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Abstract. We develop a local model theory for moduli stacks of 2-dimensional non-scalar tame
potentially Barsotti–Tate Galois representations of the Galois group of an unramified extension
of Qp. We derive from this explicit presentations of potentially Barsotti–Tate deformation rings,
allowing us to prove structural results about them, and prove various conjectures formulated by
Caruso–David–Mézard.
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1. Introduction

1.1. Main results. Let p be a prime number, K a p-adic field. We work with coefficient ring
O = W (F) where F/Fp is a sufficiently large finite extension. Let ρ : GK −→ GL2(F) be a
continuous Galois representation and τ = χ⊕χ′ be an inertial type where χ, χ′ are tame characters
of IK . This gives rise to the universal framed deformation ring Rη,τ

ρ classifying lifts of ρ which are

potentially Barsotti–Tate (i.e. potentially crystalline with Hodge–Tate weights 0, 1) and of type τ .
Despite their prominent role in modularity questions via the Taylor–Wiles method (e.g. [Kis09])
in the last decades, their internal structure is still poorly understood. The basic reason for this,
as suggested by works of Caruso–David–Mézard [CDMb],[CDMc],[CDM23], is that even when K
is unramified, Rη,τ

ρ exhibits a wide range of complicated behavior (in particular, it can be highly

singular), especially as the inertial weights of χ/χ′ become more degenerate (that is, when τ becomes
more non-generic).

More recently, Caraiani–Emerton–Gee–Savitt [CEGSb] constructed a p-adic formal algebraic
stack Zτ which interpolates the deformation rings Rη,τ

ρ as ρ varies, in the sense that the latter

recovers versal rings to finite type points of the former. The stacks Zτ (and its analogues for other
p-adic Hodge theory conditions) are expected to be key geometric objects in the categorical p-adic
Langlands conjectures formulated by Emerton–Gee–Hellmann [EGH], similar to the role played by
various moduli spaces of local systems in the geometric Langlands program. Thus it is of interest
to understand their geometry.

On behalf of all authors, the corresponding author states that there is no conflict of interest and that there is no
data associated to this work.
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From now on, we assume K = Qpf is absolutely unramified and τ is non-scalar (the scalar case
τ = χ ⊕ χ being easily handled by Fontaine–Laffaille theory). When τ is sufficiently generic, the
structure of Zτ is well-understood (see e.g. [Kis09, LLHLM23]), since it can be modeled using
Iwahori level local models of Shimura varieties for GL2, in particular its singularities are products
of the singularity XY = p. In this paper, we introduce a method to probe the structure of Zτ

which is powerful enough to handle non-generic τ . One concrete consequence of our study is the
following general control on singularities:

Theorem 1.1.1 (Theorem 4.6.6). Assume either p ≥ 7 or K = Q5. Then the normalization of Zτ

has rational singularities and is Gorenstein.

Furthermore, it turns out that Zτ is almost always normal:

Theorem 1.1.2 (Theorem 4.6.10). Assume either p ≥ 7 or K = Q5. Then Zτ is normal, unless
after twisting, τ = χ ⊕ χ′ is the sum of restrictions to IK of characters of GK , and the inertial
weights of τ belong to {0, 1}. When τ is of this form, the non-normal locus consists of exactly the
ρ which are Fontaine–Laffaille with specific (irregular) inertial weights determined τ .

Remark 1.1.3. (1) Explicitly, for K = Qp Theorem 1.1.2 shows that Zτ is normal unless, up
to twists, τ = 1 ⊕ ε (where τ and ε denote the mod p-reduction of τ and the cyclotomic
character respectively), in which case the non-normal locus consists of ρ is a twist of an
unramified representation by ε.

(2) It is proven in [CEGSa] that the special fiber of Rη,τ
ρ is generically reduced. Together with

Theorem 4.6.6, this implies that Rη,τ
ρ is Cohen–Macaulay if and only if it is normal, in which

case it is furthermore Gorenstein. Thus Theorem 1.1.2 completely classifies when Rη,τ
ρ is

Cohen-Macaulay. We invite the reader to compare this to the result of Hu–Paškūnas [HP19]
about Cohen–Macaulayness of crystabelline deformation rings: whereas [HP19] covers the
situation where K = Qp, τ is restricted to (possibly wildly ramified) principal series types
(i.e. χ, χ′ can be extended to characters of GQp) but allows arbitrary Hodge–Tate weights,
our result allows general unramified K but restricts to tame (possibly non-principal series)
types τ and Hodge–Tate weights 0, 1. We also point out that the method of [HP19] is
unlikely to establish neither the Gorenstein nor the rational singularity property.

Finally, as is well-known (cf. [HP19]), Cohen–Macaulayness for (normalizations) of de-
formation rings allows one to upgrade R[1p ] = T [1p ] theorems to integral R = T theorems,

hence our results give new instances of such.
(3) The fact Zτ has rather mild singularities is expected to be useful for the categorical p-adic

Langlands program for GL2(K), namely it suggests the conjectural functor A of [EGH] to
have simple effect on a certain generating set of smooth representations of GL2(K), thus
giving hope that one can construct A by “generators and relations”. We point out that
any generating set must necessarily involve representations of GL2(K) with non-generic
parameters, thus it is essential that we allow arbitrarily non-generic τ for this purpose.

Our method to probe Zτ is to construct group-theoretic local models for it. The main local
model theorem has the following form:

Theorem 1.1.4 (Proposition 3.2.4, Theorem 3.3.8). Let τ = χ ⊕ χ′ be a tame inertial type with

χ ̸= χ′. There exists a p-adic formal scheme Z̃mod,τ such that

• If either p ≥ 7 or K = Q5, Zτ/p is smooth locally isomorphic to Z̃mod,τ/p.

• If either p > 16f+7 or p > 7 and K = Qp, then Zτ is smooth locally isomorphic to Z̃mod,τ .
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Remark 1.1.5. (Features of Z̃mod,τ ) We defer the somewhat involved definition of Z̃mod,τ to section
1.2 below, and instead note for now that:

(1) Its construction involves the geometry of (mixed characteristic) loop groups.
(2) Its geometric structure is independent of p, in the sense that it essentially arises as the p-adic

completion of a natural Z-scheme. In particular, this exhibits a kind of “independence-of-p”
property of tame potentially Barsotti–Tate deformation rings, as suggested in [CDM23] and
[CDMa].

(3) It admits an explicit affine cover where each affine open can be presented as (the p-saturation
of) explicit equations constructed using the inertial weights of τ (see Table 5 for a sense of
the presentations that show up).

Remark 1.1.6. (Bounds on p) Theorem 1.1.4 is obtained via deformation theory: we construct

Z̃mod,τ which captures the structure of Zτ modulo some power of p, and then show this property
persists when deforming to mixed characteristics. The requirement that p needs to be at least some
linear bound on f arises for two related reasons:

• There are non-isomorphic charts of Zτ that are indistinguishable modulo linear powers of
p. For instance, there are charts equisingular to XY = pk for any k ≤ f . This requires
us to start with a model that approximates Zτ modulo at least pO(f) to distinguish these
charts.
• To show the approximation deforms, we need to overcome obstruction groups for certain
lifting problems, whose p-torsion can have exponents as large as linear in f .

The explicit nature of our models yields, for the first time, an efficient algorithm to compute any
given potentially Barsotti–Tate deformation ring with tame inertial type. The basic form of the
algorithm is as follows (the details occur in section 4.3). To the pair (ρ, τ) we assign

• an f -tuple w̃(ρ, τ) of elements in the extended affine Weyl group W̃ of GL2, which measures
the relative position of the ι-inertial weights of ρ and τ for each ι : K ↪→ Qp; and

• an f -tuple of “degeneracy types” for each ι : K ↪→ Qp which roughly measures how degen-
erate the ι-th inertial weight of χ/χ′ is.

These datas give rise, for each ι, to a basic ring Rι, as well as a collection of structure matrices with
entries in Rι recorded in Tables 3, 4. Both these datas are independent of f . Then Rη,τ

ρ is given as

a suitable completion of (the p-saturation of) the quotient of
⊗

ιRι by the relations that certain
products of the structure matrices are zero. We stress that the equations we impose will generally
involve mutual interactions between Rι’s for arbitrary large sets of different ι. For this reason,
outside of the generic case, Rη,τ

ρ does not generally admit an obvious tensor product decomposition

along embeddings ι : K ↪→ Qp.
In the series of work [CDMb, CDMc, CDM23], Caruso–David–Mézard also investigated the

problem of algorithmically computing Rη,τ
ρ , in the special case where τ = χ ⊕ χ′ is a principal

series type (so χ, χ′ extend to characters of GK) and ρ is irreducible. In a few cases when f ≤ 3
([CDMb, Théorème 4.3.1] and [CDMc, 5.3.3]), they managed to determine Rη,τ

ρ based on the fact

that one can guess “a priori” what it is, cf. [CDMb, Remark 3.2.10]. However, their investigations
also suggested that the answer becomes intrinsically complicated for large f , which made their
strategy hopeless in general. We demonstrate the power of our algorithm by confirming various of
their conjectural examples of [CDMc, §5.3.2, 5.3.3], as well as computing all examples for K = Qp,
some of which are new as alluded to in [EGH, §7.5.13]. For instance, for K = Qp, p ≥ 7, Rη,τ

ρ is

a power series ring over either O, O[[X,Y ]]/(XY − p) or O[[X,Y ]]/(XY − p2), except when up to
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twist, τ = ω2 ⊕ ωp
2 and ρ⊗ ε−1 is unramified and has scalar semisimplification, or τ = 1⊕ ω1 and

ρ⊗ ε−1 is unramified (here ωn is Serre’s niveau n character). In these exceptional cases, assuming
p > 7, we also give the presentation of Rη,τ

ρ which turns out somewhat complicated, cf. section
5.5.1.

Besides algorithmic aspects, our theory also unifies and conceptualizes Caruso–David–Mézard’s
work. More specificially, they introduced the notion of gene X(τ, ρ) associated to ρ and τ , which is
a purely combinatorial gadget, closely related to the combinatorial data inputted in our algorithm,
that keeps track of the difference between the inertial weights of ρ and τ . While the motivation
for X(τ, ρ) was to encode geometric features of a resolution of Rη,τ

ρ arising from integral p-adic

Hodge theory, Caruso–David–Mézard conjectured that, surprisingly, X(τ, ρ) is in fact a complete
invariant, cf. [CDMc, Conjecture 5.1.6] and [CDMa, Conjecture 2]. Our model gives a geometric
interpretation of X(τ, ρ), allowing us to confirm this:

Theorem 1.1.7 (Theorem 5.4.16). Assume p > 16f + 7. Let ρ be irreducible and τ be a non-
scalar principal series tame inertial type. The deformation ring Rη,τ

ρ depends only on X(τ, ρ), in
an explicit way, and furthermore, is an integral domain.

In fact, our algorithm can be interpreted as giving the right generalization of Caruso–David–
Mézard’s conjecture for general (i.e. not necessarily irreducible) ρ and general (i.e. not necessarily
principal series) τ . It should be noted that in this more general setting, Rη,τ

ρ is no longer always a
domain, and one can read off when this is so from our tables.

Finally, we expect the explicit computations of the deformation ring to be useful for global
applications, particularly for mod p multiplicity one questions and Breuil’s lattice conjecture in
non-generic cases (see [EGS15, Theorem 10.1.1 and Theorem 8.2.1]).

1.2. Methods. When τ is sufficiently generic, a local model for Zτ can be extracted from [CEGSb]
(see also [LLHLM23] for a perspective closer to the present work), owing to the fact that in the
generic cases Zτ agrees with the moduli stack Y η,τ of Breuil–Kisin modules of type τ and there are
standard local models for the latter. In the non-generic cases, the essential difficulty is that Zτ is

only a scheme theoretic image of a map Y η,τ → Φ-Modét,2K to the stack of rank 2 étale φ-modules,
so that Zτ is obtained from Y η,τ by contracting the fibers of this map (the Kisin varieties). This
is the source of all complexities in the non-generic situation, and the main innovation of this work
is to find a good group theoretic model for this contraction procedure.

