APPENDIX B TO:
K;-INVARIANTS IN THE MOD p COHOMOLOGY OF U(3) ARITHMETIC
MANIFOLDS

DANIEL LE, BAO V. LE HUNG, AND STEFANO MORRA

APPENDIX B. IDEAL COMPUTATIONS

B.1.1. Ideal intersections in the special fiber of S(j)/I%)Valg.

Proof of [LLHM]|, Lemma 3.22. We first observe that there exists 7 € T and (w',a’) € r(3p) such

() &) () (4) :
that both ‘B(W’G)S + Zj,ej\{j} ‘B(w,ﬂ,)S and 2]3(070)5 + Zj,ej\{j} ‘ﬁ(w,ﬂ,)S are the pullback, via
[LLHM, (3.8)], of a minimal prime ideal of S/I,v_ . In particular, by the explicit description of
S/I;v. appearing in [LLHM| Tables 3,4], the ring S/ I;’j is equidimensional of dimension six,
and has 2 minimal primes.

We prove [LLHM, item (1)]. From [LLHM] Table 8] one immediately checks that
(B.1)

b.
(¢33, €32, €31, 23, €22, €21, C13d32—C12d33, C13d31 —C11d33, C12d31—C11d32, (b—C)c12do1 —(a—c)cindsy)) C 1)
In particular, we obtain a surjection
i 1,b; i b
(B.2) SO/ — 8§91
where we have indicated by I;’bj the left hand side of (B.1]). Moreover

SU) /1 Fleis, doy, dsi, dsa, 7y, 259, 23]
J 013((a — C)d31d§2 — (b — C)d32d21)
which is evidently reduced, equidimensional of dimension six, and has two minimal prime ideals.
We conclude by [LLHLM20, Lemma 3.6.11] that the surjection is an isomorphism, hence that

the inclusion (B.1) is an equality.
The proofs of [LLHM, items (2)—(5)] are analogous. O

Proof of [LLHM]|, Lemma 3.36. The proof is analogous to that of [LLHM, Lemma 3.22]. From
[CLHM, Table 9] we have an evident inclusion of ideals of SU):

(B.3) (c22, €33, €32, €33, €23, d31, (@ — b)c12ca3 — (a — c)e13dsy, do1ds, ca3dzz, daic12) C [/(\j)

hence a surjection
(B.4) S(j)/I//\(j) N S(j)/[/(\j)
(where we have indicated by Ijlx(j ) the left hand side of (B.3). An direct computation shows that

S(j)/I/(j) ~ Flei2, do1, daz, c13, €23, 71, T39, T3]
A (d21d32, c23d32, da1c12)
and the latter ring is evidently reduced, equidimensional of dimension six and has three minimal

prime ideals. ]
1
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Proof of [LLHM], Proposition 3.11. In the following computations, we work in S S D)1 (A@ ) l:g))

Case w*(p,7); = afaty and w*(p,7"); = t1. Using the relations coo = 0, ¢33 = —pdj; coming
from f{gjﬁ) at,» the last listed equation in f}f ) becomes:
(B.5) —pciadardss + peiidsydss — p(eidiadss — pdidiadss)
On the other hand the relations co; = 0 and co; = —pdo; coming from A(JB) aty and I A(f ) respec-

tively give —pciadaidis = 0, hence (B.5|) becomes peiidsyodss — p(ciidsadsg — pdi, 59d53) yelding

p*diyd3adis = 0.
Case w*(p,7); = Bat1 and w*(p,7'); = t1. Using the relations cp2 = 0 coming from Aggt , the
7(7)

last listed equation in ;" becomes:
k k * * *
(BG) 012d21033 - Clld22033 - p(611d22d33 + d11d22C33)
and, using do1c33 = cosdsy, c11¢33 = —pcisdsy coming from [ At(f), equation becomes

c12¢23d31 + pdsyci3dst — p(cr1dsydss + ¢11d3oc33)

I3, yields p?d;, dsydsy = 0.

