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Abstract. Let K/Qp be a finite unramified extension, ρ : Gal(Qp/K) → GLn(Fp) a continuous
representation, and τ a tame inertial type of dimension n. We explicitly determine, under mild
regularity conditions on τ , the potentially crystalline deformation ring Rη,τ

ρ in parallel Hodge–

Tate weights η = (n − 1, · · · , 1, 0) and inertial type τ when the shape of ρ with respect to τ
has colength at most one. This has application to the modularity of a class of shadow weights
in the weight part of Serre’s conjecture. Along the way we make unconditional the local-global
compatibility results of [PQ22].

1. Introduction

In recent years, calculations of various potentially crystalline deformation spaces have seen a
number of applications to questions of local-global compatibility in the mod p and p-adic Lang-
lands program. This includes the weight part of Serre’s conjecture, the determination of mod
p multiplicities, conjectures of Breuil on integral structures in K-types, and generalizations of
Colmez’s functor (see e.g. [EGS15, LLHLM18, LLHLM20, DL21, LLHLMb, LLHM+, LLHLMc,
LLHLMa, HW22, BHH+b, BHH+a]). Under a somewhat exotic genericity condition, [LLHLMb]
shows that tamely potentially crystalline deformation spaces are equisingular to certain closed
subvarieties of Pappas–Zhu local models. Not much is known about the geometry of these local
models for Galois deformation spaces in general. Moreover, it is difficult in practice to make the
genericity condition explicit or to work with their natural presentations.

1.1. The main result. The local model has a stratification indexed by admissible elements of
the extended affine Weyl group called shapes and the complexity of the geometry increases as the
length of the shape decreases. [LLHLMa] shows that when the shape is extremal i.e. has maximal

length (
(
n+1
3

)
for n-dimensional representations of Gal(Qp/Qp)), then the corresponding tamely

potentially crystalline deformation ring is formally smooth. The main result of this paper, which
we state only for representations of Gal(Qp/Qp) in the introduction, is the following:

Theorem 1.1.1 (Theorem 5.2.3). Let E be a finite extension of Qp, with ring of integers O and

residue field F. Let ρ : Gal(Qp/Qp) → GLn(F) a continuous Galois representation, τ a 3n − 7-
generic tame inertial type, η = (n − 1, · · · , 1, 0) ∈ Zn, and Rτ

ρ the lifting ring for potentially

crystalline representations of type (η, τ). If Rη,τ
ρ is nonzero and the length of the shape w̃(ρ, τ)

is at least
(
n+1
3

)
− 1 (i.e. the colength of the shape is at most one), then Rη,τ

ρ is formally smooth

over O or O[[X,Y ]]/(XY − p).

Remark 1.1.2. (1) Replacing Qp by a finite unramified extension K and requiring that the

shape have colength one at each embedding K ↪→ Qp, we show that the deformation ring is
formally smooth over a completed tensor product of rings of the form O[[X,Y ]]/(XY −p).
The number of such factors in the tensor product can furthermore be explicitly computed.
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(2) The colength one deformation spaces that have a parabolic structure were computed in
[LLHLMa]. In general, colength one deformation spaces do not have a parabolic structure,
making their computation far more difficult.

(3) When n = 3, the tame inertial types with colength one shape are sufficient to prove the
Serre weight conjecture for GL3 [LLHLM18, LLHLM20, LLHLMc]. We generalize these
ideas to prove the modularity of Serre weights of defect at most one under the assumptions
of [LLHLMa], in particular under an explicit combinatorial genericity condition.

(4) Using standard Taylor–Wiles techniques, Theorem 1.1.1 gives modularity lifting results
similar to [LLHLMb, Theorem 9.2.1] (improving the polynomial genericity and the tame-
ness condition at p in loc. cit., but imposing specific conditions on the shape with respect
to the tame inertial types).

While Theorem 1.1.1 generalizes some previous results, its proof is perhaps surprisingly subtle
despite the shape having close to maximal length. We do not expect our methods to extend
to shapes of smaller length. This suggests that local models for Galois deformation spaces are
genuinely complicated geometric objects and that simple explicit descriptions are hard to come
by.

Our principal motivation in writing this paper was to apply Theorem 1.1.1 to prove the weight
elimination and mod p multiplicity one results necessary to make unconditional the local-global
compatibility result of [PQ22] which states roughly that the local mod p Galois representation
at p can be recovered from the GLn(Qp)-action on the Hecke isotypic part of the mod p completed
cohomology of a definite unitary group. While the results of [PQ22] were superseded by those of
[LLHM+], the method of [LLHM+] using only extremal shapes does not work for GSp4(Qp) while
it should be possible to adapt the methods of [PQ22] (which builds on [BD14, HLM17, LMP18,
MP17] in small rank) to many p-adic reductive groups over Qp. Indeed, this has been carried out
for GSp4(Qp) [EL]. For generalizations of [LLHM+], an analogue of Theorem 1.1.1 should prove
useful. We hope to return to this in future work.

1.2. Global and local applications. As mentioned in Remark 1.1.2(3), as a more immediate
global application of Theorem 1.1.1 we obtain the modularity of weights of defect at most one.
The notion of defect of a Serre weight σ for a tame Galois representation ρ was first introduced
in [LLHLMb, §8.6]. This notion is purely combinatorial, and encodes the maximal length for

the shapes w̃(ρ, τ) such that σ ∈ W ?(ρ) ∩ JH(σ(τ)). In this paper we generalize the notion of
defect for any ρ in terms of specializations (as done in [LLHLMa] for extremal weights), and
prove their modularity when the defect is at most one, conditional to the existence of a modular
obvious weight. The result is the following, and we refer the reader to the bulk of the paper of
any undefined notion:

Theorem 1.2.1 (Theorem 6.3.1). Let F/F+ be a CM field. Assume that F+ ̸= Q, that all
places of F+ above p are unramified over Qp and totally split in F . Let r : GF+ → G(F) be a
continuous representation which is automorphic in the sense of [LLHLMa, Definition 5.5.1], with
set of modular weights W (r). Let rp be the L-homomorphism attached to the collection {r|G

F+
v
}v|p

and write W g
≤0(rp) and W g

≤1(rp) for the set of extremal weights and for the set of weights of defect

at most one, respectively, for rp. Asssume further that:

• r(GF (ζp)) ⊆ GLn(F) is adequate; and
• rp is 6(n− 1)-generic.

Then the following are equivalent:

(1) W g
≤0(rp) ∩W (r) ̸= ∅; and
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(2) W g
≤1(rp) ⊂ W (r).

Compared to [LLHLMa, Theorem 5.5.5], Theorem 1.2.1 assumes that F+ is unramified above
p, but it gives the modularity of defect one weights. (For GL3, this is sufficient to prove the
generic Serre weight conjecture.)

1.3. Acknowledgements. Part of the work was carried out during a visit at the Università degli
Studi di Padova (2019), which we would like to heartily thank for the excellent working conditions
which provided to us.

D.L. was supported by the National Science Foundation under agreements Nos. DMS-1128155
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Sloan Foundation. S.M. was supported by the ANR-18-CE40-0026 (CLap CLap) and the Institut
Universitaire de France. C.P. was supported by Samsung Science and Technology Foundation
under Project Number SSTF-BA2001-02.

1.4. Notation. For a field K, we denote by K a fixed separable closure of K and let GK
def
=

Gal(K/K). If K is defined as a subfield of an algebraically closed field, then we set K to be this
field.

If K is a nonarchimedean local field, we let IK ⊂ GK denote the inertial subgroup and WK ⊂
GK denote the Weil group. We fix a prime p ∈ Z>0. Let E ⊂ Qp be a subfield which is finite-
dimensional over Qp. We write O to denote its ring of integers, fix an uniformizer ϖ ∈ O and let
F denote the residue field of E. We will assume throughout that E is sufficiently large.

1.4.1. Reductive groups. Let G denote a split connected reductive group (over some ring) together
with a Borel B, a maximal split torus T ⊂ B, and Z ⊂ T the center of G. Let d = dimG−dimB.
When G is a product of copies of GLn, we will take B to be upper triangular Borel and T the
diagonal torus. Let Φ+ ⊂ Φ (resp. Φ∨,+ ⊂ Φ∨) denote the subset of positive roots (resp. positive
coroots) in the set of roots (resp. coroots) for (G,B, T ). We use the notation α > 0 (resp. α < 0) for
a positive (resp. negative) root α ∈ Φ. Let ∆ (resp. ∆∨) be the set of simple roots (resp. coroots).
Let X∗(T ) be the group of characters of T , and set X0(T ) to be the subgroup consisting of
characters λ ∈ X∗(T ) such that ⟨λ, α∨⟩ = 0 for all α∨ ∈ ∆∨. Let W (G) denote the Weyl group
of (G,T ). Let w0 denote the longest element of W (G). We sometimes write W for W (G) when

there is no chance for confusion. Let Wa (resp. W̃ ) denote the affine Weyl group and extended
affine Weyl group

Wa = ΛR ⋊W (G) and W̃ = X∗(T )⋊W (G)

for G, respectively. We use tν ∈ W̃ to denote the image of ν ∈ X∗(T ).

The Weyl groups W (G), W̃ , and Wa act naturally on X∗(T ). If A is any ring, then the above
Weyl groups act naturally on X∗(T )⊗Z A by extension of scalars. Let M be a free Z-module of
finite rank (e.g. M = X∗(T )). The duality pairing between M and its Z-linear dual M∗ will be
denoted by ⟨ , ⟩. If A is any ring, the pairing ⟨ , ⟩ extends by A-linearity to a pairing between
M ⊗ZA and M∗⊗ZA, and by an abuse of notation it will be denoted with the same symbol ⟨ , ⟩.

We write G∨ = G∨
/Z for the split connected reductive group over Z determined by the root

datum (X∗(T ), X
∗(T ),Φ∨,Φ). This defines a maximal split torus T∨ ⊆ G∨ such that we have

canonical identifications X∗(T∨) ∼= X∗(T ) and X∗(T
∨) ∼= X∗(T ).

Let V
def
= X∗(T ) ⊗Z R. For (α, k) ∈ Φ × Z, we have the root hyperplane Hα,k

def
= {x ∈ V |

⟨λ, α∨⟩ = k}. An alcove is a connected component of V \
(⋃

(α,n)Hα,n

)
, and we denote by A the
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set of alcoves. We say that an alcove A is restricted if 0 < ⟨λ, α∨⟩ < 1 for all α ∈ ∆ and λ ∈ A. We
let A0 denote the (dominant) base alcove, i.e. the set of λ ∈ X∗(T )⊗ZR such that 0 < ⟨λ, α∨⟩ < 1

for all α ∈ Φ+. Recall that W̃ acts transitively on the set of alcoves, and W̃ ∼= W̃a ⋊ Ω where Ω
is the stabilizer of A0. We define

W̃+ def
= {w̃ ∈ W̃ | w̃(A0) is dominant} and W̃+

1
def
= {w̃ ∈ W̃+ | w̃(A0) is restricted}.

We fix an element η ∈ X∗(T ) such that ⟨η, α∨⟩ = 1 for all positive simple roots α and let w̃h be

w0t−η ∈ W̃+
1 .

When G = GLn, we fix an isomorphism X∗(T ) ∼= Zn in the standard way, where the standard

i-th basis element εi
def
= (0, . . . , 1, . . . , 0) (with the 1 in the i-th position) of the right-hand side

corresponds to extracting the i-th diagonal entry of a diagonal matrix. In particular, we can write
any root β ∈ Φ as β = εi − εj for uniquely chosen 1 ≤ i, j ≤ n, i ̸= j.

Given a finite set J and an isomorphism G
∼→ GLJ

n we use superscripts in the notations above,
e.g. Φ+,J ⊂ ΦJ , ∆J , X∗(T )J , WJ , etc., where now Φ+,Φ,∆, X∗(T ),W , etc. are relative to GLn.
In order not to overload notations, we do not use underlined notations for the elements of ΦJ ,
X∗(T )J , WJ , etc., so that for instance a root α ∈ ΦJ is in fact a collection of roots (α(j))j∈J
where each α(j) is a root of GLn. Finally, we take η ∈ X∗(T )J to correspond to the element
(n− 1, n− 2, . . . , 0)j∈J ∈ (Zn)J in the identification above. When an element j ∈ J is fixed, we
will abuse notation and will use the same symbol η to denote the element which corresponds to
the tuple (n− 1, . . . , 1, 0) at j.

We let F+
p be a finite unramified étale Qp-algebra so that F

+
p is isomorphic to a product

∏
Sp

F+
v

over a finite set Sp where, for each v ∈ Sp, F
+
v is a finite unramified extension of Qp. For each

v ∈ Sp let OF+
v

be the ring of integers of F+
v , kv the residue field and let Op (resp. kp) be the

product
∏

v∈Sp
OF+

v
(resp.

∏
v∈Sp

kv). (This will be used in global applications, where Sp will be

a finite set of places dividing p of a number field F+.)
If G is a split connected reductive group over Fp, with Borel B and maximal torus T , we let

G0
def
= Reskp/Fp

G/kp , and similarly define B0, T0. We will always assume that F contains the

image of any ring homomorphism kp → Fp so that we can and do fix an isomorphism
(
G0×Spec Fp

Spec F
) ∼→ (G ×Spec Fp Spec F)Jp where Jp denotes the set of ring homomorphisms kp → F.

For notational convenience, we will write G
def
= G0 ×Spec Fp Spec F, and similarly for B, T .

The notations W , W̃ , W̃
+
, W̃

+

1 , etc. as well as the identifications W
∼→ WJp , W̃

∼→ W̃Jp ,

W̃
+ ∼→ (W̃+)Jp , W̃

+

1
∼→ (W̃+

1 )Jp , etc. should be clear.

1.4.2. Galois theory. Let K be a finite extension of Qp, with residue field k of degree f over Fp.
We assume that K/Qp is unramified and write W (k) for the ring of Witt vectors, which is also
the ring of integers of K. The arithmetic Frobenius automorphism on W (k), acting as raising
to p-th power on the residue field will be denoted by φ. We fix an embedding σ0 of K into
E (equivalently an embedding k into F) and define σj = σ0 ◦ φ−j . This gives an identification
between J = Hom(k,F) and Z/fZ.

We normalize Artin’s reciprocity map ArtK : K× → W ab
K so that uniformizers are sent to

geometric Frobenius elements. We fix once and for all a sequence (pm)m∈N ∈ K
N

satisfying

ppm+1 = pm, p0
def
= −p ∈ K and let K∞ be

⋃
m∈N

K(pm).
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Given an element π1
def
= (−p)

1

pf−1 ∈ K we have a character ωK : IK → W (k)× defined by the
condition g(π1) = ωK(g)π1. Using our choice of embedding σ0 this gives a fundamental character
of niveau f

ωf := σ0 ◦ ωK : IK → O×.

Let ρ : GK → GLn(E) be a p-adic, de Rham Galois representation. For σ : K ↪→ E, we define
HTσ(ρ) to be the multiset of σ-labeled Hodge-Tate weights of ρ, i.e. the set of integers i such

that dimE

(
ρ ⊗σ,K Cp(−i)

)GK ̸= 0 (with the usual notation for Tate twists). In particular, the

cyclotomic character ε has Hodge–Tate weights 1 for all embedding σ : K ↪→ E. For µ = (µ(j))j ∈
X∗(T ) we say that ρ has Hodge–Tate weighs µ if for all j ∈ J

HTσj (ρ) = {µ(j)
1 , µ

(j)
2 , . . . , µ(j)

n }.