The main idea in Theorem 1.1.4 is to use deformation theory to find good approximations of

the map Y η,τ → Φ-Modét,2K . Let LG (resp. L+G) be the loop group (resp. positive loop group)

for GL2 with respect to v(v + p), that is the functor R 7→ LG(R)
def
= GL2

(
R[v]∧(v(v+p))

[
1

v(v+p)

])
(resp. L+G(R)

def
= GL2

(
R[v]∧(v(v+p))

)
) where R is an O-algebra. We also have the “Iwahori” L+G

and the first principal congruence subgroup L+
1 G which are the inverse image in L+G of the upper

triangular Borel, resp. the trivial subgroup under the mod v reduction. We set Gr1
def
= [L+

1 G\LG],
which is a GL2-torsor over a (mixed characteristic, Beilinson–Drinfeld) affine Grassmannian.

Up to a p-adic completion which we suppress for the remainder of the introduction, we have
Y η,τ =

[
LGτ/φ(L

+G)f
]
as a quotient by a (shifted) φ-conjugation action (here φ sends v to vp)

and LGτ is a particular closed subset of LGf encoding certain elementary divisor bounds and the
combinatorial data of τ (cf. section 3.1 for the precise definitions). The basic idea, as in [LLHLM23],
is to “straighten” the φ-action in the above as much as possible: due to the contraction effect of
φ, the φ-conjugation action is equivalent to the left translation action, provided one works modulo
fixed powers of p and on a small enough subgroup. Unlike the generic case in loc. cit., it is not
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always possible to do this in characteristic p at the L+G level, but if p is large enough, it is possible
to do so at the L+

1 G-level (Lemma 3.3.7). This shows that Y η,τ is congruent to [Grτ1 /B
f -sh.cnj]

modulo pcp for some absolute constant c (here the Bf -action is via shifted conjugation, and Grτ1 is
[(L+

1 G)f\LGτ ]).

On the other hand, Φ-Modét,2K = [LGf/φLG
f ], and it is never possible to straighten the action

of the larger group LGf . However, since we are only interested in the scheme theoretic image

of Y η,τ in Φ-Modét,2K , it suffices to work instead with
[
LGbd/φ(L

+G)f
]
where LGbd is a suitable

bounded region in LGf containing the orbit of LGτ (denoted by LGbd,(v+p)vµ in the main text),
and once again the φ-action can be straightened on (L+

1 G)f . We remark that LGbd descends to

Grf1 , inducing a subvariety Grbd1 .

The upshot so far is that Y η,τ → Φ-Modét,2K is well-approximated by the natural map

[Grτ1 /B
f -sh.cnj]→ [Grbd1 /GLf

2 -sh.cnj]

modulo pcp. It further turns out that the scheme theoretic image Zmod,τ of this is congruent to

Zτ modulo pcp−1, and the model Z̃mod,τ in Theorem 1.1.4 is the pullback of Zmod,τ to the natural
(GL2)

f -torsor of the target. Finally, to prove Theorem 1.1.4, we need to show that the above
congruences can be lifted to characteristic 0, at least locally. This is achieved by a detailed study

the geometry of Z̃mod,τ to bound the p∞-torsion of the obstruction groups for such lifting problems
(whose exponent can be as large as linear in f , as alluded to in Remark 1.1.6), and imposing bounds
on p required to overcome the obstructions. A by-product of this geometric study is a control on

the singularities of Z̃mod,τ , which is robust enough that it can be transferred to Zτ through a mod
p congruence, thus yielding Theorems 1.1.1, 1.1.2.
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1.4. Notation. We fix once and for all a separable closure K and let GK
def
= Gal(K/K). If K is a

nonarchimedean local field, we let IK ⊂ GK denote the inertial subgroup. We fix a prime p. Let E
be a finite extension Qp with ring of integers O, uniformizer ϖ ∈ O and residue field F (which we
assume is large enough).

We consider the group G
def
= GL2 (defined over Z). We write B for the subgroup of upper

triangular matrices, T ⊂ B for the split torus of diagonal matrices and Z ⊂ T for the center of
G. Let X∗(T ) be the group of characters of T which we identify with Z2 in the standard way and
η ∈ X∗(T ) the element corresponding to (1, 0) ∈ Z2.

We write W (resp. W̃ ) for the Weyl group (resp. the extended affine Weyl group) of G, which

act naturally on X∗(T ). Thus W = {1, w0} is the set of permutation on 2 elements and W̃ =

X∗(T )⋊W . We use the notation tν ∈ W̃ to denote the image of ν ∈ X∗(T ) in W̃ .
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Let α denote the positive root of G and ⟨ , ⟩ the duality pairing on X∗(T )×X∗(T ), so a weight
λ ∈ X∗(T ) is dominant if 0 ≤ ⟨λ, α∨⟩. We set X0(T ) to be the subgroup consisting of characters
λ ∈ X∗(T ) such that ⟨λ, α∨⟩ = 0.

Let nowK be a finite unramified extension of Qp of degree f , with ring of integers OK and residue
field k. Thus OK = W (k), and denote by φ the arithmetic Frobenius acting on W (k) (i.e. acting

by rising to the p-power on the residue field). Let G0
def
= ResOK/Zp

G/OK
, T0

def
= ResOK/Zp

T/OK
,

and Z0
def
= ResOK/Zp

Z/OK
. We assume that O contains the image of every ring homomorphism

OK → Zp and write J def
= HomZp(OK ,O). We define G

def
= (G0)/O and fix an identification of G

with the split reductive group GJ
/O. We similarly define and identify T , and Z. The notations W ,

W̃ are clear as should be the natural isomorphisms X∗(T ) = X∗(T )J . Given an element j ∈ J ,
we use a subscript notation to denote j-components obtained from the isomorphism G ∼= GJ

/O (so

that, for instance, given an element w̃ ∈ W̃ we write w̃j to denote its j-th component via the

induced identification W̃ ∼= W̃J ). For sake of readability, we abuse notation and still write w0 to
denote the longest element in W , and η ∈ X∗(T ) for the element corresponding to (1, 0) ∈ Z2 in
all embeddings.

The Frobenius automorphism φ of OK induces an automorphism π on X∗(T ) ∼= X∗(T
∨) by the

formula π(λ)σ = λσ◦φ−1 for all λ ∈ X∗(T ) and σ : OK → O. We similarly define an automorphism

π of W and W̃ .

Recall that we fixed a separable closure K of K. We choose π ∈ K such that πpf−1 = −p
and let ωK : GK → O×

K be the character defined by g(π) = ωK(g)π, which is independent of

the choice of π. We fix an embedding σ0 : K ↪→ E and define σj
def
= σ0 ◦ φ−j , which identifies

J = Hom(k,F) = HomQp(K,E) with Z/fZ. In particular, the automorphism π on X∗(T ) satisfies

(π(λ))j = λj+1. We write ωf : GK → O× for the character σ0 ◦ ωK .
Let ε denote the p-adic cyclotomic character. We fix normalization so that the p-adic cyclotomic

character ε has Hodge–Tate weight {1} for every κ : K ↪→ E.

2. Tame inertial types and Breuil–Kisin modules

2.1. Tame inertial types and Galois representations.

2.1.1. Tame inertial types. An inertial type for K over O (resp. over F) is an homomorphism
τ : IK → GL2(O) (resp. τ : IK → GL2(F)) with open kernel and which extends to the Weil group
of GK . An inertial type is tame if it factors through the tame quotient of IK . Given s ∈ W and
µ ∈ X∗(T ), we have a tame inertial type τ(s, µ) : IK → GL2(O) defined as follows: let r be the

order of s0s1 . . . sf−1 ∈W , and define αk′
def
= (
∏k′−1

m′=0 s
−1
f−1−m′)(µf−k′). Then

τ(s, µ)
def
=

( rf−1∑
i′=0

αi′p
i′
)
(ωfr).

In particular if ν = (νj)j∈J ∈ X∗(Z) ∼= ZJ then

(2.1.1) τ(s, µ+ ν) ∼= τ(s, µ)⊗O ω
∑

j∈J νjp
j

f .

Any tame inertial type is isomorphic to some τ(s, µ).
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More explicitly, if s = (sj)J ∈W is such that
∏f−1

j=0 sj = id then τ(s, µ) ∼= ωγ
f ⊕ ωγ′

f where

γ
def
=

f−1∑
j=0

pj
(
µ
f−j,(

∏f−1−j
i=0 si)(1)

)

γ′
def
=

f−1∑
j=0

pj
(
µ
f−j,(

∏f−1−j
i=0 si)(2)

)
,(2.1.2)

noting that
∏f−1−j

i=0 si =
∏j−1

i=0 s
−1
f−1−i.

Similarly, if s = (sj)J ∈W is such that
∏f−1

j=0 sj = (12) then τ(s, µ) ∼= ωh
2f ⊕ ωpfh

2f where

(2.1.3) h
def
=

f−1∑
j=0

pj
(
µ
f−j,(

∏f−1−j
i=0 s−1

i )(2)

)
+ pf

( f−1∑
j=0

pjµ
f−j,(

∏f−1−j
i=0 s−1

i )(1)

)
.

Remark 2.1.4. Let λ, λ′ ∈ X∗(T )
∼→ (Z2)f . Then λ ≡ λ′ mod (p− π−1)X0(T ) if and only if

f−1∑
j=0

pjλj,1 + pf
( f−1∑

j=0

pjλj,2

)
≡

f−1∑
j=0

pjλ′
j,1 + pf

( f−1∑
j=0

pjλ′
j,2

)
mod p2f − 1.

We say that (s, µ) is a presentation for the tame inertial type τ(s, µ). Note that any tame inertial
type will have infinitely many presentations since

(2.1.5) τ(s, µ) ∼= τ(σsπ(σ)−1, σ(µ) + pν − σsπ(σ)−1π(ν))

for any (σ, ν) ∈ W × X∗(T ). We will also record a presentation (s, µ) by the element w̃∗(τ) =

s−1tµ ∈ W̃ .

Lemma 2.1.6. Let τ : IK → GL2(O) be a tame inertial type.

Then, there exists n ∈ Z, (kj)j∈J ∈
{
0, . . . , p+1

2

}J
and s ∈WJ such that

τ ∼= τ
(
s,
(
(kj , 0)

)
j∈J
)
⊗O ωn

f

and moreover sj = id if kj = 0.

Proof. In this proof, given two tame inertial types τ and τ ′ we write τ ∼ τ ′ if τ ∼= τ ′ ⊗O ωn
f for

some n ∈ Z. Let (s′, µ′) be a presentation of τ . Using (2.1.1) and applying repeatedly (2.1.5) with

σ = id, we see that τ(s′, µ′) ∼ τ(s′, µ′′) where µ′′ ∈ X∗(T ) is such that ⟨µ′′
j , α

∨⟩ ∈ [−p+1
2 , . . . , p+1

2 ]

for all j ∈ J (see also [LLHLM23, Lemma 2.3.3]). Hence, using again (2.1.1), we have τ(s′, µ′′) ∼
τ
(
s′, (k′j , 0)j∈J

)
where |k′j | ≤

p+1
2 . Finally, using (2.1.1) and applying repeatedly (2.1.5) with

ν = 0, we obtain τ
(
s′, (k′j , 0)j∈J

)
∼ τ

(
s, (kj , 0)j∈J

)
, where at each step σ can be chosen so that

σjsjσ
−1
j+1 = id when k′j = 0. □

Definition 2.1.7. A presentation (s, µ) of a tame inertial type τ is small if 0 ≤ ⟨µj , α
∨⟩ ≤ p+1

2 for
all j ∈ J and moreover sj = id whenever ⟨µj , α

∨⟩ = 0.

If τ is a tame inertial type over O we let τ
def
= τ⊗OF. This construction gives a bijection between

isomorphism classes of tame inertial types over O and tame inertial types over F so that the whole
discussion above holds for the latter.
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Lemma 2.1.8. Let τ = τ(s, µ) be a tame inertial type with small presentation (s, µ). For j′ ∈ J ′

define a′(j
′) def

=
∑rf−1

i′=0 α−j′+i′p
i′. There exists a unique element (s′or,j′)j′∈J ′ ∈ WJ ′

such that

(s′or,j′)
−1(a′(j

′)) is strictly dominant for all j′ ∈ J ′. Moreover the embedding σ0 : k ↪→ F and s can

be chosen so that (s′or,rf−1) = id.

