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1 Preliminaries

Let A be a ring. We de fine quotient category K(A) is to be the category whose ob-
jects are cochain complexes of A-modules (the objects of Comp(Mod 4)) and whose
morphisms are the chain homotopy equivalence classes of maps in Comp(Mody).
That is, Homg 4)(4, B) is the set Homgomp(Mod ) (A, B)/ ~ of homotopy equiva-
lence classes of maps in Comp(Mody).

The derived category D(A) is defined to be the localisation S~ K(A) of the category
K(A) with respect to the collection S of quasi-isomorphisms. K(A) and D(A) are
both triangulated categories.

In D(A), there exist a functor

— @4 —:D(4) - D(4), (L,K)— LYK

called the derived tensor product which is an exact functor of triangulated categories.
We also have a functor

RHom : D(A)* x D(A) —» D(A4), (L,K)~ RHomx(K,L)
which is characterised by the formula
Homp4) (K, RHoma(L, M) = Homp 4 (K @5 L, M)
For L, K € D(A), we define the i-th extension group of L by K to be
Ext}y (L, K) := Homp4) (L, K[i]) = Homp (4 (L[], K)

We have that Ext’y (L, K) = H'(RHomx(L, K))

2 Derived completion

Let K € D(A) and f € A. We denote T'(K, f) the derived limit of the system

oKL kLK
Lemma 2.1. The following are equivalent
1. Ext(Ay, K) =0 for all n,
2. Homp(4)(E,K) =0 for all E in D(Ay),
3. T(K,f)=0,

4. for every p € Z we have T(HP(K), f) =0,



5. for every p € Z we have Homa(Ay, HP(K)) = 0 and Exty (A, H?(K)) = 0,
6. RHomu(As, K) =0,

7. the map [[,,50 K = [0 K sending (xo,z1,...) to (xo — fx1,21 — fxo,...)
is an isomorphism in D(A).

Proof. Since Ext’j(Ay, K) = Homp4)(Ay, K[n]) = Homp4)(Af[—n], K), we clearly
have that 2) implies 1). And since Ext" (A, K) = H"(RHoma(Ay, K)), the equiv-
alence between 1) and 6) is clear. Assume condition 1) and let I® be a K-injective
complex of A-modules representing K. By definition of R Hom, condition 6) < 1)
signifies that the complex Hom(Ay, I®) is acyclic. Now for an element £ € D(Ay),
let M* be a complex of A;-modules representing £. Then

Homp4)(E, K) = Homg () (M*, I*) = Homg (a,)(M*, Homa(Af, I*))

As Homy(Ay,I%)) is a K-injective complex of A -modules (the above equation proves
that), the fact that it is acyclic implies that it is homotopy equivalent to 0. Therefore
Homy(4,)(M*®,Homs(Ay, I*)) = 0 which proves 2).

Consider the following free resolution of A; as an A-module

O—>@A—>@A—>Af—>0

neN neN

where the first map sends (ag, a1, a2 ...) to (ap, a1 — fap,as— fay, ... ) and the second
map sends (ag, a1, as,...) to ag+ay/f+az/f?>+.... Applying Homa(—, I*), we get

0 — Homa(Ayf, I°) — HI' —>HI' —0

Since []I*® represents ], . K this proves the equivalence of 1) and 7). Moreover,
by definition of the derived limit, the above exact sequence shows that T'(K, f) is a
representative of R Homa(Ay, K) in D(A). This gives the equivalence of 1) and 3).

We have a spectral sequence (I think this is just the spectral sequence that com-
putes the cohomology of the Hom-bicomplex)

E? = Ext (Ay, HP(K)) = Ext} 1 (Af, K)

It degenerates at Ey since Ay has a projective resolution of length 1 (the above free
resolution) and so there are only two non-zero rows (¢ = 0,1), which gives us the
exact sequence

0 — Exty (A, HP1(K)) — Ext’ (As, K) — Homa(Ay, H?(K)) — 0
This shows that 4) and 5) are equivalent to 1). O
Lemma 2.2. Let I C A be an ideal and M be an A-module.
1. If M is I-adically complete, then T (M, f) =0 for every f € 1

2. If T(M, f) = 0 for every f € I, and I is finitely generated, then the map
M — l&nM/I"M is surjective



Proof. 1) assume that M is p-adically complete. By 5. of lemma 2.1, it suffices to
prove that Ext4(As, M) = 0 and Homy(Ay, M) = 0. But

Homa(Af, M) = HomA(Af,@M/I"M) = @HomA(Af,M/I”M) =0

since for every n > 1, Homa(Ag, M/I"M) = 0.
Now since Ext! characterises extensions, we need to show that every extension

0—+M—=FE—A;—0

is split. So for each n > 1, select a e,, € E mapping to 1/f", and set 6, = fep11—€, €
M. So the element
e =en+ 060+ fOnp1+ [P0nia+...

exists since M is f-adically complete and maps to 1/f™. Since e}, = fe"*!

define a splitting sending 1/f™ to e,.

