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ABSTRACT. Let K/Q, be a finite unramified extension, p : Gal(Q,/K) — GLn(F,) a continuous
representation, and 7 a tame inertial type of dimension n. We explicitly determine, under mild
regularity conditions on 7, the potentially crystalline deformation ring R%‘T in parallel Hodge—
Tate weights n = (n — 1,---,1,0) and inertial type 7 when the shape of p with respect to 7
has colength at most one. This has application to the modularity of a class of shadow weights
in the weight part of Serre’s conjecture. Along the way we make unconditional the local-global
compatibility results of [PQ22].

1. INTRODUCTION

In recent years, calculations of various potentially crystalline deformation spaces have seen a
number of applications to questions of local-global compatibility in the mod p and p-adic Lang-
lands program. This includes the weight part of Serre’s conjecture, the determination of mod
p multiplicities, conjectures of Breuil on integral structures in K-types, and generalizations of
Colmez’s functor (see e.g. [EGSTH, [LLHLMIS, [LLHLM?20, [DL21, LLHLMD, LLHM ™, [LLHLMCd,
LLHLMal, [HW?22, BHH" b, BHH"al). Under a somewhat exotic genericity condition, [LLHLMD]
shows that tamely potentially crystalline deformation spaces are equisingular to certain closed
subvarieties of Pappas—Zhu local models. Not much is known about the geometry of these local
models for Galois deformation spaces in general. Moreover, it is difficult in practice to make the
genericity condition explicit or to work with their natural presentations.

1.1. The main result. The local model has a stratification indexed by admissible elements of
the extended affine Weyl group called shapes and the complexity of the geometry increases as the
length of the shape decreases. [LLHLMal shows that when the shape is extremal i.e. has maximal
length ((";’rl) for n-dimensional representations of Gal(@p /Qp)), then the corresponding tamely
potentially crystalline deformation ring is formally smooth. The main result of this paper, which
we state only for representations of Gal(Q,/Q,) in the introduction, is the following:

Theorem 1.1.1 (Theorem . Let E be a finite extension of Qp, with ring of integers O and
residue field F. Let p : Gal(Q,/Qp) — GL,(F) a continuous Galois representation, T a 3n — 7-
generic tame inertial type, n = (n — 1,---,1,0) € Z", and R the lifting ring for potentially
crystalline representations of type (n,7). If Rg’T is nonzero and the length of the shape w(p,T)

1s at least (";rl) — 1 (i.e. the colength of the shape is at most one), then R%’T s formally smooth
over O or O[X,Y]/(XY — p).

Remark 1.1.2. (1) Replacing Q, by a finite unramified extension K and requiring that the
shape have colength one at each embedding K — @p, we show that the deformation ring is
formally smooth over a completed tensor product of rings of the form O[X,Y]/(XY —p).

The number of such factors in the tensor product can furthermore be explicitly computed.
1
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(2) The colength one deformation spaces that have a parabolic structure were computed in
[LLHLMal. In general, colength one deformation spaces do not have a parabolic structure,
making their computation far more difficult.

(3) When n = 3, the tame inertial types with colength one shape are sufficient to prove the
Serre weight conjecture for GL3 [LLHLMIS8| LLHLM20, [LLHLMc|. We generalize these
ideas to prove the modularity of Serre weights of defect at most one under the assumptions
of [LLHLMa], in particular under an explicit combinatorial genericity condition.

(4) Using standard Taylor—Wiles techniques, Theorem gives modularity lifting results
similar to [LLHLMD, Theorem 9.2.1] (improving the polynomial genericity and the tame-
ness condition at p in loc. cit., but imposing specific conditions on the shape with respect
to the tame inertial types).

While Theorem [I.1.1] generalizes some previous results, its proof is perhaps surprisingly subtle
despite the shape having close to maximal length. We do not expect our methods to extend
to shapes of smaller length. This suggests that local models for Galois deformation spaces are
genuinely complicated geometric objects and that simple explicit descriptions are hard to come
by.

Our principal motivation in writing this paper was to apply Theorem to prove the weight
elimination and mod p multiplicity one results necessary to make unconditional the local-global
compatibility result of [PQ22] which states roughly that the local mod p Galois representation
at p can be recovered from the GL, (Q,)-action on the Hecke isotypic part of the mod p completed
cohomology of a definite unitary group. While the results of [PQ22] were superseded by those of
[ILLHM™], the method of [LLHM™]| using only extremal shapes does not work for GSp,(Q,) while
it should be possible to adapt the methods of [PQ22] (which builds on [BD14, HLMI17, [LMPI8§|
MP17] in small rank) to many p-adic reductive groups over Q,. Indeed, this has been carried out
for GSp,(Q,) [EL]. For generalizations of [LLHMT™|, an analogue of Theorem should prove
useful. We hope to return to this in future work.

1.2. Global and local applications. As mentioned in Remark , as a more immediate
global application of Theorem [I.1.1] we obtain the modularity of weights of defect at most one.
The notion of defect of a Serre weight o for a tame Galois representation p was first introduced
in [LLHLMD, §8.6]. This notion is purely combinatorial, and encodes the maximal length for
the shapes w(p,7) such that o € W7 (p) N JH(c(7)). In this paper we generalize the notion of
defect for any p in terms of specializations (as done in [LLHLMa] for extremal weights), and
prove their modularity when the defect is at most one, conditional to the existence of a modular
obvious weight. The result is the following, and we refer the reader to the bulk of the paper of
any undefined notion:

Theorem 1.2.1 (Theorem [6.3.1). Let F/F* be a CM field. Assume that F* # Q, that all
places of F* above p are unramified over Q, and totally split in F. Let T : Gp+ — G(F) be a
continuous representation which is automorphic in the sense of [LLHLMal Definition 5.5.1], with
set of modular weights W (7). Let T, be the L-homomorphism attached to the collection {?|GF+ Folp

and write W2, (7) and W2,(Tp) for the set of extremal weights and for the set of weights of defect
at most one, respectively, for 7,. Asssume further that:
e 7(Gr,)) € GL,(F) is adequate; and
o 7, is 6(n — 1)-generic.
Then the following are equivalent:
(1) Wy(Tp) "W (T) # 0; and
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(2) W2,(7p) C W(F).

Compared to [LLHLMa, Theorem 5.5.5], Theorem assumes that F'T is unramified above
p, but it gives the modularity of defect one weights. (For GLg3, this is sufficient to prove the
generic Serre weight conjecture.)
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1.4. Notation. For a field K, we denote by K a fixed separable closure of K and let G def

Gal(K/K). If K is defined as a subfield of an algebraically closed field, then we set K to be this
field.

If K is a nonarchimedean local field, we let Iy C G denote t7he inertial subgroup and Wx C
Gk denote the Weil group. We fix a prime p € Z~¢. Let E C Q, be a subfield which is finite-
dimensional over Q,. We write O to denote its ring of integers, fix an uniformizer @ € O and let
F denote the residue field of E. We will assume throughout that E is sufficiently large.

1.4.1. Reductive groups. Let G denote a split connected reductive group (over some ring) together
with a Borel B, a maximal split torus 7' C B, and Z C T the center of G. Let d = dim G —dim B.
When G is a product of copies of GL,, we will take B to be upper triangular Borel and T the
diagonal torus. Let ®T C @ (resp. ®"'F C ®V) denote the subset of positive roots (resp. positive
coroots) in the set of roots (resp. coroots) for (G, B,T'). We use the notation a > 0 (resp. o < 0) for
a positive (resp. negative) root o € ®. Let A (resp. AY) be the set of simple roots (resp. coroots).
Let X*(T) be the group of characters of T, and set X°(T) to be the subgroup consisting of
characters A € X*(T) such that (\,a") = 0 for all ¥ € AV. Let W(G) denote the Weyl group
of (G,T). Let wp denote the longest element of W(G). We sometimes write W for W(G) when
there is no chance for confusion. Let W, (resp. W) denote the affine Weyl group and extended
affine Weyl group

Wo,=ArxW(G) and W =X*(T)x W(G)

for G, respectively. We use t, € W to denote the image of v € X*(T).

The Weyl groups W(G), W, and W, act naturally on X*(7T'). If A is any ring, then the above
Weyl groups act naturally on X*(T') ®7 A by extension of scalars. Let M be a free Z-module of
finite rank (e.g. M = X*(T)). The duality pairing between M and its Z-linear dual M* will be
denoted by ( , ). If A is any ring, the pairing ( , ) extends by A-linearity to a pairing between
M ®7 A and M* ®z A, and by an abuse of notation it will be denoted with the same symbol ( , ).

We write GV = GvZ for the split connected reductive group over Z determined by the root

datum (X.(T), X*(T),®",®). This defines a maximal split torus 7V C GV such that we have
canonical identifications X*(TV) & X,(T) and X, (T"V) = X*(T).
Let V & X*(T) ®z R. For (a,k) € ® x Z, we have the root hyperplane H, i Lz eV

(\,aV) = k}. An alcove is a connected component of V' \ (U(am) H,,), and we denote by A the
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set of alcoves. We say that an alcove A is restricted if 0 < (A\,a") < 1foralla € A and A € A. We
let A denote the (dominant) base alcove, i.e. the set of A € X*(T) ®zR such that 0 < (\,a") < 1
for all & € ®*. Recall that W acts transitively on the set of alcoves, and W = W, x Q where Q
is the stabilizer of Ag. We define

Wt {w € W | W(Ap) is dominant} and Wi o {@w € W+ | @(Ay) is restricted}.

We fix an element n € X*(T) such that (n,«a¥) = 1 for all positive simple roots o and let w; be
’wot_n S Wfr

When G = GL,,, we fix an isomorphism X*(7") = Z" in the standard way, where the standard

i-th basis element ¢; . (0,...,1,...,0) (with the 1 in the i-th position) of the right-hand side

corresponds to extracting the i-th diagonal entry of a diagonal matrix. In particular, we can write
any root 3 € ® as B = ¢; — ¢; for uniquely chosen 1 <i,j <n, i # j.

Given a finite set 7 and an isomorphism G' = GL;? we use superscripts in the notations above,
e.g. @7 c 7 AT X*(T)7, W7, etc., where now &+, &, A, X*(T), W, etc. are relative to GL,,.
In order not to overload notations, we do not use underlined notations for the elements of &7,
X*(T)7, WY, etc., so that for instance a root a € ®7 is in fact a collection of roots ()7
where each al) is a root of GL,. Finally, we take n € X *(T)Y to correspond to the element
(n—1,n—2,...,0);es € (Z")7 in the identification above. When an element j € J is fixed, we
will abuse notation and will use the same symbol 7 to denote the element which corresponds to
the tuple (n —1,...,1,0) at j.

We let F;r be a finite unramified étale Q,-algebra so that FI;" is isomorphic to a product [ | S, Ff
over a finite set S, where, for each v € S), F," is a finite unramified extension of Q,. For each
v € Sp let Opy be the ring of integers of Fyf, k, the residue field and let O, (resp. kp) be the
product [],cq Opt (resp. [T g, kv)- (This will be used in global applications, where S, will be
a finite set of places dividing p of a number field F''.)

If G is a split connected reductive group over F,, with Borel B and maximal torus 7', we let
Go &t Resy, /r, Gk, and similarly define By, Tp. We will always assume that F contains the
image of any ring homomorphism k, — Fp so that we can and do fix an isomorphism (GO XSpec Fp

Spec IF) 5 (G Xspec F, Spec F)7 where J, denotes the set of ring homomorphisms k, — F.
For notational convenience, we will write G dof Go Xspec F, Spec F, and similarly for B, T.
The notations W, E, EJF, ﬁi, etc. as well as the identifications W = Wr, E 5 ij,
w3 (W), W, 5 (W;F)%, ete. should be clear.

1.4.2. Galois theory. Let K be a finite extension of Q,, with residue field k of degree f over F,,.
We assume that K/Q), is unramified and write W (k) for the ring of Witt vectors, which is also
the ring of integers of K. The arithmetic Frobenius automorphism on W (k), acting as raising
to p-th power on the residue field will be denoted by ¢. We fix an embedding o¢ of K into
E (equivalently an embedding k into F) and define ; = 0 o ¢7. This gives an identification
between J = Hom(k,F) and Z/ fZ.

We normalize Artin’s reciprocity map Artg : K* — Wf{b so that uniformizers are sent to

geometric Frobenius elements. We fix once and for all a sequence (pm)men € e satisfying

pfn+1 :pm’ po d:Cf —p - K and ].et KOO be U K(pm)
meN
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Given an element 7 < (—p)ﬁ € K we have a character wg : Ixx — W (k)™ defined by the
condition g(m1) = wgi(g)m. Using our choice of embedding o this gives a fundamental character
of niveau f

wy = opowg : Ig = O.

