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Introduction générale

Introduction générale

Cette these s’inscrit dans le cadre du programme de Langlands local modulo p. Le terme
générique de “programme de Langlands” désigne habituellement une vaste famille de conjec-
tures développées depuis 1967 ([Lan67]) qui peuvent se résumer de la maniere suivante :

CONJECTURE 0.1. II existe une bijection “naturelle” entre

représentations continues irréductibles

p: Gal(Q/F) — GL,(Q,) nonramifiées enpresque
toutes les places et potentiellement

/~ semi-stables aux places au-dessus de p

représentations automorphes
paraboliques algébriques —

de GLn(AF)
ou F' désigne un corps de nombres et A son anneau des adéles.

La naturalité énoncée dans la conjecture 0.1 entraine la compatibilité a la correspondance de
Langlands locale ¢-adique, démontrée pour GLy par Kutzko ([Kut80]) et pour GL,, par Harris
et Taylor [HT] et par Henniart ([Hen00]). Il s’agit d’une bijection entre certaines représentations
du groupe de Galois Gal(Q,/F,) sur des Q-espaces vectoriels de dimension n et certaines
représentations de GLy(F}) ol p désigne une place au-dessus de p et F} la complétion p-adique
de F. La compatibilité de cette bijection a la réduction modulo ¢ a été ensuite démontrée par
Vignéras ([Vig01]).

La difficulté essentielle pour formuler un analogue p-adique de cette correspondance (la “cor-
respondance de Langlands locale p-adique®) est la suivante : il est bien connu que la composante
locale 7y en p|p de 7 ne détermine pas la restriction p[Gal(@ /) de la représentation galoisienne

globale p bien que p[Gal@ /) €0 Vue de la conjecture 0.1, soit déterminée par 7. Donc :
P

“A I'origine du programme de Langlands p-adique est la volonté de comprendre ce
qu’il faut rajouter a m, pour reconstruire p[Gal(@ Fy) Autrement dit, on veut élucider
I’apparition de la théorie de Hodge p-adique coté Galois en termes de théorie des
représentations coté automorphe.”

(C. Breuil, [BrelOb])

La correspondance pour GLy(Q,).

La naissance du programme de Langlands local p-adique et modulo p peut se retrouver dans
I’étude des multiplicités modulaires de [BM]. En généralisant les calculs qui ont mené a la preuve
de la conjecture de Taniyama-Weil ([BCDT]), les auteurs proposent une conjecture ([BM], con-
jecture 1.1) qui relie la taille de certains anneaux de déformations d’une représentation modulo
p de Gal(Q,/Q) avec certaines représentations de GLy(Zy).

Cette conjecture, recemment prouvée par Kisin ([Kis|) grace a letablissement de la corre-
spondance p-adique de Langlands pour GL2(Q,), fut interpretée par les auteurs comme une
conséquence lointaine d’une hypothétique (a 1’époque) correspondance de Langlands locale p-

adique (ou, plus exactement, de la “réduction modulo p” d’une telle correspondance).

A T'époque de [BM], I'étude systématique des représentations p-adiques et modulo p de
GL2(Fp) n’en était qu’a ses débuts : I'absence d’analogue p-adique de la mesure de Haar, ou
des modeles de Whittaker (il n’y a pas de Fp—caractéres non triviaux pour un p-groupe!) ren-
dent inutilisables les constructions classiques pour la classification des représentations /-adiques
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([BK]) ou modulo ¢ ([Vig89]). C’est en fait a partir de ’ccuvre de Schneider et Teitelbaum [ST]
pour le cas p-adique et dans les travaux de Barthel et Livné [BL94], [BL95] que 'on retrouve les
objets et les catégories adaptés a une formulation correcte d’une correspondance de Langlands
p-adique, c’est ce qui a permis & Breuil ([Bre03a], [Bre03b] et [Bre04]) de fournir les premiers
résultats.

En particulier Barthel et Livné ([BL94]) proposent une classifiaction pour n = 2 des représen-
tations lisses admissibles absolument irréductibles, sur la base de I'immeuble de Bruhat-Tits de
GLa(Fp) (cette méthode a été recemment géneralisée & GL,,(F},) par Herzig [Her| en donnant une
classification & la Bernshtein-Zhelevinskii [BZ]). Si 0F, désigne 'anneau des entiers de F}, la clas-
sification de [BL94] permet alors de retrouver les caracteres, les séries principales et spéciales, en
termes de représentations lisses irréductibles o de GL2(OF, ) (les poids de Serre) et des opérateurs
GL2(Fy) o
GL2(OF, ) Fy*
(opérateurs “a la Hecke”). Cela met en évidence la présence d’une classe nouvelle d’objets, bap-
tisés “supersinguliers”, et dont 'existence était a I’époque assurée par un argument a la Zorn
([BL95], proposition 11). Les représentations supersingulieres sont définies, & torsion par un car-
actere pres, comme les quotients irréductibles admissibles de certaines représentations 7 (o, 0,1) :
pour ce fait et étant donné le role crucial des objets supersinguliéres pour la détermination d’un
programme de Langlands modulo p, on a décidé d’appeler les représentations 7(c,0,1) comme
les “représentations universelles de GLa(F') modulo p”. Elle font 'objet du titre de cette these.

Brievement apres la premiére incarnation de la correspondance de Langlands p-adique donnée
par la conjecture Breuil-Mézard ([BM], conjecture 1.1), Breuil réussit ([Bre03a]) a compléter la
classification de Barthel-Livné pour F' = Q, notamment en classifiant les objets supersinguliers.
Pour cela, en étudiant l'action du pro-p Iwahori de GL2(Qp) sur des vecteurs soigneusement
choisis et a I'aune de calculs explicites sur les vecteurs de Witt de W(F)), il démontre que les
représentations universelles sont en fait irréductibles pour F' = Q. Ceci a mis en évidence une
correspondance “naturelle” ([Bre03a], définition 4.2.4) entre les représentations supersingulieres
de GL2(Qp) et les représentations galoisiennes provenant des courbes elliptiques & réduction
supersinguliere : c’est la “correspondance de Langlands mod p”.

convenables définis sur 'algebre des endomorphismes des induites compactes c—Ind

Peu apres, I'évolution de la correspondance locale p-adique connut des progres rapides. Les
premiers exemples historiques, découverts par Breuil ([Bre03b] et [Bre04]) mirent en évidence un
lien précis entre les distributions p-adiques associées a une forme automorphe globale ([MTT])
et certaines fonctions sur P1(Q,) ([Brel0a], corollaire 5.2.5). Inspiré par une telle relation -une
sorte de dualité entre (certaines) fonctions et (certaines) mesures- Colmez découvrit le role décisif
joué par la théorie des (¢, I')-modules pour la realisation d’un foncteur reliant les representations
de GL2(Qp) aux representations galoisiennes : ses travaux ([Col], [Coll0]) ainsi que le travail
de Kisin ([Kis10]), ont ensuite permis un étude fine des déformations des objets galoisiens et
automorphes. C’est alors grace aux études récents de Paskunas ([Pas|) concernant la reduction
modulo p des GL2(Q))-Banach, que les résultats de déformations de ([Col10]), ([Kis10]) perme-
ttent de disposer de la correspondence locale p-adique en toute generalité.

Cette correspondance est aujourd’hui presque completement comprise : elle est compati-
ble & la réduction modulo p ([Berl0Oa]), et permet de retrouver (presque) toutes les GL2(Qj)-
représentations de Banach unitaires admissibles absolument irréductibles ([Pas]). De plus, 'article
d’Emerton ([Emel0], théoremes 1.2.1 et 1.2.6) acheéve la réalisation géométrique du programme
de Langlands pour GL2(Q,) (c’est la compatibilité locale-globale conjecturée dans [Eme06]) en
montrant comment la correspondance se réalise dans le complété p-adique de la cohomologie
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d’une famille de courbes modulaires. C’est & I’aide de la correspondance p-adique pour GL2(Q))
qu’Emerton ([Emel0]) et Kisin ([Kis]) ont pu démontrer presque tous les cas de la conjecture de
Fontaine-Mazur ([FM]) pour GL2(Q).

Toutefois, reposant de maniére cruciale sur la théorie des (¢, I')-modules, la réalisation de la
correspondance p-adique est loin d’étre explicite. Par exemple, la détermination des vecteurs lo-
calement algébriques de la représentation p-adique associée a une représentation galoisienne passe
par des méthodes globales ([Col], remarque VI.6.51) et il est difficile d’extraire les facteurs epsilon
de ces constructions par des méthodes locales. De plus, si V4, est une représentation cristalline
a poids de Hodge-Tate (0, k —1) ayant a), comme trace de Frobenius, la classe d’isomorphisme de
sa réduction modulo p, Vlmap n’est connue que dans certaines cas (la situation a ’heure actuelle
est résumée dans [Berl0b] théoreme 5.2.1).

Cela suggere la nécessité d’une étude plus fine de certains objets apparaissant dans la corre-

spondance locale.

Les parties I et II de cette these se placent dans le cadre de la correspondance modulo p pour
GL2(Qp). Dans ce qui suit p > 3 est un nombre premier impair.

Les calculs explicites de [Bre03a] prouvent l'irréductibilité des représentations universelles
L pour GL2(Qy). Si r € {0,...,p — 1} on utilise la notation m(r,0,1) pour désigner une telle
représentation a torsion pres par un caractere lisse. On démontre que leur structure se décrit de
maniere détaillée via une filtration GLQ(ZP)Q;; -équivariante “naturelle” et une F,-base adaptée
compatible a la filtration. Le premier résultat que 'on déduit est la filtration par le GLQ(Zp)Q;:
socle des représentations supersingulieres :

THEOREME 0.2 [I, 9.1]. Soit » € {0,...,p — 1}, p impair. La restriction a GLa(Z,)Q, de la
représentation universelle w(r,0,1) se décompose en la somme directe de deux termes dont la
filtration par le GL2(2p)Q, -socle est décrite par

SymTFf,—SocFil(Inng(FQ‘S‘p)X“”_T_2detr+1)—SocFil(Inng{;S‘p)XiT_4detT+2)—. ..
et
Sym? ™1~ F, @ det”—SocFil(Indjy 20" X _adet)—SocFil(Indi a0y x5 ydet?)— ..
respectivement.

Précisons brievement les notations de cet énoncé : pour n € N on désigne par x; le caractere

du Borel B(F),) défini par X%([ b ) = d™; la notation “socfil” signifie les facteurs gradués

a
0 d
de la filtration par le socle des induites finies. En d’autres termes, si ’'on ne se préoccupe pas de
la valeur de r, le théoréme 0.2 nous dit que la filtration par le socle de = (r,0, 1)’GL2(Z,,)Q; est

!on remarque que Berger ([Ber10c]) et, independemment, Emerton ([Eme08]) ont achevé la preve de Iirreducibilité

des representations universelles pour GL2(Q,) par des methodes différentes de ceux de ([Bre03al).
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donnée par :

Symrfi E— Sympf‘gfrfi ® det™ !t — Sym”zfi ® detP~2 — Syrnpf‘:’*rfi ® det"t? —

D D D S

Sympflﬂfi ® det” —— Sym“zfz ® det SympH*TFi @ det™ ! —— Sym“‘lfi ® det? —
On esquisse les idées principales de la démonstration du théoreme 0.2. Grace a la filtration
GLa(Zp)-équivariante sur m(r,0,1) (§1-4 et §I-7) on réduit d’abord I’étude au cas des induites

finies Indg%];gp )
structure est completement connue par les travaux de Bardoe et Sin [BS00]. Le point clef est
alors de “recoller” les induites finies ainsi obtenues. Pour cela il s’agit de déterminer une F,-
base “naturelle” sur 7(r,0,1) qui est compatible a la filtration précédente (et aux calculs sur les
vecteurs de Witt de F), et a I’action de I'opérateur de Hecke canonique). On remarque que dans la
F,-base naturelle on retrouve les éléments X2, X! de [Bre03a], qui étaient I'outil incontournable
au prélude de l'irréductibilité des représentations universelles de GL2(Q)).

Une variante de cette méthode permet de déterminer la GLg(Z,)-structure des séries princi-
pales modérément ramifiées :

X (pour x caractére convenable du sous-groupe de Borel fini B(F,)), dont la

THEOREME 0.3 [I, 10.4]. Soit \ € F; etr €{0,...,p—1}. La filtration par le GL2(Z,)Q, -socle
pour la série principale modérément ramifiée Indg%éi?p )(un A ® wjuny-1) est décrite par

GL2(F17) s
B(Fy)

GL2(Fp
B(Fp)

GL2(Fp)

)Xr odet)—SocFil(Ind 5 B(F,)

SocFil(Ind x5)—SocFil(Ind, x5 _ydet?)—

Cette description explicite permet ensuite de calculer I’espace des invariants sous certains
sous-groupes de congruence classiques de GLa(Z,) : c’est 'objet de la partie II. Soit ¢ € N. On
note par K; le noyau du morphisme de réduction modulo p' et par I; I'image réciproque des
matrices unipotentes supérieures U(Z,/(p')) de GL2(Z,/(p')) par le morphisme de réduction
modulo p! défini sur K;_;. Le résultat suivant détermine l’espace des K-invariants pour les
représentations supersingulieres de GL2(Q)) :

THEOREME 0.4 [II, 3.9]. Soit t > 1. La filtration par le GLy(Z,)Q)-socle de m(r,0,1)%* est
décrite par

Sym’F —socﬁl(IndGI(“z(])?”)Xs_r_ZdetTH) —socﬁl(IndGI(“Q(];p) s det”)—SymP 3~ 7"F @ det™ !
Sym” _1_TF12, ® detr—socﬁl(Inng(“;Sp )Xi_zdet) —socﬁl(IndGI(“Q() ») ﬁ)—Sym’"_QF; ® det

t—1

ou l'on a p*~* — 1 inductions paraboliques sur chaque ligne et le poids Synqp*?’*’“F;7 ® det” !

dans la premiére ligne (resp. Sym”_QFfD ® det dans la deuxiéme ligne) apparait seulement si
p—3—r=0 (resp.7—22>0).

En particulier on dispose de la dimension de ces espaces

COROLLAIRE 0.5 (II, 3.8). Soitt > 1 et r € {0,...,p— 1}. La dimension des Ky-invariants pour



Introduction générale

une représentation supersinguliére est

dimg, (r(r,0.1)%) = (p+ 1z -+ { 175 AT EEP

Bien évidemment, on dispose aussi de résultats analogues pour les séries principales modérément
ramifiées (cf. §II, théoreme 5.1).

La stratégie de la démonstration du théoreme 0.4 se résume de la maniere suivante. La fil-
tration naturelle {Fil"},en (rappellée en II §2) nous permet de disposer d’une famille de suites
exactes

0 — Fil"™! — Fil"” — Fil"/Fil"~! — 0.
Une vérification directe, & partir de la connaissance de (Fil” /Fil"~1)%t et de I’exactitude a gauche
du foncteur des Ki-invariants, montre 'existence d’un entier ng tel que le morphisme naturel
0 — (Fil""H)K: — (Fil")%+ soit un isomorphisme si n > ng. De facon similaire, on détermine
n1 € N avec (Fil”)Kt = Fil" pour n < nq. Ainsi, on raméne 'étude des Ky-invariants a une
petite partie de la représentation 7(r,0, 1), a savoir Fil" /Fil™ ce qui rend possible d’établir la
preuve du théoreme 0.4 par des calculs directs.

La méme technique s’applique a d’autres sous-groupes de congruence que K;. Par exemple
dans §I1-4 on établit une description détaillée de I'espace des invariants selon les sous-groupes
Iy, en donnant une Fp—base de vecteurs propres sous l'action du tore fini F; X F;. Ces résultats
reposent sur une étude combinatoire lourde. Toutefois on peut donner la dimension de ces espaces

THEOREME 0.6 (II, 4.15). Soient r € {0,...,p — 1} et t € N-. Alors
dimg ((r, 0, 1)) = 2(2p~1 1),

La partie III de cette these est consacrée a ’étude des restrictions des supersingulieres de
GL2(Qp) aux sous-groupes provenant des extensions L/Q, de dégré 2. L’intéret demeure alors
dans la recherche d’un analogue “modulo p” du théoreme classique de Tunnel et Saito reliant le
signe des facteurs epsilon du changement de base d’une représentation complexe locale supercus-
pidale BCpq,(7) a la structure de la restriction 7|;x. Le résultat est le suivant :

THEOREME 0.7 [III, 1.2 ]. Soit L/Q, une extension quadratique, m(o,0,1) une représentation
supersinguliére, de caractére central w” (ol w désigne la réduction modulo p du caractére cyclo-
tomique p-adique). Ecrivons soc%l & SOC(LQ (m(r,0,1)|1x) pour le j-iéme facteur de composition
de la filtration par le L*-socle de 7(,0,1)|1x.
Alors
i) si L/Q, est non ramifiée on a un isomorphisme de F;Z -représentations
. 1)
soc(L]l /soc(L]X ) o (@fzom)Q

oun;, pouri=0,...,p, sont les (p+ 1) caractéres distincts de F;2 qui étendent le caractére
x> x" sur Fp;

i1) si L/Q, est totalement ramifiée on a un isomorphisme de L*-représentations
soc(le /soc(Lj;U >~ (V)27%.

ou V est un espace de dimension 2 muni d’une action de O] obtenue par inflation du
F,-caractére x — x" et par action de 'uniformisante via une involution non triviale.
P
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La technique de la preuve repose encore une fois sur la filtration GL2(Z,)-équivariante sur
7m(0,0,1) qui est déterminée dans la partie I. Cette filtration permet de nous ramener au cas
fini (ce qui va ensuite décrire la structure des facteurs gradués de la filtration par le socle) et de
recoller les morceaux ainsi obtenus par un calcul explicite sur certains éléments du sous groupe
d’Iwahori.

Le cas de GLy(Fy), Fy # Q.

Supposons maintenant que F}, soit une extension non triviale de Q. Dans cette situation la
méthode de Breuil [Bre03a] -qui avait permis de démontrer 'irréducibilité des objets universels-
ne permet actuellement pas de conclure. Nous ne disposons pas a ce jour de descriptions sat-
isfaisantes des objets supersinguliers de GLa(F}) : puisse le lecteur penser que 'on ne dispose
méme pas d’un exemple donné par des équations explicites, d’un sous-quotient irréductible d’une
représentation universelle. Cette lacune se révele particulierement grave dans le cadre d’un pro-
gramme de Langlands modulo p et p-adique : en fait, comme pour GL2(Q,), on est tenté d’associer
a une représentation galoisienne modulo p provenant d’une courbe elliptique a réduction super-
singuliere, une représentation supersinguliere de GLy(F},) au sens de Barthel-Livné.

Une premiere description -du moins conjecturelle- des “bonnes” représentations supersin-
gulieres provient des méthodes globales issues des travaux récents de Buzzard, Diamond et Jarvis
[BDJ] et de la compatibilité locale-globale étudiée par Emerton ([Emel0]). Ces arguments sont
reliés & la conjecture de Serre ([Ser87], démontrée par Khare et Winterberger [KW1], [KW2])
qui prévoit qu’une représentation galoisienne globale p : Gal(Q/Q) — GLa(F,), irréductible
continue et impaire provient d’une forme propre de Hecke dans ’espace Si(I'1(N)). Emerton
([Emel0]) relie cette conjecture au programme de Langlands p-adique pour GL2(Q,) grace au
principe de compatibilité locale-globale : le poids k de la forme de Hecke est réinterprété comme
représentation algébrique irréductible de GL2(Z,) apparaissant dans le facteur local en p de la
représentation automorphe associée a p.

Le travail de Buzzard, Diamond et Jarvis [BDJ] est consacrée a une généralisation de la
conjecture de Serre. A une représentation globale p (modulo p et de dimension 2) de Gal(Q/F)
ils associent une représentation automorphe convenable 7 dont les facteurs locaux vérifient cer-
taines conditions explicites ([BDJ], conjecture 4.7). En particulier si F, est non ramifiée, ils
fournissent une description explicite du GLa(F})-socle du facteur locale en p, & 'aide d’une
famille de représentations algébriques irréductibles de GL2(OF,) (les poids de Diamond-Serre)
associée a la restriction p| al(Qy/Fy)" Cette description a été ensuite généralisée au cas totalement
ramifiée par Schein ([Sch08]).

Inspirés par ces constructions et animés par le désir de déterminer les “bonnes” représentations
supersingulieres de GLg(F},) par des moyens purement locaux, Breuil et Paskunas ont cherché a
construire des objets supersinguliers ayant un p[Gal(@p / Fp)—socle qui respecte la combinatoire
dictée par la théorie des poids modulaires. En utilisant la théorie des diagrammes de base
-introduite dans [Pas04]- les auteurs associent & une représentation galoisienne locale p, de
Gal(Q,/Fp) (dans le cas F},/Q, non ramifiée, étant py irréductible, générique) une famille infinie
II(pp) de représentations supersingulieres dont le socle est fixé par les poids modulaires associés a
pp- Toutefois, la possibilité de détecter un objet “naturel” parmi les éléments de II(pp) n’est pas
claire, surtout & la lumieére des contre-exemples de Hu [Hu]. Hu propose une variante des tech-
niques de [Pas04], grace a la notion des diagrammes canoniques ([Hu2]), qui permet de classifier
les représentations supersingulieres de GLo(F}). L’aspect clef est le suivant : les informations
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nécessaires a caractériser une représentation supersinguliere m, ne se trouvent pas dans l’espace
des invariants sous l’action du pro-p-Iwahori, mais dans un espace qui est strictement (au moins
si Fy # Qp est non ramifiée) plus grand, notée Di(mp). Cet espace est, en géneral, difficile &
comprendre.

Pendant la méme periode, Schein a énoncé ([Sch]) un critére d’irréducibilité pour certaines
sous-quotients de représentations universelles 7 (o, 0,1) de GL2(F}) lorsque F},/Q,, est totalement
ramifiée. En particulier il a obtenu un quotient naturel V,_; associé a m(0,0,1) qui jouit d’une
proprieté universelle relativement aux représentations supersingulieres dont le GLa(&F, )-socle
est décrit par la famille des poids modulaires. Ce résultat est achevé a I’aune de calculs directs
assez laborieux sur I'anneau des entiers, qui généralisent les techniques utilisées dans [Bre03a].

La partie IV de cette these se place dans le cadre d’une recherche des représentations su-
persingulieres pour une extension finie non ramifiée de Q,. On se propose de démontrer que la
structure Iwahori (i.e. la filtration par le Iwahori-socle et la détermination des extentions entre
deux facteurs gradués adjacents) des représentations universelles m(0,0,1) admet une descrip-
tion simple en termes de certaines données euclidiennes. Cela met en évidence les raisons et
les modalités pour lesquelles les représentations universelles cessent d’étre irréductibles lorsque
F, # Q, en une vaste généralisation des méthodes de [Bre03a]. On obtient en corollaire la struc-

ture Iwahori pour les séries principales modérément ramifiées et la détermination d’injections
(Fp)

Lo(Fp)
une note personnelle non publiée.

naturelles C—Indg o' — m(0,0,1). Ce phénomene a déja été découvert par Paskunas, dans

Le résultat principal de la partie IV se résume de la manieére suivante. On détermine une
Fp—base A sur (0,0, 1) ainsi qu’une injection & — Z/. L’image R de cette injection est décrite
de maniere tout a fait explicite (il s’agit de la structure euclidiene associée a mw(c,0,1) selon la
terminologie de (IV)-84 et§5). Alors on a :

THEOREME 0.8 (IV, 5.18). La structure Iwahori de la représentation universelle 7(c,0,1) est
décrite par fR : la filtration par le Iwahori-socle est obtenue a partir de R en éliminant succes-
sivement les points d’antécédent vide et les extensions entre deux facteurs gradués adjacents sont
réalisées (lorsque o est générique) entre les points adjacents de 9R.

Précisons brievement la terminologie du théoreéme 0.8 (on refere alors le lecteur a la page 118
pour la description précise du formalisme). On convient que I’antécédent d’un point P € R soit
constitué par les @ € R vérifiant P = Q + e, (étant {eg,...,er_1} la base canonique de Z5).
La locution “en éliminant successivement les points d’antécédent vide” admet ainsi la significa-
tion plus précise suivante: une F,-base pour I'Iwahori socle socy de 7(c,0,1) est consitué par

I’ensemble &, des points de R ayant antécédent vide; on associe alors I’ensemble Ry o R\ P
a la représentation m(o,0,1)/socg. Par récurrence, I’ensemble Ry associé a w(e,0,1)/socy—_1

étant donné, une F,-base pour I'Iwahori socle socy /socy_1 de 7(o,0,1)/socy_1 est consitué par

I'ensemble &y des points de Ry ayant antécédent vide; on associe alors ’ensemble Ry 11 def

Ry \ Py a la représentation m(c,0,1)/socy.
Pour avoir une idée de 'aspect fractal de la structure euclidienne fR le lecteur pourra se réferer
aux figures IV.6 ou IV.9.

Des différentes étapes de la preuve du théoréme 0.8, on déduit les deux résultats suivants :
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THEOREME 0.9 (IV, 4.16). La structure Iwahori des séries principales modérément ramifiées est
décrite par deux copies de N¥.

et

THEOREME 0.10 (IV, 5.12). Supposons dimfp(a) ¢ {1,q} et soit x*® le caractére de I'Iwahori

A U(F . X . . .
associé a (0)V(Fa) 11 existe une sous-GLa(OF, ) Fy* -représentation V' de (r, 0, 1)‘GL2(0’FP)F,@X iso-
morphe au noyau du morphisme naturel

GLao(Fy) s GLo(F
B(E‘g)q)x /soc(IndB(lf,i) a)

et telle que le morphisme naturel induit par reciprocite de Frobenius

c—Ind%,V — 7(0,0,1)

GL2(Fy)

Ind x°) = cosoc(IndB(Fq) x°)

soit injectif.
La démonstration du théoreme 0.8 repose sur les trois faits suivants.

i) On détermine d’abord la base Z (§IV, lemma 5.1 et proposition 3.5). Cette base se préte
agréablement aux manipulations avec les vecteurs de Witt de F et est de plus compatible
a ’action de I'opérateur de Hecke canonique T, associé par Barthel et Livné au poids o.

i1) L’action de I'Iwahori sur les éléments de # admet une interprétation simple en termes de
certains polynomes universels de Witt et de leurs degrés homogenes.

ii1) L’injection A — Z7, qui se déduit de la définition des éléments de £, est compatible au
degré homogene des polynomes universels apparaissant en 7).

La donnée euclidienne R admet une structure fractale réguliere obtenue a partir d’une famille
{%}, %, }nen de f-parallélépipoides emboités. Ces parallélépipoides représentent I'image dans

GL2(Fp)
GL2(0R,) px0 ayant support sur une boule de

p
rayon fixé et de I'immeuble de Bruhat-Tits de GLa(F}). Ils sont ensuite recollés d’une maniere

liée au comportement de l'opérateur de Hecke canonique T, . Dit grossierement, a partir du n+ 2-
ieme bloc (qui a un c6té de longueur environ p"*2 — 1), on enleve le n + 1-ieme bloc (qui a un
coté de longueur environ p" ! —1). Cela fournit f sommets “libres” (i.e. vecteurs invariants sous
Paction du pro-p-Iwahori), et on recolle dans la lacune ainsi obtenue 'n-iéme bloc (dont le coté
est de longueur environ p™ —1). Les processus d’enlevement /recollement des blocs proviennent de
loperateur de Hecke T,. Ceci justifie la non-admissibilité des représentations universelles pour
F, # Qp: lorsque f > 1 les sommets libres obtenus ci-dessous ne sont pas concernés par le
phénomene de recollement !

7(0,0,1) des éléments de l'induite compacte Ind

10
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Part I. Explicit description of irreducible

GL»(Q,)-representations over F,

Abstract. Let p be an odd prime number. The classification of irreducible representations of
GL2(Q,) over F,, is known thanks to the works of Barthel-Livné [BL95] and Breuil [Bre03a]. In
the present chapter we illustrate an exhaustive description of such irreducible representations,
through the study of certain functions on the Bruhat-Tits tree of GL2(Q,). In particular, we
are able to detect the socle filtration for the K Z-restriction of supersingular representations,
principal series and special series.

1. Introduction

Let p be a prime number. If F' is a non-Archimedean local field, with finite residue field of
characteristic p and cardinality ¢ = p/, the f-adic Local Langlands correspondence (for ¢ # p)
let us dispose of a well understood “dictionary” between suitable representation of Gal(Qp /F),
n dimensional over Qy, and suitable representations of GL,,(F) (two independent proofs due to
Harris and Taylor in [HT] and Henniart in [Hen00]). Moreover, via a process of “reduction of
coefficients modulo £”, Vignéras deduces a semi-simple “mod ¢” Local Langlands correspondence,
as it results from her study in [Vig01].

The theory, in the p-adic case, is dramatically more complicated (e.g. Grothendieck’s ¢-adic
monodromy theorem collapses, there are not reasonable analogues of the Haar measure, etc...).
After a first conjectural approach pointed out by Breuil in [Bre04] and [Bre03b], we dispose
nowadays of a “p-adic local langlands correspondence” in the 2-dimensional case for F' = Q,, by
the works of Berger-Breuil [BB] and Colmez [Col]. This correspondence is compatible with the
“reduction of coefficients modulo p” and enable us to establish a semi-simple “mod p”-Langlands
correspondence for GL2(Q,) (again, such a process has been conjectured and proved in few cases
by Breuil in [Bre03b] and in generality (for F' = Q,,) by Berger in [Berl0a]).

A major problem in for a (conjectural) mod p-Langlands correspondence is represented by
the lack of a complete classification for smooth irreducible admissible GL2(Q)) representations
over F,,. In [BL94] and [BL95], Barthel and Livné detect four families of such irreducible objects:
besides a detailed study of principal and special series (and characters), the authors discover
another class of smooth irreducible admissible representations, referred to as “supersingular”,
non-isomorphic to the previous ones. Supersingular representations can be characterised as sub-
quotients of the cokernel of a “canonical Hecke operator” T', and their nature is still very mysteri-
ous. For instance, if F' # Q,, the aforementioned cokernels are not even admissible and the works
of Paskunas [Pas04], Breuil-Paskunas [BP] and Hu [Hu] show the existence of a huge number
of supersingular representations with respect to Galois representations (whose classification is
indeed well known).

The case F' = Q,, is far different. The cokernels of the Hecke operators are indeed irreducible,
therefore giving a complete description of supersingular representations for GL2(Qp). The first
proof of this phenomenon, due to Breuil, appears in [Bre03al: the author is there able to compute
explicitly the space of I1-invariants (and therefore the socle) for coker(T"), studying the behaviour
of certain functions (denoted as X? and X) on the Bruhat-Tits tree for GLa(Q,). Nowadays
others paths to prove the irreducibility of coker(7") have been discovered (for instance, Ollivier

11
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in [Oll], Emerton in [Eme08]). Nevertheless, we show in the present chapter -deeply in debt to
the works of Breuil [Bre03a] and [Bre]- that suitable modifications on the functions X2, X}
let us describe completely the socle filtration for supersingular representations of GL2(Qj): to
some extent, we see that such representations can be obtained by a process of “glueing” parabolic
inductions of characters defined on a filter of neighbourhood of the Iwahori subgroup of GL2(Q,).
As a byproduct, we are also able to detect the socle filtration for principal and special series for
GLZ(Q;D)-

Using the notations of §2.2 for the characters x; and a and the formalism presented in the
end of this § concerning the socle filtration, the main result of the chapter is the following:

THEOREM 1.1. Let r € {0,...,p — 1}, p odd. Then the KQ restriction of the supersingular
representation coker(T;) (where K is the maximal compact subgroup of GL2(Qp)) consists of
two direct summands, whose socle filtration is described by

symTFf,—socFﬂ(Indf xia" ) —SocFil(IndX xSa"2)—SocFil(Ind ¥ y$a™3)—. ..
and
Sym? '~ F,—SocFil(Indf x?a)—SocFil(Ind} xga?)—SocFil(Indf yia*)—. ..

respectively.

If we do not bother too much about the value of r, proposition 1.1 shows that the socle
filtration for 7(r,0,1)|xz looks as follow:

Symrfi Symp_?’_rfi @ det™ ! — Symr+2fi ® detP~2 — Sylrnp_‘r’_rff7 @ det™2 — -

D D D D

Symp_l_rfi ® det” —— Symr_QFIQ, ® det SympH_’"F; ® det”t —— Symr_‘lff7 @ det? — -+

If moreover we write un) for the unramified character of Q,, sending the arithmetic Frobenius
to A € F}, and w; for the cyclotomic character, the are able to prove (with the same techniques
of proposition 1.1)

THEOREM 1.2. For p an odd prime number, let \ € F;, r € {0,...,p— 1} and assume (r,\) ¢

{(0,£1), (p— 1, £1)}. The socle filtration for the K Z-restriction of the GL2(Qj)-principal series

Indg%é(:)g” )(un,\ ® wiuny) Is

SocFil(Ind% x%)—SocFil(Ind% x5a)—SocFil(Ind¥ y$a?)—. ..
The socle filtration for the KZ restriction of the Steinberg representation for GL2(Q,) is

Sym?~'F—SocFil(IndX a)—SocFil(Ind a?)—. .

The strategy of the proof -largely inspired by Breuil’s notes [Brel- is quite elementary and
it can be sketched as follow. For a given r € {0,...,p — 1} we can write the K Z-restriction of
coker(T}) as a direct sum of inductive limits of the form  lim  (R;/Ri—1®iq1---DRypyi i Ronti)

onti, neN
(for i € {0,1}) for suitable K-representations R, (essentially, obtained as a K-induction from
a family of representations defined on a filter of neighbourhood of the Iwahori subgroup); the

12
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Hecke operator T, translates then to a family of operators on the R,’s. We underline that such
a decomposition is absolutely general (we do not require F' = Q).

Next, we give the inductive limit a natural filtration (whose graded pieces will be suitable
quotients of the R,’s), and a filtration Fil’(R,) on the R,,’s as well: the graded pieces of the latter
let us reduce the problem to K-parabolic inductions Indllg0 ()X of characters on a neighbourhood
of the identity in the Iwahori subgroup. Thanks to the description of parabolic inductions for
GL2(F,) we are able to extract the socle filtration for the Indﬁo(pn)x’s (which will lead us to
proposition 1.2), and the successive step consist in glueing the socle filtrations for the graded
pieces of Fil’(R,) (via a descending induction by consecutive quotients). Finally, using the op-
erator T, we appropriately glue together the socle filtrations of the R,,’s to get the statement of
proposition 1.1.

The plan of the chapter is then the following.

In §2 we recall the structure of compact inductions Ind% 7, their relations with the Bruhat-Tits
tree for GL2(Q,) and the structure of the Hecke algebra for compact inductions. We summarise
the main properties of the parabolic induction for the finite case in §2.2, in particular recalling
the description of the socle filtration.

Section 3 is devoted to the description of the K Z-restriction of supersingular representations
in terms of “simpler” object as the representations R,’s (§3.1) and their amalgamed sums (cf.
(4)) by means of convenient Hecke operators T on R,, (defined in §3.2). Such objects will be
endowed with filtrations in §4.

Sections §5, §6, §7 and §8 are devoted to the study, and the glueing, of the socle filtations on
the graded pieces if the filtrations introduced in 4; in particular, in §8, such glueing are made by
means of the Hecke operator T

Finally, in 9, we make explicit how the right exactness of lim makes possible to deduce the

socle filtration for supersingular from the results in §8. The final section §10 shows how we can
deduce easily the socle filtration for principal and special series using the techniques in §6.

We wish to outline that such an explicit nature for the description of supersingular GL2(Q))-
representations (as well as principal and special series) let us describe in greatest detail the K
and I; invariant elements. Such a study has been pursued in [Mo2].

We introduce now the main notations, convention and structure of the chapter.

We fix a prime number p. We write Q,, (resp. Z,,) for the p-adic completion of Q (resp. Z)
and F, the field with p elements; F), is then a fixed algebraic closure of F,. For any A € F,, (resp.
x € Zy,) we write [A] (resp. Z) for the Teichmiiller lift (resp. for the reduction modulo p), defining
[0] £ 0.

We write G & GL2(Qy), K o GL2(Z,) the maximal compact subgroup, I the Iwahori
subgroup of K (i.e. the elements of K whose reduction modulo p is upper triangular) and I; for the
pro-p-iwahori (i.e. the elements of I whose reduction is unipotent). Moreover, let Z A (G)=Q,
be the centre of G and B(Q)) (resp. B(F))) the Borel subgroup of GL2(Q,) (resp. GL2(F))).

For r € {0,...,p — 1} we denote by o, the algebraic representation Symrfi (endowed with
the natural action of GL2(F,)). Explicitly, if we consider the identification SymTFZ ~F,[X, Y]

(where F,[X, Y]? means the graded component of degree r for the natural grading on F,[X,Y])

13
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then

or( [ Z Z } )XTTYTE (aX 4 YY) THOX + dY )

b ] € GLy(F,), i € {0,...,7}. We then endow o, with the action of K obtained

a
for any [ e d

by inflation K — GL(F,) and, by imposing a trivial action of [ p , we get a smooth

0
K Z-representation. Such a representation is still noted as o,., not to overload the notations.

If H stands for the maximal torus of GLy(Fp) and x : H — F; is a multiplicative character we
will write x® for the conjugate character defined by x*(h) = =4 ([ (1) (1) } h [ (1) (1) ]) for h € H.
Characters of H will be seen as characters of B(F,,) or (by inflation) of (a filter of neighbourhood
of 1 in) I without any commentary.

With “representatmn we always mean a smooth representations with central character with
coefficients in F _If V is a K-representation, for K a subgroup of K, and v € V, we write <K v)

to denote the sub K representation of V' generated by v. For a K -representation V' we write
soci (V) (or soc(V), or soc' (V) if K is clear from the context) to denote the maximal semisim-
ple sub-representation of V. Inductively, the subrepresentation soc’(V) of V' being defined, we
define soc*1(V) as the inverse image of soc!(V/soc’(V')) via the projection V' — V/soc! (V). We
therefore obtain an increasing filtration {soc™(V')},ens which will be referred to as the socle
filtration for V; we will say that a subrepresentation W of V' “comes from the socle filtration” if
we have W = soc” (V) for some n € N+ (with the convention that soc®(V) & 0). The sequence

of the graded pieces of the socle filtration for V' will be shortly denoted by
SocFil(V) £ soc! (V)—soc! (V) /soc®(V)—. .. —soc™ 1 (V) /soc™ (V) —. ..

We finally recall the Kroneker delta: if S is any set, and s1, so € S we define
def { O lf S1 # S9

0 = .
51,52 1 if s1=ss.

2. Preliminaries and definitions

The aim of this section is to recall some classical facts concerning (compact) induction of p-
adic representations (§2.1 and §2.2), and to give some explicit computation in the ring of p-adic
integers Z,, (§2.3): such computations will play a key role in the rest of the chapter.

2.1 Compact induction of K Z-representations

For the details and proofs, the reader is invited to see [Ser77] or ([Bre03a], §2).
We write .7 for the tree of GL2(Qp). It is well known that we have an explicit G-equivariant

bijection (with respect to the natural left G-action defined on the two sets) between the vertices
¥ of .7 and the right side classes of G/KZ. We define the following elements of G:

ad_cfl()wd_cf()l
10 p 100

14
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and recall the Cartan decomposition
G=]]KZo"KZ;
neN

then, for all n € N, the side classes in KZa "KZ/KZ correspond to the vertices of the tree at
distance n from the central vertex.

We set Iy = {0} and for n € N+ we define the following subset of Z,:

n—1
1S plg) forpy € Fy).
j=0

Moreover for n € N, u € I, we put

Y2

0 def | D [
I = [ 0 1 ]
1 def 1 0
gn,,u - Pl pn—l-l :
We have then the following family of representatives for G/K Z:
G= I o2]1 II oK% (1)
neN, uel, neN, uel,
more precisely, we have
KzZo"KZ = [[,K2]] 1] 9,.EZ
peln pneln_1

for n € Ns. Heuristically, the ggw’s correspond to the vertices at distance n from the central
vertex, located in the “positive part” of the tree, while the 971171, M’s correspond to the vertices at
distance n from the central vertex, located in the “negative” part of the tree.

Let o be a smooth K Z-representation over F,, V, the underlying F,-vector space. The
induced representation from o, noted by
G
IndKZU,

is defined as the Fp—vector space of functions f : G — V,, compactly supported modulo Z and
verifying the condition f(kg) = o(k)- f(g) for any k € KZ, g € G, this space being endowed with

def

a left G-action defined by right translation of functions (i.e. (g - f)(t) = f(tg) for any g,t € G).
It turns out that Indf( 70 is again a smooth representation of G over F,,. For g € G, v € V,;, we
define the element [g,v] € Ind% o as follow:

[9,0](t) Eo(tg)-v if te KZg
[g,0)(t) £ 0 if t¢KZg '

Then we have the equalities g1 - [g2,v] = [g192,v] and [gk,v] = [g,0(k) - v] for ¢1,92,9 € G and
k € KZ. Moreover:

PROPOSITION 2.1. Let % an F-basis of V,, and 4 a system of representatives for the left side
classes of G/KZ. Then, the family

I L {[g,v], forg € 4, v € B}

is an F-basis for the induced representation Ind% 70.
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Proof: Omissis (cf. [BH], lemma 2.5 or [Bre|, lemma 3.5). #

If f € Ind% 0, the T —support (or simply the support) of f is defined as the set of vertices
gK Z of the tree .7 such that f(g~!) # 0; this notion does not depend on the chosen representative
g of the vertex gKZ. We define for n € N the following subspace of Ind% 50

W(n) < {f € Ind% 0, thesupportof f iscontained in K Za "K Z}.
We see (by Cartan decomposition) that the subspaces W(n) are K Z-stable, for all n € N, and

therefore

LEMMA 2.2. There is a natural K Z-equivariant isomorphism

nd% ;0 = EBW(n)
neN

Proof: Obvious.{

Some Hecke Operators. The Hecke algebra for the induced representation from o is defined
by
def

H = Endg(Ind% ,0).

It is an F,, algebra; moreover it exists a canonical operator 7' € H which induces an isomorphism
of F,-algebras

H [T
(cf. [BL95], §3). If we specialise to the case 0 = o, for 0 < r < p — 1 we have the following

explicit description of the Hecke operator T

LEMMA 2.3. Forn € Ns, p € I, and 0 < j < r we have:

T(lgn XY = Y (90t s (1) X+ (901 g,y G (pna1 X + Y]
Hn€Fp

T([gi,qur_ij]) = Z [9711+1,M+pn[un]a (_’un)r—jyr] + [92—17[M]n_1’5j70(x + Mnfly)r]‘
pun€Fp

Forn=20,0<j <r we have

T([Le, XY = > [0 oy (—10Y X7 + [0, 6, Y]
ro€Fp

T(l, XY = Y (91 s (—12) Y] + [L6, 650X ]
p1€F,

Proof: Cf. [Bre03a], §2.5 and lemme 3.1.14

We are going to fix the notations for supersingular representations of GLg(Qp): if r €
{0,...,p— 1} we write

7(r,0,1) < coker(T : Ind% 40, — Ind% ,0,.).
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2.2 Induction of B(F),)-representations

For details and proofs we invite the reader to see §1 and §2 in Breuil and Paskunas’s article [BP].
Let n be an F-character of the Borel subgroup B(F,); it is by inflation a character of the
Iwahori subgroup Ky(p) of K and we have a natural isomorphism

La2(F
(B

For i € N we define the following F,-characters of the Borel subgroup B(F)):
Xi : B(Fy) — F,

CLb i
[Od]Hd

a:B(F, —F,

ab —1
[O d}b—wzd .

IndgO )" = Indg

and

If e, is an F)-basis of 7, the element [1x, e,] is a K-generator of Indgo (p)7- The structure of the
induced representations Imdg0 () is completely known, and the following proposition collects the
main results which will be needed in the rest of the chapter. We introduce the following notation:
for any x € Z, define [z]| € {1,...,p—1} (resp. |z] € {0,...,p—2}) by 2 = [z]| modp—1 (resp.
x = |z|modp —1).

PROPOSITION 2.4. Let i,j € {0,...,p— 1}, x d:efxfaj. Then the induction Indﬁo(p)x has length
2, with components:

O =

i) Sym!*~2/1 Fi@detj , which is isomorphic to the K -subrepresentation generated by [ [/110] } Kk, eyl;
Ho€Fy

i7) Symp_l_ﬁ_2ﬂfi ® det".
Moreover
i") if x # x*® the short exact sequence
0— Sym“*mfi ® det! — Indgo(p)x — Sympflf[ifmfi ®det™ — 0
is nonsplit;
it') if x = x° (i.e. i —2j = 0mod [p — 1]) then Ind[[go(p)
det'™ (i.e. det?) is the K-subrepresentation of Indﬁo(p) X generated by

Z |: [IuiO] (1) :| [1K7€X] + (_1)j[1K76X]‘

no€Fy

X Is semisimple and Symp_l_“_m F; ®

Proof: It is a well known result about representations of GLa(F,) over F,. See also [BP],
lemmas 2.2, 2.6, 2.7 #

The next lemma will play a crucial role in the sequel.
LEMMA 2.5. Let 0 <r <p—1,0<t<p— 2 be integers, and consider the projection

Indﬁo(p)xﬁat NS Symp_l_v_gtjfz ® det" .
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Iffe Indﬁo(p)xﬁat is such that
[a] 0 _r—(t+1) gt+1
5 |y

for any a,d € F; then 7(f) is of the following form:

i) ifr—2t#0,1[p— 1] then w(f) =0;

ii) ifr —2t = 1[p — 1] then w(f) = XP~2;
iii) if r—2t = 0[p— 1] then 7(f) = XP~2Y. More precisely, the image of f via the isomorphism

Indf \det! = det! ® Sym?~'F, @ det!
is (0, XP2Y).

Proof: The H-eigencharacters of SymP~ !~ 172t Fﬁ ® det"™t are
qP~ 1 (r=2t)+r—t—j gr—t+j
for j € {0,...,p— 1 — [r — 2t]}, each of them corresponding respectively to the H-eigenvector

XP~1=[r=2t]=jyi Therefore, the condition on m(f) to be an H-eigencharacter gives

Gt r—tti — gr—t=1gt+l
for a suitable j € {0,...,p —1— [r —2t]} and for all a,d € F,; in other words
p—1-[r=2t]=j—-1[p-1]

for some j € {0,...,p—1— [r —2t|}. Thisis possible iff j =0 and r =2t =1[p—1]orj=1
and r—2t=0[p—1]. 8

2.3 Computations on Witt vectors

In this section we are going to describe the p-adic expansion of some elements in Z,,. The explicit
description of lemma 2.6 and 2.7 is one of the key arguments to describe the socle filtration for
the K Z-restriction of supersingular. The main reference for this section is [Ser63], Ch. II.

For A, € F,, we define the following element of F,:

= )
P2 YN
j=1

Note that Py(i) is a polynomial in pu, of degree p — 1 and whose leading coefficient is —\. We
have the

LEMMA 2.6. Let A\, u € Fp,. Then
i) the following equality holds in Z:

A+ [ = A+ ] + p[Pa()] + PPt
where t) ,, € Z, is a suitable p-adic integer depending only on A, j;
i1) the following equality holds in F,

Pr(p—A) = =P_x(n).
Proof: Omissis.{

We can use lemma 2.6 to deduce more general results.
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LEMMA 2.7. Let A € F), E?:opj[ﬂj] € I,+1. Then the following equality holds in Z,/(p"*1):

N+ D 0 i) = A+ po] + plis + Pa(po)] + -+ + 9" [tn + Pa.ooyin o (pn—1)]
j=0

where, for all j = 1,...,n — 2, the Py__,.(X)’s (resp. Py ,,(X), resp. P\(X)) are suitable
polynomials in F,[X], of degree p — 1, depending only on A, ..., p; (resp. on X, po, resp. on \),
and whose dominant coefficient is —Py .., (j15) (resp. —Px(po), resp. —A).

Proof: It is an immediate induction using lemma 2.6-7). 4

def

LEMMA‘ 28. Let A € Fp, z = Z?lej[uj] and let k > 0. It exists a p-adic integer z' =
> j—1 P’ (W] € Zy such that
z = 2/(1 4 zpF[A]) mod p" L.
Furthermore, for j = k+3,...,n (resp. j = k+2, resp. j < k+1) we have the following equality
in Fy:
fj = W5+ piok 1A+ g+ Si2 (1)
(resp. pik+2 = My, o + N if j =k +2, resp. pj = pf; if j <k + 1) where S;_5(X) € Fp[X] is a
polynomial of degree p — 1, depending only on A, ..., uj—2 and leading coefficient —sy .., &
/
Hj—1 — Hj-1-

Proof: Exercise on Witt vectors.f

To conclude this section we recall two elementary results which will be used in the rest of the
chapter:

LEMMA 2.9. i) For 0 < j <p—1 we have the equality in F):

DW=y

neFy

ii) Let V be an F-vector space and let v, ...,v,—1 € V be any p-tuple of elements of V. The
sub F,-vector space of V generated by Z?;é ,ujv]- for p varying in F,, coincide with the

F,-subvector space of V' generated by the elements vy, ..., vp_1.

Proof: The assertions are both elementary; the second comes from the fact that the Vander-
monde matrix

1 0
11 1 1
1 22 or—1
|1 p—1 (p—1)? (p—1)p 1

is invertible modulo p. #

3. Reinterpret the K Z-restriction of supersingular representations: the
K Z-representations R,’s

The goal of this section is to give a precise description of the K Z-restriction of supersingu-
lar representations 7(7,0,1)|xz; the main result is then proposition 3.9, whose formulation
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is due to Breuil ([Bre|, §4.2). To be more precise, the first step is to introduce, in §3.1, the
K-representations R,, from which we get an alternative description of the compact induction
Ind%za (cf. proposition 3.5). Subsequently, we endow the R,,’s with suitable “hecke” operators
T+ : R, — Ry+1 which let us define the amalgamed sums in (4); proposition 3.9 will then be a
formal consequence.

3.1 Defining the K-representations R,
For all n € N we define the following subgroup of K:

Ko™ 4|

R ] € K, wherec € Z}

(in particular, Ko(p) = K and Ko(p) is the Iwahori subgroup). For 0 <r < p—1andn € N
we define the following Ko(p™)-representation o) over F,: the associated F,-vector space of o}’

is SymTFIQ), while the left action of Ky(p™) is given by

d c

a b i def
n LY Triyg 4
UT([ ]) XY UT([pnb a

e d ]) A%

0

» is isomorphic to o,. Finally, we define

for any [ pgc Z } € Ko(p"), 0 < j < r; in particular, o

RME Indflg0 ()07 -
If r is clear from the context, we will write simply R,, instead of R}

In order to establish the relation between the R"’s and the compact induction Ind% o, we
need the following elementary lemma:

LEMMA 3.1. Fix n € N. Right translation by o™w induces a bijection

K/Ko(p") > KZa "KZ/KZ.

Proof: Elementary, noticing that ([ pon (1) ] KZ [ pon (1) }) NK = Ko(p"). t

For any n € Ns, p € I, and p € I,,_1 we see that

0 o 1% 1 1 . 1 0
gn7“ = |: 1 0 :l Oz”wgn_lww = |: pu/ 1 :| anw
from which we deduce the following corollaries.

COROLLARY 3.2. Let n € N~. We have the following decomposition for K:

KE=1] H é]Ko(p”)H 11 [p}ﬂ ?]Ko(p”)-

pely weln
Proof: Immediate from the decomposition given in (1).

COROLLARY 3.3. Let 0 <r <p—1,n € Ns. The family

1 0

Ly },X"—jw]fowefm Wl ,0<j<r}
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Part I Explicit description of irreducible GLa(Q,)-representations over F,,

is an Fp-basis for the representations R,,. Moreover, the element R,
[1 KZ, YT] c R?
is a K-generator for the representation R)'.
Proof: Immediate from proposition 2.1 and corollary 3.2.

The following result is the key to establish the relation between the compact induction
Ind% ;0. and the R,’s.

PROPOSITION 3.4. Let 0 < r <, n € N and let W(n) be the KZ subrepresentation of Ind%- o,
defined in §2.1. We have a K Z-equivariant isomorphism

¢, : W(n) > R,

such that
B0, XY = | * L |, xmiy
n([gn,uv ])_[ 1 0 ) ]
1 r=iyiy =1 10| xiyri
Pullgn—rp XV =1 XY

for n > 0 and
Oo([1g, X" 7YI)) = XIy"
for n = 0.

Proof: We fix an indexn > 1 (the case n = 0 is immediately verified). Thanks to proposition
2.1 it is clear that @, is an F-linear isomorphism. Concerning the K Z-equivariance, we fix
k€ K,l €N and, for i € {0,1}, gfl_w and p € I,,_;. Then nplg;_w = g;(fg(m) u(
k1 € K, I; € N while i(x) € {0,1} and (k) € I,_j(,) depend only on &. If g; ;. (resp. gi(u),u(x))
i(k)
n—i(k),u(x)

H)Iilpll for some

is the representative of K/Ko(p™) corresponding to gj, ; . (resp. g ) via the bijection of

lemma 3.1 we get:

{ "igi,u. = Gi(k),u(k) k2
"iplg?ﬁ—i,u = gi(ﬁ),u(n)ﬁlpll

. ; 0 1 : - '
for some ko € Ko(p™) and since In—iy = i [ o0 } w" (and similarly for g;(ljz(ﬁ),u(m)v i) ()
we conclude
0 1 0 1 ; ; _
[ o0 } K2 [ 0 } w' = w' gy prth L,

We finally need the equality

0 1 0 1 "
(I Y IR R}
to see that

(I)R(K/pl : [g:l,,/j/? U]) =k (I)n([gz,n7w : U])
and the proof is complete.

