APPENDIX B TO:
 K_{1}-INVARIANTS IN THE MOD p COHOMOLOGY OF $U(3)$ ARITHMETIC MANIFOLDS

DANIEL LE, BAO V. LE HUNG, AND STEFANO MORRA

Appendix B. Ideal computations

B.1.1. Ideal intersections in the special fiber of $S^{(j)} / I_{T, \nabla_{\text {alg }}}^{(j)}$.

Proof of LLHM], Lemma 3.22. We first observe that there exists $\tau \in T$ and $\left(\omega^{\prime}, a^{\prime}\right) \in r\left(\Sigma_{0}\right)$ such that both $\mathfrak{P}_{(\omega, a)}^{(j)} S+\sum_{j^{\prime} \in \mathcal{J} \backslash\{j\}} \mathfrak{P}_{\left(\omega^{\prime}, a^{\prime}\right)}^{(j)} S$ and $\mathfrak{P}_{(0,0)}^{(j)} S+\sum_{j^{\prime} \in \mathcal{J} \backslash\{j\}} \mathfrak{P}_{\left(\omega^{\prime}, a^{\prime}\right)}^{(j)} S$ are the pullback, via [LLHM, (3.8)], of a minimal prime ideal of $S / I_{\tau, \nabla_{\infty}}$. In particular, by the explicit description of $S / I_{\tau, \nabla_{\infty}}$ appearing in LLHM, Tables 3,4], the ring $S^{(j)} / I_{j}^{b_{j}}$ is equidimensional of dimension six, and has 2 minimal primes.

We prove [LLHM, item (1)]. From [LLHM, Table 8] one immediately checks that (B.1)
$\left.\left(c_{33}, c_{32}, c_{31}, c_{23}, c_{22}, c_{21}, c_{13} d_{32}-c_{12} d_{33}^{*}, c_{13} d_{31}-c_{11} d_{33}^{*}, c_{12} d_{31}-c_{11} d_{32},(b-c) c_{12} d_{21}-(a-c) c_{11} d_{22}^{*}\right)\right) \subseteq I_{j}^{b_{j}}$
In particular, we obtain a surjection

$$
\begin{equation*}
S^{(j)} / I_{j}^{\prime, b_{j}} \rightarrow S^{(j)} / I_{j}^{b_{j}} \tag{B.2}
\end{equation*}
$$

where we have indicated by $I_{j}^{\prime, b_{j}}$ the left hand side of (B.1). Moreover

$$
S^{(j)} / I_{j}^{\prime, b_{j}} \cong \frac{\mathbb{F} \llbracket c_{13}, d_{21}, d_{31}, d_{32}, x_{11}^{*}, x_{22}^{*}, x_{33}^{*} \rrbracket}{c_{13}\left((a-c) d_{31} d_{22}^{*}-(b-c) d_{32} d_{21}\right)}
$$

which is evidently reduced, equidimensional of dimension six, and has two minimal prime ideals. We conclude by [LLHLM20, Lemma 3.6.11] that the surjection (B.2) is an isomorphism, hence that the inclusion (B.1) is an equality.
The proofs of [LLHM, items (2)-(5)] are analogous.
Proof of LLHM, Lemma 3.36. The proof is analogous to that of [LLHM, Lemma 3.22]. From [LLHM, Table 9] we have an evident inclusion of ideals of $S^{(j)}$:

$$
\begin{equation*}
\left(c_{22}, c_{33}, c_{32}, e_{33}, e_{23}, d_{31},(a-b) c_{12} c_{23}-(a-c) e_{13} d_{22}^{*}, d_{21} d_{32}, c_{23} d_{32}, d_{21} c_{12}\right) \subseteq I_{\Lambda}^{(j)} \tag{B.3}
\end{equation*}
$$

hence a surjection

$$
\begin{equation*}
S^{(j)} / I_{\Lambda}^{\prime(j)} \rightarrow S^{(j)} / I_{\Lambda}^{(j)} \tag{B.4}
\end{equation*}
$$

(where we have indicated by $I_{\Lambda}^{(j)}$ the left hand side of $\overline{\mathrm{B} .3}$). An direct computation shows that

$$
S^{(j)} / I_{\Lambda}^{\prime(j)} \cong \frac{\mathbb{F} \llbracket c_{12}, d_{21}, d_{32}, c_{13}, c_{23}, x_{11}^{*}, x_{22}^{*}, x_{33}^{*} \rrbracket}{\left(d_{21} d_{32}, c_{23} d_{32}, d_{21} c_{12}\right)}
$$

and the latter ring is evidently reduced, equidimensional of dimension six and has three minimal prime ideals.

Proof of [LLHM], Proposition 3.11. In the following computations, we work in $\widetilde{S}^{(j)} /\left(\widetilde{I}_{\tau}^{(j)}+\widetilde{I}_{\tau^{\prime}}^{(j)}\right)$.
Case $\widetilde{w}^{*}(\bar{\rho}, \tau)_{j}=\alpha \beta \alpha t_{\underline{1}}$ and $\widetilde{w}^{*}\left(\bar{\rho}, \tau^{\prime}\right)_{j}=t_{\underline{1}}$. Using the relations $c_{22} \equiv 0, c_{33} \equiv-p d_{33}^{*}$ coming from $\widetilde{I}_{\alpha \beta \alpha t_{1}}^{(j)}$, the last listed equation in ${\widetilde{I_{1}}}^{(j)}$ becomes:

$$
\begin{equation*}
-p c_{12} d_{21} d_{33}^{*}+p c_{11} d_{22}^{*} d_{33}^{*}-p\left(c_{11} d_{22}^{*} d_{33}^{*}-p d_{11}^{*} d_{22}^{*} d_{33}^{*}\right) \tag{B.5}
\end{equation*}
$$

On the other hand the relations $c_{21} \equiv 0$ and $c_{21} \equiv-p d_{21}$ coming from $\widetilde{I}_{\alpha \beta \alpha t_{1}}^{(j)}$ and $\widetilde{I}_{t_{1}}^{(j)}$ respectively give $-p c_{12} d_{21} d_{33}^{*} \equiv 0$, hence (B.5) becomes $p c_{11} d_{22}^{*} d_{33}^{*}-p\left(c_{11} d_{22}^{*} d_{33}^{*}-p d_{11}^{*} d_{22}^{*} d_{33}^{*}\right)$ yelding $p^{2} d_{11}^{*} d_{22}^{*} d_{33}^{*} \equiv 0$.

Case $\widetilde{w}^{*}(\bar{\rho}, \tau)_{j}=\beta \alpha t_{\underline{1}}$ and $\widetilde{w}^{*}\left(\bar{\rho}, \tau^{\prime}\right)_{j}=t_{\underline{1}}$. Using the relations $c_{22} \equiv 0$ coming from $\widetilde{I}_{\beta \alpha t_{1}}^{(j)}$, the last listed equation in $\widetilde{I}_{t_{1}}^{(j)}$ becomes:

$$
\begin{equation*}
c_{12} d_{21} c_{33}-c_{11} d_{22}^{*} c_{33}-p\left(c_{11} d_{22}^{*} d_{33}^{*}+d_{11}^{*} d_{22}^{*} c_{33}\right) \tag{B.6}
\end{equation*}
$$

and, using $d_{21} c_{33} \equiv c_{23} d_{31}, c_{11} c_{33} \equiv-p c_{13} d_{31}$ coming from $\widetilde{I}_{t_{1}}^{(j)}$, equation B.6) becomes

$$
c_{12} c_{23} d_{31}+p d_{22}^{*} c_{13} d_{31}-p\left(c_{11} d_{22}^{*} d_{33}^{*}+c_{11}^{*} d_{22}^{*} c_{33}\right)
$$

which, using $c_{23} \equiv 0, c_{11} d_{33}^{*}-c_{13} d_{31}$ and $c_{33}=-p d_{33}^{*}$ coming from $\widetilde{I}_{\beta \alpha t_{1}}^{(j)}$, yields $p^{2} d_{11}^{*} d_{22}^{*} d_{33}^{*} \equiv 0$.
Case $\widetilde{w}^{*}(\bar{\rho}, \tau)_{j}=\beta t_{\underline{1}}$ and $\widetilde{w}^{*}\left(\bar{\rho}, \tau^{\prime}\right)_{j}=\alpha t_{\underline{1}}$. Using the relation $c_{11} d_{33}^{*} \equiv c_{13} d_{31}$ coming from $\widetilde{I}_{\beta t_{\underline{1}}}^{(j)}$, the last listed equation in $\widetilde{I}_{\alpha t_{1}}^{(j)}$ becomes:

$$
\begin{equation*}
c_{13} d_{21} d_{32}-c_{12} d_{21} d_{33}^{*}-p d_{11}^{*} d_{22}^{*} d_{33}^{*} . \tag{B.7}
\end{equation*}
$$