Case w*(p,7); = ft1 and w*(p,7"); = at1. Using the relation c11d5s = c13d31 coming from A[g]t),
)

the last listed equation in I gtl

which, using ca3 = 0, c11d33 — c13d31 and c33 = —pd33 coming from

becomes:
(B.7) c13da1dsz — crado1dss — pdyydiydss.

Multiplying (B.7) by pd3s, and using pdo1dis = —ca3dsi, peiadis = —ci3csz coming from jlg]t);’
equation becomes

* 2 1% 7k * \2
—co3dgici3dsa + ci3cgadaidss — pTdi day(dss)”.

“(J)

which, using c3s = —pdso coming from [ oty yields

—co3dgic13dsa — pdsacizdar diy — pPdl diay (dis)?

hence —p?d};d3,(d33)? noting again that pdedis = —casds:.
Case W(p,7)j = Bty and W(p,T'); = Woty,y)- Multiplying by —p the relation —pds,d3; =

c93d3o coming from [ Agt) . and using —pcgs = es3 coming from Af,fo)t o

“(J)
:Btwo(n)

Case w(p, T);j = atyy(y) and wW(p,T"); = woly,(y)- Noting that cs3,e33 = 0 (relation coming from
“(J) 7

tuwg(n) - Woty,

Case W(p,T)j = tuy(y) and W(p,T")j = Woly,my)- It is exactly as above noticing that c33,e33 = 0
A(J) )

wo (1)

we obtain p’di,di; =

eo3dss, and the latter expression is zero in the quotient ring since eg3 € 1

) and —eg3 — pcsg = pPdi, (relation coming from (n)) we obtain pdj; = 0.

modulo I,

The cases where both w*(p, 7);, w*(p, 7’); have length at least 2 are much easier, and give the
v _f(j). (

stronger result p € I For instance, if w(p, 7); = ty,(y) and w(p, ) = atyy () then coz =0

j(]) j(])
ol

and oo = —pd3,, relations coming from . and ” respectively.) ]
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B.1.2. Ideal intersections for S(j)/Ii’j)valg, w(p,7); = t1. Inthis section we work in the ring S(j)/IS)Valg.
By abuse of notation we will consider S to be the ring Fleir, 31, 12, €13, da1, c22, T3y, c23, d31, d32, €33, T35]
and I( 7 Valg’ ‘B (w,a) (for w € {0, €1, 82}, a € {0, 1}) ideals OfF[[CH, .%'Tl, Cc12,C13, d21, c29, l’;z, Cc23, d31, d32, C33, $§3]]
(In other Words we abuse notation and “neglect the variables ca1, ¢31, ¢32”).

We now remark that the assignement ¢; ; — ¢(132)(i),(132)(j), @ = ¢+ 1, b = a, ¢ — b induces an

automorphism of F-algebras on SU) /1 (j ) Vaig? , which moreover sends B ) to P, 0) (resp. Fo,1) to
PBeo)s Per,0) 10 Preo,0) (resp. Pey 1) to Per,1)) and P, 0) to Booy (resp. B, 1y to Po1y)-

Proof of [LLHM], Lemma 3.26. By the remark at the beginning of §B.1.2|it is enough to prove the
statements for the ideals I, with £(v) =2, v = (€2, 1), and for Ig, £(8) = 3, 53 = (0,1).
The ideal Ig, ¢(B) = 3, B3 = (0, 1). A direct inspection of [LLHM] Table 8] gives an inclusion

11 € Bigloy VB o) B0 B o) VB
Thus, we have a surjection
j ©) j (7) () ()
(B.8) S(J)/(Cll’ Ivaalg) - S(J)/(ip ﬂ m (€2,0) n m(iz,l) n gﬂp(iho) n m(ihl))
and a direct computation using [LLHM) Table 4] gives

S(j)/(CH;I.EJ% BE F[[C12,C1370237d217d;1,d327mfl7w§2,$§3]]

where J is the ideal generated by

c12d31, c12(ca3d]y — daic13), dai(csdy; — (a — b)daicis),

ds2(co3dsy — do1c13) — (a — b — 1)e13da,

(a —c—1)casdsa — (a — b)(a — ¢ — 1)ciadsy — (a — b — 1)ciado
The latter ring is reduced (since the initial ideal of J is generated by squarefree monomial, as it can
be checked by considering a suitable Groebner basis) and has 5 minimal primes each of dimension