We deduce immediately the main result of this section:
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COROLLARY 3.5. Let r € {0,...,p— 1}. We have a KZ equivariant isomorphism

G ~
Indy 5o, — @ R
neN

3.2 Hecke operators on the R,’s, description of 7(r,0,1)|xz

In this section we are going to define some “Hecke” operators 1., T,; on the representations
R,,’s which allow us to give a description of the K Z-restriction of a supersingular representation
7(r,0,1)|kz in terms of the R, T.7, T,,. The main result will be proposition 3.9.

We start from the definition of the Hecke operators on the R,,’s.

DEFINITION 3.6. Let n € N~. We define the F,-linear morphism T,f : R, — Ry41 by the
conditions

mﬂ[ﬁé]JWWWﬂi;%ﬂ“+TW”3}mﬂwuﬂ

0| e 3 | XY DE T ot pogrty 3 | X
Hn€Fp

for p € I, u’g]n,l and 0 < j<r.
We define the F-linear morphism TO+ : Ry — Ry by the condition:

7 (e 9y = S ] D ) g7

Ho€Fp

for0 < j<r.

Identifying R,, with W (n) via the isomorphism described in proposition 3.4 and using the
results of §2.1 we see that
T, (lg:0]) = T([g:v]) "W (n+1) (2)
forall ge KZa™"KZ, v € o,.

Similarly, we have

DEFINITION 3.7. Let n € N, n > 2. We define the Fp—]inear morphism T, : R, — R,_1 by the
conditions:

10 1 0

1 0
p[l/]n72 1

o) g | = e L) ax ey
Tol| e 1 | XD

forpel,, W €l, 1 and0<j<r.
For n =1 we define 1] : Ry — Ry by the conditions:

}@MM2X+YW

Tl([|: [MlO] (1] :| >Xr_jyj]) d:ef(s',r(X_F:UOY)T

Ty (g, XIYT9)) 55077

for po € Fp, 0 < 5 <.
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Again, identifying R,, with W (n) via the isomorphism described in proposition 3.4 and using
the results of §2.1 we see

T, (lg,v]) =T(lg,v]) "W (n —1) (3)
forallg e KZa™"KZ, v € g, and n € Ns.

Thanks to the isomorphism of proposition 3.4, we deduce the following properties of the
Hecke operators T

LEMMA 3.8. The operators T.F enjoy the following properties:
1) for alln € N, the morphisms is T, ,T); are K -equivariant; for n = 0, the morphism TOJr is
K-equivariant;
2) for all n > 0 the morphism T,& is injective;

3) for all n > 1 the morphism T}, is surjective.

Proof: i). We recall that the K Z-action on the tree preserves the distances from the
central vertex. The assertion is then clear from the K Z-equivariance of 7' and the equalities (2),

(3)-

i1) and 4i). We recall that the matrix

1 0 0 0
11 1 1
1 2 22 or
_1rr2 r”_

is invertible modulo p. This implies, for any fixed i € {0, 1}, the following facts:

-) by support reasons the condition T} ([g; ., v]) = 0 forces v = 0 for any choice p € I),_;

-) ifn > 14iand pu € I,_1; the F-subvector space of Ry, generated by T, ([9; i ypn—1 (1) Y "])

for p,—1 € F), coincide with the Fp—subvector space of R, 1 generated by [g; i X r=iy)
for j € {0,...,r}.

This ends the proof.

From now onwards we will consider R,, as a K-subrepresentation of R, via the monomor-
phism T, for any n € N, without further comment.

We can use the Hecke operators T'F in order to construct a sequence of amalgamed sums of
the R,,’s. We define Ry ®g, R2 as the amalgamed sum

+
G U
Ry Ry
=T pra2

¥
R oo > Ry ®r, R2

where the second projection pro is epi by base change. For any odd integer n € Ns we define
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inductively the amalgamed sum Ryg G, R2 ®r, -+ DR, Rnt1 as:

oy

Rn( Rn—i—l (4)
—pra 10Ty prais
¥
Ry ®Rr, Ro ®Rry -+ ®Rr,_» Rn—1+ >Ry BRr, R2a®Ry -+ R, Rnt1;

once again, the second projection pr,11 is epi by base change.
For any even positive integer m € N~ we define the amalgamed sum R;/Ro®r, - - ®R,, Rm+1
in the evident similar way.

We are now ready to state the main result of this section

PROPOSITION 3.9. Let 0 <7 < p— 1. We have a KZ equivariant isomorphism

w(r,0,1)|kz = hi}n (Ro®R, DR, Ruy1) ® hi)n (R1/Ro ®R, - DR, Rm+1).
nodd meven
Proof: We have the following commutative diagram, with K Z-equivariant arrows:
Tlkz

(Ind% o)l kz — (Ind% 50,)| k2

! )
l T+ S (T +T0) l
D R, __ ! D Ru;
neN neN

as the restriction functor is exact, we deduce that the isomorphism of corollary 3.5 induces an
isomorphism 7(r,0,1)|xz = coker(Ty” + > (T,7 +T,;)). We dispose of the evident inductive

n>=1
systems:
n n n+1
+ - A ,
{ Y e @ ne @ rj
j=1,jodd j=1,j odd i=0, i even neN,nodd
n n n+1
+ + -
i+ ¥ men s @ ne @ R
j=1,jeven §=0, j even i=0,i odd neN, neven

so that, by the right exactness of the functor lim, the isomorphism of corollary 3.5 gives

n
W(T,O, 1)‘KZ & hi)n (coker( Z T;_—I_Tj_)) D h_r)n <coker(T6"—}— Z TJJ"—|-TJ_)>
n,odd Jj=1,jodd n, even j=1,jeven

It follows finally from the definitions of the amalgamed sum (and an immediate induction) that

lim (coker( Y Tj" +T;)) = Ro@r, -~ ®r, Rni1
n,odd Jj=1,jodd

lim (coker(Tyf + ) T +T7)) = Ri/Ro ©r, - ©r, Rt

n,even j=1,jeven

and the proof is complete. §
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4. Defining the filtrations on the spaces R,,, Ry ®r, -+ ®R, Rn+1

In this section, we fix once for all an integer r € {0,...,p — 1}. Our aim is to to point out,
in definition 4.3, a filtration on lim Ry @R, - -+ ®r, Rnt+1 (resp. lim Ri/Ry @R, -+ R, Rnt1)

nodd neven
which will let us describe explicitly the socle filtration for the K Z-restriction the supersingular

representation 7(r,0,1)|xz.

ProPoOSITION 4.1. For any odd integer n € N< we have a natural commutative diagram

yon

0 Rn Rn+1 Rn+1/Rn —=0

¢ —prp—19Ty, ¢ H

0— Ro®R, ~~ ®Rr,_, Bn-1— Ry @R, - - ®R,, Rn41 — Rp+1/Ry, — 0

n

with exact lines. We have an analogous result concerning the family

{R1/Ro ®R, - ®R, Rn+1}tncon{0}-

Proof: The proof is by induction. We dispose of the commutative diagram:

T

R,C Ry

J/prn—loTn %pT‘n+1
v
RO 69R1 e @Rn_g Rn—l s> RO @Rl @RHRTL—FI

where the morphism —pr,,_1 o T, is epi by the inductive hypothesis; it follows then from the
universal property of the amalgamed sum that the morphism pr, 1 is epi too. Moreover, since the
forgetful functor For : Repy — Vectfp is right exact we deduce, by the injectivity of 7, and base
change in the category Vectﬁp that the morphism Ry ®g, - - ®r,_, Rn—1 — Ro®R, - - - PR, Rnt1
is injective too.

From the universal property of the amalgamed sum we get the natural commutative diagram:

0 R, Ry i1 Ryt1/Ry—0

| F

Ry ®R, - ®R,_, Rn-1“~— Ry ®R, -+ @R, Rnt1 > Rpnt1/Rn

\_—//

0

where the first line is exact. The exactness of the second line is then an immediate diagram chase.

f

From the proof of proposition 4.1 we see that we have actually a much stronger result: if
0<j<n-—2isodd and Qj1 is any quotient of R;11 we can still define the amalgamed sums
Qj+1 ®R;y5 - DR, Rnq1 as in 4; then

COROLLARY 4.2. Let 0 < j < n — 2 be odd, Q11 be a quotient of Rj,1. We have a natural
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commutative diagram:

0 Rn Rn+1 Rn+1/Rn —=0

| H

00— Qj+1 @Rj+2 T @Rn,Q Rn,1 —> Qj+1 @RjJrQ T @Rn Rn+1 I Rn+1/Rn —=0

with exact lines (and with the obvious convention Qj1 ©r; Rj1 d:CfQjH).
We have an analogous result concerning the family

{R1/Ro &R, - - ®R, Rnt1}nean(0}-

For each n € N we look at a natural filtration on R, 1. The definition is the following:

DEFINITION 4.3. Let n € N, 0 < t < r. We define Fil'(R,,11) as the K-subrepresentation of

def

Ry,+1 generated by [1x, X"7'Y!]. For t = —1, we define Fﬂ*l(RnH) =0.

We note that
LEMMA 4.4. Let n € N. The family
{Fil'(Ry 1) }=" 4

defines a separated and exhaustive decreasing filtration on R,, 1. Moreover, for eacht € {0,...,r},
the family

Biry ™ {[[ - ] XTIy, [[ 1 ] XTI, € D, f € L, 0 < t}

is an F), basis for Fil'(R,+1); in particular Fil'(R,,41) has dimension (p + 1)p"(t + 1) over F,.

Proof: It is immediate from corollary 3.3 and the definition of the o *1’s. #

By Frobenius reciprocity, we have an explicit description of the graded pieces of the filtration
defined in 4.3:

LEMMA 4.5. Let n € N, and fix —1 <t < r. Then, we have a K-equivariant isomorphism:
Fil'(Rn11) /Fil" ! (Rnp1) = Indje, niny X0

where the characters 2, a, defined in §2.2, are seen as characters on Ko(p"*t!) by inflation
Ko(p"™) — B(Fp).

Proof: As (the image of) the element [1x, X"7'Y?] is a K-generator of the graded piece
Fil'( R, 1)/Fil' 1 (R, 41), and Ko(p™t1) acts on it by the character x2at we deduce by Frobenius
reciprocity a K-equivariant epimorphism:

Id, (nnyxpa’ = Fil'(Rpi1) /I (Rpga),
As the two spaces have the same Fp—dimension, the latter is indeed an isomorphism. f

We then see that the first step to understand the nature of 7(r, 0, 1)|xz consists in the study
of the induced representations Indﬁo(pnﬂ)xf,at for n € N, 0 < t < r; such a study will be the
object of the following two sections (§5, §6).
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5. Study of an Induction-I

In this section, we will fix two integers 1 < m < n+1 and 7 a character of B(F,,) (which will be
considered as a continuous character of Ko(p"™!) by inflation), and we will fix a basis {e,} for 7.
The object of this section is then (cf. proposition 5.10) to describe explicitly the socle filtration
for

K m

and the proof will be essentially an induction on the length n 4+ 1 —m (§5.1, §5.2).
For 1 < m < n+1 define a subset I, 11/, of Z,:

In+1/Im = {Z pj[:uj]a My € Fp}

j=m
We have the following elementary lemmas.

LEMMA 5.1. For 1 < m < n+ 1 we have the decomposition

RTES R | B B )

z 1
xEIn+1/Im
In particular, the family

1 0

I+ d_ef{[[ ol } venl, © € Ini1/Im}

(r™) (™)

is an F-basis for Indﬁgg(znﬂ)n and dimfp (Indgg(p +1)77) — prtlom,

Proof: Immediate from corollary 3.3. §

LEMMA 5.2. Let 1 < m < n + 1 be integers and n a character of B(F,). Then we have a
Ky(p™)-equivariant canonical isomorphism:
Ko(p™ ~ Ko(p™
Ind iy = (Indidd 1) @

where 1) is seen (by inflation) as a character of Ko(p"*1) and Ko(p™) in the left hand side and
in the right hand side respectively.

Proof: The assignment, for x € I,,11/I,

(Y RO S

x 1 rz 1

O]GKlforaH:BG

= . . L N 1
defines an F,-isomorphism which is actually Ky(p™)-equivariant, as { -

Inv1/Ip. 8

In particular, by lemma 5.2, we can assume 7 = 1.

5.1 The case m =n

We establish here the first step concerning the inductive description of the socle filtration for

IndXo( n )1 1; fix once for all an Fp-basis {e} for the underlying vector space of the trivial character
Ko(pmt1) p

1. We introduce the objects:
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DEFINITION 5.3. Let n € Ns and 0 <[, < p— 1. Then:

i) we define the following element of Indggg :11)1:

def

we define formally Fg), Fén) =0;

Ko(p™) 1:

i1) we define the following quotient of IndKO(an)

n,n+1) de Ko(p™ n n
QY Emd ) /(R B g

we define formally Q"™ .

(n)

n

For any 0 < Iy, 1, < p— 1 we will often commit the abuse to use the same notation for F,

and its image in the quotient Ql(,n D The meaning will be clear according to the contest.

The next computation is the main tool to describe the socle filtration for Indggg :)H)l.

LEMMA 5.4. Let g € Ko(p"™), A € F, and 0 < l,, < p — 1. Then we have the equalities in
IIldKO(pn) 1:
Ko(pnt1)™

i) g- Fl(nn) — qln (g)Fl(nn);
.. 1 0 n) o (ln i (n)
g [p"[A] 1 ] B =2 (IENE L

. a b
Proof: i). If g = [ e d

I { p”[lun] (1) } B [p”[unlald] (1) ] [P”illc’ 5’ }

where o/, ,d' € Z,, and o’ = a[p], d’ = d[p]. Thus,
1 0

(n) Z ! =1, 7p(n)
F = n = el = d n [PV
g n 229 [|: p”[,una 1 ] 1 :| e] (a ) In
un€Fp

] , then we can write

Since [A] + [un] = [A + pyn] modulo p, we deduce
1 0 (n) ! 1 0
o= n .
|:pn[>\] 1:| In Zun[[pn[ﬂn+)\] 1:|7€]
pn€Fp
The result follows.

As a consequence, we get the corollaries:

n,n+1)

COROLLARY 5.5. For any 0 < [l,, < p — 1, the sub-Ky(p") representation of Ql( generated

by Flin) is isomorphic to a'.

1
p"[A
k € Ko(p"™1) (lemma 5.1). The result comes from lemma 5.4 and the definition of Ql(n’n+1). i

n

Proof: For any g € Ky(p™) we can write g = [ (1) } x with suitables elements A € F,,,
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COROLLARY 5.6. For any 0 < I, < p— 1 we have Ky(p"™)-equivariant exact sequence
0 — <F,l(nn)> R Ql(:,nJrl) an ;n+1) =0
which is nonsplit if l,, < p — 2. Moreover,

dimfp (Q;:’nJrl)) = p — ln'

Proof: The exact sequence is clear. Furthermore, if ¢ : QE:’"H) — Flin)> is any Ko(p")-
equivariant morphism, we see that

o = S |ty ] o) = ol ) 3

un€Fp ['un] pun€Fy

Thus, there cannot be any Ky(p™) equivariant sections for <Fl(nn)> — Ql(:’nﬂ) ifog<l, <p—2.
The assertion concerning the dimension is immediate by induction.f

COROLLARY 5.7. Let 0 < I,, < p — 1. Then the socle of Ql(:’nﬂ) is given by:

SOC(Q(n ,n+1) ) <F(n)>

ln

Proof: We have Q(n M) o ~ (F (n)1> as the two spaces are 1-dimensional. By a decreasing

induction, assume soc(an nH)) = (F, (n) 1) for I, <p — 2 and consider the exact sequence

If 7 is an irreducible Ky(p™)-subrepresentation of Q ) such that 7N (Fl(:)) = 0, we deduce
that Fl(nn}rl + ClFl(nn) € 7 for a suitable ¢; € F,,. From the equality

1 0 . i )

n Ql(:’nﬂ) (where A € F)), we find Fl(nn) € 7, contradiction. f

5.2 The general case

Fix two integers 1 < m < n + 1. In this section we establish the inductive step which let us

Ko(p™)

describe the socle filtration for the representation Ind Ko(p +1)1. We recall the following result:

PROPOSITION 5.8. Let 1 <m < n+ 1. For any m < j < n+1 we have a canonical isomorphism:

Ko(p™) Ko(p™)y, 1Ko(p?)
Ind 0( ”+1)1_>IndKO(ZJ)I nd 0(pn+1)1

For any two (n 4+ 1 — m)-tuple (Jm,---,7n) (ms---sln) € {0,...,p — 13"~ we define
inductively
sy dn) < (s -5 In)
if either (Jm+t1,---57n) < (ma1y -5 0n) OF (Gmats---0n) = (bmt1s-- -y ln) and Jy, < ly. We can
therefore introduce the objects:

DEFINITION 5.9. Let (I, ..., l,) € {0,...,p—1}"""* be an (n + 1 — m)-tuple. Then:
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Explicit description of irreducible GLa(Q,)-representations over F, Part I

i) we define inductively the following element of Ind E 21)1:

m n e, 1 0 m n
I YL PRI [ PTSR el
L EF, b [,Um]

where we adopt the convention FZ(TTJZI - % F( n) def F( m) Fl("f:i)l Cox Fl(nn) ifl, =p—1.
o(P™)

i1) We define the following quotient of IndKO(an)l:

1) de Ko( . .
Q) det g o n+1 E™ s FN for (Gims - n) < (s 1)),
m n+1) def ~(m,n+1) . N
where we adopt the convention Qz QO lm+1+1, m ifly, =p—1.
We give here the statement of the main result.
PROPOSITION 5.10. Let 1 < m < n + 1 be integers, and (I, . ..,l,) € {0,...,p — 1}77™FL 4

(n —m + 1)-tuple. Then

i) The Ko(p™)- subrepresentamon of Q(m nH) generated by F (m) Fl(nn) is isomorphic to
l
am ® . ® a ’

i1) we have a Ky(p™)-equivariant exact sequence:

0 — <Fl(7;n) % - > Ql(:j,n—i_l) leﬁi_l, -0 (5)
which is nonsplit if (I, ...,l,) # (p—1,...,p — 1). Moreover
(m,n+1) Ko( m—+1,n+1
QO dmg1,0dn = In dKU(zm_‘—l)Ql(erl,‘..,ln )

and

dimfp(Q(m,nJrl)) n m+1 an m— Jln s

I yeeesln
... (m,n+1) . .
ii1) The socle of le’“_JH is given by

soc(Ql(Zijgi)) = (FI(HT) Kook Fl(n")>

As we said, the proof is an induction on the length n + 1 — m, the case m = n being proved
in the previous section; in what follows, we will therefore assume proposition 5.10 for any length
I with [ <n 41— m. We first need the following tools.

LEMMA 5.11. Let (Iy,...,1p) € {0,...,p — 1}" ™! be an (n — m + 1)-tuple. The following
diagrams are commutative with exact lines

i)

0—> (FZEZ”) F(" 1)) ® alr —— le O Y L — le+1 L, @alr ——0

msesln—1 yeey
lz

(B o5 FY)

(m,n+1) (m,n+1) .
Q) ————aQ, ———=0

moenln
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Part I Explicit description of irreducible GLa(Q,)-representations over F,,

i)
o(p™) (m+1) (n) (m+1,n+1) Ko (m+1,n+1)
0—— Ind Kolp m+1)F1lm+1 cek F‘ln — Ind le_H, ”’ln — > 1In d o m+1)le+1+1, N
0 +1) Ko(p™ +1n41
0 —> Q(m ;m+1) Qamtl @ ... Qaln Ql:j,n,ln _— Inngme)H Ql(ilf{,,,,,)ln

Proof: The proof will be an induction on the (n + 1 — m)-tuple (I,,,...,0,) € {0,...,p —
1}n+1—m.

i) From corollary 5.6 and the exactness of the induction functor we dispose of the following
exact sequence for any 0 <[, <p—1:

0 — Indy "B (FM) — Indi 2 PVQM™ Y — Ind P QMY — 0

and <Fl(nn)> =~ gln. We assume, inductively, to have the commutative diagram with exact lines:

Ko(p™) n Ko(p™) ((nn+1) Ko +1)
0 —Indy 7,1 ® af ——Indy 2. Q)" IdKO(g Qljjfl —0
0——=Q"", @b QY = Ind PV QMY —— o,

m7~--,ln K (p n+1

We can invoke proposition 5.10 for Indggg :))1 ® al» deducing the diagram:

0 0

<F(m) ook F(”_1)> ® aln(_>Q m,n)

lm lnfl m, 7l

L @al
!

<F(m) % - F(”))( S le;”‘f'l)

b

0 Indg 7 QY
0 0
and we are left to use the snake lemma to conclude the induction (notice that if (I, ... ,lh—1) =
(p—1,...,p—1) we just deduce the isomorphism Indggg:))@l(:ffrl = Qom n()+l1+1)
i). It is similar to 7). The details are left to the reader.
LEMMA 5.12. Fix two integers 1 < m < n+ 1, let (I,,...,l,) € {0,...,p — 1}""™*! be an

(n — m + 1)-tuple and assume (lp,...,l,) < (p —1,...,p — 1). Moreover, let A € F, and
t= Zjeij[ ] € Z,, be a p-adic integer.

1 0

Then, the action of P+t 1

on Fl(mll *Fl(ﬂil) -« F" inside Ql(zmﬁ) is described
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Explicit description of irreducible GLa(Q,)-representations over F, Part I

by

1 0 (m) (n) _
pm[A]+pm+1t 1 F1l +1 *F}n -

= F}ETﬁ)-l Koo x Fl(nn) + (I + 1)(_1)j—m+1)\ﬂ(7:n) K ee ek Fl(:)

where j € {m,...,n} is minimal with respect to the property that l; + 1 # 0 modp.

Proof: The case m = n is an immediate computation, and it is left to the reader. In order

to establish the general step, we need to distinguish two situation:

Situation A). Assume l,,, < p—2. It follows from proposition 5.10 applied to IndK0 Ep n+1))1 that

[ o +11 Z, (1) } acts trivially on Fl(;f: ) -k F(n in Ql(mjll mtl) , and we deduce the following

Ko(p™)  A(m+1n+1),
Ko(p™ 1) ¥lmy1,eln

1 Im+1 0 (m+1) (n)y _
|:pm[)\]_|_ m+1y 1:| Z;‘:u |: /«Lm] 1:|[1‘Fl o *F‘ln ]_
Hm €

_ I 1 0 (m+1) ()
- ze:FMm [pm[)\+ﬂm] L e BT =
Um

Ilym+1 .
—Z( ) AL ET D s 7).

We conclude using the projection IdeOE]D:)+l Ql(m+1’"+1) —» Q(m’"H)

equalities in Ind

m—+1,- :ln ZWI7 7ln :

Situation B). Assume Iy, — 1; therefore Fl( le - % F( - F(m) * F(mt_lgl -k F(")
Lemma 2.6 and the inductive hypothe31s applied to F (m+1) *Fy (n) € Ql::jll ) ot us deduce
the following equalities inside Ind m+1 leiljz-;nl).

1 0 ] [ 10 ] (m+1) ()
m m+1 Z m [17Flm +1*"'*Fln]:
{ O e = B T =
1 0 ] (mt1) (n)
> L EP, e O 4
1 +1 In
I EFp |: p [/Lm + )\] 1 ml
j— 1 0 (m+1) (n)
. _1)i—m e
+(lj +1)(-1) MEE:F (Px(pm) + to) [ gt 1 | B F e )
m&p
= Fl(m-i)—l Kok F(n) + (lj + 1)(_1)jfm<t0F0(m) % Fl(nfl_l) x F}(nn) n
+1
+Z APIF™ B s )

where j € {m+ 1,...,n}is minimal With respect to the property that [; < p—1. The conclusion
(m+1,n+1) s Q(m,n—i-l) f

comes using the prOJectlon Ind m+1 Q, ol
m EARRS

lnyeisln °

We are now able to deduce easﬂy proposition 5.10.
Proof of proposition 5.10:
i) From lemma 5.11-7) we have an isomorphism (FIE:L) ko -*Flin__ll)> @a = <FZEZ”) o >|<Fl(n")>
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Part I Explicit description of irreducible GLa(Q,)-representations over F,,

and we have (Fl(;n) %ok Fl(nn__ll)> =~ glm @ ... ® al"~1 by the inductive hypothesis.
m,n+1)

my-. 7l

i1) As in corollary 5.6, we see that for any Kjy(p™)-equivariant morphism ¢ : Ql
<Fl(n:n) Kook Fl(n”)> we have

SE™ wx ™) = (=614 - (=0p1.0)0([Lico (o) €])

so that there cannot be any splitting for <FZ(TT)

1,...,p—1). The identity

sk BY 5 QY (L) < (0 —

lm7~--7ln

dimFP(Q(m,n+1)) n m+1 an m— Jln »

lmv"'vln

is now an immediate induction.
iii) The case (Iy,...,ln) = (p—1,...,p — 1) is trivial. We will prove the general case by a
descending induction on the (n + 1 —m)-tuple (I, ..., ln). Consider the exact sequence

E;n)*~--*Fl(n)>:0.

n

and let 7 < g::m;i) be an irreducible subrepresentation such that 7 N (F,

The inductive hypothesis SOC(Q?ZJ’:L;F“I_)M) = <Fl(;n+)1 ook Flsln)> let us conclude that

7—:<F1l(7;n‘i)‘1*‘..*F’lE’,,n)+ClF‘lE:,n)*”‘*F‘lEln)>galrn—‘rl@“‘aln

for a suitable ¢; € F But by lemma 5.12 we have the equalities in le ”+1).

1 0 m . - )
[pm[)\] 1:|(F1I(WLJ21**Fl(n)"i_chl(m)**Fl(n)):

= (s B R s B 4
+A(l; + 1)(71)j_m+1Fl(:) Kook Fl(nn)

(where j € {m,...,n} is defined as in lemma 5.12) from which Fl(ﬂln) koK Fl(nn) erif A #0,
contradiction. .

6. Study of an Induction -II

Throughout this section we consider integers r,t with 0 <r <p—1,0<t<p—2and n € Ns.
Our aim is to describe the socle filtration of the induction

Indjg, (pr)Xr a’

using the result of section §5; the main result is then proposition 6.6.
We start by fixing the following elements of Indg0 (1) xial.

DEFINITION 6.1. Let (I1,...,l,) € {0,...,p—1}" be an n-tuple, and let t’ defz l;. We define
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Explicit description of irreducible GLa(Q,)-representations over F, Part I

1- 1 n

“OgF [120] . [1K7Fl(1)*”'*Fl(n)]
p L i
ifr—2(t+t')Z£0[p—1];
Féo)*}?’l(ll)*u-*Fl(nn) def

Z [MO] 1 [1K7F}(11) Kok F’l(")] + (_1)t+t’[1K’ F1l(11) e
“OGF]) L d "
ifr—2(t+¢)=0[p—1]

(L B on By
ifr—2(t+t")#£0[p—1];

FOx Vs s ;M &

(o] 1 . )
#§F|: 1 0 [1K>Fl(l)*-..*pl(n)]
0&tp

ifr —2(t+¢)=0[p—1]

If (Jiy-oeydn)s (G1s---sdh) €40,...,p — 1}™ are two n-tuples and 7, € {0,1} we define
(ihjla"'ajn) = (7’/7]1;’]1,1)
iff either (ji,...,79n) < (J1s---,J5) or (41, Jn) = (J1,---,7,,) and @ < ¢'. Finally

DEFINITION 6.2. Let (I1,...,1l,) € {0,...,p—1}" be an n-tuple, i € {0,1} and let t/ defzj 1.
We define the following quotient of Ind Ko(pn+1) xiat

Q) Ll axsat /(K- FY L FM) for (o, dn) < (i1, )

01,
As usual, we adopt the convention

(0,n+1) def (0,n+1)
Q’H—l l1,..., QO i+l

if = 1. We remark that in the previous deﬁnltlons we do not keep track of the integers r,t: we
adopted this choice in order not to overload the notations. We believe the values of r, t will be
clear from the context (cf. §7, §8).

The study of the socle filtration start from the following elementary lemma

«F\)

0;

LEmMMA 6.3. If (I1,...,l,) € {0,...,p — 1}™ is an n-tuple, we have the following commutative
diagrams with exact rows:
i)
0> (K -F{ *Fl(ll) **Fl(n”)> — Indf, A rY **Fl(n")> —~ (K- FY *Fl(ll) **Fl(nn)> -0
|
0 1 0,n+1 (0,n+1)
0> (K -F" « Fl(1 ) sk Fl(:)> Q(()z?z)n Quﬁ A
i)
1 (0,n+1) (0,n+1)
OHIndK(p)(F()*---* £ ) — QOlanr Qolf—:_l, a0
0,n+1) ©
OH(K-Fl(O)*ﬂﬁl)*~--*ﬂin)>4>Q§z?+ Qozfif, dn 0
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Part I Explicit description of irreducible GLa(Q,)-representations over F,,

Proof: It is an induction on the n-tuple (l1,...,[,). By proposition 5.10 and the exactness
of the induction functor we have the exact sequence

0 — Indff, ) (B 5w FY) — Indig o Q™Y — Indjf ) @11, — 0

and we dispose of the exact sequence (cf. lemma 2.4)

0)

0— (KFé >(<Fl(11) * *Fl(nn)> — Indilgo(p)@?l(ll) **Fl(nn)> — (K.Fl(o) *Fl(ll) * *Fl(nn)> — 0.

The conclusion comes applying the snake lemma to the diagram
0 0

|

(K- Fy) « B s Yy Tnd

1n+1
(K- F\” « w ) IndfS QY

R (B o< B)

Ko(p)

(\L IndK Q(17n+1)
0

assuming inductively that IndK Qll nt1) QOOZIHH f

We deduce the following two corollaries:

COROLLARY 6.4. Let (Iy,...,l,) €{0,...,p—1}" be an n-tuple. Then:

(0, n+1 ), gV
1

i) the K-subrepresentation of Q . generated by Fy Kok Fl(nn) is isomorphic to

<KF(§O) « Fl(ll) - Fl(nn)> ~ SymLT—z(Ht/)JFi ® dett '
Féo) * _F’l(ll) ¥ .ok F(n) — XLT72(t+tl)J .

(0 n+1

-----

If, moreover, r — 2(t +t') = 0[p — 1], then the K-subrepresentation on
by Fl(o) * Fl(ll) Xk Fl(n”) is isomorphic to

. generated

<KF1(O) * Fl(ll) Kook Fl(nn)> = Symp_IFZ ® det't?
Fl(o) * F(l) Kook F(n) — XPL

On+

i1) The K-subrepresentation of Q generated by F( ) & Fl(ll) Kook Fl(nn) is isomorphic to

(KF” « FY % Fl(")> = Sym? 1l 2HOIFY @ detr ()
FI(O) % F’l(l) Kk ooo. ok F‘l(n) — Xp—l—l_?“—Z(t-i—t/)J .
1 n

Proof: As <Fl(11) Kook F(n)) = X; at** the statement is an immediate consequence of lemma,
6.3 and proposition 2.4. 4
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COROLLARY 6.5. Let (Iy,...,l,) €{0,...,p—1}" be an n-tuple. Then:
i) If (I1,...,l,) #(p—1,...,p— 1) the exact sequences:

0 1 0,n+1 0,n+1
O—><KFO()*FI(1)*... > Qél:+,l)n lef,—i—,l) — 0;

0 1 (0,041 (0,n41)
0—><KF1()*Fl(1)*“' > QHT,) Qozﬁl,, —0

are non split.
it) If (l1,...,ln) = (p—1,...,p— 1) the exact sequence
0 1 0,n+1 (0,n+1
0= (KR % BV s B = Q) — @15 0 =0
is nonsplit iff r — 2t = O[p — 1].
iit) The dimension of the quotients Qgglnﬂll for i € {0,1} is:

dimg (Qoozln,ﬂ) )=@+1p" —(p+ 1)(ij_1lj)
=1

dimg (Q) ) =@+ 1p" — (p+ )Py — (Ir =20t +1)] +1).

Proof: i) andii) As the action of K; on (K - FZ.(O) * Fl(ll) ok Fl(:)) is trivial (for i € {0,1}),
we deduce as in proposition 5.10-i7) that

SF” < F s s BY) =0

7

for any K-equivariant morphism Q © "+1) — (K- Fi(o) *F‘l(ll) koo k Fl(nn)) and for any (n+ 1)-tuple

oln
(t,01,...,1p) € {0,1} x {0,...,p — 1}” such that (I1,...,0,) < (p—1,...,p — 1). The assertion
i) is then immediate from proposition 2.4.
The proof on #i7) is finally an obvious induction.

6.2 Study of the socle filtration

The present section is devoted to the proof of the following result:

PROPOSITION 6.6. Assume p is odd; let (l1,...,l,) € {0,...,p — 1}" be an n-tuple, and let
=S ;. Then

i) the socle of Qlol:”r l)n is described by
soc(QU T ) = (KF” « BV s 1)

i1) the socle of Qoollnﬂl)n is described by

(KF « B s x FMYifr — 2(t + ) # 0[p — 1;

(0,n+1)
S0OC =
Qo) = (KEO « ED s s By @ (KE® 5 ED w-.x F)
ifr—2(t+t)=0[p-—1].
The proof is a descending induction on the n-tuple (l,...,[,), the statement being clear if

(llvaln):(p_lvvp_l)
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Part I Explicit description of irreducible GLa(Q,)-representations over F,,

We prove the result for a fixed n-tuple (ly,...,1,), assuming it true for ngl’?ill?” L (resp. for
(0,n+1)
Ql,ll,“.,ln)'

Study of soc(Qg(’)l’:fllf“’ln). We dispose of the following commutative diagram with exact lines

(cf. lemma 6.3):

1 0,n+1) (0,n+1
0 ——>Indf{ () (F 5 F) ——= Q) ——= Q) | ——0
iml im‘z
0— (K 1" x Fl(ll) . F(n ) — ngl:ﬂ Qooz:b:) —0.
(0 n+l)

We define the elements of QO Lo

o2 3 [0 e
Ho€Fp
o def [1K7 Fl(11_|)_1 I Fl(nn)]

Ly + (1)

Q(O n+1)

the behaviour of the elements x, 2" in ., 1s the object of the next

LEMMA 6.7. We have the following equalities in Q(()Ol’?fll)n for p odd ?:
i) if a,d € F then

)

[ [a] 0] ] oo gD gL

[a] 0 f_ bt L e (1)
{0 1d) r=a d x

it) Let j € {1,...,n} be minimal with respect to the property that l; < p — 2 and let A € F),.

Then
1 [ ; 1 n
o e e nent X - | 5 e Y e R
no€Fp
o ] = G DD = N ED 5 EL

Proof: i) Follows easily from the definition of the elements z, 2/ and the equalities
S oalli o] T e
5 a ]l TS A

for 2 € Zy, a,d € F

2this is required only for the equality concerning z’ in 1)
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Explicit description of irreducible GL2(Q))-representations over F,, Part I

1) The first equality is immediately deduced from lemma 5.12 and the relation:

801124 3 Loy ¥

for X\, no € F, and h € Z,, a suitable p-adic integer.
The second equality is more delicate. From lemma 2.8 we deduce

[1[A]H 1 0}_{ 1 0H1+pt1 [A] ]
0 1 | [ plu]+-+p"[un) 1 plf] + -+ p"un] 1] [ P 1 pts
where t1,12,t3 € Z), are suitable p-adic integers and, for ¢ > 3 we have

pi = i+ pia A+ i+ Sica(pie1)

where S;_5 € F,,[X] is a polynomial of degree p — 1 and leading coefficient —s;_o gef Wiy — i1,
while, for i € {1,2} we have

po = Wy + pph A = .
If € {1,...,n} is as in the statement we can write

1 n 1 —1 ) n
F}E)*...*ﬂi):Fé)*...*FéJ )*Fl(j—i)—l**Fl(n)

(with the obvious convention if j = 1) and a direct computation in Indggg ,11)) xial gives:
aer | 1 [A] ] L) (n)
1 0 ] [ 1 0 Lj+1 1 0
=D N S D DI [FET NI 1D DN il BT
1 €F, |: p[/"bl] ;Ufjfler p] [/’L]—l] HijFp py[/’b‘]]
1 0
!
Z:Uﬂ{l[ nl,,/ :|[17€}
1
P B
If j < n we can now use the recursive property of the s;_1’s for ¢ = j,...,n — 1 and project v
successively via the epimorphisms
Ko(p) t Ko(p) (nn+l) Ko(p) (j+1,n+1)
Inng(an)X;fa — Ind,? (pn)Ql: N IndKE ) ljﬂ’f,ln

and we see that v is sent to the following element v of Indgg Eg j) +1)Ql(j L) (with the convention

PfLseensd

J41s5in
(J+1nt1) def s ¢y,
= Xr@ )

that if j = n, we just have v = v and Qlj+1 L

> [pj—l[lug,_l} (” > (s +s-1)0 [ pj[lug] ?} > Méjﬁ [pjﬂ[lujﬂ] (1)]

pj—1€Fp K €Fp kj+1€Fp
1 0
l
: Z,u,?[ n 1:|[1,6].
JneF, P"[1in]

)

This let us deduce the statement if j = 1, while, if j > 2 we map v in Indggg ]))Ql(j nJrli via the
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Part I Explicit description of irreducible GLa(Q,)-representations over F,,

epimorphism Ind ngf“ QIJ‘H USRNG5 dKo( J))Q(J ;1)

Ll Ko(p) €1, to get:

(1) (n) 1 0]
F *oex BV 4+ (L 4+ 1 [
hitl RS < plpy] 1

p1€F,
uj§Fp [ pjl[lug-_l] ) ] Sj—lujeZFpu? [ pj[lﬂj] " } .
'H;puf? [ p”[tin] (1) ] 1,el.
We use again the recursive property of the s;_1’s for i = 2,...,j and the chain of epimorphisms
B

(I,n+1) .

ln

to see that the image of v in Ql is

This let us conclude the proof. §

Let 7 be an irreducible K-subrepresentation of Q (© n+ll) such that 7N (K - FI(O) * Fl(ll) Kook

0,n+1 (0,n+1) . . .
g ZZH l)n QO lfrl ;, induces an isomorphism on

7 onto an irreducible summand of SOC(QOOZILLU ). We dlstlngulsh the situations:

Fl(n )> = 0. Therefore the natural projection @

A) the subrepresentation 7 maps isomorphically in the K-subrepresentation of Qool?_tll) gen-

erated by (the image of) =

B) We have r —2(t+t'+1) = 0[p— 1] and the subrepresentation 7 maps isomorphically in the

K-subrepresentation of Qéol’lrfll?“ ;, generated by (the image of) y

Study of case A. Let f € Indk Ko(p) l(ll) (") be such that pra(z + f) € 7. The induced

isomorphism 7 = (Kx) and the behaviour of  in soc(QOOlnj_rll) 1,,) let us deduce the necessary

conditions:

1) for all a,d € F;,

[ [a] O] ] (@ + f) — @~ EHHDGHH (4 4 ) € or(pro),;

2) forall A\ e F,

o Vo - e
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Condition 1) and lemma 6.7-i) give { [g] [2] } f—a D gt £ e Yerpry so that, by

lemma 2.5, we deduce

0if r —2(t+t') 2 0[p—1]

o Y -mn =4 s R
0€Fp
ifr#—Q(t+t’);0[p_1]

for some ¢; € F,. Thus, condition 2) and lemma 6.7-ii) let us conclude that

-1
| iSO i 5 [ o] 1 ) ()
(I +1)(=1) Z (=) Z ol "1 o (1, Fy 7 % By V] € ker pry
i1 P 1ok,
% 1 n
100, —2(t4+4) A Z Ho [ [M10] 0 ] [LFl(ll) Koo *Fl(n )] € ker pry
,LLOGFp

for any A € F,,, and by lemma 2.9-ii) we can deduce

Z #;8—1 [ (o] 1 } [17Fl(1) S % Fl(:)] € ker prq

1 0 1
ro€Fp
1 n
Z 140 [ [MlO] . ] [LFl(ll) % *Fl(n )] € ker pry.
ro€Fp

Both conditions are absurds, for the case r —2(t +¢') Z0[p — 1] and r — 2(t +t') = 0[p — 1]
respectively. §

Study of case B. Let f € Indﬁo(p)Fl(ll) koo Fl(nn) be such that pra(y + f) € 7. The induced

(0,n+1)

isomorphism 7 = (K7) and the behaviour of y in s0c(Qp /1.

conditions:

1) for all a,d € F};,

1,) let us deduce the necessary

[ [3] [Sn ] (y+f) = (ad)™*(y + f) € ker(pra);

2) forall A\ e F,

o Ve rn- e et

We deduce from condition 1) and lemma 6.7-i) that pri(f) is an H-eigenvector for (K - F *

t+t'+1) g+t

Fl(ll) SRRRE: Fl(:)) with associated eigencharacter a”( +1. Thus, by lemma 2.9, we have

Oifr —2(t+t')#£0[p—1]ie.p #3

1Al
[0 1 ]pﬁ(f): ad Y [[/‘10] (1)][1’};}(11)*...*};}(:)]
NOer
ifr—2(t+t)=0[p—1}ie.p=3.

for some ¢; € F,. The conclusion follows again from lemma 6.7-i7), similarly to case A).
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Study of soc(QOOl:LJrl ).  We have the following commutative diagram with exact lines (cf.
lemma 6.3):

0= (K-F"«FV s s By = mdl (B s s FY) = (K- FO + FV s« FY) =0
|

0 1 n 0O,n+1 0O,n+1 .

0~ (K- Fé ) * Fl(l : Kok Fl(n )> Qé,lh--.,l)n Q§,117--~7l)n 0;

)

Let 7 be an irreducible K-subrepresentation of Q(O n+ll and assume

T ﬁIndﬁ » )<Fl(11) Kook Fl(n)> = 0.
In particular, the natural projection Qooll nt1) Qlol?ﬂ induces an isomorphism 7 — soc(ngl’?Tll)n).
By the inductive hypothesys, we deduce that it exists f € (K - Fo( ) Fl(ll) ceek Fl(n )> such that
f+F1(0)>l<Fl(11) **Fl(nn) ET

is a K-generator of 7, contradiction.

7. Socle filtration for the spaces R,

In this section we will use the results of §6 to give an exhaustive description of the socle filtration
for the R,’s, for any n € N. The precise statement is the following:

PROPOSITION 7.1. Assume p odd; let 1 <r <p—1,n € Ns and 1 <t < r be integers. Then
soc(Fil' 1 (Rp11)) = soc(Fil' (Rps1)).
More generally, we have
soc(Fil' 1 (R,41)/Q) = soc(Fil'(R,+1)/Q)
for any subrepresentation @ of Fil/(R, 1), 0 < j < t — 1 coming from the socle filtration of

Fil/(Rp41).

The rest of the paragraph is devoted to its proof, which is very similar to the proof of
proposition 6.6.
We fix integers 0 <r <p—1,n € N, 1 <t <r, and we define the elements of Fil'(R,,1):

o [,UIO] 1 1 0 r—ty t .t .
o { 1 0]” 2 [p”[ﬂn] | L XY € Fil(Rog);
Ho€Fp 1in€F,
r gef L0 1 0 ] r—tyt -
e Lie, X"tV € Filt (Rp11);
[p[m] 1 ] 2 [p"[un] 1| K ] (Rn+1)

Moreover, we consider the map

prFil 7 (Ry ) — IndfS onxia ™ = QY S ndfl oyl

where the first arrow is the natural projection given by the reduction modulo Fil 72(Rn+1) and
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the second arrow is more precisely described by the commutative diagram (cf. also lemma 5.11)

(0,n+1)
07p_17"’7p_1

Indﬁo (p"“)Xf“at_1

(Ovn+1) ~ K s t—1
Qo,..0p-1 = Indgg () X708

0,2) ~ _
Q(07p21 - Indﬁo(p)xf:at g
We finally set
Priot : Filtﬁl(Rn_H) il Indgo(p)xfaatfl 5 Sympflftrﬂ(t*mf?) ® det” (=1

where 7 is the natural projection defined in lemma 2.5. We start from the following computational
lemma.

LEMMA 7.2. We have the following equalities in Fil(R,11) for p odd 3:

i) For all a,d € F},

[ la] 0 ]x — a" e

0 [d
[ [g] [2] } o = atd
ii) For all A € F, then [ é [T] ] r —x and [ (1) [T] ] z' — ' are in Fil' " 1(R,, 1) and
A EEE BV D RN [N i talien

ro€Fy

1 A _(t— _
pr<[ 0 ]$ = @) = H(=1)" AL, X7V

(where P_y(po) has been defined in §2.3)

3the requirement p odd is used for the equality concerning 2’ in 44)
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Proof: z) It is analogous to the proof of proposition 6.6-7). i1) From lemma 2.7 we deduce

o

V]
; [ A+ ol é]

1 0 r—t t
. ., 1L, X Py () X + Y)Y =
_ [A+po] 1
oty [Pl g
mo€Fp
1 0 r—(t—1)yrt—1
2| it P ()] 1| P ()L XTDY g
n seensHn—2 n—

Hn GFp

for a suitable ¢ € Fil""%(R, 1) and where the elements Py ;1 (pg) for j € {1,...,n} (resp.

Py(10)) are defined in lemma 2.7. We are now left to map the element [ (1) [i\] ] T —x €
Fil' ™' (Rp41) in Indjg i1y X507 to get
£y [ A+ po] 1L ]
no€Fp
> 1 D] 0P G, X700y
. pn[,un + Py . Mn72:| 1 Hn=1 )52 apim—1 n L5
pn€Fp T

and the result follows using the chain of epimorphisms

K S t 1 (Ozn+1) (O,Tl—‘rl)
Ind e, (ErtXr® W&o op—1 7 W po1p1

and the recursive property of the polynomials Py .. ,(X) € Fy[X] for j € {1,...,n}.
Similarly, from lemma 2.8 we deduce the following equality in Fil’(R,1):

3]

D N IR D Sl I S R [ e B

ni1€Fy pn€Fp

for some ¢’ € Fil'?(R,,+1). We map the element [ i ] ' —z' € Fil' " 1(R,;1) in Indg (pr1) X al~!
to get

PR ) B

M1 GF /—Lner
and the result follows using the chain of epimorphisms

K - (0,n+1) 0,n+1
IlQdKo(P”“)Xia‘ - QO, L0p—1 7T ((),pfl,.)..,pfl
and the recursive property of the s; for i € {1,...,n} (here we need p > 3). §

Let now 7 be an irreducible K-subrepresentation of Fil’(R,,,1), and assume 7NFil* 1 (R, 41) =
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0. Therefore the natural projection Fil'(R, 1) — Indﬁg(pnﬂ) xSa! induces an isomorphism of 7

onto an irreducible factor of SOC(Indgo(an)xiat), and the latter is completely described by
proposition 6.6. We distinguish two situations:

A) the subrepresentation 7 maps isomorphically in the K-subrepresentation of Indg0 (pn+1)xf, at
generated by (the image of) x.

B) We have r — 2t = 0[p — 1] and the subrepresentation 7 maps isomorphically in the K-
subrepresentation of Indﬁ0 (pn+1) xial generated by (the image of) y.

Study of case A. Let f € Fil'"}(R, 1) be such that 2+ f € 7. From the induced isomorphism
7 = (Kz) and the behaviour of z in soc(IndﬁO(an)X;?at) we deduce the following necessary
conditions:

1) for all a,d € F;; we have
{ la] 0 ] (x+f)—adtd(z+f)=0

inside Fil'(R,41);
2) for all A € F,, we have
1 A
oV ]ern-wen=o
inside Fil'(Ry41).
Condition 1) and lemma 7.2-7) imply in particular that pri(f) is an H-eigenvector of
Symp_l_Lr_Q(t_l)in ® det” (1) =~ Indﬁo(p)xiat_l/SymV_z(t_l)JFZQ, ® det! ™!
of associated eigencharacter a”~d'. It follows then from lemma 2.5 that

Oifr—2(t—1) Z0[p—1]

[ (1) [i‘] }p?”tot(f) —priot(f) = a3 { [,ulO] (1) ] [17X7‘7(t71)yt71]
o0€F,
if;j—2(t—1) =0[p—1]

for a suitable ¢; € F),. We conclude from condition 2) and lemma 7.2-ii)

p—1 (p
t(_l)n (]) (_/\)pfj Z 'ug) |: [IUO] 1 :| [Ler(tfl)thl] +

) 1 0
j=1 P j0EF,

1 r—(t— _
+00,r—2(t—1)C1A z [ [,ulo] 0 ] [, X~ t=Dyt-1 = ¢

HO er
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inside Symp_l_LT_Q(t_l)JF?)@detr*(t*l), and this is clearly impossible: by lemma 2.9-i7) we would
get in particular

Z Mg_l [Mlo} 1 } [Ler(tfl)thl] -0

0
po€Fy
Z Lo [Ml()} (1) :| [1,XT_(t_1)Yt_l] -0
ﬂOEFp

which gives an absurd for r —2(t — 1) Z0[p — 1] and » — 2(¢t — 1) = 0 [p — 1] respectively. 4

Study of case B. Let f € Fil'"*(R,,,1) be such that y+ f € 7. From the induced isomorphism
7 = (Ky) and the behaviour of y in soc(IndflgO(an) xSa) we deduce the following necessary
conditions:

1) for all a,d € F,; we have

la] 0 r—t gt _
|- =0

inside Fil'(R,,41);
2) for all A € F}, we have

o V]wrn-wen-o

inside Fil' (R4 1).
We deduce from condition 1) and lemma 7.2 that pri(f) is an H-eigenvector of

Symp—l—tr—2(t—1)JF12) ® det™(t=1) =~ Indﬁo(p)xsat‘l/SymV‘Z(t_l)JFi ® dett~ !

T

of associated eigencharacter a”~‘d’ and therefore, by lemma 2.5

Oifr —2(t—1)£0[p— 1] (i.e.p #3)

|: (1) [i\] :|prtot(f) _prtot(f) = e Z |: [:Uio] (1) :| [1’Xr—(t—1)Yt—1]
0€Fp
if;j—Q(t— 1)=0[p—1](i.e.p=3)

for a suitable ¢; € Fp. The conclusion follows from lemma 7.2, similarly to the previous case. §

8. Socle filtration for the spaces Ry ®r, - - ®r, Rnt1

n

We are finally ready to describe the socle filtration for the K-representations

lim (Ro R, -+ @R, Bnt1), lim (R1/Ro @R, -+ ®Ry Bint1):
neven modd

The main statement is the following:

PROPOSITION 8.1. Assume p is odd; let n € Ns (resp. m € Nx ) be an odd (resp. even) integer,
0<r<p-—2. Then:
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i)
soc(Ro @R, -+ ®R,_, Rn—1) =soc(Ro ®r, - DR, Rnt1)
(soc(R1/Ry @R, -+ ®R,, , Rm—1) =soc(R1/Ro ®r, - ®R,, Rm+1) resp.)

where we formally define Ry ®r_, Ro Ry (resp. R1/Ro ®Rr, R1 d:ele/Rg).
i1) More generally, if 0 < j < n—1is even (resp. 1 < j/ < m —1 is odd) and Q is a K-
subrepresentation of R;/R;j_1 (resp. Ry /Rj_1) coming from the socle filtration of Rj/R;j_;
(resp. Rj//Rj _1), then
SOC((Rj/Q) @Rj+l DR,y Rn—l) = SOC((RJ/Q) @Rj+1 - DR, Rn—i—l)
(soc((Rjr/Q) @Ry, " PRyy Rm—1) =s0c((Rj/Q) @Ry, -+ ®R,, Rim+1) TeSp.)

where we formally define (R;/Q) ®r,_, Rn—1 £ (R,;/Q) if j=n—1 (resp. (Rj1/Q) ®R,,_»
Rpy if j' =m —1).

The rest of the paragraph is devoted to its proof, starting with the following lemmas.