Proof. We can assume without loss of generality that ⟨µ0, α
∨⟩ > 0. As α0 = µ0 we thus have

a′(0) = prf−1µ0 +
∑rf−2

i′=0 α−j′+i′p
i′ which is dominant since ⟨µ0, α

∨⟩ > 0 and p− 1 > ⟨α−j′+i′ , α
∨⟩

for i′ = 0, . . . , rf − 2.
We can now conclude by decreasing induction: using the relation

a′(rf−j′) =
a′(rf−j′+1) −α−(rf−j′+1)

p
+ prf−1αj′−1

we see that either αj′−1 /∈ X0(T ) and hence a′(rf−j′) is strictly dominant if and only if αj′−1

is strictly dominant (in which case s′or,rf−j′ is uniquely determined), or αj′ ∈ X0(T ) and hence

a′(rf−j′) is strictly dominant if and only if a′(rf−j′+1) is strictly dominant (in which case s′or,rf−j′ =

s′or,rf−j′+1 and s′or,rf−j′+1 is uniquely determined the inductive hypothesis). □

2.1.2. Galois deformation rings. We let ρ : GK → GL2(F) be a continuous Galois representation.
Let CO be the category of Noetherian complete local O-algebras with residue field F and local
O-algebra homomorphisms. The functor that assigns to (A,mA) ∈ CO the set of lifts ρA : GK →
GL2(A) of ρ is representable by R□

ρ , the (unrestricted) lifting ring of ρ.

Given a tame inertial type τ over O we let Rη,τ
ρ be the reduced O-flat quotient of R□

ρ such

that the Qp-points of Spec Rη,τ
ρ [1/p] correspond to the subset of ρ : GK → GL2(Qp) (inside

Spec (Rρ[1/p])) which are potentially Barsotti–Tate and such that the covariant Weil–Deligne

inertial type is isomorphic to τ ⊗O Qp. The rings Rη,τ
ρ are known in “generic” cases (cf. [EGS15,

LLHLM23]):

Theorem 2.1.9. Assume that τ has a presentation (s, µ) where 2 ≤ ⟨µj , α
∨⟩ ≤ p− 2. Then either

Rη,τ
ρ = 0 or

Rη,τ
ρ
∼= O[[Z1, . . . , Zf+4−n, X1, Y1, . . . , Xn, Yn]]/(XiYi − p, i = 1, . . . , n)

for some n ∈ {0, . . . , f}.

One of the main goals of this paper, accomplished in §4.6.1, is to provide the analog of Theorem
2.1.9 in highly non-generic situations.

2.2. Breuil–Kisin modules and Emerton–Gee stack.

2.2.1. We introduce the necessary background on Breuil–Kisin modules with tame descent data.
Let τ = τ(s, µ) be a tame inertial type with presentation (s, µ) which we fix throughout this

section. Recall that r ∈ {1, 2} is the order of s0s1s2 · · · sf−1 ∈ W . Let K ′/K be the unramified

extension of degree r contained in K, set f ′ def
= fr, e′

def
= pf

′ − 1, and identify HomQp(K
′, E) with

Z/f ′Z via σj′
def
= σ′

0 ◦ φ−j′ 7→ j′ where σ′
0 : K ′ ↪→ E is a fixed choice of an embedding extending

σ0 : K ↪→ E. (In particular, restriction of embeddings corresponds to reduction modulo f in the
above identifications.)

We let π′ ∈ K be an e′-th root of −p, L′ def
= K ′(π′) and ∆′ def

= Gal(L′/K ′) ⊂ ∆
def
= Gal(L′/K).

We have the character ωK′(g)
def
= g(π′)

π′ for g ∈ ∆′ (which does not depend on the choice of π′) and
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given an O-algebra R, we set SL′,R
def
= (W (k′) ⊗Zp R)[[u′]]. The latter ring is endowed with the

endomorphism φ : SL′,R → SL′,R acting as the Frobenius on W (k′) and sending u′ to (u′)p, and

is endowed moreover with an action of ∆ by g′(u′) = g′(π′)
π′ u′ = ωK′(g′)u′ if g′ ∈ ∆′ and, letting

σf ∈ ∆ be the lift of the pf -Frobenius on W (k′) which fixes π′, then σf acts in natural way on
W (k′) and trivially on u′ (all the endomorphism above act trivially on R by default). Finally,

v
def
= (u′)e

′
,

SR
def
= (SL′,R)

∆=1 = (W (k)⊗Zp R)[[v]]

and E(v)
def
= v + p = (u′)e

′
+ p.

Definition 2.2.1. A Breuil–Kisin module M of rank 2 over SL′,R with descent data of type τ and
height ≤ 1 is the datum of:

(1) a rank 2 projective SL′,R-module M;
(2) an injective SL′,R-linear map ϕM : φ∗(M)→M whose cokernel is annihilated by E(v); and
(3) a semilinear action of ∆ on M which commutes with ϕM, and such that, for each j′ ∈

HomQp(K
′, E),

(M⊗W (k′)⊗ZpR,σj′
R) mod u′ ∼= τ∨ ⊗O R

as ∆′-representations.

We write Y [0,1],τ to be the groupoid of such objects (cf. [LLHLM23, Definition 5.1.3]). We also

define Y η,τ (R) ⊂ Y [0,1],τ (R) to be the subgroupoid satisfying the additional determinant condition

det(ϕM) ∈ (R[[v]])×(v + p).

We consider M(j′) def
= M⊗W (k′)⊗ZpR,σj′

R as a R[[u′]]-submodule of M in the standard way, so it

is endowed with a semilinear action of ∆′. The Frobenius ϕM induces ∆′-equivariant morphisms

ϕ
(j′)
M : φ∗(M(j′−1)) = (φ∗(M))(j

′) →M(j′) (here the pull back on the first object is with respect to
the R-algebra map φ : R[[u′]]→ R[[u′]] such that u′ 7→ u′p). We remark that, by letting τ ′ denote the
tame inertial type for K ′ obtained from τ via the identification IK′ = IK induced by the inclusion
K ′ ⊆ K, the semilinear action of ∆ induces an isomorphism ιM : (σf )∗(M) ∼= M (see [LLHLM18,

§6.1]) as elements of Y [0,1],τ ′(R).

Let M ∈ Y [0,1],τ (R). Recall that an eigenbasis of M is a collection of bases β(j′) = (f
(j′)
1 , f

(j′)
2 )

for each M(j′) such that ∆′ acts on f
(j′)
i via the character ω

−a
′ (0)
i

f ′ and such that ιM((σf )∗(β(j′))) =

β(j′+f) for all j′ ∈ HomQp(K
′, E). Given an eigenbasis β for M, we let C

(j′)
M,β be the matrix of

ϕ
(j′)
M : φ∗(M(j′−1))→M(j′) with respect to the bases φ∗(β(j′−1)) and β(j′) and set

A
(j′)
M,β

def
= Ad

(
(s′or,j′)

−1(u′)−a′ (j′)
)
(C

(j′)
M,β)

for j′ ∈ HomQp(K
′, E).

Lemma 2.2.2. Let M ∈ Y [0,1],τ (R) with eigenbasis β. The element A
(j′)
M,β has coefficients in R[[v]]

and is upper triangular modulo v. Finally, it only depends on the restriction of j′ to K.

Proof. By the definition of eigenbases and of the action of ∆′ on SR ⊗W (k′),σj′
R, we see that

(C
(j′)
M,β)α ∈

(
(u′)⟨a

′ (j′),α∨⟩R[[v]]
)
∩R[[u′]] for α ∈ Φ. Explicitly, letting δj′ ∈ {0, 1} be such that δj′ = 0

if and only if a′ (j
′) is dominant, we have for α ∈ Φ+ that (C

(j′)
M,β)α ∈ (u′)e

′δj′+⟨a′ (j′),α∨⟩R[[v]] and
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(C
(j′)
M,β)−α ∈ (u′)e

′(1−δj′ )+⟨a′ (j′),−α∨⟩R[[v]]. Thus for α ∈ Φ+, the α-entry of Ad
(
(u′)−a′ (j′)

)
(C

(j′)
M,β) is

in vδj′R[[v]] and the −α-entry is in v1−δj′R[[v]]. By the definition of δj′ and the fact that s′or,j′ = id

if and only if a′ (j
′) is dominant, we conclude that A

(j′)
M,β is upper triangular modulo v. The fact

that A
(j′)
M,β depends only on j′ modulo f follows from [LLHLM18, Lemma 6.2, Proposition 6.9]. □

2.2.2. Étale Φ-modules. We recall the notion of étale Φ-modules.
Recall that OE,K denotes the p-adic completion of (W (k)[[v]])[1/v]. It is endowed with a contin-

uous Frobenius morphism φ extending the Frobenius on W (k) and such that φ(v) = vp. Given a

p-adically complete Noetherian O-algebra R we let Φ-Modét,2K (R) be the groupoid consisting of pro-

jective modulesM of rank 2 over OE,K⊗̂ZpR endowed with a Frobenius semilinear endomorphism

ϕM :M→M inducing an isomorphism on the pull-back: id⊗φ ϕM : φ∗(M)
∼−→M.

We similarly define the ring OE,L′ , with Frobenius φ, and the groupoid Φ-Modét,2dd,L′(R) of rank

2 étale (φ,OE,L′⊗̂ZpR)-modules with descent data from L′ to K.

The groupoids Φ-Modét,2K , Φ-Modét,2dd,L′ form fppf stacks over Spf O (see [CEGSb, §3.1]).

Given M ∈ Y η,τ (R), M⊗SL′,R (OE,L′⊗̂ZpR) is an object Φ-Modét,2dd,L′(R), which we can descend

to an étale φ-moduleM∈ Φ-Modét,2K (R) by

M def
= (M⊗SL′,R (OE,L′⊗̂ZpR))∆=1.

This defines a morphism of stacks ετ : Y η,τ → Φ-Modét,2K which is representable by algebraic
spaces, proper, and of finite presentation by [CEGSb, Corollary 3.1.8(3), Proposition 3.3.5] (and
the fact that taking ∆-invariants is an isomorphism of groupoids). Moreover, ετ is independent of

any W̃ -presentation of τ .

Given (M, ϕM) ∈ Φ-Modét,2K (R), we decompose M = ⊕j∈JM(j) over the embeddings σj :

W (k) → O, with induced maps ϕ
(j)
M : M(j−1) → M(j). The following proposition is a direct

computation on the definition of the A
(j)
M,β:

Proposition 2.2.3. ([LLHLM23, Proposition 5.4.2]) Let M ∈ Y [0,1],τ (R) and β an eigenbasis of
M. Let (s, µ) be a small presentation of τ .

Then there exists a basis f for ετ (M) such that the matrix of ϕ
(j)
ετ (M) with respect to f is given by

A
(j)
M,βs

−1
j vµj = A

(j)
M,βw̃

∗(τ)j .

Finally, when R is a complete local Noetherian O-algebra with finite residue field we have an
exact functor

V∗
K : Φ-Modét,2K (R)→ Rep2R(GK∞)

establishing an anti-equivalence of categories (by the theory of fields of norms, cf. [LLHLM18,
§2.3 and §6.1]) and therefore a functor T ∗

dd : Y η,τ (R) → Rep2R(GK∞) defined as the composite of
ετ followed by V∗

K . (Note that the formula of loc. cit. is inaccurate and should be modified as

follows: V∗
K(M) = HomR

(
(M⊗OE⊗̂R OEun⊗̂R)φ=1, R

)
.) Finally, we recall that given (M, ϕM) ∈

Φ-ModétK(R), we can define an étale (φf ,OE,K⊗̂W (k),σ0
R)-module obtained as the f -fold composite

of the partial Frobenii acting onM(0) (see for instance [LLHLM18, §2.3]).
Let Zτ be the scheme theoretic image of ετ . This is the moduli stack of tame potentially

Barsotti–Tate representations of type τ constructed and studied in [CEGSb, §5.1].
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A point ρ ∈ Zτ (F) gives rise to a mod p-representation of GK . Then Rη,τ
ρ , the tame potentially

Barsotti–Tate deformation ring of type τ , is a versal ring to Zτ at ρ ([CEGSb, Corollary 5.2.19]).

3. Models

Recall from § 2.2.2 the proper, birational morphism Y η,τ → Zτ which is an isomorphism on
generic fibers.

3.1. Loop groups and open charts. Given a Noetherian O-algebra R let R[v]∧(v(v+p)) denote

the (v(v + p))-adic completion of R[v]. We denote by R[v]
[

1
v(v+p)

]
≤0
⊂ R[v]∧(v(v+p))

[
1

v(v+p)

]
the

subring of elements the form P
(v(v+p))m with P ∈ R[v] such that degP ≤ 2m.