Multiplying (B.7) by $p d_{33}^{*}$, and using $p d_{21} d_{33}^{*} \equiv-c_{23} d_{31}, p c_{12} d_{33}^{*} \equiv-c_{13} c_{32}$ coming from $\widetilde{I}_{\beta t_{1}}^{(j)}$, equation B.6) becomes

$$
-c_{23} d_{31} c_{13} d_{32}+c_{13} c_{32} d_{21} d_{33}^{*}-p^{2} d_{11}^{*} d_{22}^{*}\left(d_{33}^{*}\right)^{2}
$$

which, using $c_{32} \equiv-p d_{32}$ coming from $\widetilde{I}_{\alpha t_{1}}^{(j)}$, yields

$$
-c_{23} d_{31} c_{13} d_{32}-p d_{32} c_{13} d_{21} d_{33}^{*}-p^{2} d_{11}^{*} d_{22}^{*}\left(d_{33}^{*}\right)^{2}
$$

hence $-p^{2} d_{11}^{*} d_{22}^{*}\left(d_{33}^{*}\right)^{2}$ noting again that $p d_{21} d_{33}^{*} \equiv-c_{23} d_{31}$.
Case $\widetilde{w}(\bar{\rho}, \tau)_{j}=\beta t_{w_{0}(\eta)}$ and $\widetilde{w}\left(\bar{\rho}, \tau^{\prime}\right)_{j}=w_{0} t_{w_{0}(\eta)}$. Multiplying by $-p$ the relation $-p d_{22}^{*} d_{33}^{*} \equiv$ $c_{23} d_{32}$ coming from $\widetilde{I}_{\beta t_{w_{0}(\eta)}}^{(j)}$, and using $-p c_{32} \equiv e_{23}$ coming from $\widetilde{I}_{w_{0} t_{w_{0}(\eta)}}^{(j)}$ we obtain $p^{2} d_{22}^{*} d_{33}^{*} \equiv$ $e_{23} d_{32}$, and the latter expression is zero in the quotient ring since $e_{23} \in \widetilde{I}_{\beta t_{w_{0}(\eta)}}^{(j)}$.

Case $\widetilde{w}(\bar{\rho}, \tau)_{j}=\alpha t_{w_{0}(\eta)}$ and $\widetilde{w}\left(\bar{\rho}, \tau^{\prime}\right)_{j}=w_{0} t_{w_{0}(\eta)}$. Noting that $c_{33}, e_{33} \equiv 0$ (relation coming from $\left.\widetilde{I}_{\alpha t_{w_{0}(\eta)}}^{(j)}\right)$ and $-e_{33}-p c_{33} \equiv p^{2} d_{33}^{*}\left(\right.$ relation coming from $\left.\widetilde{I}_{w_{0} t_{w_{0}(\eta)}}^{(j)}\right)$ we obtain $p^{2} d_{33}^{*} \equiv 0$.

Case $\widetilde{w}(\bar{\rho}, \tau)_{j}=t_{w_{0}(\eta)}$ and $\widetilde{w}\left(\bar{\rho}, \tau^{\prime}\right)_{j}=w_{0} t_{w_{0}(\eta)}$. It is exactly as above noticing that $c_{33}, e_{33} \equiv 0$ modulo $\left.\widetilde{I}_{t_{w_{0}(\eta)}}^{(j)}\right)$.

The cases where both $\widetilde{w}^{*}(\bar{\rho}, \tau)_{j}, \widetilde{w}^{*}\left(\bar{\rho}, \tau^{\prime}\right)_{j}$ have length at least 2 are much easier, and give the stronger result $p \in \widetilde{I}_{\tau}^{(j)}+\widetilde{I}_{\tau^{\prime}}^{(j)}$. (For instance, if $\widetilde{w}(\bar{\rho}, \tau)_{j}=t_{w_{0}(\eta)}$ and $\widetilde{w}\left(\bar{\rho}, \tau^{\prime}\right)_{j}=\alpha t_{w_{0}(\eta)}$ then $c_{22} \equiv 0$ and $c_{22} \equiv-p d_{22}^{*}$, relations coming from $\widetilde{I}_{t_{w_{0}(\eta)}}^{(j)}$ and $\widetilde{I}_{\alpha t_{w_{0}(\eta)}}^{(j)}$ respectively.)
B.1.2. Ideal intersections for $S^{(j)} / I_{\left.\tau, \nabla_{\text {alg }}\right)}^{(j)}, \widetilde{w}(\bar{\rho}, \tau)_{j}=t_{\underline{1}}$. In this section we work in the ring $S^{(j)} / I_{\tau, \nabla_{\text {alg }}}^{(j)}$.

By abuse of notation we will consider $S^{(j)}$ to be the ring $\mathbb{F} \llbracket c_{11}, x_{11}^{*}, c_{12}, c_{13}, d_{21}, c_{22}, x_{22}^{*}, c_{23}, d_{31}, d_{32}, c_{33}, x_{33}^{*} \rrbracket$, and $I_{\tau, \nabla_{\text {alg }}}^{(j)}, \mathfrak{P}_{(\omega, a)}\left(\right.$ for $\left.\omega \in\left\{0, \varepsilon_{1}, \varepsilon_{2}\right\}, a \in\{0,1\}\right)$ ideals of $\mathbb{F} \llbracket c_{11}, x_{11}^{*}, c_{12}, c_{13}, d_{21}, c_{22}, x_{22}^{*}, c_{23}, d_{31}, d_{32}, c_{33}, x_{33}^{*} \rrbracket$. (In other words, we abuse notation and "neglect the variables c_{21}, c_{31}, c_{32} ").

We now remark that the assignement $c_{i, j} \mapsto c_{(132)(i),(132)(j)}, a \mapsto c+1, b \mapsto a, c \mapsto b$ induces an automorphism of \mathbb{F}-algebras on $S^{(j)} / I_{\tau, \nabla_{\text {alg }}}^{(j)}$, which moreover sends $\mathfrak{P}_{(0,0)}$ to $\mathfrak{P}_{\left(\varepsilon_{1}, 0\right)}$ (resp. $\mathfrak{P}_{(0,1)}$ to $\left.\mathfrak{P}_{\left(\varepsilon_{2}, 1\right)}\right), \mathfrak{P}_{\left(\varepsilon_{1}, 0\right)}$ to $\mathfrak{P}_{\left(\varepsilon_{2}, 0\right)}$ (resp. $\mathfrak{P}_{\left(\varepsilon_{2}, 1\right)}$ to $\left.\mathfrak{P}_{\left(\varepsilon_{1}, 1\right)}\right)$ and $\mathfrak{P}_{\left(\varepsilon_{2}, 0\right)}$ to $\mathfrak{P}_{(0,0)}$ (resp. $\mathfrak{P}_{\left(\varepsilon_{1}, 1\right)}$ to $\left.\mathfrak{P}_{(0,1)}\right)$.
Proof of LLHM], Lemma 3.26. By the remark at the beginning of B.1.2 it is enough to prove the statements for the ideals I_{γ} with $\ell(\gamma)=2, \gamma_{1}=\left(\varepsilon_{2}, 1\right)$, and for $I_{\beta}, \ell(\beta)=3, \beta_{3}=(0,1)$.