, We can

2) Assume that I = (f1,..., fr) and that T'(M, f;) =0 for i = 1,...,r. One easily
shows that if M — l&nM/fZ”M is surjective for every f;, then M — @M/I”M is
surjective. So we can assume that I = (f) and that T'(M, f) = 0.

Consider some z,, € M for n > 0 and the extension

0O—-M—=FE—A; =0

where E = (M & Aey)/{xn— fent1+en). Again by 5. of lemma 2.1, this extension
is split, so we obtain an element that we can write x + ey (x € M) that generates
acopy of Ay in Bz +e =z — w9 + fer = x — x9 — fr1 + fles = ... By the
snake lemma, we have M/f"M = FE/f"E and since = + ey € f"E, we get that
x =20+ fer +--+ f"lo,_; mod fPM. Which shows the surjectivity of the
desired map. O

Definition 2.3. Let I be an ideal of A and K € D(A). We say that K is derived
complete with respect to I if for every f € I we have T(K, f) = 0. We denote by
D comp(A) = Deomp(A, I) the full subcategory of D(A) consisting of derived complete
objects with respect to I.

If M is an A-module, we say that M is derived complete with respect to I if M[0] €
D(A) is derived complete with respect to I.

Corollary 2.4. If the ideal I C A is finitely generated, and M is an A-module, then
the following are equivalent

1. M is I-adically complete,
2. M is derived complete with respect to I and I-adically separated
Proof. Direct consequence of 2.2. O

Proposition 2.5. Let I be a finitely generated ideal of a ring A. The inclusion
functor Deomp(A,I) — D(A) has a left adjoint, i.e, there exist a map sending any
object K of D(A) to a derived complete object K" of D(A) such that the map

HomD(A)(K/\,E) — HOIHD(A)(K, E)

is a bijection whenever E is derived complete. In fact, if A is generated by f1,..., fr €
A, we have

K/\ = RHom ((A — HAflO — H Ain’fil — e Afl,-n,fr)’K)

10 10<i1
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Proof. Let K" be defined as above. Then the map of complexes

(A — HAin — H Afi()’fil — s = Af1,...,fr) — A

i0 10<t1

induces a map K — K”. It suffices to show that K” is derived complete and that
K — K" is an isomorphism if K is derived complete.
Let f € A We have

RHom(As, K") = RHom (Ay, RHom (A = [[ A, = [[ Argore, = = Afrs) K))

70 10<t1
= RHom (Af ®HA (A — HAin — H Afi()’fil — s = Af17~--,fr)7K)
20 10<i1
= RHom ((A; = [T Az = 11 Arsigory = - = Asi)s K)
70 10<t1

The last equality is true by looking at the definition of the derived tensor product
and noticing that the complex (A — [[; Ag. = [Lij<iy Afig.fi, =" = Affe) 18
K-flat (every element of the complex is a flat A-module).

Now for f € I, the complex

(Af = HAffio - H Affirfs, = = Afpi )
10 10<t1

is 0 in D(A) by corollary 4.4. Hence RHom(Ay, K*) = 0, so K" is derived complete
by lemma 2.1.

Conversely, by the same lemma 2.1, we have RHomy(Ay, K) = 0 for each f =
fio -+ fi,, hence K — K" is an isomorphism in D(A). O

Lemma 2.6. Let I C A be an ideal and let (K,,) be an inverse system of objects
of D(A) such that for all f € I, there exist e = e(n, f) such that f€ is zero on K,.
Then for K € D(A), the object K' = K®HA K, is derived complete with respect to I.

Proof. The category of derived complete objects being preserved under Rlim, it
suffices to show that each K ®HA K, is derived complete. But by assumption, for all
f € I, there exist e such that f is zero in K ®% K,,. Hence T(K ®% K, f)=0. O

2.1 Some useful facts in the principal case

In this subsection, we assume that I = (f) for some f € A. One can prove -1 am
definitely not doing that here but it is just technical- that in this case, we have

K" = Rlim (K @Y (4 L5 4))
At least one can see directly from lemma 2.6 that this object is derived complete.

Lemma 2.7. Let f € A. If there exist an integer ¢ > 1 such that A[f¢] = A[f*T!] =
..., then for all n > 1, there exist maps

AL Ay s A/ and A/ - (A LD 4)

in D(A) inducing an isomorphism of the pro-objects {A/f" A} and {(A EMR A} in
D(A).