LEMMA 8.2. Letn > 2 be an integer and 0 < r < p—1. The composite map T, o---oT," : R, — R
induces an isomorphism:

T, 00Ty r—1
R Ry /Fil' Y (R,)

|

Ry /Fil"" Y (Ry,) & Indjg, (o) Xr

|

0, ~ K
Q((lp@lw-,p—l = IndKo(p)XT’

Moreover, if r # 0,p — 1 the composite map T} o---oT, : R, — Ry induces an isomorphism:

T) 00Ty
R, Ry
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Thus, by the very definition of the operators Tj_’s and lemma 2.9-i) we deduce
R,/FiI""Y(R,) - Ry /Fil" Y(Ry)
1 n 1 r
15w D () (0 5 | B0 0 v
po€Fy
(where we put
M) (n)y def n| 1 0} z{ 1 0} .
LE %% F V] = e B 1,Y")).
L £y i Zul[p[m]l 2 P lpn] 1 LY7])
p1€F, un€Fp

The previous epimorphism factorise then through
1r— ~ 07
Rn/Fllr 1(Rn) = Indgo(p")X’l‘ —» Q((),pn—)l,...,p—l

and such a factorisation is indeed an isomorphism as the spaces Q((J?z;ri)l,m,p—l and Ry /Fil""!(R;)
have the same dimension.
Moreover, if r # 0,p — 1, we see that

and therefore the morphism

T
R, /Fil' "Y(R,) - Ry /Fil'"Y(Ry) = Ry
factorise through
A r— ~ 07
Ry /I (Ry) 2 IndfS, e — QU
again such a factorisation is an isomorphism by dimensional reasons. f

~

LEMMA 8.3. Let n > 1 (resp. n = 0), and 0 < r < p — 2. Then the natural map Fil®(R, 1) =
Imdllg0 (pr+1) X; induces an isomorphism
. 0,n+1
Bl (Rn) /B = Q475
Fil°(Ry) /Ry = Symp_l_LTJF2 resp.
P

Proof: Assume n > 1. For any (n — 1)-tuple (I1,...,l,—1) € {0,...,p — 1}~ and any
j €{0,...,r} we have

o I RS B [

Pn— 1€Fp
Py {pﬁm (1)]' 9 et 1] 2 g 1|0

n1€EF, —1 EFI,

We thus conclude that the natural map
Indg (nt1)Xp = Fil’(Rpi1)/ Ry
(0,n+1)

factors through Ind% Ko(p n+1)Xr —» Q O +1 Such a factorisation is indeed an isomorphism by
dimensional reasons. The case n = 0 is similar and left to the reader. g
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We are now ready to proof proposition 8.1 and the strategy will be analogous to the one used
in the proof of proposition 7.1. Let us fix integers n > 3, n odd, 0 <7 < p—2; thecasen =1
or m = 2, m even will be treated exactly in the same manner and will be left to the reader. We
recall the commutative diagram with exact lines (cf. proposition 4.1):

T,
0 Rn Rn+1 Rn+1/Rn —=0
-1
Rnfl Prn+1

¢p7"n71

0— Ro®R, " ®Rr,_, Bn-1—= Ry ®R, --- ®R,, Rn41 — Rp+1/Ryp — 0;
we write then m,_1 for the natural epimorphism

Tt Rt — Ry JFI " (Rysy) — QY 1 % Ry JFI"Y(Ry)

where the last isomorphism is the one described in lemma 8.2. As we did in §7 we define the
following elements in Ryyi:

Pl R D i) (PRI D o I [

no€Fy, pn—1€Fy n€Fp

2 g 1 [y S 2 [ e

u1€Fp Hn—1€Fp un€Fp
Y=+ (—1)" iy
A direct computation gives the key result:
LEMMA 8.4. Assume p is odd 4; let a,d € F;, A € Fp. Then:

i) we have the following equalities in Ry1:

[ la] 0 ]x:aldrﬂx

0 [d
[a] 0 VR A R
5 @7
i1) the elements [ (1] [i\] ] x —x and [ é [i\] ] x' — ' are in R,, and we have:
vl 1A 1)+ ] 1 r
more I 3 Jem = e 00 T g | B0 ey
no€Fp
moro (ST o 0 [# =0 = 0+ DEDH Nl V)
n—1 L P K O U p3llK,
(where P_y(po) has been defined in §2.3).
Proof: i) It is analogous to the proof of lemma 7.2-7).
N : 1 (A o 1 0
i1). First of all, we study the action of [ 0 1 ] on z inside R,41. As [ iz 1 } acts

4such a requirement is needed for the equality concerning =’ in 44)

48



Part I Explicit description of irreducible GLa(Q,)-representations over F,,

trivially on [1, X"] € R,4+1 we deduce from lemma 2.7:

)
0 1
r+1
SO

1 0 ;

E _p )Y

[P”_l[un1+PA ..... p-s (tn—2)] 1}‘ hrpn-afn-L)
pn—1€F)

i 1 0 .
S g ”[ . ][1K,X]
= p [,Un] 1

and therefore

L [A _ ot
! ]aj—x—Tn(v)
where v € R,, is defined as

r+1 r
v def (7’ + 1> (_1)T+(j—1) Z [:u() i’_ )‘] g') :| o

=N po€F, -

1 0

J—1yr—(-1)
Mn—1+P)\,...,un_3(Mn—2)] 1 g, X'7Y |-

pnfl[

> (Pl )V |

an—ler

We are now left to study the image of —7, (v) € R,_1 via the epimorphism m,_;: a direct
computation using the recursive property of the Witt polynomials Py .. ,(X) € Fy[X] (for
j€42,...,n}) together with lemma 2.9-7) yields finally the result.

The behaviour of the element 2’ € R,, 11 can be described in a similar way, using now lemma
2.8 and the recursive property of the sy, _,’s for j € {2,...,n}. The details are left to the
reader. f

We now fix an irreducible K-subrepresentation 7 of Ry ®g, - - - ®r, Rn+1 such that TN Ry B R,
@R, , Rn—1 = 0; therefore the natural projection Ry®g, - - -®r, Rnt+1 — Rn+1/Ry induces an
isomorphism of 7 onto an irreducible factor of soc(Ry,+1/Ry,), which is completely known thanks
to lemma 8.3. We distinguish two situations:

A) the subrepresentation 7 maps isomorphically in the K-subrepresentation of R, 1/R,, gen-
erated by (the image of) x.

B) We have r = p—3 and the subrepresentation 7 maps isomorphically in the K-subrepresentation
of Ry+1/R,, generated by (the image of) y.

Study of case A. Let f € R, be such that pr,1(z + T,7(f)) € 7. From the induced iso-

morphism 7 = (Kz) and the behaviour of z in R, ;1/R, we deduce the following necessary
conditions:

1) for all a,d € F; we have

[ [Cod [2] ] (x+TF(f) —a 'd (x + TF(f)) € ker(prys1)
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2) for all A € F,, we have

b B e mi - @ ) € o)

From condition 1) and lemma 8.4-ii) we see that m,_1 o (=7, )(f) is an H-eigenvector of

Ry /FiI'Y(Ry) = Indﬁo(p)xﬁa” of associated eigencharacter a—1d"*!. We then deduce from
lemma 2.5 that

- if r # 0 the image of m,_1 o (=T, )(f) through the epimorphism

Indllgo (p) X,i ar lr» SymTF;

T N
18 {0 1 }—mvarlant,

- if r =0, then
[ (1) [i\] } a1 0 (=T )(f) = 10 (=T)(f) =cad [ [Mlo] : } ¢l

inside Indgo(p)l, for a suitable ¢; € Fp.

It follows then from condition 2) and lemma 8.4 that for any A € F), the element

p=1(» , .
Q(—A)’” > ué[ [“10] (1) } [1,Y"] +
Jj=1 p Ho€Fp
+oorc1X Y [ [“10] (1) ] [1,Y"] € Ry /Fil'"Y(Ry)
pmo€Fy

maps to zero via
K ™ =2
IndKO(p)Xiar — Sym/" F,.
Thus, lemma 2.9-7¢) implies in particular that

>t | 0wy e ke

no€Fp

Z Lo [ [N10] (1) } [1,Y"] € ker(m)

Ho€Fp

giving an absurd for r # 0 and r = 0 respectively. §

Study of case B. Let f € R, be such that pry,1(y + T,/ (f)) € 7. From the induced isomor-
phism 7 5 (Ky) (= det™!) and the behaviour of y in R, 41/R, we deduce the following necessary
conditions:

1) for all a,d € F); we have

o | B ) - e o ) € et

2) for all A € F,, we have

[ (1) [i] ] (+ T () = (y+ T, (f) € ker(prat1).
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We then argue as in the previous case to get an absurd. The details are left to the reader.

This acheives the proof of proposition 8.1 for n > 3, n odd, and we leave it to the reader to
check (by the explicit description of 77 ) that the same procedure applies also for n = 1. It is
then obvious that the same proof applies for the case m € N+ is even and for part 7).

9. Conclusion

We are now ready to describe the socle filtration for the K Z-restriction of supersingular rep-
resentations of GL2(Qp): it will be a formal consequence of the explicit computations given in
paragraphs §6, 7, 8.

THEOREM 9.1. Assume p is odd; let r be an integer, with 0 < r < p — 2. The socle filtration for
lim (Ry ®R, -+ ®r, Rn+1) Is described by
ngd

Ro*SOCFﬂ(RQ/Rl)f. .. 7SOCF11(Rn+1/Rn)7. ..

while the socle filtration for lim (R1/Ro @R, - - ®R,, Rm+1) Is described by

meven

SocFil(R1/Ro)—SocFil(R3/Ra)—. .. —SocFil(Rpy+1/Rm)—. ..

Proof: The proof is by induction; we will treat the case n odd (the other is analogous). Fix
an odd integer n € N>; and let @ be a quotient coming from the socle filtration of R,,_1/R,—2.
Assume (by inductive hypothesis) we dispose of an inductive system

{Q ®Rn Rn+1 U @Rm Rm+1}m>n—2,modd

(with the convention @ ®r, , Rn—1 S Q@) and where the amalgamed sums are defined through

the Hecke operators TjjE for 7 > n as in §3.2, as well as natural exact sequences:
0= Q®R, " DRypy Bm-1—QOr, - OR,, Ry1 — Rmt1/Rn — 0

for m > n, m odd. If we set
7 s0¢(Q)
we formally verify that for 7 # Q
Q/T ®qQ (Q ®R, ++* OR,, Rim+1) = coker(t — Q ©R, - Or,, Rm+1)
for any m > n, m odd, while, if 7 = @,
Ryy1/Rn Dror, Rt (T @R, -+ ®R,, Rm+1) = coker(t — Q @R, - Or,, Rm+1)
for any m > n, m odd. We therefore get an inductive system:
{Q/T ®R, - @R, Rimt1}tm>n—2,modd
and natural exacts sequences
0= Q/T®R, " DRys Bm—1 = Q/T ®R,, -+ ®R,, Bmt1 — Rmy1/Rm — 0

for m > n, m odd (where we write R, 1 instead of Q/7 @g, R,+1 in the case 7 = Q). As lim is

right exact, we deduce that

m2>=n, modd m>=n, modd
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and the statement is now clear from proposition 8.1 f

The socle filtration for m(r,0,1)|xz, with 0 < r < p — 1 and p odd is then immediate from
proposition 3.9 and from the isomorphism 7(0,0,1) = w(p — 1,0, 1).

We give now the idea of the socle filtration for lim (Ry ®r, - - ®r, Rnt1):
n,odd

SocFil( lim (R ©r, - - ®r, Rnt1)) =
n,odd
= Ro—SOCFﬂ(RQ/Rl)—SOCFH(R4/R3)— e
which gives, developing the socle filtration of the quotients R,+1/ R,
Ro—SocFil(Fil’(Ry/ R1))—SocFil(Fil' (Ry) /Fil’(Ry))—SocFil(Fil*(Ry) /Fil* (R2))— . . .
and, using proposition 7.1,
Ro—SocFil(Indj, () xsa" " )—SocFil(Ind, () xia"*)—SocFil(Indjg, ) xpa’ ) —. ..

To be even more explicit, if we suppose 1 < r < p — 6 the beginning of the socle filtration for
lim (Ro ®R, -+ @R, Rn+1) looks as follow:
n,odd

Symrfi—Symp _3_’?12) ® det”l—SymTHFIZ7 ® detP~2—Sym? _5_7”F12, ® det"2— . ..

10. The principal series and the Steinberg

In this section we want to describe the socle filtration for the K-restriction of principal series and
Steinberg representation for GL2(Q)). The techniques are very closed to those of §6 and therefore

will be mainly left to the reader. If A € F; and r € {0,...,p—1} we recall the parabolic induction
Ind%(uny ® w'uny-1). (6)

If V), is the underlying vector space associated to the B-representation uny ® w’uny-1, the
induction (6) is the Fp-vector space of locally constant functions f : G — V), such that f(bg) =
b- f(g) for any b € B, g € G, the left G-action defined by right translation of functions gives (6)
a structure of smooth G-representation.

We recall also that, for (A7) ¢ {(0,%£1), (p — 1,£1)}, the representations (6) are irreducible
(referred to as “principal series”), otherwise they fit a short exact sequence

0—1—Indg1 —St—0
and the quotient St is referred to as the “Steinberg” representation.

We turn our attention to the K-restriction of inductions (6).

LEMMA 10.1. For any \ € F; and r € {0,...,p — 1} we have a K-equivariant isomorphism
(Indg(um\ ® whuny-1))| = IndE 5y

where x;, which is a character of B(F),), is seen as a smooth character of BN K by inflation.

Proof: It is an immediate consequence of Mackey theorem and the Iwasawa decomposition
G=KB{
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We have a natural homeomorphism

K/KNB— Py
(coming from the natural left action of K on [1: 0] € Plzp) and the decomposition of corollary
3.2 let us deduce an open disjoint covering of P1 with balls of radius (%)” (for the normalised

| def 1)

norm on Zy: |p The following result is then clear

LEMMA 10.2. Let n € N, r € {0,...,p — 2}; we fix a basis {e} of the underlying vector space of
X;. We have K-equivariant monomorphisms

Ln+1 Ln+1 n+2

IndIIgo(p”""l)Xr IndKﬂBXmInd Ko(p n+1)X7' IndKO(pn+2)Xs

characterzed by
i) tns1([1,€]) is the unique function f € Ind¥  5x2 such Supp(f) = Ko(p™t') and f(1) =

@)= | a7 |

1
pnt+1€F, Mn4 ]

Proof: It is a standard verification that the conditions in i) and i) let define K-equivariant
morphisms ty,41, tnt+1,n+2. Such morphisms are then injective by support reasons.

From the monomorphisms defined in lemma 10.2 we deduce then a natural monomorphism:
hi{l (Indﬁo(pnﬂ))(i) — IndnpX}; (7)
neN

as K is compact and all functions f € Indgm pXx: are locally constant, we conclude that (7) is
actually an isomorphism. Moreover:
LEMMA 10.3. Let n € N, r € {0,...,p — 2}. Then

0,n+2
coker(tpt1mt2) = Qé,.ﬁo,l)-

(0 n+2

Proof: From the definitions of Q and (p41,n+2 We deduce a natural epimorphism

coker(tp41,n4+2) = QOO n+2) . We conclude as the two spaces have the same dimension.

We dispose now of K-equivariant exact sequences, where n € N:

0— IndK (an)XT, — IndKO( n+2)xr — QO? 71’—521) — 0.

Thanks to the explicit description of soc( 00n+% 1)) we deduce, with arguments which are very

similar to those of proposition 8.1, the followmg result
THEOREM 10.4. Let n € N, r € {0,...,p — 2}. Then
SOC(Inng(pn_’_l)Xi) == SOC(Indl[go(p"'FQ)Xf‘)‘

More generally, if Q) < Indﬁo(pnﬂ) X, is a K-subrepresentation coming from the socle filtration

of Indflgo(pnﬂ)x;?, we have

soc(Indf ) x3/Q) = s0e(ndfS v xS fin i1 nr2(Q)).

93



Explicit description of irreducible GL2(Q))-representations over F,, Part I

Proof: It suffices to use the same arguments of the proof of proposition 8.1, and similar
explicit computations. The details are left to the reader.

Once again, we can use proposition 10.4 to describe the behaviour of the socle filtration for
Ind% - 5x:. The graded pieces of such a filtration look as follow:

SocFil(Indf 5 v3) = SocFil(Indf 1 x3)—SocFil(Q{;” )—SocFil(Qs])— . ..

and, developing the socle filtration of Q(()?"ﬁazl),

SocFil(Imdflg0 () Xr a)—SocFil(Imd?O (p)Xr aZ)—SocFil(ImdgO ()X ad)—. ..

T
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Part 11 Invariant elements under some congruence subgroups

Part 1I. Invariant elements under some congruence subgroups

for irreducible GLy(Q,) representations over F,

Abstract. Let p be an odd prime number. Using the explicit description for irreducible GL2(Q,)-
representations over F, made in [Mol], we determine all invariant elements of such representa-
tions under the actions of the congruence subgroups K, I, for any integer ¢ > 1. In particular,
we have the dimension of the K-invariants for supersingular representations of GL2(Qj), for any
t>1.

1. Introduction

Let p be a prime number. The efforts to describe a “p-adic analogue” of the classical local
Langlands correspondence met great progresses in the last few years. After a first, conjectural
approach studied by Breuil in [Bre04] and [Bre03b], the works of Berger-Breuil [BB] and Colmez
[Col] establish a p-adic Langlands correspondence for GL2(Q)). Moreover, such a correspondence
is compatible with respect to the reduction of coefficients modulo p: we get a semisimple mod p
Langlands correspondence for GL2(Q)) (again, conjectured by Breuil in [Bre03b] and proved by
Berger in [Berl0a]).

But, if the local field is different from Q,, the situation is far from being defined. In the direc-
tion of a semisimple Langland correspondence for GLa(F') for F' a non-Archimedean local field,
we find the works of Barthel and Livné [BL94] and [BL95]. In those papers the authors classify
the smooth irreducible admissible GLy(F)-representations into four classes: besides characters,
principal series and special series, they find a new family of irreducible objects, referred to as
“supersingular” whose nature is still very mysterious. Supersingular representations are actually
characterised as the subquotients of the cokernel of some “canonical Hecke operator” T', but for
F # Q, such cokernels are not even admissible (cf. [Bre03a], Remarque 4.2.6); moreover the
works of Paskunas [Pas04], Breuil-Paskunas [BP] and Hu [Hu] show that for F' # Q,, there exists
a huge number of supersingular representations with respect to Galois representations (whose
classification is indeed well known).

We focus here on the case F' = Q, where pis an odd prime. In this situation the work of
Breuil [Bre03a] (followed later by other proofs by Ollivier in [Oll], Emerton in [Eme08]) show
that the cokernels of the aforementioned Hecke operators T are actually irreducible, completing
the classification for smooth irreducible admissible GLo(Q,)-representations over F,. In the
work [Mol] we develop an explicit approach to the description of irreducible representations
for GL2(Qp): studying the action of 7' on some privileged elements we are able to describe in
great detail supersingular representations (and principal and special series as well), in particular
detecting the socle filtrations for their KQ, -restriction.

In the present work, we pursue the study of such explicit elements of irreducible GL2(Q))-
representations in order to describe their invariants under some congruence subgroups of K.

If we first focus on Kj, i.e. the kernel of the mod p‘-reduction map on K (where t > 1)
we see in §3 that taking Kj-invariants of a supersingular representation m comes down, roughly
speaking, to “cut” its socle filtration.

The main result (corollary 3.9) is that we can detect precisely where such a cutting occurs: if
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Invariant elements under some congruence subgroups Part 11

we refer to the socle filtration of a supersingular representation 7(r,0, 1) as “two lines of weights”
we get

THEOREM 1.1. Let t > 1 be an integer. The socle filtration of 7 (r,0,1)%* is described by
SymTFZﬂocﬁl(Indf{xiaTH)—. . ﬂocﬁl(lndffxfar)—Symp_?’_TFi ® det™ !

Symp_l_rfi ® det”—socfil(Ind¥ y2a)—. .. —socﬁl(Indfxf)—SymT_QF?) ® det

1

where we have p'~! — 1 parabolic induction in each line and the weight Symp_?’_rfi ® det" !

in the ﬁsg line (resp. Sym’uQFﬁ ® det in the second line) appears only of p —3 —r > 0 (resp.
r—22>0).

In particular, we have the dimension of the spaces of Kj-invariants (corollary 3.8):

COROLLARY 1.2. Let t > 1 be an integer and r € {0,...,p — 1}. The dimension of K; invariant
for a supersingular representation is

i, (00,00 = 2p=t -1y { 23 €001

Moreover, if we write I; for the subgroup of K;_; whose elements are upper unipotent mod p?,
we are able, by similar techniques, to describe in greatest detail the space of I;-invariant of any
supersingular representations m of GL2(Q,). Again, we can roughly say that taking I;-invariants
comes down to “cut” the socle filtration of m, but this time some “reminders elements” appear.

The results of section 4 tells us ezxactly where such cutting occurs and who the reminders
elements are. As the combinatoric of such result is a bit heavy, we prefere to omit the statements
here, refering the interested reader directly to propositions 4.4, 4.8, 4.11, 4.14 in §4.

We can anyway remark that an immediate corollary is then the F,, dimension of such invariant
spaces:

COROLLARY 1.3. Let r € {0,...,p— 1} and t € N+ be integers. Then:
dimgs ((r(r,0, 1)) = 221 — 1),

The proof of such results relies on the explicit description made in [Mol] and can be sketched
as follow.

We reduce of course to the direct sum decomposition of 7| KQX (for 7 a supersingular repre-
sentation) in terms of the inductive limits of the amalgamed sums R;/R;_1 ®g,., - - ®r, Rnt1
(i € {0,1}), treating each summand separately.

We are then able (lemmas 3.2 and 3.3) to give a first estimate of the behaviour of K;-invariants
in terms of the filtrations {R;/R;_1 ®r,,, - - - ®R,, Rn+1}neN; for instance for ¢t and n odd we get
the following exact sequence:

0= Ro@p, + &k, , Ry — (lim Ro @p, -+ @, Rug) ™ = (Rea /R

nodd

Finally (proposition 3.7) in order to extract the Ky-invariants from the previous exact sequence,

we exploit the description of the generators of the socle filtration for R;y;/R:: we get some
explicit nullity conditions of certains elements of the amalgamed sums, conditions which can
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Part 11 Invariant elements under some congruence subgroups

easily be translated into a condition inside soc(7) (where we are able to do direct computations)
via an inductive process by means of the operator T' (cf. lemma 2.12).

The proof concerning the I; invariants is similar. For instance, for n odd, we get a first
estimate by an exact sequence of the form

0—Vy— (hi{lRO ®Rr, - DR, Rn+1)lt —>VIt
n odd

where V is a suitable subobject of (lim Ry ®g, - - ®r, Rn+1)Kt*1 and
nodd

V = (lim Ry ®p, -+ Or, Rap1) "/ Vg

nodd

n

(cf. §4.1 and §4.2). We then describe the [;-invariants of the spaces of the form V, via a decom-
position into stable subspaces (cf. for instance propositions 4.3 and 4.7), from which we deduce
the [i-invariants of the inductive limits through some nullity conditions completely analogous to
those of proposition 3.7 (cf. propositions 4.4, 4.8, 4.11, 4.14).

We outline here that by similar techniques we are able to describe the space of T'g(p¥) and
'y (p*) invariants for supersingular representations of GL2(Q,) over F,, (cf. [Mo3]). Such spaces
appear naturally in the study of torsion points in the cohomology of certain modular curves.

The plan of the chapter is the following.

Section 2 is devoted to a brief summary of the results in [Mol], [Bre] and [BP], in order to han-
dle the computational techniques for the rest of the chapter. More precisely, in 2.1 we re-interpret
the KQ, -restriction of a supersingular representations 7 in terms of certains induced represen-
tations R,, endowed with Hecke operators Tﬁt; we give then a precise description of the socle

filtration of 7 in 2.2 (cf. proposition 2.7) using “certains explicit elements” Fl(o) * Fl(ll) Kook Fl(nn)
We recall also (§2.2.1) some classical results concerning GLo(F,,)-parabolic induction for B(F,)-
representation. Finally, we deal with some explicit computations on Witt vectors (lemmas 2.10
and 2.11) and study a nullity condition for some elements of the amalgamed sums introduced in
2.1 (cf. lemma 2.12).

Section 3 is devoted to an exhaustive description of Ky-invariants for supersingular represen-
tations. After a first estimate (cf. lemmas 3.2 and 3.3) we introduce in definition 3.4 the elements
xl(;),..-,ltfl’ yl(ll?...,lt,l Zl(ll?...,lt,l‘ Their behaviour let us refine the previous estimates. They indeed
lead us to introduce the subobjects o(p — 2), o(p — 3), etc.. of definition 3.6, which let us com-
plete the analysis of K;-invariants stated in proposition 3.7. As a byproduct, we compute the
Fp—dimension of such spaces.

Section 4 is concerned on the [j-invariants and is divided into four numbers (completely anal-
ogous to each other) §4.1.1, §4.1.2, §4.2.1 and §4.2.2 (according to the parity of ¢ and the direct
summand in the decomposition of 7| KQ) ). In each number we start from a first estimate of such
invariants by means of an exact sequence issued from the results in 3; we then introduce some
explicit elements (cf. definitions 4.1, 4.5, 4.9, 4.12) the study of which let us describe precisely
the space of I;-invariants in each term of the aforementioned exact sequences (cf. propositions
4.3,4.4,4.7, 4.8, etc..).

Finally, in section §5 we describe precisely the spaces of K; and Ii-invariants for principal
and special series (where the computations are much simpler than in the supersingular case!).
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Invariant elements under some congruence subgroups Part 11

We introduce now the main notations, convention and structure of the chapter.

We fix a prime number p, which will always be assumed to be odd. We write Q,, (resp. Z,)
for the p-adic completion of Q (resp. Z) and F, the field with p elements; F, is then a fixed
algebraic closure of F),. For any A € F,, (resp. z € Z,) we write [A] (resp. Z) for the Teichmiiller

lift (resp. for the reduction modulo p), defining [0] £ 0.

We write G = GLQ(QP) K < GLy(Z p) the maximal compact subgroup, I the Iwahori
subreoup of K (i.e. the elements of K whose reduction modulo p is upper triangular) and Iy for
the pro-p-iwahori (i.e. the elements of I whose reduction is unipotent). For an integer ¢ > 1 we
define K; = ker K — GLy(Z,/p'Z,) and

1 pt=t

t t—1
Ltpla pb g a,b,c,dEZp},Utd:ef{[O )

def
L =A ple 1+ pld

} €eK belZ,}.
Moreover, let Z = Z(G) = Q,; be te center of G'and B(Q,) (resp. B(F,)) the Borel subgroup
of GL2(Qp) (resp. GLa(F))).
For r € {0,...,p — 1} we denote by o, the algebraic representation Symrff, (endowed with
the natural action of GLy(F))). Explicitely, if we consider the identification SymTF; > F,[X,Y)h

(where F,,[X, V]! means the graded component of degree r for the natural grading on F,[X,Y])
then

o ( [ ‘CL Z } )XTYTE (aX 4 ¢Y) THOX + dY)

b ] € GLy(F,), i € {0,...,r}. We then endow o, with the action of K obtained

a
for any [ e d

p
0

K Z-representation. Such a representation is still noted as o,., not to overload the notations.

by inflation K — GL2(F,) and, by imposing a trivial action of [ 0 ], we get a smooth

If r € {0,...,p — 1} it follows from the results in [BL95] that we have an isomorphism of
F,-algebras
Endg(Ind% 40,) = F,[T]
for a suitable endomorphism 7', which depends on r, and where Ind% 0y is the usual compact
induction (cf. [Bre], §3.2 for a detailed description of compact inductions). We then write 7(r, 0, 1)

to mean the cokernel coker(Ind% ,o, N Ind% ,0,; such representations exhaust all supersingular
representations for GL2(Q,) (cf. Breuil’s [Bre03a], Corollaire 4.1.1 et 4.1.4).

If H stands for the maximal torus of GLy(F,) and x : H — F; is a multiplicative character we

10 10
Characters of H will be seen as characters of B(F),) or (by inflation) of (a filter of neighborhood
of 1 in) I withouth any commentary.

will write x* for the conjugate character defined by x*(h) & X([ 01 } h [ 01 ]) for h € H.

With “representatlon we always mean a smooth representations with central character with
coeflicients in F _If V is a K-representation, for K a subgroup of K, and v € V, we write (K -v)
to denote the sub K representation of V' generated by v. For a K -representation V' we write
socz(V) (or soc(V), or soct(V) if K is clear from the context) to denote the maximal semisim-
ple sub-representation of V. Inductively, the subrepresentation soc’(V) of V' being defined, we
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Part 11 Invariant elements under some congruence subgroups

define soc’*!(V) as the inverse image of soc!(V/soc*(V)) via the projection V' — V/soc* (V). We
therefore obtain an increasing filtration {soc™(V')}nens which will be referred to as the socle
filtration for V; we will say that a subrepresentation W of V' “comes from the socle filtration” if
we have W = soc™ (V) for some n € N+ (with the convention that soc?(V) £ 0). The sequence
of the graded pieces of the socle filtration for V' will be shortly denoted by

SocFil(V) £ soc! (V)—soc! (V) /soc®(V)—. .. —soc" L (V) /soc™ (V) — . ..

We recall the Kroneker delta: if S is any set, and s1, 2 € S we define

def { O lf S1 7£ 52

1) = .
51,52 1 if s1 = s9.

Moreover, for z € Z, we define |z| € {0,...,p — 2} by the condition |z] = zmodp — 1.

2. Preliminaries and definitions

The aim of this section is to give the necessary tools to deal with the explicit computations
needed for the description of K; and I;-invariants of supersingular representations m(r,0,1). In
§2.1 and §2.2 we recall the socle filtration of the K Z-representations 7 (r, 0, 1)|xz made in [Mol],
together with the generators for the irreducible factors of the graded pieces of such filtration.
Some classical results concerning GLa(F),)-parabolic induction for B(F))-representations will be
recalled in §2.2 as well, while §2.3 is devoted to some explicit computations on Witt vectors and
elements of the amalgamed sums Ry @, - - - ®g, Rn+1. These computations will be a key tool
in §3 and §4

n

2.1 On the K Z restriction of supersingular representations

We fix r € {0,...,p — 1} and consider the supersingular representation 7(r,0,1); our goal is to
give an exhaustive description of the objects involved in proposition 2.3. For this purpose, we
recall the definition of the K-representations R,,, where n € N as well as the “Hecke” operators
T+ : R, — Ry11, leading us to the decomposition of proposition 2.3. The reader is invited to
refer to [Mol] for the omitted details.

For any n € N we define the following subgroup of K:
e a b
Kot) 2 |

pc d
(in particular, Ko(p) = K and Kg(p) is the Iwahori subgroup). For 0 < r < p—1andn € N
we define the Ko(p™)-representation o] over F), as follow. The associated F,-vector space of o}

] € K, wherec € Z,}

is Symrfi, while the left action of Ky(p™) is given by

n a b . r—jyrj def d c . r—jv-j
| e o o 5]y xry
for any [ pgc Z ] € Ko(p"), 0 < j < r; in particular, the 0”’s are smooth and ¢¥ is isomorphic
to o,. Finally, we define
def
R = Indlfgo(pn)af.

If r is clear from the context, we will write simply R,, instead of R}.
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We recall that an Fp-basis for R, is then described by

0

Each of the K-representations R, is endowed with “natural” Hecke operators Tif. Their
definitions and properties are summed up in the next

PROPOSITION 2.1. For all n € N we have a K-equivariant monomorphism T," : R, — R,
characterised by:

T (e XV = 3 Gl | ) | e X7 > 0
pn€Fp

75 (e X9 = 5 (o 1| ] g7 o
pmo€Fy

For all n € N> we have a K-equivariant epimorphism T, : R,, —» R,_1; such a morphism is
characterised by the conditions:

_ 1 0
Tn ([|: p”_l[,unq] 1

Ty (Mg, X"9YI)) = 6,;Y ifn =1

} , XTIYT]) = (1, 6y (a1 X +Y)']if 0 > 2

for pip—1 € Fp.
Proof: Omissis. Cf. [Mol] §3.2.4

We identify R, as a K-subrepresentation of R,.1 via the monomorphism T,f without any
further commentary. For any odd integer n > 1 we use the hecke operators T to define (induc-
tively) the amalgamed sum Ry ©r, R2 @R, - - - DR, Rnt1 via the following co-cartesian diagram

n

e

R, Ry
—prp—10Ty, Prn+41
\
Ry ®Rr, R2 ®Rry -+ ®R,_o Rn—1- >Ry DR, R2 PRy -+ BR,, Rn+1.

Similarly we define the amalgamed sums Ri/Ro ®g, -+ ®r
n € Ns. Then

R, 41 for any positive even integer

n

ProprosITION 2.2. For any odd integer n € N, n > 1 we have a natural commutative diagram

yon

0 Rn Rn+1 Rn+1/Rn —=0
&—prn,an_ @Prn-&-l H
0— Ro®R, " ®R,_, Rn-1 —= Ry ®R, -~ ®R, Rny1 —> Rny1/Rn —0

with exact lines.
We have an analogous result concerning the family

{R1/Ro @R, - ®r,, Rn+1}nezN\{o}~
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Proof: Omissis. Cf. [Mol], proposition 4.1 4

As claimed at the beginning of the paragraph, we can translate the K Z-restriction of w(r,0,1)|xz
in terms of the R,’s and T :

ProrosiTIiON 2.3. We have a K Z-equivariant isomorphism:

m(r,0,1)|xz = lim (Ro @R, -+ @R, fnt1) @ lim (R1/Ro ©r, -+ ®R,, Rmi1)

nodd meven

0
act trivially.
y | act wiviay

where we define an action of Z on the left hand side by making [ g

Proof: Omissis. Cf. [Mol], proposition 3.9.1

2.2 Socle filtration for 7(r,0,1)|xz and parabolic inductions

Let us fix an integer r € {0,...,p — 1}. In this paragraph we are going to define a filtration
(definition 2.4) on the inductive limits of proposition 2.3. Such filtration is rather finer than the
one which can be deduced from proposition 2.2 and will let us describe the socle filtration for
7m(r,0,1)|kz. In what follows, we will assume the obvious conventions Ry ®r_, Ro < Ry and

Ri/Ro @R, R = Ri/Ry.

DEFINITION 2.4. Let n € N, 0 < h < r. We define Filh(RnH) as the K-subrepresentation of

def

Ry11 generated by [1yc, X"~ "Y"]. For h = —1, we define Fil™Y(R,41) £ 0.

The family {Fil"(R,1)}__, defines a separated and exhaustive filtration on R,,;1, and for
each h € {0,...,r} the family

Biry {[[ - ] XY, [[ 1 } XY € Iy, €1, 0K < h}

is an F), basis for Fil"(R,.1). By Frobenius reciprocity we get a K-isomorphism
Idg, (nnyxpa” — Fil"(Rnp1) /P (R 1)

(cf. [Mol], lemma 4.4).

To give explicit description for the socle filtration of the induced representation Indlé0 (1) xial
needs the introduction of the following elements.

DEFINITION 2.5. Fixn € N and let (11,...,l,) € {0,...,p — 1}" be an n-tuple. We define then
1 0 1 0
PO ) b zl[ ] ln[ ] Le
l1 ln Z My p[,ul] 1 Z Mo, pn[,un] 1 [ ]
p1€Fy pn€Fp

n+1)

where e is an Fp—basis for the underlying vector space associated to the Ky(p -representation

Xr-
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For a fixed n-tuple (I1,...,1,) € {0,...,p — 1}" we set b/ = = Z 1 1j. Then

_ 17 §
D [/io] . [1K7Fl(11) *”'*Fl(n)]

po€F, L J
ifr—2(h+n")Z£0[p—1];
Féo) * Fl(ll) Kook Fl(nn) def
[ 1] n / n
$ [:UiO] . [1K,F(1) sk Fl(n )] 4 (—1)hth [1K,Fl(11) Kok Fl(n )]

no€F,
1fr—2(h+h’)—0[ 1]

[1K7Fl(11) **Fl(nn)]
ifr—2(h+h")#£0[p—1];

(

" 1 n
R L
N’OEFP
ifr—2h+n)=0[p-1].
Such definitions look a bit awkward, but they come essentially from the description of the socle
filtration for GLy(F))-parabolic inductions (proposition 2.9)

We provide the set {0,1} x {0,...,p — 1}" with the antilexicographic ordering, writing (i +
1,11,...,1,) for the n 4+ 1-tuple immediately succeeding (i,l1,...,1,). We introduce then the
quotients

QU ks xdal /(- FY s F), for (o) < (il D).

i1,
We remark that such notations do not keep track of the integer r; moreover if there will not
be any ambiguities on h, we will simply write Q( N ll instead of Q(h ) (© nH) . We believe such
notations will not arise any confusion: the meaning V\;IH be clear from the context (cf. §3, §4).
We are now able to give a complete description for the socle filtration of Ind Ko(pn+1) Xoa al:

PROPOSITION 2.6. Let (I1,...,1l,) € {0,...,p — 1}" be an n-tuple, and let b’ defz l;. Then

i) the socle on (© nHl)n is described by

-----

soc(Qii ) = (KR« B s B = Symp 200 W0UF @ et (1)

0 1 . . . . .
moreover, Fl( ) Fl(l - Fl(:) is an H-eigenvector whose associated eigencharacter is

X2(h+h')—rdetr_(h+h/)‘

i1) the socle of Qool:lﬂl)n is described by

( <KF(§O) * Fl(ll) Kook Fl(nn)> = SymtT*Q(thh/)JF; ® det" "
if r —2(h+h') # 0p — 1];

soc(Qir 1)) = O, ) () O , () )y o
el (KEy  * Fy e V) @ (KFY 7w B % ox B ) &2
>~ detht" @ Sympflff, ® det"tH

L if?‘—2(h+h/) =0[p—1].

Further, Féo) >|<Fl(11) *F (and moreover F( )*Fl(ll) o e '*Fl(nn) ifr—2(h+h')=0[p—1])

. . . /
is an H-eigenvector whose assoc1ated eigencharacter is X, _a(n +h/)deth+h
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Proof: Omissis. Cf. [Mol], proposition 6.6.f

The filtration {Fil"(R,1)};__, induces a natural filtration on the quotient R,,1/R, such
that Fil"(R,y1/Rn)/Fil" Y (Rni1/Ry) =2 Fil"(Rny1)/Fil" Y(R,.1) for all h > 0; concerning
h = 0 we see (cf. [Mol] lemma 8.3) that Fil°(R,1/R,) = (()0”32_1 The main result of [Mol]
(cf. proposition 9.1) is that we can describe the socle filtration of m(r,0,1)|xz in terms of the
socle filtration of the quotients R,t1/R,,. Precisely:

PROPOSITION 2.7. Let r € {0,...,p— 1}, n € N. Then
i) The socle filtration for R,1/R, is described by
SocFil(Ry+1/Ry) =
= SocFil(Qé?fﬁﬁr)l)—SocFil(Indﬁo (1) Xr8)— .. —SocFil(Indg0 (1) Xra’)
(where, if r = p — 1, we forget about SocFil( éon:i)l) and the socle filtration starts from
SocFil(Indjg, n+1yX30))

i1) If n is odd, the socle filtration for Ry @R, --- @®g, Rn+1 is described by

SocFil(Ry @R, -+ ®r, Rnt1) =
= Ro—SOCFﬂ(Rg/Rl)—SOCFﬂ(R4/R3)—. N —SOCFil(Rn+1/Rn).

i1i) If n is even, the socle filtration for R1/Ry ®r, -+ R

SOCFi](Rl/Ro ®Rr, - PR, Rn+1) =
= SOCFi](Rl/Ro)—SOCFil(R3/R2)—SOCFil(R5/R4)—. .. —SOCFH(R”+1/RH).

Ry+1 is described by

n

Proof: Omissis. Cf. [Mol], proposition 7.1 and 9.1.§

In particular, we are able to compute the dimension of some subquotients of 7 (7,0, 1)|x 2.

LeEMMA 2.8. Let r € {0,...,p— 1}.
i) Lett € N-; then

e (Fil° f(p=1=r)p+1)p? ift=2
dlme(Fll (Ri/Ri—1)) = { Do ift—1.

i1) Let t € N ; then

- [ (r+ D)@ -1)pt? it =2
dlme(Rt/Rt—l) = { p(r+1) ift=1.
ii1) If n is odd then

dimfp (Ro @®Rr, - DR, Rn—i—l) = (7’ + 1)pn+1.

iv) Ifn is even, then

dimg (R1/Ro SR, -+ ©r, Bny1) = (r + 1)p"t.

Proof: It is an elementary computation, using [Mol], Corollary 6.5-i7i) and the decomposi-
tions of proposition 2.7.4
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2.2.1 Induced representations for B(F,). Let us consider the B(F,)-character x$a/. If e is a

fixed F,-basis for the underlying vector space associated to x} a’, we define the following elements

GLa(F,) s ;.
B(Fp) v

WA

no€Fy

of the induced representations Ind

where k € {0,...,p—1}. We can give an explicit description of the socle filtration for Indg%lﬁil;p ) X; a/

in terms of the functions fj:

PROPOSITION 2.9. Let i,j € {0,...,p— 1}. Then

i) fork € {0,...,p—1}, fr is an H-eigenvector, whose associated eigencharacter is Xi_deetja_k,

and the family

<%d:e[{fka ng‘gp_lv [1,6]}

is an F-basis for Indg%;gp ) Xial.

i1) Ifi—2j # 0[p — 1] then we have a nontrivial extention

GL2(Fp)

0— Sym“—2jJFf, @ det? — Indp ;)

. 1 ;o . 72 s
x;a/ — SymP 1-li-25) Fp®detl J — 0.
The families

{fo, - 7fLi72jJ717 f[iijJ + (—1)1'7]'[1; e]}v{fz‘—% T 7fp—1}

induce a basis for the socle and the cosocle of Indg%égp ) Xfaj respectively.

Lo (Fp)
(Fp)
GL2(Fp)x5a’
B(Fp)

iti) Ifi —2j = 0[p — 1] then Ind 52" y#a/ is semisimple and

Ind = det! @ Symp_lfi @ det?;

The families
{fo+ (VY[ e} {fos fi- s fomas fom1 + (=1Y[1, €]}
induce an F-basis for det’ and Sym?” _IFIQ, ® det’ respectively.
Proof: Omissis. Cf. [BP], lemmas 2.5, 2.6, 2.7.4

2.3 Computations on Witt vectors.

In this paragraph we collect all the technical computations needed for the study of K; and
Ii-invariants. For u, A € F), we define

=) s
Py(p) = —Zfﬂ"”zﬂ €F,.
j=1

Then, we have the following results concerning the sum of Witt vectors in Z,:

LEMMA 2.10. Let A € Fy, Z?:opj[ﬂj] € I11. Then the following equality holds in Z,/(p"™!):

N+ 9] = (A + o] + plin + Pa(po)] + -+ + P" [t + P,y o (bin—1)]
=0
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where, for all j = 1,...,n — 2, the Py __,,.(X)’s (resp. Py ,,(X), resp. P\(X)) are suitable
polynomials in Fp,[X], of degree p — 1, depending only on A,...,u; (resp. on A, u, resp. on \),
and whose dominant coefficient is —P .., (117) (resp. —Px(po), resp. —A).

Proof: Immediate exercise on Witt vectors in Z,,. §

def

LEMMA{ 2.11. Let A € Fp, z = Z?lej[,uj] and k > 0. Then it exists a p-adic integer z' =
> j—1P’[1}] € Zy such that
2= 2/(1+ 2pF[\]) mod p" .
Furthermore, for j = k+3,...,n (resp. j = k+2, resp. j < k+1) we have the following equality
in Fy:
fj = W5+ piok 1A+ g+ Sioa (1)
(resp. pk+2 = My, o + pypuA for j =k — 2, resp. pj = ps if j < k+1) where S;_o(X) € Fp[X] is
a polynomial of degree p — 1, depending only on A, ..., uj—o and leading coefficient —sx .. _, =
/
Hi—1 — Hj—1-

Proof: Exercise on Witt vectors.{

To conclude, we give a criterion to detect wether a certain element (which naturally appears
in the study of K; and I[-invariants) is zero in the amalgamed sums Ry ®g, --- ®r, Rny1 (n
odd) and Ry/Ro ®r, - - ®r, Rn+1 (n even).

LEMMA 2.12. Let k > 2 and fix an (k — 1)-tuple (I1,...,lx—1). If we set

def l 1 O
Tl = Z pa [p[ul] 1 ]

u1€Fy

L 1 0 lp—
Z s [ k-2 1 ] Z e 1 (pe-1 X +Y)"] € Ry
P k2]
Hr—1€Fp pr—1€Fp
i) Assume k odd. We describe the image of x;, ;. , in the amalgamed sum Ry ®p, --- DR, ,
Ry as follow:
a) xpy g, =0if (L, lg—1) < (rp—1—r,...,r,p—1—1);
b) if (r,p—1—r,...,7,p—1—7r) < (l1,...,lk—1), then the image of z;, ., —1 induces a I-
invariant generator in a subquotient of Ry ®R, --- ®R,_, Rr—1 of the form Indllgo(p)xﬁat/
for some suitable t' € N;
¢) equal to (the image of) (—1)(”2)(%)3” €Roif(lh,...,lk—1)=(r,p—1—1r,...,7,p—
1—r).
i1) Assume k even. We describe the image of x;, _;, , in the amalgamed sum Ryi/Ry @g,
-+ @R, , Rr—1 as follow:
)y -1 =010 (I, o) < (p—1—mrr,...,rp—1—1);
vy if(p—1—mrr,...,m,p—1—1) < (lh,...,lx—1), then the image of z;, ;1 induces
a Ii-invariant generator of a subquotient of Ri/Ry @R, --- ®r,_, Rk—1 of the form
Indﬁo(p)xﬁat' for some suitable t' Q;‘ N;
—2
) equal to (the image of) (—1)"t2CZ7) (=1)[1, X"] € Fil®(Ry/Ro) if (I1, ..., lp—1) = (p —
1—rr,...,rp—1—1).
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Proof: It is an induction on k; we treat the case k even, the other being completely similar.
The result is clearly true for £ = 2. For the general case, we consider the image of the element

T

i (T - 1 0 s b
i=0 M/ er, - je1F,

in Ry_1/Ry_2 via the natural projection Ry_1 — Rp_1/Rk—2. We see then if (r+1,p—1—1r) =<

(lg—2,lk—1) such an image is nonzero in Rjy_1/Rj_2; we deduce that the image of x;, _;, , in

Ry_1/Ry_o is a K-generator of a subquotient of the form Ind% (pk,l)xiat/, for a suitable ¢’ € N.
Iflp_1=p—1—r and l_o < r we see that u is in the image of Tth:

w= T (1)t 1, X7y tiea))
If Iy_p < r, then T;_,([1, X7lk—2Yl—2]) = 0 € Ry_3, while for [_o = 7 we get
—T (1)1, X2y 2] = (—1)"F2[1,Y7] € Ry—s.
This let us establish the inductive step and the proof is complete.}

3. Study of K;-invariants

Fix an integer r € {0,...,p — 2}; in this section we use the explicit description of the socle
filtration of 7(r,0,1)|xz to deduce the space of K;-invariants 7(r, 0, 1)%¢.

We start from rough estimates of such spaces in terms of the filtrations R;/(R;—1) ®g,,,
-+ @R, Rny1 in lemmas 3.2 and 3.3: they let us rule out a wide range of possibilities for the K;
invariants. For those cases which are not covered by the previous estimates, we pursue a detailed
(and, unfortunately, rather technical) analysis, by means of the elements introduced in definition
3.4. Such analysis lead us to refine the results of lemmas 3.2 and 3.3 in proposition 3.5 from
which we deduce the exact description of the Ki-invariants given in proposition 3.7.

First of all, we have

1 0 1 —i—pth 0 1 pth
Ki=| . .
'L, 1 0 1+p'Zy, 0 1

Furthermore
LEMMA 3.1. If o is a smooth K-representation over F,, and t € N, then
sock (o) = SOCK/Kt(O'Kt).
Proof: It is enough to recall that for any irreducible smooth K representation 7 we have

K =74

LEMMA 3.2. Let t > 1. Then
i) Ift is odd then
(lim Ro ©r, - @R, Rn1)™ = (Ro ®g, -+ ®r, Res1)™

n,odd
. R/RO@R"'@R_ Rt)Kt if r#£0
lim Ri/R op Ry = { (U ) - |
(ngl:en 1/ ’ @R2 o +1) { (Rl/RO DRy - @RtJrl Rt+2)Kt if r=0.
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i1) Ift is even, then

(RO@Rl"'@Rt,lRt)Kt if T#O

lim Ry &g, - ®r, Rni1)kt = -
( g, 0 TRy Ry +1) { (RO @Rl @RH—I Rt+2)Kt if r= 0.

n,odd
(1 Ry/Ro @p, -+ ©r, Bni1) " = (R1/Ro @y -+ Sy Resn)™

n,even

Proof: We first prove the statement for r # 0. Let n > ¢ and assume we have z € (--- ®p,
Rp+1)%t such that 7(2) # 0 in R,41/R, (where 7 denotes the natural projection of proposition
2.2). As K; is normal in K, we conclude that 7((K - 2)) < (Rny1/Rn)®* and, by lemma 3.1,
sock (m((K - z))) Nsock (Rp+1/Ryn) # 0. By the explicit description of sock (Ry+1/Ry) we deduce
that it exists y € (--- ®rg,_, Rr—1) such that we are in one of the following situations:

i) the element
[o] 1 /

SN R RN
po€F,

is K;-invariant (in the amalgamed sum);
i7) we have p —3 —r = 0 and the element

1
3 [ ol 1 ] 2+ (—1) a4y
pmo€Fy

is Ky-invariant (in the amalgamed sum);

where we put

2 2 Lo 1]

n1€F,

S | 1) S gy 10X

Mn—lEFp ,unEFp

Consider now the projection

(. - Dr, Rn+1) — Rn_l/Filr—l(Rn_l) @R, Rni1.

As the space (R,_1/Fil""}(R,_1)) is fixed under the action of [ L "2,

0 1 }, it follows that

the elements [ [MlO] (1) ] 2’ (resp. > [ [Mlo] (1) ] 2’ + (—=1)"+12’) should be fixed under
mo€Fy mo€Fy

the action of [ (1) p 1Zp } inside Rnfl/FilT_l(Rn,l) @R, Rnt+1, which is absurde. Indeed, a

computation using lemma 2.10 shows

AR ol (M IEVEioT

=7

Z (_P)\(/"nfl))j |: pnl[ﬂjl +)\] (1] :| [LXj—lyr—(j—l)].

Hn—1 er
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Using the operator —T); and the natural projection R, — R, /Fil""(R,) we get

(T 1) (~1) 1 0y) =

j=1
1 0
_ 7”-‘,—2 T sr—1
= (r+1)( AN [ } > [ ] 1 } [1,Y"] modFil" Y(R, ;)
NOEF Hn— QEF
(resp. = (r +1)(—=1)""2) Z [ ] [1,Y"] ifn=2)
po€Fy
1 1 p" Al
and such an element is nonzero in R,,_1/Fil"" " (R,_1) if r # 0. As 2/ is anyway { 0 1 ]_

invariant in R, we deduce that the elements in 7), 7i) can be Ky-invariant only if n — 1 < k:
this let us conclude the case r # 0.
We pass to the the case » = 0 and and let n > ¢ + 1. Using the same arguments for the

case 7 # 0 we see that if we have z € (- ®g, Ry+1)Xt such that 7(z) # 0 in R,11/R, it

would exists an element J € Ry,_1/Rp_» such that w = 5+ 3 [ [MIO] (1) 2’ (vesp. w =G +
0€F J
n—2
> [ ko] 1 ]gr:’—i—(—l)’”rl "if r=p—3)is { L "z, ] invariant inside Ry,—1/Ryp—2+ (w).
no€Fy, 1 0 0 1
1 pnf2 T
On the other hand, we have a decomposition of R,_1/R,_2 in { 0 1 -stable subspaces.

Indeed R,,—1/R,—2 is a quotient of Indﬁ)(pn,l)l and if we put

TRARUED SPLE IR PR DIV BT

m€EF, Hn—1€Fp

pn—QZ

p | .
0 1 ] stable subspaces:

the latter admits the following decomposition in [

a) for afixed -tuple (lo, ..., l—3) € {0,...,p—1}""2 the F,-subspace generated by the elements

> Ho [ [Mf] ) ] Wis,... 3,5 (0)

mo€Fy
where j € {0,...,p— 1}
b) the subspace generated by the elements wy, ;  (0) for (I1,...,l,—3) € {0,...,p — 1}n=3,

For r # p — 3 (resp. 7 = p — 3) we study, analogously to the case r # 0, the action of
1 pn_QZp [1o] 1 ' T (o] 1 '
0 1 on the element 1 o |% T (=)™ 2" (resp. > 1 o |% T
po€Fy Ho€Fy
(=1) 2’ 4+ (=1)"T1a’); using the previous decomposition in stable subspaces for R, _1/R, 2
we deduce again a contraddiction with the assumption 7(z) # 0 (the computational details are

left to the reader). #

On the other hand, we have

LEMMA 3.3. Let t > 1. Then:
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i) fort odd we have
(Ro ®R, *+ ®R,_», Ri—1)"* = Ry ®p, -+ ®r,_, Ri—1
(R1/Ro ®R, -+ ®R,_, Ri—2)* = R1/Ro ®p, -+ ®R,_, Ri—2 ifr #0
(R1/Ro ®R, - ®r,_, R)®* = R1/Ry ®g, --- ®p,_, Rt ifr=0
i1) for t even we have
(Ro @R, -+ ®R, s Ri_2) = Ry®p, -+ ®r, , Ri_o ifr#0
(R() @®r, - - BRr,1 Rt)Kt =Ry @R, - ORr,1 R, ifr=0
(R1/Ro @R, -+ ®Rr, » Ri—1)™" = Ri/Ro ®p, - ®pr,_, Ri—1

where we convene that Ri/Ro ®r_, R_1 0.