Let p: Gg — GL,(F) be a p-adic, de Rham Galois representation. For o : K — FE, we define
HT,(p) to be the multiset of o-labeled Hodge-Tate weights of p, i.e. the set of integers i such
that dimpg (p ®e,x Cp(—i))GK # 0 (with the usual notation for Tate twists). In particular, the
cyclotomic character € has Hodge—Tate weights 1 for all embedding ¢ : K — E. For y = (u(j)) j €
X*(T) we say that p has Hodge—-Tate weighs p if for all j € J

HTo'j (P) = {ng)a ng)v RS /‘L'S‘L])}

The inertial type of p is the isomorphism class of WD(p)|r,, where WD(p) is the Weil-Deligne
representation attached to p as in [CDT99], Appendix B.1 (in particular, p — WD(p) is covariant).
An inertial type is a morphism 7 : I — GL,,(F) with open kernel and which extends to the Weil
group Wg of Gx. We say that p has type (u, 7) if p has Hodge-Tate weights 1 and inertial type
given by (the isomorphism class of) 7.

1.4.3. Miscellaneous. Finally, dp denotes the Kronecker delta function on the condition P. We
also use J for the defect function in This shall cause no confusion.

2. PRELIMINARIES

2.1. Affine Weyl groups, tame inertial types, Serre weights.

2.1.1. Affine Weyl group. We collect here the necessary background to give a classification of
colength one elements in the admissible set (Proposition [2.1.2)).

Recall from §1.4.1 that G is a split reductive group with split maximal torus 7. We write W
def

for the Weyl group associated to (G,T) and V = X*(T) @ R 2 X, (TV) ® R for the apartment of

Tr- def

(G,T) on which W = X*(T') x W acts. We write Cy for the dominant Weyl chamber in V.
Recall that A denotes the set of alcoves of X*(T') ® R and that Ap € A denotes the dominant
base alcove. We let 1 denote the upper arrow ordering on alcoves as defined in [Jan03), §11.6.5]
which induces the ordering T on W, via the bijection W, = A given by w + w(Ag). The dominant
base alcove Ay defines a set of simple reflections in W, and thus a Coxeter length function on W,
denoted ¢(—) and a Bruhat order on W, denoted by <. Given A\ € X*(T') we consider the set of

A-admissible elements of W:

(1) Adm(\) & {{D ceW | w < ty(n for some w € W} .

If Q C W is the stabilizer of the base alcove, then W= W, x Q and so W inherits a Bruhat
order in the standard way: For wi,ws € W, and 6 € Q, wid < wyd if and only if wy < wo
, and elements in different right WW,-cosets are incomparable. We extend ¢(—) to W by letting
0(w6) X 0(w) for any @ € Wy, § € .

Let (WV, <) be the following partially ordered group: WYV is identified with W as a group,
and ¢(—) and < are defined with respect to the antidominant base alcove. If w = t,w € W

with w € W and v € X*(T) we define w* © w1, e WY, (The assignement w +— w* defines a
bijection which preserves length and Bruhat order, see [LLHL19, Lemma 2.1.3]; we also denote
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the inverse bijection by the same symbol w — w*.) Given A € X*(T) we define the set Adm" ()\)
by replacing W by WV in the right hand side of (TJ).
We also recall that, given m € Z and « € ®, the m-th a-strip is the subset of V' defined by

{xeV|m<{z,a’)<m+1}.
Finally, we say that w € W is regular if it is in the sense of [LLHLMDb| Definition 2.1.3].

Proposition 2.1.2. Suppose w € Adm(n) such that {(w) = £(t,) — 1. Then one of the following
holds:

(1) @ = wtysqw ™ where w € W and a > 0 a positive root such that w(a) > 0, and there are
no decompositions o = B1 + P2 with B; > 0 such that w(F;) > 0;

(2) W = wty_oSqw ™ wherew € W, a € DT\A such that w(a) < 0, and for any decomposition
a = [y + Ba with ; > 0, we have w(p;) < 0.

We say that a colength one element w € Adm(n) is of the first form (resp. of the second form)
is it is as in item (resp. as in item ) of Proposition Recalling [LLHLMD, Definition
2.1.3] we note that a colength one element w € Adm(n) is irregular exactly when it is of the first
form and moreover the root o appearing in is a simple root.

Remark 2.1.3. f a = ¢; —g; € @7\ A then

(1) the condition in item means that w preserves the order of ¢ and j, and w maps no
element k € (i,7) into an element in (w(i), w(4));

(2) the condition in item means that w reverses the order of ¢ and j, and maps any
k € (i,j) to an element in (w(j),w(i)).

Proof. We assume w(Ap) is in chamber w(Cp). Then there is a gallery from Ay to w(Ap) in
the w-positive direction (cf. [HC02, §2, Definition 5.2]), hence [HHI17, Corollary 4.4] shows that

w < wtnw_l. Thus @ & w1@ is dominant so that wi is a reduced expression for w by [LLHLMal,
Lemma 2.2.1] (cf. Definition 2.1.2 in loc. cit. for the notion of reduced expression). We conclude
that @ < t,w™! and £(u) = {(t,w™') — 1. Since @ and t,w™" are both dominant and their lengths
differ by 1 they must differ by an affine reflection in direction « for some positive root a > 0 by
[GHS18 Corollary A.1.2]. We claim that the a-strip containing u is the lower neighbor of the
a-strip containing tnw_l.

Suppose the contrary. Then for each vertex v of Ay, the line segment joining (v) and t,w=1(v)
lies in the dominant Weyl chamber and contains t,u(v). This shows that t,u(Ap) is dominant
and u 1 t,u T tnw_l. [Wan87, Theorem 4.3] implies that u < t,u < tnw_1 which contradicts
((u) = ((tyw™t) — 1.

There are two cases:

e Uu(Ap) and t,w~1(Ap) share the vertex n. In this case © = t,s,w~'. The conditions
u < tywt and £(w) = £(t,w™) — 1 are equivalent to £(sqw ™) = £(w™!) + 1, equivalently
{(wsqa) = £(w) 4 1. But this condition translates exactly to the condition in item (T]).

e u(Ap) has 7 — a as a vertex. In this case we must have u = tn_asaw_l. To see the
condition on w, we note that for each positive root [ the difference between the [-heights

-1 1
of t;)_asqw™" and t,w™" is

<771 BV> + 5w(6)>0 —-1- (<77»5v> - <a7ﬂv> + 5wsa(ﬁ)>0 - 1) = <a7/8\/> + 5w(ﬁ)>0 - 5wsa(,3)>0'
Thus the colength 1 condition becomes

Z _5w(ﬁ)>0 + 5wsa(,8)>0 = 2<777 Oé> —2
B#a,>0
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which gives the condition in item .
This completes the proof. O

Lemma 2.1.4. Let @ € Adm™8(n) satisfy {(wW) > L(t,) — 1, and let W, "wot, @, be the unique
up to X°(T) factorization of W with wy,ws € Wf“ and v € X (T) (see [LLHLMD], Proposition
2.1.5]). Suppose that w = 352_1351 with T1,Ts € W"', s € W, and that z1 T 7 fﬁglig with
ze Wﬁ Then s = wy and either T = &1 € W1 X(T) or & = w;, ‘T2 € w;, " We X (T). If moreover
0(@) = L(t,) we further have T = Ty = W, ‘T2 and v € X°(T).

Proof. Let w,Z1,%2,s, and T be as above. Since z; T = 1 {17}:19?2, we have that 77 < 7 and
T9 < wpx by [LLHL19, Theorem 4.1.1, Proposition 4.1.2] as w,@ € W. Then we have
1> (ty) — (@)

> (((0F) M woT) — [U(T5 1) + £(s) + £(70)]

= [((wp) — £(@2)] + [((wo) — £(s)] + [£(Z) — £(21)]
where the last equality follows from [LLHLI9, Lemma 4.1.9]. Since each term in the last expression
is nonnegative, we immediately see that & = &1 or w; 'T2. (If moreover ¢(w) = £(t,) we further
have s=wgand 771 =7 = 117}7152.) It suffices to show that 1 € w1 X°(T) in the former case and
To € W XY(T) in the latter case.

We next show that s = wg. Supposing otherwise, 71 =7 = @;1552 and s = wps, with o € AT,
By Proposition and the paragraph following it, we conclude that w is not regular which is
a contradiction.

Now suppose that = 2 so that we have 25 Lwed = Wy Lwot, 1. The uniqueness in [LLHLMD)
Proposition 2.1.5] guarantees that 71 € w; X°(T) (and, if moreover £(t,) = £(w), that v € X(T)).
Similarly, if z = @;152, then 7o € Wl+ and uniqueness again guarantees that Zo € wo X°(T). O

For the following lemma, which explicitly describes the unique up to X°(7T")-decomposition of
colength one regular admissible elements mentioned in Lemma we specialize to the case
G = GL,. Recall that in this case we have the elements ¢; € X*(T) for i = 1,...,n and the

fundamental weights w, .. & 22:1 g; for 1 <i <n —1. We have the inclusion
(2) W%Wf, w — by, W
where t,,, is the dominant weight defined by
def
@ wE Y
BEA, w™L(B)<0
(see [Her09, equation (5.1)]). Given w € W we write w for the image of w via the inclusion (2)).

Lemma 2.1.5. Let w € Adm™®(n) satisfy {(w) = £(t,) — 1. Then in the decomposition w =

—_—~—

(W) ~twot, w1 of Lemmal2.1.4, we can take w1 = (sqw™1), Wy = ath—l and v = ny—1 — g -1 —

ea, where € equals 1 (resp. 0) if we are in case (resp. case ) of Proposition .

Proof. Letting @ = wt,_caSow ™", where e € {0, 1} equals 1 (resp. 0) if we are in case (2) (resp. (1))
of Proposition we have

—_— —_~—

W = (Wpw=1) twot, sqwt
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by and the definition of wy. It thus suffices to prove that v is dominant, i.e. using equation
[B), that

Su(8)>0 — Owsa(8)>0 — E{a, BY) >0

for all 3 € A. This is an elementary casewise check, based on the value of (o, 8Y) € {—1,0,1}
and Remark and which we leave to the reader. ]

2.2. Local models, affine charts and monodromy conditions. For any Noetherian O-
algebra R define

def

LG(R) = {A € GL,(R(v +p)) | Aisupper triangular modulo v};

LT M(R) & {A € Mat,(RJv + p]) | A is upper triangular modulo v}.
2.2.1. Affine charts. Let Z = zt,, € W". Given an integer h > 0 define the subfunctor U(z)detsh C
LG defined on Noetherian O-algebras R as follows: U(2)%4<"(R) is the set of matrices A € LG(R)
such that for all 1 < i,k < n the following holds:

o (v+p)t Ay € vOi>k R

o deg ((v+p)"Air) < h+ vk + ik — Gicai;

o (v +p)hAz(k)k is a monic polynomial; and

o det(A) = det(z)(v + p)IVI.

where we have written v = (vy)1<¢<, € X*(T') and |v| & S vy Ve
We now introduce the subfunctors and T"V-torsors which are relevant for our analysis of defor-
mation rings. In the above setting, define the following subfunctors of 2/ (Z)4¢=0:

o UOn=11(Z) C 14(2)94=0 as the subfunctor whose R-valued points are those A € U (Z)dH<0
such that both A and (v+p)* 1A~ are in LT M(R); note that UL"~1(2) is representable
by an affine scheme over O;

o U(Z,<n) C UL 1(Z) as the closed, O-flat and reduced subscheme of U%"~1(Z) whose
R-valued points consist of A € U%"~1(2)(R) with elementary divisors bounded by (v-+p)”
(i.e. each k by k minor of A is divisible by (v + p) ot ); and

o U(z,<n) Ly (z, <n) as the subscheme of LG whose R-valued points are of the form DA
where D € TV(R) and A € U(z, <n)(R); note that U(Z, <n) is endowed with a Tj-action

induced by left multiplication of matrices, and we have [TVJ \(7(5, §77)] > U(z,<n).
The entries of A € U"~1(2)(R) will typically be written in the form

Ve —0i<2(k)
Agp = v7>* ( Z ik,e (V +P)Z>

=0

so that U= (2) is an affine O-scheme whose global functions is the quotient of the polynomial
O-algebra in the variables a;; ¢ (for the appropriate range of ¢ determined by z and (i, k)) by
the ideal determined by the condition det(A) = det(z)(v + p)¥l. Then U(Z,<n) is a closed
subscheme of U[0"~1(Z), given by the p-saturation of the condition that each k by k minor is

divisible by (v +p) 2 . In general, these schemes can be somewhat hard to describe, however

in Proposition and Proposition we will give an explicit presentations for them when z
has colength one.
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2.2.2. Algebraic monodromy condition. Let a € O™. We define an operator V, on LG by V,(A) def

(v4(A) — [Diag(a), A]), and a closed subfunctor LGV> C LG by

1 +
kK M(R)}'

(We write [M, N| for the usual Lie bracket on LG, defined by [M,N] = MN — NM.)
We define the following closed subschemes of U(z, <n):

o UM(Z,<n,Va) & U(z,<n) N LGVa; and
e U(Z,<n,Va) CU™(z,<n,Va) as the p-flat closure of U™ (Z, <n, Va)p inside U(z, <n).
Thus U(Z, <n, Va) is the closed subscheme Uz, <n) whose ring of global functions is the quotient

of O(U(z,<n)) by the p-saturation of the ideal Iy, obtained by imposing that the universal
matrix

LGV2(R) & {A € LG(R) | Va(A)A ! €

A™Y € U(z,<n) (O(U(Z, <n))
satisfies

univ univ —1 1 + e
(Va(A ))(A ) € (U+p)L M((’)(U(z, Sn)),
cf. [LLHLMD, Definition 7.1.8] for a list of generators of this ideal. Proposition and Propo-
sition give results towards an explicit presentation for the affine scheme U(Z, <n, V,) when
Z has colength at most one. N N N

We define analogously the closed subschemes U(zZ,<7,Va) C U™ (z,<n,Va) C U(z,<n),
replacing U (z, <n) by U (z,<n) in the above items. Note that we also have

(4) U(2,<n,Va) = TVU(Z, <1, Va),
compatible with U(Z, <) & TVU(Z, <n).