The inertial type of ρ is the isomorphism class of WD(ρ)|IK , where WD(ρ) is the Weil–Deligne
representation attached to ρ as in [CDT99], Appendix B.1 (in particular, ρ 7→ WD(ρ) is covariant).
An inertial type is a morphism τ : IK → GLn(E) with open kernel and which extends to the Weil
group WK of GK . We say that ρ has type (µ, τ) if ρ has Hodge–Tate weights µ and inertial type
given by (the isomorphism class of) τ .

1.4.3. Miscellaneous. Finally, δP denotes the Kronecker delta function on the condition P . We
also use δ for the defect function in §6.2. This shall cause no confusion.

2. Preliminaries

2.1. Affine Weyl groups, tame inertial types, Serre weights.

2.1.1. Affine Weyl group. We collect here the necessary background to give a classification of
colength one elements in the admissible set (Proposition 2.1.2).

Recall from §1.4.1 that G is a split reductive group with split maximal torus T . We write W

for the Weyl group associated to (G,T ) and V
def
= X∗(T )⊗R ∼= X∗(T

∨)⊗R for the apartment of

(G,T ) on which W̃
def
= X∗(T )⋊W acts. We write C0 for the dominant Weyl chamber in V .

Recall that A denotes the set of alcoves of X∗(T )⊗ R and that A0 ∈ A denotes the dominant
base alcove. We let ↑ denote the upper arrow ordering on alcoves as defined in [Jan03, §II.6.5]

which induces the ordering ↑ onWa via the bijectionWa
∼→ A given by w̃ 7→ w̃(A0). The dominant

base alcove A0 defines a set of simple reflections in Wa and thus a Coxeter length function on Wa

denoted ℓ(−) and a Bruhat order on Wa denoted by ≤. Given λ ∈ X∗(T ) we consider the set of

λ-admissible elements of W̃ :

(1) Adm(λ)
def
=
{
w̃ ∈ W̃ | w̃ ≤ tw(λ) for some w ∈ W

}
.

If Ω ⊂ W̃ is the stabilizer of the base alcove, then W̃ = Wa ⋊ Ω and so W̃ inherits a Bruhat
order in the standard way: For w̃1, w̃2 ∈ Wa and δ ∈ Ω, w̃1δ ≤ w̃2δ if and only if w̃1 ≤ w̃2

, and elements in different right Wa-cosets are incomparable. We extend ℓ(−) to W̃ by letting

ℓ(w̃δ)
def
= ℓ(w̃) for any w̃ ∈ Wa, δ ∈ Ω.

Let (W̃∨,≤) be the following partially ordered group: W̃∨ is identified with W̃ as a group,

and ℓ(−) and ≤ are defined with respect to the antidominant base alcove. If w̃ = tνw ∈ W̃

with w ∈ W and ν ∈ X∗(T ) we define w̃∗ def
= w−1tν ∈ W̃∨. (The assignement w̃ 7→ w̃∗ defines a

bijection which preserves length and Bruhat order, see [LLHL19, Lemma 2.1.3]; we also denote
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the inverse bijection by the same symbol w̃ 7→ w̃∗.) Given λ ∈ X∗(T ) we define the set Adm∨(λ)

by replacing W̃ by W̃∨ in the right hand side of (1).
We also recall that, given m ∈ Z and α ∈ Φ, the m-th α-strip is the subset of V defined by

{x ∈ V | m < ⟨x, α∨⟩ < m+ 1}.

Finally, we say that w̃ ∈ W̃ is regular if it is in the sense of [LLHLMb, Definition 2.1.3].

Proposition 2.1.2. Suppose w̃ ∈ Adm(η) such that ℓ(w̃) = ℓ(tη)− 1. Then one of the following
holds:

(1) w̃ = wtηsαw
−1 where w ∈ W and α > 0 a positive root such that w(α) > 0, and there are

no decompositions α = β1 + β2 with βi > 0 such that w(βi) > 0;
(2) w̃ = wtη−αsαw

−1 where w ∈ W , α ∈ Φ+\∆ such that w(α) < 0, and for any decomposition
α = β1 + β2 with βi > 0, we have w(βi) < 0.

We say that a colength one element w̃ ∈ Adm(η) is of the first form (resp. of the second form)
is it is as in item (1) (resp. as in item (2)) of Proposition 2.1.2. Recalling [LLHLMb, Definition
2.1.3] we note that a colength one element w̃ ∈ Adm(η) is irregular exactly when it is of the first
form and moreover the root α appearing in (1) is a simple root.

Remark 2.1.3. If α = εi − εj ∈ Φ+ \∆ then

(1) the condition in item (1) means that w preserves the order of i and j, and w maps no
element k ∈ (i, j) into an element in (w(i), w(j));

(2) the condition in item (2) means that w reverses the order of i and j, and maps any
k ∈ (i, j) to an element in (w(j), w(i)).

Proof. We assume w̃(A0) is in chamber w(C0). Then there is a gallery from A0 to w̃(A0) in
the w-positive direction (cf. [HC02, §2, Definition 5.2]), hence [HH17, Corollary 4.4] shows that

w̃ < wtηw
−1. Thus ũ

def
= w−1w̃ is dominant so that wũ is a reduced expression for w̃ by [LLHLMa,

Lemma 2.2.1] (cf. Definition 2.1.2 in loc. cit. for the notion of reduced expression). We conclude
that ũ ≤ tηw

−1 and ℓ(ũ) = ℓ(tηw
−1)− 1. Since ũ and tηw

−1 are both dominant and their lengths
differ by 1 they must differ by an affine reflection in direction α for some positive root α > 0 by
[GHS18, Corollary A.1.2]. We claim that the α-strip containing ũ is the lower neighbor of the
α-strip containing tηw

−1.
Suppose the contrary. Then for each vertex v of A0, the line segment joining ũ(v) and tηw

−1(v)
lies in the dominant Weyl chamber and contains tαũ(v). This shows that tαũ(A0) is dominant
and ũ ↑ tαũ ↑ tηw

−1. [Wan87, Theorem 4.3] implies that ũ < tαũ < tηw
−1 which contradicts

ℓ(ũ) = ℓ(tηw
−1)− 1.

There are two cases:

• ũ(A0) and tηw
−1(A0) share the vertex η. In this case ũ = tηsαw

−1. The conditions
ũ ≤ tηw

−1 and ℓ(ũ) = ℓ(tηw
−1)− 1 are equivalent to ℓ(sαw

−1) = ℓ(w−1) + 1, equivalently
ℓ(wsα) = ℓ(w) + 1. But this condition translates exactly to the condition in item (1).

• ũ(A0) has η − α as a vertex. In this case we must have ũ = tη−αsαw
−1. To see the

condition on w, we note that for each positive root β the difference between the β-heights
of tη−αsαw

−1 and tηw
−1 is

⟨η, β∨⟩+ δw(β)>0 − 1− (⟨η, β∨⟩ − ⟨α, β∨⟩+ δwsα(β)>0 − 1) = ⟨α, β∨⟩+ δw(β)>0 − δwsα(β)>0.

Thus the colength 1 condition becomes∑
β ̸=α,β>0

−δw(β)>0 + δwsα(β)>0 = 2⟨η, α⟩ − 2
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which gives the condition in item (2).

This completes the proof. □

Lemma 2.1.4. Let w̃ ∈ Admreg(η) satisfy ℓ(w̃) ≥ ℓ(tη) − 1, and let w̃−1
2 w0tνw̃1 be the unique

up to X0(T ) factorization of w̃ with w̃1, w̃2 ∈ W̃+
1 and ν ∈ X+(T ) (see [LLHLMb, Proposition

2.1.5]). Suppose that w̃ = x̃−1
2 sx̃1 with x̃1, x̃2 ∈ W̃+, s ∈ W , and that x̃1 ↑ x̃ ↑ w̃−1

h x̃2 with

x̃ ∈ W̃+
1 . Then s = w0 and either x̃ = x̃1 ∈ w̃1X

0(T ) or x̃ = w̃−1
h x̃2 ∈ w̃−1

h w̃2X
0(T ). If moreover

ℓ(w̃) = ℓ(tη) we further have x̃ = x̃1 = w̃−1
h x̃2 and ν ∈ X0(T ).

Proof. Let w̃, x̃1, x̃2, s, and x̃ be as above. Since x̃1 ↑ x̃ ↑ w̃−1
h x̃2, we have that x̃1 ≤ x̃ and

x̃2 ≤ w̃hx̃ by [LLHL19, Theorem 4.1.1, Proposition 4.1.2] as w̃hx̃ ∈ W̃+. Then we have

1 ≥ ℓ(tη)− ℓ(w̃)

≥ ℓ((w̃hx̃)
−1w0x̃)− [ℓ(x̃−1

2 ) + ℓ(s) + ℓ(x̃1)]

= [ℓ(w̃hx̃)− ℓ(x̃2)] + [ℓ(w0)− ℓ(s)] + [ℓ(x̃)− ℓ(x̃1)]

where the last equality follows from [LLHL19, Lemma 4.1.9]. Since each term in the last expression
is nonnegative, we immediately see that x̃ = x̃1 or w̃−1

h x̃2. (If moreover ℓ(w̃) = ℓ(tη) we further

have s = w0 and x̃1 = x̃ = w̃−1
h x̃2.) It suffices to show that x̃1 ∈ w̃1X

0(T ) in the former case and
x̃2 ∈ w̃2X

0(T ) in the latter case.
We next show that s = w0. Supposing otherwise, x̃1 = x̃ = w̃−1

h x̃2 and s = w0sα with α ∈ ∆+.
By Proposition 2.1.2 and the paragraph following it, we conclude that w̃ is not regular which is
a contradiction.

Now suppose that x̃ = x̃1 so that we have x̃
−1
2 w0x̃1 = w̃−1

2 w0tνw̃1. The uniqueness in [LLHLMb,
Proposition 2.1.5] guarantees that x̃1 ∈ w̃1X

0(T ) (and, if moreover ℓ(tη) = ℓ(w̃), that ν ∈ X0(T )).

Similarly, if x̃ = w̃−1
h x̃2, then x̃2 ∈ W̃+

1 and uniqueness again guarantees that x̃2 ∈ w̃2X
0(T ). □

For the following lemma, which explicitly describes the unique up to X0(T )-decomposition of
colength one regular admissible elements mentioned in Lemma 2.1.4, we specialize to the case
G = GLn. Recall that in this case we have the elements εi ∈ X∗(T ) for i = 1, . . . , n and the

fundamental weights ω′
εi−εi+1

def
=
∑i

k=1 εi for 1 ≤ i ≤ n− 1. We have the inclusion

(2) W ↪→ W̃+
1 , w 7−→ tηww

where tηw is the dominant weight defined by

(3) tηw
def
=

∑
β∈∆, w−1(β)<0

ω′
β

(see [Her09, equation (5.1)]). Given w ∈ W we write w̃ for the image of w via the inclusion (2).

Lemma 2.1.5. Let w̃ ∈ Admreg(η) satisfy ℓ(w̃) = ℓ(tη) − 1. Then in the decomposition w̃ =

(w̃2)
−1w0tνw̃1 of Lemma 2.1.4, we can take w̃1 = ˜(sαw−1), w̃2 = w̃hw̃−1 and ν = ηw−1 −ηsαw−1 −

εα, where ε equals 1 (resp. 0) if we are in case (2) (resp. case (1)) of Proposition 2.1.2.

Proof. Letting w̃ = wtη−εαsαw
−1, where ε ∈ {0, 1} equals 1 (resp. 0) if we are in case (2) (resp. (1))

of Proposition 2.1.2, we have

w̃ = (w̃hw̃−1)−1w0tν s̃αw−1
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by (2) and the definition of w̃h. It thus suffices to prove that ν is dominant, i.e. using equation
(3), that

δw(β)>0 − δwsα(β)>0 − ε⟨α, β∨⟩ ≥ 0

for all β ∈ ∆. This is an elementary casewise check, based on the value of ⟨α, β∨⟩ ∈ {−1, 0, 1}
and Remark 2.1.3, and which we leave to the reader. □

2.2. Local models, affine charts and monodromy conditions. For any Noetherian O-
algebra R define

LG(R)
def
= {A ∈ GLn(R((v + p))) | A is upper triangular modulo v};

L+M(R)
def
= {A ∈ Matn(R[[v + p]]) | A is upper triangular modulo v}.

2.2.1. Affine charts. Let z̃ = ztν ∈ W̃∨. Given an integer h ≥ 0 define the subfunctor U(z̃)det,≤h ⊆
LG defined on Noetherian O-algebras R as follows: U(z̃)det,≤h(R) is the set of matrices A ∈ LG(R)
such that for all 1 ≤ i, k ≤ n the following holds:

• (v + p)hAik ∈ vδi>kR[v];
• deg

(
(v + p)hAik

)
≤ h+ νk + δi>k − δi<z(k);

• (v + p)hAz(k)k is a monic polynomial; and

• det(A) = det(z)(v + p)||ν||.

where we have written ν = (νℓ)1≤ℓ≤n ∈ X∗(T ) and ||ν|| def
=
∑n

ℓ=1 νℓ.
We now introduce the subfunctors and T∨-torsors which are relevant for our analysis of defor-

mation rings. In the above setting, define the following subfunctors of U(z̃)det,≤0:

• U [0,n−1](z̃) ⊆ U(z̃)det,≤0 as the subfunctor whose R-valued points are those A ∈ U(z̃)det,≤0

such that both A and (v+p)n−1A−1 are in L+M(R); note that U [0,n−1](z̃) is representable
by an affine scheme over O;

• U(z̃,≤η) ⊆ U [0,n−1](z̃) as the closed, O-flat and reduced subscheme of U [0,n−1](z̃) whose

R-valued points consist of A ∈ U [0,n−1](z̃)(R) with elementary divisors bounded by (v+p)η

(i.e. each k by k minor of A is divisible by (v + p)
(k−1)k

2 ); and

• Ũ(z̃,≤η) def
= T∨U(z̃,≤η) as the subscheme of LG whose R-valued points are of the formDA

where D ∈ T∨(R) and A ∈ U(z̃,≤η)(R); note that Ũ(z̃,≤η) is endowed with a T∨
O-action

induced by left multiplication of matrices, and we have
[
T∨,J \Ũ(z̃,≤η)

] ∼= U(z̃,≤η).
The entries of A ∈ U [0,n−1](z̃)(R) will typically be written in the form

Aik = vδi>k

( νk−δi<z(k)∑
ℓ=0

aik,ℓ(v + p)ℓ

)

so that U [0,n−1](z̃) is an affine O-scheme whose global functions is the quotient of the polynomial
O-algebra in the variables aik,ℓ (for the appropriate range of ℓ determined by z̃ and (i, k)) by

the ideal determined by the condition det(A) = det(z)(v + p)||ν||. Then U(z̃,≤ η) is a closed

subscheme of U [0,n−1](z̃), given by the p-saturation of the condition that each k by k minor is

divisible by (v + p)
(k−1)k

2 . In general, these schemes can be somewhat hard to describe, however
in Proposition 3.1.2 and Proposition 3.2.2, we will give an explicit presentations for them when z̃
has colength one.
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2.2.2. Algebraic monodromy condition. Let a ∈ On. We define an operator∇a on LG by∇a(A)
def
=(

v d
dv (A)− [Diag(a), A]

)
, and a closed subfunctor LG∇a ⊆ LG by

LG∇a(R)
def
=

{
A ∈ LG(R) | ∇a(A)A−1 ∈ 1

(v + p)
L+M(R)

}
.

(We write [M,N ] for the usual Lie bracket on LG, defined by [M,N ]
def
= MN −NM .)