Proof: If kK € K and z € I; then

z 1] |2z 1 ) 10} |10
ool T o™y | T 1|
for suitable k1, ko € K;. As the action of K; is trivial on 07‘2 for j <t (resp for j < tif r =0) we

get the desired result. 4

We are thus able to insert the K; invariants into a natural exact sequence coming from the
filtrations of proposition 2.2. For instance, for ¢t odd we have

0— (Ro ®R, -+ ®R,_, Re—1)’* — (Ro @R, - - ®r, Rez1)Kt — (Ry1/Ry)

Ry ®R, -+ ®Rr,_, Rt—1

0 Ry @R, - ®Rr, Ri+1 Rii1/Re 0

and the reader can deduce similar diagrams, according to lemmas 3.2, 3.3. In particular, we are
lead to the study of the K} invariants of the quotients R,,41/R,,, which is the object of the next
proposition. We introduce the following notations:

DEFINITION 3.4. Let t > 2 be an integer, (I1,...,l;_1) € {0,...,p — 1}*=! be an (t — 1)-tuple.
We define:

i)

HoEFp w1€Fp
mzle:FpMit_ll { v 1[1’” 1] (1) ] H;pufﬂ { pt[l t] (1) ] LX)
ot 2 e 1)

which will be seen as elements of Ryy1, Ryy1/R: or in the amalgamed sum, accordingly to
the context.
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i1) if r # 0 we define

o 5 [0 5t )

pocky - =

mzle:Fpuitll I pt_l[lﬂtﬂ (1) } 1, X"1Y;
i d:e{ulze;pulf I p[ﬁln] (1) ]

ut_lzerMit:ll :pt_lﬁlit—l] (1) } 1, X7 Y]

which will be seen as elements of Ry, R;/R;—1 or in the amalgamed sum, accordingly to the

context.
iit) if r =0 and X" is a fixed F, basis of Symoff,, we define
def wol 1 [ 1 0
i D [ [1] 0 ] 2 {pw 1 ]
ro€Fy, u1€F,
L | 1 0 ] [ 1 0 1 0 ,
Z Ky q t—1 1 Z t 1 Z Ht+1 t+1 1 [17X ]7
e L P (1] o L Pl o= P ]
/ def I 1 0
le,...,lt_1 = Z lul 1 :| cc e
S Lelm]
Lo | 1 0 1 0 1 0 ,
Z Hi—1 t—1 1 :| Z |: t 1 Z Hi+1 t+1 1 [LX ]
v | P (1] L [14¢] = P ]

which will be seen as elements of Ryia, Ri1a/Ry1 or in the amalgamed sum, accordingly
to the context.

The result concerning the K;-invariants of Ry41/R; is the following
PROPOSITION 3.5. Let t > 1, r € {0,...,p — 2}. Then
i) the K, invariants of Ry;1/R; are described by
(Re1/Re)"t =Tndf§ (o By — FilO (Ry 1/ Ry);
i1) if r # 0 and t > 2 the K;-invariants of R;/R;_1 are described by
(R¢/Ri_1)"t = (Fil°(Ry/R¢_1) + 7t) — Fil'(R;/Ry_1)

where 7; is the K-subrepresentation of Fil'(R;/R;_1) generated by (the image of) the ele-
ments y;, 1, ., ygl,mylt—l with (I1,...,l4—1) < (0,...,0,r+1). Ift = 1 then the K;-invariants
of R1/Ry are described by

(R1/Ro)** = (Fil°(R1/Ro) + 1) — Fil'(R1/Ro)
where 11 = 0 if r € {0,1} and 71 is the K-subrepresentation of Fil'(R1/Ry) generated by

D [ [“10] é ] 1, XY ifr >3
MOEFp
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(resp. by %jF [ [“10] (1) } [1L,X"'Y) - 1, X"Y] ifr = 2).

ii1) If r =0 then the Ki-invariants of Ryio/Ry1 are described by
(Rit2/ Rt+1)Kt = Indgo(pk)FO(t) * Fl(tH) — ((]OtJBQE
: First, t L il (Rev1/ Ry t+1/Rt). )
Proof: First, let z € (Ryp1/Ri)%t, say z € Fil'(Ry1/R;) \ Fil' Y (Ri41/R;). We deduce, as
in the proof of lemma 3.2 that one of the following condition must hold:
a) the element
ol 1
s (3]s
Ho€Fp

is Ks-invariant;
b) we have r — 2t = 0[p — 1] and the element

> |l e o

pmo€Fy
is Ks-invariant,

where we put

/ def I 0 ] [ r 0 } r—tyrt
v = [ e E " 1, X"'Y").
1 1
oo Ll o, L Pl
t
For t > 1 we study the action of [ (1) p P] ] on the elements in a), b) modulo Fil*~2 to deduce

that such elements can not be K;-invariant: we conclude that
(Riy1/Re)™t = Fil°(Ryi1 /Ry).
A similar argument, using the exact sequence

K () (0,t+1) (0,t+1)
0— IndKo(pt)FrH — Qo 0r+1 — Qo 0,42 0

shows that
(0441) VK¢ _ K ®) \K
( 0,..A,0,r+1) t= (IndKo(pt)FrH) £
As the latter is Kj-invariant we get the desired result.
i1) Assume t > 2. With the same arguments of i) we can check that

(Rt/Ri—1)"t = (Fil' (R;/R—1))"
and, using the definition of Q(l)g?’?w 41 and the fact that Fil®(R;/R;_1) is a quotient of Indllg0 (pt) X

we have
(Fil'(Ry/Ri—1))%t = (Fil®(Ry/Ry—1) + m) "
We can now check directly that the action of
1+9p'Z, 0 } [ 1 0 ]
0 1+9p'Z, || P'Z, 1
on Yi,. 1> yfh“’ltil € Ry/R;_1 is trivial, provided that l;_; < r, and we conclude.

The case of t = 1 is a similar computation, and it is left to the reader.
i7i) It is similar to the previous one and left to the reader.
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Thanks to proposition 3.5 it suffices to study the behaviour of the elements of the form
l(1)..- Iy yl(l)_._ I 1? Zl(l)... I, 0 order to describe completely the Ki-invariants of supersingular

representations. First of all we introduce the objects:
DEFINITION 3.6. Let t > 1. We define the following subrepresentations of Ry+1, Ry:

i) fort > 2,t odd, let
ai1) o(p — 2) as the K-subrepresentation of R;41 generated by xj, 1, ., %)
(I, li)) < (myp—1—r,...,mp—1—1);

az) o(p — 3) as the K-subrepresentaiton of Ryy; generated by o(p — 2) and the element

r+1,./ .
'fI"T,P_l_T"n-,T’P_l_T + (_1) w’/‘,p—l—’/‘,...,’/‘,p—l—’l"

asz) o(< p—3) as the K-subrepresentation of Ry, generated by o(p — 2) and the element

with

Tyeenslt—1

Trp—1—r,.. rpp—1—r-

br) if r # 0, o,(1) (resp. 03(0) if r = 0) as the K-subrepresentation of Ry generated by
Yinrodi s Yy diy (T6SD- 200t vs 2y, ) With (L le1) < (p—1 =77 p—
1—rr)ifr+#0 (resp. if r =0).

by) if r # 0, 0,(2) as the K-subrepresentaiton of R; generated by o, (1) and the element

r—2)+1,/ .
Yp—1—ryr,...p—1—ryr T (_1)( ) Yp—1—rr,...p—1—rr7

bs) if r #0, o,(> 2) as the K-subrepresentation of R; generated by o,(1) and the element
Yp—1—rr,...srp—1—r,r-
i) Fort > 2, t even, let

ay) oy(p—2) (resp. 0.(p—2)) the K subrepresentation of Ry generated by yi, .1, 1, i, .

oli—1

(resp. 1, 1,1 Zl/1,...,lt_1) with (I1,...,li—1) < (r,p—1—r,...,p—1—rr) ifr # 0 (resp.

ifr=0);
ay) oy(p — 3) (resp. o.(p — 3)) as the K-subrepresentaiton of R, generated by o,(p — 2)
(resp. o.(p — 2)) and the element Y, p,—1—y . rp—1—r + (—1)’"+1y;7p_1_T7_._7p_1_w ifr#0

(reSp, Zrp—1—r,..,rp—1—r + (_1)r+127/",p—1—7",.‘.,p—1—7‘,7" ifr= 0);

ay) oy(< p—3) (resp. 0,(< p—3)) as the K-subrepresentation of Ry generated by oy(p—2)
(resp. o.(p — 2)) and the element Y, ,—1—y . p—1—rr (T€SP. Zrp—1—r. . p—1—ryr)-

by) 0°(0) and 0°(1) as the K-subrepresentation of Ryy1 generated by xi, 1, ,, ],
with (I1,..., 1) < (p—1—r,ry...,myp—1—1);

by) 0°(2) as the K-subrepresentaiton of Ryy1 generated by o°(1) and the element

t—1

Tp—1—rr,...;rp—1—r T (*1)(T_Q)+1$;~,p—1—r,...,r,p—1—r;
bs) o°(> 2) as the K-subrepresentation of Ry generated by o®(1) and the element
Tp—1—rir, . rp—1—r-
ii1) Assume t = 1. We define:
ay) o(p—2)=0;
ay) o(p— 3) as the K-subrepresentaiton of Ry generated by

1] 2 [y st g, g

po€F, p1€F, u1€F,

a3) o(< p—3) as the K-subrepresentation of Ry generated by the element

M P PR [

no€Fp u€Fp
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b7) oy(1) = 03(0) = 0;
by) 0,(2) as the K-subrepresentation of Ry generated by:
3 [Uf] 1}@,XT1Y}+(—1y+W1g¥T1Y]brr>];
Hno€Fy 0

b)) a§(> 2) as the K-subrepresentation of Ry generated by:

> [ [Hlo] (1) } [1, X""YY] for r > 1.
po€Fy

With the above formalism, we are ready to describe completely the Kj-invariants of super-
singular representations 7(r,0,1) with » € {0,...,p — 2} (and therefore also for r = p — 1 since
7(0,0,1) = 7(p — 1,0, 1).

PROPOSITION 3.7. Lett > 1 and r € {0,...,p — 2}; then
i) Assume t odd. Then

a1) the K;-invariants of lim (Ro ®g, -+ ®g, Rat1) are precisely:
n,odd
op—2) ifr=p-2
Ry®R, - ®r_, Re-1+ o(p—3) ifr=p-3
o(<p—3) ifr<p-3.

b1) the Ki-invariants of lim (Ri/Ro ®r, - - ®r,, Rnt+1) for r # 0 are precisely:

n,even

o,(1) ifr=1
Ri/Ro ®p, -+ ®R, 3 Rio + pry(Fil°(Ry)) + ¢ 05(2) ifr =2
o,(>2) ifr>2.

while, if r =0
Rl/RO DR, - @Rt—l Ry + 02(0)
i1) Assume t even. Then
az) the Ky-invariants of lim (Ro @R, - -+ ®Rr, Rny1) for r # 0 are precisely:
n,odd
oy(p—2) ifr=p-2
Ry @R, -+ ®R,_s Ri—a + pr(Fil’(R)) + 4 oy(p—3) ifr=p—3
oy(<p—3) ifr<p-3.
while, for r =0
Uz(p - 3) ifp=3
o.(<p—3) ifp+#3.

by) the Ki-invariants of lim (Ry/Ry @R, - - ®r, Rn+1) are precisely:

Ry ®R, - ®Rr,—1 Rt+{

n, even

o®(0) ifr=20

o®(1) ifr=1
R1/Ro @Ry -+ ®R,_y Ri1 + USEQ; ifr =29

of(>2) ifr>2.

73



Invariant elements under some congruence subgroups Part 11

Note that Ri/Ro @R, --- ®r, s Ri—2 + pri(Fil°(Ry)) = pri(Fil°(Ry)) and Ry ®g, - ®R,_,
Ri_o + pry(Fil°(Ry)) = pry(Fil°(Ry)); we believe that the redoundant notation of proposition 3.7
is more expressive.

We warn the reader that the proof of proposition 3.7 is rather technical and lenghty, relying

on a detailed computations in the amalgamed sums by means of the Hecke operators T'F; we

inserted it for sake of completeness. We apologize with the reader for its length and technicity.

Proof: i), a;). For t > 2 we fix an (t — 1)-tuple (I1,...,l;_1) € {0,...,p — 1}~! and we
1 p'[A]
0 1

the reader). We have the following equality in R;41:

1
1 piA — (r+1 : »
|: 0 { ] ] Tlypelim1 = Tyl T Z j (_)‘)](_1>r+1 ]T;(Uj)
j=0
where we put

. d_ef [/‘LO:I 1 lt—l 1 0 j—l T—(j—l)
v = Z [ 1 0 ] Z iy [ P ] 1 [1,X77Y ] € Ry.
Ho€Fp pi—1€F,

consider the action of [ ] on the element x;, _;, , (the case t =1 is similar and left to

Since

DS ("5 ) v -

=17
S ERC O DU R D STl NRe SR oy
uo€Fp pt—1€Fp

we conclude by lemma 2.12 (using of course the definition of 7, and r < p — 2 in the case
(lhyooylim1)=(rp—1—r,...,p—1—r)) that

1 p'Z . . .
-) the element x;, _;, , is [ 0 p 1 P ]—invarlant in the amalgamed sum if (I1,...,l;—1) =<
(rrp=1—=r,...,p—1—r);
'z
-) the element x;, _;, , is not 0 P 1 P ]—invariant in the amalgamed sum if (r,p — 1 —

ryooosp—1—1) < (l1,...,l1—1).

Moreover, as
1 p'A] 1 0] [1 0 1+ptx  pYA]
0 1 21| |21 ptls 14 phx
; . 1 plZ
for 2/ = Zz.:l]ﬂ[,uj}, we see that zj, ;s [ 0 b 1 P

If we define o as the K-subrepresentation of Ry generated by the elements x;, . ;, ,, xgl’m’l
with (l1,...,i—1) 2 (r+1,p—1—7r,7,...,p—1—1r) we deduce from the diagram:

]-invariant (already inside Ryt1).

t—1

0—>(Ro®R, -~ ®R,_, Ri-1+0)* —— (Ry @R, -+ ®r, Rij1)Kt — (Rpy1 /(R + 0)) Kt

0 Ry®R, - ®p,_, Ri-1+0

Ry ®R, -+ ®r, Rit1

Riy1/(Ri+0) —=0
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that
(Ro ®R, -+ ®r, Res1)™ = (Ro ®p, -+ PR, , i1+ o)k,

as the K-socle of Ry41/(R; + o) is generated by ri1 p—1—rr,.. p—1—r (a0d Zpi1p—1—rp. . p—1—r +
(—1)"*2 if the K-socle is semisimple).

. . [ 1+ pla 0
Similarly, we study the action of Op ey ] ON Ty, 1, 15 :n;hm’ltil, for (I1,...,li—1) =
(r+Lp—1-mrr,...,p—1~-r)and a,d € Z;. From the equality
1+ pla 0 z 1] [ z20+pd)~t(1+pla) 1 1+ pld 0
0 1+ pld 1 o] 1 0 0 1+ pla

we deduce the following equality in Ryy1:

+1
1+pla 0 o [r+1\ —— . »
U D | = o 3 (7 )awenma)
]:
where
def ] [Mo] 1 Ly 1 0 i— —(i—
U; = Z ug) |: 1 0 :| Z ,utif [pt_l[utl] ) [LXJ 1Yr (J 1)] c Rt~
Hno€Fp ut—1€Fp

We deduce from lemma 2.12 (using again the definition of 7} and r < p — 2 in the case

(liy...slgm))=(r,p—1—=r,...,p—1—r)) that
¢
-) theelement x;, _;, , is 1+p'Zy Ot -invariant in the amalgamed sum if ({1, ...,l;_1) <
o 0 1+9p'Z,
(r,p—1—r,...,p—1—=r)orif (I1,...,04—1)=(r,p—1—7r,...;,p—1—r)and r <p—3;
t
-) theelement z;, ;,_, isnot 1+0'Z, Ot -invariant in the amalgamed sum if (r, p—
e 0 1+p'Z,
l—r...,p—1—r)=(l1,...,l1—1) and r =p — 2.
Moreover, the equality
1+ pla 0 1 o] [10 1+ plx 0
0 1+ pld Z 1| |2 1 ptlsx 14 phx
) ¢
for 2/ = Z;:lp][luj] shows that the action of [ ! +(])9 Zy 1 +(]))th } on :17;1,“.71#1 is trivial

(already in Ry41). As above, we conclude that
-) if r =p — 2 then
(Ro @R, =~ ®r, Rer1)™ = (Ro @R, -+ ®R,_, Rt +o(p—2)"
-) if r <p— 3 then
(Ro ®R, - @R, Rt+1)Kt = (Ro®R, -~ PR, , Re—1+ J)Kt.

We are now left to study the action of ptlzp (1) ] on Ty, 1, s $;1,...,lt_1’ for (I1,...,0i—1) =
(r+1,p—1-—mrr...,p—1—r). For z = Z;ZOpj[uj] we have the equality
1 0 z 1] [z 1 1+phx  ptA]
PN 1 10 |1 0 pitls 14 phs
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where z; = E;;ﬁ P[]+ [+ pd ). We can use lemma 2.12 (and the definition of 7} in the case
(r,p—1—r,...;,p—1—71)=(l1,...,lt—1)) to deduce the following equality in Ry®r, - --Dr, Ri+1:

1 0
pt[)\] 1 Tl limr = Llaylimr —
0 ifeither (l1,...,l4—1) < (r,p—1—7r,....p—1—r)or
(lhy...;lim1)=(mp—1—r,...;p—1—r)andr <p—3
(r+ DA=D) 255y iy, ) =(p—1—7,....p—1—r)andr =p — 3.
On the other hand we have

1 0], . B
pt[/\] 1| Tk T Tl T

{ 0 ifeither (l1,...,li—1) < (rp—1—=r,...;,p—1—7)
= k-1

(r4+ DXy if (.. ) =(np—1—7,...,p—1—1).

As

soc(Res1/Re+a(e) =soc(@Q )

(where o(e) € {o(p — 3),0(< p— 3)} according to r as in the statement of i)-a;)) we conclude,
as above, that

(Ro ®r, ++ ®r, Riy1)™ = (Ro ®p, -+ BR,_, Ri—1 + 0(e))™

and the result follows, as o(e) are generated by K-invariant elements.

i),by) The proof is similar to the previous. First of all, notice that Fil®(R;) = Indllgo(pt) X3
is Kj-invariant. Therefore, we focus on the action of K; on the elements v, ., ;. yfh“’ltil if
r # 0 (vesp. 21,1 1s lel,...,lt,l if » = 0). We notice moreover that, if » # 0 and ¢ = 1, the K3
invariants of lim (R1/Ro @R, - - - @R, Rn+1) are described by lemma 3.2 and 3.5: we can exclude

n even
this situation in the reminder of the proof of i), b;).

Assume now r # 0. As above, we have the following equality in R; for l;_1 < r:

1 p'[A
[ 0 { ] :| Y, i1 —Yla, i1 = M(_l)lt,thtl(w)

where

def [NO] 1 l—2 1 0 r=li—1yli—1
w= Z [ 1 0] Z s [pt2[lit—2] 1 1, X Y1l e Ry

no€Fp H—2€Fy
Using lemma 2.12 see that
: 1 p'Z, ] . . . .
-) the element y;, ;, , is 0 1 -invariant in the amalgamed sum if (I1,...,0;—1) <

(p—ryry...,p—1—mrr1);

1/
-) the element y;, ;, , is not { 0 p 1 p ]—invariant in the amalgamed sum if (p—7r,7,...,p—
1-— 7",7") j (ll,. . .,ltfl).
1 pth

We see again that y; I, 18 [ ]—invariant (already in R;), and we conclude by the

0 1
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usual argument that

(lim (Ry/Ro @R, - - ®R, Rp41))"t = (R1/Ro ®R, -~ ©R, 5 Ria + pro(Fil’(Ry)) + o)™

n even

where o is the (image of the) K-subrepresentation of R; generated by the elements y;, ;. ,, y21,...,lt7
where (I1,...,04—1) < (p—r,r,p—1—r,....,p—1—1,7).
1+ pla 0

0 1+ pld

1

We pass to the action of [ }, with a,d € Z;. Exactly as in the proof of

i)-a1) we use the matrix relation

1+ pla 0 z 1] [ z20+pd)~t(1+pla) 1 1+ pld 0
0 1+ pld 1 0| 1 0 0 1+ pla

and lemma 2.12 to see that

¢
-) theelement y;, . ;,_, is 1+0'Zy Ot -invariant in the amalgamed sum if (I1,...,l;—1) <
ot 0 1+p'Z,
p—1—=mrr,...,p—1—=r;r)orif (I1,....,0(—1)=(p—-1—rr,...;,p—1—rr)and r > 2;
1+pth 0

-) the element x;, ;. , is not [ }—invariant in the amalgamed sum if (p —

0 1+9p'Z,
1—rr...,p=1—rr)=(l1,...,1—1) and r = p — 2.

1+p'Z, 0

Moreover, as y;, ;s [ 0 |4 p'z
P

]—invariant (already in R;), we deduce

(R1/Ro @R, -+~ ®R,_y Re—z + pre(Fil°(Ry)) + oy (1))

ifr=1
( lim (Ri/Ro ®p, -+ ®r, Rus1))™ =
neven (RI/RO ®R2 te @Rt_:g Rt—2 + prt(FﬂO(Rt)) + 0>Kt
ifr > 2.
We are left to study the action of [ ptlz 1 } ON Yl 1+ yl/l,...,lt,l in the situation (Iy,...,l;—1) =
P

(p—r,r,p—1—r,....,p—1—rr). For z € I;_1 we have the equality

[P%A] (1) ] [ | (1) } - [ | (1) ] [pl[titg] 1]94:[21*

We can use lemma 2.12 to deduce the following equality in R1/Ro ©r, - - ®r,_, Ri:

1 0
pt[)\] 1 yll,...,lt,I - yll;-u,lt71 —

(0 if (ly,...,i-1)<(p—1=mr,r....,p—1—r,7)o0r
(lh,...;41)=p—-1—=r,r,...,p—1—r,r)andr >3

_)\(_1)(7"-%2)% Z M(Q) |: [/LO] 1 :| [17X7‘] if
Lok, 1 0
(i, ..., lg))=pp—1—=mr,r,...,p—1—r,r)andr = 2.
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We compute now

107, , B
pt[)\] 1 Llyoleer — Plyylir =

_J 0 ifeither (l,...,li-1) < (p—1—=m7r...,p—1—1n,7)
T ANEDEE LX) i (. ) = (p—1 =71 p—1—1,7).

SOC(Rt/(FﬂO(Rt) + U;(’))) = SOC(Q(OJS)(1)171)7177“,7‘...,;07177',7")
(where o(e) € {05(2),0¢(> 2)} according to 7) we conclude, as above, that

(Ro ®R, -+ ®Rr, ; R)"" = (Ro ®R, -~ ©R, 5 Ria + pri(Fil'(Ry)) + o (e)) ™

and the result follows, as o (e) are generated by K;-invariant elements.

We consider the case r = 0. We see that the following equalities hold in the amalgamed sum
(with the obvious conventions if ¢ = 1):

1 p'A
|: 0 1 Zl1,...,lt_1 - le,...,lt_1 =

e [[ﬂlo] (1)] ) ufff[pt_l[lmﬂ H{Le];

/JOGFp

L p'A
I EPEEE R

1 p'Z,
0 1
case r # 0, t > 3. Notice that, if t = 1 and

2= Y Wf] (1)] 2 [p[;lu] (1)]%:%[?2[1#2] ﬂ[lje]

po€Fy n1€Fy

[(1) pt{z\]]z_zz Z [[Mlo] H[l’e];

Ho er

and therefore, the study of [ -invariance can be recovered from the formalism of the

we get

as the latter is nonzero in R;/Ry we can conclude that the Kj-invariants of the inductive limit
are simply the elements of R;/Ry.
We can now assume ¢t > 2; from the the action of [ L+, Ot ] and [ tl 0 ]
0 1+p'Zy p'Z, 1
on 2,1, 1 lel,...,lt,l we see as above that their K;-invariance can be reduced to the formalism
for the case r # 0. The conclusion follows.

1) The proof is completely analogous to the case i), without any new ideas. It is therefore
left to the reader. f

The formalism of proposition 3.7 may look a bit heavy, but we can use the description of
the socle filtration for m(r,0,1)|xz to have an immediate idea of what is going on. Roughly
speaking, when we extract the K;-invariants from 7(r,0,1) we are “cutting” the socle filtration,
and proposition 3.7 tells us precisely where such a “cutting” occurs. For instance, the description
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of (lim (Rg ®r, - ®r, Rnt1))Xt, for t odd, in terms of the socle filtration is the following:
n,odd

(0,t+1) 0 t+1
SOCFIIQ .0 r+1 \ Soc FllQé J7op—1—r,..p—1—rr+1
ifr=p— )
SocFil(Ry @R, -+ ®r, », Ri—1)—
SOCFIIQ 0 tJB1T+1 \ SOCFﬂQgOrt;l Tyep—1—r, 741
ifr<p-3

where we used the notation “Vj \ Vy” to mean that we have to rule out the factors of the socle
filtration of Vg from the socle filtration of V; (or, more scientifically but less immaginative, to
mean the socle filtration of the kernel ker(V; — V) of the natural projection).

COROLLARY 3.8. Let r € {0,...,p— 1}, t > 1. The Fp-dimension of (w(r,0,1))%* is then:

dimg ((n(r,0,1))") = (p+ 1)(2p'~" — 1) + { P oy

Proof: Thanks to the isomorphism 7(0,0,1) = n(p — 1,0,1) we can assume r < p — 2. Let
us assume ¢ odd (the case t even is analogous). Using [Mol], corollary 6.5 we get

t
dimg (0(e)/Re) = (p+1)p = (p+ )p" ' (r+ 1) = ((p+ VDp' =0+ 1) D _p ' —(p—2-7))
j=1
where (I1,...,; —1)=(r,p—1—r,....,r,p—1—r,r+ 1) if t > 2; thus
dimg (0(e)/Re) = (p—7)(p'" = 1)+ (p—2 7).
Similarly we find, for r # 0,

dimg (o (e)/Fil’(Re) =p' " (p+1) = (' (p+1) = (p+1) Z_:pj‘llj —(r-1)
j=1

=r+H@' -+ (-1
where (I1,...,4—1)=(p—-1—r,r,...,p—1—r,r)if t > 2; if r = 0 we similarly get
dimg (o3(s)/Fi°(Ry)) = (r + 1)(p — 1).
As
dimg (Ro @R, +++ ®R,_, Ri—1) + dimg (R1/Ro SR, -+ Or,_y Ri-2) +
+ dimg | (Fil°(Ry/Ri—1)) = (p+ 1)p'!
the result follows. {

With respect to the description of the socle filtration of (r,0,1)|x as “two lines of weights”,
proposition 3.7 let us deduce the following result:

COROLLARY 3.9. Let t > 1 be an integer, r € {0,...,p — 1}.

1) The socle filtration for ( lim (Ro ®g, --- ®r, Rni1))Xt is described by:
n,odd

Symrfi—lndfxi T IndE a2 —. . —Indf xia” Symp_g_TF;®detT+1
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where the number of parabolic inductions Indf(xiaj is p~' —1 and last weight Symp_3_rfz2?®
det" ™! appears only if p—3 —r > 0.

Ry,41))5 is described by:

n

2) The socle filtration for ( lim ((R1/Ro) ®Rr, -+ ®r

n, even
Sym?~1~"F, ® det’—Indf yjo—Ind} x3a>—. .. —Indf y;—Sym'~°F, @ det

where the number of parabolic inductions Ind?x;?aj is p'=' —1 and last weight SymT_QFIz &
det appears only if r — 2 > 0.

Proof: We sketch here the proof for ¢ odd, r € {0,...,p—2}. Using the computations in the
proof of corollary 3.8 and the result in lemma 2.8 we see that

dimg (lim (Ro ©p, - ®r, Ror1)™ = (r+ 1)+ (p+ )" = 1)+ (p—2—7)
n,odd

and

dimg, ( lim ((R1/Ro) ®r, -+ ©r, Rng1))™ = (p=7) + (p+ D)@' = 1)+ (r = 1) +dno

n,even

As the dimension of the parabolic inductions Indf xia’ is p + 1 we conclude from proposition
3.7. 1

4. Study of [;-invariants.

Let t > 1 be an integer and r € {0,...,p — 1}. The aim of this section is to study in detail
the space of I;-invariant of supersingular representations 7(r,0, 1); thanks to the isomorphism
7(0,0,1) = w(p — 1,0,1) we will assume r < p — 2, unless otherwise specified. Moreover the
relations

1 pt—'z 1+ p'Z 0 1 0
Ktléftht,ItZ[O b 1 p}[ g P 1+ p'Z, Pz, 1

o : 1 p'=lA]
show that the hard task consist in studying the 0 1

7(r,0,1)%, the latter being completely described in proposition 3.7. We distingush two cases,
accordingly to the parity of t.

]—invariants (for X € Fp) of

4.1 The case t odd.
In the present section, we assume ¢ > 1, t odd. We then can write, accordingly to the value of r,
olp—2) ifr=p-—2

( lim (Ro @R, -+ ®r, Rn+1))" < Ro®R, - Gppy Re-1+4 o(p—3) ifr=p—3
n,odd o(<p—-3) ifr<p-3.

(lim (Ro ®r, - R, Rpi1))" = proa (FI°(R1))
n,odd
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with the obvious convention that pry_1(Fil’(R;_1)) = Ry if t = 1. Notice that all vectors in the

.10 1 ptil P\] . . ..
spaces pri_1(Fil”(R;—1)) are 0 1 -invariants. Similarly, we get
o5(0) ifr=0
lim (R /R Rni1))’ < pre(FiO(R oy(1) ifr=1
( in ( 1/ 0 DRy "+ DR, n+1)) \prt( 1 ( t))+ 0_73(2) ifr=2
heven op(>2) ifr>2.
( li,n (R1/Ro ®R, -+ - ®R, Rn+1))lt 2 Ri1/Ro ®R, -+ ®R,_s Ri2

n,even

with the obvious convention that pri(Fil°(R;/Rg)) = Fil’(R1/Ry). Notice that all vectors in the
P
0 1
From now onwards we assume ¢ > 1: the case t = 1 it is well known (cf. [Bre03a], Théoréme
3.2.4) and can anyway be treated with analogous techniques.

spaces Ri/Ro @R, -+ ®R, 5 Ri—2 are [ ]—invariants.

4.1.1 Concerning Ry®:---@Br, Rnt1, n odd. We conside the K-equivariant exact sequence
0 — pre—1(Fil®(Ri—1)) — Ro ®R, -+ ®R,_, Re1 +0(8) >V =0
where e depends on r accordingly to proposition 3.7-a1). We introduce the following elements:
DEFINITION 4.1. Let t > 1 be odd, (lg,...,l;—2) € {0,...,p — 1}~ a (t — 1)-tuple.
i) For j € {0,...,r} we define the fo]lowing elements of R;_1

. e; l 0 = .

Ho€Fy Ht—2
.\ def l l 0 s
i) E D 10 [ ] T [ 2] 1 } [1, X" IY7]
n1€F, Pe—2 =

which will be also seen as elements of the amalgamed sums accordingly to the context.

i1) For l;—1 € {0,...,p — 1}, we define the following elements of Ry

© 1 le— T 0 r
Dig,..nli—1 = Z Méo |: [Iul()] 0 :| Zlut—ll |:pt 1 ,U't 1 :| Z My +1 |: 1 :| [LX ]

no€F, Ht—1
/ def I [Ul] 1 le—1 r+1 0 r
Ull,...,lt,1 = 221 1 0 cee Z:u’t—l pt 1 Z M 1 [17 X ]
[1e—1]
u1€Fp -1 ut€F,

which will be also seen as elements of the amalgamed sums accordingly to the context.

The roéle of such elements is explained by the next

LEMMA 4.2. An Fp—basjs for V is described as follow:
i) the elements vy, 1, ,, Ugl ey
where (I1,...,li—1) < (r,p—1—r,...,1,p—1—7),1p €{0,...,p—1};
it) if r < p—3, the elements 9, p—1—r. . rp-1-r, Jj €{0,....,p—3—r —1} and

(_1)(r+1)+p—3—r /

UP*3*7’77',Z’*1*T,~-77",1’*1*7' + Up—3—7‘,r,p—l—r,...,r,p—l—r
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ii1) if r # 0, the elements

. el 1 I 1 0 r—i .
Yoyt 2 (1) < Z o [ [/~‘10] 0 ] ,,,Z,utt_; [ P2 ] 1 } [1,X"9Y7]

no€Fp Ht—2
/ -\ def Iy 1 0 ] ly—2 [ 1 0 } 1. X"iy7
xll,...,lt72 (]) Z ey |: p[,ul] 1 e Z/—’[’t—Z pt72[,ut—2] 1 [ ) }
n1€F, Ht—2

where j € {1,...,r}.
Proof: It is a formal fact to verify that we have a K-equivariant exact sequence
0 — Ry_1/Fil}(R;_1) = V — o(e)/R; — 0;
the the assertion is then an immediate consequence. f
Thanks to lemma 4.2 we can describe the structure of VIt
PROPOSITION 4.3. An F,-basis for VU is given by

() for (1, ..., li—2) €{0,...,p— 132 je{1,...,r} ifr > 1;
where (I1,..., ;1) <(rmp—1—r,...;,",p—1—7)

a) the elements ;21 li—s

b) the elements v ;. |
¢) if r # 0 the elements
Blg,.li—o (1)

where (lg,...,li—2) € {0,...,p — 1}=1 while, if r = 0, the elements
Vig,....li—2,0
where (I,...,l;—2) X (r,...,p—1—r,r) and |y € {0,...,p — 1}.
Proof: Assume r # 0 (the case r = 0 is strictly analogous). First of all, we look for a

ptfl Zp

decomposition of V into [ 0 1

]—stable subspaces. We deduce immediately the following

equalities (in Ry_1):

1 IRV AY -
0 1[] TROEDY )N T o (5 =95 (8)

- - =0
1 pt_l[)‘] ] / /
I 0 1 | L IR PR S PR PSS
[ 1 ptil[)\] ] / /

0 1 Ull,...,lt72 = Ull,.‘.,lt72‘

Using the operators th[7 we get the following equality inside Ro ®r, --- ®r, , Ri—1:

1 p ST =AY
0 1 o, le1 = Z i (=) Dig, . li—2,(le—1—i) T 9)

=0

+th:1 (lt?) (=N (r+ 1) (=1)

. 1
=0
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where

0 Y { ol H

1o€Fy

[ 1 0 le_1—i

> E | ap 0| S AT PG X Y
P 2]

Mt726Fp Htfler

In particular, each v; belongs to the linear space generated by the elements y;;. ;. , (j) and, for

li—1 = 0, we see that the coefficient of [1,Y"]in >  P_x(pu—1)[1, AX +Y)"]is —A.

put—1€Fp
pt—lzp

0 1 ]—stable: the spaces

We deduce that the following spaces are [

et GF, 300t ),

and, for a given (t—1)-tuple (lo,...,lt—2) € {0,...,p—1}"1, the space Vi, ;, , which is defined
as the F-vector subspace of V generated by 1y, .1, ,(j), for j € {1,...,r} and
-) the elements v, ;, ,; withi € {0,...,p—1—r}ifeither (Iy,...,l;2) < (r,p—1—7,...,p—
1—rr)or (I1,....h2)=(r,p—1—7r,...,p—1—r;r)and lp <p—3 —1;
-) theelements vy, ;, ,;withie {0,...,p—2—r}if (lh,...,L1—2) = (r,p—1—r,...,p—1—7,71)
and lg >p—3—r;
-) the elements v;, ;. ,,; with i € {0,...,p —2 —r} and the element
Dig,...li—2,p—1—7 + (_1)p7377‘+(7«+1)0217...,115—2717—1—"”
if (Iy,....,h2)=(rp—1—r,...;p—1—rr)and lp =p—3 —r.
For a fixed (¢ — 1)-tuple (lo,...,li—2) € {0,...,p — 137! we deduce from the equalities (8)

and (9) that there exists an F)-basis of V;, _;,, such that the matrix associated to the action

1 p=iN . .
of [ 0 p 1[ ) is unipotent, and the elements on the superdiagonal are all nonzero. In other
_ . . 1 p'= il .
words, the V;, ;. ,-restriction of the V-endomorphism associated to 0 1 has a unique

eigenvalue (equal to 1) and the associated eigenspace has dimension 1. We see that a generator
of such eigenspace is 1y, 1, ,(1) and the proof is complete. The statement concerning the case
r = 0 can be proved with the same techniques and it is left to the reader. §

We remark that the elements in a), b) of proposition 4.3 are already U; invariant inside
the amalgamed sum Ry @R, --- ®r, Ri+1. Together with the elements inside prt_l(Filo(Rt_l))
they are denoted as the trivial Ii-invariants We therefore are left to study the Ui-invariance
of the elements of the form c) inside lim (Ro @R, - - ®r, Rnt+1) to complete the description of

nzd
I;-invariants.
PROPOSITION 4.4. An F,-basis for the space of nontrivial I;-invariants of
lim (Ry ©g, - - ®r,, Rnt1) modulo the trivial invariants is described as follow:
n;)d
i) ifr #0, by the family

(Vg e s
where (lg,l1,...,l4—2) < (p—1—r,r,....,p—1—1,7).

83



Invariant elements under some congruence subgroups Part 11

i1) if r = 0, by the family

Dig,...,le—2,0
where (lg,...,l;2) < (p—1—r,r,...;,p—1—1,71)

Proof: i) The proof is an induction on ¢, and follows closely the computations of lemma 2.12.
Let t = 3, and consider a [-invariant vector v which we can assume of the following form:

v = Z Clo,llx(l)lo,h
(lo,l1)€{0,...,p—1}2

for suitable ¢, ;, € F,. We have

1 p?[\
|: . 1[ } :| v—1v =\ Z Clo,llx(o)lo,h;

(lo,11)€{0,...,p—1}2

it is now clear that r(0);,;, = 0 inside Ry/R; if {1 < r while the (image of the) elements r(0);, 1,
inside Ry/R; induce a free family for [y > r + 1: the I3-invariance of v shows that ¢, ;, = 0
if (0,7 4+ 1) < (lo,11). Therefore, using the operators T li, we get the following equality in the
amalgamed sum

p—1
Z 010711?(0)10711 - (_I)H_l Z Clo,r Z MéO(X + 'UOY)T

(lo,01)=(0,r+1) lo=0 no€F,

which shows that ¢, , = 0 for lp > p — 1 — r. This let us establish the case t = 3.
Concerning the general case, let v be a Ii-invariant element which we can assume of the form

v= Z ClOv'"vlt—Q?(]‘)lo,...,lt_g
(lo,--slt—2)€{0,...,p—1}t1

for suitable ¢, 1,_, € Fp. We have

1 pt=iA
|: O 1[ ] :| vouv= >\ Z ClO7---7lt72x(0)lo,...,lt,2;
(loyeesslt—2)€40,...,p—1}t—1

since 1(0)s,,...1,_, = 0 inside Ry_1/R¢—2 if [;_o < r and the family

{X(O)loy-u,lt—z }lt—2 >r+1

is linearly independent in R;_1/R;_» we conclude that ¢, ;,_, = 0 as soon as l[;_p > r+1. Using
the operators thEQ and a similar argument (i.e. studying the image of the sum inside R;_3/R;_4)
we deduce that we must have ¢, 4, ,, = 0if [;_3 > p — 1 —r, therefore getting the following
equality in the amalgamed sum:

§ : ClO:-~~7lt72x(0)107~-~,lt—2 =
(loye-slt—2)€10,...,p—1}t =1

_ +2
= (=1 > Cloerli—a,p—1—rE(O)ig,.. s -
Iy li—1) €10, . p—1}=3

The conclusion follows by induction.
ii) It is completely analogous and left to the reader. §
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4.1.2 Concerning Ri/Ro ®R, -+ ®r, Rnt1, n even. We consider now the K-equivariant
exact sequence for r # 0

0— Ri/Ry @R, - ®Rr,_3 Ri—2 — prt(FﬂO(Rt)) + Ugj(.) - W-=0
and, for r = 0,
0— Ri/Ry @R, - Pr,_s Ri—2 — pre(Fil°(Ry)) + 05(0) — W — 0

where o, (e) depends on 7 accordingly to proposition 3.7i)-b1). As in the previous section, we

introduce the elements

DEFINITION 4.5. Let t > 1 be odd, (ly,...,l;—1) € {0,...,p — 1}* a t-tuple.

i) we define the following elements of R,

of lo | o] 1 I 1 0 r
LT Z“0°[[1] o]'~ZMff[pt—1[m] 1]“’”

no€F, Ht—1
de 1 0 Lo 1 0
o] =3 ll[ } “[ _ ]LXT
liyesli—1 Ha p[uﬂ 1 Z'ut_l pt 1[Mt—1] 1 [ ]
m€Fy Ht—1

which will be also seen as elements of the amalgamed sums accordingly to the context.

i1) For r # 0, we define the following elements of R,

der o | [mo] 1 } L [ 1 0 ] 1y,
dloyeli—1 = Ho |: s He—q t—1 [1’ X Y]v
o 10 — P 1] 1
/ def Iy 1] 1 le—1 1 0 r—1
Myl = Hq [ 1 0 :| st My [ ptil[ﬂt—l] 1 [17X Y]
m€Fp Ht—1

which will be also seen as elements of the amalgamed sums accordingly to the context.

1i1) For r = 0 we define the following elements of Ry 2

def o | lno] 1
i [0 1]
MOEFp
L1 1 0 ] [ 1 0 } [ 1 0 ] .
.. . 1’X ;
Z:U’t 1 |:pt Upeq] 1 Z P 1 Z Hi+1 P ] 1 [ ]
Ht—1 ut€Fp pe+1€Fp

ot T 3]
m ) = 1[ Mpe—1] } Z [pt[lut] (1)] Z Mt+1[ t“[lum] H[l,xr]

ue€Fp we+1€Fp

where X" is a fixed F-basis of SymOFIQ, ; such elements will be also seen as elements of the
amalgamed sums accordingly to the context.

As for lemma 4.2, we are able to describe an F,-basis for W in terms of the elements defined
in 4.5

LEMMA 4.6. An F,-basis for W is described by:
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a) the elements vy, |, m;l’“.?ltil where
Lo zr+1, (lo,... . li2) € {0,...,p— 1}

b) if r # 0, the elements 31,1, s 3, 5, , With
(lyy..osli)) < (p—1=mryry...,p—1—r,r)and lyp € {0,...,p — 1} as well as the elements
3jp—1—rr...p—1—ry for j € {0,...,(r —2) — 1} and
dr—2,p—1-r,..p—1-rr + (_1)(T72)+13;7—1—r,..-,p—1—7‘,7’?.

c) ifr =0, the elements by, 1, ,, by, ;, , with
(ly,...; i) < (p=1—=mrr,...,p—1—r,r)and lp € {0,...,p — 1}.

Proof: As in lemma 4.2, it is a formal verification that W fits into a K-equivariant exact

sequence:
0 — Fil%(Ry/Ri—1) — W — ai(e)/Fil°(R;) — 0
where o (e) is defined according to the value of r as in proposition 3.7:)-b1). The result follows.
£.
Again, we are going to describe the I;-invariants of W:

PROPOSITION 4.7. An F,-basis for WYt is given by

a) the elements mgl,...,ltq for (Iy,...,l;2)€{0,....p—1}2, and l; 1 >r+1

b) if r # 0, the elements 3;, ,  where

1
(i, li-1) < (p—=1—=mrr...,p—1—rr) while, ifr =0, the elements by,  where
(lyyo.oslp))<=p=1=mrr...;p—1—1,71)
¢) the elements
Wi, li_2,r+1

where (lg, ..., l;_2) € {0,...,p— 1}~

Proof: Assume r # 0 (the case r = 0 is analogous). For A € F,, we easily get the following
equalities in W:

Ly SHCA Y
0 1 Wiy, 01 = Z . <_)‘) mlo,...,(ltflfj); (10)

j=r+1 J
1 ptil[)‘] / !
|: 0 1 ml07 lt—1 mlow-,ltfl;
1 pi=HA
|: 0 1[ ] :| 5;07'"7[15—1 = 3;0,...7115_1‘ (11)

Moreover, using lemma 2.10, we get the following equality in W:

ly—1

[3 o ]Mm--wln:lti(“?)(A)jazo,...,at1-j>+20(“j1)<A)jwj (12)

=0 7

where we set

w7 { ol H

pro€Fy
oo 1 0 l1—j [ 1 0} .
— Py (1 1, X",
TN IR D DT S SV | BT Sy
pe—2€F, pe—1€Fp
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We notice that w; belongs to the linear space generated by wy, ;, ,; forie{r+1,...,p—1}
and, for l;_1 = 0, the coefficient of v, _;, ,,—1 in wp is —A.

. . .. . 1 p1Z

We deduce that the following subspaces of W give a decomposition of W in [ 0 p 1 P ]-

stable subspaces:

<m21,...,lt,1>Fp§<321,...,lt,1>Fp§

and, for any fixed (¢ — 1)-tuple (lp,...,l—2) € {0,...,p — 1}'71, the subspace Wy, _;, ,, which

is defined as the Fp-vector subspace of W generated by wy, ;, ,; with j € {r+1,...,p—1}
and

-) the elements 3;, . ;, ,; withi € {0,...,r}ifeither (I1,...,l;—2) < (p—1—r,r,...,r,p—1—7)
or (li,....,,2)=(p—-1—=r,r,...;,1,p—1—7r)and lg < r —2;

-) the elements 3, .5, ,; with i € {0,...,r — 1} and 31,4, or + (—1)(“2)*13;1’_._7&7” if
(lh,....ly2g)=p—1—=mrr,....;7,p—1—r)and lp =7 — 2;

-) the elements 3, ;s withie {0,...,r—1}if (lh,...,li—2) =(p—1—r,r,...,m,p—1—7)

and [y > r — 2.

'-7lt—27

As in proposition 4.3, we see that we can find a basis of Wy, ;. , such that the matrix associated

. 1 pt=iA . : .
to the action of 0 p 1[ ] on Wy, ., (for A € F;) is upper unipotent with nonzero
scalars in the superdiagonal. In other words, the Wy, _ ;,_,-restriction of the W-endomorphism
t—1
Al

associated to { } (for A € F}) has a unique eigenvalue (equal to 1) and the associated

0 1
eigenspace has dimension 1. Since such eigenspace is generated by wy,  ;,_,,, the conclusion
follows.

The case r = 0 is strictly analogous; we point out anyway that the equalities of type (11),
(12) for bgl7--~7lt—17 Bio,...1;_, are now established via the operators TtjE f

We remark that the elements in a), b) of proposition 4.7 are already U; invariant inside
the amalgamed sum Ry/Ro ®r, --- ®R,,, Ri+2. Together with the elements inside Ri/Ry ®r,
-+ @R, 5 Ri—2 they will be denoted as the trivial I;-invariants We therefore are left to study the
Up-invariance of the elements of the form c) inside lim (Ry/Ry @R, -+ ®r, Rnt1) to complete

ne‘vc;n

the description of I;-invariants.
PROPOSITION 4.8. An Fp—basis for the space of nontrivial I;-invariants of
lii>n (R1/Ro®R, - -®R,, Rnt1) modulo the trivial invariants is described by the elements vy, _j, , r+1

neven

where (lg,...,li—2) < (r,p—1—r,...;,7,p—1—1)

Proof: The proof is an induction on ¢, analogous to proposition 4.4. Assume ¢t = 3 and
consider a [;-invariant vector which we can assume of the following form:

v = E : Clo,l1 i1y r+1
(l(),ll)E{O,...,p—l}2

for suitable ¢, 1, € F,. Using the operators TQi we deduce the following equality in R;/Ry:

t—1
|:é p 1[)\] :|U—U: Z Clo,ly Z Méo [ [Mlo] (1):| Z /«Llf[la(ﬂlX"’Y)r]-

(lo,11)€{0,...,p—1}2 po€Fy p€Fy
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We therefore see (thanks to proposition 2.7-i)) that ¢;,;, = 0 as soon as l; > p — 1 — r, while
we can use proposition 2.9-i¢) and 7i7) to deduce that ¢, ,—1—, = 0 for ly > r. This establish the
case t = 3.

Concerning the general case, let v be a [;-invariant vector, which we may assume of the form

v= Z Cloy.yli—20lg,.. )l 2,741
(loy-slt—2)€{0,...,p—1}t 1

for suitable ¢,
gamed sum

{1 P }U_U:

l,_o € Fp. Using the operators Til we get the following equality in the amal-

0 1
, lo | ol 1
= (r 4 1)(=1) (=) 3 Closendiz Y, 1) [ pol 1 }
(lo ..... ltfg)e{o p—l}t71 Ho€Fp
DTE] PRI I DiE (TS SR ol
pt—3€F, ¢ wt—2€Fp

We map the latter in R;_o/R;_3 to deduce that ¢, ;, , =0if (r+1,p—1—7) 2 (l;—3,l1—2)
and therefore we get the following equality in the amalgamed sum:

[1 PN }U_v:

0 1
= (r+1)(=1)"*+2 (=)t 3 . SO [1o] 1
Qyeery t_4,7“,p7177“ 0 1 0 o« e
(051t —a)€{0,... p—1}173 Ho€Fp
l 1 0
Z [T [ ] 1 } 1, (A—a X +Y)]
pt—a€Fy p Hi-a

This let us conclude the inductive step and the proof is complete. f

4.2 The case ¢t even

We assume now ¢ even. The study of [;-invariants for the inductive limits lim (Ro ®g, - -+ ®r,,

nodd
Ry,+1) and lim (R1/Ry @R, -+ R, Rnt+1) is treated in a completely analogous way as we did

n even
in paragraph 4.1. We therefore content ourselves to give the results, leaving the computational

efforts to the reader.

4.2.1 Concerning Ry @1 ---®R, Rnt+1, n odd. We now should consider the K-equivariant
short exact sequence

‘ if % 0
0— Ry @R, - DR, Ri 5 — th(Fl]O(Rt)) + { gzg:; if: i 0 -V =0

where o, (e), 0, (e) are defined accordingly to proposition 3.7-az). We then introduce the following
elements of Ry, Ryya:

DEFINITION 4.9. Lett > 2, t even.
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i) For any (t — 1)-tuple (lo,...,l;—1) € {0,...,p— 1} I, 1 €{r+1,...,p— 1} define

e ]. Iy t*]. ].
Bownion = D G { [ﬁO] 0 } SO D [ | 1 | 0 } e[, X7;

no€Fp ur—1€Fp
def I 1 0 I t—1| 1
xgl,m,lt—l = z : Mll 1 te :U’tt—l1 [ 1 ] ,U/t—l[LXT];
plu] 2 0
u1€Fp pe—1€Fp

i1) if r # 0, define

/ def il 1 0 b1 1 0 :| 1, X"y
Ull,...,lt,1 Z Ky |:p[ﬂl] 1 :| Z :ut—l |:pt_1[,ut—1] 1 [ ) ]

u1€F, ut—1€Fp
where (ll,...,lt_l) < (T,p—l—T,---,p—l—Tﬂ")-
iii) if r =0, define

/ d:ef I 1 0 le—1 1 0 :|
311,-..,lt—1 Z Hq |: p[ﬂl] 1 :| Z M1 |:pt1[ﬂt—1] 1

p1€F, Ht—1€Fp

> [pt[lut] (1)] > um[ptﬂ[lu » (1)][1, .

ut+1€Fp
where (l1,...,l;—1) < (,p—1—r,...,p—1—mr,r) and X" is a fixed F,-basis for Symoff,.
The element defined in 4.9 will be seen also as elements of the amalgamed sums, according
to the context. We see as above that
LEMMA 4.10. Let t > 2, t even. The following elements are I; invariant in the inductive limit
lim (Ro ©r, - - &R, Rnt1):
nodd
o forlia >r+1, (.. li2) €10,...,p — 12
ii) if v # 0, the elements v,
where (I1,...,li—1) < (rp—1—r,...,p—1—r,71);
iii) if 1 =0, the elements 3, ; _,
where (I1,..., 1) < (rmp—1—r,...,p—1—1,71);

i) the elements th_,,,z

Proof: Omissis.