2.2.3. Monodromy condition and Galois representations. We follow the notation and terminology
on tame inertial types and their lowest alcove presentations of [LLHLMD, §2.4]. In particular
given (s,p) = (s9), u0))e7 € W7 x (X*(T) N Cy)Y, [LLHLMD, Example 2.4.1, equations (5.2),
(5.1)] produces a tame inertial type 7(s,u + 1) and n-tuples a’0) € Z" for 0 < j' < fr —1
(where 7 is the order of the element s s(1) ... s(F=2s(F=1) ¢ W), If 1 is 1-deep in C,, for each
0 <j" < fr—1wedefine s;, , to be the element of W such that (s;nj/)_l(a’ (")) € Z™ is dominant,
and let

(5) al) = (i)~ (@) /(1 - pT)
for 0 <j < f.

Recall from [LLHLMD, §7.2] the p-adic formal algebraic stack X<"" over SpfO. It is p-flat,
equidimensional of dimension (1+ [K : Q] (%)) and moreover if p : Gx — GL,(F) is a continuous

Galois representation, then Rﬁgn"r is a versal ring for X7 at its point corresponding to 5 (see
[EC, §4.8]). Let 2 = (30)) ;e € WYY,

Let N > n+ 1 and assume that p is N-deep in alcove C,. From [LLHLMb, Theorem 7.2.3,
Theorem 7.3.2] we have an open substack X=<"7(Z) < X="7 an O-flat closed p-adic formal
subscheme U (Z, <n, V7o) of U(Z,<n)"» (where U(Z, <n) & [Ticr U(z19), <n) and the superscript
Ap denotes the p-adic completion) and a formally smooth morphism
(6) U(Z, <0, Viroo) = X=17(2)

of relative dimension n#.7.
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Assume further that N > 2n — 5 and p is N-deep in alcove Cy. Then [LLHLMDb| Proposition
7.1.10] shows that the formal scheme U(Z, <n, V. ) is the p-flat closure of a natural deformation
of [Tjes (7(’50’), <n, V4 ) in the following sense: Letting I(V]:(j) be the ideal cutting out (7(20'), <

7, Vai) in ﬁ(g(j), <n), 17(5, <1, Vr0) is cut out by the p-saturation of an ideal Iy, . which

I(j) N—2n+5

is obtained from Zje 715, by adding an element divisible by p to each element of
all

19 )

expressed (abusively) in the following way: Given a p-adically complete Noetherian O-algebra R,
if A e U(Z, <n)"»(R) satisfies the equations in Iy, _ then
(7) (Vaw (AM) (0 +p)" T AD) T € (v +p)" M (R[0]) + pV M, (R[V]).

Finally let us recall the characterization of the Galois representations that contribute to X' <7 (2):
If p € X=17(2)(F), then its étale ¢ module Mz = Vi (pla, ), Ef. [LLHLMD! §5.5], admits a ba-
sis with respect to which the matrix of Frobenius belongs to U(Z, <n)(F) [[;c s sj_lv/‘f“’j. We
say that p has shape z with respect to 7 if additionally the matrix of Frobenius belongs to
[Lier Iz(])Isj*lv“ﬁ”j. (Here Z denotes the Iwahori subgroup of GL,,(F((v))) corresponding to
the Borel of upper triangular matrices.)

It follows from [LLHLMBD| Proposition 5.4.7] that any p € X<"7(F) has a unique shape in
Adm(n), which we denote by w(p, 7)*.

its natural set of generators (in particular, Iy C >_( This property can be

3. FINITE HEIGHT CONDITIONS

In this section, we describe U(w, <n) when w* € Adm(n) has colength one. Throughout this
subsection 2 denotes a Noetherian O-flat O-algebra, and we use the notation ug : G, — woUwyo
for the embedding to the S-entry for each 8 € ®~, where U is the subgroup of upper triangular
unipotent matrices in GL;,. Moreover, given A € Mat,(R) and = ¢; —¢; € ®, we write Ag and
Agy for A;; and a0 respectively.

3.1. Finite height conditions: the first form. Let w* € Adm(n) be a colength one shape of
the first form. Thus, by Proposition and the definition of w — w*, we have @ = wsat,w ™1,

where w € W satisfies w(a) > 0 and w(k) do not belong to the interval (w(ip),w(jo)) for all

. . . . def def
io < k < jo if we set a = a5, € @\ A. For notational convenience we set s = s, and w' = ws.

With an eye towards the monodromy conditions, we introduce the following;:
Definition 3.1.1. We say that a negative root § € ®~ is bad (with respect to w) if either one of
the following holds:
e (3 shares either the row or the column of «;
® du(B)<0 7 Ouw'(8)<0-
Proposition 3.1.2. Let A € U(w, <n)(R). '
Then Ay(joyw(io) = (WL Aw)joj0 = c(v + p)" 7 for some ¢ € R and
(8) s u_q(—c)- (wAw) = (v +p)"-V

where V' is a lower triangular unipotent matriz whose entries are in R[v].
Moreover, for each B € ®~ the entry Vi can be written as v™# - fg(v) for a polynomial fg(v) €
R[v] of the form 3", cgr(v + p)* where

(1) if B is bad then kg = dy(3)<0 = 0 and deg(fz) < [(n, BY)| +1;
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(2) if B shares the row or the column of a but is not bad then kg = dy(3)<0 and deg(fg) <

[(n, BY)|;
(8) if B shares the row of —a then kg = d,y(g)<o and deg(fs) < |(n, V)

(4) if B shares the column of —a with B # —a then kg = dy(g)<o and deg(fg) < [(n,8Y)| —

Ow(—a)<w(B)<05
(5) for all other roots B € ®~, kg = d,()<o and deg(fs) < |(n, V)|.

Proof. 1t is easy to see that (w™!Aw);yj, is a polynomial of degree less than n—jo+ 1. Let ¢ € R
be the coefficient of v~ in (w™'Aw);yj,, and set C &of su_q(—c)(w ' Aw) as in (§). One can
readily observe the following degree bounds:

e deg(Cy) <mn—lforalll<Il<n;

o for = ayy, € ® with [,m & {io, jo}, Cs = v6W<ﬁ><0f5(v) with deg(fg) <n—m —1;

o for B = ajym € ®, Cg = v*®<0 fg(v) with deg(f5) <n—m —1+ dur (8)<0<w(B)}

o for B = ajom €@, C3 = 06W’(5)<0f/3(v) with deg(fg) <n—m —1;

o for f = ay, € ® with [ # jo, Cs = v5“f<5)<0f5(v) with deg(fg) < n — o — du(gy<o —

Ouw(B)>w(-a);
o for =y, €, Cg = v‘sw(ﬁ)@fﬁ(v) with deg(fg) < n — jo — duw(B)y>w(a) — dw(B)<0-
We will repeatedly use the finite height conditions in the following way:
(1) Assume that the right-bottom block of C' of size k x k is of the following form

Cont1-k)(nt1-k) - 0
: o |
Cn(n+17k) e Cnn

and that (v + p)" | Cpy, if Oy, is sitting on the (k x k)-block above;
(2) For [ and m with 1 <1,m < n—k, assume that the (k+1) x (k4 1)-submatrix determined

by C,,, and the k x k-block above is also lower-triangular;
k(k+1)

(3) By applying the finite height condition (v +p)~ 2 | ((k+ 1) x (k + 1)-minors) to the
(k+1) x (k + 1)-submatrix above, we conclude that (v + p)"~% | Cy,,.

We first show that the finite height condition on C' implies that the right-bottom (n —ig+1) X
(n—1ig+1)-block of C' is as described in the statements. This can be proved by induction together
with the degree bounds as follows. It is clear that Cg = 0 for 8 = oy, if | < n, by the degree
bounds. Now by inductively using items , , above we conclude that the right-bottom
(n—1ip+ 1) x (n —ip + 1)-block of C is as described in the statements. Moreover, it is also
immediate that Cj,, = 0if 1 <1< m and jo < m < n and that (v+p)" " | Cpy, if ip <1 < n and
1 <m <[, by inductively using items , 12), above.

We now check that Cg = 0 if § = ay, with 1 <1 < 45 and I < m < jg. Note that we
can not, in general, conclude Cjj, = 0 from the fact (v + p)"~7°|Cy;, induced from items (),
, above for 1 < [ < ig, since the degree bound of the polynomial Cj;, is one higher than
usual if w(ip) < w(l) < w(jo). Let f = ayj, be such a root, and assume that the right-bottom
(n—1) x (n—1)-block of C'is as described in the statements. By items (T)), (2)), and the degree

bound, we may let Cs = z(v+p)" 7 for z € R. Consider C’ o ug(—z)C. Then we have Cjy = 0,

and, moreover, the finite height condition together with the degree bounds implies that C], =0
for all ig < m < jg. In particular, we have

Cli = Ciip — 1C—_ = 0,
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By looking at the constant part of C’l’io, which is the same as the constant part of —zC_, as v | Cy;,,
we have p|<’7’_o‘v>|_1$c_a =0 in R where we let p|<’7’_°‘v>|_lc_(l be the constant part of C_,. On
the other hand, by Lemmam C_q 18 a unit in R[%], so that we conclude that z = 0. (Note that
to prove Lemma [3.1.6| we only used the fact that the right-bottom (n —ig+1) x (n — 4o+ 1)-block
of C' is as described in the statements, which is already proved in the previous paragraph.) Now
by repeatedly using items , , above together with the degree bounds, we conclude that
Cim = 0if I < m < jo. Repeating this argument, we conclude that Cg = 0 if 8 = oy, with
1 <Il<igandl<m < jyand that (v+p)"_l]Clmif1§m§l§n.

Finally, we point out that we have (w™tAw)j.;, = c(v + p)" 7, which can be readily seen
during the induction steps due to the degree bound. This completes the proof. ]

For the rest of this subsection, we observe some necessary properties of kg € {0,1}, defined
in Proposition [3.1.2] as well as some identities of the coefficients of V' from the finite height
conditions. We first fix some notation:

e For 3 € &7, we write Dg for the set of the decompositions (1, 32) of § into two negative
roots with /31 sharing the column of § (and S sharing the row of f3).
e For a bad root 3 € @, we write g for the set {(f1,02) € Dg | kg = kg, + kg, }-

The following are immediate consequences of Proposition which will be frequently used:

e if 3 shares the row of o then we have kg = r(g);
e if 3 is a bad root sharing the column of a then deg(v™"*® V) < [(n,5(8)Y)] — 1 and

Ko(p) = 1+ kg
o if (/BlaﬂZ) S :D—Oé then Hﬁl + 552 = ]_’
[ K/—Oé = 0

Lemma 3.1.3. Let B = ay, € ®. Then if | < jo or m > ig then kg is subadditive, i.e.,
kg < Kp, + kg, for all (B, B2) € Dg.
Moreover, if B has a decomposition (31, B2) € D5 with kg > kg, + kg, then
o | > jg and m < ip;
e kg =1 and kg, = K, = 0;
e [31 shares the row of —« such that By is bad and either s(f1) is bad or 1 = —a.