The ideal $I_{\beta}, \ell(\beta)=3, \beta_{3}=(0,1)$. A direct inspection of [LLHM, Table 8] gives an inclusion

$$
c_{11} \in \mathfrak{P}_{(0,0)}^{(j)} \cap \mathfrak{P}_{\left(\varepsilon_{2}, 0\right)}^{(j)} \cap \mathfrak{P}_{\left(\varepsilon_{2}, 1\right)}^{(j)} \cap \mathfrak{P}_{\left(\varepsilon_{1}, 0\right)}^{(j)} \cap \mathfrak{P}_{\left(\varepsilon_{1}, 1\right)}^{(j)} .
$$

Thus, we have a surjection

$$
\begin{equation*}
S^{(j)} /\left(c_{11}, I_{\tau, \nabla_{\text {alg }}}^{(j)}\right) \rightarrow S^{(j)} /\left(\mathfrak{P}_{(0,0)}^{(j)} \cap \mathfrak{P}_{\left(\varepsilon_{2}, 0\right)}^{(j)} \cap \mathfrak{P}_{\left(\varepsilon_{2}, 1\right)}^{(j)} \cap \mathfrak{P}_{\left(\varepsilon_{1}, 0\right)}^{(j)} \cap \mathfrak{P}_{\left(\varepsilon_{1}, 1\right)}^{(j)}\right) \tag{B.8}
\end{equation*}
$$

and a direct computation using [LLHM, Table 4] gives

$$
S^{(j)} /\left(c_{11}, I_{\tau, \nabla_{\text {alg }}}^{(j)}\right) \cong \frac{\mathbb{F} \llbracket c_{12}, c_{13}, c_{23}, d_{21}, d_{31}, d_{32}, x_{11}^{*}, x_{22}^{*}, x_{33}^{*} \rrbracket}{J}
$$

where J is the ideal generated by

$$
\begin{aligned}
& c_{12} d_{31}, c_{12}\left(c_{23} d_{11}^{*}-d_{21} c_{13}\right), d_{31}\left(c_{23} d_{11}^{*}-(a-b) d_{21} c_{13}\right), \\
& d_{32}\left(c_{23} d_{22}^{*}-d_{21} c_{13}\right)-(a-b-1) c_{13} d_{31} \\
& (a-c-1) c_{23} d_{32}-(a-b)(a-c-1) c_{13} d_{31}-(a-b-1) c_{12} d_{21}
\end{aligned}
$$

The latter ring is reduced (since the initial ideal of J is generated by squarefree monomial, as it can be checked by considering a suitable Groebner basis) and has 5 minimal primes each of dimension 6. Thus, by [LLHLM20, Lemma 3.6.11], the surjection (??) is an isomorphism.

Case $\gamma=\left(\left(\varepsilon_{2}, 1\right),\left(\varepsilon_{1}, 0\right)\right)$. A direct inspection of [LLHM, Table 8] gives an inclusion

$$
\begin{equation*}
\underbrace{\left(c_{22}, c_{11},(a-b) c_{13} d_{21}+(b-c-1) c_{23} d_{11}^{*}\right)}_{\stackrel{\text { def }}{=} J} \subseteq \mathfrak{P}_{(0,0)}^{(j)} \cap \mathfrak{P}_{\left(\varepsilon_{2}, 0\right)}^{(j)} \cap \mathfrak{P}_{\left(\varepsilon_{2}, 1\right)}^{(j)} \tag{B.9}
\end{equation*}
$$

Thus, we have a surjection

$$
\begin{equation*}
S^{(j)} /\left(J+I_{\tau, \nabla_{\text {alg }}}^{(j)}\right) \rightarrow S^{(j)} /\left(\mathfrak{P}_{(0,0)}^{(j)} \cap \mathfrak{P}_{\left(\varepsilon_{2}, 0\right)}^{(j)} \cap \mathfrak{P}_{\left(\varepsilon_{2}, 1\right)}^{(j)}\right) \tag{B.10}
\end{equation*}
$$

and a direct computation gives

$$
S^{(j)} /\left(J+I_{\tau, \nabla_{\text {alg }}}^{(j)}\right) \cong \frac{\mathbb{F} \llbracket c_{12}, c_{13}, d_{21}, d_{31}, d_{32}, x_{11}^{*}, x_{22}^{*}, x_{33}^{*} \rrbracket}{c_{13}\left(d_{31} d_{22}^{*}-d_{32} d_{21}\right), c_{12} d_{21}, c_{12} d_{31}} .
$$

The latter ring is reduced, equidimensional of dimension 6 and has 3 minimal primes, and hence, by [LLHLM20, Lemma 3.6.11], the surjection ($\overline{\mathrm{B} .10}$) is an isomorphism. We conclude that ($\overline{\mathrm{B} .9}$) is an equality.

We now prove the assertion on the minimal number of generators. First of all we note that $c_{11} \in\left(c_{22},(b-c-1) c_{23} d_{11}^{*}+(a+b)\left(c_{13} d_{21}\right)\right)$. Indeed, using the three equations in row Mon_{τ}, and
the equation in line 4 of row $I_{\tau, \nabla_{\text {alg }}}^{(j)}$ (the "determinant" equation) in [LLHM, Table 4], we have

$$
\begin{aligned}
& f \stackrel{\text { def }}{=}(a-b)(b-c)(a-c-1) c_{13} d_{21} d_{32}-(a-c)(a-b)(a-c-1) c_{11} d_{22}^{*} d_{33}^{*}+ \\
&+(b-c)(a-c)(b-c-1) c_{33} d_{22}^{*} d_{11}^{*}+(a-b-1)(a-b)(b-c) c_{22} d_{11}^{*} d_{33}^{*} \in I_{\tau, \nabla_{\mathrm{alg}}}^{(j)}
\end{aligned}
$$

and, on the other hand,

$$
x c_{11} d_{22}^{*} d_{33}^{*}+y c_{22} d_{11}^{*} d_{33}^{*}+z d_{32}\left(c_{23} d_{11}^{*}+\frac{a+b}{b-c-1} c_{13} d_{21}\right)+\kappa d_{11}^{*} \operatorname{Mon}_{\tau, 1}=f
$$

where $z \stackrel{\text { def }}{=}(b-c-1)(b-c)(a-c-1), \kappa \stackrel{\text { def }}{=}-(b-c-1)(b-c), y=\kappa(a-b-1)$ and $x=$ $-(a-c)(a-b)(a-c-1)$.

Hence $I_{\gamma}=\left(c_{22},(b-c-1) c_{23} d_{11}^{*}+(a+b)\left(c_{13} d_{21}\right)\right)$ and we now prove that \bar{I}_{γ} has dimension 2. We first note that $\bar{c}_{22} \neq 0$, as $c_{22} \notin \mathfrak{m}_{S^{(j)}} \cdot\left(J+I_{\tau, \nabla_{\text {alg }}}^{(j)}\right)$ (alternatively, one can check on the explicit equations of LLHM, Table 4] that $c_{22} \neq 0$ in $S^{(j)} /\left(\mathfrak{m}_{S^{(j)}}^{2}+I_{\tau, \nabla_{\text {alg }}}^{(j)}\right)$. Now, if we have a relation of the form $\bar{c}_{2}+\kappa \overline{\left.(a-b) c_{13} d_{21}+(b-c-1) c_{23} d_{11}^{*}\right)}$ in \bar{I}_{γ}, for some $\kappa \in \mathbb{F}^{\times}$, this would imply that the natural inclusion $\left(c_{22}\right) \subseteq I_{\gamma}$ induces an isomorphism of 1-dimensional \mathbb{F}-vector spaces, and hence that $\left(c_{22}\right) \subseteq I_{\gamma}$ is in fact an equality. This is impossible since $\left(c_{22}\right)=I_{\beta}, I_{\beta} \neq I_{\gamma}$ (e.g. by looking at the number of minimal primes of $S^{(j)} / I_{\tau, \nabla_{\mathrm{alg}}}^{(j)}$ above them which has been computed along the proof).