We define:

LG(R)
def
= GL2

(
R[v]∧(v(v+p))

[ 1

v(v + p)

])
;

L+G(R)
def
= GL2

(
R[v]∧(v(v+p))

)
;

L−G(R)
def
=

{
A ∈ LG(R) and A has coefficients in R[v]

[
1

v(v + p)

]
≤0

}
Now we have surjections

ev+ : L+G ↠ GL2

ev− : L−G ↠ GL2

obtained by evaluation modulo v and 1/v respectively.
We define

L+
1 G(R)

def
= ker ev+

L−
1 G(R)

def
= ker ev−

L+G(R)
def
= (ev+)−1(B)

L−−G(R)
def
= (ev+)−1(N)

Note that the functors L+G and L−−G have a slightly different meaning than the correspond-
ing functors in [LLHLM23], however they coincide after p-adic completion. We define a closed
subfunctor A(η) ⊂ LG whose R-valued points consist of A ∈ LG(R) satisfying

(1) detA ∈
(
R[v]∧(v(v+p))

)×
(v + p);

(2) A ∈ Mat2(R[v]∧(v(v+p))) and upper triangular mod v;
(3) (v + p)A−1 is upper triangular mod v.

Note that A(η)(F) identifies with ⋃
z̃j∈Adm(η)

L+G(F)z̃jL+G(F)

where Adm(η) = {
(
v 0
0 1

)
,

(
1 0
0 v

)
,

(
0 1
v 0

)
} is the η-admissible set.

Given a type τ with small presentation (s, µ) ∈W ×X∗(T ) we define

(3.1.1) LGτ (R)
def
=
∏
j∈J
A(η)(R)sjv

µj ⊂ LGJ (R)



12 BAO V. LE HUNG, ARIANE MÉZARD, AND STEFANO MORRA

We also define

LGbd,(v+p)vµ(R)
def
=

{
(Aj) ∈ (LG(R))J , such that :

detAj ∈
(
R[v]∧(v(v+p))

)×
(v + p)v⟨µj ,α

∨⟩

Aj ∈ Mat2(R[v]∧(v(v+p)))

}
.

Lemma 3.1.2. (1) L+
1 G is a normal subgroup of both of L+G and L+G, and

L+G = L+
1 G⋉GL2

L+G = L+
1 G⋉B

(2) The multiplication maps L+
1 G × L−G → LG, L+G × L−−G → LG are formally étale

monomorphisms after p-adic completion.
(3) A(η)∧p has an affine open cover A(z̃)∧p where z̃ runs over Adm(η) (cf. Table 1).

Proof. Item (1) is clear.
Item (2) for the map L+G × L−−G → LG follows from [LLHLM23, Lemmas 3.2.2, 3.2.6] (using

that R[v]v(v+p) = R[[v]] on rings where p is nilpotent), which implies the statement for L+
1 G×L−G→

LG.
We prove item (3). By the previous item, A∧p(z̃)

def
= L+G · LG−−z̃ ∩ A(η)∧p = L+G · (LG−−z̃ ∩

A(η)∧p) is an open subfunctor (since L+G\A(η) is finite type, cf. the proof of [LLHLM23, Corollary
3.2.10]). Consideration on F-points shows that A∧p(z̃) for z̃ ∈ Adm(η) form an open cover.

Finally, if R is an O-algebra where p is nilpotent, L−−G(R)z̃ consists of matrices A of the form

A =

(
1 + 1

va
1
v b

c 1 + 1
vd

)
z̃

for a, b, c, d,∈ R
[
1
v

]
, and imposing the conditions (1), (2) on it gives the explicit description in

table 1. □

Table 1. The affine cover of L+G\A(η)∧p .

z̃ tη w0tη tw0η

A∧p(z̃)

(
(v + p) 0
vx 1

) (
X 1
v Y

)
XY + p = 0

(
1 y
0 v + p

)

3.2. Loop groups and moduli of Breuil–Kisin modules. Y η,τ has the following description
as a quotient stack (cf. [LLHLM23, 5.2.1]):

Lemma 3.2.1. Let τ be a tame inertial type with small presentation (s, µ) ∈ W ×X∗(T ). Then

any M ∈ Y η,τ has an eigenbasis Zariski locally on Y η,τ and the assignment M 7→ (A
(j)
M,β)j∈J w̃

∗(τ)

defines an isomorphism of p-adic formal algebraic stacks

(3.2.2) Y η,τ ∼−→
[
LGτ

/
φ

∏
j∈J

L+G
]∧p
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and hence a morphism

(3.2.3) Y η,τ →
[
LGbd,(v+p)vµ

/
φ

∏
j∈J

L+G

]∧p

We have a morphism

ι :

[
LGbd,(v+p)vµ

/
φ

∏
j∈J

L+G

]∧p

−→ Φ-Modét,2K

sending the class of A
def
= (A(j))j∈J to the étale φ-module ι(A) which is free of rank 2 and such that

ϕ
(j)
ι(A) : ι(A)(j−1) → ι(A)(j) has matrix A(j) in the standard basis.

Proposition 3.2.4. Assume p − 2 > maxj⟨µj , α
∨⟩. Let τ be a tame inertial type with a small

presentation (s, µ) ∈ W × X∗(T ). We have a commutative diagram of p-adic formal algebraic
stacks over SpfO:

(3.2.5) Y η,τ 3.2.3 //

ετ

��

##

[
LGbd,(v+p)vµ

/
φ

∏
j∈J

L+G

]∧p

mM

ι

{{

Zτ
� _

��

∃
66

Φ-Modét,2K

where the hooked diagonal arrow is a closed immersion. In particular, the dotted arrow exists and
makes the diagram commute.

Proof. Denote by Y bd,τ the groupoid in the upper right vertex of the diagram (3.2.5).
The external triangle is commutative by Proposition 2.2.3 and Lemma 3.2.1. The factorization

of ετ is by definition of Zτ .
Hence, the existence of the dotted arrow will follow once we prove that the diagonal hooked

arrow is a closed immersion. Since ι is proper (as LG/L+G is ind-proper and Y bd,τ is a finite type
p-adic formal algebraic stack), it suffices to show that it is a monomorphism.

We prove that for any Noetherian O/ϖa-algebra R, and any pair A1, A2 ∈ Y bd,τ (R), the mor-
phism ι induces a bijection

HomY bd,τ (A1, A2)
∼→ HomΦ-Mod(ι(A1), ι(A2)).

The induced map is clearly injective, and we thus prove its surjectivity. Assume that there exists
X = (Xj)J ∈ LG(R)J such that

(3.2.6) A
(j)
1 = XjA

(j)
2

(
φ(Xj−1)

)−1

or, equivalently,

(3.2.7)
(
φ(Xj−1)

)
= (A

(j)
1 )−1XjA

(j)
2

for all j ∈ J .
We show by induction on a that (3.2.7) forces Xj ∈ L+G(R) for all j ∈ J .
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If a = 1 then p = 0 in R and, noting that det((A
(j)
2 )−1) det(A

(j)
1 ) ∈ R× by assumption, we deduce

from (3.2.7) that φf (det(Xj)) = uj det(Xj) for a unit uj ∈ R×. This shows that det(Xj) ∈ R×.
We now show that Xj ∈ Mat2(R[[v]]). Let κj ∈ Z be the pole order of Xj at v, i.e. κj ∈ Z is

minimal such that vκjXj ∈ Mat2(R[[v]]). As det(A
(j)
1 ) ∈ R×v1+⟨µj ,α

∨⟩ we deduce from (3.2.7) that

1 + κj + ⟨µj , α
∨⟩ ≥ pκj−1

which forces κj ≤ maxi{ ⟨µi,α⟩+1
p−1 } ≤

p+3
2(p−1) < 1. We conclude that Xj ∈ L+G(R) for all j ∈ J

when a = 1.
Assume the assertion up to a− 1. We can thus write Xj = X̃j(1+ εj) where X̃j ∈ L+G(R), εj ∈

LieLG((ϖa−1)), for all j ∈ J . Replacing A
(j)
1 by (X̃j)

−1A
(j)
1

(
φ(X̃j−1)

)
, we can assume that (3.2.6)

is true with Xj = 1 + εj . In particular A
(j)
2 = (1 + δj)A

(j)
1 for some δj ∈ LieLG((ωa−1)). We now

prove that actually εj ∈ LieL+G((ωa−1)). Then (3.2.6) becomes 1 = (1 + εj)(1 + δj)Ad(A
(j)
1 )(1−

φ(εj−1)) so that

(3.2.8) (A
(j)
1 )−1εjA

(j)
1 + (A

(j)
1 )−1(A

(j)
2 −A

(j)
1 ) = φ(εj−1).

Let κj be the pole order of εj . Observe that

• vκj+⟨µj ,α
∨⟩(v + p)

(
(A

(j)
1 )−1εjA

(j)
1

)
∈ Mat2(R[v]∧v(v+p))

• v⟨µj ,α
∨⟩(v + p)

(
(A

(j)
1 )−1(A

(j)
2 −A

(j)
1 )
)
∈ Mat2(R[v]∧v(v+p)).

Since (v + p)εj = vεj we deduce that

pκj−1 ≤ max{κj + ⟨µj , α
∨⟩+ 1, ⟨µj , α

∨⟩+ 1}.

This forces κj ≤ maxi{ ⟨µi,α
∨⟩+1

p−1 } ≤ p+3
2(p−1) < 1. So that indeed εj ∈ LieL+G((ωa−1)). □

By taking fiber product, we thus obtain a commutative diagram:

(3.2.9)

Ỹ η,τ Z̃τ

[
LGbd,(v+p)vµ

/
φ

∏
j∈J L+

1 G

]∧p

Y η,τ Zτ

[
LGbd,(v+p)vµ

/
φ

∏
j∈J L+G

]∧p

Φ-Modét,2K

π

□
∏

J GL2
∏

J GL2
□ ∏

J GL2

ετ

where the hooked arrows are closed immersions, the arrows decorated with
∏

J GL2 are
∏

J GL2-

torsors, and the central squares are cartesian, which defines the stacks Ỹ η,τ , Z̃τ .

3.3. Models for moduli of Breuil–Kisin modules. We now define Grτ1 ↪→ Gr
bd,(v+p)vµ

1 as the

fpqc quotients
∏

j∈J L+
1 G\LGτ ↪→

∏
j∈J L+

1 G\LG
bd,(v+p)vµ

. We define Y mod,η,τ as the quotient[
Grτ1

/∏
J

B-sh.cnj

]∧p
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by the shifted conjugation action (bj) · (gj) = (bjgjb
−1
j−1). Define also Ỹ mod,η,τ as the fiber product

Ỹ mod,η,τ //

��

□

(
Gr

bd,(v+p)vµ

1

)∧p

GL2
J

��

Y mod,η,τ //

[
Gr

bd,(v+p)vµ

1 /
∏
J

GL2-sh.cnj

]∧p

Proposition 3.3.1. The p-adic formal scheme Ỹ mod,η,τ identifies with the (closed formal) sub-

scheme of

(∏
J (Gr1×(B\GL2,O))

)∧p

consisting of pairs (X, g) such that (gjXjg
−1
j−1)j∈J ∈ Grτ1.

In particular, (Xj)j∈J ∈ Gr
bd,(v+p)vµ

1 .

Proof. It follows from the definition that Ỹ mod,η,τ is the quotient of the space of triples ((Xj), (Yj), (gj)) ∈

Gr
bd,(v+p)v⟨µj,α

∨⟩

1 ×Grτ1 ×GLJ
2 satisfying Yj = gjXj(gj−1)

−1 by the action of BJ given by

(bj) · ((Xj), (Yj), (gj)) = ((Xj), (bjYjb
−1
j−1), (bjgj)).