Proof. One can readily observe that

o if 8 = ayy, with [ & {io, jo} then kg = d,(8)<0;

o if 3 = aiym then kg = dy(g)<0;

o if 3= ajym then kg = 5w’(ﬁ)<0~
The first part follows from combining these three observations together with the fact d,,3)<o <
Ou(B1)<0 T Ow(ss)<o if (B1, B2) € Dp, case by case.

For the second part, if § has a decomposition (51, f2) € D with kg > kg, + kg, then it is easy

to see that (1 shares the row of —«, and so if 51 # —a then we have w/(31) > 0 and w(f1) < 0
and so s(f1) is bad. B2 is also bad, as w'(f2) < 0. O

Lemma 3.1.4. Let § € & be a bad root sharing the row of . Then the map (B1,52) —
(B1,5(B2)) gives rise to a bijection between the following sets:

o the set Ag;
o the set of elements (81, B2) of g(p) with B2 # —a.

Moreover, By € ®~ is bad if (f1,2) € Up.
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Proof. For (f1,2) € D it is easy to see that kg = kg, + Kg,, if and only if kg, = 0 = kg,, if
and only if w(81) > 0, w(B2) > 0, and w'(B2) < 0, if and only if kg, = 0 = Kyg,), if and only if
Ks(3) = Kp, + Kg(gy)- Moreover, if (f1, B2) € g then w(f2) > 0 and w'(B2) < 0, and so f is bad.
This completes the proof. O

Lemma 3.1.5. Let 3 € &~ be a root sharing the column of . If 5 is bad then the map (B1, f2) —
(s(B1), B2) gives rise to a bijection between the following sets:

o the set Ag;
o the set of elements (31, B2) of () such that s(B1) is bad.

Moreover, if (3 is not bad and (81, 32) € RAy(g) then s(B1) is not bad.
Proof. Assume f3 is bad. Then we have r3 = 0 and ryg) = 1. Also, for (B1,B2) € Dp it is easy to
see that ryg) = kg, + kg, and s(f1) is bad, if and only if kg, =1, ry,) = 0, and kg, = 0, if and
only if kg = Ky(g,) + ip,. This completes the proof of the first part.

For the second part, it is clear if kg = 0. If kg = 1 then k4 = 1 as § is not bad, and so we

have either kg, = 1 or kg, = 1. If kg, = 1 then kg, = 0 and so s(f;) is not bad. If kg, = 0 then
kg, = 1 and kgp,) = 1, and so s(f1) is not bad. This completes the proof. O

For each 8 € 7, let cg be the coefficient of v"# in V3. For each 8 = «y,, € ® with either
I < jo or ig < m, let cj be the coefficient of v 1 (resp. v"8) in Vi it 1 > jo and m = ig (resp.
otherwise), where V"’ Lyt
Lemma 3.1.6. If 5 is a bad root sharing the row of « then
\
cs plime)l = ¢ Cs()-

Vv
Moreover, we have —c - c_g = plme I,

Proof. This is immediate from the elementary operations in together with the finite height

conditions. For instance, we have Cj,;, = v(v + p)"~~! —cC_, = (v + p)"~ where C is

defined in the proof of Proposition Now, extracting the constant term of the identity we
\%

get —C C_q = p|<77’o‘ >| D

Lemma 3.1.7. Let § € &~ be a bad root.
(1) If B € ®~ is sharing the row of o then we have

Cs(8) T Z Cs(82)Chy T+ C—alh + Cyrp) = 0.
(B1,82)€3

(2) If B € &~ is sharing the column of a then we have

cpcly + Z C8sC4 () T Cy() = 0-
(B1,B2)€s
Proof. (1) follows immediately from Lemma and Lemma by extracting the constant
term in the equation (V- V') ) = 0.

It is immediate that if 5/ € ®~ with 5’ # —a shares the column of —« and s(f’) is not bad,
then the coefficient of v*# ! in Vi3 vanishes, as rg is subadditive if s(3’) is not bad. This result
together with Lemma and Lemma implies (2), by extracting the constant term in the
equation (V- V")) = 0. O



COLENGTH ONE DEFORMATION RINGS 14

3.2. Finite height conditions: the second form. Let w* € Adm(n) be a colength one shape
of the second form. Write W = wsqt,_qw ™ where w € W satisfies w(a) < 0 and w(jo) < w(k) <

w(ip) for all iy < k < jo if we set @ = a5, € @7\ A. For notational convenience we set w’ 4 wsg
def . ~ / —1
and s = s,, so that we may write w = w't,_,sw'™".
With an eye towards applying the monodromy conditions, we introduce the following:
Definition 3.2.1. We say that a negative root 5 € ®~ is bad (with respect to w) if
e (3 shares either the row or the column of «;
e (3 satisfies 0,,(8)<0 = Ouwr(8)<0-
Proposition 3.2.2. Let A € U(w, <n)(R). '
Then Ay (igyw (o) = (W' 1AW )igiy = c(v 4 p)" ™7 for some ¢ € R and
(9) o (—c) - v%0 - (W' Aw') - s = (v +p)"- V'
where V' is a lower triangular matriz whose entries are in R[v].
oreover, V. = v~ %o - is unipotent, and for eac € &~ the entry can be written as
M vV ¥ v . V! is unipotent, and h B € ® the entry V) be writt
0" fa(v) for a polynomial fz(v) € R[v] of the form Y, csr(v + p)k where
(1) if B is bad then Kjy = du(g)<o and deg(fs) < [(n, BY)| +1;
(2) if B shares the row or the column of o but is not bad then K:B =140y (8)<0 = Ouw(g)<o =1

and deg(fg) < |(n, BY)1;
(3) if B shares the column of —a then Kjy = dy(zy<o and deg(fg) < [(n, BY)] = dw(g)>w(a) —

Ow(B)<05
(4) for all other roots B € ®~, Kz = dur(g)<o and deg(fg) < [{n, 8Y)].

Proof. Tt is easy to see that (w'~!Aw’);,;, is a polynomial of degree less than n—jo+1. Let ¢ € R
be the coefficient of v in (w' = Aw' )i, and set C = uq(—c)vo (w1 Aw')s as in (©). One
can readily observe the following degree bound:

deg(Cy) < n—1ifl # jo, and deg(Cjyj,) <n —1+1 and Cj,j, € vR[v];

for 8 = ayp, € ® with [ # ig and m & {ip, jo}, Cp = véw’(5)<0f5(v) with deg(fg) < n—m—1;
for ,3 = Oy, € (I), Cﬁ = v5w(ﬁ><0f5(v) with deg(fﬂ) <n-— ’io —1- 5w(6)>w’(o¢) - 5w(6)<0;
for 8 = oyj, € ® with 8 # o, Cg = v* <0 f5(v) with deg(f5) < n—Jjo+1— 0y (s)y>w(—a) —
duw(8)<05

for B = aigm € ®, Cg = v°w(M<0 f(v) with deg(fz) < n—m if 8 # a, and C, = vfs(v)
with deg(fz) < n — jo.

Now, the rest of the proof is similar to Proposition and we leave the details for the reader. [

For the rest of this subsection, we observe some necessary properties of m% € {0, 1}, defined in
Proposition as well as some identities of the coefficients of V' (and so of V' as well) from
the finite height conditions. We first fix some notation:

e For § € &7, we write Dg for the set of the decompositions (f1, 32) of § into two negative
roots with /31 sharing the column of 5 (and f2 sharing the row of ).

e For a bad root € &, we write g for the set {(51,52) € Dg | HIB = K, + K, |-

e To describe the bottom degrees of each entry of V, we set xg &t H% —1if § € &~ shares

the row of —c, and kg aef /ilﬁ otherwise.

The following are immediate consequences of Proposition which will be frequently used:
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if B is bad then we have rjy = ﬁ;(ﬂ);

if 8 is a bad root sharing the column of « then deg(vinls(ﬂ) VS/(B)) <[(n,s(8)) = 13
o if B = ajom with ip <m < jo then rj = 1;
o if 8 = auyj, with ig < < jo then xj = 0, and, in particular, k_ = —1.

Lemma 3.2.3. Let 8 = cuy, € 7. Then rj is subadditive, i.e. kjy < /ﬁ?lﬁl + Kjg, for all (B, B2) €
D;.
Moreover, if f has a decomposition (51, B2) € Dz with kg > Kg, + Kg, then
o [ > jy and m < ip;
e (31 shares the row of —« such that By is bad and either s(f1) is bad or 1 = —a.

Proof. The proof is very similar to Lemma Observe that

° %f B = aym, W%th [ # g .an(‘i m & {ig, jo} then /{’5 = 0w/ (8)<0;

. %f B = apyn with m € {ig, jo} then /@% = Ouw(8)<0;

e if = a;,m then Iilﬂ = G (8)<0-
The subadditivity of /ﬂ% follows from combining the three observations above together with the
fact dur(gy<o < Ow(81)<0 T Owi(Ba)<0 if (B1,82) € Dg. The subadditivity of kg when I < jo or
ig < m also easily follows from the subadditivity of /ﬁ?lﬂ together with the colength one property
of w.

Assume that § has a decomposition (f1,32) € D with kg > kg, + Kkg,. Then as HIB is

subadditive and kg is subadditive if m > ig, we see that 3; shares the row of —a and so 32 shares
the column of «. It is also easy to see that (32 is bad, and s(1) is bad if 81 # —a. O

Lemma 3.2.4. Let § € &~ be a bad root sharing the row of . Then the map (B1,52) —
(51, 8(B2)) gives rise to a bijection between the following sets:

o the set Ug;
o the set of elements (01, B2) of Ry(p) with B2 # —a.

Moreover, B2 € ®~ is bad if (B1,52) € Ap.
Proof. The argument is very similar to Lemma We leave the details for the reader. O
Lemma 3.2.5. Let f € &~ be a root sharing the column of «. If (B is bad then the map (81, B2) —

(s(B1),B2) gives rise to a bijection between the following sets:

o the set Ag;
o the set of elements (B1, B2) of gy such that s(f1) is bad.

Moreover, if (3 is not bad and (81, 32) € RAy(g) then s(B1) is not bad.
Proof. The argument is very similar to Lemma We leave the details for the reader. O

For each 8 € @7, let cg be the coefficient of 0" in Vé. For each 8 = «y,, € ®~ with either

1

I < jo or g < m, let cjj be the coefficient of e (resp. v’%) in Vj if either [ = jo or [ > jo and

m = ig (resp. otherwise), where V* def /-1

Lemma 3.2.6. If 5 is a bad root sharing the row of « then
\%
Cﬁ .p‘<77’a )l = —C- CS(,B)’

\%
Moreover, we have —c - c_q = p|<"7,04 i1
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Proof. The same argument as in Lemma also works, using the elementary operations in @
together with the finite height conditions. O
Lemma 3.2.7. Let § € &~ be a bad root

(1) If B € &~ is sharing the row of o then we have

Ca)+ D Ca(a)Ch T CaCh+ Chg = 0.
(B1,82)€Us

(2) If 5 € ®~ is sharing the column of « then we have

cactat D mcls t s = 0.
(B1,82)€%Up
Proof. The proof is similar to that of Lemmal[3.1.7] The only difference is that we use Lemma[3.2.4]

Lemma [3:2.3] and Lemma instead of Lemma [3.1.4] Lemma and Lemma [3.1.5] respec-
tively. O

3.3. Description of U(w,<n) in colength one. Let V be the matrix introduced at Proposi-
i

tion or at Proposition For each f € ®~, we let mg & |(n, BY)] — 1, and recall that the
entry Vz is of the form

mp
TE Z c5’k(v + p)k
k=0
where
mg+ 1 if B is bad;
(10) mjy = ¢ mg—1 if 3 shares the column of —a such that s(8) € ®~ is bad;

mg otherwise.