Lemma B.1. We have the following equalities in $S^{(j)} / I_{\tau, \nabla_{\mathrm{alg}}}^{(j)}$
(1) $-\left(\frac{a-b}{b-c}\right) c_{11} d_{22}^{*} d_{33}^{*}-\left(\frac{1-a+b}{1-a+c}\right) d_{11}^{*} c_{22} d_{33}^{*}-c_{13}\left(d_{22}^{*} d_{31}-d_{21} d_{32}\right) \equiv 0$;
(2) $(b-c) d_{11}^{*} c_{22}+(a-c) c_{11} d_{22}^{*}-(b-c) c_{12} d_{21} \equiv 0$;
(3) $-\left(\frac{a-c}{b-c}\right) c_{11} d_{22}^{*} d_{33}^{*}+\left(\frac{a-b-1}{a-b}\right) d_{11}^{*} c_{22} d_{33}^{*}+\left(\frac{b-c-1}{a-b}\right) d_{11}^{*} c_{23} d_{32}+d_{21} d_{32} c_{13} \equiv 0$;
(4) $-\left(\frac{c+1-a}{a-b}\right) c_{33} d_{11}^{*} d_{22}^{*}-\left(\frac{-c+a}{-c+b}\right) d_{33}^{*} c_{11} d_{22}^{*}-d_{32}\left(d_{11}^{*} c_{23}-c_{13} d_{21}\right) \equiv 0$;
(5) $(a-b) d_{33}^{*} c_{11}+(c+1-b) c_{33} d_{11}^{*}-(a-b) d_{31} c_{13} \equiv 0$;
(6) $-\left(\frac{c+1-b}{a-b}\right) c_{33} d_{11}^{*} d_{22}^{*}+\left(\frac{c-a}{c+1-a}\right) d_{33}^{*} c_{11} d_{22}^{*}+\left(\frac{a-b-1}{c+1-a}\right) d_{22}^{*} c_{12} d_{21}+d_{13} d_{21} c_{32} \equiv 0$.

Proof. By the remark at the beginning of $\$$ B.1.2 it is enough to prove the statements for items (1), (2) and (3).

Let $\overline{\operatorname{Mon}}_{\tau, 1}, \overline{\operatorname{Mon}}_{\tau, 2}, \overline{\operatorname{Mon}}_{\tau, 3}$ denote the mod p-reduction of the first, second and third equations in row Mon_{τ} of [LLHM, Table 4]. In particular, item (2) is $\overline{\mathrm{Mon}}_{\tau, 3}$.

Item (11) is deduced from $\frac{d_{11}^{*}}{a-c-1} \overline{\operatorname{Mon}}_{\tau, 1} \equiv 0$, using the relations

$$
\begin{aligned}
d_{11}^{*}\left(c_{23} d_{32}-c_{33} d_{22}^{*}\right) & \equiv c_{13} d_{21} d_{32}-c_{12} d_{21} d_{33}^{*}-c_{13} d_{31} d_{22}^{*}+c_{11} d_{22}^{*} d_{33}^{*}+d_{11}^{*} c_{22} d_{33}^{*} \\
c_{12} d_{21} & \equiv d_{11}^{*} c_{22}+\frac{(a-b)}{(b-c)} c_{11} d_{22}^{*}
\end{aligned}
$$

(the first relation comes from the sixth equation in row $I_{\tau}^{(j)}$ in [LLHM, Table 4], and the second relation from $\left.\overline{\mathrm{Mon}}_{\tau, 3}\right)$.

Item (3) is deduced from $\frac{d_{22}^{*}}{a-b} \overline{\operatorname{Mon}}_{\tau, 2} \equiv 0$, using the relations

$$
\begin{aligned}
d_{22}^{*}\left(c_{23} d_{32}-c_{22} d_{33}^{*}\right) & \equiv c_{13} d_{21} d_{32}-c_{12} d_{21} d_{33}^{*}-c_{23} d_{32} d_{11}^{*}+c_{33} d_{22}^{*} d_{11}^{*}+d_{11}^{*} c_{22} d_{33}^{*} \\
c_{33} d_{22}^{*} & \equiv c_{23} d_{32}-\frac{(a-b-1)}{(a-c-1)} c_{22} d_{33}^{*} \\
c_{12} d_{21} & \equiv d_{11}^{*} c_{22}+\frac{(a-b)}{(b-c)} c_{11} d_{22}^{*}
\end{aligned}
$$

(the first relation comes from the sixth equation in row $I_{\tau}^{(j)}$ in [LLHM, Table 4], and the second and third relation from $\overline{\operatorname{Mon}}_{\tau, 2}$ and $\left.\overline{\operatorname{Mon}}_{\tau, 3}\right)$.
B.1.3. Justification for LLHM, Table 6]. The justification is a direct computation, performed by exhibiting elements in $\widetilde{I}_{\left\{w_{0}, \alpha \beta\right\}, \nabla_{\text {alg }}}^{(j)} \stackrel{\text { def }}{=} \widetilde{I}_{\tau_{w_{0}}, \nabla_{\text {alg }}}^{(j)} \cap \widetilde{I}_{\tau_{\alpha \beta}, \nabla_{\text {alg }}}^{(j)}$ (resp. in $\widetilde{I}_{\left\{w_{0}, \beta \alpha\right\}, \nabla_{\text {alg }}}^{(j)}=\widetilde{I}_{\tau_{w_{0}}, \nabla_{\text {alg }}}^{(j)} \cap \widetilde{I}_{\tau_{\beta \alpha}, \nabla_{\text {alg }}}^{(j)}$), and taking their mod $-\varpi$ reduction.

We mention that these computation can ultimately be checked by exhibiting a Groebner basis for the ideals $\widetilde{I}_{\tau_{w_{0}}, \nabla_{\text {alg }}}^{j j}, \widetilde{I}_{\tau_{\alpha \beta},}^{(j)}, \nabla_{\text {alg }}$ and $\widetilde{I}_{\tau_{\beta \alpha}, \nabla_{\text {alg }}}^{(j)}$ (for the monomial ordering on $\widetilde{S}^{(j)}$ given by $c_{11}>$ $c_{12}>c_{13}>d_{21}>c_{21}>c_{22}>c_{23}>c_{31}>d_{31}>d_{32}>c_{32}>c_{33}$), and give full detail for the most complicated equations (namely, those involving the structure constants from the monodromy).
Study of $\widetilde{I}_{\left\{w_{0}, \alpha \beta\right\}, \nabla_{\text {alg }}}^{(j)} \stackrel{\text { def }}{=} \widetilde{I}_{\tau_{w_{0}}, \nabla_{\text {alg }}}^{(j)} \cap \widetilde{I}_{\tau_{\alpha \beta}, \nabla_{\text {alg }}}^{(j)}$. We claim that the element $f \stackrel{\text { def }}{=}\left(b_{\tau_{\alpha \beta}, 2}-b_{\tau_{\alpha \beta}, 3}\right) d_{21} c_{22} d_{33}^{*}-$ $\left(b_{\tau_{\alpha \beta}, 2}-b_{\tau_{\alpha \beta}, 3}-1\right) c_{23} d_{31} d_{22}^{*}+\left(b_{\tau_{\alpha \beta}, 2}-b_{\tau_{\alpha \beta}, 1}-1\right) c_{21} d_{33}^{*} d_{22}^{*}$ (whose mod ϖ-reduction gives the element in the third line of row $\alpha \beta \alpha t_{\underline{1}}, \alpha \beta t_{\underline{1}}$ in LLHM, Table 6]) is in $\widetilde{I}_{\left\{w_{0}, \alpha \beta\right\}, \nabla_{\text {alg }}}^{(j)}$. Indeed, on the one hand c_{21}, c_{22}, c_{23} all belong to $\widetilde{I}_{\tau_{w_{0}}}^{(j)}, \nabla_{\text {alg }}$, and on the other hand

$$
f=\left(c_{22}+p d_{22}^{*}\right)\left(b_{\tau_{\alpha \beta}, 2}-b_{\tau_{\alpha \beta}, 3}\right) d_{33}^{*} d_{21}-d_{22}^{*}\left(\operatorname{Mon}_{\tau_{\alpha \beta}, 2}\right)
$$

where $\operatorname{Mon}_{\tau_{\alpha \beta}, 2}$ denotes the second equation in row $\left(\alpha \beta t_{\underline{1}}, \widetilde{I}_{\tau, \nabla_{\infty}}^{(j)}, \operatorname{Mon}_{\tau}\right)$ in [LLHM, Table 3].
In a similar fashion, we have the equality

$$
\begin{aligned}
& \left(\left(b_{\tau_{w_{0}}, 2}-b_{\tau_{w_{0}}, 3}\right) d_{21} d_{32}+d_{31}\right) c_{22}+\left(\left(b_{\tau_{w_{0}}, 3}-b_{\tau_{w_{0}}, 1}-1+p\right) d_{32}+c_{32}\right) c_{21}+\operatorname{Mon}_{\tau_{w_{0}}, 2}= \\
& \quad=\left(\left(b_{\tau_{w_{0}}, 2}-b_{\tau_{w_{0}}, 3}\right) d_{21} d_{32}+d_{31}\right)\left(c_{22}+p d_{22}^{*}\right)+\left(b_{\tau_{w_{0}}, 3}-b_{\tau_{w_{0}}, 1}-1\right)\left(c_{21} d_{32}-c_{31} d_{22}^{*}\right)+c_{21}\left(c_{32}+p d_{32}\right)
\end{aligned}
$$

hence obtaining an element in $\widetilde{I}_{\left\{w_{0}, \alpha \beta\right\}, \nabla_{\text {alg }}}^{j)}$ which reduces modulo p to the last equation in row $\left(\alpha \beta \alpha t_{1}, \alpha \beta t_{\underline{1}}\right)$ of LLHM, Table 6].