This finishes the proof because the (class of the) triple ((Xj), (Yj), (gj)) is uniquely determined by
(the class of) ((Xj), (gj)). □

We define Z̃mod,τ as the scheme theoretic image of projection map pr : Ỹ mod,η,τ → Gr
bd,(v+p)vµ

1
sending (X, g) to X. This gives a factorization

(3.3.2) Ỹ mod,η,τ πmod
//

pr

&&

Z̃mod,τ
� _

ı
��

Gr
bd,(v+p)vµ

1

For any z̃ ∈ W̃
∨
by Lemma 3.1.2(2) we have a formally étale monomorphism

(3.3.3) Gr
bd,(v+p)vµ

1 (z̃)
def
= [(L−G)J z̃] ∩Gr

bd,(v+p)vµ

1 ↪→ Gr
bd,(v+p)vµ

1

after p-adic completion, which is an open immersion because the target is of finite type. Define

Ũ(z̃) to be the p-adic completion of the LHS of (3.3.3). Note that Ũ(z̃) =
∏

j Ũ(z̃j) has an obvious
product structure.

Lemma 3.3.4. {Ũ(z̃)}
z̃∈W̃ is a Zariski open covering for the p-adic completion of Gr

bd,(v+p)vµ

1 .

Proof. Since Gr
bd,(v+p)vµ

1 is finite type the Ũ(z̃) are actually Zariski open formal subschemes of its

p-adic completion. Looking at F-points shows that they cover. □

In particular, by diagram (3.3.2), Ũ(z̃) induce open substacks Ỹ mod,η,τ (z̃) ⊆ Ỹ mod,η,τ , Z̃mod,τ (z̃) ⊆
Z̃mod,τ .

Lemma 3.3.5. The Ỹ mod,η,τ (z̃) (Z̃mod,τ (z̃)) for z̃ ∈ Adm(η)J s−1vµ form a Zariski open cover of

Ỹ mod,η,τ (resp. Z̃mod,η,τ ).

Proof. This follows from Lemma 3.1.2(3). □
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Lemma 3.3.6. Ỹ mod,η,τ is an O-flat local complete intersection of dimension 5f over O.

Proof. It suffices to show that Y mod,η,τ is a O-flat local complete intersection of dimension f over
O. Since Grτ1 is a BJ -torsor over Y mod,η,τ , the result follows from Table 1. □

Lemma 3.3.7. Assume that p− 2− ⟨µj , α
∨⟩ ≥ N for all j ∈ J . We have an isomorphism

Ỹ η,τ ⊗O O/pN

∼=

��

//

LGbd,(v+p)vµ/φ
∏
j∈J

L+
1 G

⊗O O/pN

∼=

��

Ỹ mod,η,τ ⊗O O/pN // Gr
bd,(v+p)vµ

1 ⊗OO/pN

Proof. The fact that the left vertical arrow is an isomorphism follows from the act that the
right vertical arrow is an isomorphism. The latter fact can be proven similar to the proof of
[LLHLM23, Lemma 5.2.2]: the result would follow from the fact that for any O/pN -algebra R and

A ∈ LGbd,(v+p)vµ(R) the map

(Xj) 7→ (Xj Ad(Aj)φ(Xj−1))

is an automorphism of (L+
1 G(R))J . In turn this follows from the fact that

vpA−1
j ∈

vp

(v + p)v⟨µj ,α⟩
Mat2(R[[v]]) ⊂ vp−N−⟨µj ,α⟩Mat2(R[[v]]) ⊂ v2Mat2(R[[v]]),

where we use that 1
(v+p)R[[v]] ⊂ 1

vN
R[[v]].

□

As a consequence of Lemma 3.3.7 and diagram 3.2.9, Ũ(z̃) also induces open substacks Ỹ η,τ (z̃),

Z̃τ (z̃). The following Theorem is the main result of the paper.

Theorem 3.3.8. Fix a small presentation (s, µ) of τ . Assume either p > 8f + 3 + maxj⟨µj , α
∨⟩

or p > 7 and K = Qp. Then we have an isomoprhism

Z̃mod,τ (z̃) ∼= Z̃τ (z̃).

Remark 3.3.9. (1) Since (s, µ) is small, maxj⟨µj , α
∨⟩ ≤ p+1

2 . In particular the hypothesis on p
is satisfied for all τ when p > 16f + 7.

(2) Theorem 3.3.8 is proven under the first hypothesis in section 4.5. The proof under the
improved bound p > 7 for Qp is completed in section 5.5.1, cf. Remark 5.5.1 for the source
of the improvements.

The proof of Theorem 3.3.8 will be performed in two steps:

(1) We first show there is a isomorphism Z̃τ (z̃)⊗OO/pN
∼→ Z̃mod,τ (z̃)⊗OO/pN for sufficiently

large N .

(2) We bound the power of p that belongs to the ideal of singularity of Z̃mod,η,τ over O. This
allows us to lift the isomorphism mod pN in the above step to an isomorphism over O.

In the remainder of this section we will carry out the first step of the above strategy modulo some

geometric facts about Ỹ mod,η,τ → Z̃mod,τ which will established in the later sections. The second
step of the strategy is carried out in Section 4.5



BARSOTTI–TATE LOCAL MODEL THEORY 17

3.3.1. Modeling mod pN . Set N
def
= p−2−maxj ⟨µj , α

∨⟩. Define Z̃apx
N as the scheme theoretic image

of the map

Ỹ η,τ ⊗O O/pN →
[
LGbd,(v+p)vµ

/
φ

∏
j∈J

L+
1 G

]
⊗O O/pN = Gr

bd,(v+p)vµ

1 ⊗OO/pN .

We have the commutative diagram

(3.3.10)

Ỹ η,τ ⊗O O/pN Ỹ mod,η,τ ⊗O O/pN

Z̃τ ⊗O O/pN Z̃apx
N Z̃mod,τ ⊗O O/pN

[
LGbd,(v+p)vµ/φ

∏
J L+

1 G
]
⊗O O/pN Gr

bd,(v+p)vµ

1 ⊗OO/pN

∼Lemma 3.3.7

π πmod

(3.2.9)

♡♡
♡

ı

∼

Proposition 3.3.11. The morphisms ♡, ♡♡ have a factorization

Z̃τ ⊗O O/pN Z̃apx
N_?

♡
oo � �

♡♡
// Z̃mod,τ ⊗O O/pN

Z̃τ ⊗O O/pN−1 � �

∼
//

?�

OO

Z̃apx
N ⊗O O/pN−1

?�

OO

Z̃mod,τ ⊗O O/pN−1
_?

∼oo
?�

OO

In particular, the natural morphisms ♡, ♡♡ induce an isomorphism

Z̃τ ⊗O O/pN−1 ∼−→ Z̃mod,τ ⊗O O/pN−1.

The proof of Proposition 3.3.11 crucially relies on the following result, whose proof will be
postponed until section 4.5.

Proposition 3.3.12. We have:

(3.3.13) p coker
(
OZ̃mod,τ → πmod

∗
(
O

Ỹ mod,η,τ

))
= 0.

Proposition 3.3.14. For ℓ > 0
Rℓπmod

∗ O
Ỹ mod,η,τ = 0.

Proof of Proposition 3.3.11. The statement is local on Gr
bd,(v+p)vµ

1 ⊗OO/pN , so it suffices to prove

it after intersecting everything with Ũ(z̃). Write Z̃τ (z̃) = Spf R, Z̃mod,τ (z̃) = Spf Rmod, and

Z̃mod
N (z̃) = Spf Rapx

N . Also let S = π∗

(
O

Ỹ η,τ (z̃)

)
and Smod = πmod

∗

(
O

Ỹ mod,η,τ (z̃)

)
and SN =

πmod
∗

(
O

Ỹ mod,η,τ (z̃)
/pN

)
. Note that S and Smod are p-torsion free and, S/pN ↪→ SN = Smod/pN by

Proposition 3.3.14.

Since Z̃mod,τ (z̃) is the scheme theoretic image of Ỹ mod,η,τ → Ũ(z̃) we have Rmod ⊂ Smod.
Similarly R ⊂ S. Finally equation (3.3.13) shows that Smod/Rmod is p-torsion. We thus have the
following commutative diagram

(3.3.15)

S S/pN SN Smod/pN Smod

R R/pN Rapx
N Rmod/pN Rmod

π

♡♡
♡

πmod



18 BAO V. LE HUNG, ARIANE MÉZARD, AND STEFANO MORRA

where the hooked arrow are injective. Let C, Cmod denote the cokernel of the maps π, πmod

respectively. As S, Smod are both p-flat, we deduce from (3.3.15) the following commutative
diagram with exact rows (this defines CN ):

(3.3.16)

ker(♡♡)

0 Cmod[pN ] Rmod/pN Smod/pN Cmod/pN 0

0 0 Rapx
N SN CN 0

0 C[pN ] R/pN S/pN C/pN 0

ker(♡)

πmod

♡♡

π

♡

Proposition 3.3.12 imply that pCmod = 0 and hence Cmod[pN ] = Cmod[p]. Thus ker(♡♡) is
annihilated by p. We conclude that p ker(♡♡) ⊆ pNRmod and, as Rmod is p-flat, that ker(♡♡) ⊆
pN−1Rmod. This implies the factorization

Rmod/pN
♡♡

// //

����

Rapx
N

∃yyyy

Rmod/pN−1

and hence an isomorphism Rmod/pN−1 ∼= Rapx
N /pN−1.

Now pCN = 0 so p(C/pN ) = 0. Hence pC ⊂ pNC ⊂ p2C and as C is p-adically separated we
learn that pC = 0. We repeat the argument in the previous paragraph to obtain the factorization

R/pN
♡
// //

����

Rapx
N

∃zzzz

R/pN−1

and hence an isomorphism R/pN−1 ∼= Rapx
N /pN−1. □

4. Geometry of local models

4.1. Equations for Ỹ mod,η,τ . Let τ be a tame inertial type with small presentation (s, µ). Every-
thing we do depends on this choice but we usually suppress this dependence from the notation. Let
w̃ ∈ Adm∨(η)J and set z̃ = w̃s−1vµ. We consider the morphism GL2,O ↠ B\GL2,O

∼−→ P1
O

sending
(
α β
γ δ

)
to [γ : δ] ∈ P1

O. Given a Noetherian O-algebra R where p is nilpotent, by

Proposition 3.3.1 and the definition of A(η), we see that Ỹ mod,η,τ (z̃)(R) the groupoid of tuples
(lj , κj , Xj)j∈J ∈ (P1 × GL2 × L−

1 G)J subject to the following conditions that for some (equiva-

lently, any) lift l̃j ∈ GL2(R) of lj :

(1) Xjw̃j Ad
(
s−1
j vµj

)
(l̃−1
j−1) ∈ Mat2(R[[v]])
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(2) det
(
Xjw̃j

)
∈ R×(v + p)

(3) we have ljκj ·
(
Xjw̃j Ad

(
s−1
j vµj

)
(l̃−1
j−1)

)
|v=0 = [0 : 1].

Note that Ad
(
s−1
j vµj

)
(B(R)) ∈ B(R[v]) since µ is dominant, which justifies the independence of

the choice of the lift l̃j−1 ∈ GL2(R) in items (1),(2),(3) above.
In item (3) we have used the following

Convention 4.1.1. Given
(
α β
γ δ

)
∈ Mat2(R) and x, y, z, t ∈ R, the equality

[x : y]

(
α β
γ δ

)
= [z : t]

is interpreted as t(αx+ γy)− z(βx+ δy) = 0.
Equivalently, this can be written in matrix form(

x y
)(α β

γ δ

)(
t
−z

)
= 0.

We will always adopt the above convention in the tables below, note that this allows us to
interpret equations as [x : y] = [z : t] even if neither side are actual elements of P1. We will also

consider the following auxiliary space B̃a(z̃) of tuples (lj , κj , Xj , rj)j∈J ∈ (P1×GL2×L−
1 G×P1)J

satisfiyng the following variant of the conditions above:

(1) Xjw̃j Ad
(
s−1
j vµj

)
(r̃−1

j ) ∈ Mat2(R[[v]])

(2) det
(
Xjw̃j

)
∈ R×(v + p)

(3) we have ljκj ·
(
Xjw̃j Ad

(
s−1
j vµj

)
(r̃−1

j )
)
|v=0 = [0 : 1].

Clearly, we have a decomposition B̃a(z̃) =
∏

j∈J B̃aj(z̃j) where the j-th factor classify the quadru-

ples (lj , κj , Xj , rj). Furthermore Ỹ mod,η,τ is exactly the subspace of B̃a(z̃) where we impose that
rj = lj−1 for all j.

Lemma 4.1.2. The f -tuples (Xj , rj)j∈J ∈ (L−
1 G× P1)J (R) satisfying condition (1) are precisely

those given in Table 2, according to w̃j ∈ Adm∨(ηj), sj ∈W and kj
def
= ⟨µj , α

∨⟩.