6. Thus, by [LLHLM20, Lemma 3.6.11], the surjection (??) is an isomorphism.
Case v = ((e2,1), (¢1,0)). A direct inspection of [LLHM, Table 8] gives an inclusion

(B.g) (CQQ, c11, (a — b)Clgdzl + (b —C— 1)623d11) - m(o 0) N m(g 0) mgi,l)

d:ef J

Thus, we have a surjection

(B.10) S(j)/(‘] + I’l('{)valg) - S(j)/(q3 (0,0) n m(sz, mg;l))

and a direct computation gives

S ()~ Fleiz, c13, dot, dsi, dsa, @74, ¥55, T35]
/(J + T val ) = * .
¢ Cl3(d31d22 — d32da1), c12da1, c12d31

The latter ring is reduced, equidimensional of dimension 6 and has 3 minimal primes, and hence,
by [LLHLM20, Lemma 3.6.11], the surjection is an isomorphism. We conclude that is
an equality.

We now prove the assertion on the minimal number of generators. First of all we note that
c11 € (22, (b—c—1)casdfy + (a+b)(c13d21)). Indeed, using the three equations in row Mon,, and
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the equation in line 4 of row I ()V (the “determinant” equation) in [LLHM, Table 4], we have

FEa—b)b—c)(a—c—1esdadss — (a— ¢)(a—b)(a— ¢ — Ve dyydis+
+(b—c)(a—c)(b—c— essdipdiy + (a—b—1)(a — b)(b— c)eandiydiy € IV N

and, on the other hand,

a+b .
b_c_1C13d21> + kdy{Mon, 1 = f

$611d§2d§3 + yCQQdﬁd?;g + zd39 (ngdﬁ +
where z & b—c—1)b—-c)la—c—-1), k &of —(b—c—=1)b—¢),y =kr(la—b—1) and x =
—(a—c)(a—b)(a—c—1). B

Hence I, = (c22, (b — ¢ — 1)c23di; + (a + b)(c13d21)) and we now prove that I, has dimension 2.
We first note that ¢ag # 0, as ca2 ¢ mg() - (J + 1 S ) ) (alternatively, one can check on the explicit

equations of [LLHM)|, Table 4] that cop # 0 in SU)/ ( o T1 (]%al )). Now, if we have a relation of

the form ¢ + r(a — b)cizdar + (b — ¢ — 1)ca3d]y) in I, for some x € F*, this would imply that the
natural inclusion (c22) C I induces an isomorphism of 1-dimensional F-vector spaces, and hence
that (c22) C I, is in fact an equality. This is impossible since (ca2) = Ig, Ig # I, (e.g. by looking

at the number of minimal primes of S /I ij%alg above them which has been computed along the
proof). O

Lemma B.1. We have the following equalities in S /I G)

T,Valg
(1) _(ﬁ)clldmd&‘s - (%‘ig)dﬁwﬂgg — c13(d39d31 — do1ds2) = 0;
(2) (b—c)diica2 + (a — c)cr1dsy — (b — ¢)cradar = 0;
(3) —(58) erdiydsy + (2251 ) diy condlys + (5551 ) dfy cosdsa + dardsacis = 0;
(4) (CH a)033d>f1d32 (_c+b)d33011d22 dz2(di;co3 — c13d21) = 0;
(5) ((I — )d33611 + (C+ 1-— b)ngdTl — (CL — b)d31613 = 0,’
(6) (c+1 b)033d11d22 (Ciffa)d§3611d§2 + (%)d%clgdm + d13d21032 =0.

Proof. By the remark at the beginning of §B.1.2[it is enough to prove the statements for items ,

and .