Finally, we check that

$$
\begin{equation*}
c_{22}\left(x c_{11}+y d_{11}^{*}\right)+z \operatorname{Mon}_{\tau_{w_{0}}, 1}=\left(c_{22}+p d_{22}^{*}\right)\left(x c_{11}+y d_{11}^{*}\right)+\operatorname{Mon}_{\tau_{\alpha \beta}, 1} \tag{B.11}
\end{equation*}
$$

where
(note that $x, y, z \in \mathbb{Z}_{p}$ by the genericity assumption on $\mu_{j}+\eta_{j}$ and fact that $b_{\tau_{\alpha \beta}, i} \equiv b_{\tau_{w_{0}}, i}$ for $i=$ $1,2,3)$ and where $\operatorname{Mon}_{\tau_{w_{0}}, 1}\left(\right.$ resp. $\left.\operatorname{Mon}_{\tau_{\alpha \beta}, 1}\right)$ denotes the first equation in row $\left(\alpha \beta \alpha t_{\underline{1}}, \widetilde{I}_{\tau, \nabla \infty}^{(j)}, \operatorname{Mon}_{\tau}\right)$ (resp. $\left(\alpha \beta t_{\underline{1}}, \widetilde{I}_{\tau, \nabla \infty}^{(j)}\right.$, Mon $\left._{\tau}\right)$) in [LLHM, Table 3]. Observing that $z \equiv 1$ and $y \equiv-(b-c)$ modulo p, equation (B.11) justifies the fourth line in row $\left(\alpha \beta \alpha t_{\underline{1}}, \alpha \beta t_{\underline{1}}\right)$ of [LLHM, Table 6].

The computations for the elements in the first two lines in row $\alpha \beta \alpha t_{\underline{1}}, \alpha \beta t_{\underline{1}}$ are easier (only involving finite height equations). For instance the element $c_{23} d_{32}-c_{22} d_{33}^{*}$ is evidently in $I_{\left\{w_{0}, \alpha \beta\right\}, \nabla_{\text {alg }}}^{(j)}$ since on the one hand $c_{22}, c_{23} \in \widetilde{I}_{\tau_{w_{0}}, \nabla_{\text {alg }}}^{(j)}$ and on the other hand $c_{22}+p d_{22}^{*}, c_{23} d_{32}+p d_{33}^{*} d_{22}^{*} \in \widetilde{I}_{\tau_{w_{0}}, \nabla_{\mathrm{alg}}}^{(j)}$.
Study of $\widetilde{I}_{\tau_{w_{0}}, \nabla_{\text {alg }}}^{(j)} \cap \widetilde{I}_{\tau_{\beta \alpha},}^{(j)} \nabla_{\text {alg }}$. We explicitly construct elements in $\widetilde{I}_{\tau_{w_{0}}, \nabla_{\text {alg }}}^{(j)} \cap \widetilde{I}_{\tau_{\beta \alpha}, \nabla_{\text {alg }}}^{(j)}$ and compute their mod p-reductions.

The elements

$$
\begin{align*}
& \left(b_{\tau_{\beta \alpha}, 2}-b_{\tau_{\beta \alpha}, 3}+1\right)\left(c_{32+p d_{32}}\right)+\left(b_{\tau_{\beta \alpha}, 1}-b_{\tau_{\beta \alpha}, 3}\right) d_{31}\left(c_{13} d_{32}-c_{12} d_{33}^{*}\right)+ \tag{B.12}\\
& \quad+\left(b_{\tau_{\beta \alpha}, 3}-b_{\tau_{\beta \alpha}, 2}\right) d_{32}\left(c_{13} d_{31}-c_{11} d_{33}^{*}+p d_{11} d_{33}^{*}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\left(b_{\tau_{\beta \alpha}, 1}-b_{\tau_{\beta \alpha}, 2}\right)\left(c_{13} d_{31}-c_{11} d_{33}^{*}\right)-\operatorname{Mon}_{\tau_{\beta \alpha}} \tag{B.13}
\end{equation*}
$$

are equal, and, by direct inspection of the finite height equations in [LLHM, Table 3], equation (B.12) defines an element in $\widetilde{I}_{\tau_{w_{0}}, \nabla_{\text {alg }}}^{j()}$ and equation B.13 defines an element in $\widetilde{I}_{\tau_{\beta \alpha}, \nabla_{\mathrm{alg}}}^{(j)}$. This equation reduces mod p to the fourth line of row $\alpha \beta \alpha t_{\underline{1}}, \beta \alpha t_{\underline{1}}$ of [LLHM, Table 6].

Let $x^{\prime} \stackrel{\text { def }}{=} \frac{b_{\tau_{w_{0}, 1}-b_{\tau_{w_{0}}, 2}+p\left(b_{\tau_{w_{0}}, 1}-b_{\tau_{w_{0}}, 3}\right.}}{1+p}$. A direct computation shows that the expressions

$$
\begin{align*}
& d_{11}^{*} d_{33}^{*}\left(\operatorname{Mon}_{\alpha \beta \alpha, 2}\right)+x^{\prime} c_{11} d_{21} d_{33}^{*}\left(c_{32}+p d_{32}\right)+\left(b_{\tau_{w_{0}, 2}}-b_{\tau_{w_{0}}, 3}\right) d_{21} d_{31}\left(c_{13} d_{32}-c_{12} d_{33}^{*}\right)+ \tag{B.14}\\
& \quad+\left(x^{\prime} d_{31} d_{22}^{*}+\left(b_{\tau_{w_{0}}, 1}-b_{\tau_{w_{0}}, 3}\right) c_{31} d_{22}^{*}-\left(b_{\tau_{w_{0}}, 2}-b_{\tau_{w_{0}}, 3}\right) d_{21} d_{32}\right)\left(c_{13} d_{31}-c_{11} d_{33}^{*}+p d_{11}^{*} d_{33}^{*}\right)+ \\
& \quad-\left(b_{\tau_{w_{0}}, 1}-b_{\tau_{w_{0}}, 3}\right) d_{31} d_{22}^{*}\left(c_{13} c_{31}+p c_{11} d_{33}\right)
\end{align*}
$$

and

$$
\begin{align*}
& \left(\left(b_{\tau_{w_{0}}, 1}-b_{\tau_{w_{0}}, 3}\right)\left(p-c_{11}\right)+\left(b_{\tau_{w_{0}}, 1}-b_{\tau_{w_{0}}, 3}+1\right)\right)\left(c_{31}+p d_{31}\right) d_{11}^{*} d_{22}^{*} d_{33}^{*}+ \tag{B.15}\\
& \quad+\left(x^{\prime}\left(d_{31} d_{22}^{*}-d_{21} c_{32}\right)-\left(b_{\tau_{w_{0}}, 2}-b_{\tau_{w_{0}}, 3}+p x^{\prime}\right) d_{21} d_{32}\right)\left(c_{13} c_{31}-c_{11} d_{33}^{*}\right)+ \\
& \quad+x^{\prime} d_{21} d_{31}\left(c_{13} c_{32}+p c_{12} d_{33}^{*}\right)+\left(b_{\tau_{w_{0}}, 2}-b_{\tau_{w_{0}}, 3}+p x^{\prime}\right) d_{31}\left(c_{13} d_{21} d_{32}-c_{12} d_{21} d_{33}^{*}-p d_{11}^{*} d_{22}^{*} d_{33}^{*}\right)
\end{align*}
$$

are equal, and, as above, equation (B.14) defines an element in $\widetilde{I}_{\tau_{w_{0}}, \nabla_{\text {alg }}^{(j)} \text { and B.15 defines an }}$ element in $\widetilde{I}_{\tau_{\beta \alpha}, \nabla_{\text {alg }}}^{(j)}$. The $\bmod p$-reduction of such element justifies the equation in the fifth line of row $\alpha \beta \alpha t_{\underline{1}}, \beta \alpha t_{\underline{1}}$ of LLHM, Table 6].