We define the following closed subschemes of U(z̃,≤η):
• Unv(z̃,≤η,∇a)

def
= U(z̃,≤η) ∩ LG∇a ; and

• U(z̃,≤η,∇a) ⊆ Unv(z̃,≤η,∇a) as the p-flat closure of Unv(z̃,≤η,∇a)E inside U(z̃,≤η).
Thus U(z̃,≤η,∇a) is the closed subscheme U(z̃,≤η) whose ring of global functions is the quotient
of O(U(z̃,≤ η)) by the p-saturation of the ideal I∇a obtained by imposing that the universal
matrix

Auniv ∈ U(z̃,≤η)
(
O(U(z̃,≤η)

)
satisfies (

∇a(A
univ)

)(
Auniv

)−1 ∈ 1

(v + p)
L+M(O(U(z̃,≤η)),

cf. [LLHLMb, Definition 7.1.8] for a list of generators of this ideal. Proposition 4.3.2 and Propo-
sition 4.3.1 give results towards an explicit presentation for the affine scheme U(z̃,≤η,∇a) when
z̃ has colength at most one.

We define analogously the closed subschemes Ũ(z̃,≤ η,∇a) ⊆ Ũnv(z̃,≤ η,∇a) ⊆ Ũ(z̃,≤ η),

replacing U(z̃,≤η) by Ũ(z̃,≤η) in the above items. Note that we also have

(4) Ũ(z̃,≤η,∇a) = T∨U(z̃,≤η,∇a),

compatible with Ũ(z̃,≤η) def
= T∨U(z̃,≤η).

2.2.3. Monodromy condition and Galois representations. We follow the notation and terminology
on tame inertial types and their lowest alcove presentations of [LLHLMb, §2.4]. In particular

given (s, µ) = (s(j), µ(j))j∈J ∈ WJ × (X∗(T ) ∩ C0)
J , [LLHLMb, Example 2.4.1, equations (5.2),

(5.1)] produces a tame inertial type τ(s, µ + η) and n-tuples a′(j
′) ∈ Zn for 0 ≤ j′ ≤ fr − 1

(where r is the order of the element s(0)s(1) · · · s(f−2)s(f−1) ∈ W ). If µ is 1-deep in C0, for each

0 ≤ j′ ≤ fr−1 we define s′or,j′ to be the element of W such that (s′or,j′)
−1(a′ (j

′)) ∈ Zn is dominant,
and let

(5) a(j)
def
= (s′ (j)or )−1(a′ (j))/(1− pfr)

for 0 ≤ j ≤ f .
Recall from [LLHLMb, §7.2] the p-adic formal algebraic stack X≤η,τ over SpfO. It is p-flat,

equidimensional of dimension (1+ [K : Qp]
(
n
2

)
) and moreover if ρ : GK → GLn(F) is a continuous

Galois representation, then R≤η,τ
ρ is a versal ring for X≤η,τ at its point corresponding to ρ (see

[EG, §4.8]). Let z̃ = (z̃(j))j∈J ∈ W̃∨,J .
Let N ≥ n + 1 and assume that µ is N -deep in alcove C0. From [LLHLMb, Theorem 7.2.3,

Theorem 7.3.2] we have an open substack X≤η,τ (z̃) ↪→ X≤η,τ , an O-flat closed p-adic formal

subscheme Ũ(z̃,≤η,∇τ,∞) of Ũ(z̃,≤η)∧p (where Ũ(z̃,≤η) def
=
∏

j∈J Ũ(z̃(j),≤η) and the superscript

∧p denotes the p-adic completion) and a formally smooth morphism

(6) Ũ(z̃,≤η,∇τ,∞) → X≤η,τ (z̃)

of relative dimension n#J .
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Assume further that N ≥ 2n− 5 and µ is N -deep in alcove C0. Then [LLHLMb, Proposition

7.1.10] shows that the formal scheme Ũ(z̃,≤η,∇τ,∞) is the p-flat closure of a natural deformation

of
∏

j∈J Ũ(z̃(j),≤η,∇a(j)) in the following sense: Letting I
(j)
∇

a(j)
be the ideal cutting out Ũ(z̃(j),≤

η,∇a(j)) in Ũ(z̃(j),≤η), Ũ(z̃,≤η,∇τ,∞) is cut out by the p-saturation of an ideal I∇τ,∞ which

is obtained from
∑

j∈J I
(j)
∇

a(j)
by adding an element divisible by pN−2n+5 to each element of

its natural set of generators (in particular, I∇ ⊂
∑

j(I
(j)
∇

a(j)
, pN−2n+5).) This property can be

expressed (abusively) in the following way: Given a p-adically complete Noetherian O-algebra R,

if Ã ∈ Ũ(z̃,≤η)∧p(R) satisfies the equations in I∇τ,∞ then

(7)
(
∇a(j)(Ã(j))

)(
(v + p)n−1Ã(j)

)−1 ∈ (v + p)n−2Mn(R[v]) + pN−2n+5Mn(R[[v]]).

Finally let us recall the characterization of the Galois representations that contribute to X≤η,τ (z̃):
If ρ ∈ X≤η,τ (z̃)(F), then its étale φ module Mρ = V∗

K(ρ|GK∞ ), cf. [LLHLMb, §5.5], admits a ba-

sis with respect to which the matrix of Frobenius belongs to Ũ(z̃,≤η)(F)
∏

j∈J s−1
j vµj+ηj . We

say that ρ has shape z̃ with respect to τ if additionally the matrix of Frobenius belongs to∏
j∈J I z̃(j)Is−1

j vµj+ηj . (Here I denotes the Iwahori subgroup of GLn(F((v))) corresponding to

the Borel of upper triangular matrices.)
It follows from [LLHLMb, Proposition 5.4.7] that any ρ ∈ X≤η,τ (F) has a unique shape in

Adm(η), which we denote by w̃(ρ, τ)∗.

3. Finite height conditions

In this section, we describe U(w̃,≤η) when w̃∗ ∈ Adm(η) has colength one. Throughout this
subsection R denotes a Noetherian O-flat O-algebra, and we use the notation uβ : Ga ↪→ w0Uw0

for the embedding to the β-entry for each β ∈ Φ−, where U is the subgroup of upper triangular
unipotent matrices in GLn. Moreover, given A ∈ Matn(R) and β = εi − εj ∈ Φ, we write Aβ and
Aβ,ℓ for Aij and aik,ℓ respectively.

3.1. Finite height conditions: the first form. Let w̃∗ ∈ Adm(η) be a colength one shape of
the first form. Thus, by Proposition 2.1.2 and the definition of w̃ 7→ w̃∗, we have w̃ = wsαtηw

−1,
where w ∈ W satisfies w(α) > 0 and w(k) do not belong to the interval (w(i0), w(j0)) for all

i0 < k < j0 if we set α = αi0j0 ∈ Φ+ \∆. For notational convenience we set s
def
= sα and w′ def

= ws.
With an eye towards the monodromy conditions, we introduce the following:

Definition 3.1.1. We say that a negative root β ∈ Φ− is bad (with respect to w̃) if either one of
the following holds:

• β shares either the row or the column of α;
• δw(β)<0 ̸= δw′(β)<0.

Proposition 3.1.2. Let A ∈ U(w̃,≤η)(R).
Then Aw(j0)w(j0) = (w−1Aw)j0j0 = c(v + p)n−j0 for some c ∈ R and

(8) s · u−α(−c) · (w−1Aw) = (v + p)η · V
where V is a lower triangular unipotent matrix whose entries are in R[v].

Moreover, for each β ∈ Φ− the entry Vβ can be written as vκβ · fβ(v) for a polynomial fβ(v) ∈
R[v] of the form

∑
k cβ,k(v + p)k where

(1) if β is bad then κβ = δw(β)<0 = 0 and deg(fβ) < |⟨η, β∨⟩|+ 1;
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(2) if β shares the row or the column of α but is not bad then κβ = δw(β)<0 and deg(fβ) <
|⟨η, β∨⟩|;

(3) if β shares the row of −α then κβ = δw′(β)<0 and deg(fβ) < |⟨η, β∨⟩|;
(4) if β shares the column of −α with β ̸= −α then κβ = δw(β)<0 and deg(fβ) < |⟨η, β∨⟩| −

δw(−α)<w(β)<0;

(5) for all other roots β ∈ Φ−, κβ = δw(β)<0 and deg(fβ) < |⟨η, β∨⟩|.

Proof. It is easy to see that (w−1Aw)j0j0 is a polynomial of degree less than n− j0+1. Let c ∈ R

be the coefficient of vn−j0 in (w−1Aw)j0j0 , and set C
def
= su−α(−c)(w−1Aw) as in (8). One can

readily observe the following degree bounds:

• deg(Cll) ≤ n− l for all 1 ≤ l ≤ n;

• for β = αlm ∈ Φ with l,m ̸∈ {i0, j0}, Cβ = vδw(β)<0fβ(v) with deg(fβ) ≤ n−m− 1;

• for β = αi0m ∈ Φ, Cβ = vδw(β)<0fβ(v) with deg(fβ) ≤ n−m− 1 + δw′(β)<0<w(β);

• for β = αj0m ∈ Φ, Cβ = vδw′(β)<0fβ(v) with deg(fβ) ≤ n−m− 1;

• for β = αli0 ∈ Φ with l ̸= j0, Cβ = vδw(β)<0fβ(v) with deg(fβ) ≤ n − i0 − δw(β)<0 −
δw(β)>w(−α);

• for β = αlj0 ∈ Φ, Cβ = vδw(β)<0fβ(v) with deg(fβ) ≤ n− j0 − δw(β)>w(α) − δw(β)<0.

We will repeatedly use the finite height conditions in the following way:

(1) Assume that the right-bottom block of C of size k × k is of the following form C(n+1−k)(n+1−k) · · · 0
...

. . . 0
Cn(n+1−k) · · · Cnn

,

and that (v + p)n−l | Clm if Clm is sitting on the (k × k)-block above;
(2) For l and m with 1 ≤ l,m ≤ n−k, assume that the (k+1)×(k+1)-submatrix determined

by Clm and the k × k-block above is also lower-triangular;

(3) By applying the finite height condition (v + p)
k(k+1)

2 | ((k + 1) × (k + 1)-minors) to the
(k + 1)× (k + 1)-submatrix above, we conclude that (v + p)n−k | Clm.

We first show that the finite height condition on C implies that the right-bottom (n− i0+1)×
(n− i0+1)-block of C is as described in the statements. This can be proved by induction together
with the degree bounds as follows. It is clear that Cβ = 0 for β = αln if l < n, by the degree
bounds. Now by inductively using items (1), (2), (3) above we conclude that the right-bottom
(n − i0 + 1) × (n − i0 + 1)-block of C is as described in the statements. Moreover, it is also
immediate that Clm = 0 if 1 ≤ l < m and j0 < m ≤ n and that (v + p)n−l | Clm if i0 ≤ l ≤ n and
1 ≤ m ≤ l, by inductively using items (1), (2), (3) above.

We now check that Cβ = 0 if β = αlm with 1 ≤ l < i0 and l < m ≤ j0. Note that we
can not, in general, conclude Clj0 = 0 from the fact (v + p)n−j0 |Clj0 induced from items (1),
(2), (3) above for 1 ≤ l < i0, since the degree bound of the polynomial Clj0 is one higher than
usual if w(i0) < w(l) < w(j0). Let β = αlj0 be such a root, and assume that the right-bottom
(n− l)× (n− l)-block of C is as described in the statements. By items (1), (2), (3) and the degree

bound, we may let Cβ = x(v+p)n−j0 for x ∈ R. Consider C ′ def
= uβ(−x)C. Then we have C ′

β = 0,

and, moreover, the finite height condition together with the degree bounds implies that C ′
lm = 0

for all i0 ≤ m < j0. In particular, we have

C ′
li0 = Cli0 − xC−α = 0.
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By looking at the constant part of C ′
li0
, which is the same as the constant part of −xC−α as v | Cli0 ,

we have p|⟨η,−α∨⟩|−1xc−α = 0 in R where we let p|⟨η,−α∨⟩|−1c−α be the constant part of C−α. On
the other hand, by Lemma 3.1.6 c−α is a unit in R[1p ], so that we conclude that x = 0. (Note that

to prove Lemma 3.1.6 we only used the fact that the right-bottom (n− i0+1)× (n− i0+1)-block
of C is as described in the statements, which is already proved in the previous paragraph.) Now
by repeatedly using items (1), (2), (3) above together with the degree bounds, we conclude that
Clm = 0 if l < m ≤ j0. Repeating this argument, we conclude that Cβ = 0 if β = αlm with

1 ≤ l < i0 and l < m ≤ j0 and that (v + p)n−l | Clm if 1 ≤ m ≤ l ≤ n.
Finally, we point out that we have (w−1Aw)j0j0 = c(v + p)n−j0 , which can be readily seen

during the induction steps due to the degree bound. This completes the proof. □

For the rest of this subsection, we observe some necessary properties of κβ ∈ {0, 1}, defined
in Proposition 3.1.2, as well as some identities of the coefficients of V from the finite height
conditions. We first fix some notation:

• For β ∈ Φ−, we write Dβ for the set of the decompositions (β1, β2) of β into two negative
roots with β1 sharing the column of β (and β2 sharing the row of β).

• For a bad root β ∈ Φ−, we write Aβ for the set {(β1, β2) ∈ Dβ | κβ = κβ1 + κβ2}.
The following are immediate consequences of Proposition 3.1.2, which will be frequently used:

• if β shares the row of α then we have κβ = κs(β);

• if β is a bad root sharing the column of α then deg(v−κs(β)Vs(β)) < |⟨η, s(β)∨⟩| − 1 and
κs(β) = 1 + κβ;

• if (β1, β2) ∈ D−α then κβ1 + κβ2 = 1;
• κ−α = 0.

Lemma 3.1.3. Let β = αlm ∈ Φ−. Then if l ≤ j0 or m > i0 then κβ is subadditive, i.e.,
κβ ≤ κβ1 + κβ2 for all (β1, β2) ∈ Dβ.

Moreover, if β has a decomposition (β1, β2) ∈ Dβ with κβ > κβ1 + κβ2 then

• l > j0 and m ≤ i0;
• κβ = 1 and κβ1 = κβ2 = 0;
• β1 shares the row of −α such that β2 is bad and either s(β1) is bad or β1 = −α.

Proof. One can readily observe that

• if β = αlm with l ̸∈ {i0, j0} then κβ = δw(β)<0;
• if β = αi0m then κβ = δw(β)<0;
• if β = αj0m then κβ = δw′(β)<0.

The first part follows from combining these three observations together with the fact δw(β)<0 ≤
δw(β1)<0 + δw(β2)<0 if (β1, β2) ∈ Dβ, case by case.

For the second part, if β has a decomposition (β1, β2) ∈ Dβ with κβ > κβ1 +κβ2 then it is easy
to see that β1 shares the row of −α, and so if β1 ̸= −α then we have w′(β1) > 0 and w(β1) < 0
and so s(β1) is bad. β2 is also bad, as w′(β2) < 0. □

Lemma 3.1.4. Let β ∈ Φ− be a bad root sharing the row of α. Then the map (β1, β2) 7→
(β1, s(β2)) gives rise to a bijection between the following sets:

• the set Aβ;
• the set of elements (β1, β2) of As(β) with β2 ̸= −α.

Moreover, β2 ∈ Φ− is bad if (β1, β2) ∈ Aβ.
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Proof. For (β1, β2) ∈ Dβ it is easy to see that κβ = κβ1 + κβ2 , if and only if κβ1 = 0 = κβ2 , if
and only if w(β1) > 0, w(β2) > 0, and w′(β2) < 0, if and only if κβ1 = 0 = κs(β2), if and only if
κs(β) = κβ1 + κs(β2). Moreover, if (β1, β2) ∈ Aβ then w(β2) > 0 and w′(β2) < 0, and so β2 is bad.
This completes the proof. □

Lemma 3.1.5. Let β ∈ Φ− be a root sharing the column of α. If β is bad then the map (β1, β2) 7→
(s(β1), β2) gives rise to a bijection between the following sets:

• the set Aβ;
• the set of elements (β1, β2) of As(β) such that s(β1) is bad.