Let Mon; 1, Mon; 2, Mon; 3 denote the mod p-reduction of the first, second and third equations
in row Mon, of [LLHM, Table 4]. In particular, item is Mon; 3.
Item is deduced from afléLlMonﬂ = 0, using the relations

d7;(ca3dsza — c33dsy) = c13daidse — c12da1dzs — c13d31d59 + C11d59d33 + dijc22d3s

a—Db)

ciador = djjco2 + Eb_c)cndgz

(the first relation comes from the sixth equation in row Iﬁj ) in [LLHM, Table 4], and the second
relation from Mon; 3).
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Item is deduced from %Monﬁg = 0, using the relations

dio(c23dsz — coad3s) = c13dardsa — ciadandsy — cozdsadyy + cszdaedyy + dijcoadss

*
3359 = ca3d3 —

* —b *

c12da1 = dyjc2 + jclld%

(the first relation comes from the sixth equation in row Iﬁj ) in [LLHM, Table 4], and the second
and third relation from Mon, > and Mon; 3). O

B.1.3. Justification for [LLHM, Table 6]. The justification is a direct computation, performed by

Visk def 707) AIY 7V _ 74 AIY )
{’U) Olﬁ} Valg Twovvalg Taﬁ v {U} ﬁOé} V.ng Two,valg TBa,valg ?
and taking their mod-w reduction.

We mention that these computation can ultimately be checked by exhibiting a Groebner basis
for the ideals ﬁ] ) v, v and TV

dlg TaB’valg Tﬁa»valg
c12 > c13 > doy > Co1 > C92 > Co3 > 31 > d31 > dzo > c39 > 633), and give full detail for the most
complicated equations (namely, those involving the structure constants from the monodromy).

exhibiting elements in I (resp. in I

(for the monomial ordering on S0) given by c11 >

de, . def
Study of ﬂ‘g B}V aig L Agj)mvalg Aii)ﬁ Vag” We claim that the element f = (bq—aﬁ’g—bTaﬁ73)d21622d§3—
(brog,2 = bros3 — 1)casdzidsy + (br, s 2 — br, s — 1)c21d33d3 (whose mod w-reduction gives the el-
ement in the third line of row afat;, aft; in [LLHM, Table 6]) is in fgu) . Indeed, on the

j(J)

Ovaﬁ}vvalg

one hand co1, 29, cog all belong to o Vaig? and on the other hand

f = (ca2 +pd55) (br 5.2 — br,5.3)d53d21 — d3e(Mony, 2)

where Mon,,, o denotes the second equation in row (a/5ty, I Ai]é ,Mon;) in [LLHM), Table 3].
In a similar fashion, we have the equality

((bryg.2 = bryy,3)d21d32 + d31)caz + ((br,, 3 — bry,y 1 — 1 +p)ds2 + e32)ca1 + Mony, o =
= ((bryy,2 = bryy 3)d21ds2 + ds1)(c22 + pdsg) + (b, 3 — br, 1 — 1)(co1ds2 — c31d59) + ca1(cs2 + pds2)

hence obtaining an element in fgv) which reduces modulo p to the last equation in row

Oyaﬁ}:valg
(afaty, afty) of [LLHM, Table 6].
Finally, we check that

(B.11) coz2(zenr +ydiy) + 2Mony, 1 = (co2 + pd3y)(weir + ydip) + Mony,, 1

where

Zd:ef (ba[B2 bTB 3)
(bTwO 2= bTwO )

def 1—

(brog.2—bry5.3)
(b‘r 2 = b‘r 3) - Ma
of of (bTw072_b7'w0,3)
Lo 1 (brop.2=b74,5.3) (Ory 3 =briyg 1) = (br, 5,3=br 5,1) (briy 2= bryg 3)
T p (b‘er,Z_bTwo,?:)

(note that z,y,z € Z, by the genericity assumption on p; +n; and fact that bropsi = bryy i for ¢ =
1,2,3) and Where Mony,, 1 (resp. Mon,; 1) denotes the first equation in row (aBaty, I Ny)v , Mon,)

(resp. (aﬁtl, Tv ,Mon,)) in [LLHM, Table 3]. Observing that z =1 and y = —(b — ¢) modulo p,
equation (B.11) justifies the fourth line in row (afBaty, aft1) of [LLHM| Table 6].
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The computations for the elements in the first two lines in row afat;, aft; are easier (only involv-
(4)

. I{woialg'}7valg

on the one hand co9, a3 € v . and on the other hand coo +pd3,, co3d3o +pdisds, € 7v)