Finally, let

$$
\begin{aligned}
& z^{\prime} \stackrel{\text { def }}{=} \frac{\left(b_{\tau_{w_{0}}, 2}-b_{\tau_{w_{0}}, 3}\right)-\left(b_{\tau_{\beta \alpha}, 2}-b_{\tau_{\beta \alpha}, 3}\right)}{p}+\left(b_{\tau_{w_{0}}, 2}-b_{\tau_{w_{0}}, 3}\right) \\
& z^{\prime \prime} \stackrel{\text { def }}{=} \frac{\left(b_{\tau_{w_{0}}, 3}-b_{\tau_{w_{0}}, 1}\right)-\left(b_{\tau_{\beta \alpha}, 3}-b_{\tau_{\beta \alpha}, 1}\right)}{p}+\left(b_{\tau_{w_{0}, 3}}-b_{\tau_{w_{0}}, 1}\right) .
\end{aligned}
$$

Again, a direct computation shows that

$$
\begin{aligned}
& \left(z^{\prime} c_{12} d_{21}+z^{\prime \prime} c_{11} d_{22}^{*}-p d_{11} d_{22}^{*}\right)\left(c_{13} d_{31}-c_{11} d_{33}^{*}+p d_{11}^{*} d_{33}^{*}\right)-(p+1) d_{11}^{*} d_{33}^{*}\left(\operatorname{Mon}_{\tau_{w_{0}, 1}}\right)= \\
& \quad=\left(z^{\prime} c_{12} d_{21}+z^{\prime \prime} c_{11} d_{22}^{*}-p d_{11} d_{22}^{*}\right)\left(c_{13} d_{31}-c_{11} d_{33}^{*}\right)-d_{11}^{*} d_{33}^{*}\left(\operatorname{Mon}_{\tau_{\beta \alpha}, 1}\right)
\end{aligned}
$$

which, similarly as in the previous cases, defines an element in $\widetilde{I}_{\tau_{0}}^{(j)}, \nabla_{\text {alg }} \cap \widetilde{I}_{\tau_{\beta \alpha} \alpha, \nabla_{\text {alg }}}^{(j)}$ whose \bmod p-reduction justifies the last equation in row $\alpha \beta \alpha t_{\underline{1}}, \beta \alpha t_{\underline{1}}$ of [LLHM, Table 6].
B.1.4. Justification for [LLHM, Table 7]. As for [LLHM, Table 6], the justification is a direct computation (cf. §B.1.3). For $i \in\{1,2,3\}$ we set $b_{\mathrm{id}, i} \stackrel{\text { def }}{=} b_{\tau_{t_{w_{0}(\eta)}}, i}, b_{\alpha, i} \stackrel{\text { def }}{=} b_{\tau_{t_{w_{0}}(\eta)}}, i$ and $b_{\beta, i} \stackrel{\text { def }}{=}$ $b_{\tau_{t_{w_{0}}(\eta)^{\beta}}, i}$ for readability in what follows.

Study of $\widetilde{I}_{\tau_{t_{w_{0}}(\eta)}}^{(j)}, \nabla_{\text {alg }} \cap \widetilde{I}_{\tau_{w_{0}(\eta) \alpha}}^{(j)}, \nabla_{\text {alg }}$. Define $z \stackrel{\text { def }}{=} \frac{b_{\alpha, 1}-b_{\alpha, 2}}{b_{\mathrm{id}, 1}-b_{\mathrm{id}, 2}}, y \stackrel{\text { def }}{=} b_{\alpha, 2}-b_{\alpha, 1}-1+z$ and

$$
x=\frac{1}{p}\left(b_{\alpha, 1}-b_{\alpha, 3}-z\left(b_{\mathrm{id}, 1}-b_{\mathrm{id}, 3}\right)\right)
$$

(note that $z \in \mathbb{Z}_{p}$ as $b_{\mathrm{id}, 1}-b_{\mathrm{id}, 2} \not \equiv 0 \bmod p$ and that $x \in \mathbb{Z}_{p}$ as $b_{\alpha, 1}-b_{\alpha, 3}-z\left(b_{\mathrm{id}, 1}-b_{\mathrm{id}, 3}\right) \equiv 0 \bmod$ p). A direct computation shows that the expressions

$$
d_{11}^{*}\left(x c_{12} e_{23}+y c_{13} c_{22}+z \operatorname{Mon}_{t_{w_{0}(\eta)}}\right)
$$

and

$$
x e_{13}\left(c_{12} d_{21}+p d_{11}^{*} d_{22}^{*}\right)-x c_{12}\left(e_{13} d_{21}-e_{23} d_{11}^{*}\right)+y d_{11}^{*} c_{13}\left(c_{22}+p d_{22}\right)-d_{11}^{*} \operatorname{Mon}_{t_{w_{0}(\eta)} \alpha}
$$

are equal (where we denoted by $\operatorname{Mon}_{t_{w_{0}(\eta)}}$ and $\operatorname{Mon}_{t_{w_{0}(\eta)}}$ the last equation in row $t_{w_{0}(\eta)}$ and $t_{w_{0}(\eta)}{ }^{\alpha}$ respectively). These expressions define an element in the intersection $\widetilde{I}_{\tau_{t_{0}(\eta)},}^{(j)}, \nabla_{\text {alg }} \cap \widetilde{I}_{\tau_{t_{w_{0}}(\eta) \alpha}}^{(j)}, \nabla_{\text {alg }}$, whose $\bmod p$ reduction explains the second line in row $t_{w_{0}(\eta)}, t_{w_{0}(\eta)} \alpha$ of [LLHM, Table 7].

Study of $\widetilde{I}_{\tau_{t_{w_{0}(\eta)}},}^{(j)}, \nabla_{\text {alg }} \cap \widetilde{I}_{\tau_{t_{w_{0}}(\eta) \beta}}^{(j)}, \nabla_{\text {alg }}$. Define

$$
\begin{aligned}
& z^{\prime}=\frac{1}{p}\left(b_{\beta, 1}-b_{\beta, 2}-(p+1)\left(b_{\mathrm{id}, 1}-b_{\mathrm{id}, 2}\right)\right) \\
& z^{\prime \prime}=\frac{1}{p}\left((p+1)\left(b_{\mathrm{id}, 1}-b_{\mathrm{id}, 3}\right)-\left(b_{\beta, 1}-b_{\beta, 3}\right)\right)
\end{aligned}
$$

(note that z^{\prime} and $z^{\prime \prime}$ are elements of \mathbb{Z}_{p} as $b_{\beta, 1}-b_{\beta, j}-(p+1)\left(b_{\mathrm{id}, 1}-b_{\mathrm{id}, j}\right) \equiv 0 \bmod p$ for $\left.j \in\{2,3\}\right)$. Again a direct computation shows that the expressions

$$
\left(z^{\prime \prime} e_{13} d_{22}^{*}-p c_{13} d_{22}^{*}+z^{\prime} c_{12} c_{23}\right) c_{33}+(p+1) d_{33}^{*} \operatorname{Mon}_{t_{w_{0}(\eta)}}
$$

and

$$
\left(z^{\prime \prime} e_{13} d_{22}^{*}-p c_{13} d_{22}^{*}+z^{\prime} c_{12} c_{23}\right)\left(c_{33}+p\right)-d_{33}^{*} \operatorname{Mon}_{t_{w_{0}(\eta)} \beta}
$$