As in §4.1.1, the elements of lemma 4.10, as well as the elements of Ry ®pr, - - ®r, 5 Ri—2
will be referred to as the trivial I;-invariants. The result is then the following:

PROPOSITION 4.11. An F-basis for the space of nontrivial I;-invariants of
lim (Ro @R, - - - ®r, Rn+1) modulo the trivial invariants is described by the elements ry, . 1, o r+1

nodd
where (lg, ..., l;—2) < (p—1—=mrr,...;,7,p—1—1)

Proof: Omissis.{
4.2.2 Concerning R1/Ry ®R, -+ ®R, Rn+1, n even. We have now to consider the K-

equivariant short exact sequence

. S(0)ifr =0
0 —>prt_1(F110(Rt_1)) — R1/Ry @R, -+ -2 Ri—1 + { Z;E’% ;: £0 — W' =0
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where o (e) are defined accordingly to proposition 3.7-b2). We introduce the following elements:

DEFINITION 4.12. Let t > 2, t even.
i) forlg,...,ly—2€{0,...,p—1} and j € {0,...,r} define

. e, 1 B 1 0 i .
Wi, 0o (F) & Z %0 { [Hlo] 0 ] Z ui’f_; [ ) } [1, X" 7YY

t—2
= =% P pe—2]
.\ de 1 0 Lo 1 0 i
o' def l1|: :| t2|: B :| LXT JyJ
AROIL D DT I 2 HEE | gy, ) 1 || ]

w€Fy pt—2€Fp

where we set, for t = 2,
w'(j) < [1, X779V,
Note that such elements are in prt_l(FﬂO(Rt_l)) (which is K;_1-invariant) iff j = 0.
i1) forly,...,ly—1 € {0,...,p — 1} define

def lo [MO] 1 le—1 1 0 r+1 1 0 r
dlo,eli—1 = Z Ho [ 10 ] Z 1 [pt_l[/lt—l] 1 Z g P 1 1, X"]

o€Fy, put—1€Fp u€F,
e 1 0 lo 1 0 1 0
! 1E ll[ } “{ _ ] '“+1[ ]1,X’".
.1 P P Z 1231 plw] 1 Z He—1 ot 1[/%71] 1 Z My pt[Mt] 1 [ ]
p1€F, pi—1€Fy, w€Fy

The element defined in 4.12 will be seen also as elements of the amalgamed sums, according
to the context. We see as above that

LEMMA 4.13. Let t > 2, t even. The following elements are I; invariant in the inductive limit
lim (R1/Ro ®R, - ©r, Rni1):

neven
i) the elements o) . (j) forj € {1,...,7}, (lo,..,li—2) €{0,...,p— 131
i1) the elements 021,...,%71’
where (I1,..., 1) < (p—1—r,r,...,r,p—1—1).

Proof: Omissis.

As in §4.1.1, the elements of lemma 4.13, as well as the elements of pry_1 (Fil°(R;_1)) will be
referred to as the trivial Ii-invariants. The result is then the following:

PROPOSITION 4.14. An F-basis for the space of nontrivial I;-invariants of
lim (R1/Ro @R, -+ ®R, Rn+1) modulo the trivial invariants is described by

neven
i) the elements vy, (1) where (lp,...,l;—2) < (r,p—1—7r...,p—1—rr)ifr#0;
it) the elements 3, . 1,_,0 where (lp,...,l;_2) < (r,p—1—7r...,p—1—rr)ifr=0.

Proof: Omissis.f
We are finally in the position to compute the dimension of I;-invariants for 7(r,0,1):

COROLLARY 4.15. Let r € {0,...,p— 1}, t € N<. Then
dimg ((n(r,0,1))") = 2(2p"! ~1).
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Proof: We assume t > 2 and we will prove the result for ¢t odd (the case ¢ even is similar and
left to the reader). We deduce from propositions 4.4 and 4.3 that

dimg ((lm Ro B, -+ ©r, Ro1)"/pri1(FI(Rin))) = rp' 2+ ) 9775+ ) 9l
nodd j= j=

where (I1,...,li—1) = (r,p—1—r,...,r,p—1—7) and (If, .. o) =((p—1-rr,...;p—1—r1):
they correspond to the invariants of type Uh o, and Plo, ,lt 2( ) if r # 0 (resp. t);1 ., and

Dip,...ls_0,0 if 7 =0).
Similarly, propositions 4.8 and 4.7 give

-1 -
dimg ((lim Ri/Ro @, -+~ ®r, Rus1)™ /pri-a(Ri2)) = (p—1=r)p" 2+ > p/ 7+ > v/l

neven

where (I1,...,li—1) = (p—1—r,r...,p—1—r,r)and (I{,...,l}_5) = (r,p—1—r,...,r,p—1—7):
they correspond to the invariants of type 321 it and vy, 1, o p41 if 7 #0 (resp. h;l o and
mlo,...,lt,277~+1 if r = O) As

dimﬁp(prt_l(Filo(Rt_l))) —+ dlmfp (Rl/RO @RQ ce ®Rt—3 Rt—Q) — pt72(p + 1)

(lemma 2.8) an elementary computation yields the desired result for ¢ > 2, t odd.
Since 7(r,0,1)" is 2 dimensional (cf. [Bre03a] Théoréme 3.2.4) the conclusion follows. .

5. The case of principal series and the Steinberg.
We are going to describe briefly the K; and [;-invariants of principal series and Steinberg for
GL2(Qp); by Mackey’s theorem and the Iwasawa decomposition for GL2(Q,) it will be enough to
study the inductions Ind% - zx8 for r € {0,...,p—2}. As the techniques involved are completely

similar to what we have seen for the supersingular case, we will content ourselves to state the
results, leaving the proofs to the reader.

Concerning the K;-invariants. Let t € N-. From the exact sequences
0 — Indj{ (e = I i — Q707 — 0

we see (as in the proof of lemma 3.2) that all Kj-invariants for Indﬁmef must be inside
IndK (R X X;. More precisely, we have

THEOREM 5.1. Let t € N~. Then
(Indgnpx;) ™ = Ind?o(pt)xi'

In particular, dimfp (Ind&-px3) =p"~t(p+1).

Proof: Omissis. §
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Concerning the I;-invariants. Fix t € No. As I; > K; we see that (Ind¥ x5t =
(Indgo(pt) x3)%. We can therefore use the F,-basis of IndfO (pt)Xs given by

def 1 wol 1 I 1 0

Ho€Fp pt—1€Fp
/ def 5 ]. 0 I 1 1 O :|
= _ 1,e
D DY [p[ul] 1} 2 M [pt ] 1 1,
pi€F, pe—1€Fp

(where, if t = 1, we set ' < [1, €]) to describe completely the space (Indgo(pt) x2)!t. We find that

PROPOSITION 5.2. Let t > 2. Then an F,-basis for the space (Indllgo(pt)xﬁ)lt/(Indgo(pt,l)xf,) is

given by the elements ;21 ilyy With ;1 = 1. In particular we have

-1
dimg ((Indnpx;)™) = 2p""
for any t € Ns.

Proof: It follows the arguments in the proofs of propositions 4.3, 4.7 and it is left to the
reader.f
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Part III. On some restriction of supersingular representations
for GL»(Q,)

Abstract. 1If L/F is a quadratic extension of local fields (of characteristic zero) and 7 a su-
percuspidal representation of GLa(F') a theorem of Tunnel and Saito relates the epsilon local
factor associated to 7 to the L*-socle of 7| x. In this chapter we consider the problem of giving
a detailed description of the L*-structure of supersingular mod p-representations for the case
F = Q,, in the spirit of a theory of mod p epsilon factors.

1. Introduction, Notations and Preliminaries

Let F be a non-archimedean local field of characteristic 0 and 7 an admissible irreducible infinite
dimensional representation of GLy(F') over C. For a quadratic field extension L/F we fix an
embedding L* — GLg(F'). By a theorem of Tunnel and Saito (cf. [Tun83], [Sai93]) it is possible
to characterize the epsilon factors associated to the base change BCp/p(7) to the L*-structure
of the restriction 7|z x:

THEOREM 1.1 (Tunnel, Saito). Let A be a character of L™ extending the central character w, of
w. The following are equivalent:

i) the character A occurs in the restriction m|rx ;

i1) the following equality is true:
e(BCyr(m) © A Jon(~1) = 1
where £(BCp/p(m) ® A™!) denotes the root number of the representation BCp /g (m) @ A71.

Indeed, the problem of looking for multiplicities of L*-characters in 7|;x goes back to a work
of Silberger ([Sil69]) and has been approached again in the works of Tunnel [Tun83] and Prasad
[Pras90]. In particular, the Tunnel-Saito theorem appears again in [Ragh], where Raghuram gives
explicit sufficient conditions for a character to appear in the 7|y x for 7 supercuspidal.

In this part we approach the “mod p”-analogue of such problem in the case F' = Q,, de-
scribing the structure of 7(r,0,1)|;x (where the representations 7(r,0,1) are, up to twist, the
supersingular representations of GL2(Q,) classified by Breuil in [Bre03a]). We rely on the works
[Mol], [Mo5], where we gave a detailed description of the Iwahori and GLy(Z))-structure for the
representations 7 (r,0,1). In all what follows, we will assume p > 5.

The results can be summed up in the following

THEOREM 1.2. Let L/Q, be a quadratic extension, r € {0,...,p—1} and 7(r,0, 1) a supersingular

representation. Write soc(le & soc(gl (m(r,0,1)|1x) for the j-th composition factor of the L*-socle

filtration for m(r,0,1)|7x.
Then:

i) if L/Q, is unramified we have an isomorphism of k; -representations
. 1)
soct /soc 7 = (&1 gmi(r))’

wheren;(r), fori =0, ...,p, are the (p+1) distincts characters of k] extending the character
xr—z" on kq,;
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i1) if L/Qy is totally ramified we have an isomorphism of L* -representations
socgl /soc(ij_l) >~ (V)2%.
where V is a two dimensional vector space, endowed with the O] action inflated from the
kq,-character x +— x" and the action of the uniformiser given by a nontrivial involution.

The plan of the chapter and the strategy of the proof is the following.

We treat first the unramified case (§2). As announced, thanks to the GL2(Z,)-equivariant
filtration introduced in [Mol] we can treat first the finite case (i.e. representations of F;Q) in
section 2.1. The main tool is then lemma 2.3 which let us glue together the representations
obtained in the finite case.

The totally ramified case is much easier and follows (almost immediately) from the Iwahori
description of the universal representations given in [Mob5]

We briefly introduce the essential notation for the chapter (see also [Bre03a]).
For a finite extension L of Q, we write &7, to denote its ring of integers and kj, the residue
field. We write [-] : )y — W(F,)* for the Teichmiiller character. We put as usual G “ CGL(Qy),

def def

K = GLy(Z,) and Z = Z(G) for the center of G.
We fix for the rest of the chapter an integer r € {0,...,p — 1}. The algebraic representation

o & SymTF; (endowed with the modular action of GLy(F))) is seen as a representation of KZ
(by inflation and making p act trivially) so that we can consider the compact induction

c—Ind% ,0,.

In [BL94], proposition 8-(1) Barthel and Livné showed the existence of a canonical Hecke operator
T € Endg(c—Ind% 40,) (depending on r) which realizes an isomorphism of the F,-algebra of
endomorphisms Endg(c—Ind% ,0,) with the ring of polynomials in one variable over F,. We
then define the universal representation of GL2(Q,) as the cokernel of the canonical operator 1™:

d

7(r,0,1) = coker(T).

As recalled above, the computations of Breuil ([Bre03a]) show that all such representations are
irreducible and, up to twist by a character of Q,, exhaust all the supersingular representations
for GL2(Qp)-

Let H be the maximal torus of GLa(F,) and ¢t € {0,...,p —2}. We have the characters
Xt:HHFp a:H—>Fp
a O t a 0 1
[Od}'_)a [Od]b—mzd.
If x is a character of H we will write x® to denote its conjugate. Finally any character of H will

be considered as a character of B(F,) or (by inflation) as a character of Ky(p) = I, without any
commentary.

We recall (see [Mol]) that the GLa(Z,)-restriction of the supersingular representation 7 (r, 0, 1)
admits a decomposition

(7,0, 1)|GLy(z,) — lim (Ro @, -+ ©R, Bni1) ® lim (R1/Ro ®r, -+ SR, Bmt1)  (13)

n odd meven
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(see [Mol], §2 for the precise definition of the representations R,,).

For any n > 0 (resp. n > 1) we define the following elements of im(--- ®r, Rny1).

Ifi € {1,...,7} and (lp,...,l,) € {0,...,p — 1} is an (n + 1)-tuple (vesp. (I1,...,l,) €
{0,...,p— 1}" an n-tuple ) we set

(0,n) [\ def lo P‘O] 1 Iy 1 0] 1 0 r—ivsi
F}07-~~,ln(z) - /\Z Ag [ 1 0 Z A plAi] 1 | Z p"An] 1 (L, XY
Oer )\1€Fp A'n,eF‘p
and
(1,m) oy def L 1 0 1 0 r—iysi
Fll,...,ln(z) - Z >‘1 { p[)q] 1 :| Z pn[)\n] 1 [LX Y ]
A EF, An€Fp -

For ¢ = 0 we define similarly Fl(oof)ln(i) and Fl(llj.r.b)ln (), where we add the additional condition
l, =2 7+ 1 (in particular for r = p — 1 such functions are not considered).
We formally define

F(Zg()’_l) (’L) def Xiyr—i.
A E L XY

F@(*LO) def YT

From the results of [Mol] it follows that:

PRrROPOSITION 1.3. For n € N, j € {0,1}, the elements F(] n) (i) defined above describe an

F,-basis for the representation m(r,0,1).

Notice that for j € {0,1} the injective map

n
BT, 0 > St i e N
s=j

provides the set of functions Fl(oof?)ln(') (resp. Fl( )

then write Fl(]_nl) .. (i) to mean the antecedent of Fz(- )l (7).
G Lsesbn Greeesbn

_(4)) with a natural linear ordering; we will

Each direct summand in the decomposition (13) admits a GLg(Z),)-filtration with respect to
which the extensions between two consecutive graded pieces can be summarized as follow:

—Ind, (L EE () —Ind ) (L EE" (6] — ... (14)
where
n . N GL s Z 'V‘Li
IndK @ ([L; Flll 1, (0)]) = Ind (2() ») Xoa +2 5=l

Moreover we have, for a,b,c,d € Z,,

14+pa pb In o1 pln o = 1n .
pe 1+ pd 1, B (4)] —le,...,zn(l)_C’f(lla-~-7lnv )(le Lol (@) +y (15

where y is a suitable sum of functions strictly preceeding Fl ’_1 o (7) in the natural ordering on

Fl(lln)ln(z) and k(l1,...,ln,7) € F.
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Let L be a quadratic extension of Q,. Fixing a Z,-base & of 0}, gives us the embeddings
groups:

L* = Auty(L)“Z— GLy(Q,)

ﬁz = AutﬁL(ﬁL)C—> GLQ(ZP)

and therefore we can study the structure of m(r,0,1)|;x. Note that such a structure does not
depend on the choice of the basis as the subgroups tg(L*), g (L*), for B, B’ two Z,-bases of
0, are conjugated in GL2(Qp).

2. The unramified case

Throughout this section, we will assume L/Q,, unramified. The main result is proposition 2.10,
which gives the L* structure for the representation m(r,0,1). After an analysis of the finite
case in §2.1 (which is made possible by the filtration (14)) we give the key result (lemma 2.3)
which let us glue together the characters appearing between two consecutive graded pieces of the
filtration (14). This will enable us to detect the socle filtration for m(r,0,1)|;x, and an elementary
observation (lemma 2.5) gives us a full description of the extensions between two two consecutive
graded pieces of the socle filtration.

Fix a € Fy, a (p? — 1)-th primitive root of unity; its minimal polynomial over F,is X 2
Tr(a)+ N(a) where T'r, N denotes respectively the trace and norm of F; over F,. Thus, we get

a Z,-basis Z < {1,[a]} of €y, and a Z,-linear isomorphism

Oy, = Zp ®Zp[oz].

We see that t4(p) = [ g 2 } and such element acts trivially on 7(r,0,1): in order to study

7(r,0,1)|x we can therefore content ourself to study the restriction
W(T, O7 1)‘05 .

Finally, let x,y € Z, be such that

‘]

[@7] = [=N(a)] + [ [Tr(e)] + pz + plaly.

It follows, for a,b € Z, such that a + [a]b € O}, that

a b[—N(a)]+ pxb

va(a+[ab) = b a+b[Tr(a)]+pby |’

2.1 The finite case
Let I,m € Z be integers. We consider

Vi & mdggjw

X; ® det™
as a K-representation via the inflation map K — GLg(F,). One verifies that the restriction

Viml o
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is naturally isomorphic to the &} -representation obtained -via the inflation map 0 — qu_
from

The object of this subsection is to describe the representation Vj ,,|px.
q

As the group F is abelian, and |F;| is coprime with p it follows that Vlm|qu decomposes

in a direct sum of characters. Moreover, Mackey decomposition gives us an isomorphism of F -
representations
~ Fi o/ \—1 m+l
Vinlgs = IndEt ()~ @ N7,
P

We give below the explicit description of such isomorphism.
Define the following permutation o of {0,...,p — 1,00}. For \g € {0,...,p — 1} we set

__ Nl
Ao+ Tr(a)
c(ho) E oo if g = —Tr(a);

O'()\[)) d:ef if )\0 7é —Tr(a);

and

def

o(c0) =0

In other words, we are considering the projective transformation on P!(F,) associated to the
Tr(a) 1

_N(a) 0 ] We moreover define a map z(-) : {0,...,p— 1,00} — F,, by

matrix [

z(Xo) ‘*:f Mo+ Tr(e) if A & {—Tr(a),00);

Recall that a F,-basis for Indi‘i ()7t @ N™*+ is described by
p

B = {[)\0 + o, e] forAg € Fy; [1,@]}.
We finally consider the lemma
LEMMA 2.1. We have an F-equivariant isomorphism defined by:
~ Ff, \—
W,m|FqX — IndF% ) Lo N™H

[{AO 1

1 0:|’€:|'_>[>\0+a?6]’

o 1] e

Proof. The F,-linear morphism of the statement is clearly an isomorphism and we claim it is
F-equivariant. It is enough to check the compatibility of the isomorphism with the action of «,

97



On some restriction of supersingular representations Part III

on a fixed base of th|F;. A direct computation gives

[0 Sy 1] - (v (-aa)(| G 5 ] elitro # ~Tria

1 Tr(a) 10 (N(a))™[1,e]if A\ = —Tr(c);

o) | = wemeve@t| ] g |
and
alXo +a,e] = (N(a)™(z(X)) o (o) + a, e].
The conclusion follows. O

2.1.1 Study ofllad::qX ()% Letl€{0,...,p—1}. The F-representation IndiqX ()} decomposes
P p
into a direct sums of p 4+ 1-characters, and these characters are precisely all the p + 1-possible
extensions of A — A to F;.
If s0,s1 € {0,...,p — 1} are such that (so,s1) # (p — 1,p — 1) then the F-character defined
by

o — S0TPs1
extends (-)! if and only if
(so+s1) +p(so+s1) =1+ plmodp® — 1
that is if and only if the couple (sg, s1) verify one of the following relations:

so+s1=1 so+s1=p—1+1

We will say that (sg,s1) is an admissible couple for 1. This can be effectively summed up by
figure III.1.

For an admissible couple (sg, s1) we let

ol =R 7 Mg 4 o] + k(1 e
M €F,

be an eigenvector for the action of F<, of associated eigencharacter (-)***!. The scalars ug\?’sl), ,ugio’sl)

admit the following description:
LEMMA 2.2. Let (so,s1) be an admisibble couple for | and let n € {0,...,p}. Then
S0, S0, n(s s — —n -1
gty = g ) (o7 (0)) (e (0))

0

Proof. Tt is enough to study the action of a on v(*0:51). A computation gives:

av(sa,sl) — Z Iug\somsl)(x()\o))l[o'(AO) +Oé7€] +
Nog{~Tr(e), 00}

a0 (a(~Tr()) (L e] + uo* o,

so that, assuming that v(5051) is an eigenvector of associated eigencaracter (+)50Ps1 we get the
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o < o SR S ARSI
= i id&y.r{gé&‘/cﬂ 0,00
XtXy=l
)(-o-)(pr--ﬂf
=

FiGure III.1. The combinatoric of admissible couples for .
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relations:
) = 70 )
:U’(,S%’f(lc)y) (l’(—TT(Q)))l — S0TPs1 ,ugéo’sl) ;

50,8 _ _.80+ps
Iu(ooo 1) — 4% PS1 .

The result is trivial for n = 0 and follows immediately for n = 1 (as 0~1(0) = oo, and z(c0) = 1).
The general case follows by induction. O

2.2 Extensions inside the supersingular representation

In this section we are going to study the extensions of two successive graded pieces
S5/ Sj-1—5j4+1/5; (16)

appearing in the filtration (14) (for each of the directed summands appearing in the decompo-
sition (13)). The case j = 0 -i.e. where S; is indeed the socle of the directed summand under
study- needs additional care and will be treated in §2.3. We then consider the extension

n GLo(F n .
1, EA (@) —maSkE g, g () (17)

GL2(Fp) [
B(Fyp)

Id()

where we recall that

GL2 (F 1,n N1 A GL Ce ~ FX 91 e
IndB(PQ‘z())p)[ Fl(l 6? Al (1)) =1Ind (2() )Xr omi2c @ det™ —>IndF%(-)2 21 @ NTF

for e € {0,1}, m & i + >i_11;. Let (so,s1) an admissible couple for 2m — r and let
50,8 .\ def (g0.s 1n GL2(F 1,n .
o0 1,y d) S ol (T, () € nd Gl L F ()

be an eigenvector for the action of F, of associated eigencharacter (-)sotPst NT=m We have the
following result:

LEMMA 2.3. Inside the extension (17) we have the following equality, for any x’,y" € Z,:

1 N(a)| + 2a! 50,8 ; 80,8 )
p 1 f[p[j(jrz]&)]ip2y/ ?}( 0 1)(117 s 7ln72) = ’U( o 1)(l1’ o "ln72> +

+N(a)k(ly =1, ... Ly, D)0~y 6

where s; — 1 are the cyphers of the p-adic development of so + ps; — (p + 1) modp? — 1 and
H(Zl,...,ln,i) S F;;

Proof. We rely crucially on the behaviour of the functions Fl(llf?)ln(i) described in (15). Thanks
to the isomorphism of lemma 2.1 we can write:

50,8 - 50,8 )‘ 1 s . r—2m, (50,s n -
o i) = 52| B | B, 01+ o R,

1 0 17 oin
/\0€Fp
where we may assume, without loss of generality, that ,u(so’ )= 1; moreover we have the matrix
equality
1 p[N(a)] +p°z o] 1| _ | [M] 1 1+ px p*
p 1+4+p[Tr(a)]+ y’ 1 0 1 0 [=A2 — XoTr(a) — N(a)] +p*+ 1+ px
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where we do not care about the value of * € Z,, thanks to the relation given in (15). As the roots
of P(X) < X2 + Tr(a)X + N(a) are —a, —aP, we notice that —P(\g) # 0 and we get

1 p[N(a)] + p*a/

p 1+p[Tr(e)]+p%y

Aol 1 1, , r—2m, (50,5 1, :
Wl B (D BV P () [[10] 0],55’13..,,ln<z>1+<—1> oL FY @),
M €F,

:| U(SO’Sl)(h, o, l) — U(so,m)(h, e ln,i) +

We have of course

P(0) = N(a);
(_1)r72mlul(oig,sl) — (_1)r72maso+psl — (_1)r72ma3071+p(5171)N(a) — (_1)r72mlulgio 1,81— DN(O[)
and we are left to prove that

1y P (0)) = N(a)u o™

where 2 < n < p.

This will be done by induction on n, the case n = 1 being proved; for a notational convenience,
we put P(co0) £ 1. Assume the result true for n — 1; if i = ¢~ (=1 (0) we then have

He oy Plo " (0) = u(s“"?))P( §0)
- <S°+p51>P<a*1<z’>><x<of1<i>>>“2m
o 1’N<a><P<i>>—1a<so+p81>P<a—1<i>><x<a-1<z'>>>7’—2m+2<a: o™ (i)”
= N(o) g~ Va(o (i) a0 N(a) P() T P07 (i) (a0 ()

(
(

/"‘U_l(i)(so—l,sl—l)
To conclude the induction is then enough to show that
N(a)(x(i)) 2P (i) = P(o(i))-

A direct computation gives, for o(i) ¢ {0, c0}:

2
P(o(i)) = <— V(o) )> _Tr(@IN(@) | na) = N()e(i)?P(i).

i+Tr(a i+ Tr(a)
The remaining are formal: if o(i) = oo we get i = —Tr(«a), (i) = —N(a), P(oco) = 1 and
P(—Tr(a)) = N(a); if finally o(i) = 0 then i = 0o, x(c0) = 1, P(c0) = 1 and P(0) = N(a).
This ends the inductive step and the proof is complete. ]

REMARK 2.4. It is immediate to see that the satement of lemma 2.3 can be improved as follow:
ifae O, be 0 and

1+pla  p[-bN()]

2
plbl 14 pfpT(a)+a] | mOdP

S
Il

then
oS (1 d) = vB0S (1 ) +

i so—1,s1—1
—I{/(ll,--~,ln;l) ( )b l(lo]., 7;77,7 )
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The next lemma shows that there cannot be other non-trivial extensions inside (16), i.e. that
the extension

0 — 8;/Sj-1 = Sj+1/9j-1 = Sj41/5; — 0
between two consecutive graded pieces in the filtration (14) splits into the direct sum of (p + 1)
O -extensions (at least if j > 1).

LEMMA 2.5. Fori € {0,1} we consider the couples (s(()i), sgi)) €e{0,....p—12\{(p—-1,p—1)}.
Then

Exty (s 1), (s, 517)) # 0

if and only if (s(() ), (10)) (8(() )7 351))-

Proof. We consider the following functors
RepﬁLx — RepF;
V— V1+pﬁL
and
RepF; — Ab
W — HomF; ((s((] ),sgo)), w).

For V € RepﬁLx we have the following isomorphism (functorial in V)
Hompy (s, 51"), V1) 2 Hom,, (s, 1), V)
therefore, the first level of Grothendieck’s spectral sequence gives
0 — Ext (56, 51”), (56 1)) = Bt (s 5. (56 51)) —
— Homp((sy”, s\, H' (1 + pO, <<sé L))
We recall (cf. [Wil], §10.2) that the action of €} on
H'(1+p0, ((sy, 1)) = Hom(1 + o (55, 5i))

is described as
(9- N = (57,51 (9)Fgtg™) = (55”519 f (1)
for any g € 0, t € 14+ 0 and f € Hom(1 + ﬁL,(sél),sgl))). In particular, F acts on
Hom(1 + Oy, (s(() ), (11))) by the character ((s(()l), 3(11))). We deduce that
Homg ((sy” 1), H' (1 + pop, (s, 5")))) = 0
if and only if (s(() ), sgo)) = (5(()1), sgl)).
As (p,p? — 1) = 1, the category RepF; is semisimple and the result follows. O

REMARK 2.6. We can actually prove more. Let x1, x2 be the O -inflation of distinct characters
of F;Z and let T be a uniserial 0 smooth representation over F), of finite length, having Jordan
Hélder factors isomorphic to x1. Then an immediat dévissage (on the length of T') shows that

EXtZE (x2,T) =0 = Ext/« (T X2)

for any n € N.
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A

Xk e

Xt %2y
XX, s pod + 2~

{'X4:T"i‘€’m’{” r

FiGureg I11.2. A graphic gloss of proposition 2.7.

We can summarize the results of lemma 2.3 and 2.5 in the following:

ProprosITION 2.7. Consider the extension

Ind

SES RN ) ——Ind5e 1, R, ) 18)

B(Fp) B(Fp)

of two successive graded pieces in the filtration (14), and assume
1,
B .60 ¢ (Y7 [LXT])
The O restriction of (18) decomposes as a direct sum of p+ 1 non trivial extensions

@ (U(SO_]"Sl_]') (ll — 17 PP 7l7'L7 i)—,U(s‘J’Sl)(ll) AR 7l717 7’))

(s0,51)

where (so, s1) varies between all the admissible couples for 2(i + > 7_; ;) — 7.

In terms of figure II1.1 the meaning of proposition 2.7 is clear, illustrated in figure II1.2.

2.3 Conclusion

We are now left to treat the extensions between the first two graded pieces of the filtration (14).
More precisely, for r € {1,...,p — 2} such extensions are described by

. el
Cosoc(Ind (Q(fp Y'Br,)) IndB%;il)?p)[ Frgi)l( 0)] (19)
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and

GLy(F

P) T—
Bsery) | 1L X Y], (20)

Cosoc(Ind (2(1;”)[1 X"])——Ind

respectively for the K-representations lim (Ro @R, -+ ®g, Rnt+1) and lim (R1/Ro @R, - Dr,,

nodd meven
Ry41). For r = 0 we have analogously

GLy(F
(ndg 2 el g, ) /Sy~ ——Ind 52T (1, £ (0) (21)
<1nd§?;fj“u, e))/1—Tnd5 20 (1, 7Y (o). (22)
We start with the following lemma.
LEMMA 2.8. Let I,m € {0,...,p—2} and let V < In dGLQ(F”) fdet™. Then

B(Fyp)

i) the FJ-restriction of the socle soc(V)|qu (resp. St ® detm|qu if | = 0) decomposes as the
direct sum of the characters (-)50TP51  where (sg, s1) are the admissible couple for [ Iying on
the line Xo+ X1 =(p—1)+1;

ii) the F[-restriction of the cosocle cosoc(V)\F; (resp. 1 ® detm\F; if | = 0) decomposes as
the direct sum of the characters (-)*°P51 where the (sg,s1) are the admissible couple for [
lying on the line Xo + X; = L.

Proof. Up to twist by powers of det we may assume V = IndGI(JQ(I;” )Xf) 1_,det” for a suitable

re€{l,...,p—1}. It is now enough to show that
cosoc(V)\F; =~ Sym" (Fz)

decomposes as the direct sum of the characters (-)$0TP51 where sg + ps; = r; this will imply that
soc(V)\F; decomposes as the direct sum of the characters (-)%0*?51 where s +ps; = (p—1) + 7.

For r = 1, the action of GLz(F,) on Sym!(F,) = F~ is the natural one. The linear auto-

— P
morphism ¢, € End(Sym!(F,)) associated to the action of a € F has spectrum . = {a, a?}
(indeed, in a Fp-basis of Sym!(F,), the associated matrix is ¢o = [ (1) }];7((0404)) ]) This gives

the case r = 1.
Let now Z & {v1,v2} be a basis of eigenvectors for ¢,. If we define, for j € {0,...,r},

J r
v} def \/ vy V \/ vy € Sym”(Fﬁ),
i=1 i=j+1

then the family %, = {vj, 0 < j < r} is obviously a basis of eigenvectors for the automorphism
Sym(¢q) such that the eigenvalue associated to v; is o tP(r=3) This gives the result. O

Combining proposition 2.7 and lemma 2.8 we get the behaviour of the extensions (19), (20),
(21), (22)

PROPOSITION 2.9. Let r € {0,...,p — 2}.
A) The F-restriction of the extension

, G
Cosoc(Ind (Z(fp)Y |B(Fp))—IHdB(L1:2‘I()1;p)[ F&)l( 0)]
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splits as
(@ o o)) @ @ I E o)
so+s1=r sot+s1=p—1-r

B) The F-restriction of the extension

Cosoc(Indy a7 [1, X7))——Indj 2571, X1V
splits as
< @ v(so—l,sl—l)([LXr]) 17(50731)( 1. X"~ IY >@ @ (s0,81) XT_:[Y]).
sot+s1=p—1-r s0+s1="r

We now sum up the structure of the L* restriction for a supersingular representation (7,0, 1)|7x:

PROPOSITION 2.10. In the previous notations it exists a L*-equivariant filtration {U;};en on
lim (Ro ®R, -+ ®r, Rn+1) such that for all j > 1 the following holds:
nodd

i) we have an isomorphism of k; representations:
Uj/Uj—l = f:om
where n; are the (p + 1)-distinct characters of kj extending the kap—character T’
i1) the L*-extension
0—=Uj/Uj-1 = Ujt1/Uj1 = U1 /U; = 0
decomposes into p + 1 nontrivial extensions
0—mni —*—mn —0.
Moreover Uy = @]_n; (where the n; are as above) and the extension
0—-Uy— U —U/Uy—0
decomposes into the direct sum of r + 1 nontrivial extensions
0—mn —*—mn —0

for 0 < ¢ < r and the characters n; for r +1 < i < p.
We have an analogous result for lim (Ry/Ry) ®r, -+ ®r, Rnt1-
neven

Proof. This is deduced from propositions 2.9 and 2.7. O

We notice that we could strengthen the result of proposition 2.10. Indeed, let S,, de the
filtration (14) on lim (Ro @R, -+ - DR, Rn+1). By remark 2.6 we deduce that S,, (for n > 1) splits

nodd
into a direct sum of (p + 1) terms @®_S, (i) and each of S, (i) is a uniserial representation of

0} having Jordan Hoélder factors isomorphic to 7;. Moreover, by the same remark, the exact
sequence

00— @fzosn(Z) — On41 — @ZPZOTH — 0
splits. This let us define, inductively, an F,-basis on the limit lim (R1/Ro) ®g, - - ®r, Rnt1

neven
which realise a splitting as a direct sum of (p+1)-terms Soo(¢) and each of S (7) is a uniserial 7} -

representation having Jordan Hélder factors isomorphic to n;. Notice that the Sy (4) is deduced to
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be uniserial from lemma 2.3. We have obviously an analogous result for the limit lim (R;/Ro)®r,

neven

- @R, Rny1

COROLLARY 2.11. The statement i) of theorem 1.2 holds.

3. The ramified case

We assume now L/Q,, totally ramified. The structure of w(r,0,1)|x is much easier to deduce and
actually follows almost immediately as a particular case of the results of [Mo5] (which describes
the Iwahori structure of the universal representations of GLy(F') for F'/Q,, unramified). The main
result is proposition 3.5, giving the L*-structure for the supersingular representation 7 (r,0,1).

We consider the Z,-base Z = {w, 1} of €}, where w € €7, is a fixed uniformiser (as remarked
before the choice of a basis is ininfluential for the statement of proposition 3.5). Since w? = p
and p acts trivially on 7(r,0,1) we see that t4(w) is an involution: we can first content ourself
to study the restriction

m(r,0, 1)|ﬁLX.
We notice that

a b
op) = V] aczen)
is a subgroup of the Iwahori I of GLy(Z,). The structure of 7(r,0,1)|7 is known (cf. [Mo5]) and
is described by the following two propositions.

PROPOSITION 3.1. Let r € {0,...,p — 1} and consider the restriction m(r,0,1)|;. We have the
following I-equivariant exact sequences

0 — (Y7, ~Y")) = lim (Ro @ - @y Riy)) @ lim (V) @ - @ Ryyy) —

nodd nodd
— lim (Ro ©r, -~ ®R, fnt1) — 0
nodd
and
0 — ((FV(0), [1, X)) — lim (R} @p -+~ D Ryyy) @ lim (Ra/Ro)™ @y -+ By RELy) —

— lim ((R1/Ro) @, -+ ®r, Rnt1) — 0.

n even

Proof. 1t is a particular case of [Mob5]. O

PrRoOPOSITION 3.2. We have an I-equivariant filtration on each of

nodd neven
h_r)n(<y7’> Op - Or; Ry ); 111{1 (Ry Pry - Pr; Ro). (24)
n odd neven

The extensions between two consecutive graded pieces for the representations (23) (resp. (24))
is described as

(FO™ (i) ——FO™, (@) (25)
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(resp.
1,n . 1,n .
(ELD L @) ——(FE, (@) (26)
where (B (1) & xp(a )P0l resp (R () = xga i b),
def

Finally, for g =
and (26):

[ ;C Z ] € I and p > 5 we have the following equality in the extension (25)

a b n . —1\i n . n . - . n .
|0 = @ R D, )~ Bl DF) ()

a b 1) o syt L 1n) N - Np(ln)
R0 = @ TR G LT, ) — et b DED ()

where ro(lo, - - -, ln, 1), k1(l1, - -, Iny 1) € F

Proof. Using the Iwahori decomposition for I we get
a b| |1 = a 0 1 0
c d| |01 0 B pz 1
|1 0 o 0 1
| pd 1 0o p 0 1

wherea =o' =a, 3=/ =d, T =bd" ', 2’ = cd~!. The result follows from [Mo5]. O

b . . .
As we can always find [;b a ] € 1g(0f) with b € Z) we deduce immediately from
propositions 3.1 and 3.2 the required structure of m(r,0, 1) ox
PROPOSITION 3.3. Let r € {0,...,p — 1}; the restriction 7 (r,0, 1)]ﬁLX is described as follow. We
have two exact, O] -equivariant sequences:

0 — (Y7, =Yy — lim (Ro ®ps -~ g R @ i (V1) @+ B Ryl —

nodd nodd
— h_r{l(RO@Rl < BR, Rn+1)|ﬁz< — 0
nodd
and

0— <(Fr(0)(0)7 [LXT]))L@LX - hi{l (Rl_ @R; "'@R; R;+1)|0LX D hﬂ} ((Rl/RO)Jr @R; "'@R,t R:—l—l)’ﬁé -
- hi}“ ((Rl/RO) @Ry - OR, Rn+1)|ﬁf — 0.

n even

We have an O] -equivariant filtration on each of

lim (Ro @ gt -+ @ R:{H)MLX; lim ((Ry/Ry)™T ®ps - By R:+1)|f7"£< (27)
nodd neven
h_“}(@”> @Rl— o DPpe Rr:+1)|ﬁ£<; h_n} (Ry @R; "~ Dps R;+1)|ﬁ£< (28)
nodd neven
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such that the extension determined by two consecutive graded pieces of the representations in
(27) and (28) is nonsplit and admits a description

(B ) ——E0™ () where  (F™) (i) 2 xp(a™ ) =0

lo—1,0.ln 10yeiln 10y ln

(FO  @O)——(F, @) where (R

loyeln ool

(i) 2 X (@) 201l ).

3.1 Conclusion
01

» O].As

We are now left to study the involution ¢4 (w) = {

[0 1Hp"+1 Z?opf[Aj]]

B 1 0 01
p 0 0 1 - [ Yot TP } { 10 }

o o] [l o = [ F ][00

the action of [ 0
b

and

é ] is deduced from [Mol] -proposition 3.4:

PROPOSITION 3.4. For i € {0,1} consider a function

0,n . .
Fg™ (i) € im (Ri/Rim1)" @ e - @pe R

lOv"'vln
nodd
(resp.
B () € lim (Ri/Rict)” @ @ Ropin)):

n odd
Then we have

0 1 n) . n . 0 1 n . n—1) .
o oA O=RIR 0 e [ [A0 =R

p 0 1reoobngl 0ot _1
where I = ;1 for all j € {1,...,n+ 1} (resp. I, = ;41 for all j € {0,...,n —1}).
We can sum up the previous result, getting the L* structure for 7(r,0,1)|rx:

PROPOSITION 3.5. Keep the notations of §3. There exsists two L* sub-representations U (0), U(r) <
7(r,0,1)| %, each of them being moreover Kg(p°)-stable, such that we have an exact sequence

0—-Uy—U0)®U(r)— n(r,0,1)|1x — 0.

For ey € {0,7} the L*-representation U(ez) admits an L* (and Ky(p)) equivariant filtration
{U(€2);}nen such that for all j > 0 the space Uj(ez)/Uj—1(€2) is two dimensional, admitting a
basis %(62)]‘ = {’Uj71(62), Uj75(62)}, and

i) for e; € {1,s}, Ko(p) acts on v, (e2) by the character (x,a =) and the uniformiser w
by the involution wv;1(e2) = vj s(€2);

i1) the L* extension
0 — Uj(e2)/Uj-1(€2) — Ujy1(e2)/Uj-1(€2) — Ujsa(e2)/Uj(e2) — 0

is non split.
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Moreover, Uy(0) = Up(r).
Proof. 1t follows from propositions 3.3 and 3.4. 0

COROLLARY 3.6. Part ii) of theorem 1.2 holds.
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Part IV. On some representations of the Iwahori subgroup

Abstract. Let p > 5 be a prime number. In [BL94] Barthel and Livné described a classifica-
tion for irreducible representations of GLo(F') over Fp, for F' a p-adic field, discovering some
objects, referred as “supersingular”, which appear as subquotients of a universal representations
m(r,0,1). In this chapter we give a detailed description the Iwahori structure of such universal
representations for F' an unramified extension of Q,. We determine a fractal structure which
shows how and why the thechniques used for Q, fail and which let us determine “natural” sub-
representations of the universal object m(r,0,1). As a corollary, we get the Iwahori structure of
tamely ramified principal series.

1. Introduction

Let p be a prime number and F' a p-adic field. In their works [BL94], [BL95] Barthel and Livné
studied a classification (recently generalized for general GL,,(F') by Herzing in [Her]) for the repre-
sentations of GLy(F) with coefficients in an algebraic closure of F),. Besides characters, principal
unramified series and special series, they found a new class of irreducible objects referred as “su-
persingular”, which are defined, up to twist, as subquotients of a universal representation, which
we will note 7(r,0,1) (and r = (ro,...,rs—1) if f is the residual degree of F'). The existence of
supersingular representations is assured by a Zorn-type argument (see [BL95], proposition 11)
and a complete exhaustive study for supersingular representations is a relevant open problem in
the emerging p-adic Langlands program. Indeed, in a conjectural mod p-Langlands correspon-
dence it is expected that the supersingular object are those GLo(F') representations which should
naturally be attached to Galois representations arising from elliptic curves with supersingular
reduction.

This is actually the case if F' = Q,, (when the universal representations are indeed irreducible).
Such result is due to Breuil [Bre03a] where he reaches a complete classification of supersingular
representations thanks to direct computations on the ring of Witt vectors of F,. If I # Q,
the situation is not clear. For the time being, the problem of classifying supersingular repre-
sentations looks to be infinitely more involved compared to its Galois analogue (known from
the works of Serre [Ser72]). The methods of Paskunas [Pas04] and Breuil-Paskunas [BP] let us
associate an infinite family II(p) of supersingular representations to a single Galois object p, are
a major progress in this direction, but it is not clear, especially after the work of Hu [Hu], how to
distingush in a canonical way a privileged supersingular representation inside IT(p). We remark
that the methods of [Pas04] and [BP] have been improved by Hu’s canonical diagrams in [Hu2J;
unfortunately canonical diagrams are difficult to calculate explicitely.

Another approach to the problem has been treated by Schein in [Sch] where he studies the
universal representations for a totally ramified extension F/Q,. He detects a natural quotient
Ve—1 of m(r,0, 1) which enjoys an universal property with respect to supersingular representations
whose GLa(OF)-socle respects a certain combinatoric conjecturally associated to suitable Galois
representations arising from elliptic curves with supersingular reduction (the modular weights
introduced in [BDJ] and generalised in [Sch08])

In this chapter we describe the Iwahori structure for the universal representation 7(r,0,1) in

the case where F'/Q, is unramified generalizing Breuil’s method (in particular, our result give
the irreducibility for F' = Q, and shows how and why the universal representations fail to be
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irreducible otherwise). With “Iwahori structure” we mean that we are able to detect the Iwahori-
socle filtration for 7(r,0,1) as well as the extension between two consecutive graded pieces. As a
byproduct we will deduce the Iwahori structure of principal and special series and the presence
of a natural injection c—Indf(ZV — 7(r,0,1). The reader will find out that, as soon as F' # Q,,
the Iwahori-socle filtration for the universal representation relies on an extremely complicated
combinatoric.

The main result of this chapter is to show that such combinatoric can be handled with the
help of some simple euclidean data; such a method can be briefly described as follow. We detect
a natural Fy-basis 2 of 7(r,0,1) as well as an injection:

as we will show, its image R is explicitely known. For v € #Z we define the set of antecedents &,
of v as the set of v/ € & such that v/ = v — e, where eg is the s-th element of the canonical base
of ZF Q] When we claim that the Iwahori structure for m(r,0,1) is described by R we mean
the following facts:

i) the Iwahori-socle filtration is obtained from 2R by successively removing the points with
empty antecedents;

i1) if vo,v1 € % and J € N is such that v; is an eigenvector for the J — i-th graded piece
(m(r,0,1))_; of the socle filtration of the universal representation then we have a nontrivial
extension inside the quotient m(r,0,1)/(mw(r,0,1)) -1 if and only if vy is an antecedent of
V1.

According to this terminology the main result is the following (see proposition 5.18):

THEOREM 1.1. The Iwahori structure of the universal representations is described by fR.

We give in figure IV.1 the idea of such structure for the quadratic unramified extension of
Qp-

As annonced, we get some other byproducts as

THEOREM 1.2. The Iwahori structure of tamely ramified principal series is described by two
copies of NIF:Qul,

and

THEOREM 1.3. Let r ¢ {(0,...,0),(p—1,...,p— 1)} and let x* be the conjugate character of
(0,)VFa). There is a sub K Z-representation V < 7(r,0,1)|xz isomorphic to the kernel of the
natural map

GLao(Fy) s GLa(Fy) s GL2(Fq). s
B(E‘g)q)x /soc(IndB(;i)q)X ) —» cosoc(IndB(lﬁi)q)X )

and such that the map (induced by Frobenius reciprocity)

c—Ind%,V — 7(r,0,1)

Ind

is injective.

We remark that a similar phenomenon has already been discovered by Paskunas in an un-
published draft.

Such results rely on an heavy formalism and they need preparation to be handled. In par-
ticular, from section §4 we start using the euclidean dictionary as a key tool to manage the
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FIGURE IV.1. Part of the euclidean structure for f =2, r = (2,1).
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combinatoric of the representation under study. In order to guide the reader the statements are
preceeded by a detailed translation in geometric terms (otherwise they would sound as empty
exercices of combinatoric) and each section opens with an exhaustive description of the euclidean
strategy adopted to reach our aims.

The reasons which make such strategy work are essentially three:

i) we detect a suitable basis Z of the universal representation which is well behaved with
respect to the action of the Iwahory subgroup and the canonical Hecke operator T &
Endg(c—Ind% 40,);

i1) the action of the Iwahori subgroup on the elements of % can be read through certains
universal Witt polynomials whose homogeneous degree is known;

ii1) the correspondence between the elements of the basis % and integers points in Rl g
compatible with the homogeneous degree of the polynomials of 7).

The structure of the chapter is then the following.

First two sections §2 and §3 are formal and do not need the hypothesys F/Q, unramified.
Section §2 is essentially a dictionary which let us detect a natural K Z-filtration on the K Z-
restriction of the universal representation. We first introduce a family of K Z-representations
{Rn}nen. Through some convenient Hecke operators Tni : R, — R,+1 we define inductively a
direct system of amalgamed sums (each of them endowed with a natural filtration) which leads
to explicit isomorphism (proposition 2.9):

m(0r,0,1)|kz = lim (Ro &g, -+ ®R, Rnt1) & lim (Ri/Ro ®R, -+ ®r, Rot).
nodd neven

We remark that such isomorphism was already draft by Breuil in [Bre].
In section 3 we start from an Iwahori-splitting R,11 = R;f 41 ® R, to deduce, in the same
flavour of the preceeding section, an inductive system of amalgamed sums - -- & RE Rf 4 1- Such

amalgamed sums are endowed with a natural Iwahori-filtration revealed by a short exact sequence
+ + + +
0= @pe Ry = Ope Ry — By /Ry — 0. (29)

n

The resulting inductive limits are related to the universal representation by the following

PROPOSITION 1.4. We have an exact Iwahori-equivariant sequence

0— <(U+aU—)>Fp - (@RJ @Rf DR Rrer+1) D ( h_H}Ro_ 691{1— - Dpe R, 1) —

n odd nodd
— (@Ro @Rl -+ DR, Rn+1)|K0(p) —0
n odd

where vy € lim RY Ot - Ops R,fﬂ (and are explicitely known).

nodd
We have an analogous result in the even case.

It will therefore be enough to focus our attention on the inductive limits of section §3.
The euclidean dictionary is developed in section 4. Thanks to the natural filtration on the induc-

tive limits, we are primarly concerned with the Iwahory structure of the representations Rff 1

+

We detect a convenient F,-basis % (lemma 2.6) and determine a natural way to identify the

n+1
elements of ,%’f;rl to integer valued points of RIFQr! (see section 4.1.1 for details). If we write

,%’f;rl to denote the image of %’al in the [F' : Qp]-dimensional real euclidean space (such an
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image looks as a parallelepipoid of side p"*¢(r + 1) for € € {0,1} according to the cases R, 15
R, ;) then

PRrROPOSITION 1.5. The Iwahori structure of RfLH is described by %,irl.

Because of the geometry of the polytope %’ifl we indeed see that the socle filtration can be
detected by successive cuttings by a suitable hyperplanes (parallel to the antidiagonal Xo+-- -+
X¢-1=0).

We similarly deduce the structure of tamely ramified principal series given in proposition 1.2
Unfortunately, these results rely on a careful analysis of the behaviour of some universal Witt
polynomials, contained in the two appendices A and B.

Section §5 deals finally with the universal representaiton m(r,0,1). We are first concerned
with the graded pieces of the natural filtrations introduced in §3: it is the object of §5.1. Thanks
to the behaviour of the canonical basis Z with respect to the Hecke operators of §3 we easily

determine a natural basis Z= for each RX, | /R¥ and associate an euclidean structure %=
n+1/n n+1/ "' n+1

to it. Such a structure is more complicated than the previous %,f ; and can not be determined
directely by proposition 1.5 but a suitable decomposition of % L1 38 2 union of inreasing
polytopes enable us to state the

PROPOSITION 1.6. The Iwahori structure of Rf_H/Rf is described by %fﬂ/n.

The euclidean image of 2+
n+l/n
As a byproduct, the natural filtrations of section §3 and the previous description of the basis

B 1 let us deduce proposition 1.3.

n
The conclusion is in section §5.2 where we study the amalgamed sums - - - @ p+ Rf 41 Again,

is more or less given in figure IV.2.

the behaviour of the canonical base ;- with respect to the Hecke operators let us deduce, by

induction on the exact sequence (29), an euclidean structure, say %;E,en odd- Such a structure has

a regular fractal nature, due to a convenient glueing of the bloks %irl In and simple remarks on
+

+ . . .
the geometry of Reven.odd: 3 well as the fact that - - - @Rf,Q R, is a Iwahori-subrepresentation

of - @ RE Rf 1, let us deduce the main result of proposition 1.1.

We introduce now the basic conventions and notations of the chapter (we essentially use the
formalism and notations of [Bre03a]).

Fix a prime p > 5 and let F' be a finite unramified extension of Qy; let f EF: Q] be the
residue degree. We write O to denote the ring of integers of F' and fix the uniformizer p € Op:
let kp be the residue field; it is a finite field with ¢ = p/ elements. We fix an isomorphism
kr =2 F,; as F is unramified, we deduce an isomorphism 0 = W (F,) where W (F,) denote the
ring of Witt vectors of Fy. We will write [-] : Fy* — W(F;)* to denote the Teichmiiller character

def

(putting [0] = 0). We finally fix an algebraic closure F,, of F.

For any k € N the natural action of GL2(F,) on Fg let us determine, by functoriality of the
k-th symmetric power, the GLy(F)-representation SymkFg. It is isomorphic (up to a choice of
an F,-basis for Fg) to Fy[X, Y]?, the homogeneous component of degree k of the ring F,[X, Y],
endowed with the usual modular action:

[ i Z ] XF Y = (aX 4 V)P (bX + dY).

We recall that for s € N (F,[X, Y]?)Fr"" is the representation obtained by functoriality, in the
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evident way, from the field automorphism z +— zP° defined on F,.
For 7 € Gal(F,/F)p) and r-,t; € {0,...,p — 1} we consider the GLy(F)-representation

i = Q) (det’” @, Sym™F)) @, F;
r€Gal(F,/F))

such representations exhaust all irreducible GLo(F,)-representations with coefficients in F,, (and
they are pairwise non isomorphic if we impose ¢, < p—1 for at least one element 7 € Gal(F,/F,)).

We fix once for all an immersion 7 : F; — Fp. Such a choice determines, up to twist, a manifest
isomorphism

F-1
~ def = h \Frobs
O{r-}{ts} = O(ro,rg—1) = ® (Fp[X&YS]rs) "
s:Ofp
for a convenient r < (ro, . . ., r¢-1) € {0,...,p—1}/; such an isomorphism will be assumed to be

fixed once for all throughout the chapter. We notice that the choice of another immersion acts
on the right hand side by a circular permutation on the indexes s in the obvious sense.

Write G & GLy(F), K =< GLo(0p) and Z ¥ Z(G). We write Ko(p) to denote the Iwahori
subgroup of K. The GLy(F,)-representation o, will be seen, by the inflation map K — GL2(F,),
as a smooth representation of K. By imposing p € Z to act trivially, the smooth K-action on
o, extends to a smooth action of KZ: by abuse of notation we will write o, to denote either
the GLa(F,) or the K or the K Z-representation obtained by this procedure (or, as usual, the
underlying vector space of o).

Similarly, the character

X:: B(F,) = F,
[ b] - astitoe

will be considered, by inflation as a character of any open subgroup of Ko(p). We write then x;
to denote the conjugate character of x,. We denote by a the character

B(F,) —F,

ab 1
[0 d]»—>ad .

Recall the compact induction:
c—Ind?( 707
defined as the F,-linear space of functions f : G — o, compactly supported modulo Z, verifying
flkg) =k- f(g) for any k € K, g € G, it is endowed with the smooth left action of G defined by
right translations.

For g € G, v € o, we define [g,v] € c—Ind%ZJ£ as the unique function f supported in KZg
and such that f(g) = v. Then we have

-1

g - lg:v] =1d'g,7] for ¢’ € G
[gk,v] = [g,k - v] for ke KZ.