Proposition 3.3.1. Let w* € Adm(n) be a colength one shape. Then there is a closed immersion
U(w, <n) — SpecO[{cgx | 6 € @~ and 0 < k < mj} U {c}].
Proof. This is immediate from Propositions and ]

4. MONODROMY CONDITIONS

In this section, we induce certain identities and properties, that will be necessary to describe
U(w,<n,Va) for a € O™ when w* € Adm(n) is of colength one. Throughout this section, by R
we mean a Noetherian O-flat O-algebra. We keep the notation of

We fix some notation. Set 3 def kg + m’ﬁ, where me is defined in . For each B8 € &7, we
write F>g (resp. Fsp) for the free Z-module generated by the monomials cg, i, - - - cg, k. for all
non-negative integers ki,--- , ks with 37 | k; <~ + 1 and for all negative roots 31, , 3s with
B =P8+ +Bs (resp. with 8 =01 +---+ s and s > 1). For f/ € &~ with 8 > 3 we write
F’gﬁ for the submodule of F+ 3 generated by the monomials cg, 1, - - - ¢, x, With §; # 8 for all .
We will consider all of these free Z-modules as submodules of the ring O(U(w, <n)) via the closed
immersion of Proposition Finally, if A € U(w, <n)(R), we abuse notation and write F>g,
F.3, Fgﬁ for the image in R[v] (via the map O(U(w, <n)) — R corresponding to A) of the free
Z-modules above.
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Let A € U(w,<n)(R), and let V be the corresponding matrix obtained by Proposition
(resp. by Proposition [3.2.2)) if w is of the first form (resp. if w is of the second form). Then an
elementary computation shows that A € U™ (w, <n, V,)(R) if and only if for each g € &~

(11) VEE (Va,V)s+ Y. (Va,V)a,Vi € (v+p)™ M,y (R[v))
(B1,82)€Dp3

where a,, € O" satisfies w(a,) = a. Throughout this subsection, we assume holds for all
B € &7, and write V for V,,, to lighten the notation.

4.1. Monodromy conditions: the first form. Let w* € Adm(n) be a colength one shape of
the first form (described in Proposition [2.1.2]), and keep the notation of In particular, we
keep the notation of Proposition [3.1.2

Lemma 4.1.1. Let 8 = ayy, € 7 with | < jg or ig < m. Then we have
(1) if B is not bad then
Vg e v (v+p)me (Xg + F>/3)
where Xg = (mg + kg — (ay, ﬁv))cﬁ,m/ﬁ and
= 4 [ kg if either 1 < jo, i9 < m, orig =m and s(B) € ®~ is not bad;
| kg—1 ifig=m and s(B) € ®~ is bad,
(2) if B is bad then
Vg € v (v +p)" (Vs +vXp + Fsp)
where
Xﬁ = (mlﬁ + kg — <awaﬁv>)cﬁ,m%;
Y = (mg+ kg —(@w, 8Y) +mg + k5)cams + kg — (@w, 8Y)) g, -

Proof. Assume that 8 = ay,, € @ is not bad. If either [ < jg, ig < m, or ig = m and s(/3) is not
bad then by Propositiontogether with Lemma it is routine to check the equation in (1).
If I > jo, i0 = m, and s(f) € ®~ is bad then kg is not subadditive and deg(Vz/v"#) < |[(n, 8¥)|—1
by part (3) of Proposition and so v"# fz(ﬁ1762)69ﬁ(VV)52Vél while v | (VV)3. Hence,
in this case we get the equation in (1) with K3 = kg — 1 in the equation.

Assume that §8 is bad. By part (1) of Proposition [3.1.2} deg Vs < [(n, 8Y)| + 1 (as kg = 0) and
kg is subadditive, and so we get the equation in (2). O

For 8 € ®~ and for each integer s > 1, we set Ig ; to be the set of the tuples of negative roots
(81, B2, -+, Bs) such that
o f=p01+ P2+ -+ Bs and f; shares the column of 3;
° 5@"|‘Bi+1 c®d forie {17... ,S—l};
© in Ow(8;)<0 = S — Ou(B)>0-
Moreover, we set

def
Iy = U Ij.s.
s>1

Lemma 4.1.2. Let f € &~ with 8 > —a.

(1) If (B1, B2) € D then g = a3, +V8,:
(2) (B1,P2) € Dp satisfies 3 = va, + V8, if and only if kg < kg, + Kg,-
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In particular, if (B1,B2) € D_q then vg, + V8, = V—a, deg V3 =5, = mp, + kg, and
1 d™Vg _
(751)! dv%1

—1)¢+do—s e
Z (=177 Cﬂi,mﬁi Cﬂévmﬁg B meg;

where B1 = .
Proof. Recall that 4 indicates the degree of V. By definition of w, kg = rypg) if either 8 = ay;,
with ig <1 < jo or 8 = aiym with ip < m < jo. Now it is easy to check (1) and (2) case by case.

For the second part, let (31, 32) € D_o. Then it is clear that vg, + 73, = 7—a by (2), and it is
also clear that degVi; = g, by (1). Finally, the elements of I3 correspond to the monomials in
Vi, which has the highest degree vg,. This completes the proof. ([

Lemma 4.1.3. We have

Pm_aH : <awu _a\/> = Pm_a e L_q

where

—a = (m*a - <aw’ _a\/>) C—am_q

{+j0—
+ Z (mﬁz Tt Ky — <awa ﬁ¥>) CBa,mg, Z (_1) 0 Scﬁi,mﬁll o 'Cﬂg,mﬁg
(517[‘32)6@7& (ﬁ£77ﬁé)elﬂ1

if we write B1 = o, .-

Proof. By Lemma, we see that deg((VV)g, V3 ) = v, + 78 = 7-a = m—q for all (81, B2) €
®_o. Hence, if we apply the monodromy condition to V_, then we have

V—ﬁa = (Mm_qo — (aw, _O‘V»C—a,mfa (v+p)"=

l+50— —a
+ Z (mg, + kg, — (aw, 65))6527”&52 Z (=)o Scﬂ{,mﬁi T OBl mgy (v+p)™
(B1,82)€ED —q (B, ,B)€Elg,

by applying the second part of Lemma Since the constant term of VEQ appears only at
(VV)_q by Lemma by extracting the constant term we have

_<aw7 —av>cfa = pmiazfa-
By the second part of Lemma [3.1.6] we get the desired identity. g
We further eliminate the variables Y for bad roots 5 € ®~.

Lemma 4.1.4. Let f € &~ be a bad root.
(1) If B shares the row of « then we have

Pps) (Yﬁ te- Xs(,ﬁ)) € pmsd) - (c . cﬂ,m’ﬁ . Fz—a + F>5 +c- Fis(5)> .
(2) If B shares the column of a then we have
S S IB
p’m ®) . (Y,B —c- Xs(ﬂ)) [ pm ®B) . (C . Cﬂ:m/ﬁ : sza + F>ﬁ +c- F>S(,3)) :

Proof. We first treat the case (1). By Lemma extracting the constant term in the mon-
odromy equation in part (1) of Lemma for s(/3) gives rise to

(12) (aw,s(ﬂ)v>cs(5)+ Z (aw,s(ﬁg)v)cs(&)cz;l—i—(aw,—av>c_aczae—pms(6>(Xs(5)+F>S(ﬁ)).
(B1,82)€%5
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As deg(V3V,) = m'ﬁ +m_oq =mg+1+m_q =mypg) = Kgpg) + My, the quantity in , in
fact, belongs to

™M) (XS(B) + g, Fs>_o+ Fis(ﬁ)).
By multiplying —c and then applying Lemma [3.1.6] together with Lemma [3.1.4] we have
PN ay, s(8))es + > e N ay, s(82)V)es,ch, + 0l May, —aV)cy
(617ﬁ2)€9"6
. B
€ c-p™) ( Xy + gy Foa + F>s(5))-

Applying the identity cg + 2(51,62)6% 8,¢p, + ¢ = 0, induced from (V-V*")g =0, together with
s(B) = B — a and s(B2) = B2 — a, we have
\% \2
(13) plima >I<aw7 BYVes+ Z plima >|<aw, 52v>0620%1 € c-p™s(®) (Xs(ﬁ)+cﬁ,mg'FZ—aJFFis(g))-
(B1,B2)€2s
But by extracting the constant term in the monodromy equation in part (2) of Lemma for 3,
the quantity in is also belongs to
_pl(n,—av>|+|(nﬁv>|—1(YB +F.p)

and so we have the desired result.

We now treat the case (2). By extracting the coefficient of v"# in the equation (V-V*)g = 0, we
have cg+ 2(51752)6% ¢p,Cp, +¢j = 0, which together with the equation in part (2) of Lemma
induces

Z ¢, (Cyay) — cal,) + (Cyp) — cLach) = 0.
(B1,B2)€2s
This equation together with Lemma inductively induces that

(14) C;(ﬁ) —_ CZ—OCC% = O

for any bad root § sharing the column of a.
By extracting the coefficient of v"# in the monodromy equation in part (2) of Lemma for
3, we have

(ks — (@w, B))cs+ > (kp, — (aw, BY))cs,cl, € p™ (Vs + Fap).
(517/32)6mﬁ

Similarly, by extracting the coefficient of v®®~! in the monodromy equation in part (1) of

Lemma for s(), we have

(15) (kg —(aw, B )esc 0+ Y. (Kg, — (aw, B5))ca, sy € P™O (Xy(a) + Foy(s))-
(B1,B2)€%3

As deg(VV2,) =7 + 7—a = mj + m_q =mpg + 1+ m_q = my@g) = Fy@g) + Ms(g), the quantity
in , in fact, belongs to

p® (Xs(ﬁ) + CB,miy - F>_o+ Fis(ﬁ))'
Comparing these two equations via the identity , we have

PO X () = L™V € P (€, Foa +FL 5) +77 cy Fap.
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As c_, = —c* , by applying the second part of Lemma we have

—cp™® X5y + PV € ¢ pMe®) (%m,ﬁ Fs_q+ Fis(ﬁ)) 4 pmetmoetl g

As s(B) = B — «, we get the desired result. O

We finally treat the case 8 = oy, € ® with [ > jo and m < ig. In this case, kg is not
subadditive in general, so that the following lemma is not trivial.

Lemma 4.1.5. For 8 = qagy, € ®~ with | > jyo and m < ig,
VBti € v (v +p)‘<’7”8v>‘_1(X5 +F.p)
where Xg = (mg + kg — <aw,5v>)c57m/ﬂ.

Proof. We first claim that V., ) € vR[v] for a bad root 5y € &~ sharing the row of a. From part

(1) of Lemma together with Lemma and Lemma we have

Vv
B0 (gt 3 anch ey )~y =0
(B1,82) €A,

As gy +2 5 Ba)es, ¢8,Cp, +¢j, = 0 induced from extracting the constant term of (V- V*)g, =0,

we have ccj ;= 0. Hence, we conclude that ¢{ g, = 0, as ¢ is a unit in R[%] by Lemma
and R is O-flat.

Let /' = apyy € ® with m/ < ig. We claim that Vi € V™' R[v] if I # jo. It is clear that
Vi € 0" R[v] if I < jo, by Lemma Assume jo < I'. Consider the following identity

0= (V- Vg =Vir+ > Vi Vi +Vs,
(B1,B2)€D g1

and write 1 := agmy. It is obvious that Vg € v™R[v], and that Vg, - V5 € v™R[v] for
m’ < k < jo by Lemma so that it is enough to check that Vs, -V € v R[v] for jo <k < 1'.

Assume that k = jo. If s(81) is bad then Vj € vR[v] by the first claim, and so we conclude in
this case that Vj, - V5 € 0" R[v]. If s(81) is not bad then it is clear that Vj € v""1 R[v], and so
we also have Vg, - V3 € v™ R[v] by Lemma Note that this also implies

(16) (VV)g, V3, € v" R[v]

in this case. Assume now that jo < k <. By induction hypothesis, we have V; € v"#1 R[v] and
so we conclude that Vj, -V € v" R[v] by Lemma which completes the proof of the second
claim.

Now, let 8 = oy, € @~ with [ > jo and m < ig. For (51, 52) € Dg, if we write £ = agy, then
it is clear that (VV)g,Vj € v™ R[] for k # jo, by the claim above together with Lemma
If k = jo, then we also have (VV)g,Vj € v R[v] by (16)), which completes the proof. O

4.2. Monodromy conditions: the second form. Let w* € Adm(n) be a colength one shape
of the second form (cf. Proposition [2.1.2)), and keep the notation of In particular, we keep
the notation of Proposition [3.2.2

Lemma 4.2.1. Let 8 = ayy, € 7 with | < jg or ig < m. Then we have
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(1) if B is not bad then
Vg € Vs (v+p)ms (Xg + F>5)
where Xg = (mg + g — (ay, ﬁv))c@m/ﬁ and
~ def [ Kg if either 1 < jo, io < m, orig =m and s() € ®~ is not bad;
6= Ky — 1 if either ig = m and s(8) € ®~ is bad or I = jo,
(2) if B is bad then
Vg € v (v +p)™ (Y3 +vXp + Fsp)
where
X,B = (mlﬁ + HIB — (aw, ﬁ\/))CB’mIB;
Y = (mg+rp— (@u, 7)) csms + (K — (aw, BY))cgm,

Proof. The proof is similar to that of Lemma using Proposition and Lemma [3.2.3
instead of Proposition and Lemma3.1.3] respectively. We leave the details for the reader. [

For f € &~ and for each integer s > 1, we set Ig s to be the set of the tuples of negative roots
(81, B2, -+, Bs) such that

e 3=[1+ P2+ -+ B and 31 shares the column of 3;
o i+ fBit1 € forie{l,---,s—1}
e w'(f;) <0forallie{l, -, s}

Moreover, we set

def
Is = | Ins
s>1

Lemma 4.2.2. Let f € &~ with > —a.