are equal (where again we denoted by $\operatorname{Mon}_{t_{w_{0}(\eta)}}$ and $\operatorname{Mon}_{t_{w_{0}(\eta)}}$ the last equation in row $t_{w_{0}(\eta)}$ and $t_{w_{0}(\eta)} \beta$ respectively). These expressions define an element in the intersection $\widetilde{I}_{\tau_{t_{w_{0}(\eta)}}^{(j)}, \nabla_{\text {alg }}}^{(j)} \cap$ $\widetilde{I}_{\tau_{w_{0}(\eta) \beta},}^{(j)}, \nabla_{\text {alg }}$, whose $\bmod p$ reduction explains the second line in row $t_{w_{0}(\eta)}, t_{w_{0}(\eta)} \beta$ of [LLHM, Table 7].
B.1.5. Computations on $\operatorname{Tor}_{1}^{S^{(j)}}\left(\mathbb{F},\left(\widetilde{S}^{(j)} / \widetilde{I}_{T, \nabla_{\text {alg }}}^{(j)}\right) \otimes \mathbb{F}\right)$. We provide details for the computations of the maps between various $\operatorname{Tor}_{1}^{S^{(j)}}\left(\mathbb{F},\left(\widetilde{S}^{(j)} / \widetilde{I}_{T, \nabla_{\text {alg }}}^{(j)}\right) \otimes \mathbb{F}\right)$ appearing in the proofs of [LLHM, Lemmas $3.30,3.33,3.35,3.37]$. In the following computation, given an ideal $I \subseteq S^{(j)}$ we write elements of $\operatorname{Tor}_{1}^{S^{(j)}}\left(\mathbb{F}, S^{(j)} / I\right)$ in terms of generators of I, by virtue of the canonical isomorphism $\operatorname{Tor}_{1}^{S^{(j)}}\left(\mathbb{F}, S^{(j)} / I\right) \cong I /\left(\mathfrak{m}_{S^{(j)}} \cdot I\right)$.

Complements in the proof of [LLHM], Lemma 3.30. We need to prove that the union of the images of the canonical maps

$$
\begin{align*}
& \operatorname{Tor}_{1}\left(\mathbb{F},\left(\widetilde{S}^{(j)} /\left(\widetilde{I}_{\tau_{\alpha \beta}, \nabla_{\mathrm{alg}}}^{(j)} \cap \widetilde{I}_{\tau_{w_{0}}, \nabla_{\mathrm{alg}}}^{(j)}\right)\right) \otimes \mathbb{F}\right) \rightarrow \operatorname{Tor}_{1}\left(\mathbb{F},\left(\widetilde{S} / \widetilde{I}_{\tau_{w_{0}}, \nabla_{\infty}}^{(j)}\right) \otimes \mathbb{F}\right) \tag{B.16}\\
& \operatorname{Tor}_{1}\left(\mathbb{F},\left(\widetilde{S}^{(j)} /\left(\widetilde{I}_{\tau_{\beta \alpha}, \nabla_{\mathrm{alg}}}^{(j)} \cap \widetilde{I}_{\tau_{w_{0}}, \nabla_{\mathrm{alg}}}^{j()}\right)\right) \otimes \mathbb{F}\right) \rightarrow \operatorname{Tor}_{1}\left(\mathbb{F},\left(\widetilde{S} / \widetilde{I}_{\tau_{w_{0}}, \nabla_{\infty}}^{j j)}\right) \otimes \mathbb{F}\right) \tag{B.17}
\end{align*}
$$

generates a spanning set for $\operatorname{Tor}_{1}\left(\mathbb{F},\left(S^{(j)} / I_{\tau_{w_{0}}, \nabla_{\infty}}^{(j)}\right) \otimes \mathbb{F}\right)$, e.g. using [LLHM, Table 3], the set given by the images of the elements

$$
\begin{aligned}
& c_{21}, c_{22}, c_{23}, c_{32}, c_{33} \\
& c_{13} d_{32}-c_{12} d_{33}^{*}, c_{13} d_{31}-c_{11} d_{33}^{*}, c_{13} c_{31} \\
& (b-c) c_{21} d_{12}+(c-a) c_{11} d_{22}^{*}, c_{31}
\end{aligned}
$$

(where $(a, b, c) \stackrel{\text { def }}{=} s_{j}^{-1}\left(\mu_{j}+\eta_{j}\right)-(1,1,1) \equiv b_{\tau_{w_{0}}}$ modulo ϖ). We immediately see from row $\alpha \beta \alpha t_{\underline{1}}, \alpha \beta t_{1}$ in [LLHM, Table 6] that the elements $c_{32}, c_{33}, c_{13} c_{31}, c_{13} d_{32}-c_{12} d_{33}^{*}$ are in the image of (B.16). Similarly the elements c_{21}, c_{22}, c_{23} are in the image of B.17).

Writing

$$
c_{13} d_{31}-c_{11} d_{33}^{*}=\underbrace{c_{13} d_{21} d_{32}-c_{12} d_{21} d_{33}^{*}-c_{13} d_{31} d_{22}^{*}+c_{11} d_{22}^{*} d_{33}^{*}}_{\in \text { image of } \overline{\text { B. } 17}}-d_{21} \underbrace{\left(c_{13} d_{32}-c_{12} d_{33}^{*}\right)}_{\in \text { image of } \sqrt{\text { B.16 }}}
$$

we conclude that $c_{13} d_{31}-c_{11} d_{33}^{*}$ is in the \mathbb{F}-span of the union of the images of (B.16), B.17).
Similarly,

$$
\begin{aligned}
& (b-c) c_{21} d_{12}+(c-a) c_{11} d_{22}^{*}=\underbrace{(b-c) c_{12} d_{21}+\bar{x} c_{11} c_{22}-(a-c) c_{11} d_{22}^{*}-(b-c) c_{22} d_{11}^{*}}_{\in \text { image of } \sqrt{\text { B.16 }}}+ \\
& -\left(\bar{x} c_{11}-(b-c) d_{11}^{*}\right) \underbrace{c_{22}}_{\in \text { image of }}+17
\end{aligned}
$$

so that $(b-c) c_{21} d_{12}+(c-a) c_{11} d_{22}^{*}$ is in the \mathbb{F}-span of the union of the images of $(\bar{B} .16),(B .17)$.
Finally, note that $c_{22}\left(d_{21} d_{32}\right), c_{22}\left(d_{21} c_{32}\right), c_{22}\left(d_{31} d_{22}^{*}\right), c_{21}\left(d_{32} d_{22}^{*}\right) \in I_{\tau_{w_{0}}, \nabla_{\text {alg }}}^{(j)} \cdot \mathfrak{m}_{\widetilde{S}^{(j)}}$ so that the last equation in row $\alpha \beta \alpha t_{\underline{1}}, \alpha \beta t_{\underline{1}}$ in LLHM, Table 6] is sent by the map B.16) to $(a-c+1) c_{31}\left(d_{22}^{*}\right)^{2}$ and in particular c_{31} is in the image of the map B.16.

Complements in the proof of [LLHM, Lemma 3.33. The argumen is similar to that for [LLHM,
Lemma 3.30]. Consider the natural maps

$$
\begin{align*}
& \operatorname{Tor}_{1}^{S}\left(\mathbb{F},\left(\widetilde{S} /\left(\widetilde{I}_{\tau_{\alpha t}}, \nabla_{w_{0}(\eta)} \cap \widetilde{I}_{\tau_{t_{w_{0}(\eta)}}}, \nabla_{\infty}\right)\right) \otimes \mathbb{F}\right) \rightarrow \operatorname{Tor}_{1}^{S}\left(\mathbb{F},\left(\widetilde{S}_{S} / \widetilde{I}_{\tau_{t_{w_{0}(\eta)}}}, \nabla_{\infty}\right) \otimes \mathbb{F}\right) \tag{B.18}\\
& \operatorname{Tor}_{1}^{S}\left(\mathbb{F},\left(\widetilde{S} /\left(\widetilde{I}_{\tau_{t_{w_{0}(\eta)}}, \nabla_{\infty}} \cap \widetilde{I}_{\tau_{\beta t_{w_{0}(\eta)}}}, \nabla_{\infty}\right)\right) \otimes \mathbb{F}\right) \rightarrow \operatorname{Tor}_{1}^{S}\left(\mathbb{F},\left(\widetilde{S}_{S} / \widetilde{I}_{\tau_{t_{w_{0}(\eta)}}}, \nabla_{\infty}\right) \otimes \mathbb{F}\right) \tag{B.19}
\end{align*}
$$

A spanning set for $\operatorname{Tor}_{1}^{S}\left(\mathbb{F},\left(\widetilde{S} / \widetilde{I}_{\tau_{t_{w_{0}(\eta)}}, \nabla_{\infty}}\right) \otimes \mathbb{F}\right)$ (using [LLHM, Table 7]) is given by the images of the elements

$$
\begin{aligned}
& d_{21}, d_{32}, c_{32}, e_{33}, c_{33}, d_{32}, e_{23}, c_{22} \\
& (a-c) e_{23} d_{22}^{*}-(a-b) c_{12} c_{23}
\end{aligned}
$$

We immediately see from row $t_{w_{0}(\eta)}, t_{w_{0}(\eta)} \alpha$ in [LLHM, Table 7] that the elements $d_{32}, c_{32}, e_{33}, c_{33}, d_{32}$, are in the image of $\overline{\mathrm{B} .18}$, and, from row $t_{w_{0}(\eta)}, t_{w_{0}(\eta)} \beta$, that the element d_{21} is in the image of (B.19).