Each function f € c—Ind%’;ZU£ can be written as a F,-linear combination of a finite family of
functions [g, v]; if g varies in a fixed system of coset for G/KZ and v varies in a fixed F,-basis
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of or the aforementioned writing is then unique.
We leave to the reader the task to adapt the previous definitions and remarks to such objects
as

IndKO ®™)

Ko(pnt1)T

where Ko(p"t1) % Ko(p™) % K are open subgroups of K and 7 is a smooth representation of
Ko(p™th).

From [BL94], proposition 8-(1) there exists a canonical Hecke operator (depending on r) T €
Endg(c—Ind$ ,o,). It realizes an isomorphism of the F-algebra of endomorphisms Endg (c—Ind% 4o,
with the ring of polynomials in one variable over Fp. We then define the universal representation
of GLa(F') as the cokernel of the canonical operator T":

7(r,0,1) = coker(T).

We recall some conventions on the multiindex notations. For oy € N we write o & (g, ..., 0p-1)
to denote an f-tuple o € N7. If o, B are f-tuples we define

i) a+ 8 (as+ 815
it) a > fif and only if ay > B, for all s € {0,..., f — 1}
def —1 s
iid) (5) <TI0 (3)-
For n € N we will write n = (n,...,n) € N/
=r

If o+ we define the following element of o;:

def —1
yayB & ®£:0 X'gs)/sﬁs;
for A € Fy and a € {0,...,p — 1} we put

-1
pe def )\Zi;o psas.

For an integer n € N we define |n] € {0,..., f — 1} as the unique integer m € {0,..., f — 1}

congruent to n modulo f. Similarly, if n # 0 we define [n] € {1,...,¢g— 1} as the unique integer

m € {1,...,q — 1} congruent to n modulo ¢ — 1; we set [0] <.

Finally, for a smooth representation R of Ky(p) over F,, we write {socy(R)}nyen to denote

its socle filtration (with the convention soc(R)g = soc(R)).

Let % be an Fj-basis of R and P a bijection of % onto a subset Z in 7' Let B C %
be a subset and %’ denotes its image through the bijection P; for v € %’ we define the set of
antecedents of v in %’ as:

S, (#) < {we A st. P(w)=P(v) —esfors € {0,..., f—1}}

(where (es)f:;é is the canonical basis of Z7).
We say that the socle filtration {socy(R)}nen of R is described by Z if the following holds:
it exists an increasing family {#y}nen of subsets of Z such that

i) for all N € N the family Ay is an F,-basis of socy (R);
ii) for all N € N an F-basis for soc(R/socy_1(R)) is described as

{UE%\%N_L S.t.GU(%\%N_l):@}.
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If the socle filtration of R is described by # we will say that the extensions between two graded
pieces are described by £ if the following holds true:

for all N € N and v € Zn41 the Fp—linear subspace E, v of R/socy_1(R) generated
by v,8,(#B \ Bn-1) is Ko(p)-stable and for each w € &,(A \ $n-1) the induced

extension
0 —w— Eyn/(6u(#\ Bn-1) \{wh)g, =7 —0

is nonsplit (with the obvious meaning of w, v).

In euclidean terms the segments between v and the set of its antecedents let us detemines all the
nonsplit extensions between two graded pieces of the socle filtration.

2. Preliminaries

As we outlined in the introduction, the main aim of this section is to describe the Iwahori-
structure of the universal representations 7 (r,0,1) of GLy(F) over F).

Such representations have a completely explicit description in terms of the Bruhat-Tits tree
and of the Hecke operator T given in [Bre03a], §2 and their Iwahory structure can indeed be
found by direct methods. Nevertheless, the extremely involved combinatoric of such results lead
us to introduce an intermediary step -namely a suitable K Z-filtration- which let us handle, in
a reasonable way, the high amount of technical computations. Precisely, we start (cf. definition
2.3) by introducing the K Z-representations

def K
Rn+1 = IndKO(an)O‘th

(where o,m41 is a Ko(p’" ' )-representations obtained by twisting the action of Ko(p"™) on
or| Ko(pn+;)). Such objects are endowed with an action of suitable “Hecke” operators T : R,, —
Ry 11 (cf. lemma 2.7), with respect to which we are able to define (inductively) a direct system
of amalgamed sums --- ®g, Ry+1 (cf. proposition 2.8). Such amalgamed sums fit in a natural
commutative diagram (see proposition 2.8) which let us deduce a natural filtration on the result-
ing inductive limits. The final result is then the isomorphism of proposition 2.9, which relies the
K Z-restriction of the universal representation 7(r,0,1)|xz to the inductive limits constructed
above; in particular, we have a natural K Z-equivariant filtration on the universal representation
m(r,0,1).

In lemma 2.6 we introduce a “canonical” basis for the representations R,41. Such basis is
well behaved with respect to both the action of the Hecke operators and the action of the Iwa-
hori subgroup: this will be the key observation which lead us to the description of the Iwahory
structure for 7(r,0,1).

We remark that the isomorphism of proposition 2.9 does not rely on the fact that F//Q,, is
unramified: the content of this section can be generalised in the evident manner for any finite
extension F' of Q.

Reminders on the universal representations m(r,0,1). For n € N>; we define

n—1
I, o {Zp][)\]] for )\j S Fq}
j=0
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and we put Iy < {0}. The sets I,,’s let us describe the Bruhat-Tits tree in the following way: if

n,m € N, \ € I,, and
0 def pn A 1 def 1 0
gn7A - 0 1 I gn,)\ - pA anrl
we get a decomposition
KZoa "KZ = [[ 9 AEZ]] ] 9mnKZ (30)
Aelnm, Aelp_1

thus describing the vertex of the tree having distance m from KZ (where we have written
def 1

@ = gyo)- The canonical Hecke operator T' € Endg(Ind$ ,0,), defined in [Bre03a) §2.7, is then
characterized as follow:

LEMMA 2.1. Forn € Ny, A€ [, and 0 < J<rwe have:

T((gnpo X52Y) = 37 (901 apniangs (CAIXT] + g0 3, 01 X+ V)]
M €Fy

T([g}z,)\:Xﬁ_lyq) = Z [grll+1,,\+pn[)\n]a (_)‘n)i_iyﬁ] + [92_1,[)\]n_1a51,9(X + )\n—ly)z]-
An€Fy
If n = 0 we have

T(1a, X" 1Y) = Z [9?,[>\0]a (=202 X" + [a, 85, Y]
M €Fy

T(lo, X2V = 3 g1 s (M) 2V + [, 650X
AMEFy

Proof. A computation shows that the statement of lemme 3.1.1 in [Bre03a] has an obvious
generalisation for f > 1. The result follows then from Ibid., §2.5. O

For n € N we define the F,-subspace of Ind% 70!

W(n) & {f € Ind% 40,, s.t.thesupportof fiscontainedin K Za "K Z}.
By Cartan decomposition the subspaces W (n) are K Z-stable for all n € N and therefore

LEMMA 2.2. There is a natural K Z-equivariant isomorphism

md% o, = @W(n)
neN

The representations R, ’s and the dictionary. Letn € Z>_;; we define the open subgroups
of K:

n def a b
Ko(p +1) & {g e K, st.g= [ e d } fora,b,c,d € ﬁp}.

n—i—l)

1 . . . . .
As [ 0 ] normalizes Ky(p , the representation oy | Ko(pr) nduces, by conjugation, a

Ko(p™+!)-representation which will be denoted as o7*! (

fusion). Explicitely, we have -

or simply o, if there is no risk of con-

| e W=t oty O]
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Part IV On some representations of the Iwahori subgroup

We can therefore introduce the representations R, 1’s:

DEFINITION 2.3. Let n € Z»_1. The K-representation R, 11 is defined as

def

det K n+1
Rn+1 — IndKo(p"+1)o-£ .

We can extend the action of K on R,1 to an action of KZ by letting p € Z act trivially;
the resulting representation will be denoted again by R,+1 and we will pass from the one to the
other without commentary.

Thanks to the decomposition (30) we get the following, elementary, description of the R,,’s:
LEMMA 2.4. Let n € Z>_1 Then:
i) right translation by o™*lw induces a bijection
K/Ky(p"™) 5 KZa ™" 'KZ/KZ;
i1) we have a decomposition

K= 1] [ i\ (1) ]KO(P"+1)H I {pi\/ (1) ] Ko(p™*h);

Aelnt1 NeT,
Moreover, if 1 < m < n we have a decomposition
Ko™ = T | o | Ko™
pmAl 1 ’
)\lefn-&-l—m

ii1) the family

Al iy 1 0 i .
H 1 0}’X JYJH{pX 1]’X ]Yj]f"““nﬂ’XGIn,0<J<T}

defines an Fp—basis for the representation R, 1. Moreover, if 1 < m < n, the family

{[[ pn})\l (1) :| ’XZ_ZYZ] for A € In+1fma legﬂ}

defines an F,-basis for the representation Indggg :421)03.

Proof. Omissis. O

The relation between the representations R,’s and the compact induction Ind?(ZUg Kz is
then described by the following

PROPOSITION 2.5. Let n € Zx_1. We have a K Z-equivariant isomorphism
(I)n+1 . W(n + 1) = Rn+1

such that
0 r—iyi AL gy
q>n+1([gn+1,)\7X7 ’Y*]) :[ 1 0 , X* *Yf]
Duiallghaes XAV = (| | XIS
n+ n,\» p>\l 1|’

for n > 0 and
®o([lg, XTIYY]) = X1yrd
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forn = 0.
In particular, we have a K Z-equivariant isomorphism

Ind[G(ZUt — @Rn
neEN

Proof. Elementary (see for instance [Mol], proposition 3.4, whose proof generalizes line by line).
O

We introduce now a convenient F,-basis for the representation R,;. Thanks to the transi-
tivity
Ko(p™) &~ T Ko@™) Ko(p™1)
IndKO(an)a£ = IndKO(pmH)IndKo(an) or

(where 0 < m < n) we see that a Vandermonde argument together with an immediate induction
give us the following:

LEMMA 2.6 (Definition). Let n € N. An F,, basis for the K-representation R, is described by
the elements

n 1 1 0
IRRCTOEDY Z(Afl)li[ Lk ][LX“Z"HYI"H]

A seebn
' i=1 X;€F, PN 1

0,n e [ A 1 1n
Flg,,,.,);n(ml) =N [ [10] . } [1,17!(1’“.}%(;%1)]
Ao€F,

forI; € {0,...,p— 1}/ (wherei € {0,...,n}) and l,, ., < r, with the obvious conventions that if

n = 0 we have
Fy O (1) Z 1, X b ylt),
For notational convenience we define

F 0 l) ¥ (~1oxboy=h

FVD @) oy,
Such basis will be denoted by %Bip41.

The subset B\, | C Pn41 described by the elements of the form IQE)O:?LR (1,,41) will be referred
to as the set of positive elements of R,41; the Fy-linear subspace generated by the positive
elements will be denoted as R;f 1

Similarly the subset %, | C %n+1 described by elements of the form Fﬁ’n’)ln (Lyy1) will be

referred to as the set of negative elements of Ryy1; the Fy-linear subspace generated by the
negative elements will be denoted as R, ;.

Hecke operators on the R,1’s. Let n € N. Thanks to lemma 2.1 the W (n)-restriction of
the operator T' gives the Fp-linear morphism

Tl : Wn) = Wn-1)@W(n+1).

Such restriction is K Z-equivariant (by Cartan decomposition) so that composition by the natural
projections gives us the K Z-equivariant operators

Tr:W(n)—Wh+1) T, :W(n)— Wn-—1)

n
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so that the transport of structure (via the isomorphisms of lemma 2.5) gives
Tr: Ry, — Ryy1 T, :R,— Ry

(using the same notations for the operators on W(n) and R,,). Their description in terms of the
canonical basis of R, is immediate, following from lemmas 2.1 and 2.5:

LEMMA 2.7. Let n > 0 € N. The K Z-equivariant operators T\, T, are characterized by
jjnJr . Rn — Rn+1

A €Fy

1 0
. 1, X*]
P ] 1
T, : R, — R,
8oy [LYT] ifn>1

r—l,yL,
L, X5y ]H{ b YT ifn=1.

For n = 0 we have
Ry — Ry

Xyl o 30 (1)’"—%%%{“10] (1)][1,XT]+51070[1,X’“].
Xo€Fy

Moreover, the operators T, are monomorphisms for all n € N and the operators T,, are epi-
morphisms for all n € N>.

Proof. The characterisation of the operators TF follows by the explicit descriptions given in
lemmas 2.1 and 2.5.

As T;F maps the basis 4, into a subset of 4,1, the operator is injective for n > 1. As
[1,Y" (resp. YT) is a K-generator for R,,_; (resp. Rp) for n > 2 (resp. n = 1), the operator 7T,
is surjective. O

We identify R, as a K-subrepresentation of R,.1 via the monomorphism 77 without any
further commentary. For any odd integer n > 1 we use the Hecke operators TF to define (induc-
tively) the amalgamed sum Ry g, R2 @R, - - - @R, Rnt1 via the following co-cartesian diagram

n

T
RS R,
—prp—10Ty, PTn+1
Y
Ro ®Rr, Ry ®Ry -+ ®R,_o Bn—1-~ > Ro®p, R2 Bpy -~ R, Rat1

(where we define prg to be the identity map). Similarly we define the amalgamed sums R;/Ry®r,
-- @R, Rnp4+1 for any positive even integer n € N. The following result is then formal

ProOPOSITION 2.8. For any odd integer n € N, n > 1 we have a natural commutative diagram

Ty
0 Rn Rn+l Rn+1/Rn —0

¢_anfloTn_ ¢p7’n+1 H
0—Ro®Rr, - PR,_» Bn-1—> Ry ®R, --- ®r R, — Ryot1/Ry —0

n
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with exact lines.
We have an analogous result concerning the family

{R1/Ro ®R, - ®R, Rn+1fncan{0}-

Proof. Formal. See for instance [Mol], proposition 4.1. O
The following result let us complete the dictionary

ProprosITION 2.9. We have a KZ equivariant isomorphism
m(0r,0,1)|kz = lim (Ro ®R, -+ ®r, Rnt1) @ lim (R1/Ro ®R, -+ ®r, Rut1).
nodd neven
Proof. The proof is formal and identical to [Mol], proposition 3.9. O
REMARK 2.10. We can give analogous (in the evident way) definitions in the case where F' is

any finite extension of Q,: we would then get a statement completely analogous to proposition
2.9.

3. First description of the Iwahori structure

The goal of this section is to give a first, general description for the Ky(p)-representation
7(r,0,1)|gy(p)- The endpoint is proposition 3.7, which is the “Iwahori analogue” of proposi-
tion 2.9 of the preceeding section. More precisely, for each n € N the block R,11 has a natural
Ky(p)-equivariant splitting
Rpy1 = R:{H DR,

which is compatible with the Hecke operators 7'+ in the obvious sense (cf. lemma/definition 3.2).
This will enable us to repeat the constructions of §2, i.e. the construction of the (inductive family
of) amalgamed sums - - - @ p+ Rirl, endowed with a natural filtration (cf. lemma 3.5) .

Thanks to proposition 3.7 we see that we can content ourselves to the study of the amalgames
sums - -+ @ ps Rf - actually we have a Ko(p)-equivariant surjection

(h_n}"‘@RjRZH)@(@”'@R;R;H)@(@"'@RTthJLFH)@(h_H}”'@R; R.0)

n odd n odd n even n even

!
(1,0, 1)| ko (p)
whose kernel is “small” (and explicitely determined).
The following elementary result will be crucial.

LEMMA 3.1. Let a € {0,...,q— 1}. Then
Z N 0 ifa#qg-—1
-1 ifa=qg-—1.
AeF,
Proof. Omissis. O

The representations Rril 41 and the Hecke operators (TX)Pos:ne8, Fix n € N; the F,-linear
decomposition

Ryy1 2Ry ® R,y (31)
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is easily checked to be Ko(p)-equivariant (realising the Mackey decomposition for Ryi1|x,(p))
and we clearly have a Ky(p)-equivariant isomorphism
R, = Ind E ZLH)UTLI.

n-+

We moreover define the following Ky(p)-representations:
R+ def Ro Ra d:ef ( 7>7
(R1/Ro)" = Im(Rf — Ry — Ri/Ry) Q= Coker((R1/Ro)" < Ri/Ry).

The decomposition given in (31) and the description of lemma 2.7 let us define the Hecke
operators (T,F)P "8 on the representations R i

LEMMA 3.2 (Definition). Let n € Nx.

i) The restriction of Hecke operator T, on the K(p)-subrepresentations R;’, R, of R,, induces
two Ky (p)-equivariant monomorphisms,

(TP : R} < Ry,
(T, Ry — R4y
i1) The restriction of Hecke operator T, on the K(p)-subrepresentations R, , R;, of R,, induces
two Ky(p)-equivariant epimorphisms,
(T,))P* : Rf — R
(Tn )neg . R; - Rnfl
Proof. Except for the operator (1] )P, the result follows immediately from the decomposition

R, nl Ko (p) = ~ Rt @ R, and the properties and characterisations of the Hecke operators 7. .
Concerning (77 )P* : R{ — Ry we notice that

() = S 3
i< Ao€F,

and the result follows from lemma 3.1. O
COROLLARY 3.3. The natural K(p)-equivariant maps

Ry — (Ri/Ro)"

Ry —@Q
are epimorphisms.

Proof. Omissis. O

REMARK 3.4. The notation (TF)P°>"®& may look a bit awkard. We believe, though, that a
notation of the kind (T:F)*, even if it could be more convenient for statements (see lemma 3.5),
it can be disagreeable for the computations (and especially misprints!)

Amalgamed sums and first description of the Iwahori structure. Using the Hecke o-
perators defined in lemma 3.2 we can introduce the following amalgamed sums, analogously to
the constructions of §2.

Let n € N be odd and e € {+, —}. We can define inductively a natural Ky(p)-representation
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Ry ©Ry -+ ©rs Ry together with canonical morphisms pry i, ;4 by the condition that the
diagram

(T)* o
R?’l( n+1

—(pra_1)*o(Ti)* 3 (prasn)”
RS ®Rry - @pe_, Rp_q - L > R ©pe - Ops B 1.

2

. : . . . +\+ def by pos +\— def tyneg
is co-cartesian (with the convention that (T] )T = (Tj )P and (T] )T = (T] )ree).

Forn € N even and e € {+, —} we can define the amalgamed sums (R1/Ro)*©rs- - Ors Bp 1,
together with canonical morphisms pry, 1, t»_; in the evident analogous way (with the convention

that (Ry/Ro)~ € {R; . Q}.

The following result is similar to proposition 2.8:

LEMMA 3.5. Let n € N be odd, e € {4+, —}. Then ¢y _, is a monomorphism, pry_, is an epimor-
phism and we have a (Ky(p)-equivariant) commutative diagram with exact lines:

0 Ry )" 1 as Ry /R, —0
f-more
;71 P
¢p7271

0—> R§ @Re -+ Bpre_, Ry "> R @pe -+ Bpe Ry 1“2 R%. /RS —> 0.

We have an analogous (in the evident way) result in the case n € N+ is even.

- : L . (T7)* (T5)*
Proof. The proof is identical to proposition 2.8, provided that the maps R} — R{and R§ —
(R1/Rp)® are epimorphisms. O

In order to give a first description of the Ko(p)-representation 7(r,0,1)|x,(,) We are now left
to determine the relations between the amalgamed sums --- ©re Rp | (Where € {4, —}) and
the restriction (- ©r, Rn+1)|Ko(p)-

We will treat in detail the analysis of the limit ( lim Ro ©g, - ®r, Rit1)| ko (p)- The case n

n,odd
even is proved in a similar way and is left to the reader.

PROPOSITION 3.6. The decomposition Ry | ) = R! @ R, for n > 1 induces the following
Ky(p)-equivariant exact sequences:

0— lm Rj @ps - Spr By — (Hm Ro ®r, - Sk, Rt |ko(p) —

neven nodd
- hi)nR2/R1 Or;  Pr; R, =0
nodd
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and

0— lim (Ri/Ro)* @ps -+ @ps Ryyy — (lim Ry/Ro @p, - Or, But1) k() —
neven neven
- th Q@R; e @p; By — 0.

n even

Proof. Let us assume n odd, leaving the case n even to the reader (the proof is analogous).
Since the functor lim is exact if the index category is filtrant and since the forgetful functor

—

For : Repg,p) — Vectfp commutes with lim it is enough to show that we have an inductive
system of exact sequence

0— Ra_ GBRT e GBRfL R7—i1_+1 - (thRO @Pq U @Rn Rn+1)|K0(p) - RQ_/RI_ @Rg e EBRZL R;+1 —0

n odd

for n € N odd. More precisely, we claim we have a natural diagram with exact lines:

0 RZH Ryt R, 0

ipr;rl Pro+41 ip'r;rl

0—R§ ©ps -+ @pt Ry —> Ro®p, - @R, Rov1 —> Ry /Ry ©p -+ @p- Ry —0

for n € N odd. The proof is now an induction on n.

Let n = 1. We recall that, by definition, the “Hecke” operators (lec)pos’rleg are the restrictions
of the operators Tli; moreover the forgetful functor For : Repxg — Vectﬁp commutes with the
pushout. We deduce the following commutative diagram

0 Rf /R; R*/Rl+ —0
0 Ry D Ry ‘ Ry/R| ———— H 0
0/ >R(—)i_/ >R0 ®R+ R2 / R+/R+‘>O
/ fic
0 Ry RS — RS /Ry
Y : VL2 2y /
0—|—= Ry fRo@Rl Ry >R2/R1 0
-
/ £ 3
0 0 R, /Ry Ry /R1 0

where f; is a Ko(p)-equivariant morphism deduced deduced by the universal property of Rj & Rf
Ry and f, by the universal property of For(Ro®g, Ra| Ko(p))- Notice that, a priori, the morphism
f2 is only F,-linear; the fact that it is Ko(p)-equivariant is immediately deduced as the maps
Ry — Ry ®R, Re and R, — R, /R; are Ko(p) equivariant epimorphism.

As R; — Rar @ RF R; is an epimorphism, we deduce that fo o f; = 0.

As the lower horizontal lines are exacts, we deduce (e.g. from the five lemma) that f; is a
monomorphism and fs5 is an epimorphism.
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Finally, we have the equalities

dim(Im(f1)) = durn(R+ GBR+ R+)
= dim(R] /R) + dim(Ry)

= dim(R2/R1) — dim(R; /Ry ) + dim(Ryo)

= dim(Rp ®r, R2) —dim(R, /Ry )

_ dim(ker(f2))

where we deduce the first (resp. the last) equality from the injectivity of f; (resp. surjectivity of
f2) and the others equalities are deduced from the exactness of all the bottom lines (except from
the “central, vertical” line).

For the general case, we deduce from the inductive hypothesis and the definition of the
“Hecke” operators the following commutative diagramm with exact lines

0 RF R, R, 0
i (T )Pos iTn i (Tw)"es
0 Ry, Rn R,y 0

+ —
iprn_l ipT’n—l iprn_l

0—=Rg ®p+ - Spt R\ —>Ry®R, - Opr, 5 Ruot —= Ry /Ry @p- R ——0

Exactly as for the n = 1 case, it is easy to deduce a commutative Ky(p)-equivariant diagram

+
0 RY RY. g n+1/R —0
0 Rn, Rn41 Rpy1/Bn ——— 0
o > ® 4+ RF_ > @ 4R —= R /RY —0
R._o Ry n+1 ‘n+1/'n

n R fl :j! R /Ry ——————>0
/ v /

0 R,
0 ——> ORr, ,Bn-1 < OR, Bnt1 Rpy1/Bn ——— 0
f2
=
5
0 —> '“@R;_QR"*l A..@RER;_’_I R, 11/Bp ——— 0.

Again, the map fa is a priori just a Fp-morphism, and the Ky(p)-equivariance is immediately
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deduced using the surjectivity of pr,1; moreover all lines and rows are exact, except for

"'@RﬁR;—-&-lg"'@Ran-f—lg"'@R;R;-i-l'

Exactly as for the n = 1 case we see that fyo fi = 0, that fi (resp. f2) is a monomorphism (resp.
epimorphism) and that Im(f1) = ker(f2). O

With a similar “formal” argument, we deduce another result in the flavour of proposition 3.6

PROPOSITION 3.7. The decomposition Ry |, p) = R,f ®R,, induces the following Ko(p)-equivariant
exact sequences:

0,—1 1,—1 . . _ _
0— <(FQ$ )(Q)7FQ§ )(@))>Fp - (hj}Rar @Rf o Opy R:{H) @ ( hj}Ro @R; o Ope R,q) —

nodd nodd
— (lim Ry ®r, -+ @k, Bnt1)|io(p) = 0
nodd
and
1,0 . . _ _
0 — ((F(0), Fy ()5, — (lim (R1/Ro)" @ -+ @pr RE, ) @ (lim Ry @ - @ Rpyy) —

— (lim (R1/Ro) ®R, - OR, Bnt1)lKo(p) = 0-
neven
Proof. Again, we prove the statement concerning the first exact sequence, leaving the other to
the reader; the proof is similar to the proof of proposition 3.6. By the exactness of lim (and

—

n,odd
commutativity with the forgetful functor) the statement is proved once we have shown that we
have an exact sequence

0,—1 1,-1 - -
0 — (B (), By 0))g, — (RS @t s Bl & (By ©p o ©p- Ripy) —
— (Ro @R, ®R, RBnt1)|Ko(p) — 0.

The proof is again an induction on n. Let @ € {+, —}. By the universal property of the push out
we deduce the following commutative diagramm

0 Ry RS 5/ R —=0
e . | e
1 y 2 " 2/ 1T>0
0—| - B3 — R oy S —— | — B3/ R —0
/ s e
0— Ry (Ro ®r, R2)|ro(p) Ra/Ry 0

from wich we deduce the commutative diagramm with exact lines

0—>R§ ® Ry — (R ®p+ Ry) ® (Ry ®p- Ry) — (Ry /Rf) & (Ry /Ry ) — ((32)

| | |

0 Ry (Ro ©r, 12)|Ko(p) Ry/Ry

As we have an isomorphism (Ry /Rf) @ (R, /R{) = Ra/R; and an exact sequence

0 — (F9(0), ~F" "V (®))) — R ® Ry — Ry — 0
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we get the result by applying the snake lemma to the diagramm (32).
We treat now the inductive step. Then, by the inductive hypothesis and the definition od the
“Hecke” operators (T.5)P°%"°8 we dispose of the commutative diagrams

R C R,
1€ R,

i |

Ry @Ry -+ ®re_, B) 1 Ro @R, - ®R,_, Rn—1

from which we deduce the commutative diagram (with exact rows)

0 R}, R 1 Ry 1/R) —0
0 Rnp Rp41 Ry41/BRn ———— >0
L]
o "'®R'72Rn71 4..@R7.LR:L+1 ‘>R;+1/R%90

feo
=

r

0= (@R, 5 n-1)lKy(p) ———— (®R,» Bnt1)IKy(p) ——————— Ent1/Bn >0

which lead us to the diagram

0 0
(Rg @Rj T @Rj_l R:l_—l) & <R5 @R; T @Rg_l R;—l) (Ro @R, " OR,s Rn—1)|Ko(p)
(R§ Ort  Ort,, R )@ (Ry Orr PRy, R.1) (Ro @R, ** ®R, Bnt1)|ko(p)
(R;LLH/RI) © (R, /Ry) Ry+1/Ry,
0. 0

As the natural morphism (R, , /R})®(R;,,1/R;,) — Rut1/Ry is an isomorphism, the conclusion
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follows by applying the snake lemma and using the exact sequence
0,—1 1,-1 _
0— (B~ V), B " 0))g, = (RS @y - @ps  RI_) & (Rg @ -+ B
— (Ro @R, *+ R,y Bn1)| 15 (p) — 0-

R;—1) -

—2
coming from the inductive hypothesis. O

4. Representations of the Iwahori subgroups

We start here the technical computations which should lead us (in section §5) to the Iwahori-
structure of the universal representations 7 (r, 0, 1). The aim is to describe the K¢ (p)-representations
Rf 1 Which appeared in the preceeding section §3.

Ko(p)
Ko(pntl)

obtained with identical techniques (cf. sections §4.1.3 or 4.2). The Iwahori structure of such
objects -given by proposition 4.2- may look complicated, but the keypoint is its combinatoric
can be controlled by an easy euclidean method which can be outlined as follow.

We focus our attention on the representations Ind 1: the description of Rf 1 can be

First of all we detect a “canonical” Fp-basis % for the representation Ind[;gg 7)]“)1 (definition

4.1). We see that each element F(l’f)l € 4 is parametrized by a family of f-tuples[; € {0,...,p—

Lysend

1}/, family which can be used tlo define a point (in the naive sense) (xo,...,z;_1) € R/~ In

this way, we can associate, bijectively, the elements of the basis % to the integer points of an
f-hypercube of side p” — 1 in Rf~1: this is detailed in paragraph 4.1.1.

With this gloss, the Ky(p)-socle filtration for Indgggzlﬂ)

successive intersections of the f-hypercube with the antidiagonals Xo + --- + X;_; = constant,

as illustrated in figure IV.3.

1 can be simply described by the

This is the content of proposition 4.2 where we verify, by direct computation on Witt vectors,
that the behaviour of the canonical elements Fl(ll,i.ri)éf,l fits the previous euclidean picture. It is
the technical part of the chapter and rely, as announced in the introduction, on the following
three key facts (whose meaning will be clear to the reader of paragraph §4.1.2):

“well behaved” with respect to the action of
g € Ko(p), i.e. one can naturally describe gF, é(llvj,'n:?)Lf—l as a linear combination of elements of
B;

i7) one can compute the homogeneous (pseudo-)degree of the universal Witt polynomials ap-

i) the elements of the canonical basis % are

pearing in the developement of gFl(llf.Y.L)lf,l?

1i1) the correspondence between the elements of % and the points in the associated hypercube
is well behaved with respect to the homogeneous degree of the universal Witt polynomials.

As annonced the same techniques let us detect the Ky(p)-structure for the representations
Rf 41 the involved combinatoric can be handled with the help of a simple euclidean picture (an
f-parallelepipoid). The precise statements are propositions 4.9 and 4.10 which deal with R,
and R:{ 1 respectively.

The constructions and computations of this section let us, as an application, determine the
Iwahori structure for principal and special series: this is the object of §4.3. Again, in terms
of euclidean space, we see that the successive layers for the Ky(p)-socle filtration are detected
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FIGURE IV.3. The structure of Indgggﬂl)l.
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by the intersections of N7 (the “hypercube” associated to such series) with the hyperplans
Xo + -+ Xy = constant.

4.1 The negative case.

Let 1 < m < n be integers. In this section we examine the Ky(p)-socle filtration (and the

extensions between two consecutive graded pieces) for the representations Indggg ZZI) x where

X : Ko(p"*th) — F; is a smooth character of Ko(p"™!) (i.e. the inflation of a character of the
finite Borel B(F,) by the morphism Ko(p"*') — B(F,)). Thanks to the canonical isomorphism

Ko(p™) ~ Ko(p™)
IndKS(an)X = (IndKo(pn+1)1) ® X
we can assume that x = 1 is the trivial character. Finally, let {e} be an F-basis for the underlying

vector space associated to the character y.

We introduce now the canonical base of Indgg Ez Zzl) 1 and its interpretation in terms of lattices

of RY.

DEFINITION 4.1. For j € {m,...,n} let [; = (l](-o), . ,lg-ffl)) €{0,...,p— 1} be a f-tuple. We
define the element Fl(mn)l € Indﬁgg :221)1 as

. = 1 0
D DI DECE [pj[ L ][1,61.

pJ
j=mAjeF, Aj 1
. . 1 def def
For a notational convenience, we define Fl(nt "3 =[1,e] and ., =0.
In41oin

The set

Sl KO(pn+1) ’

7= {Fz(’”’”)zn € mdi*") 1 for (I,,,....1,) € {{0,....p — 1} }”+1_m}

is an F-basis for Indgg EZ ::21) 1.

The fact that Z is an F,, basis for Indggg 21)1 is again an induction together with a Van-
dermonde argument as for lemma 2.6.

4.1.1 Interpretation in terms of lattices. As anticipated in the introduction, each ele-
ment of Z can be seen as a “point” of a Z-lattice in the standard euclidean f-dimensional space
R/: such correspondence is given by the injective map

B L, RS .
FL:n;n = ( Z pj_ml§-tj7mj), e Z pj—ml§tf1+jmj)>
j=m i=m

whose image will be denoted by Z. We notice that Z is a f-hypercube of side p?~™+1 — 1. It
has a natural recurrent structure: for a fixed f-tuple ¢, € {0,...,p — l}f the subset

(™ €@ Lefo,....p— 1)) form<j<n—1}

Zmortain—1Zn
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is mapped onto an f-hypercube of side p"~™ — 1, which will be referred as the Ft(n)—block.

The hypercube & is then obtained as the juxtaposition of the Ft(n)

{0,...,p— 1}/

-blocks for varying t, €

We are therefore allowed to apply the terminology of real euclidean spaces to the elements of
%, meaning their image through the map P. In particular if e; S (00,45 ---507-1,) € {0, 1}f we
define F;"" by

( mo* 7ln)76i

(lm7 R n) e’l -

mn 0 lfP(_( (F}mn7l ) 61):®
the only element of P (P(F,""" | ) — e;) otherwise.

In order to give the statement concerning the Ky(p™)-structure of Ind OE ) F1yX we still need

some notation. If (,,,...,l,) is a (n + 1 —m) f-tuple, we define

’=n

f—1
RRTE) 5 B0, RS 1)
s=0
e(lps - 1) = (Zpslsi)) + -+ (Zpsl%‘s));
5=0 s=0

in particular any F( )l lies on the antidiagonal Xo + -4+ Xy 1 = Npyyn(lps - -5 1,)-

moin

Let N € N. We define the F -linear subspace

Ko(p™ e m,n
(Indy "Bl N E " € B st Nnlls 1) < N)g

Imottin

it is the subspace generated by the functions lying strictly below the antidiagonal Xo+... X 1 =
N.

We refer the reader to figure IV.3 to have the euclidean interpretation in the case f = 2.

Let (L,,,---,l,) a fixed -tuple. For s € {0,..., f — 1}, we define

,:, def

{ae{m,...,n}, st Jlsta=m] 4 0}
and we set

ao(s) & { min(Z,) if =5 # ()

n+1 otherwise.

The euclidean meaning of ag(s) is clear: if we consider the F, (ao(s),n )L -block then the function
ao(s

0(9)’
Fl(m’n)l lies on its s-th face (which is a (f — 1)-hypercube of side p® ()= — 1),

motin

The Ky(p™)-structure of Ind E N 31) X is then given by the following

PROPOSITION 4.2. Let r & (ro,...,mp—1) € {0,...,p — 1}/=1 be a f — tuple, m,n be integers

such that 1 < m < n and let Fz( .‘.)l € Indggg:?l)xz be as in definition 4.1. If a, b, c,d € O are
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integers such that g < { pf}lc Z } € Ko(p™) we have

T
0

gF" ") = allmbdys () () =N @ty ool glme

[ Ly ao(s) Ly by —es

+9)

@
Il
o

K m
), we have y € (Innggngl)Xz)N_l.
In particular, the Ky(p)-socle filtration, as well as the extensions between two consecutive
Ko(p™)
dKo(p”“)

where, putting N ieme,n@m, ool

yin

graded pieces, of In X is described by the associated lattice % .

We emphatise again the meaning of proposition 4.2 in terms of lattices in R/: the socle
filtration of Indgggz :ﬁl) X is given by cutting up the hypercube # by the antidiagonals Xy +
-+ X1 = N (precisely, socy is obtained by cutting the antidiagonal Xo +--- + Xs_; = N);
the extensions between two consecutive graded pieces are visualized by the segments of length 1
obtained by cutting % by two consecutive antidiagonals Xo+---+X;_1 =N, Xo+---+X;_1 =
N —1.

Here below an exemple for f = 2.

s
pn+177n_1 . X0 Xf‘

.
xya P

1 pre?

X5 X;a

1 2 ... . prtl-m_q

Here, each “point” in the lattice corresponds to a function F}"" , € % according to the map

Ymyseeol

P described in (33). The N-th composition factor socy (Indggg :421)1) of the socle filtration can
be read as the intersection of R with the semispace Xo + ---+ Xy_1 < N, and the N-th graded

piece socN(Indgggz :31)1) /socN,l(Indggg :21)1) as the intersection with the antidiagonal X +
-+ Xy 1 = N. Finally, a “point” of coordinates (3 _,, pj_ml](-u_mj),Z?:mpj_mlgtlﬂ_m]))

should be understood as the character Xiae@m"“’ln).

4.1.2 Proof of proposition 4.2. The section is devoted to the proof of proposition 4.2.
Thanks to the decomposition

my_ g [ 1 Or][14p0r 0O 10
Kop™) = H [o 1 H 0 1+pﬁFHpmﬁF 1] (34)
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for m > 1 we are led to study separately the actions of lower unipotent, diagonal and upper
unipotent matrices on the elements of the canonical basis Z: this will be the object of the next

three paragraphs.

The action of lower unipotents matrices. We study here the action of the closed subgroup

[ L 0 } of Ko(p™) on IndKOEp n-el)]-; we first need to introduce a family of F,-subspaces of

mOr 1

Ko(p™)
Ind g iy 1

Let Fl(mf)l € # and set (xg,...,T¢_1) o P(Fl(m’n)l ) € %Z. We define the F,-subspace

byl

Wy, of Ind 001 via

P .1)) (2, ... ,a' ) €A s.t.itexistsn > 0for which
f-1

n(p—1)< ) (zs—2%) < (n+1)(p—1)andz} < zj +nforallj =0,.

s=0

The image P(2
= 5).

77n

It is immediate to check that if F), (m, n)l, €W

m""Ln

) then Qﬁ(l/ ) - w@"”

mo* ’

of [ pmlﬁ (1) ] is then described in the following
F

Ymoeein

PROPOSITION 4.3. Let F\™™ € %, and write N % Ny (L, -+, 1,). Let g = [

[ 1 0 } for ¢ € Or. Then we have

pmﬁp 1
(m,n) m,n) [stao(s)—m] ~(m,n)
g Fm7 aln - Fm) 7 Zcp laO S)O F( 'm7 7ln)7es + y
for a suitable y € (IndKognll)l)N_l. More precisely, via the projection
Ko(p™) 1P Ko(p™) Ko(p™)
Inng(an)l — Inng(an)1/(IndK2(p,L+1)1)N7(pf+2),

the image of the element y is contained in the image of the subspace 20 . .

1mtin

: 1 0
Proof. As the action of { pOp 1 }

1)) € R/ looks as a snowflake: in figure IV.4 an exemple for f =

=1}
2 (and

L) The action

is continuous, we can assume that ¢ belongs to a set of

1

topological generators (for the additive structure) of &; in particular, we can assume ¢ = [pu?™ |

for p € Fy.

Using the notations of §6.2, we can write the following equality in p" @ /p" ! OF:

mu] + ‘ij[)\zﬂ Zp] )\p] Sp] )]
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)

A direct computation describes the action of g on the function Fl(m’nl :

yeensbyy

-1 = Q ST i
2y <?)<—so<§o>im>2<vj>’f%(—sj<sj-m+1>““>”“[ e

As deg(sj_l(gj)) < p/ for each j € {1,...,mn —m} we can apply proposition 7.3 (with T},,4; =
5j-1(Sj)) to conclude that

f—1

Zmottin Imooin (,m:--wln)*es

s=0

(™)

where y € Ind o r 111 is the element described in the statement, for suitable elements 85 € F,,.
Ko(pmth) q

1 s _
We are now left to prove that §; = —(ur™ )P lb‘;?'sao(s) ™l
We use the notations of proposition 7.3 and we recall that, for b =m+1,...,n, a polynomial

b—m

isb_m_1(§b_m(g, Y’)) is homogeneous of degree p if X, has degree p®, Y degree p° (and

So =Y). In particular if we pick an element

(m,n)
Lmz"

appearing in the development of gF}"", we have, for b € {m +1,...,n},

b—1
> p TR =i — o)

S)

where il()s) (p>m—1) > ozl()s) > il(;sb) is the exponent of Y in the fixed monomial of —Sb—1—m(§b—m)~i£3)

(recall that any monomial Y Hi:é_m X with ¢ = 0 appears in the development of —sp_1_y, (Sp—m)
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with coefficient zero). Considering that p > 3 the inequalities

5(Hm) +p5(/€m+1) + e +pn—m5(/€n) <

o — i)+ s(plm eI o g (plm (] )y
(8 (Lt — dmsr) + 5P URITD) 4o g(plm oDl )
T (8 (g — i) + s RE D)) 4 p (s, — d,)) <

<(s(l

f—1
< 8Ly = i) + ) s(r ) +
s=0
f—1
. m s m+2),s
DUy — i) + O (RGPS 4 ps(xlH))) + ...
s=0
f—1
+ O (6(-52) + ps(slY) + -+ s (600)) + 0" (L, — ) <
s=0
n f—1
Zp sl — i)+ Y ((s(@) — Y al)
b=m+1 s=0

have to be equalities if we furthermore require our element to lie on the hyperplane Xg + --- +
X¢_1 = N—1;in particular we must have z',()s) = 0 for all couples (b, s) € {m,...,n}x{0,..., f—1}
except one and only one, say (bg, so), for which we must have ibzo) =1.

We notice that for by # m we require furthermore that a4, = 1 i.e. the exponent of Y
appearing in the fixed monomial of _Sbo—m—l(gbo—m) is 1. Thanks to lemmas 6.3 and 6.4 we
check that

L ps s+ap(s)—m m,n
x=—(urm)P O(ZCLLO'(*‘S)O( ) J)Fl( )
as required. 0

Yoo s—E€sg

The action of diagonal matrices. We are going to study the action of the subgroup

1+ p0F 0 1
0 1+pﬁp_

on the elements of %. If z € p™Or/p" ! OF, an elementary computation shows that
l+pa O Lol [10 ¢
0 1+ pd z 1] |2 1
where £ € Ko(p"t!) is upper unipotent modulo p and 2’ € p™ @ /p" T OF is determined by the
condition

= (1+pa) (1 + pd)zmod p™ 1. (36)

ot | 1
We can therefore content ourself studying the action of an element of the form x o { 01 _Bpa ]

for a € OF.
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1+pOFp 0 and fix F(m ")l € B; write N = N, n(l

PROPOSITION 4.4. Let g € 0 | + pOy - (s ooy ly)-

We then have the equality
(m, n)
- F = Fm o Lty

m’ =n ”Yl7 =n

where y € IndKOg;ngl)l)N_l.
More precisely, via the projection
Ko(p™ pr Ko (p™ Ko(p™
Ind {001 2 Ind {00 1/ (nd [T 1)y ),

the image of y is contained in the image of the subspace 20 y and writing
_ _gp(m,n)
v =2 BEE,
i€l

(m,n)

(for a suitable set of indexes I and scalars [3; € F;) we have that each function F, oy"
which is not in the kernel ker(pr) lies on an hyperplane

Xo+--+Xp 1 =N—-tlp-1)
for some t € Ns.

Proof. The proof is completely analogous to the proof of proposition 4. 3 As remarked above, it
1 0

0 1+ pa } where a = 3770 Opj[ } Using the notations

is enough to consider the case x = [

of §6.3 we see that
14 pa) (S P = S P + 67 Jmodp
and we deduce
[(1) 1—3 a]FlZ’an:
-5 ()2

(where we convene that i, = 0 and with the obvious conventions if n € {m,m + 1}). As each
polynomial (—q]'—l(@j)) € Fp[Am, -y Ajo1-m], for 1 < j < n — m is homogeneous of degree p’
(for the shifted grading for which M, is homogeneous of degree p" for h > 0) we can apply
proposition 7.3 with T, = (—qj,l(@j)) to get the first part of the statement.

We are left to prove 2). Consider an integer ¢ € N and an hyperplane § : Xo+... X;_1 = N—t.
Following the proof of proposition 7.3, a necessary condition for an element

1 1 0 1 1 0
AD" ) m 1 AE")Rn 1 1,e
>R [pmMn] . ] > [pnwzn] ) ] [1,€]

Am€F, An€F,

L _ , 1 0
(A7) (—qj—m(QjH—m))”“[ L

(n)
p7[/\j’-”] . 1, "] (37)

1, —in

X\, €F,

appearing in the developement of (37) to lie in ) is then

ij_mﬁ(/ij) =N —tmodp— 1.
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Again, as each polynomial (_ijl(@j)), for 1 < j < n —m is homogeneous of degree p’, and
s(h) = hmodp — 1 we deduce that inequalities 50, 51, 52 and 53 appearing in the proof of
proposition 7.3 are actually equalities in Z/(p — 1) so that we get

> P "s(kj) = N = 5(im) modp — 1 = N.
j=m
The conclusion follows. O

The action of upper unipotent matrices. We are left to study the action of the closed

subgroup [ L OF

0 1 ] on the elements of . We recall that the action of Ky(p™) is continuous on

Ind%g :21)1 and the natural topology on [ L OF } coincides with the topology induced (via

0 1
the natural immersion) by Ky(p™). Thanks to the isomorphisms of abelian topological groups

[1 Or

0 1 }gﬁF%(Zp)f

where the latter isomorphism is determined by the choice of a primitive element o € F of F,
over F,, (cf. Serre [Ser63], proposition 16 Ch.I) it is enough to study the action of elements

1 ﬁF . 1 [l’]
ge[o 1 ]Oftheformg—[o 1 ]formGFq.

We start with an elementary computation:

LEMMA 4.5. Let z € p"Op /p" ' OF and = € F,. We have the following equality:

I R EL

where £ € Ko(p"T!) is upper unipotent modulo p and 2’ € p™ O /p" ! Or is uniquely determined
by the condition

N
2 = 2(1 + z[z]) ' modp" Tt = Z(zj+1[xj]) mod p" !
§=0
for N & |2t ],
Proof. Omissis. O
We are now left to use lemma 4.5 and the results of §6.4 in order to describe the required
tion of or |,
action of | "

def

PROPOSITION 4.6. Let g € [ L Or ] and fix Fl(m’")l € B. Write ® N = Nyn(ls---»1,). In

0 1 Lok
the quotient space

K m K m
Ind20) 1/ (Ind 07 ) 1) o)1

Sof course, this N does not have anything to do with N def L"THJ We believe this conflict of notations will not

give rise to any confusion, as the meaning of N will be clear from the context.
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we have the equality
g- F(m n)l — F(m ")l )

m’ =n m’ =n

Proof. As remarked at the begining of this paragraph, we can assume g = [ (1) [313] ] where

r eFy.
Using lemma 4.5 and the results (and notations) of §6.4.1 we get the following equality in
Or/(p"*):

N n a1 A
sz+1[:pj] = Zp][)\]”] + Uj”]]modp”Jrl
=0

Jj=m

so that, inside IndKOEp :21)1, we have:

10
gEn | Z > (y) 3 w)] i (—u (Ufﬁ )yt [pj[A;j] 1][1’5(773%]

J=mi;<l; AR,

where we convene that i, = 0 and we recall that ﬁj =0form < j < 2m — 1 As for each
2m < j < n the polynomial —u;_1(U;) is pseudo-homogeneous of degree p/ — p™(p™ — 2) the
conclusion follows from proposition 7.4, with V; = —u;_1(Uj). O

Proof of proposition 4.2. The last step in order to complete the proof of proposition 4.2 is
immediate:

(m.n)

PROPOSITION 4.7. Let F, L, € % and let a,d € F,;. We then have the following equality in

Ind "), 1

m”

[CL] 0 (mn) _e(l,l) [a] 0 (m,n)
[0 d] | Pty = G0 @ [t

In particular

[a] 0 (m,n) el )—po/| 1] 0 (mn)
[o [d] By iy—es =@ ( [d] VEL e

Proof. We just remark that for z = Y7 p/[\] € p"Op/p" ' O we have
Sl ] 1S @

[a™'d] = pr (a™'d)).

and that

O]

Finally, for a,b,c,d € O as in the statement of proposition 4.2, we recall the matrix equality

e o)=L @) L VL0 ] Lo 7]

where z,y,z,w € OF are suitable integers verifying Z = c¢d—1. The result follows now from
propositions 4.3, 4.4, 4.6 and lemma 4.7. O
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Part IV On some representations of the Iwahori subgroup

REMARK 4.8. We note that the bijection (33) depends on the immersion 7 : F, — F, fixed in
the introduction and should be noted as P.. As another immersion 7’ : Fy — Fp is obtained
by composing T with a power ¢* of the frobenius on F, we see that the map P,/ is obtained by
composing P with a power ®*, where ® € End(R/) is defined by ®(es) = €|541. Hence, as the
antidiagonal is fixed under ®, proposition 4.2 does not depend on T.

Another approach to the proof of proposition 4.29 As remarked by Paskunas, it is
likely that proposition 4.2 admits an alternative proof, passing through Pontryagin duality. More
precisely, for k € N define

oy def L0 roky et | 1+pOp  OF
Ho™) = [pkﬁF 1 } ’ Ko@) =1 " prop 14 pow |-
Then, by Mackey’s decomposition, we have
Ko(p) ~ T g Ho(p)
IndKz(panrl)l’HO(p) = Inng(pnﬂ)l

and, passing to the Pontryagin dual, we get the follwing profinite F,[[Ho(p)]]-module:
H, ~ T N
(Indg oy 1) = Fpl[Ho(0)| B, grtgpesoyy 1

As Ho(p)/Ho(p"t) = Or/(p") = (Z,/(p")) (isomorphism of additives abelian groups), the
usual properties of completed tensor products give us

def =

Nut1 = FypllHo) O, a1, oty L = FpllHo(p)/Ho(" )] 2= (Fy[Z,/ (0™)]) %!
FplXo,.... Xpoal/ (X5, X)),

1

The latter is an Artinian local ring with maximal ideal n = (Xo,...,Xy_1). We therefore see
that the combinatoric of the radical filtration for N, is described by an f-hypercube of side
p" — 1.

Consider now the F,[[K{(p)]]-profinite module

My = Fy Ko (0@, (7 (ot -

We are tempted to show that the F,[[Ho]]-restriction commutes with respect to formation of the

radical filtration, i.e. the F,[[Hy|]-radical filtration of the restriction Mn+1|fp[[ 1) Coincide with
the F,[[Ho|]-restriction of the F,[[K{(p)]]-radical filtration for M, (indeed, Mn+1|f,,[[H0]] =
Np+1). As the maximal ideal m of F,[[K/(p)]] (which is a Noetherian local ring) is topologically

generated by the elements (g — 1) for g € K{(p), it would be sufficient to show that for any
g € K{(p), h € Hy(p) we have

(g=1(h—1) = (h=1)(g—1) e m’. (38)
Indeed, an immediate induction would yield the stability of the radical filtration with respect to

the Fp[[Ho(p)]]-restriction functor. The computatios of Schneider-Venjakob ([SV],lemma 4.3) or
the classical result of Wilson ([Wil], theorem 8.7.7) show that condition (38) is verified if

[Ho(p), Ko (p)] < (Ko(p))” (39)
An argument by successive approximations (similar to the proof of [DDSMS], theorem 5.2) shows

2
that (Kj(p))P = I = L+ 0F POF and one can check that the inclusion (39) does

p’Or 14 p20p
not hold.
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The stability of the radical filtration with respect to F,[[Ho(p)]] looks more complicated that
expected.

4.1.3 The structure of the representations R, . Fix an integer n € IN. We describe here
the socle filtration (and the extensions between two consecutive graded pieces) for the Ky(p)-
representations R, ;. Again, we can identify the negative elements of R, with the points of a
lattice of R/ according to the following injective map

Bry1 R/
(1) n+1
Ln a—1j|s+a—1]
Fll,...i (lpg1) — (Zp lg )se{o,...,f—l}

T
a=1

whose image will be denoted by %, |; we define in the evident way the subspaces (R, ;) for
N e N.

The structure of R is then sumarized in the following
PROPOSITION 4.9. Let n € N, Fl(ll,fﬂn@n_‘_l) € %, and let a,b,c,d € OF be such that g &

[ ;LC Z ] € Ko(p). Define finally the integer N = Ny, 11(ly,. .. ng1)-

We have the equality

T”
L

9F\"") (L) = ool Q) (B (L) = Y@ P10 T ()P0 BN (140) 4+ )

21 7n - ll’ 7n a(s) 21 7n

»
Il
=)

where y € (R, |)N-1.
In particular, the Ko(p)-socle filtration of R, ,, as well as the extensions between two con-
secutive graded pieces, are described by the associated lattice %, ;.

Proof. We notice that we have a Kq(p"!)-equivariant monomorphism

KO(PnJrl) s

aén—kl) s IrldKO(anr2))(£

1 0
n+1
Xt b1yt (_1)ln+1 Z (A )ln+l [pn—i—l[ pn% ] [1,€].

)\n+1€Fq )‘n+1 } 1
By transitivity and exactness of the induction functor Indggg 7)1 +1)(o) we get a Ko(p)-equivariant
monomorphism
R;H — IndK E ,)HQ)XT
1, Ln+1
B () = (SO BT
The conclusion is now immediate from proposition 4.2. O

4.2 The positive case

This section is again divided into two parts. We begin with the study of the Ky(p)-representations
Rn 41, for n € N: they are described in proposition 4.10. We subsequently switch our attention
introducing other Ko(p) representations (the (Ind% Ko(prt1)X x*)T, defined in §4.3) which will let us
describe the Ky(p)-restriction of principal and special series (see §4.3).