Twq ,Val Twq 7valg :

since

O

ing finite height equations). For instance the element cazdss —coad3s is evidently in

. We explicitly construct elements in

70) 70)
Study of I’T‘io7valg N ITga,Valg

their mod p-reductions.
The elements

(B.12) (675(172 - 675(173 + 1)(032+pd32) + (bTBaal — bma’3)d31 (013d32 _ 012d§3)+
+ (brsa,3 = brga,2)ds2(c1sdsy — c11dzs + pdiidss)

ey
0

SRR St and compute

and

(B.13) (bT,Boul - bTﬁa72)(Cl3d31 - 011d§3) — MODTﬁa.
are equal, and, by direct inspection of the finite height equations in [LLHM| Table 3], equation

(B.12)) defines an element in f(Ti )07Valg and equation (B.13|) defines an element in fgﬁ l,Valg' This

equation reduces mod p to the fourth line of row afati, fat; of [LLHM) Table 6].
Let x/ d:ef b‘rwo,1_b7w0,2+p(b7w0,1_b‘r’w073)

Tip
(B.14)
11d33(Mong g 2) + ' cr1dardis(caz + pdsa) + (br,, 2 — b, 3)d21d31(c13dse — c1ad3z)+
+ (33/6131(132 + (bryy,1 = bryy,3)C31d35 — (bryy 2 — bTw0,3)d21d32> (013d31 — crdsy +pdf1d§3)+

— (bryy 1 = by ,3)ds1d3 (13631 + peindss)

. A direct computation shows that the expressions

and
(B.15)

((brwo,l —bry,3) (P —c11) + (bryy1 — bryy 3+ 1)) (31 + pds1)di dsedss+

+ (x'(d31d§2 —daicsz) — (bry,,2 — bry, 3 + pwl)d21d32) (c13¢31 — cnndis)+
+ &'da1dzi (c13c32 + peradss) + (br, 2 — bruy.3 + pa')ds1 (c13da1dsy — cradardss — pdi dsedss)

are equal, and, as above, equation (B.14) defines an element in v and (B.15]) defines an

Twoavalg
element in jg l Vg’ The mod p-reduction of such element justifies the equation in the fifth line of

row afaty, Baty of [LLHM, Table 6].
Finally, let
/ d:ef (bTw072 - bTw0,3) - (bTBouZ - bTBou3)
p
Z// d:ef (bTw073 - bTwoyl) - (bTBou3 - bTBoul)
p

z

+ (b7u7012 - bTw073)

+ (bTw0,3 - bTwoyl)'
Again, a direct computation shows that

(#eradar + 2" er1d3y — pdirdsy)(ciadsy — cindsg + pdiydsg) — (p+ 1)di d33(Mony, 1) =

= (¢'c1adar + 2" c11d3y — pdiidsy)(c1sds1 — ci1dis) — diydis(Monyy, 1)
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which, similarly as in the previous cases, defines an element in jtii )0 Vg N 1:1; l Vg whose mod
p-reduction justifies the last equation in row afaty, Sat; of [LLHM Table 6]. O

B.1.4. Justification for [LLHM, Table 7]. As for [LLHM| Table 6], the justification is a direct

computation (cf. §B.1.3). For i € {1,2,3} we set biq; ot br, o ba,i & b, (et and bg; def
won won
b, Y for readability in what follows.
70) 70) def ba,1—ba2  def
Study Of ITtwO(n)’valg N ITtwO(n)a?valg' Define z = m, Yy = bO¢72 - ba71 —1+zand

1
= ];(bavl — ba,3 — 2(bia1 — bia,3))

(note that z € Z, as biq,1 — big.2 # 0 mod p and that « € Zy, as ba,1 — ba,3 — 2(biq,1 — bia,3) = 0 mod
p). A direct computation shows that the expressions

dyy (zeize23 + yergezz + zMong,, ()

and

zerz(crzdar + pdydsy) — werz(e1sdar — eg3dyy) + ydiyciz(caz + pda2) — diMong,, (o

are equal (where we denoted by Mon;, . =~ and Montw0 e the last equation in row &, ;) and &y, ;o