Proof. The first map is given by the following commutative diagram



i

For the second arrow, first we define a map

OO

S 0 ——s AJAlf] S 0
A
0 A A 0

n—+c
But since the arrow A/A[f€] I A injective, the first row is quasi-isomorphic to
A/ f"¢A which gives the second map. O

Lemma 2.8. Let A be a ring and f € A. We have the naive derived completion
K = K' = Rlim(K @45 A/f"A) and K — K" = Rlim (K @4 (A L5 A)). The
natural transformation K" — K' is an isomorphism if and only if the f-power
torsion of A is bounded.

Proof. We won’t need the only if part, so we will only prove the if part. But by

lemma 2.7, the pro-objects {A/f"A} and {(A EMR A)} are isomorphic. The result
follows from lemma 091B (Stack project). O

3 p-complete flatness

Definition 3.1. Given a,b € Z U {00}, we say that M € D(A) has Tor amplitude
[a, b] if for any A-module N, we have M @45 N € DI (A). If a = b, we say that M
has Tor amplitude concentrated in degree a.

Definition 3.2. Fix M € D(A) and a,b € Z U {oo}.

e We say that M has p-complete Tor amplitude € [a, ] if M®% A/pA € D(A/pA)
has Tor amplitude concentrated in [a,b]. If a = b, we say that M € D(A) has
p-complete Tor amplitude concentrated in degree a.

e We say that M is p-completely (faithfully) flat if M ®@% A/pA € D(A/pA) is
concentrated in degree 0 and is a (faithfully) flat A/pA-module.

Note that M € D(A) having Tor amplitude concentrated in degree 0 just means that
M is concentrated in degree 0 and is a flat A-module.

Therefore M € D(A) is p-completely flat if and only if it has p-complete Tor ampli-
tude concentrated in degree 0.

Remark 3.3. One can replace in the definition A/pA by A/p™A for every n > 1
without changing its meaning.

Indeed, suppose that we have an extension of rings R — S with S = R/I for an
ideal I such that I? = 0 (I is canonically an S-module). Then M € D(R) has tor
amplitude in [a, b] if and only if M ®% S € D(S) has tor amplitude in [a, b].

The only if part, is just a consequence of the stability of the tor amplitude under
base change. And for the if part, consider the exact triangle I — R — S. Applying
M ®le2 — gives an exact triangle

(M&%8) 5T - M- Mekhs



The leftmost term is in DI*?! (R) so tensoring with an R-module N we get an object
of DI*YI(R). Also by hypothesis we have (M @k S)@% N = (M @k 5) @k (N ok S) €
DI%Y(R). Therefore M @% N € DI*Y(R).

Lemma 3.4. Fiz M € D(A) and a,b € Z U {cc}. Let M € D(A) be the derived
p-completion of M. The following are equivalent

1. M has p-complete Tor amplitude in [a,b] (resp. is p-completely (faithfully) flat)

2. M has p-complete Tor amplitude in |a,b] (resp. is p-completely (faithfully) flat)

Proof. The map M > M induces an isomorphism M ®%Z/ pZ = M ®HZ“Z /PZ. Indeed,
we have for every N € D(A),

Hompy(a)(M &% Z/pZ, N) = Homp 4y (M &% (Z/pZ &5 A), N)
> Homp 4y (M, R Hom(Z/pZ &% A, N))

RHoma(Z/pZ &% A, N) can easily be seen to be derived p-complete (use 2. of lemma
2.1). Hence by proposition 2.5, we get that

Hompa)(M ®% Z/pZ, N) = Homp 4, (M, RHoma(Z/pZ @5 A, N))
= Homp4)(M ®7% Z/pZ, N)

which shows the claim.
Now notice that we have A @5 Z/pZ = (--- - 0 - A% A —» 0 — ...) is quasi-

isomorphic to (--- — 0 — A[p] %A /PA — 0 — ...). This induces an isomorphism
M @Y% A/pA® M[1] Y Alp] = M &% (A% Z/pZ)
~ M @5 Z/pZ
= ]\7@% Z/pZ
= M &5 A/pA® M[1] & Alp)

Since the morphism induced from M — M by — ®Y4 (A ®% Z/pZ respects the sum-

mands, we get that M ®H;; A/pA = M ®H;1 A/pA, which gives the result.
O

Lemma 3.5. Let A — B be a map of rings, M € D(A) and a,b € Z N {oc0}.