144



Part IV On some representations of the Iwahori subgroup

The philosophy is completely analogous to the one of the previous paragraph: we verify by a
direct computation on the ring of Witt vectors that the Ko (p)-structure of such objects can be
described in terms of f-parallelepipoids in the euclidean space R7.

Fix n € N. We introduce the injective map

B — R
n+1

(0,n) ip(ls+il)
Flo, A (ln—‘,-l) = (;pli )SE{O ..... -1}

which let us interpret the positive elements of R:{ 41 as points in a convenient lattice of R/. The
image of such map (which is a parallelepipoid of side p"*1(rs + 1) — 1) will be denoted as %, 1
We still need the following notations (see also §4.1.1):

i) for a (n+2)f-tuple (ly,...,l,1q) € {{0,...,p— 1}f}nJr2 define the integers
n+1

N07TL+1 (éOa .. 7£n+1) d:Ef Zpaﬁ(ia)

f-1
ey lupr) = (Z Zpsln+1
s=0

ii) for N € N we define the F,-linear subspace

e 0,n
(RE N E <Fl( )l (Lyy1) € By ste Noggi(ly, - lyy) < N> ;

Loyeensbn _
FP

iii) for s € {0,..., f — 1}, we define
Zs = {ac{0,....,n+1}, st it £o0}

and we set

0 otherwise.

ao(s) 22 { min(Z,) if =5 # ()

(0,n)

For a given positive element Fl0 " (l,41) we define the subspace m@O?""Ln-&-l) in the evident,
similar way. o

The structure of R:{ 1 is then given by

PROPOSITION 4.10. Let n € N, F" ) (ln+1) € A}, and let a,b,c,d € Op be such that

[
& [ ;C Z ] € Ko(p). Define finally the integer N d:efNoerl(LO, .o-slyyq). We then have
f—1
0,n —1\e 0o,n T3 s+ap(s
GF, () = (@) ot () (FO) (L) = S (00 WLt (<)oot FOT, (1,01) + 1)
s=0

where y € (R}, )n-1.
In particular, the Ko(p)-filtration, as well as the extensions between two consecutive pieces,
is described by the associated lattice %, 11

The rest of this section is devoted to the proof of proposition 4.10. Thanks to decomposition
(34) (specialized in m = 1) we can study separately the actions of lower unipotent, diagonal
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and upper unipotent matrices on the elements of R:{ 1: this will be the object of the next three
paragraphs.
As said in remark 4.8, the choice of the immersion 7 : F; — F,, is irrelevant.

. . . . 1
The action of upper unipotent matrices. We start from the action of { Or ] . We have

0 1

the
LEMMA 4.11. LetF(OiL (L) € By { Lo } € [ L OF

0 1 0 1 ];WmeN"_*‘fNO,nH(zO,...,an),

Then we have

0,n 0,n) [stao(s n
g- Fl( ) (ln-&-l) F( n+1 pr + 0 )J 1) “0(*) n+1FO (ln-i-l) +ty

209 )l l07 7 (l07 7ln)
where for a suitable y € (RnH)N,l. More precisely, via the projection

Rn _» Rn+1/( n+1)N7(pf+2)’

the image of the element y is contained in the image of the subspace 2 1 -

Proof. Recalling the twisted action of Ko(p"*!) on aénﬂ), the proof follows closely the proof of
proposition 4.3, with some obvious notational modifications. Assuming b = [u] for some p € Fy,
a computation in the ring of truncated Witt polynomial gives

W+ S PN = S P + 5+ ST modp

We deduce
0,n
G () =
j . Lo 1 0
— Z Z (]) Z (,"H)(To)lo Z ()\;J )lj—zj(Tijrl )+ [ . p% ] [1’f£n+1—in+1]
i=0i,<l, in41<0, 1 Tn1 X €F, P

where for notational convenience, we commit the abuse of writing [ 0 (1) ] instead of

p’[Ao
[ [Ao]

1 (1) ] and where we have set

fl . d:ef <_1)1n+1 Xﬁ_(ln+1_in+1)yln+1_in+1
bpt1 7 inta 5

Ty & —SO(SO) 1 o sj(ng) for j € {0,...,n}. We check again that proposition 7.3 applies,
giving the ﬁrst part of the statement. Again, the result concerning the linear coefficients of the
functions F( o ol ) (1,,41) is deduced exactly as in the proof of proposition 4.3: the details are
left to the reader. O]

The action of diagonal matrices. We study here the action of the subgoup

1+ pOr 0
0 1+pﬁp

on the elements of %, +1- The result is the following:
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1+p0r 0
0 1+ pﬁp """
We then have the equality

LEMMA 4.12. Let g €

where y € (Rn+1)N 1.
More precisely, via the projection

Rn _» Rn+1/( n+1)N7(pf+2)7

the image of y is contained in the image of the subspace QU@OW’%H) and writing

y= B | ()

el

(for a suitable set of indexes I and scalars [3; € F;) we have that each function Fl( (V)L) LG )(Lnﬂ(i))
which is not in the kernel ker(pr) lies on an hyperplane

Xo+ - +Xp 1 =N—-tlp-1)
for some t € Ns.

Proof. A direct computation shows that If z € O /p" T 0F then
1+ pa 0 z 1] [ #Z 1 ¢
0 14+ pd 1 0| |10
where £ € Ko(p"*?) is upper unipotent modulo p and 2’ € O /p"* 20 is determined by the
condition

= (1 +pa)(1 + pd) "'z mod p™+2.

o | 1
We can therefore content ourself studying the action of an element of the form ¢ o { t)p @ [1) ]

for a € Or. We have

n p] _1 pJ+1 1 1 0 .
QFZ(OO, )n (nt1) Z > <]+1> 2 O s [PjP\j] 1}[1"}0["“_1"“]

1
=04, <4 Li+ A;EF,

instead of

1 0 ]
P[] 1

where for notational convenience, we commit the abuse of writing [

[ [Ao] 1

_— ] and where we have set

fl s d:ef( ) n+1X’" (n+1 ln+1)Yln+1_in+1
and T)jqq o qj(ijH) for j € {0,...,n}. We deduce the statement using the very same argu-
ments of the proof of proposition 4.4: the details are left to the reader. O

The action of lower unipotent. We finally deal with the action of the subgroup [ pé’ (1] } .
F
We have
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. def
1 Write® N = Nopga(ly, -y Loy

LEMMA 4.13. Letg € [ pOp 1

1 0 } and fix Fé)on)ln (Lyy1) € B
In the quotient space

Ry 1/ (Ry ) N—(p-3)
we have the equality

0,n 0,n
9 F") () = B (Lg)-

lO7 7 n
Proof. The proof is analogous to the proof of proposition 4.6 using this time the results and nota-

1
plz] (1] ] ; a computation shows that for z € O /p" T OF

i 1)) [ o)

tions of §6.4.2. Again, we assume g = [

we have

where £ € Ko(p"*?) is upper unipotent modulo p and 2’ € Op/p™*? is determined by the
condition
n+1
2 = ij[xj}zjﬂ mod p" 2.
j=0

We then deduce from the results of §6.4.2 that

0,n) - L 5 . % 7. 1 0
Q—F; ..... n+1 Z Z <.J.+1> Z ()\JPJ )13 15 (‘/jz—il )—J+1 |: p][)\ ] 1 :| [1, fln+1727l+1]
§=0 <Ly A\ €F, J

Lit1
SRS A

. : . s 1 0] .
where for notational convenience, we commit the abuse of writing { 0 1 ] instead of

P°[Ao]
|: [)\10] (1) d:ef( ) n+1 XTI (n+l_ln+1)Y]n+1 Gl and

def

Vigr = —uj(fjjﬂ) for j € {0,...,n}. Thanks to lemma 6.18 we can apply proposition 7.5 to get
the desired result O

] and where we have set zo = 0 fln+1 i1

End of the proof of proposition 4.10. 1f z € O and a,d € F; we have the matrix equality
[a] O z 1] [ zlad™] 1 [d 0
0 [d] 1 0] 1 0 0 [a]

la] 0 (0.n) el a0 o)
[ 0 [d] }FO o) = (@55 )X’"([ 0 [d ])FO 1, Lnn)-

so that

Loyl Lysensdy

The result follows from lemmas 4.11, 4.12 and 4.13, noticing that

e o)=L @) e VL0 ] Lo 7

for suitable x,y, z, w € OF verifying § = ba~1. O

Sagain this N does not have anything to do with N = &f L”Ilj We believe this conflict of notation will not give

rise to any confusion, as the meaning of N will be clear from the context.
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Part IV On some representations of the Iwahori subgroup

4.2.1 On some other Ky(p)-representations. As annonced in the introduction, we de-

fine and study some Ky(p)-representations (denoted as Indgo(pn+1)x+) which naturally appear
dealing with the Iwahori structure of principal and special series. The reader will realize soon
that the behaviour of the representations (Indg0 (pn+1)x)+ can be treated with the same methods
of §4.2 and 4.1; the proofs will be therefore omitted.

Fix an integer n € N, a smooth character x : Ko(p"™!) :— F; and an Fp-basis {e} for
the underlying vector space of x. The Ky(p)-representation (Indﬁo(pmﬂ)xfr is defined as the
K(p)-subrepresentation induced by Indflg0 (prt1yX 0N the Fp—subspace

z] 1
<{|: [1] 0 :| ,e] € Indgo(pn-ﬁ»l)X, FAIS In+1>fp

(the Ko(p)-stability of such F,-linear space is immediately verified). Again, we have the

DEFINITION 4.14. Let j € {0,...,n} and let I; € {0,...,p — 1}/ be a f-tuple. We define the
following element of (Indﬁo (o) )t

1 0

On def ]

lO) L Z A Z Z )\p [ [)\P%] 1 ] [176].
Mo€Fy j=1 X;€F, j

The family

A {Fgf%n € (Indgo(pn+1)x)+, L;€{0,....p— 1}/ forallj € {0,...,n}}

is an F,-basis for (Indgo(pnﬂ)x)*.
(0,n)
sl

Exactly as we did for R i1, €ach given element F) of #7% will be read as a point in

(O RRRRRLY

a convenient lattice % of R/ and the integers ag(s) (for s € {0,...,f —1}) can be assigned.
Moreover, if N € N, the subspaces ((Indﬁo(pnﬂ) X))~ are defined in the similar, evident way
(see the introduction of §4.2 for details).

The structure of the representations (Indﬁo(pnﬂ) x) " is then described in the next
PROPOSITION 4.15. Letr € {0,...,p—1} be an f-tuple, n € N an integer and let a,b,c,d € Op
be such that g = [ ]?c Z ] € Ky(p). Fix an element Fé(jfzn € #* and set N = No (Lo, - - . 1,,).

Then

f—1
(0n) 1 —Tve(lyyly, (0, [s+ao(s)] 10,
g ' F‘lOv'?"Lvln o (a )6(70 ) F1lO7 n’ n Z p laZ(SaO F(ZOVCL 7ln) €s + y
s=0

Jr
where y € (Indgo(pnﬂ)xz IN—1-
In particular the Ky(p)-socle filtration of (Indﬁ0 (pr+1) x;)", as well as the extensions of two
consecutive graded pieces, are described by the associated lattice % .

Proof. Omissis. O
4.3 The Iwahori structure of Principal and Special Series

We are now able to describe easely the Iwahori-structure of principal and special series for
GLo(F'). Such result is essentially a formal consequence of the previous sections §4.1 and §4.2.1.
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For X\ € F; and r € {0,...,p— 1}f we consider the smooth parabolic induction

Indgl(f,gF)u)\ ® w1
where w denotes the mod p cyclotomic character and p) the unramified character verifying
px(p) = . It is well known that for (r, A) ¢ {(0,£1), (p — 1,#£1)} such inductions are irreducible,
while, if (r, ) € {(0,%1), (p — 1,£1)} they have length 2 and a unique infinite dimensional factor,
the Steinberg representation (see also [BL94]). Thanks to the Iwahori decomposition and Mackey
theorem we have

GL2(F ~ GL2 (0
IndB(;g ),u/\ ® whuy-1|g — IndB(é,;)F)XZ

and, since the elements f € Indg(L;SF) r@w iy —1 are locally constant functions and B(0r)\GL2(OF)

is compact we have a natural isomorphism

GL2 (0 ~ .
Ind 21077 > lm Indg o) X3

neN
Again, we can use Mackey decomposition to deduce

~ K
Indgo(pnﬂ)XﬂKO(p) — Ind KEE?LH)XE 3] (Indﬁ(pnﬂ)xiﬁ

so that, by exactness property of filtrant inductive limit, we get

Lo (F r ~ . K S : S
B ® Wiy () — (im Indg™®) L x3) @ (lim (IndfS oy X)) (40)

neN neN

G
Ind B

The isomorphism (40) let us reduce to the case of the finite inductions Indgg g; 7)1 1) Xz IndgO (pn+1) X;Jr,

whose structure is completely described in propositions 4.2 and 4.15. Therefore
THEOREM 4.16. Let A € F; andr € {0,...,p — 1}/ an f-tuple. For any m € N we write

: GLy(F
Fg(m?’) < Indg(;g Vix @ Wiy

to denote the characteristic function of Ko(p™).
The Ky(p)-restriction of the parabolic induction admits a natural splitting

GLo(F r ~ . K S : S
Ind 5 27 x @ W1 | gy — (limIndi 2P 1 x3) @ (lim (Ind i xs) ).
neN neN

Moreover an Fy-basis ™ for lim Indggglﬂ)){z (risp. #+ for lim (Indﬁo(pnﬂ)xz)‘k) is described

neN neN
by the elements

EE D Gph [ 0o ] 2L [ 71 ]
1

(risp. the elements

(0,00)  der | M) 1 2y 1 0
By s = ZA&[ RS B DOV T

Xo€Fy An€Fy

for a varying sequence (L,,)nen. € {0,...,p — 1YN>) (resp. (1, )nen € {0,...,p— 1}V,
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If we associate the elements of such basis to points in R/ according to the law

1,00 - i—17|s+i—1
Fl(h-..,l)n,..-, = (ZP 11} - J)se{o,._.,f_1}
=1
Fg(voog)n, = (ZpiliLsﬁj)se{o,...,fﬂ}
=0

and write Z~ (resp #Z*) to denote the image of %~ (resp. ") by this map, then the Ky(p)-
(p)

socle filtration for li_n}Indgg(Z 1) X7 (resp. for li_n}(Indgo(an)XZ)’L), as well as the extentions

neN neN
between two graded pieces, is described by the associated lattice 2~ (risp. Z7).

The Iwahori structure of irreducible principal series follows.
As far as the Steinberg representation is concerned, we just need to notice the following fact:

LEMMA 4.17. Assumer € {0,p — 1} and let n € N. We have a K((p)-equivariant exact sequence
0 1,0 + K
0— ((FQ( ), Fg ) — Indf niyXs @ Inngg,{H)X; — (Indjg, iy Xe/ (D)Ko () — O-

Proof. The proof is an induction on n, the case n = 0 being well known (cf. [BP], lemma 2.6).
For the general case, we leave to the reader the easy task to check that we have a natural
commutative diagram with exact lines

0 0
K s ot .
Indy; E%Xt @ Ilngo () Xz (Indgo(p")xz/ﬂ»
K, s oF .
Indj®) x5 & Tndf i xs (IndS, i)/ (1))

IR

K K + s+
(Ind o1y x3 /Mndied () X3) © (Indff "/ ;)

0 0

so that the snake lemma and the inductive hypothesys, giving an exact sequence
0 1,0 + K
0 — ((F”, F")) — IndfE oxs™ @ Indg? ) X8 — (IndfS oy xi/ (1) ko) — 0,

let us conclude. ]

5. The structure of the universal representation

In this section we show how the techical results of §4 concerning the representations Rff 1 and the
formalism of §3 let us describe the Iwahori structure for the universal representation (r,0,1).
Again we develop an euclidean dictionary which enable us to handle the involved combinatoric
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FIGURE IV.5. Euclidean structure for Rf 1/ RE.

of m(r,0,1)|x,(p): the conclusion is then proposition 5.18, which loosely speaking shows that
the required structure is obtained by a juxtaposition of the blocks Rf 41 in a fractal way. As a
byproduct, we will exhibit a natural injective map

c—Ind%,V < 7(r,0,1)

where V' < 7(r,0,1)|xz is a convenient K Z-subrepresentation of m(r,0,1)|xz. We remark that
a similar injective map has been detected independently by Paskunas in an unpublished draft.

We give here a more precise description of this section. Thanks to proposition 3.7 we can
content ourselves to the study of the representations hi)n Ri @ rRf PRy R 41 and hi)n Ry @ Ry
nodd nodd
o Dp- R, ;. As seen in proposition 3.5, such Ko(p)-representations have a natural filtration
whose graded pieces are isomorphic to the quotients R;f 1 /RY, R, 11 /R, respectively.
Such quotients are studied in §5.1. As we did in sections §4.1.3 and §4.2 -concerning the
Ko (p)-structure of R} 1 and R 4- we introduce a natural correspondence between a “canonical”

F,-base ‘%7:;1 Jn for RE. /R and a convenient lattice (denoted as '@fﬂ /n) in R/. Thanks to

the behaviour of the canonical Hecke operator (7,1)P°®"°8 with respect to the elements of %’f 1/n
we see that such a lattice is in fact the set-theoretic difference of the lattices ‘%ril and Z;F (cf.
lemma 5.1): figure IV.5 shows this phenomenon for f = 2.

Unfortunately, we can not use directly the results of sections 4 to concude that the Koy(p)-

structure of Rf 1/ RZ is predicted by the lattice %’irl Int in fact propositions 4.9 and 4.10 describe
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the extensions detected by functions f1, fo € %’fﬂ lying on adjacent antidiagonals.
It is therefore necessary to perfect the estimates made in the proofs of propositions 4.9, 4.10:
this is the object of §5.1.1. We remark that the behaviour of (R1/Ro)* (resp. Ry Dp- R;) is

slighty different from that of R}, ,/R} for n > 1 (resp. R, /R, for n > 2) (and treated in
§5.1.2).

In section §5.2 we determine the structure of the amalgamed sums - - - &® RE Rff ~1: their struc-
ture can be easily determined from the results concerning of Rf 1 R*. Indeed, thanks to the
behaviour of the canonical basis of R with respect to the Hecke operators (1), )P°"& we see
that the convenient euclidean pictured is obtained by gluenig the lattice z@irl In with (a suitable
translation of) the lattice associated to . .. R*, Rffl (which we assume inductively to have been
described). Again, the Ky(p)-socle filtration is expected to be obtained by successive intersections
of such lattice with parallels antidiagonals, as it was for Rfﬂ /R, but a simple computation
shows that the hyperplanes giving the J-th layer of the socle filtation of %f;rl In lie always below
the hyperplanes giving the J-th layer of the socle filtration for ... RE Rf_l. As ... RE Rf_l is

a Ko(p)-subrepresentation of ... R Rf 1 we are able to deduce the desired result of proposition
5.18. '
In figure IV.6 an exemple of the glueing of blocks 7 and their fractal stucture.

As annonced, we can combine lemma 5.1 and proposition 3.5 to exhibit a natural injective
morphism -whose existence was known informally by an unpublished work of Paskunas-

c—Ind?(ZV — 7(r,0,1)|xz

where V < 7(r,0,1)|kz is a convenient K Z-subrepresentation of 7(r,0,1)|xz: this is the object
of proposition 5.12.

As the cutting hyperplanes are fixed by the linear transformation es — e|,q) of R/ the
results of §5.1 and §5.2 do not depend on the immersion 7 : F, — F,, see remark 4.8.

5.1 The structure of the quotients R;  ,/R;
In the flavour of §4.1.3 and §4.2 we start by describing a suitable F,-basis for the quotients

Ry /RS,
LEMMA 5.1. Let n € N3;.

1) An Fp-basis %’:H /n for R} | /R} is described as the homomorphic image (via the natural
/R;") of the elements

F(O,n)

Lk

projection R} | — R},

(Int1) € B4y
such that [, £ r ifl, ., = 0.

2) An F-basis ‘%)7:+1/n

projection R, | — R /R, ) of the elements

1n B
Fl(l,--.,)Ln(lnH) € B

for R, /R, is described as the homomorphic image (via the natural

Tstrictly speaking, the figure gives the glueing of blocks R} ,/R} , and R} ,/R}, ie. the structure of
Rf |/RY , Sop RI_H. If we want to get the picture of the whole amalgamed sum --- @+ RL_I we should

insert a “even smaller” structure inside the point (1,2) of the rectangle drawed on the left in figure IV.6.
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FIGURE IV.6. The glueing and the fractal structure.
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such that [, £ r ifl, ., = 0.

If n = 0 then an F-basis for (R1/Ro)" is described as the homomorphic image (via the natural
projection R — (R1/Ro)") of the elements

(0)
FO,)
such that l; € r if [; = 0 and of the element Fﬂ(o) 0).

Proof. The result follows immediately from the definition of the operators (7,7)P°®"¢8, Indeed,
for n > 1 we have (with the obvious conventions if n = 1):

(TP EC Y (1) = (~DHESY, (0);

Ly 4 \E N

(THreEE Y (1) = (~DBESY ()

Lyvly 1 Lok,

while, for n = 0 we have
0,—1 0 r ,0
To(Fy" (1) = KO (0) + (-1)%61,0Fy (0.
O

As usual the elements of the basis %+ will be read as the elements of a convenient lattice

n+1/n
%;L—LH/” of RY.

Interpretation in terms of euclidean data. Exactely as we did in sections §4.1.3 and §4.2

we have natural injections %’;—L i T R/ which let us interpret the elements of %ff 1/m 88 points
in a convenient lattice %jﬂ /n of RY: the details can safely be left to the reader.

The euclidean interpretation of lemma 5.1 is therefore clear: for n > 1 the lattice %:{H /n
(resp. %;H/n) of R/, which is expected to describe the Ko(p)-structure of R, /R, (resp.

R, .1/R;), is obtained from the lattice of R, ; (resp. R, ;) by removing the simplex

{(zo,...,25_1) € %:_H st.zs < p"(ripys) + 1) foralls =0,..., f -1}
(resp.
{(xo,...,zp1) €Z,yq stoas < p"il(anJrs,u + 1) foralls =0,...,f —1})

(equivalently, 9?: ,, is obtained as the set-theoretical difference of ,@fﬂ \ ZF).

+1/
We refer the reader to figure IV.5 for an exemple in residual degree f = 2.

The lattice %f/o associated to (R /Ro)" similarly obtained from the lattice associated to Ry,
by removing the subset

{(zo,...,x51) € By sbag < (r|pis +Dforalls=0,...,f =1} \{(ro,...,7p-1)}.

To be precise, the lattice %fr/o (resp. the lattice naturally associated to R, @ RT R; ) does not

describe the Ko(p)-structure of (R1/Ro)* (resp. Ry Dp- R;) sic et simpliciter. But a harmless
modification of the formalism used for %:-H/n if n > 1 (resp. %7;_1/” if n > 2) let us detect their
Ky(p)-socle filtration: see section §5.1.2 and propositions 5.8, 5.9 and 5.10 for details.

We will describe in detail the Ko(p)-structure of R, /R, for n > 1; as annonced, the
negative case (for n > 2) will be left to the reader.
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FIGURE IV.7. A priori, we can have disagreeable glueing phenomena.

Preliminaries: partitioning the lattice. As annonced in the introduction to §5, the mere
knowledge of the Ko (p)-socle filtration for R;!, | does not allow us determine the structure of the
quotient Rz 1/ R Indeed proposition 4.9 let us determine the extensions detected by functions

Fgo,n)l @), Fl(/&n)l’ (E}) c @:H lying on adjacent antidiagonals. We could therefore get, a priori,
Lyl [T

a nontrivial extension between them if [; = l; =0 forall j #nandl, =(0,...,0,75,0,...,0)
L,=(0,...,0,r¢,0,...,0) for s # ¢ as illustred in the figure IV.7.

Notice that this phenomena happens only if F' # Q,: if I’ = Q,, the structure of the quotients
is immediate from the structure of R:{ 11

We modify the strategy of section 4.2. We show that the Ky(p)-strucure of R, 41 Is again
predicted by %’;{ 41 but each cutting antidiagonal Xo + -+ + Xy 1 = constant of section §4.2 is
now replaced by f-antidiagonals of the form Xo+ -+ Xy 1 = p"(7|545) + 1) + constant: we will
say that Xo+---+ Xy 1 = p"(r|nts) + 1) +constant is the s-th cutting hyperplane of R:Jrl/R:[.
This means that we naturally divide the lattice ‘@:H /p IDtO sub-blocks U, ., of increasing size
for k € {0,..., f—1} (cf. definition 5.2); the J-th composition factor for the Ky(p)-socle filtration
of R;f 11/ R, is then obtained as the sum of the subspaces determined by the intersection of the
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block U, ., with the antidiagonal Xo + --- + X;_; = p"(rs,,., + 1) + constant, for varying
k € {0,...,f —1}. This is the content of proposition 5.3. In figure IV.8, an exemple of how the
inreasing block (and successive cuttings) look like.

We determlne the decomposition of Z
sm €10,...,f — 1} by the condition

t1/m into increasing blocks. Fix n > 0 and define

Tlsm4n] = maX{TLs—O—nJ e
We fix an ordering
P=1 27 s4n] 2 Tspirtn] = 2 Tlspysa4n] =0
and define the following F,-subspaces of R /Rt

DEFINITION 5.2. For k € {0,..., f—1} define U
by the elements FL(OO’TL (Lys1) € B

smap as the Fp-subspace of R} |/ R} generated

verifying the properties:

n+1/n
i) for s ¢ {Sm,...,Sm+ik} we have
ly\_f-‘rnj < r\_s—i—nj;
ii) for s ¢ {Sm,-..,Sm+k} We have
s+n+1
L =o.

By abuse of notation, we will also write Us, ., to denote the image of the canonical basis
(in the obvious sense) of Uy, ., in the lattice %’:{H In- The geometric meaning of the previous

definition is the following: the block Uy, is described as the intersection of the subset

{ X < pn(rlsm+k+1+nJ +1)}n---N {Xsm+f71 < pn(rL8m+f—1+NJ +1)}

with the lattice %2 1 /n : in other words, we give restrictions on the coordinates s, .- -
of a point (zg,...,7/ 1) € Z

1 /n to lie in the block U

Notice that in order to detect if a function F( ”) (ln+1) € %’nﬂ/
smar We only need to study the last two f- tuples ln, ln+1

Obviously, the subspaces U describe (for n > 1) an exhaustive increasing filtration on
R:{H/Rf{ as a F,-vector space.

) xstrf*l
Sm+k*

belongs to the subspace

Py

Sm+k

The following crucial result shows that the lattice ‘%):H In let us detect the required Ko(p)-
structure for n > 1.

def | 1+ pa b
PROPOSITION 5.3. Assume n € Nxy. Let a,b,c,d € OF, g = e 1+ pd € Ky(p), fix

an element Fl(oon)ln (l,41) €T for some k € {0,..., f — 1} and write Nopnt1(ly,---,0,41) =
pn(rtsm+k+nj + 1)+ J for some J € N. Finally, consider the linear development

Sm+k

0,n)
GF™) (Lupr) = D BOFND | o Lo (2)

el

(where I is a suitable set of indices (i) € F; are scalars).
Fix an index iy € I and assume there exists k' € {k+1,..., f — 1}, minimal with respect to
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0, .
the property Fi\i) 1o (Luya(i0) € B, \ By

Then we have
NO,TL-i-l(lO(iO)? s 7£n+l (/LO)) < pn(TLsm+k/+nJ + 1) +J -2 (41)

In particular, the lattice describes the Ky(p)-socle filtration, as well as the extensions

n+1/n
between two consecutive graded pieces, of R, /R

We insist on the geometric meaning of proposition 5.3: we pick a function in the k-th block
F(O’n)l (lys1) € Vs, liyng on the antidiagnal Xo + --- + Xy 1 = p"(rs,,., + 1) +J and

lyyly,

(O(Z;)) (io)(ln +1(40)) a function appearing (with nonzero linear coefficient) in the linear devel-
b 0,n)

opment of gF(O n) (Lnﬂ) If F( Iy (io),.. (ZO)(lnH(io)) happens to belong to a strictly bigger block,
say Vs . Wlth k’ > k and mlnlmal Wlth respect to this property, then it lies strictly below the
antidiagonal Xo +--- + Xy = p”(rsm+k, +1)+J-1

Thanks to this phenomenon, we can invoke proposition 4.10 to deduce the Ky(p)-structure
for R, ,/R} from the associated lattice 2 +1/n" the J-composition factor for the socle filtration

of R+ /R, is determined as the sum of the f subspaces obtained by intersecting each block
Q]Sm% with the corresponding antidiagonal Xo + ---+ Xy 1 = p"(rs,,, +1) +J (as in figure
IV.8).

Notice moreover that the statement of proposition 5.3 is empty if f = 1: in the rest of §5.1
we will assume f > 2.

5.1.1 Proof of proposition 5.3. The rest of this section is devoted to the proof of propo-
sition 5.3. Thanks to decomposition (34) we can study separately the actions of lower unipotent,
diagonal and upper unipotent matrices on the elements of R;H: this will be the object of the
next three paragraphs. The proofs are similar to the proofs of propositions 4.11, 4.12 and 4.13,

but need a delicate extra argument due to the irregular sttructure of the lattice 9? 1/

The action of upper unipotent matrices. We study here the case where g € [ 0 ﬁlF },
and again we assume g = [ 0 [/f] ] for p € F,. Exactly as in lemma 4.11 we write
07
G, (Lsr) =
ntl l 1 1 0
7 l — J
-5 2 ()% (e 3 rmame | 0
io<ly A €Fg PRAST 1
. . . o 1 01 .
where for notational convenience, we commit the abuse of writing Pl 1 instead of
0

[ [)\10] (1)

] and where we have set

def i =1~ byi1— 1y,
fln+1_1n+1 — (_1)7 +1 X [ +1)Y +1 +1,
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Ty = —50(S0), Ti1 = —s;(Sj11) for j € {0,...,n}.
Developing the polynomials T}1’s we write

0
GF", () = 3 BOFS 1 o L ()
el
(for a suitable set of indices I) and we pick a vector v appearing in the linear development of
(0, n) .

gFl (LnJrl)‘

def 75(0,n) )

= F[K07117 Sk, ](Mnﬂb»
where, as in proposition 7.3, we write for 0 < a <n+1

n+1
o =l, =i+ Y pl Mkl
b=a+1
and, fora +1 < b < n+1 we have
f-1
Hgb) _ Zpsﬁgb),s
s=0

(s
where £\ is the exponent of )\, in szb - By the definition of the subspace Us,,,, we see that

Ky = én - Zn +p|—_1JKJ£’Ln+1) =

k f—1
— Zplsm+h+nJ (Z%L5m+h+nj) . Z»7(l[5m+h+nj) + ﬂ;n+1),tsm+h+n+u) + Z pL8m+h+nJ (lgsm+h+”J) _ 2-7(Z[Sm+h+nJ))
h=0 h=k+1
If v ¢ Vs, ., then

K = min{ce{k+1,...f—1}, st [sllm+etmD] s e 0> k)

and we necessarly have k,, # 0 and the equality

f—1
ol = + P IR) = T ) o) G )
s=0

for a suitable j > 1. Following the inequalities (51), (52), (53) of proposition 7.3 (i.e. using the
subadditivity of the function s and the fact that the polynomials T} are homogeneous of degree
p? if \; is defined to have degree p’) we get

s(kg) + ... " s(k,4 ) < P (Mspintn) +1) +J —5s(ip) +p"(p — —1)j.
As n > 1 the inequality
p (TLsm+k+nJ - r[strk/—I—nj) < j]*pn(p - 1) + 5@0) -2

is then obvious if either j Z 20T, wtn) > 0.

Assume finally j = 1 and T +n) = 0- Therefore the p-adic development of [k, | has the
form

(l1(10) - Z%O) + H1(1n+1)’17 v 717(18) - ng) + ﬁ%nJrl),SJrl - b l7(18+1) - i1(18+1) + ’%7(7,n+1)75+2 + 17 s )
for a unique s € {s,...,Smyxr}. The condition x ¢ U, imposes s+ 1] & {sm,..., Smik}

and the minimality condition on k" imposes | s, +n] = s + 1], in particular r| ;) = 0. As
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1
. . . . ~ | s+1] .
’i7(ln+1),s+1 is the coefficient of A\j; in the fixed monomial of s(S,+1)"»+1 " and zTLfHJ < g1 We

get an absurde.

The action of diagonal matrices. The next step is to study the action of an element g €
[ 1+ pOF 0 l+pa O

0 14+ pOFr 0 1
analogous to those of the previous paragraph, in this case using the fact that the polynomials
qj,l(@j) of §6.3 are homogeneous of degree p’. The details are left to the reader.

] ; again we can assume g = [ . The arguments are completely

The action of lower unipotent matrices. In this section we deal with the action of an

1 0 1 0
pOF 1 plp] 1
the previous and we need to recall and carry on the accurate estimates seen in the appendix A
§6.4.2.

element g € [ } again, we assume g = { } This case is more delicate than

Still others remarks on some universal Witt polynomials. For notation and convention
we invite the reader to see Appendix A-§6.4.2. Let z = (Ao, ..., A\n,0) € Wy, 41(F,) and write

n+1 ' '
> Pt = (Us, ..., Unsa).
=0

for U; € Fp[Xo, ..., Aj, u]. We recall that Uy, is obtained by specializing the universal polynomial
SPX(1), .., X(nt2)) at
X(G+1)=(0,...,0,(Poth ™ Q)7 (@) ..., (Potl ™ (AP (7). ).

-~

position j position j+I

We recall moreover that a monomial X of SP™(X(1),...,X(n +2)) has the form

h h
X — H Xlo(l)azo(o) . H Xp,,(n+ 2)azn+1(n+1)
lo=0 ln+0=0
where the integers a;, (i) verify
h h
Zploalo(O) 4+ Zpl"“alnﬂ(n +1)= ph;
lo=0 In41
Therefore a monomial Ag® - - - - )\zh issued from U}, verifies
h nt1 h h
Y Plslag) <Y G +DQ P ali) =" =D (0 - (G + 1)
j=0 §=0 i=j j=1

where we have set
h
def i—1q .
2 > pai(j).
i=j
We focus our attention for the case h = n + 1, obtaining thus the following

LEMMA 5.4. A monomial of ﬁn+1 has the following form
Aan(0)Fpanti(l)  yon-t Ag0
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whose the exponents verify the following properties:
1) we have an( )y€{0,...,p—1} and ap41(1) € {0,1},
2) letting x; = Z?Jrjl p*~Ja;(j) we have

h
Zpﬂs ;) + (an(0) + ant1(1) <p" =D () = (j + 1))z,

Jj=1

3) if ap4+1(1) =1 then the monomial has the form
n+1

NN

Proof. The fact that «a,(0) # p follows from the fact that in the polynomial S"+2 the coefficient
of X, (1)? is zero (the proof is the usual one: see lemma 6.15). Assertion 2) is deduced from 1)

(and the fact that f > 2). Assertion 3) follows noticing that (Pot2(2))P = 2)\:8”“)\2 + 2 where
T € Fp[)\o,...,Anfl]. O]

We recall the ring morphism wuy,, : Fp[Ao, ..., Al = Fp[ho, ..., App] (cf. 6.4.2). If z(s) eN
deduce the following

~ .(s)
LEMMA 5.5. In the preceeding notations, a monomial issued from wup(Up41)"7+! has the following
form

n (s) (s)
(5 AR BB O AT A

where the exponents verify the following properties:

1) we have
n+1n+1
s(fo+p" B (1) + pra (8) + (BY(0) + B (1) <p™ iy = 303 (0 = (G + 1) 4il))
Jj=11i=j
for suitable integers A; ( ) € N;
2) we have A;(j) = 0 for all couples (i, j) if and only if igfll =0;
3) we have 0 < BY) (1) < A%, (1).
Proof. From the proof of lemma 6.18 we see that a ﬁxed monomial A\j® - --- - A%" issued from
~ i)
U (Upq1)™n+1 is pseudohomogeneous of degree d = s n+1 Z"H Z"H( — (7 +1))ai(4),
where the integers a;(j) € N are not all equal to zero, except if Zng)rl 0. Since u;(A;) is
pseudohomogeneous of degree p’ (lemma 6.18), it follows from lemma 6.12 that a monomial
)\go . )\T/BL” issued from w,(Ay® - - - A9dn) is pseudohomogeneous of degree d so that, in particular,
it verifies
n ' n+1n+1
S s <L = 30N 0 - G+ 1)ai).
7=0 7=11i=j
Moreover, from lemma 5.4, we deduce that 3/, = b,(0) + pb,+1(1) where 0 < b,(0) < a,,(0) and
0 < bpt+1(1) < apg1(1). Using lemma 5.4 the conclusion follows easily. O
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We go back to the study of the action of g. As for lemma 4.13, we write

(0.n) 11 WL (1T L0 .
9Fy, .1, Unt) Z Z (J > > TV [pjp\j] 1 ] L fr =]

RS SAR Aj€F
. . . s 0] .
where for notational convenience, we commit the abuse of writing Pl 1 instead of
0

[ P\lo] (1) ] and where we have set 7 S 0,

fi i Cl:ef( ) i1 XTI (n+1+’n+1)YLn+1_1n+1
and V1 L (UJH) for j € {0,...,n}. We develop the polynomials V' fl , Tecognizing again
a sum of elements of the basis %’n 1t e pick a vector

e 0,n
o= FR e (T 1)

as in the previous paragraph we write for 0 <a < n+1

n+1
=1, —i,+ Z pla=t] ’ﬂ(zb)
b=a+1
and, fora+1 < b<n+1 we have
f—1
/igb) _ Zpsﬁgb),s
s=0

where Ii((zb) is the exponent of A, in Vb Again, using the notations of lemmas 5.4 and 5.5, we
focus our attention on

Ep = ln - Zn +p|—_1JK:7(’Ln+1) =

k
= ZPL577L+}L+nJ (l;l.sm-!—h""nj) _ Z"SLLSm-ﬁ—h'i'"J) + B7|__L5m+h+1+nj (0) 4 B7|_Li7ri+h+1+nj( )) +

h=0

f—1
5 n) (1 (smtntnl) _ ([Smin+tn))
+ Z plementnl (g —in, )
h=k+1
(where we can again assume k,, # 0) and we distinguish the following four possibilities.

I).Assumerl 0 B}Li”fh+l+nJ( 1) = 0. The condition v ¢ U, imposes that

Z l7(15) s) + B|_5+1J (p - 1)

for j 7 €N, ] 1. We recall that for each j € {0,...,n—1} the polynomial Vj is pseudohomogeeous
of degree p’ — (p — 2) so that the subadditivity of s and lemma 5.5 give

n+1 A n+1 ‘ n+1 _
> Pls(ry) < Psl) — (0 —2) (O s(iy) —pip— 1)
j=0 j=0 j=0

and the conclusion follows.

163



On some representations of the Iwahori subgroup Part IV

IT). Assume S r_, nj_"thJrnJ( 1) > 2. Then we have

f-1 n

SN TP < (i) — 207 (0 - 2).

s=0 j=0

The conclusion is now easy and left to the reader.
IIT). Assume 1 = S5 Alsmentlinlqy _ sk plementiinly g 16t by € {0,... &}

n+1 n+1
. . m 1 . c . . .
the unique integer such that BTLiH*hlJr +nJ( 1) = 1. We can again distinguish the following two

subcases:

IIT)4 Assume
f-1

s(ka) = D (1) = i) + BETI(0) + B (1) = - 1)
s=0
for ] eN, j 1. In this case the reader can check that
n+1 A n+1 ' n
> Pls(ry) <Y s(ly) — (0= 2O (i) —1) = (p—2)p"
j=0 j=0 §=0
and the conclusion follows.
IIT)p Assume finally
-1
s(ra) = (15 =il + BEFD(0) + B, (1),
s=0
Such condition, together with v ¢ U, . imposes that |syn, + 1] € {sm,...,Smir}; by

minimality of k" we conclude that sy, ¢, +1] = Spa; in particular r, ww > 0. We deduce
1

that the choosen monomial of un([}i:l )in+1 is of the form

= Lsm+h1 +14n]

where the integers o/, verify

J
S ps(a)) < (0" = (p— 2))(5(isy — 1)).
§=0

By subadditivity of the function s we find finally
n+1 n+1 n

> pls(k;) < ijﬁ(lj) — (=2 _s(@)) + @™ = (0= 2)(s(ip 1) — 1) +
=0 '

=0
+(1+p ) p"“ﬁ( fpi1)

1
(where the integer 1 + p” is deduced from the monomial Ag\% ") and the conclusion follows

easily (notice that Z"H (i;) = 1).

The proof of proposition 5.3 is therefore complete.

REMARK 5.6. The reader has noticed that if we assume rs < p—2 for all s € {0,..., f —1} then
the inequality (41) in the statement can be replaced by the following, stronger, inequality

NO,n—I—l(lO(Z.O)v s 7ln+l(i0)) < pn +J -2
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5.1.2 The case n = 0. In this section we show that the Ky(p)-structure of (Ry/Rp)" is
actually slightly more complicated than expected, at least under some particular conditions on
the f-tuple r. The negative counterpart will be the Ko(p)-structure of Ry & RT R5 which is left to
the reader. The aim is to give an analogue of proposition 5.3 in the case n = 0: in the next three
paragraphs we will analyse where and how a statement of such a kind fails to hold true, detecting
some condition on the f-tuple r. The main statements are propositions 5.8, 5.9 and 5.10, where
we see that the Koy(p)-socle filtration for (R1/R)" can be obtained from the associated lattice

%’fr/o, with some harmless adjustment in few special cases (according to the combinatoric of r).
0 0

In what follows, we fix k € {0,..., f — 1} and an element Fl(o )(Ll) € Vs, \h \ <F£( )(Q)>fp. Let

g € Ko(p). We fix an element v = F F}SB)W ([k;]) appearing (with a nonzero linear coefficient) in

the F,-linear development of gFl(OO) (1), for suitable integers kg, k; € N.
We assume there exists an integer ¥’ € {k+1,..., f — 1} such that v ¢ DU \ Vs,,,., and
k' is minimal with respect to this property.

The next lemma can be verified by an easy computation on the ring W1 (F,):

LEMMA 5.7. In the previous hypothesis we have
Noa(kg, k1) = Noa(lp, ly) — €

where
. (1 Op , N ~ . ,
1) ifge 0 1 then € = s(iy) + s(2;) + j(p — 1) where j > 1 and s(iy) + s(i;) > 1;
. [ 14+ pOr 0 . ~ . ~
2) ifge _ 0 |+ pOp ] then e =s(i;)(p— 1) +j(p — 1) where s(i;) > 1 and j € N;
3) ifge pé’ (1) } then e = s(iy)(p — 2) + j(p — 1) where s(i;) > 1 and j € N.
| POF
Moreover:

14) if in case 1) we have j = 1 then we necessarly have sy, 4 = |s+ 1] for an index s verifying
$ € {8my--sSmrk} and [s+ 1] & {sm, ..., Smir}; moreover rs ., > 0;

2p) if in case 2) we have j = 0 and s(i;) = 1 then we have
Trol = (87, 1800 a2 )y
where the index s verify s € {Sm,...,Sm+k} and |s+ 1| & {sm,...,Sm+k}. Furthermore
Tls+1] = Tspip > 0.
3p) if in case 3) we have j = 0 and s(i;) = 1 then we have
[eo]l = (87, 80,0 o, abe v )y
where the index s verify s € {spm,...,Sm+r} and |s + 1] & {sm,..., Smyk}. Furthermore
Tlst1] = Tsppr > 0
Proof. The proof, a direct computation, is left to the reader. O
The description of the socle filtration for (R1/Ry)™ is can be easily deduced from lemma 5.7.

Nevertheless we still have to distinguish three cases, according to the combinatoric of the f-tuple
r.
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PROPOSITION 5.8. Assume that the f-tuple verifies one of the following hypothesis:

I4). For each s € {0,..., f — 1} the condition
{ Ts 2 Ts+1] 21
Ts — T|s+1] €{p—2,p— 3}
is false.
Ig). The f-tuple is of the form (0,...,0,7s,,0,...,0).

Then the socle filtration, together with the extensions between two consecutive graded pieces, of

(R1/Ro)™" is described by the associated lattice ‘%);F/O'

Proof. Assume first that Zg;&(rs) > rs+ 1 for all s € {0,...,f — 1}. Then it sufficies to
show that the socle filtration (and the extensions between two consecutive graded pieces) of

(R1/Ro)*/(F\”(0)) is described by the lattice %f/o \{F(0)}.
To this aim, it is enough to show that if N 1y(ly,l;) = (7s,,,, + 1) + J then
No(Kg 1) < (15, + 1) +J —2.
The latter inequality can be checked to hold true using lemma 5.7.
Assume now hypothesis I5) to hold true. In this case it sufficies to show that if F, L(OO) (1) e
verify N(O,l)(loil) = (Tsm+k) + J then
Ny (Ko 1) < (15, +1) +J —2.

As s ., = 0, this certainly hold true if 75, < p — 1. But if r5,, = p — 1 then Us,, = {0} and
the conclusion follows. O

Sm

PROPOSITION 5.9. Assume that for all s € {0,..., f — 1} we have Zg;ol(rs) > rg+ 1 and that
the condition
{ Ts 2 T|s1] = 1
Ts = T|sy1] =P — 2
is false.
Then the socle filtration for (R1/Ro)" is described by the lattice %

1/0°
Proof. As Zg;&(rs +1) >rs+1forall s e{0,...,f—1} it sufficies to show that the socle
filtration of (Rl/R0)+/<F£(0) (0)) is described by the lattice %f/o \ {FE(O) (0)}. In euclidean termes,
this means that we have to prove the inequality

N(O,l)(ﬁovﬁl) < (T5m+k/ + 1) +J-1

if No,1)(lp;11) = (7s,,,), + 1) + J. This can be checked by lemma 5.7. O

We finally deal with the remaining case -the socle filtration is here slightly more complicated:
in euclidean terms, the blocks Us, ., for rs ., = p — 1 should be cutted by the hyperplanes
Xo+ -+ Xp1=(rep, +1)+Jor Xo+ -+ Xy = (rs,,, +1) +J — 1 according to a
condition on rs ., 4+1.

PROPOSITION 5.10. Assume there exists an index s € {0,..., f — 1} such that r = p — 1 and

Ts+1) = 1. Up to reordering, we assume there exists integers 0 < k1 < ko such thatrs, =p—1
for all j € {0,...,ko} and

{ Plomis+1) 21 if 0<j <k —1,
Plsmig+1) = 10 k1 <J < ko
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Then the J-th factor for the socle filtration of (Ry/Rg)" is described by the subspace

» .

f—1
75 Z OO, + Y (Fly () € Doppir Noylonl) < (Popy + 1) + J = Ok chcho) 7
k=0

In particular, the socle filtration is deduced from the lattice ‘%);L/O by cutting the k-th block by

the hyperplane Xo + -+ Xy_1 = (rs,,., + 1)+ J — 0k, <h<ho-

Proof. As Zf:;&(rs +1) > rs+1forallse{0...,f—1} it sufficies to show that the socle
filtration of (Rl/Rg)Jr/(Fﬁ(O) (0)) is described by the lattice %170 \ {Fﬁ(o) (0)} by by cutting the
k-th block by the hyperplane Xo+---+X;_1 = (rs,,,, +1) +J — g, <k<ko- To this aim, we have
to prove the inequality

No,y (g, k1) < ((rs,,, 0 +1) +J = Oy <hrch) — 1

if N(O,l)@oil) = (T‘sm+k + 1) + J - 6k1<k<kg' As, by lemma 5.7, we have N(071)(§0,§1) <
No,1)(lo;14) — (p — 2) the result follows. O]

5.1.3 Application: the universal representation contains infinitely many compact
inductions. As annonced in the introduction of §5 we are able to describe a G-equivariant
natural injection

c—Ind%,V — w(r,0,1)

for r ¢ {0,p — 1} where V is a convenient K Z-subrepresentation of 7(r,0,1)|xz. An analogous
result has been discovered by Paskunas in an unpublished draft.

The proof can be outlined as follow. Via the isomorphism of proposition 2.9 we define the
representation V' as a suitable subrepresentation of R;/Ry: by Frobenius reciprocity we get a
morphism ¢ : c—Ind%,V — 7(r,0,1). From a basis of V we construct a convenient F,-basis for
the compact induction c—Ind% 7V and therefore we only have to check that ¢ maps such basis
into a linearly independent family of 7(r,0,1).

This can be easily verified combinig proposition 3.5, lemma 5.1 and proposition 3.7.

We start from the following elementary fact:

LEMMA 5.11. The K subrepresentation Fil%(Ry) of Ry generated by [1, X"] is naturally isomor-
phic to the finite principal series Indgo(p)xz and soc(Fil%(R;)) = Ry via the monomorphism
RO — Rl.

Proof. Obvious. O

Let V denote the kernel of the natural map
Fil%(R,)/Ry — cosoc(Fil%(Ry));

we define V < 7(r,0,1)| k7 as the homomorphic image of V via the isomrphism given in 2.9.
Therefore, by Frobenius reciprocity, we get a morphism

¢ : c—Ind%,V — n(r,0,1).
We claim that

THEOREM 5.12. Assume r ¢ {0,p — 1}. Then ¢ is a monomorphism.
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Proof. We show that the composite morphism of ¢ with the isomorphism (31)
c~Ind$,V % n(r,0,1) = lim (Ro ©r, -+ @R, Bni1) © lim (R1/Ro ©r, -+ @R, Bni1)
nodd n even

maps an F,-basis of c—IndIG( 7V onto a linearly independent family of the amalgamed sums on
the right hand side.

By the well known results concerning the structure of finite principal series for GLy(F,) we
have

LEMMA 5.13. Assumer ¢ {0,p — 1}. For an f-tuplet € {0,...,p— 1}/ such thatt £ r andr £ t
the element vy € V' is defined as

e p
W= D M { b ol ] [1,X7].
pro€Fy

An Fp-basis V for the compact induction is described by the elements

GO (@) 2 (1, v

G (2 3 (Ag)zll A PO YTy I
F0rin A€F, p[)\f] 1 An€Fy p
GOm0 ST N [Ao] 1 1,60 ()
o (8) = o 1 o WGy, E
Ao€Fy

where n € N, [; € {0,...,p — 1}/ for all j € {0,...,n}, and t € {0,...,p — 1}/ verify the
conditions t £ r and r £ t.

Proof. Tt is well known that the family

{vi, suchthatt € randr £ I}

describe an F-basis for V (see for istance [BP], lemma 2.7). By coset decomposition (30) we
deduce that an F,-basis for the compact induction is given by the family

[17 ’Ud

1
o ST | Ly
0 1
1 0
n j ﬁ n+1 ’Ué]
Zj:M?] [)‘j | p
forn € N, \; € F, and { is as in the statement.
An immediate induction using Vandermonde matrices yields the results. ]

[

We recall that the morphism ¢ is G-equivariant and the isomorphism (31) is K Z-equivariant.
Therefore, thanks to the matrix equality

[p”o“ éHg mlo}]:[p”*}[uo] (1)Hp"0“ (1)]
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we see that

S(GOM (1) = pr(F" T (0)
S(G, (1) = pr(F T, (0)

1ree

el ‘”@) = pr(F"(0))

where we wrote pr to denote the natural epimorphisms of proposition 3.7.
But the kernel of the epimorphism pr is known and we dispose of a suitable F-basis of the
inductive limits lim Ry @pe -+ @pe Ryyy, lim (Ri/Ro)* @ps -+ @pe Ry by the evident
nodd neven
induction using proposition 3.5 and lemma 5.1. An immediate check let us conclude that the
elements pr(F(O "Jlfl)t(o)) pT(Fl(ll nJ{l)t( 0)) and pr(F; e )(7)) of the inductive limits lim Ry @,
-+ @R, Rn+1, lim (R1/Rp) ®R, - ®R, Rn+1 are linearly independent, as required.n o d
n;n
REMARK 5.14. Let U the image of the composite map obtained by ¢ and the isomorphism
(31). By the proof of proposition 5.12 the reader can easily describe, in terms of the lattices
- Dt %ﬁil, the inverse image of U by the natural epimorphism pr of proposition 3.7.

5.2 The structure of the amalgamed sums
We are now ready to describe two blocks Ry /Ry and R}_,/R; _, should be glued together.
We will see that such glueing is more or less a formal consequence of the geometric interpretation
of the amalgamed sums, as annonced in the introduction of §5.

Like in section 5.1 we will give the detailed proofs for the positive case: the negative part is
deduced analogously.

First, we want to understand the image of an element F;Eﬁﬁ);n (Lyt1) € R}y (resp. Fl(llffln (lyy1) €

R, ;) via the projection (pr,41)P (resp. (prn41)"°®) of lemma 3.5.

