for every p ∈ Z we have HomA(Af , H
p(K)) = 0 and Ext1A(Af , H

p(K)) = 0,

6. RHomA(Af ,K) = 0,

7. the map
∏

n≥0K →
∏

n≥0K sending (x0, x1, . . . ) to (x0 − fx1, x1 − fx2, . . . )
is an isomorphism in D(A).

Proof. Since ExtnA(Af ,K) = HomD(A)(Af ,K[n]) = HomD(A)(Af [−n],K), we clearly
have that 2) implies 1). And since ExtnA(Af ,K) = Hn(RHomA(Af ,K)), the equiv-
alence between 1) and 6) is clear. Assume condition 1) and let I• be a K-injective
complex of A-modules representing K. By definition of RHom, condition 6) ⇔ 1)
signifies that the complex HomA(Af , I

•) is acyclic. Now for an element E ∈ D(Af ),
let M• be a complex of Af -modules representing E. Then

HomD(A)(E,K) = HomK(A)(M
•, I•) = HomK(Af )(M

•,HomA(Af , I
•))

As HomA(Af , I
•)) is a K-injective complex of Af -modules (the above equation proves

that), the fact that it is acyclic implies that it is homotopy equivalent to 0. Therefore
HomK(Af )(M

•,HomA(Af , I
•)) = 0 which proves 2).

Consider the following free resolution of Af as an A-module

0→
⊕
n∈N

A→
⊕
n∈N

A→ Af → 0

where the first map sends (a0, a1, a2 . . . ) to (a0, a1−fa0, a2−fa1, . . . ) and the second
map sends (a0, a1, a2, . . . ) to a0 +a1/f +a2/f

2 + . . . . Applying HomA(−, I•), we get

0→ HomA(Af , I
•)→

∏
I• →

∏
I• → 0

Since
∏
I• represents

∏
n∈NK this proves the equivalence of 1) and 7). Moreover,

by definition of the derived limit, the above exact sequence shows that T (K, f) is a
representative of RHomA(Af ,K) in D(A). This gives the equivalence of 1) and 3).

We have a spectral sequence (I think this is just the spectral sequence that com-
putes the cohomology of the Hom-bicomplex)

Ep,q
2 = ExtqA(Af , H

p(K))⇒ Extp+q
A (Af ,K)

It degenerates at E2 since Af has a projective resolution of length 1 (the above free
resolution) and so there are only two non-zero rows (q = 0, 1), which gives us the
exact sequence

0→ Ext1A(Af , H
p−1(K))→ ExtpA(Af ,K)→ HomA(Af , H

p(K))→ 0

This shows that 4) and 5) are equivalent to 1).

Lemma 2.2. Let I ⊂ A be an ideal and M be an A-module.

1. If M is I-adically complete, then T (M,f) = 0 for every f ∈ I

2. If T (M,f) = 0 for every f ∈ I, and I is finitely generated, then the map
M → lim←−M/InM is surjective

2



Proof. 1) assume that M is p-adically complete. By 5. of lemma 2.1, it suffices to
prove that ExtA(Af ,M) = 0 and HomA(Af ,M) = 0. But

HomA(Af ,M) = HomA(Af , lim←−M/InM) = lim←−HomA(Af ,M/InM) = 0

since for every n ≥ 1, HomA(Af ,M/InM) = 0.
Now since Ext1 characterises extensions, we need to show that every extension

0→M → E → Af → 0

is split. So for each n ≥ 1, select a en ∈ E mapping to 1/fn, and set δn = fen+1−en ∈
M . So the element

e′n = en + δn + fδn+1 + f2δn+2 + . . .

exists since M is f -adically complete and maps to 1/fn. Since e′n = fen+1, we can
define a splitting sending 1/fn to e′n.