Table 2. Description of Xj ∈ L−
1 G

(w̃j , sj) (tη, (12)), (w0tη, (12)), (tw0(η), id) (tη, id), (w0tη, id), (tw0(η), (12))

sjw
−1
j Xjwjs

−1
j =

(
1 + A

vkj
B
v

C

vkj
+ C′

vkj−1 1 + D
v

)
A,B,C,C ′, D ∈ R,

sjw
−1
j Xjwjs

−1
j =

(
1 + A

v 0
C
v + C′

vkj+1 1

)
A,C,C ′ ∈ R

kj = 0 A = C = C ′ = 0 C ′ = 0
kj = 1 [A : B] = [C : D] = rj , C

′ = 0 [C ′ : 1] = rj
kj > 1 [A : B] = [C : D] = [C ′ : 1] = rj [C ′ : 1] = rj

Proof. Let
(
a b
c d

)
∈ GL2(R) so that rj = [c : d]. Also write sjw

−1
j Xjwjs

−1
j =

(
1 + α β
γ 1 + δ

)
so

that α, β, γ, δ ∈ 1
vR[ 1v ]. We abbreviate k = kj .
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Letting wjtνj
def
= w̃j condition (1) is equivalent to

(4.1.3)

(
(1 + α)vk+ε βv1−εj

γvk+ε (1 + δ)v1−ε

)(
d −b
−c a

)
∈
(
vkR[[v]] R[[v]]
vkR[[v]] R[[v]]

)

where ε = 0 (resp. ε = 1) if (w̃j , sj) is as in the first (resp. second) column of Table 2. From this

we learn that v1−εβ, v1−ε(1 + δ), (1 + α)vk+ε, γvk+ε ∈ R[[v]]. The first two conditions show that

the second column of

(
1 + α β
γ 1 + δ

)
has the form specified in the table.

We now show that α, γ also have the form specified in the table.

Case ε = 0. Looking at the second column of (4.1.3) we get

vk(1 + α)d− vβc ∈ vkR[[v]](4.1.4)

vkγd− v(1 + δ)c ∈ vkR[[v]](4.1.5)

Note that these two equations imply that αd and γd have the form specified in the table.
Since we already know (1 + α)vk, γvk ∈ R[[v]] we only have to consider the case k > 1.

But then equation (4.1.5) shows that c ∈ Rd hence d ∈ R× because (c, d) = R. But this
implies α and γ are of the desired form.

Case ε = 1. Looking at the second column of (4.1.3) we get (using that β = δ = 0)

vk+1(1 + α)d ∈ vkR[[v]](4.1.6)

vk+1γd− c ∈ vkR[[v]].(4.1.7)

Note that these two equations imply that αd and γd have the form specified in the table.
Since we already know (1 + α)vk+1, γvk+1 ∈ R[[v]] we only have to consider the case

k > 0. But then equation (4.1.7) shows that c = 0 hence d ∈ R×. Again this implies α and
γ are of the desired form.

We have now shown that α, β, γ, δ have the desired form. Plugging this information into equations
(4.1.4), (4.1.5),(4.1.6),(4.1.7) immediately yields the remaining equations in the table. □

Lemma 4.1.8. For each j the spaces B̃aj(z̃j) have explicit presentations given by Table 3, in terms
of the corresponding spaces in Table 2.
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Table 3. Presentations of B̃aj(z̃j).

PPPPPPPP⟨µj , α
∨⟩

w̃j tη w0tη tw0(η)

sj

> 1
(12)

Variables: A,B,C,C ′, D

A = BC ′, C = pC ′, D = p

rj = [C ′ : 1]

ljκj = [B : −p]

Variables: A,B,C,C ′, D

A = BC ′, C = pC ′, D = p

rj = [C ′ : 1]

ljκj = [−p : B]

Variables: A,C,C ′

A = p

rj = [C ′ : 1]

ljκj = [0 : 1]

id

Variables: A,C,C ′

A = p

rj = [C ′ : 1]

ljκj = [C : −p]

Variables: A,C,C ′

A = p

rj = [C ′ : 1]

ljκj = [−p : C]

Variables: A,B,C,C ′, D

A = BC ′, C = pC ′, D = p

rj = [C ′ : 1]

ljκj = [0 : 1]

= 1
(12)

Variables: A,B,C,C ′, D

A = p−D

rj = [C : D] = [p−D : B]

ljκj = [D − p : C] = [−B : D]

Variables: A,B,C,C ′, D

A = p−D

rj = [C : D] = [p−D : B]

ljκj = [C : D − p] = [−D : B]

Variables: A,C,C ′

A = p

rj = [C ′ : 1]

ljκj = [0 : 1]

id

Variables: A,C,C ′

A = p

rj = [C ′ : 1]

ljκj = [C : −p]

Variables: A,C,C ′

A = p

rj = [C ′ : 1]

ljκj = [−p : C]

Variables: A,B,C,C ′, D

A = p−D

rj = [C : D] = [p−D : B]

ljκj = rj

= 0 id

Variables: A,C,C ′

A = p, C ′ = 0

ljκj = rj

(
1 0
−C p

)

Variables: A,C,C ′

A = p, C ′ = 0

ljκj = rj

(
0 −1
−p C

)

Variables: A,B,C,C ′, D

A = 0, C = 0, C ′ = 0, D = p

ljκj = rj

(
p −B
0 1

)

The meaning of the variables A,B,C,C ′, D is in terms of the Xj ∈ L−
1 G extracted

from the corresponding entries in Table 2.

Proof. The equations involving A,B,C,C ′, D are exactly obtained from Table 2 by imposing the

condition det(Xj) ∈ R× (v+p)
v . The formula for rj also follows from Table 2.

Thus the only thing we need to verify is the equation involving lj . This is immediate in all cases

except when (w̃j , ⟨µj , α
∨⟩, sj) = (tw0(η), 1, id). In this case let

(
a′ b′

c′ d′

)
∈ GL2(R) (resp.

(
a b
c d

)
∈

GL2(R)) be a lift of ljκj (resp. rj). Thus condition (3) (together with condition (1)) is the condition

that the (2, 1)-entry of

(
a′ b′

c′ d′

)(
d aB −Ab
−c aD − Cb

)
is zero, which exactly means that ljκj = rj . □
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Remark 4.1.9. So far we only considered B̃aj(z̃j), Ũ(z̃j) as p-adic formal schemes. However Table
3 gives obvious decompletions and we will work with the scheme version of these spaces in what
follows.

4.2. Cohomological properties of Ỹ mod,η,τ → Gr
bd,(v+p)vµ

1 . Recall that diagram (3.3.2) gives a
factorization

(4.2.1) Ỹ mod,η,τ (z̃)
πmod

// Z̃mod,τ (z̃) �
� ı // Ũ(z̃)

In this section we will use the explicit presentations from the previous section to studyRπmod
∗ O

Ỹ mod,η,τ

and hence prove Propositions 3.3.12, 3.3.14.
Since ı is a closed immersion, we have ι∗ ◦ Rπmod

∗ O
Ỹ mod,η,τ = Rpr∗OỸ mod,η,τ . In particular

Proposition 3.3.12 is equivalent to

p coker
(
O
(
Gr

bd,(v+p)vµ

1

)
→ (pr)∗

(
O
(
Ỹ mod,η,τ

)))
= 0

and Proposition 3.3.14 is equivalent to Rpr∗OỸ mod,η,τ concentrating in degree 0. In other words we

can replace πmod by pr in the statements of interest. Furthermore, these statements are local on

the target so it suffices to analyze the situation after intersecting with Ũ(z̃) for z̃ ∈ Adm∨(η)s−1vµ.
To analyze pr we factorize

Ỹ mod,η,τ (z̃) �
�

// B̃a(z̃) =
∏
j

B̃aj(z̃j)

∏
prj
// Ũ(z̃) =

∏
j

Ũ(z̃j)

where prj : B̃aj(z̃j)→ Ũ(z̃j) is the map

(lj , κj , Xj , rj) 7→ κjXj .

Observe that we have an isomorphism B̃aj(z̃j) ∼= GL2×Baj(z̃j) where Baj(z̃j) = B̃aj(z̃j)×GL2 {1},
given by (lj , κj , Xj , rj) 7→ (κj , (ljκj , Xj , rj)). Let pj (resp. qj) be the obvious projections from

Baj(z̃j) ⊂ P1 × Ũ(z̃j) × P1 to the left (resp. right) P1 factor. We continue to denote prj the

projection from Baj(z̃j) to the middle factor (this is compatible with the projection from B̃aj(z̃j)).
The following is immediate from Table 3

Lemma 4.2.2. Up to isomorphism, there are the following possibilities for Baj(z̃j)

(1) Baj(z̃j) = A2 with pj , qj are constant maps from A2 to P1 and prj is the identity. This
covers the cases (w̃j , sj , kj) = (tw0(η), id, > 1), (tw0(η), (12),≥ 1).

(2) Baj(z̃j) = Bl(p,0)A1 × A1 where Bl(p,0)A1 = {([x : y], C) | Cx = py} ⊂ P1 × A1 is the

blowup of A1
/O at the origin in its special fiber. Then pj is the natural projection map from

Bl(p,0)A1 → P1 and qj is the natural inclusion A1 ↪→ P1 given by C ′ 7→ [C ′ : 1], and prj is

the natural map to A2 extracting C,C ′. This covers (w̃j , sj , kj) = (tη, (12), > 1), (tη, id,≥
1), (w0tη, (12), > 1), (w0tη, id,≥ 1) .

(3) Baj(z̃j) ⊂ P1 × A1 × P1 consists of ([x : y], C, [x′ : y′]) such that pxy′ − yx′ = 0. Then
pj , qj are the projections to the left, resp. right P1 factor, and prj is the natural map to A1

extracting C. This covers the cases when ⟨µj , α
∨⟩ = 0.

(4) Baj(z̃j) ⊂ P1 ×M × P1 consists of ([x : y],

(
A B
C D

)
, [x′ : y′]) such that

•
(
A B
C D

)
has determinant 0 and trace p;
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•
(
x′ y′

)( D −B
−C A

)
= 0

•
(
x y

)( D −C
−B A

)
= 0

Then pj , qj are the projections to the left, resp. right P1 factor, and prj is the map extracting
A,B,C,D. This covers (w̃j , sj , kj) = (tη, (12), 1), (w0tη, (12), 1).

(5) It is the same as the previous case, except that instead of the third item we impose [x : y] =
[x′ : y′]. This correspond to the case (w̃j , sj , kj) = (tw0(η), id, 1).

Lemma 4.2.3. (1) prj is proper and when ⟨µj , α
∨⟩ > 0, prj becomes a closed immersion after

inverting p;
(2) Baj(z̃j) is a O-flat local complete intersection of relative dimension 2 over O. The relative

dualizing sheaf of Baj(z̃j)/O is q∗jOP1(−1)⊗ p∗jOP1(−1).
(3) O

Ũ(z̃j)
→ prj∗OBaj(z̃j) is surjective.

The same assertions hold for B̃aj(z̃j) and B̃a(z̃), but with relative dimensions 6 and 6f .

Proof. The first assertion is clear from Table 3 once we observe that (lj , rj) can be uniquely solved
for when p is invertible and kj > 0.

For the second assertion, we inspect the five cases in Lemma 4.2.2. The result is obvious for case
(1) and follows from Lemma 4.2.4 below for case (2).

For case (3), the result follows from the fact that Baj(z̃j) ↪→ P1×A1×P1 is a regular immersion
cut out by an equation of bidegree (1, 1), which has normal bundle q∗jOP1(1)⊗ p∗jOP1(1), and thus

relative dualizing sheaf q∗jOP1(1)⊗ p∗jOP1(1)⊗ q∗jOP1(−2)⊗ p∗jOP1(−2) = q∗jOP1(−1)⊗ p∗jOP1(−1).
We turn to case (4). Set t = x/y, s = x′/y′. The Baj(z̃j) has an open cover given by

• Spec O[A,B,C,D, s, t]/(A− stD,B − tD,C − sD, p−D − stD).
• Spec O[A,B,C,D, s−1, t]/(A− tC,B − ts−1C,D − s−1C, p− s−1C − tC).
• Spec O[AB,C,D, s, t−1]/(A− sB,C − st−1B,D − tB, p− t−1B − sB).
• Spec O[A,B,C,D, s, t−1]/(B − s−1A,C − t−1A,D − s−1t−1A, p−A− s−1t−1A).