(1) If (517B2) € gﬁ then 7 > Y81 T VB2 _ '

(2) (B1,P2) € Dp satisfies 3 = v3, + V8, if and only if kg < kg, + Kg,-
In particular, if (51, B2) € ©_q then Vg1 + V8, = V—a, deg Vél =8, = mg,, and
1 IV
(’751)! dv7h

_1)¢tdo—s .
Z ( 1) Cﬂivmgi cﬁévmﬂé Cﬁ;,mﬁg

where B1 = -
Proof. The proof is similar to that of Lemma We leave the details for the reader. O
Lemma 4.2.3. We have
Pt ((ay, —aY) + 1) =p" e Z_,
where

def

Zea™ (o~ 1~ (s =a")) o

{+70—
+ Z (m/D’Q — (aw, B¥>) CBa,mg, Z (-1) o scﬁi,mgll T CBLmg,
(B1,82)€ED—q (BB €l

if we write B1 = oy, -
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Proof. By Lemma we see that deg((VV)g, V3 ) = 75, + 78 = mg, +mp, = m_q — 1 for
all (B1,02) € ©_,. By the same argument as in Lemma extracting the constant term of
v-VH ., gives rise to the result. We leave the details for the reader. O

We further eliminate the variables Y for bad roots 5 € ®~.
Lemma 4.2.4. Let § € &~ be a bad root.
(1) If B shares the row of o then we have
P - (Va4 e X)) €™ - (g Foa + Fogt o FL ).
(2) If B shares the column of o then
PO (Vg = e Xog) €970 (e - Faoat Fopbe B ) )

Proof. The proof is similar to that of Lemma The only difference is that we use Lem-

mas [3.2.6 [3.2.4] [£.2.7] [3.2.7], [3.2.5] and instead of Lemmas [3.1.6}, [3.1.4] {.1.1], [3.1.7] [3.1.5]
and respectively. We leave the details for the reader. ]

Finally, we treat the case 8 = oy, € ® with [ > jo and m < ig. In this case, kg is not
subadditive in general, so that the following lemma is not trivial.

Lemma 4.2.5. Assume that V’(ﬂ) € V"8 R[v] for a bad root B € ®~ sharing the row of a. For

S

B =apm € 7 with I > jo and m < ig, we have
Vi € 0" (v +p)™ (X5 + Fsp)
where Xg = ((ay, Y) + mg + /ig)c@m%.

Proof. We first claim that V{,, € v"% RJv] for each bad root Sy € ®~ sharing the row of a,
whose proof is almost identical to the first claim in the proof of Lemma The rest of the
proof also is similar to that of Lemma The only difference is that we use Lemma [3.2.3
instead of Lemma [B.1.3] We leave the details for the reader. O

4.3. Description of U(w, <n, V,) in colength < 1. In this subsection we describe U(w, <n, V4)
when w* € W has colength < 1.
We first give an upper bound of U(w, <n, V,) for w* of colength zero.

Proposition 4.3.1. Let w* € Adm(n) be a colength zero shape, and let a € O™. Assume that a
is n-generic ([LLHLMD| Definition 4.2.2]). Then there is a closed immersion
U(w, <n,Va) < SpecO[{X | § € 27 }].

Proof. This follows from the arguments in [LLHL19, §3.4], specifically the proof of [LLHILI9,
Proposition 3.4.12]. (Note that the argument in loc. cit. is written for complete local Noetherian
O-algebras but is valid in our setting of O-flat Noetherian O-algebras.) g

We now give an upper bound of U(w,<n,V,) for w* of colength one. Recall that Z_, is
constructed in Lemma [£.1.3] (resp. in Lemma [4.2.3) if w* is of colength one of the first form
(resp. of the second form).

Proposition 4.3.2. Let w* € Adm(n) be a colength one shape, and let a € O™. Assume that a
is n-generic (as defined in [LLHLMD §4.2]). Then there is a closed immersion

O[f{Xs | B e @ }U{c}]

w, <
U(w, <n,Va) — Spec c Z o=y
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Proof. By Proposition[3.3.1, O(U(@, <n, Va)) is generated by cgx (with 8 € ®~ and 0 < k < my)
and ¢. But Lemmas [{.1.1], [4.1.5| [£.2.1] and [£.2.5] show that we can also generate using ¢, Xp
(8 € @) and Y3 (8 bad). In turn, Lemmas [4.1.4] and [4.2.4] show that we can generate using just
c and Xg. Finally Lemmas {4.1.3| and |4.2.3| (and p-flatness) give the relation ¢ - Z_, — p. O

5. COLENGTH ONE DEFORMATION RINGS

In this section we apply the results of §3 and §4] to compute potentially crystalline deformation
rings with Hodge—tate weights 7, for sufficiently generic p and tame inertial types 7 such that
w(p, T) has colength at most one in each embedding.

5.1. Product structures and error terms. We first extend the technical results of and
in a way which can be used to describe the closed immersion U(Z, <, Vi) = U(Z,<n)"r,
when z = (E(j))je 7 has colength at most one. This requires the modification of some of the
previous formulas by allowing product structures, non-trivial diagonal entries, and an “error
term” which takes into account the monodromy condition defined in

Keep the notation of §3| and let R be a p-adically complete, topologically finite type, Noetherian
O-algebra. Let w* € Adm(n) be a colength one shape of the first form (resp. of the second
form), and A € U(w,<n)(R) with its image A € U(w,<n)(R) under the natural morphism
U(w, <n) — U(w, <n). We may write w™'Aw = sDos w L Aw (resp. w'"'Aw' = Dy - w' "L Aw')
for some Dy = Diag(ay, -+ ,a,) € TV(R). Let V € 1 Mat,(R[v]) be the matrix obtained from
Proposition (resp. from Proposition applied to A € U(w, <n)(R), and set V& Dy-V.
Then by the same argument as in Proposition (resp. in Proposition we may write
(W™ Aw) jojo = @jojo (v + )"0 (resp. (w'™LAW)igiy = aigio (v + p)" ) for some aj;, € R (resp.
for some a;y;, € R), and we have the following identity:

A7) 8- u_a(—2990) . (v Aw) = (v + p)" - V

Ajo

(resp. ua(—a;o'io) %o - (W AW) - s = (v p)T - v - IN/)
J0
Note that we may identify ¢, defined in Proposition (resp. in Proposition , with
Qjojo/Wip (resp. with ajyi,/ai,). We also note that the degree description of each entry of V is
exactly the same as that of V', as V= Dy - V.

We fix a tame inertial type 7 with a N-generic lowest alcove presentation (s, ), together with
an element Z € Adm(n)" which we write as Z = (219)) ¢ 7.

Until the end of this subsection, assume that j € J is such that ¢(Z19)) = £(t,) — 1, and let
AU € UEY), <n)(R) be the image of AW € U, <n)(R). Let VU) € L Mat,(R[v ]) be the
matrix obtained from . ) (according to the two possible forms of 20 )) apphed to AW) 6 U (zV z0), <
n)(R). (We adapt the notation of Propositions [3.1.2f and [3.2.2| as well as condition in our
context by adding a superscript (j), so that for instance a colength one shape of the second

N—1 . -
form has decomposition w(?)s St by a(j)w(j) .) It is easy to see that condition shows that
condition @ has the form

(18) Ut def ((vaw{?(a‘)) . f/(j)z)

80) € (v+p)" Rlv] + p" 2" R[]

806)

for all 3U) € &, where a,, € Z" is defined by w)(a,) = al¥).
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As VO = Dy - VO for some Dy < Diag(ay,--- ,an) € TV(R), if we let BY) =y, € ®~ then
it is easy to see that

()4 ()4
am‘vggn =& ng'

Hence, condition applied to V@) induces all the relevant lemmas from and keeping
track of the “error term” pN=2"%5  as the diagonal entries a;, of Dy are units in R. More precisely,
e in Lemma (resp. in Lemma [4.2.1)), we have
(1) Vgu € 0" (04 )" (X500 + Fogiy) + V2" R[u];
(2) ng € "8 (v + p)"s (Yﬁ(ﬁ') +vXg04) + F>5<j)) +pN 2 R[],
e in Lemma [4.1.3] (resp. in Lemma [4.2.3), we have

m_, ot (A, —a V) + "ﬂ_am) ep"-a . Z__; +pVTIOR,

e in Lemma [4.1.4] (resp. in Lemma [4.2.4), we have
L m o %) _
p oG- (YanEe- X 5m) €D SW(‘””(C St Fs oo +Fop0 +c- F >+pN MR,

>5(/B(J))
e in Lemma [4.1.5] (resp. in Lemma [4.2.5), we have
ng € v (v 4 p)" (Xg0) + Fupn) + 0~ 2" R[v].

5.2. Potentially crystalline deformation rings. Fix p: Gx — GL,(F), and let 7 be a tame
inertial type. We assume that 7 has an N-generic lowest alcove presentation ([LLHLMD, Definition
2.4.3]) with N > 3n — 6. Assume that R7" # 0 so that in particular w(p,7) is defined. If

w(p, 7)) = £(t,) — 1 for some j € 7, then 1t determines a positive root oz(]) and we write Z_ ;)
for the element Z_,, constructed using Lemma m (resp. using Lemma if w* is of colength
one of the first form (resp. of the second form) taking into account the “error term” as explained
in §5.1 (Note that the element Z_, is defined exactly because N —2n +5 > mg + 1 for all
negative roots f3.)

Lemma 5.2.1. Let 7 be a tame inertial type with an N-generic lowest alcove presentation, where
N > 3n — 6. Assume that @(p,7) satisfies L(w(p,7)9)) > £(t,) — 1 for each j € J. Then there is
a closed immersion
U((w(p, )9, 777V )) = SpecRV)
where all) ¢ Zy, are the constants defined in and
g | RPN o (8, 232h) i U = Ut) — 1
Of{Xs| e} ®o (®(’) =1 2[2;1—/11})) otherwise.

Proof. The results follow immediately from Proposition [£.3.1] and Proposition [4.3.2] together with
equation (4 . ]

Proposition 5.2.2. Let 7 be a tame inertial type with an N-generic lowest alcove presentation,
where N > 3n — 6. Assume that w(p, ) satisfies that £(w(p,7)0)) > €(t,) — 1 for each j € J.
Then there is a closed immersion

/\p
077", <0, V) = 858 (@) 1)

0,jed
where the rings RY) have been defined in Lemma|5.2.1|
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Proof. The proof goes very similar to the ones of Proposition and Proposition together
with Lemma [5.2.1 The only difference is that we need to take care of the error terms. For
instance, if (@(p, 7)@))* is of colength one of the first form, and if 3 is a bad root sharing the row

of , then there exist g € F>_o, Gg € Fp, and Hyg) € Fis(ﬁ) such that
Yp=—c Xyp) + (c " CBmy Fg+Gg+c- H5(3)> +0 (pN_2"+5—ms<5)) ,

by Lemma 4.1.4, The coefficient cg,,» corresponds to Xz, and so due to our generic assumption,

by scaling Y3 we can further eliminate the variable Yj.
Repeating the same arguments, we conclude that there is a surjection

( ® R“) > OU((p,7)", <1, Vr,00)),
0,jed
which completes the proof. O

Set
def

JoE{jeT | lwp ) =t,)~1and Z_ ;) =0 (mod w)}.
Theorem 5.2.3. Let 7 be a tame inertial type with an N-generic lowest alcove presentation,
where N > 3n — 6. Assume that R}" # 0, and the shape w(p,T) satisfies £(w(p, )Y > 0(t,) — 1
for each j € J. Then R%’T s formally smooth over

) O[[X, Y]]
19 —.
(19) ®o,jejo (XY —p)
Proof. First, notice that we may replace Z_, with X_,, due tojhe equations of Z_, in Lemma|.1.3
and Lemma As p € X577 (w(p, 7)*)(F), we can pick A € U(w(p,7)*,<n)(F) correspond-
ing to plg,_ as explained in . Then the completion of O(U(w(p,7)*,<n,Vr)) at A is

formally smooth over the ring in ([19)), by dimension counting, and by @, the deformation ring
R%"T is also formally smooth over the ring in (19). As the latter is irreducble, so is Rﬁgm, in

particular R%W = RgT which completes the proof. O

Remark 5.2.4. Under stronger genericity assumptions on 7 we have U (Z,<n, V+00) # 0 whenever
Z € Adm(n)Y ([LLHLMDb) Lemma 7.3.5)).