2) Assume that I = (f1, . . . , fr) and that T (M,fi) = 0 for i = 1, . . . , r. One easily
shows that if M → lim←−M/fni M is surjective for every fi, then M → lim←−M/InM is
surjective. So we can assume that I = (f) and that T (M,f) = 0.
Consider some xn ∈M for n ≥ 0 and the extension

0→M → E → Af → 0

where E = (M⊕
⊕
Aen)/〈xn−fen+1+en〉. Again by 5. of lemma 2.1, this extension

is split, so we obtain an element that we can write x + e0 (x ∈ M) that generates
a copy of Af in E x + e0 = x − x0 + fe1 = x − x0 − fx1 + f2e2 = . . . By the
snake lemma, we have M/fnM = E/fnE and since x + e0 ∈ fnE, we get that
x = x0 + fx1 + · · · + fn−1xn−1 mod fnM . Which shows the surjectivity of the
desired map.

Definition 2.3. Let I be an ideal of A and K ∈ D(A). We say that K is derived
complete with respect to I if for every f ∈ I we have T (K, f) = 0. We denote by
Dcomp(A) = Dcomp(A, I) the full subcategory of D(A) consisting of derived complete
objects with respect to I.
If M is an A-module, we say that M is derived complete with respect to I if M [0] ∈
D(A) is derived complete with respect to I.

Corollary 2.4. If the ideal I ⊂ A is finitely generated, and M is an A-module, then
the following are equivalent

1. M is I-adically complete,

2. M is derived complete with respect to I and I-adically separated

Proof. Direct consequence of 2.2.

Proposition 2.5. Let I be a finitely generated ideal of a ring A. The inclusion
functor Dcomp(A, I) → D(A) has a left adjoint, i.e, there exist a map sending any
object K of D(A) to a derived complete object K∧ of D(A) such that the map

HomD(A)(K
∧, E)→ HomD(A)(K,E)

is a bijection whenever E is derived complete. In fact, if A is generated by f1, . . . , fr ∈
A, we have

K∧ = RHom
(
(A→

∏
i0

Afi0
→

∏
i0<i1

Afi0 ,fi1
→ · · · → Af1,...,fr),K

)
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Proof. Let K∧ be defined as above. Then the map of complexes

(A→
∏
i0

Afi0
→

∏
i0<i1

Afi0 ,fi1
→ · · · → Af1,...,fr)→ A

induces a map K → K∧. It suffices to show that K∧ is derived complete and that
K → K∧ is an isomorphism if K is derived complete.
Let f ∈ A We have

RHomA(Af ,K
∧) = RHom

(
Af , RHom

(
(A→

∏
i0

Afi0
→

∏
i0<i1

Afi0 ,fi1
→ · · · → Af1,...,fr),K

))
= RHom

(
Af ⊗L

A (A→
∏
i0

Afi0
→

∏
i0<i1

Afi0 ,fi1
→ · · · → Af1,...,fr),K

)
= RHom

(
(Af →

∏
i0

Affi0
→

∏
i0<i1

Affi0 ,fi1
→ · · · → Aff1,...,fr),K

)
The last equality is true by looking at the definition of the derived tensor product
and noticing that the complex (A→

∏
i0
Afi0

→
∏

i0<i1
Afi0 ,fi1

→ · · · → Af1,...,fr) is
K-flat (every element of the complex is a flat A-module).
Now for f ∈ I, the complex

(Af →
∏
i0

Affi0
→

∏
i0<i1

Affi0 ,fi1
→ · · · → Aff1,...,fr)

is 0 in D(A) by corollary 4.4. Hence RHomA(Af ,K
∧) = 0, so K∧ is derived complete

by lemma 2.1.
Conversely, by the same lemma 2.1, we have RHomA(Af ,K) = 0 for each f =
fi0 · · · fip , hence K → K∧ is an isomorphism in D(A).

Lemma 2.6. Let I ⊂ A be an ideal and let (Kn) be an inverse system of objects
of D(A) such that for all f ∈ I, there exist e = e(n, f) such that fe is zero on Kn.
Then for K ∈ D(A), the object K ′ = K ⊗L

AKn is derived complete with respect to I.