Moreover, if β is not bad and (β1, β2) ∈ As(β) then s(β1) is not bad.

Proof. Assume β is bad. Then we have κβ = 0 and κs(β) = 1. Also, for (β1, β2) ∈ Dβ it is easy to
see that κs(β) = κβ1 + κβ2 and s(β1) is bad, if and only if κβ1 = 1, κs(β1) = 0, and κβ2 = 0, if and
only if κβ = κs(β1) + κβ2 . This completes the proof of the first part.

For the second part, it is clear if κβ = 0. If κβ = 1 then κs(β) = 1 as β is not bad, and so we
have either κβ2 = 1 or κβ1 = 1. If κβ2 = 1 then κβ1 = 0 and so s(β1) is not bad. If κβ2 = 0 then
κβ1 = 1 and κs(β1) = 1, and so s(β1) is not bad. This completes the proof. □

For each β ∈ Φ−, let cβ be the coefficient of vκβ in Vβ. For each β = αlm ∈ Φ− with either
l ≤ j0 or i0 ≤ m, let cıβ be the coefficient of vκβ−1 (resp. vκβ ) in V ı

β if l > j0 and m = i0 (resp.

otherwise), where V ı def
= V −1.

Lemma 3.1.6. If β is a bad root sharing the row of α then

cβ · p|⟨η,α∨⟩| = −c · cs(β).

Moreover, we have −c · c−α = p|⟨η,α
∨⟩|.

Proof. This is immediate from the elementary operations in (8) together with the finite height
conditions. For instance, we have Ci0,i0 = v(v + p)n−i0−1 − cC−α = (v + p)n−i0 where C is
defined in the proof of Proposition 3.1.2. Now, extracting the constant term of the identity we
get −c · c−α = p|⟨η,α

∨⟩|. □

Lemma 3.1.7. Let β ∈ Φ− be a bad root.

(1) If β ∈ Φ− is sharing the row of α then we have

cs(β) +
∑

(β1,β2)∈Aβ

cs(β2)c
ı
β1

+ c−αc
ı
β + cıs(β) = 0.

(2) If β ∈ Φ− is sharing the column of α then we have

cβc
ı
−α +

∑
(β1,β2)∈Aβ

cβ2c
ı
s(β1)

+ cıs(β) = 0.

Proof. (1) follows immediately from Lemma 3.1.4 and Lemma 3.1.3, by extracting the constant
term in the equation (V · V ı)s(β) = 0.

It is immediate that if β′ ∈ Φ− with β′ ̸= −α shares the column of −α and s(β′) is not bad,
then the coefficient of vκβ′−1 in V ı

β′ vanishes, as κβ′ is subadditive if s(β′) is not bad. This result

together with Lemma 3.1.5 and Lemma 3.1.3 implies (2), by extracting the constant term in the
equation (V · V ı)s(β) = 0. □
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3.2. Finite height conditions: the second form. Let w̃∗ ∈ Adm(η) be a colength one shape
of the second form. Write w̃ = wsαtη−αw

−1 where w ∈ W satisfies w(α) < 0 and w(j0) < w(k) <

w(i0) for all i0 < k < j0 if we set α = αi0j0 ∈ Φ+ \∆. For notational convenience we set w′ def
= wsα

and s
def
= sα, so that we may write w̃ = w′tη−αsw

′−1.
With an eye towards applying the monodromy conditions, we introduce the following:

Definition 3.2.1. We say that a negative root β ∈ Φ− is bad (with respect to w̃) if

• β shares either the row or the column of α;
• β satisfies δw(β)<0 = δw′(β)<0.

Proposition 3.2.2. Let A ∈ U(w̃,≤η)(R).
Then Aw′(i0)w′(i0) = (w′−1Aw′)i0i0 = c(v + p)n−j0 for some c ∈ R and

(9) uα(−c) · vεi0 · (w′−1Aw′) · s = (v + p)η · V ′

where V ′ is a lower triangular matrix whose entries are in R[v].

Moreover, V
def
= v−εj0 · V ′ is unipotent, and for each β ∈ Φ− the entry V ′

β can be written as

vκ
′
β · fβ(v) for a polynomial fβ(v) ∈ R[v] of the form

∑
k cβ,k(v + p)k where

(1) if β is bad then κ′β = δw′(β)<0 and deg(fβ) < |⟨η, β∨⟩|+ 1;

(2) if β shares the row or the column of α but is not bad then κ′β = 1+ δw′(β)<0 = δw(β)<0 = 1

and deg(fβ) < |⟨η, β∨⟩|;
(3) if β shares the column of −α then κ′β = δw(β)<0 and deg(fβ) < |⟨η, β∨⟩| − δw(β)>w′(α) −

δw(β)<0;

(4) for all other roots β ∈ Φ−, κ′β = δw′(β)<0 and deg(fβ) < |⟨η, β∨⟩|.

Proof. It is easy to see that (w′−1Aw′)i0i0 is a polynomial of degree less than n− j0+1. Let c ∈ R

be the coefficient of vn−j0 in (w′−1Aw′)i0i0 , and set C
def
= uα(−c)vεi0 (w′−1Aw′)s as in (9). One

can readily observe the following degree bound:

• deg(Cll) ≤ n− l if l ̸= j0, and deg(Cj0j0) ≤ n− l + 1 and Cj0j0 ∈ vR[v];

• for β = αlm ∈ Φ with l ̸= i0 andm ̸∈ {i0, j0}, Cβ = vδw′(β)<0fβ(v) with deg(fβ) ≤ n−m−1;

• for β = αli0 ∈ Φ, Cβ = vδw(β)<0fβ(v) with deg(fβ) ≤ n− i0 − 1− δw(β)>w′(α) − δw(β)<0;

• for β = αlj0 ∈ Φ with β ̸= α, Cβ = vδw(β)<0fβ(v) with deg(fβ) ≤ n−j0+1−δw(β)>w′(−α)−
δw(β)<0;

• for β = αi0m ∈ Φ, Cβ = vδw(β)<0fβ(v) with deg(fβ) ≤ n −m if β ̸= α, and Cα = vfβ(v)
with deg(fβ) ≤ n− j0.

Now, the rest of the proof is similar to Proposition 3.1.2, and we leave the details for the reader. □

For the rest of this subsection, we observe some necessary properties of κ′β ∈ {0, 1}, defined in

Proposition 3.2.2, as well as some identities of the coefficients of V ′ (and so of V as well) from
the finite height conditions. We first fix some notation:

• For β ∈ Φ−, we write Dβ for the set of the decompositions (β1, β2) of β into two negative
roots with β1 sharing the column of β (and β2 sharing the row of β).

• For a bad root β ∈ Φ−, we write Aβ for the set {(β1, β2) ∈ Dβ | κ′β = κ′β1
+ κ′β2

}.
• To describe the bottom degrees of each entry of V , we set κβ

def
= κ′β − 1 if β ∈ Φ− shares

the row of −α, and κβ
def
= κ′β otherwise.

The following are immediate consequences of Proposition 3.2.2, which will be frequently used:
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• if β is bad then we have κ′β = κ′s(β);

• if β is a bad root sharing the column of α then deg(v
−κ′

s(β)V ′
s(β)) < |⟨η, s(β)∨⟩| − 1;

• if β = αj0m with i0 < m ≤ j0 then κ′β = 1;

• if β = αli0 with i0 < l ≤ j0 then κ′β = 0, and, in particular, κ−α = −1.

Lemma 3.2.3. Let β = αlm ∈ Φ−. Then κ′β is subadditive, i.e. κ′β ≤ κ′β1
+ κ′β2

for all (β1, β2) ∈
Dβ.

Moreover, if β has a decomposition (β1, β2) ∈ Dβ with κβ > κβ1 + κβ2 then

• l > j0 and m ≤ i0;
• β1 shares the row of −α such that β2 is bad and either s(β1) is bad or β1 = −α.

Proof. The proof is very similar to Lemma 3.1.3. Observe that

• if β = αlm with l ̸= i0 and m ̸∈ {i0, j0} then κ′β = δw′(β)<0;

• if β = αlm with m ∈ {i0, j0} then κ′β = δw(β)<0;

• if β = αi0m then κ′β = δw(β)<0.

The subadditivity of κ′β follows from combining the three observations above together with the

fact δw′(β)<0 ≤ δw′(β1)<0 + δw′(β2)<0 if (β1, β2) ∈ Dβ. The subadditivity of κβ when l ≤ j0 or
i0 < m also easily follows from the subadditivity of κ′β together with the colength one property
of w.

Assume that β has a decomposition (β1, β2) ∈ Dβ with κβ > κβ1 + κβ2 . Then as κ′β is
subadditive and κβ is subadditive if m > i0, we see that β1 shares the row of −α and so β2 shares
the column of α. It is also easy to see that β2 is bad, and s(β1) is bad if β1 ̸= −α. □

Lemma 3.2.4. Let β ∈ Φ− be a bad root sharing the row of α. Then the map (β1, β2) 7→
(β1, s(β2)) gives rise to a bijection between the following sets:

• the set Aβ;
• the set of elements (β1, β2) of As(β) with β2 ̸= −α.

Moreover, β2 ∈ Φ− is bad if (β1, β2) ∈ Aβ.

Proof. The argument is very similar to Lemma 3.1.4. We leave the details for the reader. □

Lemma 3.2.5. Let β ∈ Φ− be a root sharing the column of α. If β is bad then the map (β1, β2) 7→
(s(β1), β2) gives rise to a bijection between the following sets:

• the set Aβ;
• the set of elements (β1, β2) of As(β) such that s(β1) is bad.

Moreover, if β is not bad and (β1, β2) ∈ As(β) then s(β1) is not bad.

Proof. The argument is very similar to Lemma 3.1.5. We leave the details for the reader. □

For each β ∈ Φ−, let cβ be the coefficient of vκ
′
β in V ′

β. For each β = αlm ∈ Φ− with either

l ≤ j0 or i0 ≤ m, let cıβ be the coefficient of vκ
′
β−1 (resp. vκ

′
β ) in V ı

β if either l = j0 or l > j0 and

m = i0 (resp. otherwise), where V ı def
= V −1.

Lemma 3.2.6. If β is a bad root sharing the row of α then

cβ · p|⟨η,α∨⟩| = −c · cs(β).

Moreover, we have −c · c−α = p|⟨η,α
∨⟩|.
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Proof. The same argument as in Lemma 3.1.6 also works, using the elementary operations in (9)
together with the finite height conditions. □

Lemma 3.2.7. Let β ∈ Φ− be a bad root

(1) If β ∈ Φ− is sharing the row of α then we have

cs(β) +
∑

(β1,β2)∈Aβ

cs(β2)c
ı
β1

+ c−αc
ı
β + cıs(β) = 0.

(2) If β ∈ Φ− is sharing the column of α then we have

cβc
ı
−α +

∑
(β1,β2)∈Aβ

cβ2c
ı
s(β1)

+ cıs(β) = 0.

Proof. The proof is similar to that of Lemma 3.1.7. The only difference is that we use Lemma 3.2.4,
Lemma 3.2.3, and Lemma 3.2.5 instead of Lemma 3.1.4, Lemma 3.1.3, and Lemma 3.1.5, respec-
tively. □

3.3. Description of U(w̃,≤η) in colength one. Let V be the matrix introduced at Proposi-

tion 3.1.2 or at Proposition 3.2.2. For each β ∈ Φ−, we let mβ
def
= |⟨η, β∨⟩| − 1, and recall that the

entry Vβ is of the form

vκβ

m′
β∑

k=0

cβ,k(v + p)k

where

(10) m′
β =

 mβ + 1 if β is bad;
mβ − 1 if β shares the column of −α such that s(β) ∈ Φ− is bad;
mβ otherwise.

Proposition 3.3.1. Let w̃∗ ∈ Adm(η) be a colength one shape. Then there is a closed immersion

U(w̃,≤η) ↪→ SpecO[{cβ,k | β ∈ Φ− and 0 ≤ k ≤ m′
β} ∪ {c}].

Proof. This is immediate from Propositions 3.1.2 and 3.2.2. □

4. Monodromy conditions

In this section, we induce certain identities and properties, that will be necessary to describe
U(w̃,≤η,∇a) for a ∈ On when w̃∗ ∈ Adm(η) is of colength one. Throughout this section, by R
we mean a Noetherian O-flat O-algebra. We keep the notation of §3.

We fix some notation. Set γβ
def
= κβ +m′

β, where m′
β is defined in (10). For each β ∈ Φ−, we

write F≥β (resp. F>β) for the free Z-module generated by the monomials cβ1,k1 · · · cβs,ks for all
non-negative integers k1, · · · , ks with

∑s
i=1 ki ≤ γβ + 1 and for all negative roots β1, · · · , βs with

β = β1 + · · · + βs (resp. with β = β1 + · · · + βs and s > 1). For β′ ∈ Φ− with β′ > β we write

Fβ′

>β for the submodule of F>β generated by the monomials cβ1,k1 · · · cβs,ks with βi ̸= β′ for all i.

We will consider all of these free Z-modules as submodules of the ring O(U(w̃,≤η)) via the closed
immersion of Proposition 3.3.1. Finally, if A ∈ U(w̃,≤η)(R), we abuse notation and write F≥β,

F>β, F
β′

>β for the image in R[v] (via the map O(U(w̃,≤η)) → R corresponding to A) of the free

Z-modules above.
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Let A ∈ U(w̃,≤η)(R), and let V be the corresponding matrix obtained by Proposition 3.1.2
(resp. by Proposition 3.2.2) if w̃ is of the first form (resp. if w̃ is of the second form). Then an
elementary computation shows that A ∈ Unv(w̃,≤η,∇a)(R) if and only if for each β ∈ Φ−

(11) V ♯
β

def
= (∇awV )β +

∑
(β1,β2)∈Dβ

(∇awV )β2V
ı
β1

∈ (v + p)mβMn(R[v])

where aw ∈ On satisfies w(aw) = a. Throughout this subsection, we assume (11) holds for all
β ∈ Φ−, and write ∇ for ∇aw to lighten the notation.

4.1. Monodromy conditions: the first form. Let w̃∗ ∈ Adm(η) be a colength one shape of
the first form (described in Proposition 2.1.2), and keep the notation of §3.1. In particular, we
keep the notation of Proposition 3.1.2.

Lemma 4.1.1. Let β = αlm ∈ Φ− with l ≤ j0 or i0 ≤ m. Then we have

(1) if β is not bad then

V ♯
β ∈ vκ̃β (v + p)mβ

(
Xβ + F>β

)
where Xβ = (mβ + κβ − ⟨aw, β∨⟩)cβ,m′

β
and

κ̃β
def
=

{
κβ if either l ≤ j0, i0 < m, or i0 = m and s(β) ∈ Φ− is not bad;
κβ − 1 if i0 = m and s(β) ∈ Φ− is bad,

(2) if β is bad then

V ♯
β ∈ vκβ (v + p)mβ

(
Yβ + vXβ + F>β

)
where{

Xβ = (m′
β + κβ − ⟨aw, β∨⟩)cβ,m′

β
;

Yβ = (mβ + κβ − ⟨aw, β∨⟩+mβ + κβ)cβ,mβ
+ p(κβ − ⟨aw, β∨⟩)cβ,m′

β
.