Thus we obtain locally a regular immersion from Baj(z̃j) to A6. A simple computation shows
that the determinant of the normal bundle of the regular immersion Baj(z̃j) ↪→ P1 × A4 × P1 is
q∗jOP1(1)⊗ p∗jOP1(1), hence again the relative dualizing sheaf is q∗jOP1(−1)⊗ p∗jOP1(−1).

We finally deal with case (5). Then Baj(z̃j) ↪→ P1 × A4 is a regular immersion cut out by the
equations

A+D = p,AD −BC = 0,
(
x y

)( D −B
−C A

)
= 0

A similar computation as in the previous case yields the desired result.

The third assertion follows from the fact that prj factors through the subscheme Z ⊂ Ũ(z̃j) such
that

• Z is normal;
• prj ∗OBaj(z̃j) = OZ after inverting p.

The existence of such a subscheme Z follows immediately from inspecting the cases in Lemma 4.2.2:
in fact Z = A2 with coordinate C,C ′ or Z = Spec O[B,C,D]/((p −D)D − BC) (if ⟨µj , α

∨⟩ > 0)
or Z = A1 with coordinate C if ⟨µj , α

∨⟩ = 0. □

We will make use of the following elementary computation.
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Lemma 4.2.4. Let Bl(0,p)A1 = {([x : y], t) | xp = ty} ⊂ P1 ×A1 be the blowup of A1
/O at the ideal

(0, p). Let O(−k) be the pull back of OP1(−k) by the projection to P1. Then

(1) For k ≥ 0

Hn(Bl(0,p)A1,O(−k)) =


pkO[t] if n = 0;

annihilated by pk−1 if n = 1;

0 if n > 1.

(2) The relative dualizing sheaf of Bl(0,p)A1/O is O(−1).

Proof. (1) RΓ(Bl(0,p)A1,O(−k)) is computed by the Čech complex:

O[t, t
p
]⊕
(p
t

)k
O[t, p

t
]→ O[t,

(p
t

)±1
]

where all the terms are viewed as O[t]-submodules of E[t±1] and the differential is given by
(f, g) 7→ f − g. The result now follows from an explicit computation.

(2) Since Bl(0,p)A1 ↪→ P1 ×A1 is a regular immersion cut out by a degree 1 equation in the P1

coordinates, the normal bundle is O(1), hence the dualizing complex is O(−2) ⊗ O(1) =
O(−1).

□

The following Lemma will be the key to our analysis:

Lemma 4.2.5. Let j ∈ J and let εj , δj ∈ {0, 1}.

(1) prj∗

(
q∗j (OP1(−1))εj ⊗OBa(z̃j)

p∗j (OP1(−1))δj
)

is p-torsion free.

(2) The complex Rprj∗

(
q∗j (OP1(−1))εj ⊗OBa(z̃j)

p∗j (OP1(−1))δj
)

is concentrated in degree 0 if

(εj , δj) ̸= (1, 1), and is concentrated in degrees 0 and 1 if (εj , δj) = (1, 1).

(3) If (εj , δj) = (1, 1) then R1prj∗

(
q∗j (OP1(−1))εj ⊗OBa(z̃j)

p∗j (OP1(−1))δj
)

is
O-torsion free if ⟨µj , α

∨⟩ = 0;

isomorphic to F if ⟨µj , α
∨⟩ = 1 and (sj , w̃j) = (id, tw0(η));

0 otherwise.

Proof. The first item is obvious because Baj(z̃j) is flat over O. We now explain the cohomological
computations.

For the remainder of the proof we set ε
def
= εj , δ

def
= δj and F

def
= q∗j (OP1(−1))ε⊗OBa(z̃)

p∗j (OP1(−1))δ.
We work with the five cases in Lemma 4.2.2.

The computation is trivial for case (1), and follows from Lemma 4.2.4 for case (2).
We now turn to case (4). We have an open cover U1 = {y ̸= 0}, U2 = {x ̸= 0}. Then setting

t = x/y we see that U1 is the space of (t, C, [x′ : y′]) ⊂ A2 × P1 such that x′(p − Ct) − Cy′ = 0.
Hence U1 is isomorphic to Bl(p,0)A1 × A1 and F|U1 is the pull-back of O(−1)ε from the obvious

map to P1. Thus

• RΓ(U1,F) = O[C, t]pε;
• Similarly RΓ(U2,F) = O[B, t−1]pε

• RΓ(U1 ∩ U2,F) = O[C, t, t−1]pε
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are all concentrated in degree zero. Thus the Čech cohomology spectral sequence computing
RΓ(Baj(z̃j),F) degenerates at E1 and RΓ(Baj(z̃j),F) is computed by

O[t, C]⊕ t−δO[t−1, B]
d→ O[t±1, C](4.2.6)

where the differential are the obvious inclusion induced by the relation B = t(p− tC). In turn, this
complex is quasi isomorphic to the complex

t−δO[t−1, B]
d→ O[t±1, C]/O[t, C] = ⊕k≥1t

−kO[C].(4.2.7)

Since δ ∈ {0, 1}, t−k ∈ Im(d) for k ≥ 1. Now for ℓ > 0 and k ≥ 0

(4.2.8) t−2k−ℓ(t(p− tC))k = (−1)kC
k

tℓ
+ · · · ∈ Im(d)

where . . . is a O-linear combination of Cn

tm where 0 ≤ n < k. Hence Ck

tℓ
∈ Im(d) by induction on k.

We now deal with case (5). Similar to the previous case, we have an open cover U2 = {y ̸= 0},
U1 = {x ̸= 0} and set t = y/x.

We have, after choosing a trivialization of F on U1

F(U1) =
O[t, B,C,D]

(D − tC, p−D −Bt)
∼= O[t, C]

F(U2) = t−(ε+δ) O[t−1, B,C,D]

((p−D)−Bt−1, C −Dt−1)
∼= t−(ε+δ)O[t−1, B]

Thus RΓ(Baj(z̃j),F) is computed by the Čech complex

O[t, C]⊕ t−ε−δO[t−1, B]
d→ O[t±, C](4.2.9)

where the differential are the obvious inclusion induced by the relation B = t(p− tC). As before
this complex is quasi isomorphic to

t−ε−δO[t−1, B]
d→ O[t±, C]/O[t, C] = ⊕k≥1t

−kO[C].

Compared to case (4) the only new computation we have to make is when (ε, δ) = (1, 1). In this
case, we have t−k ∈ Im(d) for k ≥ 2 but only pt−1 ∈ Im(d) (and t−1 /∈ Im(d)). Equation (4.2.8) for

k, ℓ ≥ 1 then shows that Ck

tℓ
∈ Im(d) for all k, ℓ ≥ 1. This means that the H1 of the Čech complex

is isomorphic to F.
Finally we deal with case (3). Consider the open cover U1 = {x ̸= 0}, U2 = {y ̸= 0}. Write t =

y/x, s = x′/y′. Then U2
∼= A2 = Spec (O[s, C, t−1]/(s−pt−1)), while U1

∼= Bl(0,p)A1×A1, where the

coordinate on the blownup A1 is t. Now F|U1
∼= O(−1)ε so RΓ(U1,F) = pεO[C, t] is concentrated

in degree 0. On the other hand, U2 is affine so RΓ(U2,F) = sεt−δO[s, C, t−1]/(s− pt−1). Moreover
RΓ(U1 ∩ U2,F) = pεO[s, C, t±]/(s − pt−1). Thus the Čech complex computing RΓ(Baj(z̃j),F) is
given by

pεO[C, t]⊕ sεt−δO[s, C, t−1]/(s− pt−1)→ pεO[s, C, t±1]/(s− pt−1).

This is quasi-isomorphic to the complex

t−ε−δO[C, t−1]→ O[C, t±1]/O[C, t]

with differential induced by the natural inclusion. This has no H1 if (ε, δ) ̸= (1, 1), and has
H1 ∼= O[C] if (ε, δ) = (1, 1). We are thus done with the cohomological computations. This finishes
the proof. □
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Corollary 4.2.10. Consider the commutative diagram:

Ỹ mod,η,τ (z̃) �
� ∆ //

pr

$$

B̃a(z̃)

pr
B̃

��

Ũ(z̃)

Then Ripr
B̃∗OB̃a(z̃)

= 0 if i > 0 and O
Ũ(z̃)

↠ pr
B̃∗OB̃a(z̃)

.

In particular, by letting I(z̃) be the ideal sheaf defining the closed immersion ∆

• coker
(
O

Ũ(z̃)
→ pr∗OỸ mod,(η,τ)(z̃)

)
= R1pr

B̃∗I(z̃)
• Ripr∗OỸ mod,(η,τ)(z̃)

= Ri+1pr
B̃ ∗I(z̃) for i > 1.

Proof. The first part follows from the fact that Rpr
B̃∗OB̃a(z̃)

= ⊠jRprj∗B̃aj(z̃j) and hence is

concentrated in degree 0 by Lemma 4.2.5 (with εj = δj = 0).
For the second part, we have the exact triangle

Rpr
B̃ ∗I(z̃)→ Rpr

B̃ ∗OB̃a(z̃)
→ Rpr∗OỸ mod,(η,τ)(z̃)

→

which immediately gives the second item. For the first item, observe that the exact triangle implies

coker
(
pr

B̃ ∗OB̃a(z̃)
→ pr∗OỸ mod,(η,τ)(z̃)

)
= R1pr

B̃ ∗I(z̃) but also

coker
(
pr

B̃ ∗OB̃a(z̃)
→ pr∗OỸ mod,(η,τ)(z̃)

)
= coker

(
O

Ũ(z̃)
→ pr∗OỸ mod,(η,τ)(z̃)

)
because O

Ũ(z̃)
↠ pr

B̃ ∗OB̃a(z̃)
. □

Lemma 4.2.11. Under the composite

Ỹ mod,η,τ (z̃)
∆
↪→ B̃a(z̃) =

∏
j

B̃aj(z̃j) =
∏
j

GL2 ×Baj(z̃j)

Ỹ mod,η,τ (z̃) is a complete intersection defined by the zero locus of maps sj : Lj
def
= q∗j (OP1(−1)) ⊗

p∗j−1(OP1(−1))→ O∏
j GL2×Baj(z̃j). In particular, the ideal sheaf I(z̃) defining ∆ identifies with

τ<0

(
Kos•

(⊕
j∈J
Lj , (sj)

))
Proof. It follows from the definitions that we have a diagram

Ỹ mod,η,τ (z̃)

��

� � ∆ //

□

∏
j

B̃aj(z̃j) //

��

∏
j

GL2 ×Baj(z̃j)

id×pj×qj

��∏
J

GL2 × P1 � � ∆ //
∏
J

GL2 × P1 × P1 ∼= //
∏
J

GL2 × P1 × P1

where the bottom left map is (κj , lj)j 7→ (κj , lj , lj−1)j and the bottom right map is (κj , lj , rj) 7→
(κj , ljκj , rj).
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The bottom right isomorphism only commutes with projection to the right P1 factor, but not
to the left P1 factor. Nevertheless, the GL2-equivariance of OP1(−1) shows that its pullback via
projection to the j-th left (respectively, j-th right) P1 are compatible with the bottom isomorphism.

It follows that Ỹ mod,η,τ (z̃) is the zero common locus of f maps sj : Lj → OB̃a(z̃)
. By Lemma 3.3.6

and Lemma 4.2.3, Ỹ mod,η,τ (z̃) ↪→ B̃a(z̃) has codimension f and B̃a(z̃) is local complete intersection.

This implies that Ỹ mod,η,τ (z̃) is the global complete intersection in B̃a(z̃) cut out by the sj . □

We compute RΓ(I(z̃)) using the resolution from Lemma 4.2.11 and the Künneth formula. Let
ℓ ∈ {1, . . . , f} and consider f -tuples ε = (εj)j∈J , δ = (δj)j∈J ∈ {0, 1}J satisfying εj = δj+1 and
#{j ∈ J , εj = 1} = ℓ. Then by Lemma 4.2.11 we have

ℓ∧(⊕
j∈J
Lj
)

=
⊕
ε,δ

⊗
j∈J ,O

B̃a

(
q∗j (OP1(−1))εj ⊗ p∗j (OP1(−1))δj

)

where the direct sum runs over f -tuples ε, δ as above. As the B̃a(z̃j) are Tor-independent over O,
we deduce from the Künneth formula [Sta22, Tag 0FLQ] that

RΓ

( ⊗
j∈J ,O

B̃a

(
q∗j (OP1(−1))εj ⊗ p∗j (OP1(−1))δj

))

∼=
L⊗

j∈J ,O
RΓ

(
q∗j (OP1(−1))εj ⊗O

B̃a(z̃j)
p∗j (OP1(−1))δj

)

From Lemma 4.2.5 we obtain the following corollaries:

Corollary 4.2.12. • For 0 < ℓ < f , Rℓpr∗

(∧ℓ

(⊕
j∈J Lj

))
= 0.