Proof. The category of derived complete objects being preserved under R lim, it
suffices to show that each K ⊗L

A Kn is derived complete. But by assumption, for all
f ∈ I, there exist e such that fe is zero in K ⊗L

A Kn. Hence T (K ⊗L
A Kn, f)=0.

2.1 Some useful facts in the principal case

In this subsection, we assume that I = (f) for some f ∈ A. One can prove -I am
definitely not doing that here but it is just technical- that in this case, we have

K∧ = R lim
(
K ⊗L

A (A
fn

−→ A)
)

At least one can see directly from lemma 2.6 that this object is derived complete.

Lemma 2.7. Let f ∈ A. If there exist an integer c ≥ 1 such that A[f c] = A[f c+1] =
. . . , then for all n ≥ 1, there exist maps

(A
fn

−→ A)→ A/fn, and A/(fn+c)→ (A
fn

−→ A)

in D(A) inducing an isomorphism of the pro-objects {A/fnA} and {(A fn

−→ A)} in
D(A).

Proof. The first map is given by the following commutative diagram
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. . . 0 A A 0 . . .

. . . 0 0 A 0 . . .

fn

For the second arrow, first we define a map

. . . 0 A/A[f c] A 0 . . .

. . . 0 A A 0 . . .

fc

fn+c

id

fn

But since the arrow A/A[f c]
fn+c

−−−→ A is injective, the first row is quasi-isomorphic to
A/fn+cA which gives the second map.

Lemma 2.8. Let A be a ring and f ∈ A. We have the naive derived completion

K 7→ K ′ = R lim(K ⊗L
A A/fnA) and K 7→ K∧ = R lim

(
K ⊗L

A (A
fn

−→ A)
)
. The

natural transformation K∧ 7→ K ′ is an isomorphism if and only if the f -power
torsion of A is bounded.

Proof. We won’t need the only if part, so we will only prove the if part. But by

lemma 2.7, the pro-objects {A/fnA} and {(A fn

−→ A)} are isomorphic. The result
follows from lemma 091B (Stack project).

3 p-complete flatness

Definition 3.1. Given a, b ∈ Z ∪ {∞}, we say that M ∈ D(A) has Tor amplitude
[a, b] if for any A-module N , we have M ⊗L

A N ∈ D[a,b](A). If a = b, we say that M
has Tor amplitude concentrated in degree a.

Definition 3.2. Fix M ∈ D(A) and a, b ∈ Z ∪ {∞}.

• We say that M has p-complete Tor amplitude ∈ [a, b] if M⊗L
AA/pA ∈ D(A/pA)

has Tor amplitude concentrated in [a, b]. If a = b, we say that M ∈ D(A) has
p-complete Tor amplitude concentrated in degree a.

• We say that M is p-completely (faithfully) flat if M ⊗L
A A/pA ∈ D(A/pA) is

concentrated in degree 0 and is a (faithfully) flat A/pA-module.

Note that M ∈ D(A) having Tor amplitude concentrated in degree 0 just means that
M is concentrated in degree 0 and is a flat A-module.
Therefore M ∈ D(A) is p-completely flat if and only if it has p-complete Tor ampli-
tude concentrated in degree 0.

Remark 3.3. One can replace in the definition A/pA by A/pnA for every n ≥ 1
without changing its meaning.
Indeed, suppose that we have an extension of rings R → S with S = R/I for an
ideal I such that I2 = 0 (I is canonically an S-module). Then M ∈ D(R) has tor
amplitude in [a, b] if and only if M ⊗L

R S ∈ D(S) has tor amplitude in [a, b].
The only if part, is just a consequence of the stability of the tor amplitude under
base change. And for the if part, consider the exact triangle I → R→ S. Applying
M ⊗L

R − gives an exact triangle

(M ⊗L
R S)⊗L

S I →M →M ⊗L
R S
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The leftmost term is in D[a,b](R) so tensoring with an R-module N we get an object
of D[a,b](R). Also by hypothesis we have (M ⊗L

RS)⊗L
RN = (M ⊗L

RS)⊗L
S (N ⊗L

RS) ∈
D[a,b](R). Therefore M ⊗L

R N ∈ D[a,b](R).