70) A7)

(
respectively). These expressions define an element in the intersection

o(m)

»Val . Tt :Val ’
wo (1) & wq (n)o g
whose mod p reduction explains the second line in 10w #,, (), two e of [LLHM, Table 7]. O
70) 707)
Study of ITtwo(anlg N ITtw()(analg' Define

1
2= —(bp1 —bg2— (p+1)(bia1 — bia2))

—_ 3

(note that 2’ and 2" are elements of Zy, as bg.1 —bg j — (p+1)(bia,1 — bia,;) = 0 mod p for j € {2,3}).
Again a direct computation shows that the expressions

(z”elgd;Q — p613d§2 + Z/012623)633 + (p -+ 1)d§3M0ntw0(n)
and
(Z”elgdSQ — pClgdSQ + 2/012023)(033 + p) - d§3M0ntw0<n)5

are equal (where again we denoted by Mon; and Montw0 B the last equation in row ;)

70)

wq (n) :Valg

o(m)
and t,,(;) B respectively). These expressions define an element in the intersection
70 ,
Ttwg ()8 Valg

Table 7]. O

whose mod p reduction explains the second line in row %, (y), twn) B8 of ILLHM,
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B.1.5. Computations on Torf(j>(F, (g(j)/ﬂTj)valg) ® ). We provide details for the computations of
the maps between various Tor{ m(IF, (SU)/ ]A';] )Valg) ® IF) appearing in the proofs of [LLHM, Lem-
mas 3.30, 3.33, 3.35, 3.37]. In the following computation, given an ideal I C SU) we write el-

ements of Torf(j)(IF,S () /I) in terms of generators of I, by virtue of the canonical isomorphism

Tor$" (F, SO /1) = I /(g - ).

Complements in the proof of [LLHM], Lemma 3.30. We need to prove that the union of the images
of the canonical maps

(B.16) Tory (F, (SV/(I2) o N1 o ) @F) = Tor(F,(S/IY) o )@ F)
(B.17) Tory (F, (S /(1) o 01 o ) @F) = Tor (F,(S/IY) o ) @TF)

generates a spanning set for Tor; (F, (S(j)/lgﬂ)wvoo) ® F), e.g. using [LLHM, Table 3], the set given
by the images of the elements

C21, €22, C23, C32, C33
c13dsp — c12d33, c13d31 — c11dss, €13¢31
(b — 6)621d12 + (C — (],)61161527 C31
(where (a,b,c) & S;l(ﬂj +mn;) — (1,1,1) = bs,, modulo w). We immediately see from row

afaty,aft; in [LLHM, Table 6] that the elements cs2, ¢33, c13¢31, c13ds2 — c12d3s are in the im-
age of (B.16). Similarly the elements ca1, c22, cog are in the image of (B.17)).

Writing
d dis = c13do1d do1db da1d daodia —d d ds
C13d31 — C11d33 = C13@21d32 — C12021d33 — C13A31099 + C11Uo9l33 —d21 (Cl3 32 — C12 33)
Vv
€ image of (B.17) € image of (B.10)

we conclude that cizds; — c11d35 is in the F-span of the union of the images of (B.16)),(B.17).
Similarly,

(b — C)Czldlg —+ (c — a)cndzz = (b — C)C12d21 + ZTcr1c99 — (a — C)Clld;Q — (b — 0)622d1<1 -+

€ image of
— (ZTeyp — (b= ce)dy C29
( (b—c)dyy)
€ image of

so that (b — c¢)ca1di2 + (¢ — a)ci1d3, is in the F-span of the union of the images of (B.16),(B.17).
Finally, note that 622(d21d32), C929 (d21032), C29 (d31d§2), C21 (d32d§2) € I(J) Vol ~m§<j> so that the last

Twq »

equation in row aBaty, aft; in [LLAM] Table 6] is sent by the map (B.16)) to (a — ¢ + 1)cs1(d5y)?
and in particular cs; is in the image of the map (B.16)). O

Complements in the proof of [LLHM], Lemma 3.33. The argumen is similar to that for [LLHM,
Lemma 3.30]. Consider the natural maps