(0,n)

LEMMA 5.15. Let n € N3;. The image of the element L (ly41) € R, via the projection

pryy is described as follow:

1) Ifeitherl, . #0orl,,; =0 andl, £ r then

Tt 1 (prn )P (B, (L)) = Ty (B

2) Ifl,.1=0,l,=randl,  >2p—1—r then

r 0,n 0s 0,n—2 0s 0,n—2
(=15 pras) P (B, Goen)) = 5 EC"D (ly=p = 1= )40, 100, p a2 (B0 (0);

il Lyseonly o Lyseoidy

" ()i

3) Ifeitherl,,;=0,l,=randl, 2p—1—rorl,,,=0andl, <r then

oS 0,n
(Pras)P (L) (Lsr)) = 0.

7 n

Proof. Assertion 1) is clear by lemma 5.1. We assume now that [,,,; = 0 and [,, < r. Thus,

FO) () = (~D)b (TP (1)

Lgseesbpn 1

so that we get the following equality in the amalgamed sum - - - @ R R+

(o) P(FO, Q) = iy oty o (T PR((-1b (EP T (1,))).

077n n—1
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In order to get the statement, we are now left to describe

(TP (FO™ 7 (1))

n Loseensdp—1

Let assume n > 2 (the case n = 1 is treated in an analogous way and is left to the reader). By
the characterisation of the operator 7, we have

— oS 0,77,71
(T Pos (B0 Y

n (€n))) =0

Lyl 1 =
if [,, # r, while, for [, = r, we have
— oS O,n—l
(T )P (R (@) =

n—2 1 1 0 1 ; n171
= (A7 )b [ . ][1, S N (W X Y )] =
: P \

nflqu

r n—2 1 1 0 o ﬁ |
= 5 <Z> £ Z (/\;‘)J )Lj [ , i.] 1][1,)(7'1 1 Z (AP )Ln,1+z71].

pJ
p][)\j An—lEFq

By lemma 3.1, the quantity

1 .
> NIk
An—1€Fy

is non zero (indeed assuming the value —1) if and only if [,,; + 7 —i = Omodg — 1 and
lyyq1 + 1 —1# 0. The result follows. O

The result concerning the negative part is similar

LEMMA 5.16. Let n € N3;. The image of the element F(l’n)l (Lyy1) € R, Vvia the projection

Iy, L
pracs is described as follow:

1) Ifeitherl, . #0orl,,; =0 andl, £ r then
1, L
Tt (PP s )" B (L) (L)) = Tt (F) (L))
2) Ifl,,,=0,l,=randl, ; >p—1—r (the latter condition being empty if n = 1) then
n 1, 1,n—2 1,n—2
(=1)(prn+1) eg(Fl(lf,)ln (Lny1)) = Lge—gﬂF( . )2@71—1—19 —1- T))+5£»E5£n_1aﬂbg(isl (F( T :

élr":!n_

0));

£17"'Ln_2 —
3) If eitherl,,; =0,1, =7 andl, | # p—1—r (the latter condition being empty if n = 1)
orl,,.y =0 andl[, <r then

(Prar)PP (B, (Ly4q)) = 0.

L]_?"WL’,L

Proof. It is analogous to the proof of proposition 5.15 and it is left to the reader. O

Interpretation in terms of euclidean data. We dispose of a canonical F)-basis for the rep-
resentation - - - P RE Rff 1, Which is obtained in the obvious way by an induction from proposition
3.5 and lemma 5.1.

Exactly as we did in §5.1 we have a natural way to associate an element of such canonical
basis to a point in R/: again, we obtain a lattice, which we will denote by - - - B g %fﬂ.

In such euclidean setting proposition 5.15 is clear: it tells that lattice - - "D gt %:{ 1 is obtained
as the union of the lattice %:H /n associated to R, +1/R;} and the image of the lattice - - - @& ,+

‘n—2
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F1GURE IV.9. Again, the glueing and the fractal structure.

%’:{_1 associated to the amalgamed sum - -- @ R, R;t_l (which, inductively, can be assumed to

be known) by the traslation
R/ — R/ (42)
(@) = (@i + 0" (0= L= 7itno1)) + D" itn))-
Notice that in particular the lattice - -- @+ %, is glued inside the F7(0)-block of %' ;.

n—2 n

We stress again in figure IV.9 the glueing and the fractal structure for f = 2 (noticing the

glueing of - - - Sar , | inside the Ft(n) (0)-block of %:{-H /n)'

The evident analogous considerations for the negative part - - - @, %, | are left to the reader.

REMARK 5.17. Notice that if f = 1 then it follows directly from propositions 5.15 and 5.16
that the Ky(p)-structure (and the extensions between two consecutive graded pieces) of the
representations ...rs Ry | are given by the associated lattices - - - ©gs %p 1. In particular, each
of these representations has a space of Iy invariants of dimension 1.

By remark 5.17 we can assume f > 2. In the next proposition we describe the socle filtration
(and the extension between two consecutive graded pieces) of the Ko(p)-representations - - - & p+
RZ 41 for n > 1; the corresponding result for - - - & R By 18 similar and left to the reader.

The euclidean leitfaden which we are going to follow in order to prove the main result given in

proposition 5.18 is the following. As - - "Dt Rt | is a Ko(p)-subrepresentation of - - Bpt R:[H
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the only thing we have to check is the following:

each of the J-th cutting hyperplanes Xo + -+ + Xy 1 = p"(r|pys) + 1) + J of the

; -
lattice %n 1/n

. +
@%:_2 %

n—1-

lies strictly below ® any of the .J — 1-cutting hyperplanes of the lattice

Note that, as the cutting hyperplanes are parallel, we can assume J = 0.
Fix n > 1 and define

f—1
M, = Zp”—l(p — L= Tlstn—1)) T P51
s=0

(so that the hyperplane Xo+---4+X;_1 = M, contains the image of the point 0 via the translation

(42)).

THEOREM 5.18. Let n > 1 and consider the Ko(p)-representation - - - @ p+ RS,
The socle filtration and the extensions between two consecutive graded pieces are described
by the associated lattice - - - B g+ %:{H, with the conventions of section §5.1.2 and propositions

5.8, 5.9 and 5.10 concerning the lattice associated to the Ko(p)-structure of (Ry/Rp)™.
Proof. By the eucildean interpretation of the Ko(p)-structure of - - - @ p+ R 41 and an immediate
induction we see that it is enough to prove the inequalities
1) forn >3
P (rsy +1) < My +p" 2(rs, + 1)
for any all indexes sg,s1 € {0,...,f —1};
2 for n =2 and sp,s1 €4{0,...,f—1}
Pi(rsy +1) < My + (r; +1) =0

where 0 € {0, 1} is nonzero if and only if either the f-tuple r verifies the hypothesis Ip) of
proposition 5.8 and s; = s, or the the f-tuple r verifies the hypothesis of proposition 5.10

s1 € {Sm-l—klv R Sm-f—k()}'
3) ifn=1
p(rs, +1) < M.
Inequality 1) is immediately verified, and 2), 3) are trivial if f > 3 or f = 2 and (ro,71) ¢
{(p—1,0),(0,p—1),(p—2,0),(0,p—2)}. Notice that if f =2 and (ro9,71) € {(p—1,0),(0,p—1)}
then U, = {0} so that it sufficies to prove inequalities 2) and 3) only for sg = sp41, i.e. rs, =0,

which is true. The remaining case f = 2 and (ro,71) € {(p — 2,0), (0,p — 2)} is trivially checked
and the proof is complete. ]

6. Appendix A: Some remarks on Witt polynomials

The aim of this appendix is to collect some technical results concerning Witt polynomials. After
a section of general reminders (§6.1), we will treat in detail the case of the universal polynomials

8if f = 2 and n = 1 we will see that, in few cases depending on the f-tuple r, the J-th cutting hyperplane
Xo+ -+ Xy_1=p(r|nts) + 1)+ J of R /R coincide with a J-th cutting hyperplane for R{. A direct check
shows that the Ko(p)-structure is the desired one.
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for the sum and the product (§6.2 and §6.3). In section §6.4 we study the Witt polynomials of
a certain power series in the ring W (F,): in this situation it is more complicate to keep track
of the exponents of such polynomials. We are therefore led to introduce the notion of “pseudo
homogeneity” (definition 6.11), a weak condition which nevetheless gives us a small control,
sufficient for our aim (see also proposition 7.4 and 7.5).

6.1 Reminder on Witt polynomials

The description of the socle filtration for the aforementioned representations of GLy(F') relies
crucially on the behaviour of the universal Witt polynomials. After some generalities, we focus
on specific situations related to the study of the action of lower unipotent, diagonal and upper
unipotent matrices in GLo(OF).

For n € N the n-th Witt polynomial W,,(X) € Z[Xy, ..., X,] is defined by
n .
Wo(X) < Zanfzpz.
i=0
As the ring endomorphism
1 1
Z[E][Xo, e X)) Z[E][XO, e X

Xj [ — Wj(X(), ce ,Xj)

is bijective, we get a family of polynomials My(Xo),..., Mp(Xo,...,X,) € Z[%][Xo,...,Xn]
which are uniquely determined by the condition:

Mj(WO(X)7 R WH(X)) = Xj.

They are of course described inductively by
1 _ n—1 n
M, = E(Xn — " M1 (X)P — - = pMy(Xo, X1)P" — Mo(Xo)"").
The following lemma let us deduce the universal Witt polynomials describing the ring struc-
ture of W (F,):

PROPOSITION 6.1. Let ® € Z[(,&] be a polynomial in the variables (,&. For alln € N there exist
polynomials ¢y, € Z[Xo,...,Xn,Y0,...,Ys], uniquely determied by the conditions

Wn(¢07 s 7¢n) = (I)(Wn(X()a s 7Xn>7 Wn(yba R Yn))
sketch. The proof is constructive: we considering the commutative diagramm

Z[%][XO?"‘7XTL] = Z[%][X()v'--axn]

~

X v

Z(3)[Xo, ., X, Yo, Vo] 22 Z) [ Xo, -, X, Yo, -, Vi

where f : Z[3][X] — Z[1][X,Y] is defined by f(X;) = ®(X,Y;) for any j € {0,...,n}; the
polynomial ¢,, is then given by
¢n(£7 X) = (wn b2y wn) ofo WEI(Xn)

The fact that such ¢,’s have integer coefficients is then an induction on n. O
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We apply then proposition 6.1 to the polynomials
(¢, &) =+ E&2(CE) =€

to get the universal polynomials for the sum and the product respectively. They will be denoted
as Sy, Prod, € Z[Xy,...,Xn,Yo,...,Y,] and are described inductively by

1 n— n
Sn(X,Y) = L (Wa(X) + Wa(Y) = p" S0t (X, Y7 = = pS (XL YP = 5p(X, Y)P)
Prody(X,Y) = — (W(X)Wa(Y) — p"*Prody_1(X,Y)? — - — pPrody(X,Y)""" — Prody(X,Y)"").
b

In section 4 we are interested in such operations as either rise to the N-power or the sum
of N elements. We can of course adapt the arguments of proposition 6.1 (or, use an induction
on N) to determine the universal Witt polynomials associated to such operations. We will write
PotN(X) € Z[Xo,..., X,], SN(X(1),...,X(N)) € ZIX(1)g, ..., X(1)p,..., X(N)o,..., X(N),]
for the n-th Witt polynomial associated to the rise to the N-power and the sum of N elements
respectively. We have then the recursive relations:

1
Pot) (X) = —(Wo(X)N —p" "' Pot)) | (X)P —
D

.- = pPot (X)""" — Pot) (X)P")

n

N
SY(X(1),..., X(N)) = pln(z W (X (5)) — p" 'SP (X (1), ..., X (N))P —
j=1

= pSNX (D), L X)) = SV (X (1), .. X (N)P).

6.2 Some special polynomials-I

In this paragraph we collect some thechnical results concerning some Witt polynomials which ap-
pOr

1 } ) for the representations

pear naturally in the study of the action of Lo (resp. 1
Or 1 0
of §4.2 (resp. of §4.1).

For n € N we define S, (X,Yy) € Z[Xo,...,Xn, Yo] as the specialisation of S,(X,Y) at
Y = (Y(,0,...,0,...). We recall

LEMMA 6.2. For n € N the polynomial S, (X,Y) is an homogeneous polynomial in XY, of
degree p" if we define the elemets X;,Y; to be homogeneous of degree p’.

Proof. Elementary. O

Thus, if we set
Sn(X,Y0) = Su(X, Yp) — Xn
we see that §j (X,Yp) is a polynomial in Z[Xo,...,Xn1, Y], homogeneous of degree p™. More-
over, as S, (X,0) = 0 we see that S, (X, Yp) belongs to the ideal generated by Yj.
We define inductively the following family of automorphisms: we put
s0 : Z[Xo, Yo] — Z[Xo, Y]
Xor— Xo—Yo
Yo — Yo
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and, assuming s;_1 : Z[Xo,..., X;_1,Yy] = Z[Xo,..., X;_1,Yy] being constructed, we define
Sj : Z[Xo, . ,Xj,Y[)] — Z{Xo, . ,Xj,}/o]
Xj = Xj—s5-1(5))

By their very construction, the s;’s are graded homomorphisms; in particular s;(S;) is ho-
mogeneous of degree p/, and belongs to the ideal (Yp) inside Z[Xo, ..., X;, Yp]. We can actually
prove the following result

LEMMA 6.3. For any n > 1 we have
$n—1(Sn (X, Yp) — Xn) = —(Sn(X, =Y0) — Xp).
Proof. The case n =1 is elementary:
80(51(Xo, X1, Y0)—X1) = 80(;(X6’+%p—(Xo+%)”)) = ;((Xo—%)p+Y()p—X€) = —(51(Xo, X1, Y0)—X1).
Concerning the general case, we write
Sn(Xos -+ X, Yo) — Xy = ;L[Xg" Y NS (XL Yo — XP ) — . (43)
(S (X XL Yo = XTT - (X + Vo). (44)
For j € {1,...,n — 1} we have
55057 (X0, X, Yo)" 7 = X2 = (5701(85(Xov- ., X5, Yo) — X5) + 85" — (5;(X)))"

n—j

= X7~ (X = s (S5(Xo - X5 Y0) = X)P
= X" — (X + S5(Xo, ..., X5, —Yo) — X))

J
n—j n—j

Si(Xo, .-, Xj, Yo" T = XP).

Sn(Xo, ..., Xn, Yo) — X)) we are left compute

(

AS Snfl(‘s’n(XOa e 7XTL7}/O) - Xn) — Sn(
1 n n _

Sn(ﬁ[Xg + pr —pn 1(5,171(&,%):0 — Xﬁ—l) — ...

n—1

= p(S1(Xo, X1, o) = X)) — (Xo 4+ Yp)P']) =

1 n ” —_
ﬁ [(XO — }/O)p + Yop — pn lsnfl(snfl(g7 }/b)p - XfL—l) T

7 — n—1 n
= ps1(S1(Xo, X1, Yo' = XT) — (X))
and t‘he result follows as sj(Sj(Xo,...,Xj,Yo)pnij - anil) = —(Sj(XO,...,Xj,—YO)p"ij —
pr ;
X “)forallje{l,...n—1} O
We will also need a cleaner statement concerning the monomials of S, (Xo, ..., X,, Yp):

LEMMA 6.4. For all n > 1 the coefficient of the monomial Xg_l .. .Xﬁon appearing in the
development of the universal Witt polynomial S, (Xo, ..., Xy, Yp) is 1.

Proof. The proof is again an induction on n: the case n =1 is evident.
For the general case, consider

1 7 n— '
= (Wa(X) + Y S, (X, Y0)P — - — pSH(X, Vo) — So(X, Yo)P").

Sn(X, Yp)
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A monomial of the form Xg L L XPT 1Y0 lies therefore inside

1 _
—E(Sn_mxo, o X1, Yo)P — XPTD

and the inductive hypothesis yields
Sn-1(Xo, -+ Xn—1,Y0) = X1 + X571 X220V + 2(Xo, - . ., Xnoa, Yo)

where z(Xo, ..., Xn—2,Y0) € Z[Xo,. .., Xn—2, Yy] doesn’t contains the monomial X}~ L LXPT éYo.
Finally, we have

pl - 1y
(Sn-1(Xo,.. ., Xn 1, Yo))P = > i X1 (X L XTIV (e(Xo, . . Xnoa, Yo))F
ity th=p S
0<14,5,

and the conclusion follows. O

6.3 Some special polynomials -II
In this section we deal with some Witt polynomials which appear naturally when we study the
1+ pOr 0

0 14 0p | Recall that

action of the diagonal matrices

LEMMA 6.5. Let n € N. The n-th universal Witt polynomial of the product Prod,(X,Y) is an
homogeneous element of (Z[Y])[X] (resp. (Z|X])[Y]) provided that X; (resp. Y}) is homogeneous
of degree p? for any 0 < j < n.

Proof. Elementary. O

REMARK 6.6. In the present paragraph, we will be concerned with the image in Fp[X,Y] of
the universal Witt polynomials S, (X,Y), Prod,(X,Y). Such images will be denoted again by
Sn(X,Y), Prod,(X,Y), in order not to overload notations. As p -1 = 0 multiplication by p is
the composite of Frobenius and Verschiebung.

For N € N, let 2/ = (A, ..., Ny,0...,0,...) € W(F,) and let @ = (g, a1,...) € W(F,); we
need to describe
2 4+ pa-z mod pNtl (45)
in terms of the universal Witt polynomials.

LEMMA 6.7. For 0 < j < he j-th Witt polynomial of the development of (45) is an homogeneous
element Q; (N, a) of degree P in (Fplao,...,a-1])[Aps - Nj] if we define, for 0 < s < j, Ay to
be homogeneous of degree p®.

Proof. 1t is a strightforward consequence of lemmas 6.2 and 6.5. More precisely, from 6.5 we see
that

p-Z -a=(0,Prody(N,ab),..., Prod;—1 (N, )\/j Lab, ... ,oz?_l) o)

jth entry

where each Prod;_1(N,a)P is homogeneous of degree p’ (provided that )\, is homogeneous of
degree p® for 0 < s < j — 1). Furthermore, Q;(X, @) is the specialisation of S;(X,Y) at X =
Z'Y =p-2 -« and we use lemma 6.2 to get the desired result. ]
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As we did in §6.2 we define (for 0 < j < N)
@] d:ef Qj (A/a Q) - >\;

For j # 0 it is a polynomial in (Fy[ag, ..., a;—1])[A, -, Aj_;], homogeneous of degree P’
We can finally define, inductively, a family of ring homomorphisms: we let
0 : Fp[Xo] — Fp[X]
be the identity map, and, assuming g;_; being constructed for j > 1, we define

/ !/ /
qj  Fp[Ao, s Ajy a0, 1] = Fp[Ag, .o Ay o, -0y ]

by the condition
Aj = A= q-1(Q))
1 = Q-1
qj|Fp[)\67--~7)\j7170407-~-704j72] = g5-1
(and the obvious formalism: if j = 1 we just forget o;j_o from the formulas).

We deduce:

LEMMA 6.8. For0 < j < N, the polynomial qj_l(@j) is homogeneous of degree p’ in Ay - - ,)\;_1.

Proof. The morphism ¢;_1 is a graded ring homomorphism. O
6.4 Some special Witt polynomials -II1

1 0
In this paragraph we study some Witt polynomials giving the action of [ 0 1F ] (resp.

[ pé’ (1) ]) for the representations of §4.1 (resp. of §4.2). Such study is more delicate than
F

the previous sections (§6.2 and §6.3) and relies crucially on the fact that we deal with Witt
vectors © € W(F,) which are NOT invertible.

We start with a general remark

LEMMA 6.9. Let N,n € N.

i) The n-th universal Witt polynomial of the rise to the N-th power Potly (X) is an homoge-
neous element of degree Np" in Z[Xy, ..., Xy] provided that X; is homogeneous of degree
p’ for any 0 < j < n.

i1) The n-th universal Witt polynomial associated to the sum of N elements SY (X (1),..., X (N))
is an homogeneous element of degree p" in Z[X (1)g,..., X (1)n, ..., X(N)o, ..., X(N),] if
we define X (1); to be homogeneous of degree p, for any 1 € {1,...,N}.

Proof. Elementary. m

As in §6.3 we have the following

REMARK 6.10. In the present paragraph, we will be concerned with polynomials with coeffi-
cients in F,, obtained by reducing modulo p the coefficients of the universal Witt polynomials
SN(X,Y), PotN(X), S,(X,Y), Prod,(X,Y). In order not to overload notations, such images
will be denoted again by SN(X,Y),.... As p-1 = 0, recall that multiplication by p is the
composite of Frobenius and Verschiebung.
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Fix 0 < m < n and consider the ring Fp[Ap,, ..., Ap].

DEFINITION 6.11. Let M € N. A monomial X7 ... A0 € Fp[Am, ..., \y] is said to be pseudo-
homogeneous of degree M if the following holds:
there exist an integer L € N and integers 3;(j) for j € {1,...,L}, 1 € {m,...,n} such that

i) foralll € {m ...,n} we have
L
a =Y P Bi))
j=1
i1) we have
L L
j=1 j=1

A polynomial in Fy[An, ..., A\y] is said to be pseudo-homogeneous of degree M if it is a sum of
monomials each of which is pseudo homogeneous of degree M.

The following result is imediate

LEMMA 6.12. Fix m,n as above. Then:

i) If P1,Py € Fp[Ap,...,\y] are pseudo-homogeneous of degree M, My respectively, then
P, P, is pseudo-homogeneous of degree My + Ms.

it) if P € FplAm, ..., \n] is pseudo-homogeneous of degree M, then PP is again pseudohomo-
geneous of degree M.

Proof. Omissis. O

REMARK 6.13. If P € Fp[Ap, ..., \y] is pseudo-homogeneous and we specialise P on an element
of FZ‘mH, we see that the integer L in definition 6.11 can be assumed to verify L < f.

We are now ready to focus our attention some Witt vectors in W (Fy).
6.4.1 The negative case. For 1 < m < n, let 2 £ (0,...,0, A, An,0,...) and [z] &
(x,0,...) be elements of W(F,). We are interested in the Witt development of

N
sz+1[:1:j] mod p"t! (46)
=0

def

where N = |
polynomial of

|. For j € {m,...,n} write finally U;(\,z) € Fp[An,...,Aj,z] for the j-th
Witt development of (46) and put

ﬁj(&, .f) d:ef Uj — /\j.

We notice that (73- =0ifm<j<2m—1and ﬁgm = )x,%’fm.

n+l
m
the

We have a rough estimate of the degree of the U

LEMMA 6.14. Let h € {2m,...,n}. Then U, € Fy[Am, ..., An—1,2] and is pseudo homogeneous
of degree p* — p™(p™ — 2).
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1
~ def ™

. .
Proof. If Z = A, ..., M0",0,...) then we recall that Pot{“(%) is homogeneous of degree
(+1)p" (if As is homogeneous of degree p*). Thus the Witt development of z/+1[z]’ has the form

, , m(i+1) ; mj - pm D+
2} = (0,...,0, Potd ™ (AP (7)Y ,...,Potg“(x;n],...,Agm)( JyP )
position m(j+1) positionm(j+1)+l
. mj [ pm(i+1)+ .
and Pot) T\ L )\fn_il)( P is homogeneous of degree (j + 1)p"*™U*1) and actually

is pseudo-homogeneous of degree (j + 1)p!*+™.
Thus, if a(j41)m(f); - -, an(j) is an h — (j + 1)m + 1-tuple of integers, the polynomial
h—(j+1)m G+

I (Poti™ O, N ) (@) )G+ Dm ()

» Al
=0

is pseudo-homogeneous of degree
G+ D)™ ags1ym(G) + -+ 0" ™ an(4)).
By lemma 6.9 we see that a monomial of SNH(X(l), ..., X (N +1)) has the following form:

h
x= H Xlo( alo(o H XZN (N + 1)alN( )
lo=0 In=0

where

h h
ZplOaZO(O) +t Z PNy, (N) =ph

lo=0 In=0

As Uy, is the specialisation of S(NH) at

(X +1)jeo,..5 = 2] jeqo... 3

we see in particular that U, € Fylhm, ., An1, 2.
Assume now that

1) for h > (j + 1)m we have a;,(j) = 0 for all I; < (j + 1)m
2) for h < (j + 1)m we have a;,(j) = 0.

Then lemma 6.12 shows that the spemallsation of X is pseudo-homogeneous of degree

j= 0 =G+1)m

Letting

h
i =Y P Ma))

i=(j+1)m
for j € {0,...,h} we get
N .
d=p" > (" - (i + 1)z
=0
and the conclusion follows from lemma 6.15 below. O
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LEMMA 6.15. Let j € {0,..., N} and let

h h
x & H Xlo(l)azo(O) . H X (N + 1)azN(N)
lo=0 IN=0

be a monomial ofS}(LNH)(X(l), L X(N+1)).
If a;,(i) = 0 for all i # j and l; € {0,...,h} then

X = Xu(y).

Proof. An immediate induction on h shows that if we specialise SF(LNH) at

(Xo(i),...,Xn(2)) =(0,...,0)
for i # j we get
i 0,10, X(), 0., 0) = Xi(j)

and the claim follows. O

We finally introduce a family of ring homomorphisms, for m < j < n,
wjc Fp[Am, . A 2] = Fplhn, .., A, 7]

defined inductively as follow: uy, is the identity map and, assuming u;_; being constructed, we
define u; as the unique extension of u;_1 to Fy[Ay,, ..., A;, 2] such that

)‘j — )‘j - uj—l(Uj)-
We have the
LEMMA 6.16. Let h € {2m, ..., n}. Then uy,(Uy,) is pseudo homogeneous of degree p'—p™(p™—2).

Proof. Arguing by induction, we can assume that u;();) is psendohomogeneous of degree p for
alll € {m,...,h —1}. As Uy, is pseudohomogeneous of degree p" — p™(p™ — 2) by lemma 6.14,
the claim follows from lemma 6.12. O

6.4.2 The positive case This section is essentially a re-edition of §6.4.1, where we take
m = 0. The interest of this case will appear in §4.2, where we give a description of the Ky(p)-
representations R, 11

Let (Mg, ..., An,0,...) € W(F,).
We are interested in the Witt development (Uy (Ao, x), U1 (Ao, A1, ), .oy Unr1(Aoy ooy An1, ), 0, ..

of
n+1

2(1+pla]z) ™' = ij[x}zjﬂ mod p" 2.
7=0

We check immediately that Uy = Ag and U; = A1 + )\(2);) T.

We define for h =0,...,n+1 ﬁh o Up, — Ap. The following result is the analogous of lemma
6.14

LEMMA 6.17. Let h € {1,...,n+ 1}. Then U, € F,[No, ..., A\n—1,2] is pseudohomogeneous of
degree p" — (p — 2).
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Proof. The proof is completely analogous to the proof of lemma 6.14.

We have
AT = (Pot)™()),..., Pothti(N), ...

where Pot{“()\) is homogeneous of degree (j + 1)p' (for the natural grading on F,[Ao, ..., \]);
therefore

P2 2] = (0,0, (Potf T )P (@), (Pot] T () ()P

position j position j+1

and (Pot{ ey Ld (azj)ij is therefore pseudohomogeneous of degree (j + 1)p!
We recall that a monomial of S,(lnﬂ)(i(l), ..., X(n+2)) is of the following form:

h
S | ERUCICEN § (F INCRS I

lo=0 ln+0=0

where the integers a;, (i) verify

h h
Zploal()(()) 4t Zpln+1aln+1(n +1) = .

lo=0 ln+1

As Uy, is the specialisation of S}(Lnﬂ) at (2 H1pd [xj])je{07...,n+1} the latter equality shows in par-
ticular that Uy, € Fp[Xo, ..., Ap_1,2] for h e {1,...,n+1}.
Assuming that

1) for 0 < j < h we have a;,(j) =0 for all [; < j
2) for]>hwehavealj( ) =0

the specialisation of X is pseudohomogeneous of degree

n+1 h o h
D GHDQ P Tail) =p" =Y 0 - (G +1)
=0 i=j =1
where we have set
h
def j—d .
2, S P a))
i=j
The conclusion then follows once we have shown that it exixts j € {1,...,h} such that x; # 0.
This is then an immediate consequence of lemma 6.15. ]

As in section §6.4.1 we define inductively, for h = 0,...,n + 1, the ring morphisms
up : Fplho, .., A, 2] = Fplho, ..., An, 7]
by the condition u,(An) & Ay — up_1(Up) for b > 1 and up = id. Then
LEMMA 6.18. Let 1 < h <n + 1. Then uy(Uy,) is pseudo homogeneous of degree p" — (p — 2).

Proof. As for lemma 6.16 it is a consequence of lemma 6.12. O
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7. Appendix B: Two rough estimates

In this appendix use the material of appendix A to estimate the behaviour of (the reduction
modulo p/ — 1 of) some elements which appear naturally in the study of the socle filtration for
the representations Rfﬂ, Indgggiﬂ)l, etc...

The first tool is discussed in §7.1: it is an elementary description of the function s giving the
cipher sum of the reduction modulo p/ — 1 of a natural number. In §7.2 the properties of the
function s and the results on Witt polynomials stated in §6 will be used to describe in detail
some explicit vectors of the aforementioned representations (propositions 7.3, 7.4 and 7.5).

7.1 Remark on the proof of Stickelberger’s theorem

In this section we recall the construction and the properties of a certain function s : Z — N
which appears in the proof of Stickelberger’s theorem.

If p is a prime of Q((4—1) lying above p, the reduction modulo p, Z[(;—1] — F, admits a
multiplicative section

wp : Fy — Z[¢1]
which induces an isomorphisms on the group fi4—1 of ¢ — 1-th roots of unity. If B is the prime of
Q(¢4—1,¢p) lying above p, we define a function s : Z — N by

def

s(n) = valgp(g(wy™))

where valy denotes the B-adic valuation and g(w,™) denotes the Gauss sum of the character
wp " FY = g
We need to modify slightly this function as follow:

s:N—=N
S s(n)if eithern # Omodg—1orn=0
f(p—1) otherwise

The following lemma is then easily deduced from the well known properties of the function s (cf.
[Was], §6.2):

LEMMA 7.1. Let n,m € N. Then:
a) 5(0) =0 and s(1) = 1;
b) 0 <s(m+n)<s(n)+s(m);

if0<n<q—1and (ao,...,ar_1) are the cyphers of the p-adic development of n, we have
5(n)=ao+a1+~'+af_1.
In particular, s(n) < n for any n € N, with equality if and only ifn € {0,...,p — 1}.
We can improve the statement of b):

LEMMA 7.2. Let by,...,by_1 € N be integers.
Then there exists integers mg,ng, where s € {0, ..., f — 1} such that:

1) for all s € {0,...,f—1}

¢s £ by —pmys +nps gy € {0, p— 1}
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2) we have

_ f—1 f—1
J d:efzms = Zns§
s=0 s=0

3) we have

f-1 f-
Zp = Z Cs modpf —1;
s=0 =0

4) we have the equality

f-1 f—1 N
sQ_p*bs) =D bs—ilp—1).
s=0 s=0

Proof. Assume first that bs € {0,...,p—1} for all s > 1 and by > p. There exist (unique) integers
mg, for s =0,..., f — 1 such that

i) bs+ms—1 —pms €{0,...,p—1} for all s > 1 and by — pmg € {0,...,p— 1};

i1) we have the equality
f-1 f-1
Z bsp® = (bo — pmo) + Zps(bs +ms—1 —pms) +p’ myy. (47)
s=0 5=0

As we work modulo ¢ — 1 the equality (47) reads

-1
Z bsp® = (bo — pmo +my_1) + Zps(bs + ms—1 —pms)mod g — 1.
= s=0
If b — pmo + my—1 € {0,...,p — 1} we get the result. If not, we only have to check that
0 < by — pmo + myp_1 < by (so that the iteration of the preceeding procedure eventually stops).

As —pmi+by+mg > 0and by < p—1 we get m; < pﬂpﬂ and, inductively, msy1 < %
Thus
=1 _14m
—pmo +my_q < pmo+p—_0<0
p/-1
if mo 2 1.

For the general case, we notice that there exists unique integers m/, such that bs+ms_1—pms €
{0,...,p—1} for all s > 1 and by — mg € {0,...,p — 1}. As we work modulo ¢ — 1 we get

f-1
Z bsp® = (bo — pmo +myp_1) + Zps(bs + ms—1 —pms)mod g — 1.
— s=0
and we are in the previous case. O

7.2 Two rough estimates

o(P™)

In this section we study some elements of Ind Kolp n+1)1 which appear naturally in the study of the
socle filtration for Ind™ Ko Ep:;)l) (but the results adapt immediately for the representations R +1)

In particular, we will be able to have a partial control of the action of Ky(p™) on Tnd® Ep " 31)1

(and not only on the graded pieces of the socle filtration).
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The following proposition holds for a fixed couple (m,n) of integers such that 0 < m < n;

P Am] 1 1 0
expressions (48) and (49). Finally we recall the definition of the F-linear subspace W

for the m = 0 case we just have to replace the matrix [ 1 0 ] with { o] 1 } in the

2 7’VL)

of Indgggiﬁl)l for a given (n + 1 —m)f-tuple (L,,,....1,) € {{0,...,p — l}f}nJrl " given in
§4.1.2.

def l

PROPOSITION 7.3. Let F z € B, and N = Nmn(l coly,
FyAm,...,A\j—1] be a po]ynonua] of degree deg(T;) < p’~™ (where, for j € {0,...,n — 1}, we
define \jyy, to be homogeneous of degree p]) and i; be a f-tuple such that i; < ;. Finally, fix

M < p/ — 1. Then the image inside Ind "+1 1/N — M of the element x defined as

). For m < j < nletT; €

1 0 1 1 0
def Z Z )\;DJ Tp]+ )j+1 [ 1 ] Z ()\gn )ln_ln [ 1 ] [1,6] (48)
Jj=mX;€F, p][)\;ﬂ] 1 An€Fq pn[)\ﬁ ] 1
is contained in the image inside IndKOEZnH)l/N M of the subspace
Wa,,,...L,):
Proof. The technique of the proof is very simple: we fix 0 < ¢t < M and n € N such that
nip—1) <t < (n+1)(p—1). If we write z as a suitable sum of elements BT v » the statement
is proved if we check that any such element lying in the antidiagonal Xo + - - - + X -1 =N—t
verifies % < x; +n for all j =0,..., f — 1 (where, as usual, (zo,...,2s-1), (g, - - ,x’f_l) are
the coordinates of Flm F;,ﬂ o . Via the map (33)).
This is a long computatlon. If we expand each of the polynomials Tmmﬁl, e ,T%", we obtain:
1 0 L A 1 0
Zﬁl Z )\pm Em (4) [ 1 ] Z AL )Hn(’t) [ o 1, €] (49)
iel ,\mqu pm[Aﬁ”L ] ]' )\nqu pn[)\ﬁ ] 1
where I is a suitable set of indices, 3; € F,, and the exponents x;(i) (for j € {m,...,n}) admit
the following explicit description: 9
kg = pURlHD g pl=trmall ) g
and (fora+1<b<n)
where each /{gb)’s is the exponent of )\, apperaring in a fixed monomial of (Tb)iis)
Recall that, by the hypothesys on the T3’s, we have
k()5 +p,€$2)+51 4. _‘_pb—l—m/igl:),ls < pb—mil()s). (50)

. ) def /.
“from now on, we fix an index i € I, and we put k; = k; (i)
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Thanks to lemma 7.1, we have the following inequalities:
(km) +PS(Kmy1) + -+ p" " s(kn) < (51)

S(5(Ly — i) + 8P HRED) o s(plm TR +

(m+2) n)

(8 (Lsr — ir1) + 5P 4 s(plm DIy
e T N (g — i) + 5P ) 4 (8L, — 4)) < (52)
f-1
<5y — i) + Y s(ki ) +
s=0
f-1
(5t — im_1)) + (O (kTS 4 ps(sTHD%)) 4
s=0
f-1
+ (Y 6D +ps(x) 4+ (BN + (L, — ) < (53)
s=0

n—m

< 5(lm - @m) +p5(1’m+1) +p5(lm+l - l.m—&—l) + - +pn—m5(1n) +p 5@71 - ln)

where the inequality (53) is deduced from (50) and lemma 7.1-d).

If we impose our function to lie on the hyperplane Xo + ---+ Xy_1 =t we get a “control”
(b)

on the exponents kg °. More precisely,
i) the inequality (51) give rise to the conditions:
s(ka) = 8(lg = 1q) + 8(KC) -+ 8(k(Y) — ualp — 1)
for a € {m,...,n — 1} and some u, € N;
i7) the inequality (52) give rise to the conditions:
(si2) = s(sP0) + -+ + (5P — P (p - 1)

where a € {m,...,n—1},be {a+1,...,n} and some w” € N;

ii1) the inequality (53) give rise to the conditions

s(k0%) = g0 — ey — 1)

a a

where a € {m,...,n—1},be{a+1,...,n}, s€{0,...,f—1} andsomev((lb)’seN;

iv) condition t < (n + 1)(p — 1) imposes finally

n—1 n—1 n n—1 n f-1
DM 3P Y W)+ Y Py D w <
a=m a=m b=a+1 a=m b=a+1 s=

First, notice that the condition n(p — 1) < p/ — 1 imply kr((lb)’s < pf —1 for all possible choices

of a,b, s (as 5(k((zb)’s) < [k((zb)’SD. If kc(bb)’s(i), for i € {0,...,f — 1}, are the cyphers of the p-adic
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development of nﬁf’)’s we then see that iii) gives the necessary condition

f-1
SR (0) < oD

i=1
(indeed, o can uniquely written as o = Qg ps(1)+ P+ 1) ps(2)+ -+ agps(f—1)(1+

p+ - +p/71) for suitable integers oy ps(5))-
n}. Working in Z/(pf — 1), we see that

Fix now a € {m,...,n —1} be{a+1...
S l—zpf (T E s (s (PR (W)}
Using lemma 7.2 we see that condition i) let us deduce the p-adic expansion of /igb):
kP G) = kP0G + -+ &P = (f = 1)) = pal? () + 88 () (54)
*Fé(b 7(0) + ( ) — palP (4)

where the integers al) (), BC(Lb)( ) verify

f-1 f-1

aP () => ") =

j=0 §=0

and
-1
(®) (5} = K ®rs(15 - s]) + BV (5) < MOENPHOS
Pa’ (J {0\ ([7 =) + 87 () ; a a

ko) =19 =i + Y kb(lJ+b—al) — pAa(j) + Bal(j)

b= a+1
=19 —if) + Z DIHmal0) 4 Ra(j) — p( DY ol (L +b - a]) + Aalf))
b=a+1 b=a+1
where the integers A,(j), Ba(j), Ra(j) verify
f-1 /-1
Aa(]) - ZBQ(J) = Uq
j=0 j=0
and
n n f-1
D= PO +b—a))+ Bal) Sua+ > O o +w®
b=a+1 s=0

b=a+1
We finally have all the ingredients to give the rough estimate of the statement. We fix a
“coordinate” j. A strightforward but tedious computation gives

S 0 () Zp mD — i@+ 3 kP (0) + 9 (5) — pUa()))

b= a—l—l

L Y S S S YIRS SR

b=m+1a=m
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The conclusion follows as

n—1 n—1 n n f-1
Do TR < DT e+ Y wl) + o <n
a=m a=m b=a+1 b=a+1 s=0
and
b—1
Z K(b),S(O) < pb—milgs)
forany be {m+1,...,n} and s € {0,..., f — 1}. O

The following rough estimate will help us to understand the action of [ (1) ﬁl)F } (resp. of

1
[ 06 (1) ]) on the representations in §4.1 (resp. §4.2). Apparently, the result is unsatisfactory
F

if we want to describe the K-socle filtration for the representations 7 (r, A, 1), unless we impose
some conditions, depending on p, on the residue degree f (we expect a condition of the form

+1
<)
PROPOSITION 7.4. Let 1 < m < n be integers and consider F,"" |, € %;let N E Nl -+ -5 L)
For 2m < j < nlet V; € Fy[\n,,...,A\j—1] be a pseudo-homogeneous polynomial of degree

deg(V;) < p! —p™(p™ — 2) and i; be a f-tuple such that i; < ;. Finally, fix M < p™ — 2 and
deﬁnerd:efl, i =0form<j<2m-—1.

The image inside Indgggz)l)l/N — M of the element x defined as

n—1 1 1 1 0 1 1 0
def TN —1 VRSP "\, —1
SOOI Tt R b olC ST I [
Jj=m\;€F, ’ ’ pjp‘;]] 1 An€F, piAan ] 1
coincides with the image of Fl(m.’_ﬁ)é .

n

Proof. The idea of the proof is completely analogous of that of proposition 7.3 the main difference
being that here we are not able to give an estimate of the coordinates of the points appearing in
the development of x.

As in 7.3 we consider an element appearing in the development of x:

S ) [ L) ] ST Ry [ Lo ] 1,e].

AncF, P ] 1 AncF, pian] 1

The exponents k, (for a € {m,...,n}) admit the following explicit description:
= U gl 1,

and (for a +1<b<n)

kO = 00 4 p®)L oy f 10,1

a

. . . . i (5)
where each m(lb)’s is the exponent of A, apperaring in a fixed monomial of (V)% .

As each V, is pseudo-homogeneous, for each triple (a,b, s) we have

RS = B (A) o p ()
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where the integers ﬁa ) j) verify
¢ ! (b) (s)
Z@S?’S + PO B () + -+ B0 < 0 - 07 - 2)iy)
j=1 j=1 j=1

As for the inequalities (51), ( 2), (53), we use lemma 7.1 to obtain

and the conclusion follows. O
We state an analogous result in the case m = 0.

PROPOSITION 7.5. Let n > 0 and F*") € B, ,; let N = Ny (ly, - ,;n+1). For1<h<

n+1
n+1let Vi, € Fylho, ..., \n—1] be a pseudo homogeneous polynonual of degree p* — (p — 2) and

def

iy, <1, be an f-tuple. We finally fix M € {0,...,p — 3} and put i, = L0, Vo £1.
The image inside (Ind[[go(pn“)l)*/]\f - M of the element

def lo—io = ntl J+1 1 0
T = Z >‘60 Ly Y |: :|Z Z =1 Vp )]+1 [ ' L ] 1, €]

M €EFy Jj=1 X;€F,
(0,n)

coincides with the image of FZO L.y
It in4-

Proof. The proof is completely analogous to the proof of proposition 7.4. We consider an element
of B+ +1 appearing in the deveolpment of z:

>[N ]E Zodre] e (i

M€EF, a=1 \,€F,

where, for 0 <a<n+1

n+1
Ko =l,—i,+ > p" Mkl
b=a+1

and, fora+1<b<n+1

f—1
K“((lb) _ Z H((lb),sps
s=0
®) S

(and k" is the exponent of \, appearing in a fixed monomial of (V})%

).

.(s)
By pseudo homogeneity of (Vb)’lg we have

f
e = 3 1)
j=1

for suitable integers 6((11))’3( /) Verifying

Zp Zﬁb) Do - -2).
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Therefore we have 5(/££Lb)’s) < il(,s) (p® — (p — 2)) and using estimates exactely analogous to (51),
(52), (53) we deduce

n+1 n+1

> ps(ra) <N —s(ig) — (p = 2)(D_ 5(iy))-

a=0 a=1
The conclusion follows. O]
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Conclusions et perspectives

On pourra conclure que cette these évidence la possibilié de déduire des informations non triviales
sur les représentations universelles a partir de certains vecteurs convenablement choisis grace a
des manipulations sur des polyndémes universels de Witt.

Lorsque F, = Q, I'interprétation euclidienne montre que I'on peut se contenter de la con-
naissance des polyndmes universels tronqués & I'ordre p?. En fait, on a méme besoin de beau-
coup moins d’information : la premiere partie de cette these (partie I) montre qu’il suffit de
connaitre le dégré et le coefficient dominant de ces polynémes. Le probleme pour des extensions
(dans notre cas, non ramifiées) non triviales de Q, est que I'on ne dispose pas a ce jour d’'une
méthode de récurrence qui permette de se limiter a des polyndémes tronqués : le comportement
des représentations m(o,0,1) nécessite la connaissance du dégré homogene des polynémes ou,
plus précisement, du développement p-adique de la réduction modulo p/ — 1 des exposants.

Dans le cadre des séries modérément ramifiées, il suffit de connaitre la somme des chiffres
de ces développements p-adiques. Cette information est alors donnée par une fonction s que
l'on retrouve dans la preuve du theoreme de Stickelberger (§IV-7.1). Lorsque 'on travaille avec
les représentations universelles, les recollements entre blocs de tailles différentes montrent que
I'information donnée par la fonction s est largement insuffisante et qu une connnaisance plus fine
des développements p-adiques des exposantes est donc nécessaire (c’est le probleme abordé au
§IV-5.1).

La question que ’on se pose est donc la suivante :

QUESTION 7.6. Est-il possible de deviner, a partir de la structure euclidienne ‘R, des sous-
représentations de 7(o,0,1), de telle sorte que I’on puisse obtenir des quotients irréductibles et
admissibles de m(c,0,1)7

La définition de diagramme canonique proposée par Hu ([Hu2]) ne dépend pas de I’admissibilité
de la représentation et l'on pourra ainsi considérer Dj(w(c,0,1)). Alors Di(n(0,0,1)) admet
une interprétation simple en termes de données euclidiennes : en utilisant les notations de
IV-5.2 on voit que D1(7(c,0,1)) est engendré (sur F)) par les éléments des - @+ By
ayant une relation non triviale avec les éléments de - - - ® - Ry 1 -, Cest-a-dire I'espace en-

gendré par les éléments [1,0VFd)] et [[ 2 (1)
matrices unipotentes supérieures et inférieures de GLy(F,) respectivement). Plus généralement,
I'interprétation euclidienne de ’espace D1 () devrait étre celle des relations entre les éléments
de --- Dt %:H ... et de --- Doy Kyiq---- D'apres la théorie de Hu, ce genre de relations
devrait permettre de caractériser la représentation my.

Des discussions avec M. Schein nous ont convaincu que 'on devrait également obtenir une
structure euclidienne dans le cadre totalement ramifié : dans ce cas, ce serait une structure frac-
tale dans RE si e est la ramification. Cela permetterait de donner une interprétation simple et
efficace des résultats énoncés dans [Sch]: le quotient universel V,_; est obtenu en enlevant des
blocs “assez petits” & partir des sommets libres de la structure fractale associée a w(o,0,1).
Dans cette interprétation heuristique, la non admissibilité du quotient universel V,_; est claire
: pendant la suppression des petits blocs on enleve un sommet libre pour obtenir e-sommets
libres ! La difficulté qui subsiste encore dans le cas totalement ramifié, est la détermination du
bon ordre & mettre sur la base “canonique” de (0,0, 1) (que 'on définirait de maniére analogue

] 7JUFq] (ot 'on désigne par U(Fq)7 U(Fq) les
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au cas non ramifié). Autrement dit, on retrouve des extensions non triviales entre des sommets
non adjacents de la structure euclidienne associé : la combinatoire de ces extensions n’est pas
comprise a I’heure actuelle.

On espere enfin que 'étude détaillée des représentations universelles de GL2(Qj), effectuée
dans la premiere partie de cette these, puisse avoir des applications a des questions ouvertes
concernant la correspondance locale pour GL2(Q,). En particulier un des problemes ouverts est
la détermination de la réduction modulo p d’une représentation galoisienne p-adique cristalline p
a poids de Hodge-Tate (0, k —1) avec Tr(p(Frob)) = a, € mz. La correspondance p-adique nous
donne une certaine représentation Iy o, ([Bre03b]) de GL2(Qy), et 'on dispose d'un monomor-
phisme GLa(Z,)Q, -équivariant Symk_Qﬁi — Iljq,. La représentation algébrique Symk_QQf,
est alors dite le type associée a Il ,,. La question suivante est die a Breuil

QUESTION 7.7. Si I'on considére un Zy-réseau Oy, o, dans Il ., y a-t-il une relation précise entre

la filtration par le GLa(Zy)-socle de la réduction modulo p de O 4, N Sym’“z@i et la filtration
par le GLa(Zy)-socle de la réduction modulo p de Oy, 4,7
Si oui, cette relation permet-elle de deviner la nature de ﬁk’ap ?

D’apres cette question, il s’agirait d’étudier la GLg(Z,)-structure des atomes automorphes de

longueur 2 c’est-a-dire la seule extension non triviale de InngngQp )Xl @xaw ! par Indgléfp(qp )X2®

yiw ™! si les caracteres lisses x1, Y2 de Q,, vérifient xlxgl ¢ {1,w*!}. L’étude de leur GLa(Z,)-
structure devrait se déduire par des techniques de récurrence descandante a partir des cas finis,
d’une maniere qui est tout-a-fait similaire & ce que 1’on fait dans la partie L.

La description explicite des représentations irréductibles permet, comme 'on a vu, de dis-
poser des informations trés fines sur leur structure, les chapitres II et III étant des illustra-

tions. En fait, on pourrait appliquer les techniques du chapitre II a d’autres sous-groupes de

X
congruence de GLg(Z,). Clest le cas pour les groupes I'o(pt) = [ p%% ;i
p D

1+p*2,  Z,

pF Z, 14 pF Z,
ants des représentations supersingulieres, a 1’aide de calculs similaires & ceux de §II-4 (c’est le
contenu de [Mo3])

De plus, la dimension des espaces des invariants des représentations supersingulieres possede
une signification modulaire plus vaste die a Emerton et qui peut se résumer de la maniere
suivante. Soit p : Gal(Q/Q) — GLa(F,) une représentation galoisienne continue irréductible
et impaire (i.e. modulaire d’apres la conjecture de Serre). Soit N la partie premiere a p du
conducteur d’Artin associé & p et soit K,y = ker(GLa(Z) — GLa(Z/(Np™))). Les théorémes
de compatibilité locale-globale de [Emel0], notamment la proposition 6.1.20 et le lemme 5.3.8
donnent un lien précis entre la dimension de ()% et la dimension de l'espace de cohomologie
Hét(Y(Kr,N)Q, F,), ot Y(K, y) est la courbe modulaire (sur Q) de niveau p"N et m, est la
représentation de GL2(Q,) associée & ﬁ\GQp par la correspondance de Langlands modulo p.

Les résultats de la partie III pourraient jouer un role dans I’étude des facteurs € p-adiques. En
effet, les vecteurs localement algébriques des représentations de GL2(Q)) associés aux représentations
galoisiennes par la méthode de Colmez admettent un modele de Kirillov. Cela permet donc de
définir des facteurs epsilon et, en utilisant des stuctures entieres des modeles de Kirillov, on
pourra introduire la notion de facteur epsilon modulo p. D’apres la théorie classique on pourrait
se poser la question suivante :

: on peut déterminer, par un dévissage descendant, l’espace des invari-
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QUESTION 7.8. Quelle est la relation entre les facteurs epsilon modulo p associés a une représentation
supersinguliére 7 et sa restriction aux extensions quadratiques L™ de Q, 7 Si est une représentation
lisse irréductible de L™, y a-t-il une relation entre le signe du facteur epsilon local de m ® ¥ et
lespace des formes linéaires L™ -équivariantes Hom x (1 ® 1, Fp) ?

D’ailleurs il est extrémement difficile a I’heure actuelle d’extraire les facteurs epsilon locaux
des constructions de Colmez. De plus, comme on I’a remarqué dans la partie II1, on peut améloirer
I’énoncé de la proposition I11-2.10 : la restriction 7|;x se décompose en une somme directe de
(p + 1) représentations uniserielles de 0}, & facteurs de Jordan Holder isomorphes.
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Explicit description of irreducible GLy(Q,)-representations over F,
ABSTRACT

Let p be an odd prime number. The classification of irreducible representations of GL2(Q))
over F, is known thanks to the works of Barthel-Livné [BL94] and Breuil [Bre03a]. In the first
chapter we illustrate an exhaustive description of such irreducible representations, through the
study of certain functions on the Bruhat-Tits tree of GL2(Qp). In particular, we are able to
detect the socle filtration for the K Z-restriction of supersingular representations, principal series
and special series.

Invariant elements under some congruence subgroups for irreducible GL3(Q,)
representations over F,

ABSTRACT

Let p be an odd prime number. Using the explicit description for irreducible GL2(Qj)-representations
over F, made in [Mol], we determine all invariant elements of such representations under the
actions of the congruence subgroups K, I, for any integer ¢ > 1. In particular, we have the
dimension of the K;-invariants for supersingular representations of GL2(Q)), for any ¢ > 1.

On some restriction of supersingular representations for GL2(Q,)
ABSTRACT

If L/F is a quadratic extension of local fields (of characteristic zero) and 7 a supercuspidal
representation of GLy(F") a theorem of Tunnel and Saito relates the epsilon local factor associated
to m to the L*-socle of 7|y x. In this chapter we consider the problem of giving a detailed
description of the L*-structure of supersingular mod p-representations for the case F' = Q,, in
the spirit of a theory of mod p epsilon factors.

On some representations of the Iwahori subgroup
ABSTRACT

Let p > 5 be a prime number. In [BL94] Barthel and Livné described a classification for irreducible
representations of GLa(F) over F,, for F' a p-adic field, discovering some objects, referred as
“supersingular”, which appear as subquotients of a universal representations m(r,0,1). In this
chapter we study in detail the Iwahori structure of such universal representations for F' an
unramified extension of Q,. We determine a fractal structure which shows how and why the
thechniques used for Q, fail and which let us determine“natural” subrepresentations of the
universal object m(r,0,1). As a byproduct, we get the Iwahori structure of tamely ramified
principal series.
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