Lemma 3.4. Fix M ∈ D(A) and a, b ∈ Z ∪ {∞}. Let M̂ ∈ D(A) be the derived
p-completion of M . The following are equivalent

1. M has p-complete Tor amplitude in [a, b] (resp. is p-completely (faithfully) flat)

2. M̂ has p-complete Tor amplitude in [a, b] (resp. is p-completely (faithfully) flat)

Proof. The map M 7→ M̂ induces an isomorphism M⊗L
ZZ/pZ ∼= M̂⊗L

ZZ/pZ. Indeed,
we have for every N ∈ D(A),

HomD(A)(M̂ ⊗L
Z Z/pZ, N) ∼= HomD(A)(M̂ ⊗L

A (Z/pZ⊗L
Z A), N)

∼= HomD(A)(M̂,RHomA(Z/pZ⊗L
Z A,N))

RHomA(Z/pZ⊗L
ZA,N) can easily be seen to be derived p-complete (use 2. of lemma

2.1). Hence by proposition 2.5, we get that

HomD(A)(M ⊗L
A Z/pZ, N) ∼= HomD(A)(M̂,RHomA(Z/pZ⊗L

Z A,N))

∼= HomD(A)(M ⊗L
Z Z/pZ, N)

which shows the claim.
Now notice that we have A ⊗L

Z Z/pZ = (· · · → 0 → A
p−→ A → 0 → . . . ) is quasi-

isomorphic to (· · · → 0→ A[p]
0−→ A/pA→ 0→ . . . ). This induces an isomorphism

M ⊗L
A A/pA⊕M [1]⊗L

A A[p] ∼= M ⊗L
A (A⊗L

Z Z/pZ)

∼= M ⊗L
Z Z/pZ

∼= M̂ ⊗L
Z Z/pZ

∼= M̂ ⊗L
A A/pA⊕ M̂ [1]⊗L

A A[p]

Since the morphism induced from M → M̂ by −⊗L
A (A⊗L

Z Z/pZ respects the sum-

mands, we get that M ⊗L
A A/pA

∼= M̂ ⊗L
A A/pA, which gives the result.

Lemma 3.5. Let A→ B be a map of rings, M ∈ D(A) and a, b ∈ Z ∩ {∞}.

1. If M ∈ D(A) has p-complete Tor amplitude in [a, b] (resp. p-completely (faith-
fully) flat), then the same holds true for M ⊗L

A B ∈ D(B).

2. If A→ B is p-completely faithfully flat, then the converse of 1. holds true.

Proof. This is immediate from the discrete case.

Lemma 3.6. Suppose that A has p∞-torsion and let M ∈ D(A) be derived p-complete
with p-complete tor amplitude in [a, b], a, b ∈ Z ∪ {∞}. Then M ∈ D[a,b](A).

Proof. By lemma 2.8, M is the derived limit of M ⊗L
AA/p

nA. But by remark 3.3, all
M ⊗L

A A/p
nA ∈ D[a,b](A/pnA). Looking at the long exact sequence of cohomology

from the exact triangle

M →
∏
n

M ⊗L
A A/p

nA→
∏
n

M ⊗L
A A/p

nA

and noticing that the maps on the highest degree Hb(M ⊗L
A A/p

nA) are surjective,
we get that M ∈ D[a,b](A).
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Lemma 3.7. Suppose that A has bounded p∞-torsion.

1. If M ∈ D(A) is derived p-complete and p-completely flat then it is a classically
p-complete A-module concentrated in degree 0, with bounded p∞-torsion, such
that M/pnM is flat over A/pnA for every n ≥ 1. Moreover, for every n ≥ 1,
the map

M ⊗A A[pn]→M [pn]

is an isomorphism.