Proof. Assume that β = αlm ∈ Φ− is not bad. If either l ≤ j0, i0 < m, or i0 = m and s(β) is not
bad then by Proposition 3.1.2 together with Lemma 3.1.3 it is routine to check the equation in (1).
If l > j0, i0 = m, and s(β) ∈ Φ− is bad then κβ is not subadditive and deg(Vβ/v

κβ ) < |⟨η, β∨⟩|−1
by part (3) of Proposition 3.1.2, and so vκβ ∤

∑
(β1,β2)∈Dβ

(∇V )β2V
ı
β1

while vκβ | (∇V )β. Hence,

in this case we get the equation in (1) with κ̃β = κβ − 1 in the equation.
Assume that β is bad. By part (1) of Proposition 3.1.2, deg Vβ < |⟨η, β∨⟩|+ 1 (as κβ = 0) and

κβ is subadditive, and so we get the equation in (2). □

For β ∈ Φ− and for each integer s ≥ 1, we set Iβ,s to be the set of the tuples of negative roots
(β1, β2, · · · , βs) such that

• β = β1 + β2 + · · ·+ βs and β1 shares the column of β;
• βi + βi+1 ∈ Φ− for i ∈ {1, · · · , s− 1};
•
∑s

i=1 δw(βi)<0 = s− δw(β)>0.

Moreover, we set

Iβ
def
=
⋃
s≥1

Iβ,s.

Lemma 4.1.2. Let β ∈ Φ− with β ≥ −α.

(1) If (β1, β2) ∈ Dβ then γβ ≥ γβ1 + γβ2;
(2) (β1, β2) ∈ Dβ satisfies γβ = γβ1 + γβ2 if and only if κβ < κβ1 + κβ2.
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In particular, if (β1, β2) ∈ D−α then γβ1 + γβ2 = γ−α, deg V
ı
β1

= γβ1 = mβ1 + κβ1, and

1

(γβ1)!

dγβ1V ı
β1

dvγβ1
=

∑
(β′

1,··· ,β′
s)∈Iβ1

(−1)ℓ+j0−scβ′
1,mβ′1

cβ′
2,mβ′2

· · · cβ′
s,mβ′s

where β1 = αℓi0.

Proof. Recall that γβ indicates the degree of Vβ. By definition of w, κβ = κs(β) if either β = αli0

with i0 < l < j0 or β = αi0m with i0 < m < j0. Now it is easy to check (1) and (2) case by case.
For the second part, let (β1, β2) ∈ D−α. Then it is clear that γβ1 + γβ2 = γ−α by (2), and it is

also clear that deg V ı
β1

= γβ1 by (1). Finally, the elements of Iβ correspond to the monomials in
V ı
β1

which has the highest degree γβ1 . This completes the proof. □

Lemma 4.1.3. We have
pm−α+1 · ⟨aw,−α∨⟩ = pm−α · c · Z−α

where

Z−α
def
=
(
m−α − ⟨aw,−α∨⟩

)
c−α,m−α

+
∑

(β1,β2)∈D−α

(
mβ2 + κβ2 − ⟨aw, β∨

2 ⟩
)
cβ2,mβ2

∑
(β′

1,··· ,β′
s)∈Iβ1

(−1)ℓ+j0−scβ′
1,mβ′1

· · · cβ′
s,mβ′s

if we write β1 = αℓi0.

Proof. By Lemma 4.1.2, we see that deg((∇V )β2V
ı
β1
) = γβ2 + γβ1 = γ−α = m−α for all (β1, β2) ∈

D−α. Hence, if we apply the monodromy condition (11) to V−α then we have

V ♯
−α = (m−α − ⟨aw,−α∨⟩)c−α,m−α(v + p)m−α

+
∑

(β1,β2)∈D−α

(mβ2 + κβ2 − ⟨aw, β∨
2 ⟩)cβ2,mβ2

∑
(β′

1,··· ,β′
s)∈Iβ1

(−1)ℓ+j0−scβ′
1,mβ′1

· · · cβ′
s,mβ′s

(v + p)m−α

by applying the second part of Lemma 4.1.2. Since the constant term of V ♯
−α appears only at

(∇V )−α by Lemma 3.1.3, by extracting the constant term we have

−⟨aw,−α∨⟩c−α = pm−αZ−α.

By the second part of Lemma 3.1.6, we get the desired identity. □

We further eliminate the variables Yβ for bad roots β ∈ Φ−.

Lemma 4.1.4. Let β ∈ Φ− be a bad root.

(1) If β shares the row of α then we have

pms(β) · (Yβ + c ·Xs(β)) ∈ pms(β) ·
(
c · cβ,m′

β
· F≥−α + F>β + c · Fβ

>s(β)

)
.

(2) If β shares the column of α then we have

pms(β) · (Yβ − c ·Xs(β)) ∈ pms(β) ·
(
c · cβ,m′

β
· F≥−α + F>β + c · Fβ

>s(β)

)
.

Proof. We first treat the case (1). By Lemma 3.1.4, extracting the constant term in the mon-
odromy equation in part (1) of Lemma 4.1.1 for s(β) gives rise to

(12) ⟨aw, s(β)∨⟩cs(β)+
∑

(β1,β2)∈Aβ

⟨aw, s(β2)∨⟩cs(β2)c
ı
β1
+⟨aw,−α∨⟩c−αc

ı
β ∈ −pms(β)(Xs(β)+F>s(β)).
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As deg(VβV
ı
−α) = m′

β +m−α = mβ + 1 +m−α = ms(β) = κ̃s(β) +ms(β), the quantity in (12), in
fact, belongs to

−pms(β)(Xs(β) + cβ,m′
β
· F≥−α + Fβ

>s(β)).

By multiplying −c and then applying Lemma 3.1.6 together with Lemma 3.1.4, we have

p|⟨η,α
∨⟩|⟨aw, s(β)∨⟩cβ +

∑
(β1,β2)∈Aβ

p|⟨η,α
∨⟩|⟨aw, s(β2)∨⟩cβ2c

ı
β1

+ p|⟨η,α
∨⟩|⟨aw,−α∨⟩cıβ

∈ c · pms(β)(Xs(β) + cβ,m′
β
· F≥−α + Fβ

>s(β)).

Applying the identity cβ +
∑

(β1,β2)∈Aβ
cβ2c

ı
β1

+ cıβ = 0, induced from (V · V ı)β = 0, together with

s(β) = β − α and s(β2) = β2 − α, we have

(13) p|⟨η,α
∨⟩|⟨aw, β∨⟩cβ+

∑
(β1,β2)∈Aβ

p|⟨η,α
∨⟩|⟨aw, β∨

2 ⟩cβ2c
ı
β1

∈ c·pms(β)(Xs(β)+cβ,m′
β
·F≥−α+Fβ

>s(β)).

But by extracting the constant term in the monodromy equation in part (2) of Lemma 4.1.1 for β,
the quantity in (13) is also belongs to

−p|⟨η,−α∨⟩|+|⟨η,β∨⟩|−1(Yβ + F>β)

and so we have the desired result.
We now treat the case (2). By extracting the coefficient of vκβ in the equation (V ·V ı)β = 0, we

have cβ+
∑

(β1,β2)∈Aβ
cβ2c

ı
β1
+cıβ = 0, which together with the equation in part (2) of Lemma 3.2.7

induces ∑
(β1,β2)∈Aβ

cβ2(c
ı
s(β1)

− cı−αc
ı
β1
) + (cıs(β) − cı−αc

ı
β) = 0.

This equation together with Lemma 3.2.5 inductively induces that

(14) cıs(β) − cı−αc
ı
β = 0

for any bad root β sharing the column of α.
By extracting the coefficient of vκβ in the monodromy equation in part (2) of Lemma 4.1.1 for

β, we have

(κβ − ⟨aw, β∨⟩)cβ +
∑

(β1,β2)∈Aβ

(κβ2 − ⟨aw, β∨
2 ⟩)cβ2c

ı
β1

∈ pmβ (Yβ + F>β).

Similarly, by extracting the coefficient of vκs(β)−1 in the monodromy equation in part (1) of
Lemma 4.1.1 for s(β), we have

(15) (κβ − ⟨aw, β∨⟩)cβcı−α +
∑

(β1,β2)∈Aβ

(κβ2 − ⟨aw, β∨
2 ⟩)cβ2c

ı
s(β1)

∈ pms(β)(Xs(β) + F>s(β)).

As deg(VβV
ı
−α) = γβ + γ−α = m′

β +m−α = mβ + 1 +m−α = ms(β) = κ̃s(β) +ms(β), the quantity

in (15), in fact, belongs to

pms(β)(Xs(β) + cβ,m′
β
· F≥−α + Fβ

>s(β)).

Comparing these two equations via the identity (14), we have

pms(β)Xs(β) − cı−αp
mβYβ ∈ pms(β)(cβ,m′

β
· F≥−α + Fβ

>s(β)) + pmβ · cı−α · F>β.
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As c−α = −cı−α, by applying the second part of Lemma 3.1.6 we have

−cpms(β)Xs(β) + pmβ+m−αYβ ∈ c · pms(β)(cβ,m′
β
· F≥−α + Fβ

>s(β)) + pmβ+m−α+1 · F>β.

As s(β) = β − α, we get the desired result. □

We finally treat the case β = αlm ∈ Φ− with l > j0 and m < i0. In this case, κβ is not
subadditive in general, so that the following lemma is not trivial.

Lemma 4.1.5. For β = αlm ∈ Φ− with l > j0 and m < i0,

V ♯
β ∈ vκβ (v + p)|⟨η,β

∨⟩|−1(Xβ + F>β)

where Xβ = (mβ + κβ − ⟨aw, β∨⟩)cβ,m′
β
.

Proof. We first claim that V ı
s(β0)

∈ vR[v] for a bad root β0 ∈ Φ− sharing the row of α. From part

(1) of Lemma 3.1.7 together with Lemma 3.1.4 and Lemma 3.1.6, we have

p|⟨η,α
∨⟩|

cβ0 +
∑

(β1,β2)∈Aβ0

cβ2c
ı
β1

+ cıβ0

− ccıs(β0)
= 0.

As cβ0 +
∑

(β1,β2)∈Aβ0
cβ2c

ı
β1
+cıβ0

= 0 induced from extracting the constant term of (V ·V ı)β0 = 0,

we have ccıs(β0)
= 0. Hence, we conclude that cıs(β0)

= 0, as c is a unit in R[1p ] by Lemma 3.1.6

and R is O-flat.
Let β′ = αl′m′ ∈ Φ− with m′ < i0. We claim that V ı

β′ ∈ vκβ′R[v] if l′ ̸= j0. It is clear that

V ı
β′ ∈ vκβ′R[v] if l′ < j0, by Lemma 3.1.3. Assume j0 < l′. Consider the following identity

0 = (V · V ı)β′ = Vβ′ +
∑

(β1,β2)∈Dβ′

Vβ2 · V ı
β1

+ V ı
β′ ,

and write β1 := αkm′ . It is obvious that Vβ′ ∈ vκβ′R[v], and that Vβ2 · V ı
β1

∈ vκβ′R[v] for

m′ < k < j0 by Lemma 3.1.3, so that it is enough to check that Vβ2 ·V ı
β1

∈ vκβ′R[v] for j0 ≤ k < l′.

Assume that k = j0. If s(β1) is bad then V ı
β1

∈ vR[v] by the first claim, and so we conclude in

this case that Vβ2 · V ı
β1

∈ vκβ′R[v]. If s(β1) is not bad then it is clear that V ı
β1

∈ vκβ1R[v], and so

we also have Vβ2 · V ı
β1

∈ vκβ′R[v] by Lemma 3.1.3. Note that this also implies

(16) (∇V )β2V
ı
β1

∈ vκβ′R[v]

in this case. Assume now that j0 < k < l′. By induction hypothesis, we have V ı
β1

∈ vκβ1R[v] and

so we conclude that Vβ2 ·V ı
β1

∈ vκβ′R[v] by Lemma 3.1.3, which completes the proof of the second
claim.

Now, let β = αlm ∈ Φ− with l > j0 and m < i0. For (β1, β2) ∈ Dβ, if we write β1 = αkm then
it is clear that (∇V )β2V

ı
β1

∈ vκβR[v] for k ̸= j0, by the claim above together with Lemma 3.1.3.

If k = j0, then we also have (∇V )β2V
ı
β1

∈ vκβR[v] by (16), which completes the proof. □

4.2. Monodromy conditions: the second form. Let w̃∗ ∈ Adm(η) be a colength one shape
of the second form (cf. Proposition 2.1.2), and keep the notation of §3.2. In particular, we keep
the notation of Proposition 3.2.2.

Lemma 4.2.1. Let β = αlm ∈ Φ− with l ≤ j0 or i0 ≤ m. Then we have
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(1) if β is not bad then

V ♯
β ∈ vκ̃β (v + p)mβ

(
Xβ + F>β

)
where Xβ = (mβ + κβ − ⟨aw, β∨⟩)cβ,m′

β
and

κ̃β
def
=

{
κβ if either l < j0, i0 < m, or i0 = m and s(β) ∈ Φ− is not bad;
κ′β − 1 if either i0 = m and s(β) ∈ Φ− is bad or l = j0,

(2) if β is bad then

V ♯
β ∈ vκβ (v + p)mβ

(
Yβ + vXβ + F>β

)
where {

Xβ = (m′
β + κβ − ⟨aw, β∨⟩)cβ,m′

β
;

Yβ = (mβ + κβ − ⟨aw, β∨⟩)cβ,mβ
+ p(κβ − ⟨aw, β∨⟩)cβ,m′

β
.

Proof. The proof is similar to that of Lemma 4.1.1 using Proposition 3.2.2 and Lemma 3.2.3
instead of Proposition 3.1.2 and Lemma 3.1.3, respectively. We leave the details for the reader. □

For β ∈ Φ− and for each integer s ≥ 1, we set Iβ,s to be the set of the tuples of negative roots
(β1, β2, · · · , βs) such that

• β = β1 + β2 + · · ·+ βs and β1 shares the column of β;
• βi + βi+1 ∈ Φ− for i ∈ {1, · · · , s− 1};
• w′(βi) < 0 for all i ∈ {1, · · · , s}.

Moreover, we set

Iβ
def
=
⋃
s≥1

Iβ,s.

Lemma 4.2.2. Let β ∈ Φ− with β ≥ −α.

(1) If (β1, β2) ∈ Dβ then γβ ≥ γβ1 + γβ2;
(2) (β1, β2) ∈ Dβ satisfies γβ = γβ1 + γβ2 if and only if κβ < κβ1 + κβ2.

In particular, if (β1, β2) ∈ D−α then γβ1 + γβ2 = γ−α, deg V
ı
β1

= γβ1 = mβ1, and

1

(γβ1)!

dγβ1V ı
β1

dvγβ1
=

∑
(β′

1,··· ,β′
s)∈Iβ1

(−1)ℓ+j0−scβ′
1,mβ′1

cβ′
2,mβ′2

· · · cβ′
s,mβ′s

where β1 = αℓi0.

Proof. The proof is similar to that of Lemma 4.1.2. We leave the details for the reader. □

Lemma 4.2.3. We have

pm−α+1 · (⟨aw,−α∨⟩+ 1) = pm−α · c · Z−α

where

Z−α
def
=
(
m−α − 1− ⟨aw,−α∨⟩

)
c−α,m−α

+
∑

(β1,β2)∈D−α

(
mβ2 − ⟨aw, β∨

2 ⟩
)
cβ2,mβ2

∑
(β′

1,··· ,β′
s)∈Iβ1

(−1)ℓ+j0−scβ′
1,mβ′1

· · · cβ′
s,mβ′s

if we write β1 = αℓi0.
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Proof. By Lemma 4.2.2, we see that deg((∇V )β2V
ı
β1
) = γβ2 + γβ1 = mβ2 + mβ1 = m−α − 1 for

all (β1, β2) ∈ D−α. By the same argument as in Lemma 4.1.3, extracting the constant term of

v · V ♯
−α gives rise to the result. We leave the details for the reader. □

We further eliminate the variables Yβ for bad roots β ∈ Φ−.