1. If M € D(A) has p-complete Tor amplitude in [a,b] (resp. p-completely (faith-
fully) flat), then the same holds true for M @4 B € D(B).

2. If A — B is p-completely faithfully flat, then the converse of 1. holds true.

Proof. This is immediate from the discrete case. O

Lemma 3.6. Suppose that A has p™-torsion and let M € D(A) be derived p-complete
with p-complete tor amplitude in [a,b], a,b € ZU{oo}. Then M € D] (A).

Proof. By lemma 2.8, M is the derived limit of M®g A/p™A. But by remark 3.3, all
M @Y A/p"A € DI*P(A/p* A). Looking at the long exact sequence of cohomology
from the exact triangle

M= [[Me%A/pmA— [ M A/pmA

and noticing that the maps on the highest degree H*(M ®%5 A/p™A) are surjective,
we get that M e DI*bl(4). O



Lemma 3.7. Suppose that A has bounded p>°-torsion.

1. If M € D(A) is derived p-complete and p-completely flat then it is a classically
p-complete A-module concentrated in degree 0, with bounded p™-torsion, such
that M/p"M is flat over A/p™A for every n > 1. Moreover, for every n > 1,
the map

M ®a Alp"] — M[p"]

18 an isomorphism.

2. Conwversely, if N is a classically p-adically complete A-module with bounded p>°-
torsion such that N/p"N is flat over A/p"A for all n > 1, then N[0] € D(A)
is p-completely flat.

Proof. 1) Lemma 3.6 implies that M is concentrated in degree 0. The condition
that M is p-completely flat implies that M ®% A/p"A is a flat A/p™ A-module for all
n > 1. But

M A A=Me% (2 A A0 .. )= >MZM-0-...)
>~ (... M/p"M — ...) e DI04 /prA)

So M@%A/p"A = M/p™M is a flat A/p"A-module for all n > 1. Moreover, by lemma
2.8, M is the limit of M ®H;1 A/p"A = M/p"M so it is classically p-complete. O

Corollary 3.8. Let A — B be a map of derived p-complete rings.

1. If A has bounded p>-torsion and A — B is p-completely flat, then B has
bounded p>°-torsion.

2. Conwversely, if B has bounded p>°-torsion and A — B is p-completely faithfully
flat, then A has bounded p*°-torsion.

3. Assume that A and B both have bounded p>°-torsion. Then the map A — B
is p-completely flat (resp. p-completely faithfully flat) if and only if A/p™ —
B/p"B is flat (resp. faithfully flat) for all n > 1.

4 Appendix

4.1 Derived Limit

Let D be a triangulated category and (K, f,) be an inverse system of objects of D.
We say that an object K of D is a derived limit of the system (K,) if the product
[] K, exists and there is a distinguished triangle

K= [ &= [[En = K[
where the map [[ K,, — [[ K, is given by (k,) — (kn — fn+1(kns1)). In this case,

we denote K = Rlim K,,.

4.2 The Koszul Complex

Definition 4.1. Let R be a ring, E an R-module and ¢ : ¥ — R an R-module map.
We define the Koszul complex Ko(p) to be the commutative differential graded
algebra verifying

1. the underlying graded algebra is the exterior algebra A(FE)



2. the derivation d : K¢(¢) — Ke(p) is the unique derivation such that d(e) =
p(e) for all e € B =Kj(¢

If e A -+ A ey, is one of the generators of degree n in Ko(y), then

dlex N+ Nep) = (=1) T p(e)er A NG A Nepy

%

If f1,...,fn € R, the Koszul complex on fi,..., f,, denoted by Ke(fe) is the
Koszul complex associated to the map (f1,..., fr) : R" — R.

Lemma 4.2. Lete € E and f = p(e) € R. Then we have
f=de+ed

as endomorphisms of Ke(p).
In particular, multiplication by f; is homotopic to zero on Ke(fe). So the homology
module H;(Kq(fo)) are annihilated by (fi,..., fr)

Proof. We have d(ea) = d(e)a — ed(a) = fa — ed(a). O
Lemma 4.3. The alternating Cech complex
R—[IRn = II By = = Rpios
i0 10<i1
is the colimit of the Koszul compleres Kqo(f1').

Proof. The transition maps Ke(f2') — Ko(f2!) send ey A+ - - A ei, to fig ... fi,€in A
-+ A e;,. Hence by sending each Koszul complex to the complex R — Hio R —
[L;;<i, B = -+ — R (the obvious map), we get the result by noticing that R, =

colim(--- - R% R4 R). O
Corollary 4.4. If (f1,..., fr) = R then the alternating Cech complez is acyclic.

Proof. This combines lemma 4.2 and 4.3. 0
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