2. Conversely, if N is a classically p-adically complete A-module with bounded p∞-
torsion such that N/pnN is flat over A/pnA for all n ≥ 1, then N [0] ∈ D(A)
is p-completely flat.

Proof. 1) Lemma 3.6 implies that M is concentrated in degree 0. The condition
that M is p-completely flat implies that M ⊗L

AA/p
nA is a flat A/pnA-module for all

n ≥ 1. But

M ⊗L
A A/p

nA = M ⊗L
A (· · · → A

pn−→ A→ 0→ . . . ) = (· · · →M
pn−→M → 0→ . . . )

∼= (· · · →M/pnM → . . . ) ∈ D[0,0](A/pnA)

SoM⊗L
AA/p

nA = M/pnM is a flat A/pnA-module for all n ≥ 1. Moreover, by lemma
2.8, M is the limit of M ⊗L

A A/p
nA = M/pnM so it is classically p-complete.

Corollary 3.8. Let A→ B be a map of derived p-complete rings.

1. If A has bounded p∞-torsion and A → B is p-completely flat, then B has
bounded p∞-torsion.

2. Conversely, if B has bounded p∞-torsion and A→ B is p-completely faithfully
flat, then A has bounded p∞-torsion.

3. Assume that A and B both have bounded p∞-torsion. Then the map A → B
is p-completely flat (resp. p-completely faithfully flat) if and only if A/pn →
B/pnB is flat (resp. faithfully flat) for all n ≥ 1.

4 Appendix

4.1 Derived Limit

Let D be a triangulated category and (Kn, fn) be an inverse system of objects of D.
We say that an object K of D is a derived limit of the system (Kn) if the product∏
Kn exists and there is a distinguished triangle

K →
∏

Kn →
∏

Kn → K[1]

where the map
∏
Kn →

∏
Kn is given by (kn) 7→ (kn − fn+1(kn+1)). In this case,

we denote K = R limKn.

4.2 The Koszul Complex

Definition 4.1. Let R be a ring, E an R-module and ϕ : E → R an R-module map.
We define the Koszul complex K•(ϕ) to be the commutative differential graded
algebra verifying

1. the underlying graded algebra is the exterior algebra ∧(E)
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2. the derivation d : K•(ϕ) → K•(ϕ) is the unique derivation such that d(e) =
ϕ(e) for all e ∈ E = K1(ϕ)

If e1 ∧ · · · ∧ en is one of the generators of degree n in K•(ϕ), then

d(e1 ∧ · · · ∧ en) =
∑
i

(−1)i+1ϕ(ei)e1 ∧ · · · ∧ êi ∧ · · · ∧ en

If f1, . . . , fn ∈ R, the Koszul complex on f1, . . . , fn, denoted by K•(f•) is the
Koszul complex associated to the map (f1, . . . , fr) : Rr → R.

Lemma 4.2. Let e ∈ E and f = ϕ(e) ∈ R. Then we have

f = de+ ed

as endomorphisms of K•(ϕ).
In particular, multiplication by fi is homotopic to zero on K•(f•). So the homology
module Hi(K•(f•)) are annihilated by (f1, . . . , fr)

Proof. We have d(ea) = d(e)a− ed(a) = fa− ed(a).

Lemma 4.3. The alternating Cech complex

R→
∏
i0

Rfi0
→

∏
i0<i1

Rfi0 ,fi1
→ · · · → Rf1...fr

is the colimit of the Koszul complexes K•(f
n
• ).

Proof. The transition maps K•(f
n
• )→ K•(f

n+1
• ) send ei0 ∧ · · · ∧ eip to fi0 . . . fipei0 ∧

· · · ∧ eip . Hence by sending each Koszul complex to the complex R →
∏

i0
R →∏

i0<i1
R → · · · → R (the obvious map), we get the result by noticing that Rg =

colim(· · · → R
g−→ R

g−→ R).

Corollary 4.4. If (f1, . . . , fr) = R then the alternating Cech complex is acyclic.

Proof. This combines lemma 4.2 and 4.3.
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