Lemma 4.2.4. Let β ∈ Φ− be a bad root.

(1) If β shares the row of α then we have

pms(β) · (Yβ + c ·Xs(β)) ∈ pms(β) ·
(
c · cβ,m′

β
· F≥−α + F>β + c · Fβ

>s(β)

)
.

(2) If β shares the column of α then

pms(β) · (Yβ − c ·Xs(β)) ∈ pms(β) ·
(
c · cβ,m′

β
· F≥−α + F>β + c · Fβ

>s(β)

)
.

Proof. The proof is similar to that of Lemma 4.1.4. The only difference is that we use Lem-
mas 3.2.6, 3.2.4, 4.2.1, 3.2.7, 3.2.5, and 3.2.6 instead of Lemmas 3.1.6, 3.1.4, 4.1.1, 3.1.7, 3.1.5,
and 3.1.6, respectively. We leave the details for the reader. □

Finally, we treat the case β = αlm ∈ Φ− with l > j0 and m < i0. In this case, κβ is not
subadditive in general, so that the following lemma is not trivial.

Lemma 4.2.5. Assume that V ı
s(β) ∈ vκβR[v] for a bad root β ∈ Φ− sharing the row of α. For

β = αlm ∈ Φ− with l > j0 and m < i0, we have

V ♯
β ∈ vκβ (v + p)mβ

(
Xβ + F>β

)
where Xβ = (⟨aw, β∨⟩+mβ + κβ)cβ,m′

β
.

Proof. We first claim that V ı
s(β0)

∈ vκβ0R[v] for each bad root β0 ∈ Φ− sharing the row of α,

whose proof is almost identical to the first claim in the proof of Lemma 4.1.5. The rest of the
proof also is similar to that of Lemma 4.1.5. The only difference is that we use Lemma 3.2.3
instead of Lemma 3.1.3. We leave the details for the reader. □

4.3. Description of U(w̃,≤η,∇a) in colength ≤ 1. In this subsection we describe U(w̃,≤η,∇a)

when w̃∗ ∈ W̃ has colength ≤ 1.
We first give an upper bound of U(w̃,≤η,∇a) for w̃

∗ of colength zero.

Proposition 4.3.1. Let w̃∗ ∈ Adm(η) be a colength zero shape, and let a ∈ On. Assume that a
is n-generic ([LLHLMb, Definition 4.2.2]). Then there is a closed immersion

U(w̃,≤η,∇a) ↪→ SpecO[{Xβ | β ∈ Φ−}].
Proof. This follows from the arguments in [LLHL19, §3.4], specifically the proof of [LLHL19,
Proposition 3.4.12]. (Note that the argument in loc. cit. is written for complete local Noetherian
O-algebras but is valid in our setting of O-flat Noetherian O-algebras.) □

We now give an upper bound of U(w̃,≤η,∇a) for w̃∗ of colength one. Recall that Z−α is
constructed in Lemma 4.1.3 (resp. in Lemma 4.2.3) if w̃∗ is of colength one of the first form
(resp. of the second form).

Proposition 4.3.2. Let w̃∗ ∈ Adm(η) be a colength one shape, and let a ∈ On. Assume that a
is n-generic (as defined in [LLHLMb, §4.2]). Then there is a closed immersion

U(w̃,≤η,∇a) ↪→ Spec
O[{Xβ | β ∈ Φ−} ∪ {c}]

(c · Z−α − p)
.
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Proof. By Proposition 3.3.1, O(U(w̃,≤η,∇a)) is generated by cβ,k (with β ∈ Φ− and 0 ≤ k ≤ m′
β)

and c. But Lemmas 4.1.1 , 4.1.5, 4.2.1 and 4.2.5 show that we can also generate using c, Xβ

(β ∈ Φ−) and Yβ (β bad). In turn, Lemmas 4.1.4 and 4.2.4 show that we can generate using just
c and Xβ. Finally Lemmas 4.1.3 and 4.2.3 (and p-flatness) give the relation c · Z−α − p. □

5. Colength one deformation rings

In this section we apply the results of §3 and §4 to compute potentially crystalline deformation
rings with Hodge–tate weights η, for sufficiently generic ρ and tame inertial types τ such that
w̃(ρ, τ) has colength at most one in each embedding.

5.1. Product structures and error terms. We first extend the technical results of §4.1 and

§4.2 in a way which can be used to describe the closed immersion Ũ(z̃,≤η,∇τ,∞) ↪→ Ũ(z̃,≤η)∧p ,

when z̃ = (z̃(j))j∈J has colength at most one. This requires the modification of some of the
previous formulas by allowing product structures, non-trivial diagonal entries, and an “error
term” which takes into account the monodromy condition defined in §2.2.3.

Keep the notation of §3, and let R be a p-adically complete, topologically finite type, Noetherian
O-algebra. Let w̃∗ ∈ Adm(η) be a colength one shape of the first form (resp. of the second

form), and Ã ∈ Ũ(w̃,≤ η)(R) with its image A ∈ U(w̃,≤ η)(R) under the natural morphism

Ũ(w̃,≤η) → U(w̃,≤η). We may write w−1Ãw = sD0s · w−1Aw (resp. w′−1Ãw′ = D0 · w′−1Aw′)
for some D0 = Diag(a1, · · · , an) ∈ T∨(R). Let V ∈ 1

v Matn(R[v]) be the matrix obtained from

Proposition 3.1.2 (resp. from Proposition 3.2.2) applied to A ∈ U(w̃,≤η)(R), and set Ṽ
def
= D0 ·V .

Then by the same argument as in Proposition 3.1.2 (resp. in Proposition 3.2.2) we may write

(w−1Ãw)j0j0 = aj0j0(v + p)n−j0 (resp. (w′−1Ãw′)i0i0 = ai0i0(v + p)n−j0) for some aj0j0 ∈ R (resp.
for some ai0i0 ∈ R), and we have the following identity:

(17) s · u−α(−
aj0j0
aj0

) · (w−1Ãw) = (v + p)η · Ṽ(
resp. uα(−

ai0i0
aj0

) · vεi0 · (w′−1Ãw′) · s = (v + p)η · vεj0 · Ṽ
)
.

Note that we may identify c, defined in Proposition 3.1.2 (resp. in Proposition 3.2.2), with

aj0j0/ai0 (resp. with ai0i0/ai0). We also note that the degree description of each entry of Ṽ is

exactly the same as that of V , as Ṽ = D0 · V .
We fix a tame inertial type τ with a N -generic lowest alcove presentation (s, µ), together with

an element z̃ ∈ Adm(η)∨ which we write as z̃ = (z̃(j))j∈J .

Until the end of this subsection, assume that j ∈ J is such that ℓ(z̃(j)) = ℓ(tη) − 1, and let

A(j) ∈ U(z̃(j),≤η)(R) be the image of Ã(j) ∈ Ũ(z̃(j),≤η)(R). Let Ṽ (j) ∈ 1
v Matn(R[v]) be the

matrix obtained from (17) (according to the two possible forms of z̃(j)) applied to Ã(j) ∈ Ũ(z̃(j),≤
η)(R). (We adapt the notation of Propositions 3.1.2 and 3.2.2 as well as condition (17) in our
context by adding a superscript (j), so that for instance a colength one shape of the second

form has decomposition w(j)sα(j)tη−α(j)w(j)−1
.) It is easy to see that condition (11) shows that

condition (7) has the form

(18) Ṽ
(j),♯

β(j)

def
=
(
(∇aw Ṽ

(j)) · Ṽ (j) ı
)
β(j)

∈ (v + p)
m

β(j)R[v] + pN−2n+5R[[v]]

for all β(j) ∈ Φ−, where aw ∈ Zn is defined by w(j)(aw) = a(j).
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As Ṽ (j) = D0 · V (j) for some D0
def
= Diag(a1, · · · , an) ∈ T∨(R), if we let β(j) = αlm ∈ Φ− then

it is easy to see that

am · Ṽ (j),♯

β(j) = al · V
(j),♯

β(j) .

Hence, condition (18) applied to Ṽ (j) induces all the relevant lemmas from §4.1 and §4.2 keeping
track of the “error term” pN−2n+5, as the diagonal entries ak of D0 are units in R. More precisely,

• in Lemma 4.1.1 (resp. in Lemma 4.2.1), we have

(1) V ♯

β(j) ∈ v
κ̃
β(j) (v + p)

m
β(j)
(
Xβ(j) + F>β(j)

)
+ pN−2n+5R[[v]];

(2) V ♯

β(j) ∈ v
κ
β(j) (v + p)

m
β(j)
(
Yβ(j) + vXβ(j) + F>β(j)

)
+ pN−2n+5R[[v]],

• in Lemma 4.1.3 (resp. in Lemma 4.2.3), we have

p
m−α(j)+1 · (⟨aw,−α(j)∨⟩+ κ−α(j)) ∈ p

m−α(j) · c · Z−α(j) + pN−2n+5R,

• in Lemma 4.1.4 (resp. in Lemma 4.2.4), we have

p
m

s(β(j)) ·(Yβ(j)±c·Xs(β(j))) ∈ p
m

s(β(j)) ·
(
c · cβ(j),m′

β(j)
· F≥−α(j) + F>β(j) + c · Fβ(j)

>s(β(j))

)
+pN−2n+5R,

• in Lemma 4.1.5 (resp. in Lemma 4.2.5), we have

V ♯

β(j) ∈ v
κ
β(j) (v + p)

m
β(j)
(
Xβ(j) + F>β(j)

)
+ pN−2n+5R[[v]].

5.2. Potentially crystalline deformation rings. Fix ρ : GK → GLn(F), and let τ be a tame
inertial type. We assume that τ has anN -generic lowest alcove presentation ([LLHLMb, Definition
2.4.3]) with N > 3n − 6. Assume that Rη,τ

ρ ̸= 0 so that in particular w̃(ρ, τ) is defined. If

w̃(ρ, τ)(j) = ℓ(tη)− 1 for some j ∈ J , then it determines a positive root α(j) and we write Z−α(j)

for the element Z−α constructed using Lemma 4.1.3 (resp. using Lemma 4.2.3) if w̃∗ is of colength
one of the first form (resp. of the second form) taking into account the “error term” as explained
in §5.1. (Note that the element Z−α is defined exactly because N − 2n + 5 > mβ + 1 for all
negative roots β.)

Lemma 5.2.1. Let τ be a tame inertial type with an N -generic lowest alcove presentation, where
N > 3n− 6. Assume that w̃(ρ, τ) satisfies ℓ(w̃(ρ, τ)(j)) ≥ ℓ(tη)− 1 for each j ∈ J . Then there is
a closed immersion

Ũ((w̃(ρ, τ)(j))∗,≤η,∇a(j)) ↪→ SpecR(j)

where a(j) ∈ Zp are the constants defined in (5) and

R(j) def
=


O[{Xβ |β∈Φ−}∪{c}]

(c·Z−α(j)−p) ⊗O

(⊗n
O, i=1

O[ai,Yi]
(ai·Yi−1)

)
if ℓ(w̃(ρ, τ)(j)) = ℓ(tη)− 1;

O[{Xβ | β ∈ Φ−}]⊗O

(⊗n
O, i=1

O[ai,Yi]
(ai·Yi−1)

)
otherwise.

Proof. The results follow immediately from Proposition 4.3.1 and Proposition 4.3.2 together with
equation (4). □

Proposition 5.2.2. Let τ be a tame inertial type with an N -generic lowest alcove presentation,
where N > 3n − 6. Assume that w̃(ρ, τ) satisfies that ℓ(w̃(ρ, τ)(j)) ≥ ℓ(tη) − 1 for each j ∈ J .
Then there is a closed immersion

Ũ(w̃(ρ, τ)∗,≤η,∇τ,∞) ↪→ Spf

( ⊗
O, j∈J

R(j)

)∧p

where the rings R(j) have been defined in Lemma 5.2.1.
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Proof. The proof goes very similar to the ones of Proposition 4.3.2 and Proposition 4.3.1 together
with Lemma 5.2.1. The only difference is that we need to take care of the error terms. For
instance, if (w̃(ρ, τ)(j))∗ is of colength one of the first form, and if β is a bad root sharing the row

of α, then there exist Fβ ∈ F≥−α, Gβ ∈ F>β, and Hs(β) ∈ Fβ
>s(β) such that

Yβ = −c ·Xs(β) +
(
c · cβ,m′

β
· Fβ +Gβ + c ·Hs(β)

)
+O

(
pN−2n+5−ms(β)

)
,

by Lemma 4.1.4. The coefficient cβ,m′
β
corresponds to Xβ, and so due to our generic assumption,

by scaling Yβ we can further eliminate the variable Yβ.
Repeating the same arguments, we conclude that there is a surjection( ⊗

O, j∈J
R(j)

)∧p

↠ O(Ũ(w̃(ρ, τ)∗,≤η,∇τ,∞)),

which completes the proof. □

Set
J0

def
= {j ∈ J | ℓ(w̃(ρ, τ)(j)) = ℓ(tη)− 1 and Z−α(j) ≡ 0 (mod ϖ)}.

Theorem 5.2.3. Let τ be a tame inertial type with an N -generic lowest alcove presentation,
where N > 3n− 6. Assume that Rη,τ

ρ ̸= 0, and the shape w̃(ρ, τ) satisfies ℓ(w̃(ρ, τ)(j)) ≥ ℓ(tη)− 1

for each j ∈ J . Then Rη,τ
ρ is formally smooth over

(19)
⊗̂

O, j∈J0

O[[X,Y ]]

(XY − p)
.

Proof. First, notice that we may replace Z−α withX−α, due to the equations of Z−α in Lemma 4.1.3

and Lemma 4.2.3. As ρ ∈ X≤η,τ (w̃(ρ, τ)∗)(F), we can pick Ã ∈ Ũ(w̃(ρ, τ)∗,≤η)(F) correspond-

ing to ρ|GK∞ as explained in §2.2.3. Then the completion of O
(
Ũ(w̃(ρ, τ)∗,≤η,∇τ,∞)

)
at Ã is

formally smooth over the ring in (19), by dimension counting, and by (6), the deformation ring

R≤η τ
ρ is also formally smooth over the ring in (19). As the latter is irreducble, so is R≤η τ

ρ , in

particular R≤η τ
ρ = Rη τ

ρ which completes the proof. □

Remark 5.2.4. Under stronger genericity assumptions on τ we have Ũ(z̃,≤η,∇τ,∞) ̸= ∅ whenever
z̃ ∈ Adm(η)∨ ([LLHLMb, Lemma 7.3.5]).

6. Applications

In this section we elaborate on how the explicit description of the potentially crystalline defor-
mation rings from Theorem 5.2.3 can provide information on representation theory and automor-
phic forms through following the philosophy of the mod p local Langlands correspondence.

6.1. Subextremal weights. In this section we refine, in Definition 6.1.2, the notion of defect
for Serre weights of ρ : GK → GLn(F) introduced in [LLHLMb, §8.6.1] and [LLHLMa, §3.7].

We fix once and for all a lowest alcove presentation w̃(ρss) for ρ. All tame inertial types will
be endowed with the unique lowest alcove presentation compatible with w̃(ρss). Throughout this
subsection, we assume Sp = {v} so that F+

p = K.