6. APPLICATIONS

In this section we elaborate on how the explicit description of the potentially crystalline defor-
mation rings from Theorem [5.2.3| can provide information on representation theory and automor-
phic forms through following the philosophy of the mod p local Langlands correspondence.

6.1. Subextremal weights. In this section we refine, in Definition the notion of defect
for Serre weights of p : Gx — GL,(F) introduced in [LLHLMD, §8.6.1] and [LLHLMa) §3.7].

We fix once and for all a lowest alcove presentation w(p**) for p. All tame inertial types will
be endowed with the unique lowest alcove presentation compatible with w(p%). Throughout this
subsection, we assume S, = {v} so that I,/ = K.

Recall from |[CEGT16, Theorem 3.7] that given a tame inertial type 7 for K there exists an
irreducible smooth representation o(7) of GL,,(Ok) which satisfies properties towards the inertial
local Langlands correspondence. By [LLHLMb, Theorem 2.5.3], if 7 has a 1-generic lowest alcove
presentation (s, — 1) then o(7) can be taken to be Rs(u).
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Let p? : Ix — GL,(F) be a 2n-generic tame inertial F-type. The choice of a lowest alcove
presentation w(p*P) = t,4,s for it gives a map
Top : Adm™8(n) — {7: Ix — GL,(E)}.
tyw — T(sw, u+n+ s(v))
(Note that given w € Adm™®(n) we have w(p*P, 75> (w)) = w by construction.)
Recall from [LLHLMD, §2.3.1] the background on Deligne-Lustig representations and their
lowest alcove presentations. In particular given a Deligne—Lusztig representation R with a 2(n—1)-

generic lowest alcove presentation w(R) we have a set JHou(R) of outer weights for R. We also
recall that we have a bijection

(20) {@1,@) e (W' x W) /XO(T) | @ 1@, "2 | — Adm®s(s)
(@1, Wa) — By “woiy
from [LLHLMb, Remark 2.1.8], and a bijection
{(@i2) € (W' % W) ) /XD |00 1| — W)
(w1, Wa) — iy @) (1)1 (0))

from [LLHLMDl Proposition 2.6.2]. As multiplication by wy gives a self bijection on ET, we
finally obtain a bijection

oge : Adm™8(n) — W' (pP).
~—1 ~
Wy wol ¥ Figmg, g@wy@n)-1(0)
We write wgr for the inverse of opsp.

Lemma 6.1.1. Assume that @(ﬁSp) s a 2n-generic lowest alcove presentation for p°P, and let w €
Adm™8(n). Then opr(w) € W (p®) N JHou (o (T (w))) and it satisfies the following property:
for any o’ € W*(p*®) N JH(o (150 (W))) we have

(21) Wy (') > @)
for all j € J with equality for all j € J if and only if o’ = 0.
Proof. This is an immediate consequence the proof of [LLHLMb Proposition 8.6.3] of which we

employ here the notation and convention. In particular we let 7 < Tpsp( w) so that w = w(p, )

Adm™#(n). Using the bijection (20]) we decompose w as w, Lwow, where (@, W) € E+ X El
satisfies wy 1 @;11172.

We have oz (w) = F(w#@ TP
x € W (p®)NJH(o(7)) defined in [LLHLMD, Proposition 8.6.3]. As w(7°)w; *(0) = w(r)wy *(0)
by [LLHLMb, Proposition 2.6.4], the weight & is in JHou (o (7)), by definition of JHou (o (7)) (see
[LLHLMDb Proposition 2.3.7] and the beginning of [LLHLMD| §2 3 1]).

The fact that for any ¢/ € W’ (5°°) N JH(o (7)) the inequality (21]) holds is immediate from the
proof of [LLHLMDb| Proposition 8.6.3]. We provide the details: by [LLHLMb Proposmon 2.6.4]

any o € W) N JH(o(7)) is of the form o' = F,_, for some w' € Wl and some
'(0))

(w',w(T)55

@1(0)) by definition, and the latter Serre weight is the element

pair (s1,52) € EJF X E+ satisfying 7 1T @’ 7 ﬁ)}:lsz and s, lws, = w(p®P, T) for some w € W.
By Wang’s Theorem (see [LLHL19, Theorem 4.1.1]) the condition s3 1 wpw', which is defined
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embeddingwise, gives E(zj ) < {Eéj )@ () for all j € J and by [LLHL19, Lemma 4.1.9] we conclude
that

(w}(Lﬂ)ﬁ}«/(j)) wﬂg{]) (ggj)) wog(]) (ggj))—lwggy) — oD
(ggj)) =) ~(J')w/(])) =(7)

since wgs , (wh wpsy’ are reduced expressions for all j € J and wy > w. As

51w e El we see that (w,w',$1) defines an element in the left hand side of and hence
Wy (o) = (wpw') “twos1, proving (21). The fact that the equality holds for all j € J if and only
if o/ = ops» (w) is immediate since oz is a bijection. O

The usual order on N induces the product partial order on N7, and for h = (h(j)) jeg € N7 we
define

Wi, (7P) & {a e W!(HP) | (@0 (0)D) > U(ty) — hY) for all j € j} .

Let p : Gk — GL,(F) be a continuous Galois representation such that p* is O-generic (so
that w(p®) € W is defined). We say that a tame inertial F-parameter p® IK — GL,(F) is a
specialization of p, and write p ~» p°P, if there exists an n-generic tame inertial type 7 such that
p is T-admissible and w(p, 7) = w(p*P, 7). (In this definition, the lowest alcove presentations of 7
and p°P are always assumed to be compatible with a fixed lowest alcove presentation of p.)

Let X, i be the Noetherian formal algebraic stack over SpfO defined in [EG| Definition 3.2.1].
It has the property that &), x(F) is isomorphic to the groupoid of continuous representations of
G i over rank n vector spaces over F. Moreover there is a bijection o — C, between Serre weights
of Gr(d:ef GL,(k)) and irreducible components of the reduced special fiber of &, g, described in
[LLHLMD, §7.4]. (We refer the reader to [LLHLMDL §2.2] concerning Serre weights and their
lowest alcove presentations.) This bijection is a renormalization of the bijection o +— X fred Of
[EG], Theorem 6.5.1].

In particular, if p € &), x(F) we define the set of geometric weights of p as

W9(p) = {0 | € Co(F)} .

Definition 6.1.2. Let p : Gxg — GL,(F) be a continuous Galois representation such that p* is
O-generic. For h = (h());cr € N define WZ,(p) to be

n ( U th(psp))
PP
In what follows we write 1 for the tuple of h € N7 satisfying h(9) = 1 for all j € 7, and similarly
for 0. Note that WZ,(p) = Wext:(p) is the set of extremal weights in [LLHLMal, Definition 3.7.1].

6.2. Application to patching functors. We introduce the formalism of patching functors fol-
lowing [LLHLMa) §5.2], giving applications to the results on the deformation rings in

6.2.1. L-parameters. Recall that sz is a finite unramified étale Q-algebra, which we write as
[L.c Sy Ff for a finite set S, and finite unramified extensions F,/Q,. We assume throughout
that for any v € S, the coefficient field E (resp. F) contains the image of any homomorphism
Fl — @p (resp. ky — Fp, where k, denotes the residue field of F +). We let GV denote the
L GY % Gal(B/Qy),

where Gal(E/Qj) acts on the set {+: F,i — E} by post-composition. An L-homomorphism over

product HF;%E GLnyo (the dual group of RGSF;/QPGLn/op) and 'G(F) =

A € {E,F} is a continuous homomorphism 7, : Gg, — “G(A). An L-parameter is a GV (E)-
conjugacy class of an L-homomorphism. An tame inertial L-parameter is a G"(E)-conjugacy
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class of an homomorphism 7 : I, — GV (E) which has open kernel and factors through the tame
quotient of Ig,, and which admits an extension to an L-homomorphism. By [GHS18, Lemma
9.4.1, Lemma 9.4.5], the datum of an L-parameters 7, (resp. a tame inertial L-parameter 7) is
equivalent to the datum of a collection of continuous homomorphisms {py : G+ — GLn(A)}ues,
(resp. tame inertial types {7, : I+ — GLn(A)}ves,). Via this bijection, we can therefore give
the notion of lowest alcove presentations and genericity for L-parameters. Given a tame inertial
L-parameter 7 with corresponding collection {7, : [ rt — GLy (A)}ves, of tame inertial types, we
let o(7) be the tame smooth irreducible representation of GL, (O,) over E given by ®ycs, £0(70),
where for each v € S, we let o(7y) be the tame smooth irreducible representation of GLn(Op+)
over E attached to 7, via the inertial local Langlands correspondence of [LLHLMDb| Proposition
2.5.5].

6.2.2. Patching functors and Serre weights. Let now 7 : Gg, — LG(F) be an L-homomorphism,
with corresponding collection {p, : G+ — GLy(F)}ves, -

We let RP be a nonzero complete local Noetherian equidimensional flat O-algebra with residue
field F such that each irreducible component of Spec RP and of Spec R” is geometrically irreducible,
and define

—

_ def 0 df PSR
RTP - ®v€Sp,0Rﬁu’ Roo = R ®ORTP

(we suppress the dependence on RP in the notation of R).
Given a tame inertial L-homomorphism 7 : Ig, — GY(E), with corresponding collection
{7v}ves,, we define

R def ® R
Tp 'UeSp Py
def

and Roo(7) = Roo @R R’,?Z’)T, and write Xoo, Xoo(T), Xoo(7) for Spec Reo, Spec Roo(7), and
Tp T
Spec Roo(T) respectively.
We write Mod(X) be the category of coherent sheaves over Xo, and Repy(GLy,(Op)) be the
category of topological O[GL,(Op)]-modules which are finitely generated over O.

Definition 6.2.3. A weak patching functor for an L-homomorphism 7, : Gg, — “G(F) is a
nonzero covariant exact functor My : Repp(GL,(Op)) — Mod(Xs) such that for any tame
inertial L-homomorphism 7 and any O-lattice o(7)° in o(7) one has:

(1) M (o(7)°) is a maximal Cohen-Macaulay sheaf on X (7); and

(2) forall ¢ € JH(0 (7)), Moo (o) is either zero or a maximal Cohen—Macaulay sheaf on X o (7).
Given a weak patching functor for an L-homomorphism 7, we thus define

(22) W, (Tp) o {o | o is a 3(n — 1)-deep Serre weight of G and My (o) # 0}.

By [LLHLMDb, Proposition 2.4.5] and [LLHLMa, Theorem 5.1.1, Proposition 5.4.1] we see that
if 7 is 6(n — 1)-generic then condition that o is 3(n — 1)-deep in the right hand side of is
automatically satisfied.

6.2.4. Modularity of defect one weights. We now assume S, = {v} and F,” = K. In particular
a continuous homomorphism p : Gxg — GL,(F) can be seen as an L-parameter, and have weak
patching functors associated to it.

Proposition 6.2.5. Let p: Gg — GL,(F) be 6(n — 1)-generic and let M~ be a weak patching
functor for p. Then the following are equivalent:
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(1) Wy(p) N Wi, (p) # 0; and
(2) WZ,(p) € War, (p)-

Before the proof, we record the following lemma, which will be also used in the proof of [PQ22]
Conjecture 5.3.1] in

Lemma 6.2.6. Let p® : Gx — GL, ( ) be 6(n — 1)-generic and let w € Adm™%(n) satzsfy

U(ty) — (@) <1 for all j € J. Let r & Tpsp( 0) and write @ = W, “wot, W, where W, Wy € W1
and v € X+(T) are uniquely determined up to X°(T). Then:

W (p®)NJH(o (7)) = {aﬁsp( Va9 e 8V for all j e j}

where S0 & {(@éj))*lwotymng),(@,(l)wy)) 1w0w(])}. Moreover, #S9 = 1 if and only if

ng) = ﬁﬁlﬁg) and v9) € XU(T), if and only if L(w)) = £(t,).

Note that the existence and uniqueness of the decomposition of w in the lemma is guaranteed
by [LLHLMD| Proposition 2.1.5].