Moreover, noting that $c_{12} d_{21}, e_{13} d_{21}, c_{13} c_{22}, c_{12} e_{23} \in \mathfrak{m}_{S^{(j)}} \cdot I_{\tau_{t_{w_{0}(\eta)}}, \nabla_{\text {alg }}}^{(j)}$ we conclude that (B.18) maps the elements $c_{12} d_{21}-c_{22} d_{11}^{*}, e_{13} d_{21}-e_{23} d_{11}^{*}$ and $(a-b)\left(c_{13} c_{22}-c_{12} c_{23}\right)-\bar{x} c_{12} e_{23}+(a-c) e_{23} d_{22}^{*}$ to $c_{22} d_{11}^{*}, e_{23} d_{11}^{*}$ and $(a-c) e_{23} d_{22}^{*}-(a-b) c_{12} c_{23}$ respectively.
Complements in the proof of [LLHM], Lemma 3.35. We check that the union of the images of the canonical maps

$$
\begin{align*}
& \operatorname{Tor}_{1}^{S}\left(\mathbb{F}, S /\left(\widetilde{I}_{\tau_{\alpha \beta}, \nabla_{\mathrm{alg}}}^{j j)} \cap \widetilde{I}_{\tau_{w_{0}}, \nabla_{\infty}}^{(j)}, p\right) \cap\left(\widetilde{I}_{\tau_{w_{0}}, \nabla_{\mathrm{alg}}}^{(j)} \cap \widetilde{I}_{\tau_{\beta \alpha}, \nabla_{\infty}}^{(j)}, p\right)\right) \rightarrow \operatorname{Tor}_{1}^{S}\left(\mathbb{F}, S / I_{\Lambda}^{(j)}\right) \tag{B.20}\\
& \operatorname{Tor}_{1}^{S}\left(\mathbb{F}, S /\left(\widetilde{I}_{\tau_{\mathrm{id}}, \nabla_{\mathrm{alg}}}^{(j)}, p\right)\right) \rightarrow \operatorname{Tor}_{1}^{S}\left(\mathbb{F}, S / I_{\Lambda}^{(j)}\right) \tag{B.21}
\end{align*}
$$

generates a spanning set for the target, i.e. by [LLHM, Lemma 3.34], the set given by the image of the elements $c_{33}, d_{32} c_{23}-c_{22} d_{33}^{*}, c_{22}, c_{11} d_{33}^{*}-c_{13} d_{31}$ of $I_{\Lambda}^{(j)}$. From the last row of [LLHM, Table 6] we immediately see that the elements $c_{33}, d_{32} c_{23}-c_{22} d_{33}^{*}$ are in the image of the map B.20). Moreover, by [LLHM, Table 4], the image of the map B.21) contains the elements

$$
\begin{aligned}
& (a-c-1)\left(c_{23} d_{32}-c_{33} d_{22}^{*}\right)-(a-b-1) c_{22} d_{33}^{*} \\
& \quad(a-b)\left(c_{13} d_{31}-c_{11} d_{33}^{*}\right)-(b-c-1) c_{33} d_{11}^{*}
\end{aligned}
$$

In particular, as $a-b \neq 0 \neq b-c$, the union of the images of $B .20$, B.21) contains the elements $c_{13} d_{31}-c_{11} d_{33}^{*}$ and c_{22}.

Complements in the proof of [LLHM], Lemma 3.37. We check that the union of the images of the canonical maps
(B.22)
$\operatorname{Tor}_{1}^{S^{(j)}}\left(\mathbb{F}, S^{(j)} /\left(\widetilde{I}_{\tau_{w_{w_{0}(\eta)}},}^{(j)}, \nabla_{\infty} \cap \widetilde{I}_{\tau_{t_{w_{0}(\eta)}}(j)}^{(j)}, \nabla_{\infty}, p\right) \cap\left(\widetilde{I}_{\tau_{t_{w_{0}(\eta)}}}, \nabla_{\infty} \cap \widetilde{I}_{\tau_{t_{w_{0}(\eta)}{ }^{\beta}}, \nabla_{\infty}}, p\right) \rightarrow \operatorname{Tor}_{1}^{S^{(j)}}\left(\mathbb{F}, S^{(j)} / I_{\Lambda}^{(j)}\right)\right.$

$$
\begin{equation*}
\operatorname{Tor}_{1}^{S^{(j)}}\left(\mathbb{F},\left(\widetilde{S} / \widetilde{I}_{\tau_{t_{w_{0}}(\eta)} w_{0}}, \nabla_{\infty}\right) \otimes \mathbb{F}\right) \rightarrow \operatorname{Tor}_{1}^{S^{(j)}}\left(\mathbb{F}, S^{(j)} / I_{\Lambda}^{(j)}\right) \tag{B.23}
\end{equation*}
$$

is a spanning set for the target. By [LLHM, Lemma 3.34] a spanning set for the target is given by

$$
\begin{align*}
& c_{32}, e_{33}, d_{31}, d_{21} d_{32} \tag{B.24}\\
& e_{23},(a-b) c_{12} c_{23}-(a-c) e_{13} d_{22}^{*}, c_{33} \tag{B.25}\\
& c_{23} d_{32}, c_{22}, c_{12} d_{21} \tag{B.26}
\end{align*}
$$

By the last row in LLHM, Table 7] the elements in B.25 are immediately checked to be in the image of B.22. By row $t_{w_{0}(\eta)} w_{0}$ in [LLHM, Table 5], and noting further that $c_{13} c_{22}, c_{13} d_{31} \in$ $\mathfrak{m}_{S^{(j)}} I_{\Lambda}^{(j)}$ we immediately see that the elements in B.25) are in the image of B.23).

As $c_{23} d_{32}-c_{33} d_{22}^{*}$ is in the image of (B.22) by the last row of [LLHM, Table 7], we conclude from the above that $c_{23} d_{32}$ is in the linear span of the union of the images of (B.22) and (B.23). Moreover, as $(c-a-1)\left(c_{23} d_{32}-c_{33} d_{22}^{*}\right)+(a-b) c_{22} d_{33}^{*}$ is in the image of B.22) by row $t_{w_{0}(\eta)} w_{0}$
in LLHM, Table 5], we conclude by the above c_{22} is also in the linear span of the union of the images of B.22 and B.23). Finally, as $c_{12} d_{21}-c_{22} d_{1}^{*}$ is in the image of $\bar{B} .22$ by the last row of [LLHM, Table 7], we conclude from the above that $c_{12} d_{21}$ is also in the linear span of the union of the images of $(\mathrm{B} .22)$ and B .23$)$.

References

[LLHLM20] Daniel Le, Bao Viet Le Hung, Brandon Levin, and Stefano Morra, Serre weights and Breuil's lattice conjectures in dimension three, Forum Math. Pi 8 (2020), e5, 135. MR 4079756
[LLHM] Daniel Le, Bao Viet Le Hung, and Stefano Morra, K_{1}-invariants in the mod p cohomology of $U(3)$ arithmetic manifolds, https://www.math.univ-paris13.fr/~morra/K1short.pdf, preprint (2024).

Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067

Email address: ledt@purdue.edu
Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208, USA

Email address: lhvietbao@googlemail.com
LAGA, UMR 7539, CNRS, Université Paris 13 - Sorbonne Paris Cité, Université de Paris 8 , 99 avenue Jean Baptiste Clément, 93430 Villetaneuse, France

Email address: morra@math.univ-paris13.fr