(B'18) TOI‘f(IF, (g/(TT t Voo M j;'t v )) ® IF) - TOI‘fa& (§/I~Tt Y% ) ® IF)
Fwg(n)’ 7 wo ()’ " wo(n)”
S ST T S Q/T
B19)  Tof(E.(5/(T, vl ) OF) - Torf(E.(S/T,  v.) @F).
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A spanning set for Tor{ (F, (S /I, v..) ® F) (using [LLHM| Table 7]) is given by the images of

wo(n)’ "
the elements

do1, d32, c32, €33, C33, d32, €23, C22
(a - 0)623d§2 — (a — 5)612023.
We immediately see from row £, ;) twg () @ in [LLHM| Table 7] that the elements dsa, c32, €33, ¢33, d32,
are in the image of (B.18)), and, from row t,,(;), tw,(;) 3, that the element do; is in the image of
(B.19).
Moreover, noting that ciada1, e13da1, c13¢22, c12€23 € Mgy - Ig) v, We conclude that (B.18))

wq(n)’ " &
maps the elements cjada; —c22d], e13da1 —e23d}; and (a—b)(cizca2 — c12¢23) —Tci2e23+ (a—c)easds,

to coadiy, e23d]; and (a — c)easddy, — (@ — b)ciacas respectively. O

Complements in the proof of [LLHM], Lemma 3.35. We check that the union of the images of the
canonical maps

B20)  Torf (F.8/(1Y) 0, 0T ) N0 o, 0T o)) — Torf (5719
(B.21) Tor{ (F, S/ (1) ¢ . p)) = Tor{ (F, /13"

generates a spanning set for the target, i.e. by [LLHM| Lemma 3.34], the set given by the image of
the elements ca3, d3acos — coad3s, c22, c11d53 — c13d31 of II(XJ). From the last row of [LLHM)| Table 6] we
immediately see that the elements ¢33, d3aco3 — c22d35 are in the image of the map (B.20]). Moreover,
by [LLHM, Table 4], the image of the map (B.21]) contains the elements
(a —C— 1)(623d32 — 033d;2) — (a —b— 1)022d§3
(a —b)(c13ds1 — cu1dzg) — (b—c — L)esadyy.
In particular, as a — b # 0 # b — ¢, the union of the images of (B.20)),(B.21) contains the elements
613d31 — 011d§3 and C292. O

Complements in the proof of [LLHM]|, Lemma 3.37. We check that the union of the images of the
canonical maps

(B.22)

Tor‘lg(j)(IF, S(j)/(fg) WV N fg) ’voo,p) N (:T;tw () Voo N TTt B,vm,p) — Torf(j)(IF, S(j)/lj(\j))
wo (n) wq (1) o wo (1)

(B.23) Tor” (B, (S/ I, up:va) @ F) = Tori” (F, 80 /1)

is a spanning set for the target. By [LLHM| Lemma 3.34] a spanning set for the target is given by

(B.24) c32, €33, d31, d21d32,

(B.25) €93, (@ — b)ciaces — (a — c)ersdsg, 33

(B.26) co3d32, C22, C12d21.

By the last row in [LLHM| Table 7] the elements in (B.25]) are immediately checked to be in the
image of (B.22). By row t,,,wo in [LLHM, Table 5], and noting further that cizcaz, c13ds1 €
msg)ll(\j) we immediately see that the elements in (B.25) are in the image of (B.23).

As co3dga — c33ds, is in the image of (B.22)) by the last row of [LLHM| Table 7], we conclude
from the above that cgsdse is in the linear span of the union of the images of (B.22) and (B.23).

Moreover, as (¢ — a — 1)(ca3ds2 — c33d39) + (@ — b)coad3s is in the image of (B.22)) by row ., (;wo
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in [LLHM, Table 5], we conclude by the above cgg is also in the linear span of the union of the

images of (B.22)) and (B.23). Finally, as ciad2; — co2d] is in the image of (B.22)) by the last row of

[LLHM| Table 7], we conclude from the above that c12da; is also in the linear span of the union of

the images of (B.22) and (B.23)). O
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