Recall from [CEG+16, Theorem 3.7] that given a tame inertial type τ for K there exists an
irreducible smooth representation σ(τ) of GLn(OK) which satisfies properties towards the inertial
local Langlands correspondence. By [LLHLMb, Theorem 2.5.3], if τ has a 1-generic lowest alcove
presentation (s, µ− η) then σ(τ) can be taken to be Rs(µ).
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Let ρsp : IK → GLn(F) be a 2n-generic tame inertial F-type. The choice of a lowest alcove
presentation w̃(ρsp) = tµ+ηs for it gives a map

τρsp : Admreg(η) −→ {τ : IK → GLn(E)} .
tνw 7→ τ(sw, µ+ η + s(ν))

(Note that given w̃ ∈ Admreg(η) we have w̃(ρsp, τρsp(w̃)) = w̃ by construction.)
Recall from [LLHLMb, §2.3.1] the background on Deligne–Lustig representations and their

lowest alcove presentations. In particular given a Deligne–Lusztig representation R with a 2(n−1)-
generic lowest alcove presentation w̃(R) we have a set JHout(R) of outer weights for R. We also
recall that we have a bijection{

(w̃1, w̃2) ∈
(
W̃

+
× W̃

+

1

)
/X0(T ) | w̃1 ↑ w̃−1

h w̃2

}
−→ Admreg(η)(20)

(w̃1, w̃2) 7−→ w̃−1
2 w0w̃1

from [LLHLMb, Remark 2.1.8], and a bijection{
(w̃1, w̃2) ∈

(
W̃

+
× W̃

+

1

)
/X0(T ) | w̃1 ↑ w̃2

}
−→ W ?(ρsp)

(w̃1, w̃2) 7−→ F(w̃2,w̃(ρsp)(w̃1)−1(0))

from [LLHLMb, Proposition 2.6.2]. As multiplication by w̃h gives a self bijection on W̃
+

1 , we
finally obtain a bijection

σρsp : Admreg(η) −→ W ?(ρsp).

w̃−1
2 w0w̃1 7−→ F(w̃−1

h w̃2,w̃(ρsp)(w̃1)−1(0))

We write w̃ρsp for the inverse of σρsp .

Lemma 6.1.1. Assume that w̃(ρsp) is a 2n-generic lowest alcove presentation for ρsp, and let w̃ ∈
Admreg(η). Then σρsp(w̃) ∈ W ?(ρsp) ∩ JHout(σ(τρsp(w̃))) and it satisfies the following property:

for any σ′ ∈ W ?(ρsp) ∩ JH(σ(τρsp(w̃))) we have

(21) w̃ρsp(σ
′)(j) ≥ w̃(j)

for all j ∈ J with equality for all j ∈ J if and only if σ′ = σ.

Proof. This is an immediate consequence the proof of [LLHLMb, Proposition 8.6.3] of which we

employ here the notation and convention. In particular we let τ
def
= τρsp(w̃) so that w̃ = w̃(ρ, τ) ∈

Admreg(η). Using the bijection (20) we decompose w̃ as w̃−1
2 w0w̃1 where (w̃1, w̃2) ∈ W̃

+
× W̃

+

1

satisfies w̃1 ↑ w̃−1
h w̃2.

We have σρsp(w̃) = F(w̃−1
h w̃2,w̃(ρsp)w̃−1

1 (0)) by definition, and the latter Serre weight is the element

κ ∈ W ?(ρsp)∩JH(σ(τ)) defined in [LLHLMb, Proposition 8.6.3]. As w̃(ρsp)w̃−1
1 (0) = w̃(τ)w̃−1

2 (0)

by [LLHLMb, Proposition 2.6.4], the weight κ is in JHout(σ(τ)), by definition of JHout(σ(τ)) (see
[LLHLMb, Proposition 2.3.7] and the beginning of [LLHLMb, §2.3.1]).

The fact that for any σ′ ∈ W ?(ρsp)∩ JH(σ(τ)) the inequality (21) holds is immediate from the
proof of [LLHLMb, Proposition 8.6.3]. We provide the details: by [LLHLMb, Proposition 2.6.4]

any σ′ ∈ W ?(ρsp) ∩ JH(σ(τ)) is of the form σ′ = F(w̃′,w̃(τ)s̃−1
2 (0)) for some w̃′ ∈ W̃

+

1 and some

pair (s̃1, s̃2) ∈ W̃
+
× W̃

+
satisfying s̃1 ↑ w̃′ ↑ w̃−1

h s̃2 and s̃−1
2 ws̃1 = w̃(ρsp, τ) for some w ∈ W .

By Wang’s Theorem (see [LLHL19, Theorem 4.1.1]) the condition s̃2 ↑ w̃hw̃
′, which is defined
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embeddingwise, gives s̃
(j)
2 ≤ w̃

(j)
h w̃′ (j) for all j ∈ J and by [LLHL19, Lemma 4.1.9] we conclude

that
(w̃

(j)
h w̃′ (j))−1w0s̃

(j)
1 ≥ (s̃

(j)
2 )−1w0s̃

(j)
1 ≥ (s̃

(j)
2 )−1ws̃

(j)
1 = w̃(j)

since (s̃
(j)
2 )−1w0s̃

(j)
1 , (w̃

(j)
h w̃′ (j))−1w0s̃

(j)
1 are reduced expressions for all j ∈ J and w0 ≥ w. As

s̃1 ↑ w̃′ ∈ W̃
+

1 we see that (w̃hw̃
′, s̃1) defines an element in the left hand side of (20) and hence

w̃ρsp(σ
′) = (w̃hw̃

′)−1w0s̃1, proving (21). The fact that the equality holds for all j ∈ J if and only
if σ′ = σρsp(w̃) is immediate since σρsp is a bijection. □

The usual order on N induces the product partial order on NJ , and for h = (h(j))j∈J ∈ NJ we
define

W ?
≤h(ρ

sp)
def
=
{
σ ∈ W ?(ρsp) | ℓ

(
w̃ρsp(σ)

(j)
)
≥ ℓ(tη)− h(j) for all j ∈ J

}
.

Let ρ : GK → GLn(F) be a continuous Galois representation such that ρss is 0-generic (so

that w̃(ρss) ∈ W̃ is defined). We say that a tame inertial F-parameter ρsp : IK → GLn(F) is a
specialization of ρ, and write ρ⇝ ρsp, if there exists an n-generic tame inertial type τ such that
ρ is τ -admissible and w̃(ρ, τ) = w̃(ρsp, τ). (In this definition, the lowest alcove presentations of τ
and ρsp are always assumed to be compatible with a fixed lowest alcove presentation of ρss.)

Let Xn,K be the Noetherian formal algebraic stack over SpfO defined in [EG, Definition 3.2.1].
It has the property that Xn,K(F) is isomorphic to the groupoid of continuous representations of
GK over rank n vector spaces over F. Moreover there is a bijection σ 7→ Cσ between Serre weights

of G(
def
= GLn(k)) and irreducible components of the reduced special fiber of Xn,K , described in

[LLHLMb, §7.4]. (We refer the reader to [LLHLMb, §2.2] concerning Serre weights and their
lowest alcove presentations.) This bijection is a renormalization of the bijection σ 7→ X σ

n,red of

[EG, Theorem 6.5.1].
In particular, if ρ ∈ Xn,K(F) we define the set of geometric weights of ρ as

W g(ρ)
def
= {σ | ρ ∈ Cσ(F)} .

Definition 6.1.2. Let ρ : GK → GLn(F) be a continuous Galois representation such that ρss is

0-generic. For h = (h(j))j∈J ∈ NJ define W g
≤h(ρ) to be

W g(ρ) ∩
( ⋃

ρ⇝ρsp

W ?
≤h(ρ

sp)

)
.

In what follows we write 1 for the tuple of h ∈ NJ satisfying h(j) = 1 for all j ∈ J , and similarly
for 0. Note that W g

≤0(ρ) = Wextr(ρ) is the set of extremal weights in [LLHLMa, Definition 3.7.1].

6.2. Application to patching functors. We introduce the formalism of patching functors fol-
lowing [LLHLMa, §5.2], giving applications to the results on the deformation rings in §5.

6.2.1. L-parameters. Recall that F+
p is a finite unramified étale Qp-algebra, which we write as∏

v∈Sp
F+
v for a finite set Sp and finite unramified extensions F+

v /Qp. We assume throughout

that for any v ∈ Sp the coefficient field E (resp. F) contains the image of any homomorphism

F+
v ↪→ Qp (resp. kv ↪→ Fp, where kv denotes the residue field of F+

v ). We let G∨ denote the

product
∏

F+
p →E GLn

∨
/O (the dual group of ResF+

p /Qp
GLn/Op

) and LG(F) def
= G∨ ⋊ Gal(E/Qp),

where Gal(E/Qp) acts on the set {ι : F+
p → E} by post-composition. An L-homomorphism over

A ∈ {E,F} is a continuous homomorphism rp : GQp → LG(A). An L-parameter is a G∨(E)-
conjugacy class of an L-homomorphism. An tame inertial L-parameter is a G∨(E)-conjugacy
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class of an homomorphism τ : IQp → G∨(E) which has open kernel and factors through the tame
quotient of IQp , and which admits an extension to an L-homomorphism. By [GHS18, Lemma
9.4.1, Lemma 9.4.5], the datum of an L-parameters rp (resp. a tame inertial L-parameter τ) is
equivalent to the datum of a collection of continuous homomorphisms {ρv : GF+

v
→ GLn(A)}v∈Sp

(resp. tame inertial types {τv : IF+
v

→ GLn(A)}v∈Sp). Via this bijection, we can therefore give
the notion of lowest alcove presentations and genericity for L-parameters. Given a tame inertial
L-parameter τ with corresponding collection {τv : IF+

v
→ GLn(A)}v∈Sp of tame inertial types, we

let σ(τ) be the tame smooth irreducible representation of GLn(Op) over E given by ⊗v∈Sp,Eσ(τv),
where for each v ∈ Sp we let σ(τv) be the tame smooth irreducible representation of GLn(OF+

v
)

over E attached to τv via the inertial local Langlands correspondence of [LLHLMb, Proposition
2.5.5].

6.2.2. Patching functors and Serre weights. Let now rp : GQp → LG(F) be an L-homomorphism,
with corresponding collection {ρv : GF+

v
→ GLn(F)}v∈Sp .

We let Rp be a nonzero complete local Noetherian equidimensional flat O-algebra with residue
field F such that each irreducible component of Spec Rp and of Spec R

p
is geometrically irreducible,

and define

Rrp
def
=
⊗̂

v∈Sp,O
R□ρv , R∞

def
= Rp⊗̂ORrp

(we suppress the dependence on Rp in the notation of R∞).
Given a tame inertial L-homomorphism τ : IQp → G∨(E), with corresponding collection

{τv}v∈Sp , we define

Rη,τ
rp

def
=
⊗̂

v∈Sp

Rηv ,τv
ρv

and R∞(τ)
def
= R∞ ⊗Rrp

Rη,τ
rp

, and write X∞, X∞(τ), X∞(τ) for Spec R∞, Spec R∞(τ), and

Spec R∞(τ) respectively.
We write Mod(X∞) be the category of coherent sheaves over X∞ and RepO(GLn(Op)) be the

category of topological O[GLn(Op)]-modules which are finitely generated over O.

Definition 6.2.3. A weak patching functor for an L-homomorphism rp : GQp → LG(F) is a
nonzero covariant exact functor M∞ : RepO(GLn(Op)) → Mod(X∞) such that for any tame
inertial L-homomorphism τ and any O-lattice σ(τ)◦ in σ(τ) one has:

(1) M∞(σ(τ)◦) is a maximal Cohen–Macaulay sheaf on X∞(τ); and

(2) for all σ ∈ JH(σ(τ)), M∞(σ) is either zero or a maximal Cohen–Macaulay sheaf onX∞(τ).

Given a weak patching functor for an L-homomorphism rp we thus define

(22) WM∞(rp)
def
= {σ | σ is a 3(n− 1)-deep Serre weight of G and M∞(σ) ̸= 0} .

By [LLHLMb, Proposition 2.4.5] and [LLHLMa, Theorem 5.1.1, Proposition 5.4.1] we see that
if rp is 6(n − 1)-generic then condition that σ is 3(n − 1)-deep in the right hand side of (22) is
automatically satisfied.

6.2.4. Modularity of defect one weights. We now assume Sp = {v} and F+
v = K. In particular

a continuous homomorphism ρ : GK → GLn(F) can be seen as an L-parameter, and have weak
patching functors associated to it.

Proposition 6.2.5. Let ρ : GK → GLn(F) be 6(n − 1)-generic and let M∞ be a weak patching
functor for ρ. Then the following are equivalent:
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(1) W g
≤0(ρ) ∩WM∞(ρ) ̸= ∅; and

(2) W g
≤1(ρ) ⊆ WM∞(ρ).

Before the proof, we record the following lemma, which will be also used in the proof of [PQ22,
Conjecture 5.3.1] in §6.3.

Lemma 6.2.6. Let ρsp : GK → GLn(F) be 6(n − 1)-generic and let w̃ ∈ Admreg(η) satisfy

ℓ(tη)− ℓ(w̃(j)) ≤ 1 for all j ∈ J . Let τ
def
= τρsp(w̃) and write w̃ = w̃−1

2 w0tνw̃1 where w̃1, w̃2 ∈ W̃
+

1

and ν ∈ X+(T ) are uniquely determined up to X0(T ). Then:

W ?(ρsp) ∩ JH(σ(τ)) =
{
σρsp(w̃

′) | w̃′ (j) ∈ S(j) for all j ∈ J
}

where S(j) def
=
{
(w̃

(j)
2 )−1w0tν(j)w̃

(j)
1 , (w̃

(j)
h w̃

(j)
1 )−1w0w̃

(j)
1

}
. Moreover, #S(j) = 1 if and only if

w̃
(j)
1 = w̃−1

h w̃
(j)
2 and ν(j) ∈ X0(T ), if and only if ℓ(w̃(j)) = ℓ(tη).

Note that the existence and uniqueness of the decomposition of w̃ in the lemma is guaranteed
by [LLHLMb, Proposition 2.1.5].

Proof. The relation F(x̃,ω) ∈ W ?(ρsp) ∩ JH(σ(τ)) is equivalent, by [LLHLMb, Proposition 2.6.4],

to the existence of a factorization w̃ = (x̃2)
−1sx̃1 with x̃1, x̃2 ∈ W̃

+
, x̃1 ↑ x̃ ↑ w̃−1

h x̃2 and

ω = w̃(ρsp)(x̃1)
−1(0). By Lemma 2.1.4 applied to each w̃(j) we have s = w0 and for all j ∈

J either x̃(j) = x̃
(j)
1 ∈ w̃

(j)
1 X0(T ) (in which case, by the uniqueness of the factorization in

[LLHLMb, Proposition 2.1.5] we further have x̃
(j)
2 = t−w0(ν(j))

w̃
(j)
2 ) or x̃(j) = (w̃

(j)
h )−1x̃

(j)
2 ∈

(w̃
(j)
h )−1w̃

(j)
2 X0(T ) (in which case, by the uniqueness of the factorization in [LLHLMb, Proposition

2.1.5] we further have x̃
(j)
1 = tν(j)w̃

(j)
1 ). The conclusion follows now from the definition of the map

σρsp . □

Proof of Proposition 6.2.5. The proof is by induction on the following quantity δρ(σ) attached to
a Serre weight σ ∈ W g

≤1(ρ):

(23) δρ(σ)
def
= min

{∑
j∈J

ℓ(tη)− ℓ(w̃ρsp(σ)
(j)) | ρ⇝ ρsp

}
.

We fix throughout the proof a choice of an algebraic central character ζ; all lowest alcove presen-
tations below will be chosen to be compatible with ζ.

By definition of W g
≤1(ρ) and Lemma 6.1.1, for each σ ∈ W g

≤1(ρ) there exist ρ⇝ ρsp and a tame

inertial type τ (depending on ρsp) such that

(1) σ ∈ W g(ρ) ∩W ?(ρsp) ∩ JHout(σ(τ));
(2) w̃ρsp(σ) = w̃(ρsp, τ) ∈ Admreg(η); and

(3) w̃ρsp(σ
′)(j) ≥ w̃ρsp(σ)

(j) for all j ∈ J and all σ′ ∈ W ?(ρsp) ∩ JH(σ(τ)).