Proof. The relation Fz,, € W’ () N JH(o(7)) is equivalent, by [LLHLMD, Proposition 2.6.4],

. . . ~ ~ ~ . ~ ~ o=+t~ ~ ~ 1~
to the existence of a factorization w = (:1:2)*15:161 with 71,70 € W, 21 T 7 T w, 11’2 and

w = w(p*®)(Z1)"1(0). By Lemma [2.1.4 l applied to each @) we have s = wy and for all j €
J either 7U0) = 5553 € zﬂgj)X O(T) (in which case, by the uniqueness of the factorization in
[LLHLMD| Proposition 2.1.5] we further have a:é) = t_ o)W g)) or 70 = (~(3)) xéj) €

(~(j ))_ L ‘)X 9(T) (in which case, by the uniqueness of the factorization in [LLHLMBb|, Proposition

2.1.5] we further have azg D = tV(J)ng )). The conclusion follows now from the definition of the map

opp. OJ

Proof of Proposition[6.2.5 The proof is by induction on the following quantity d;(c) attached to
a Serre weight o € W, (p):

(23) o5(0) L min { 37 (t,) = £(@pe (o)) | 5~ 57
JjeTJ
We fix throughout the proof a choice of an algebraic central character (; all lowest alcove presen-
tations below will be chosen to be compatible with (.
By definition of W2, (p) and Lemma E for each o € WZ,(p) there exist p ~» p* and a tame

inertial type 7 (depending on p°P) such that

(1) o € W9(p) "W (5*) N JHout (0 (7));

(2) Gpeo(0) = BEP, ) € Adm™5(n); and

(3) @Wyer(0)9) > Wyee (o)) for all j € J and all o’ € W’ (p®) N JH(o(7)).
(Note that condition (2]) determines 7 uniquely, and we thus let 7 = 75 (wz= (0)) in the notation
of Lemma ) We fix p ~» p°P such that w(p®P, 7) is maximal possible (which is equivalent to
wper (o) realizing the minimum ), where 7 is the type associated to p°P satisfying , , and

above.

We claim that with this choice of p ~» p* and 7 we have

w(p,7) = w(p, 7).
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Indeed, we always have w(p,7) > w(p*?, 7) by [LLHLMal, Theorem 3.5.1]. If w(p, ) > w(p*?, 1),

then there exists a specialization p ~» p"*P such that w(p"*P, ) = w(p, 7) (in particular, w(p"*P, 1) €

Adm™®(n)) and therefore w(p"*P, 7) > w(p°P, 7). This contradicts the maximality of w(p°P, 7).
For each o € WY, (p) with corresponding p ~~ p°P and 7 as above, we now claim that

(24) We(p) N IH(o (7)) = W' (™) N JH(o (7))
or, equivalently by [LLHLI9, Theorem 4.2.4], that any o/ € W’ (5°*) N JH(o(7)) is in W9(p).
Indeed by Lemma there exists o9 € W (p*®) N JH(o (7)) such that

(1) 05(c0) = 0; and

(2) for all o' € W (5°) N JH(o (7)) we have Wy (")) € {wzw(00)V), Wy (o))}
By item and [LLHLMDb| Theorem 7.4.2] (see also [LLHLMa, Remark 3.9.1]) we have oy C
W9(p) and thus p € C; N Cy,. Recall from [LLHLMD, equation (4.11) and Definition 4.6.1] the
variety ég, with its decomposition [] jeg 5’5;“ ). Each 55}0 ) is determined explicitly by @(p*)0)
and @5 (0')V) (see loc. cit. Definition 4.3.2, Theorem 4.3.9) so that ég’(j) =YW it W (o))
W (o)), and C’C U) = CC ) if @, 50 (0')0) = @z (00)U). Thus, by item (2), for all o/ € W7 (5*P)N
JH(o (7)) we have

SN0 — H C40) A 0% ¢ H o) = &€,
g g0 g a0 — o o
JET JjeT
which together with [LLHLMD, Theorem 7.4.2] implies C, N Cy, C C,s. This proves .

We now proceed to the inductive argument. We freely use the notation for cycles from patching
functors introduced in [LLHLMal, §5.3], in particular we write Pr to indicate the projection map
from cycles over the reduced union U,;e7X o (7) (for a set of generic tame inertial L-parameters
T) to cycles over the special fiber of the multi-type deformation ring associated to the set 7. The
set 7 can be fixed to satisfy condition (ii) in [LLHLMal, §5.3] since all the tame inertial types T
involved in this proof satisty ¢(w(p, 7)) > £(t,) — 1 for all j € J, hence Theorem applies.
Furthermore, given 0 € W9(p) we will write C, ( ) to denote the pullback of the component Cs to
the versal ring of &), i at p € &), k(F).

Let 0 € WZ,(p). We prove by induction on d5(0) that the support of B o Z(Muo(a(7)°))
contains C,, and that any other component in the support of pr o Z(Mu.(c(7)°)) is of the form
Ci. with k € W9(p), 65(k) < d5(0).

If 65(c) = 0 then o € ng(ﬁ), and Wﬂo( )N Wi, (p) # 0 implies Wﬂo( ) € Wi (p) by the
main result of [LLHLMal. As W9(p) N JH(o (7)) = W (5®) N JH(o(7)) = {o} by Lemma [6.2.6)
and Moo (@ (7)°) has full support over (a formally smooth modification of) R, we conclude that
the cycle pr o Z(Mx(a(7)°)) is supported on C,(p). (Here and below we write (7)° to denote
the mod w-reduction of any O-lattice o(7)° in o(7).)

Assume now that d5(0) > 0 and that for any o' € WZ,(p) with d5(c") < d5(0) the cycle
pro Z(Ms(0")) is supported on Co/(p) and possibly other components of the form Cy(p) where
k€ W9(p) and d5(k) < d5(c’). We have
(25) Supp(Z (EnT ) pp (red( Z(R3T)[1/p] )
p(redom( ( (U(T)O)[

( ( (
pp (P a(7)°)

upp ﬁored(
pro

U)U)CDU)
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where the first and last equality follow from [LLHLMal Proposition 5.3.1], the second from the
fact that R%T is geometrically integral (Theorem , the third from red o pr = pr o red (see
[LLHLMa), §5.3]). Since R%’T is geometrically integral by Theorem , by exactness of My, and
[LLHLMa, Theorem 5.1.1 and Proposition 5.4.1] we have

Pro Z(Mso(a(7)%)) = > pr o Z(Mss(0'))
o' €W (p*P)NIH(o (7))
= Pro Z(Mu(0)) + > BT 0 Z(Moo ("))

o' €W (p*P)NIH(o(7))\{o}
From the definition of §; together with Lemma we easily check that d5(c”) < d5(0) for all
o' € W (p®)NJH(o(7)) \ {c}. We thus deduce, using the inductive hypothesis and (24)), that

U Supp (pr o Z(Mo(0”))) = U Cor()-

o' €W? (p**)NIH(o(7))\{o} o' €W (p*P)NJH(a(1))\{o}
On the other hand, we have
Supp(Z(R;")) = U 10

o’'eW9(p)NJH(o (1))
by [LLHLMDB, Theorem 7.4.2] (and [Stal9, Lemma ODRB, Lemma O0DRD and Definition 0DRA])

and hence pr o Z(My(0)) is necessarily supported on C,(p), and possibly on other components
Cor(p) with o/ € W9(p) and d5(c’) < d5(0). O

Remark 6.2.7. If, in the statement of Proposition[6.2.5] we furthermore assume that weak patching
functor M is minimal (JLLHLMa), Definition 5.2.1]), then equation can be replaced with
the stronger statement

e(R5") = e(Mso((7)°%))
(where e(-) denotes the Hilbert—Samuel multiplicity), which forces e(Mx(c)) = 1 for all o €
W (%) 0 JH((7)).

Remark 6.2.8. Let 7, : Gg, — LQ(IF) be an L-parameter, with corresponding collection {p, :
Gp+ — GLn(F)}oes,. For each v € Sy let 7, denote the set of ring homomorphisms {k, < F}, so
that Jp = [[,eg, Jo- Given h, € N7v for each v € S, we then have a collection {Wéﬁv (Pv) }oes,
whose elements are Serre weights for G by taking tensor products over v € S,. In particular,
given h € N7» we can define the set W2, (7)) for an L-parameter 7, : Gg, — “G(F). The proofs
of Proposition and Lemma go through, mutatis mutandis, replacing 7 : Gx — GL,(F)
with an L-homomorphism 7, : Gg, — LG(F) (for these kind of passages from #S, = 1 to #S5, > 1
see also [LLHLMDb|, Remark 7.3.4]).

6.3. Global applications and the conjecture of [PQ22|. We apply the results above to obtain
our main global applications. We follow the setup and notation of [LLHLMal §5.5.1, 5.5.2, 5.5.3].
In particular, we have a totally real field F'*/Q not equal to Q, and F/F+ a CM extension. We
assume from now on that all places of F'™ above p are unramified over Q,, and that they are further
totally split in F. Given a reductive group G,p+ which is an outer form for GLy,, split over F,
and such that G(F' ®g R) = U,(FT ®qg R), we define for a continuous Galois representation
7 : Gp+ — Gu(F) the notion of being automorphic (relatively to G, p+) as in [LLHLMal, Definition
5.5.1], as well as the set W (7) of modular Serre weights of 7 (loc. cit. Definition 5.5.2). Here, G,
is the group scheme defined in [CHTO0S, §2]. Finally, let 7, be the L-homomorhism induced from


https://stacks.math.columbia.edu/tag/0DRB
https://stacks.math.columbia.edu/tag/0DRD
https://stacks.math.columbia.edu/tag/0DRA
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the collection of continuous representations ?|GF .+ Gp+ = GLy(F) for v[p. In particular, we

denote by S, the set of the finite places of F'* above p.

Let 7 : Gp+ — Gn(F) be automorphic and such that 7(Gg(c,)) € GLy(F) is adequate. Then by
ILLHLMal, Lemma 5.5.4] we can and do fix a weak patching functor My, for the L-homomorphism
Tp such that for any Serre weight o of G =]],cg GLn(kv) we have

(26) Muo(0) # 0 <= o € W(F).

Theorem 6.3.1 (Modularity of defect one weights). Let 7 : Gp+ — G(F) be an automorphic
representation such that
e 7(Gr,)) € GL,(F) is adequate; and
e 7, is 6(n — 1)-generic.
Then the following are equivalent:
(1) WZy(Tp) "W (T) # 0; and
(2) W,(7p) C W(7).

Proof. This follows from Proposition and Remark using (26). O

Remark 6.3.2. Keep the setup and notation of Theorem and Remark Ifo e W%l(?;p)
for some 7, ~ 77, then o € Wy, (7) if and only if ¢ € W9(7,) if and only if 0 € WZ,(7,). For
each such o, there exists 7 such that B

(27) @(rp,7) = @(FP, ) and  L(@(rP,7)P) > U(ty) ~ 1

for each j € J, and o € W’ (7" )NJH(G (7)), with o € W9(7,) if and only if 7, satisfies Z__ ;) = 0
for each j € J, for which the inequality in is an equality.

We now recall the setup of the local-global compatibility result of [PQ22]. Assume that p

is totally split in F' and fix a place w|p of F. Assume that 7, o 7|qy, is Fontaine-Laffaille
of niveau one, and that satisfies a geometric genericity condition dictated by its position in the
moduli of Fontaine-Laffaille modules (see [PQ22, Definition 3.2.5]). In particular we have a lowest
alcove presentation (1, u) for 75 (with u = (¢p—1, cn—2,...,c1,co) in the notation of §1 in loc. cit.)

and a niveau one tame inertial type 7 with lowest alcove presentation (1, sq ((¢21)Y)) (with

phia &ef ' +({n, a)+1)a) where 0 < i1, j1 < n—1 corresponds to a positive root & = @, 41,5, +1-

Then by the proof of [PQ22, Lemma 3.4.1] (namely, from the expression of Mat,~(¢) in loc. cit.)
we see that w(Ty,T) = t)—aSa, Which is a regular colength one shape. In particular 7, ~» p*P
with w(p?, 7) = t;)—aSqa. By Lemma we obtain:

Theorem 6.3.3 (Conjecture 5.3.1 [PQ22]). Let w|p. Assume that Ty, is Fontaine—Laffaille of
niveau one, that (Tw)n—igmn—j, @5 Fontaine—Laffaille generic in the sense of [PQ22, Definition
3.2.5], and moreover that 75 is 3(n — 1)-generic. Then

W (T) N JH(a(7)) C {F ()", F(u="7)"}

where W, (F) denotes the set of modular weights for T at w (as defined in the paragraph just below
[PQ22], Definition 5.2.2]).

Proof. By [LLHLMal, Theorem 5.1.1], W,,(7) N JH(7 (7)) € W’ (p*) N JH(a(7)). Now, it follows
immediately from Lemma as wW(p*P, 7) = saty—a- O
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The above result removes the weight elimination condition of [PQ22, Theorem 5.6.2]. However
the fact that the deformation ring Rg’T is formally smooth over O when Z_, # 0 modulo @ makes

the argument of [PQ22, Theorem 5.6.2] more direct, since the modules of algebraic automorphic
forms are in this case free over the Hecke algebra by patching arguments (cf. [PQ22, Remark

5.4.6)).
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