(Note that condition (2) determines τ uniquely, and we thus let τ = τρsp(w̃ρsp(σ)) in the notation
of Lemma 6.1.1.) We fix ρ⇝ ρsp such that w̃(ρsp, τ) is maximal possible (which is equivalent to
w̃ρsp(σ) realizing the minimum (23)), where τ is the type associated to ρsp satisfying (1), (2), and
(3) above.

We claim that with this choice of ρ⇝ ρsp and τ we have

w̃(ρ, τ) = w̃(ρsp, τ).
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Indeed, we always have w̃(ρ, τ) ≥ w̃(ρsp, τ) by [LLHLMa, Theorem 3.5.1]. If w̃(ρ, τ) > w̃(ρsp, τ),
then there exists a specialization ρ⇝ ρ′,sp such that w̃(ρ′,sp, τ) = w̃(ρ, τ) (in particular, w̃(ρ′,sp, τ) ∈
Admreg(η)) and therefore w̃(ρ′,sp, τ) > w̃(ρsp, τ). This contradicts the maximality of w̃(ρsp, τ).

For each σ ∈ W g
≤1(ρ) with corresponding ρ⇝ ρsp and τ as above, we now claim that

(24) W g(ρ) ∩ JH(σ(τ)) = W ?(ρsp) ∩ JH(σ(τ))

or, equivalently by [LLHL19, Theorem 4.2.4], that any σ′ ∈ W ?(ρsp) ∩ JH(σ(τ)) is in W g(ρ).

Indeed by Lemma 6.1.1 there exists σ0 ∈ W ?(ρsp) ∩ JH(σ(τ)) such that

(1) δρ(σ0) = 0; and

(2) for all σ′ ∈ W ?(ρsp) ∩ JH(σ(τ)) we have w̃ρsp(σ
′)(j) ∈ {w̃ρsp(σ0)

(j), w̃ρsp(σ)
(j)}.

By item (1) and [LLHLMb, Theorem 7.4.2] (see also [LLHLMa, Remark 3.9.1]) we have σ0 ⊂
W g(ρ) and thus ρ ∈ Cσ ∩ Cσ0 . Recall from [LLHLMb, equation (4.11) and Definition 4.6.1] the

variety C̃ζ
σ′ with its decomposition

∏
j∈J C̃

ζ,(j)
σ′ . Each C̃

ζ,(j)
σ′ is determined explicitly by w̃(ρsp)(j)

and w̃ρsp(σ
′)(j) (see loc. cit. Definition 4.3.2, Theorem 4.3.9) so that C̃

ζ,(j)
σ′ = C̃

ζ,(j)
σ if w̃ρsp(σ

′)(j) =

w̃ρsp(σ)
(j), and C̃

ζ,(j)
σ′ = C̃

ζ,(j)
σ0 if w̃ρsp(σ

′)(j) = w̃ρsp(σ0)
(j). Thus, by item (2), for all σ′ ∈ W ?(ρsp)∩

JH(σ(τ)) we have

C̃ζ
σ ∩ C̃ζ

σ0
=
∏
j∈J

C̃ζ,(j)
σ ∩ C̃ζ,(j)

σ0
⊆
∏
j∈J

C̃
ζ,(j)
σ′ = C̃ζ

σ′

which together with [LLHLMb, Theorem 7.4.2] implies Cσ ∩ Cσ0 ⊆ Cσ′ . This proves (24).
We now proceed to the inductive argument. We freely use the notation for cycles from patching

functors introduced in [LLHLMa, §5.3], in particular we write pr to indicate the projection map
from cycles over the reduced union ∪τ∈T X∞(τ) (for a set of generic tame inertial L-parameters
T ) to cycles over the special fiber of the multi-type deformation ring associated to the set T . The
set T can be fixed to satisfy condition (ii) in [LLHLMa, §5.3] since all the tame inertial types τ

involved in this proof satisfy ℓ(w̃(ρ, τ)(j)) ≥ ℓ(tη)− 1 for all j ∈ J , hence Theorem 5.2.3 applies.
Furthermore, given σ ∈ W g(ρ) we will write Cσ(ρ) to denote the pullback of the component Cσ to
the versal ring of Xn,K at ρ ∈ Xn,K(F).

Let σ ∈ W g
≤1(ρ). We prove by induction on δρ(σ) that the support of pr ◦ Z(M∞(σ(τ)◦))

contains Cσ, and that any other component in the support of pr ◦ Z(M∞(σ(τ)◦)) is of the form
Cκ with κ ∈ W g(ρ), δρ(κ) < δρ(σ).

If δρ(σ) = 0 then σ ∈ W g
≤0(ρ), and W g

≤0(ρ) ∩WM∞(ρ) ̸= ∅ implies W g
≤0(ρ) ⊆ WM∞(ρ) by the

main result of [LLHLMa]. As W g(ρ) ∩ JH(σ(τ)) = W ?(ρsp) ∩ JH(σ(τ)) = {σ} by Lemma 6.2.6)

and M∞(σ(τ)◦) has full support over (a formally smooth modification of) R
η,τ
ρ , we conclude that

the cycle pr ◦ Z(M∞(σ(τ)◦)) is supported on Cσ(ρ). (Here and below we write σ(τ)◦ to denote
the mod ϖ-reduction of any O-lattice σ(τ)◦ in σ(τ).)

Assume now that δρ(σ) > 0 and that for any σ′ ∈ W g
≤1(ρ) with δρ(σ

′) < δρ(σ) the cycle

pr ◦ Z(M∞(σ′)) is supported on Cσ′(ρ) and possibly other components of the form Cκ(ρ) where
κ ∈ W g(ρ) and δρ(κ) < δρ(σ

′). We have

Supp
(
Z(R

η,τ
ρ )
)

= Supp
(
red(Z(Rη,τ

ρ )[1/p])
)

(25)

= Supp
(
red ◦ pr

(
Z(M∞(σ(τ)◦)[1/p])

))
= Supp

(
pr ◦ red

(
Z(M∞(σ(τ)◦)[1/p])

))
= Supp

(
pr ◦ Z(M∞(σ(τ)◦))

)
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where the first and last equality follow from [LLHLMa, Proposition 5.3.1], the second from the
fact that Rη,τ

ρ is geometrically integral (Theorem 5.2.3), the third from red ◦ pr = pr ◦ red (see

[LLHLMa, §5.3]). Since Rη,τ
ρ is geometrically integral by Theorem 5.2.3, by exactness of M∞ and

[LLHLMa, Theorem 5.1.1 and Proposition 5.4.1] we have

pr ◦ Z(M∞(σ(τ)◦)) =
∑

σ′∈W ?(ρsp)∩JH(σ(τ))

pr ◦ Z(M∞(σ′))

= pr ◦ Z(M∞(σ)) +
∑

σ′∈W ?(ρsp)∩JH(σ(τ))\{σ}

pr ◦ Z(M∞(σ′))

From the definition of δρ together with Lemma 6.1.1, we easily check that δρ(σ
′) < δρ(σ) for all

σ′ ∈ W ?(ρsp) ∩ JH(σ(τ)) \ {σ}. We thus deduce, using the inductive hypothesis and (24), that⋃
σ′∈W ?(ρsp)∩JH(σ(τ))\{σ}

Supp
(
pr ◦ Z(M∞(σ′))

)
=

⋃
σ′∈W ?(ρsp)∩JH(σ(τ))\{σ}

Cσ′(ρ).

On the other hand, we have

Supp
(
Z(R

η,τ
ρ )
)
=

⋃
σ′∈W g(ρ)∩JH(σ(τ))

Cσ′(ρ)

by [LLHLMb, Theorem 7.4.2] (and [Sta19, Lemma 0DRB, Lemma 0DRD and Definition 0DRA])
and hence pr ◦ Z(M∞(σ)) is necessarily supported on Cσ(ρ), and possibly on other components
Cσ′(ρ) with σ′ ∈ W g(ρ) and δρ(σ

′) < δρ(σ). □

Remark 6.2.7. If, in the statement of Proposition 6.2.5, we furthermore assume that weak patching
functor M∞ is minimal ([LLHLMa, Definition 5.2.1]), then equation (25) can be replaced with
the stronger statement

e(Rη,τ
ρ ) = e(M∞(σ(τ)◦))

(where e(·) denotes the Hilbert–Samuel multiplicity), which forces e(M∞(σ)) = 1 for all σ ∈
W ?(ρsp) ∩ JH(σ(τ)).

Remark 6.2.8. Let rp : GQp → LG(F) be an L-parameter, with corresponding collection {ρv :
GF+

v
→ GLn(F)}v∈Sp . For each v ∈ Sp let Jv denote the set of ring homomorphisms {kv ↪→ F}, so

that Jp =
∏

v∈Sp
Jv. Given hv ∈ NJv for each v ∈ Sp we then have a collection {W g

≤hv
(ρv)}v∈Sp

whose elements are Serre weights for G by taking tensor products over v ∈ Sp. In particular,
given h ∈ NJp we can define the set W g

≤h(rp) for an L-parameter rp : GQp → LG(F). The proofs

of Proposition 6.2.5 and Lemma 6.2.6 go through, mutatis mutandis, replacing ρ : GK → GLn(F)
with an L-homomorphism rp : GQp → LG(F) (for these kind of passages from #Sp = 1 to #Sp > 1
see also [LLHLMb, Remark 7.3.4]).

6.3. Global applications and the conjecture of [PQ22]. We apply the results above to obtain
our main global applications. We follow the setup and notation of [LLHLMa, §5.5.1, 5.5.2, 5.5.3].
In particular, we have a totally real field F+/Q not equal to Q, and F/F+ a CM extension. We
assume from now on that all places of F+ above p are unramified over Qp, and that they are further
totally split in F . Given a reductive group G/F+ which is an outer form for GLn, split over F ,

and such that G(F+ ⊗Q R) = Un(F
+ ⊗Q R), we define for a continuous Galois representation

r : GF+ → Gn(F) the notion of being automorphic (relatively to G/F+) as in [LLHLMa, Definition
5.5.1], as well as the set W (r) of modular Serre weights of r (loc. cit. Definition 5.5.2). Here, Gn

is the group scheme defined in [CHT08, §2]. Finally, let rp be the L-homomorhism induced from

https://stacks.math.columbia.edu/tag/0DRB
https://stacks.math.columbia.edu/tag/0DRD
https://stacks.math.columbia.edu/tag/0DRA
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the collection of continuous representations r|G
F+
v

: GF+
v

→ GLn(F) for v|p. In particular, we

denote by Sp the set of the finite places of F+ above p.
Let r : GF+ → Gn(F) be automorphic and such that r(GF (ζp)) ⊆ GLn(F) is adequate. Then by

[LLHLMa, Lemma 5.5.4] we can and do fix a weak patching functor M∞ for the L-homomorphism
rp such that for any Serre weight σ of G =

∏
v∈Sp

GLn(kv) we have

(26) M∞(σ) ̸= 0 ⇐⇒ σ ∈ W (r).

Theorem 6.3.1 (Modularity of defect one weights). Let r : GF+ → G(F) be an automorphic
representation such that

• r(GF (ζp)) ⊆ GLn(F) is adequate; and
• rp is 6(n− 1)-generic.

Then the following are equivalent:

(1) W g
≤0(rp) ∩W (r) ̸= ∅; and

(2) W g
≤1(rp) ⊂ W (r).

Proof. This follows from Proposition 6.2.5 and Remark 6.2.8 using (26). □

Remark 6.3.2. Keep the setup and notation of Theorem 6.3.1 and Remark 6.2.8. If σ ∈ W ?
≤1(r

sp
p )

for some rp ⇝ rspp , then σ ∈ WM∞(r) if and only if σ ∈ W g(rp) if and only if σ ∈ W g
≤1(rp). For

each such σ, there exists τ such that

(27) w̃(rp, τ) = w̃(rspp , τ) and ℓ(w̃(rspp , τ)(j)) ≥ ℓ(tη)− 1

for each j ∈ Jp and σ ∈ W ?(rspp )∩JH(σ(τ)), with σ ∈ W g(rp) if and only if rp satisfies Z−α(j) = 0
for each j ∈ Jp for which the inequality in (27) is an equality.

We now recall the setup of the local–global compatibility result of [PQ22]. Assume that p

is totally split in F and fix a place w|p of F . Assume that rw
def
= r|GFw

is Fontaine–Laffaille
of niveau one, and that satisfies a geometric genericity condition dictated by its position in the
moduli of Fontaine–Laffaille modules (see [PQ22, Definition 3.2.5]). In particular we have a lowest
alcove presentation (1, µ) for rssw (with µ = (cn−1, cn−2, . . . , c1, c0) in the notation of §1 in loc. cit.)
and a niveau one tame inertial type τ with lowest alcove presentation (1, sα

(
(µ□,i1,j1)∨

)
) (with

µ□,i1,j1
def
= µ∨+(⟨η, α∨⟩+1)α) where 0 ≤ i1, j1 ≤ n−1 corresponds to a positive root α = αi1+1,j1+1.

Then by the proof of [PQ22, Lemma 3.4.1] (namely, from the expression of Mate′′(ϕ) in loc. cit.)
we see that w̃(rw, τ) = tη−αsα, which is a regular colength one shape. In particular rw ⇝ ρsp

with w̃(ρsp, τ) = tη−αsα. By Lemma 6.2.6 we obtain:

Theorem 6.3.3 (Conjecture 5.3.1 [PQ22]). Let w|p. Assume that rw is Fontaine–Laffaille of
niveau one, that (rw)n−i0,n−j0 is Fontaine–Laffaille generic in the sense of [PQ22, Definition
3.2.5], and moreover that rssw is 3(n− 1)-generic. Then

Ww(r) ∩ JH(σ(τ)) ⊆ {F (µ)∨, F (µ□,i1,j1)∨}

where Ww(r) denotes the set of modular weights for r at w (as defined in the paragraph just below
[PQ22, Definition 5.2.2]).

Proof. By [LLHLMa, Theorem 5.1.1], Ww(r) ∩ JH(σ(τ)) ⊆ W ?(ρsp) ∩ JH(σ(τ)). Now, it follows
immediately from Lemma 6.2.6, as w̃(ρsp, τ) = sαtη−α. □
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The above result removes the weight elimination condition of [PQ22, Theorem 5.6.2]. However
the fact that the deformation ring Rη,τ

ρ is formally smooth over O when Z−α ̸≡ 0 modulo ϖ makes

the argument of [PQ22, Theorem 5.6.2] more direct, since the modules of algebraic automorphic
forms are in this case free over the Hecke algebra by patching arguments (cf. [PQ22, Remark
5.4.6]).
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Galois characters, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 5, 905–974 (French).
[BHH+a] Christophe Breuil, Florian Herzig, Yongquan Hu, Stefano Morra, and Benjamin Schraen, Conjectures

and results on modular representations of GLn(k) for a p-adic field k, https://arxiv.org/abs/2102.
06188, preprint (2021).

[BHH+b] , Gelfand–Kirillov dimension and mod p cohomology for GL2, https://arxiv.org/pdf/2009.
03127.pdf, preprint (2020).

[CDT99] Brian Conrad, Fred Diamond, and Richard Taylor, Modularity of certain potentially Barsotti-Tate
Galois representations, J. Amer. Math. Soc. 12 (1999), no. 2, 521–567. MR 1639612 (99i:11037)

[CEG+16] Ana Caraiani, Matthew Emerton, Toby Gee, David Geraghty, Vytautas Paškūnas, and Sug Woo Shin,
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