• pRfpr∗

(⊗
j∈J Lj)

)
= 0; and

• Rfpr∗

(⊗
j∈J Lj)

)
̸= 0 if and only if for each j ∈ J , either ⟨µj , α

∨⟩ = 0 or ⟨µj , α
∨⟩ = 1

and (sj , w̃j) = (id, tw0(η)).

Proof. Since the image of pr is affine, it suffices to check the statements after taking global sections,
so we can replace all occurences of Rjpr∗ with RjΓ.

Given our above discussion, it suffices to analyze

Hℓ

( L⊗
j∈J ,O

RΓ

(
q∗j (OP1(−1))εj ⊗O

B̃a(z̃j)
p∗j (OP1(−1))δj

))

for f -tuples ε = (εj)j∈J , δ = (δj)j∈J ∈ {0, 1}J satisfying εj = δj+1 and #{j ∈ J , εj = 1} = ℓ.
Note that these conditions imply that there are at most ℓ indices j such that (εj , δj) = (1, 1), with
strict inequality if ℓ < f . Thus the amplitude bound of Lemma 4.2.5 shows the above cohomology

https://stacks.math.columbia.edu/tag/0FLQ
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group vanishes for ℓ < f , while

Hf

( L⊗
j∈J ,O

RΓ

(
q∗j (OP1(−1))εj ⊗O

B̃a(z̃j)
p∗j (OP1(−1))δj

))
∼=

∼=
⊗

j∈J ,O
R1Γ

(
q∗j (OP1(−1))⊗O

B̃a(z̃j)
p∗j (OP1(−1))

)
The result now follows from Lemma 4.2.5 □

We note that the proof of the above corollary also shows

Corollary 4.2.13. For any ℓ ∈ {0, . . . , f} and k > ℓ

Rkpr∗

(
ℓ∧
pr∗

B̃a

(⊕
j∈J
Lj
))

= 0.

Proof of Propositions 3.3.12, 3.3.14. By Lemma 4.2.11 Rpr∗I(z̃) is filtered (in the derived sense)

by Rpr∗

(∧ℓ pr∗
B̃a

(⊕
j∈J Lj

))
[ℓ− 1] for 1 ≤ ℓ ≤ f . Then by Corollary 4.2.10, Proposition 3.3.12

follows from Corollary 4.2.12 and Proposition 3.3.14 from Corollary 4.2.13. □

We also record the following, which will be used in subsection 4.6.2

Proposition 4.2.14. The relative dualizing sheaf of Ỹ mod,η,τ (z̃)/O is trivial.

Proof. By Lemma 4.2.11, Ỹ mod,η,τ (z̃) ↪→ B̃a(z̃) is a regular immersion with normal bundle⊕
q∗jOP1(1)⊗ p∗j−1OP1(1)

which thus has determinant
⊗

J q∗jOP1(1)⊗ p∗j−1OP1(1). The result now follows from Lemma 4.2.3

(2) □

4.3. The naive models. Recall that Z̃mod,τ (z̃) is the scheme theoretic image of Ỹ mod,η,τ (z̃) under

the map πmod which forgets the elements rj = lj−1 ∈ P1. In other words the equations for Z̃mod,τ (z̃)

are obtained by eliminating the rj = lj−1 from the defining equations of Ỹ mod,η,τ (z̃) which are

extracted from Table 3. The goal of this section is to construct a slight enlargement Z̃nv,τ (z̃) of

Z̃mod,τ (z̃), which has the advantage of being given by explicit equations.
We first introduce some auxilliary notation. We view J = Z/fZ as an oriented graph with edges

going from j to j − 1.

Definition 4.3.1. Given the data (s, µ, w̃), and z̃
def
= w̃s−1vµ

(1) Define Mj(z̃j) to be the scheme theoretic image of Baj(z̃j)→ Ũ(z̃j).
(2) Let j ∈ J . We say

• j is of type II if either kj > 1 or (w̃j , sj , kj) = (tη, id, 1), (w0tη, id, 1), (tw0(η), (12), 1);
• j is of type I if (w̃j , sj , kj) = (tη, (12), 1), (w0tη, (12), 1), (tw0(η), id, 1);
• j is of type 0 if kj = 0.

(3) A fragmentation of J is the decomposition J =
⋃
Jk into subsets Jk such that:

• Jk is an oriented path in J , i.e an ordered subset of the form [j, j+ℓ] = (j, j−1, · · · , j−
ℓ) for some ℓ ≤ f .
• The endpoints of the path Jk are not of type 0.
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• The interior points of the the path Jk are of type 0.
• Jk is not a singleton unless f = 1.

Each Jk is called a fragment of J .

Remark 4.3.2. (1) The scheme theoretic image of B̃aj(z̃j)→ Ũ(z̃j) is GL2 ×Mj(z̃j).
(2) Under our running assumption that τ is regular, J must have a vertex not of type 0. This

implies J has a unique fragmentation, obtained by the minimal paths joining the vertices
not of type 0. We also note that each fragment Jk has a well-defined starting point and
ending point (which may coincide, in which case the fragment is all of J ).

(3) It follows from Table 3 that
• If j is type II: Mj(z̃j) ∼= A2.

• If j is type I: Mj(z̃j) ∼= M , the space of

(
A B
C D

)
which has determinant 0 and trace

p.
• If j is type 0: Mj(z̃j) ∼= A1.

We now define a subspace of
∏

J GL2 ×Mj(z̃j) using the fragmentation J =
⋃
Jk.

Definition 4.3.3. Let J =
⋃
Jk be the fragmentation of J . We define Z̃nv,τ (z̃) to be the closed

subscheme of
∏

J GL2 ×Mj(z̃j) ↪→ GLJ
2 × Ũ(z̃) cut out by the matrix equations

Mout,o

( i−1∏
ℓ=o+1

Tℓ

)
Min,i = 0

for each fragment Jk = {i, · · · , o}, where
• Min,i is the initial matrix for j = i in Table 4
• Mout,o is the final matrix for j = o in Table 4
• Tℓ is the transition matrix for j = ℓ (which are of type 0) in Table 4.

We also define Znv,τ (z̃) to be the fiber of Z̃nv,τ (z̃) above 1 ∈ GLJ
2 .

Proposition 4.3.4. (1) The inclusion Z̃mod,τ (z̃) ↪→ Ũ(z̃) factors through Z̃nv,τ (z̃).

(2) We have Z̃mod,τ (z̃)[1p ] = Z̃
nv,τ (z̃)[1p ] = Ỹ mod,η,τ (z̃)[1p ].

In particular, Z̃mod,τ (z̃) is the p-saturation (synonymously, the O-flat part) of Z̃nv,τ (z̃).

Proof. The first assertion follows from the fact that Z̃mod,τ (z̃) obey the defining equations of

Z̃nv,τ (z̃), which is a consequence of the relations in Table 3 and the relation rj = lj−1 in Ỹ mod,η,τ .
Indeed, these defining equations were obtained by repeatedly substituting the relations between lj
and rj when j is type 0 and rj = lj−1 until it becomes a relation between ra and lb where a, b are
not type 0, in which case one substitutes for ra, lb an expression in the variables on GL2×Ma(z̃a),
GL2 ×Mb(z̃b).

We now establish the second assertion. First, we show that the map Ỹ mod,η,τ (z̃) → Ũ(z̃) is a
closed immersion after inverting p, i.e. we need to show rj , lj are determined by the remaining
variables. For each j not of type 0, we can solve for rj , lj when p is invertible. Using the relation
rj = lj−1 and the relations in Table 3, we can solve for the rj′ , lj′ where j′ is of type 0. Thus

Z̃mod,τ (z̃)[1p ] = Ỹ mod,η,τ (z̃)[1p ].

To finish the proof, we need to show that Ỹ mod,η,τ (z̃)[1p ] surjects onto Z̃nv,τ (z̃)[1p ], i.e. we need

to produce rj , lj satisfying all requisite relations. We use the same procedure to define rj , lj as
in the previous paragraph. The only potential issue is that for a fragment Jk = {i, · · · , o}, the
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Table 4.

PPPPPPPP⟨µj , α
∨⟩

w̃j tη w0tη tw0(η)

sj

> 1
(12)

Type II

Initial Matrix:

(
1
−C ′

)
Final Matrix:

(
B −p

)
κ−1
j

Type II

Initial Matrix:

(
1
−C ′

)
Final Matrix:

(
−p B

)
κ−1
j

Type II

Initial Matrix:

(
1
−C ′

)
Final Matrix:

(
0 1

)
κ−1
j

id

Type II

Initial Matrix:

(
1
−C ′

)
Final Matrix:

(
C −p

)
κ−1
j

Type II

Initial Matrix:

(
1
−C ′

)
Final Matrix:

(
−p C

)
κ−1
j

Type II

Initial Matrix:

(
1
−C ′

)
Final Matrix:

(
0 1

)
κ−1
j

= 1
(12)

Type I

Initial Matrix:

(
D −B
−C p−D

)
Final Matrix:

(
p−D −C
−B D

)
κ−1
j

Type I

Initial Matrix:

(
D −B
−C p−D

)
Final Matrix:

(
D −B
−C p−D

)
κ−1
j

Type II

Initial Matrix:

(
1
−C ′

)
Final Matrix:

(
0 1

)
κ−1
j

id

Type II

Initial Matrix:

(
1
−C ′

)
Final Matrix:

(
C −p

)
κ−1
j

Type II

Initial Matrix:

(
1
−C ′

)
Final Matrix:

(
−p C

)
κ−1
j

Type I

Initial Matrix:

(
D −B
−C p−D

)
Final Matrix:

(
p−D B
C D

)
κ−1
j

= 0 id

Type 0

Transition Matrix:

(
1 0
−C p

)
κ−1
j

Type 0

Transition Matrix:

(
0 −1
−p C

)
κ−1
j

Type 0

Transition Matrix:

(
p −B
0 1

)
κ−1
j

The meaning of the variables in this table are the same as that of the
corresponding entry in Table 3.

procedure gives two definitions of ri: one by recursion in terms of lo (and some variables at j ∈
{i−1, · · · , o+1}), the other by directly solving in terms of the variables at i. However the defining

equations of Z̃nv,τ (z̃) exactly guarantee that the these two definitions coincide. □

4.4. Obstruction bounds for naive models. We wish to establish a quantitative bound for the

singular ideal of Z̃nv,τ (z̃)/O. This will be used in the next subsection to finish the proof of Theorem
3.3.8.

To save notation, in this section we abbreviate Z = Z̃nv,τ (z̃), Mj = Mj(z̃j) andM =
∏

J GL2×
Mj . We also define affine spaces Aj with closed immersions Mj ↪→ Aj as follows:

• Aj = Mj if j is not type I.

• If j is type I, then Mj is the space M of matrices

(
A B
C D

)
with determinant 0 and trace

p, and we define Aj = A3 and Mj ↪→ Aj to be the map(
A B
C D

)
7→ (B,C,D)
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so that Mj identifies with the hypersurface D(p−D) = BC in Aj .

We thus have an inclusion ι : Z ↪→ A def
=
∏

J GL2 ×Aj . Let I be the ideal of A defining ι.
We first analyze a generating set of I. To do this, recall the fragmentation J =

⋃
k∈K Jk. We

also denote by JI ⊂ J the subset of j that are type I. For each j of type I, we also let Aj , Bj , Cj , Dj

denote the natural coordinates on Mj , so that Aj +Dj = p and AjDj = BjCj .
It follows from Definition 4.3.3 that we have a decomposition

(4.4.1) I =
∑
k

IJk
+
∑
j∈JI

(Dj(p−Dj)−BjCj)

where IJk
is the ideal generated by the entries of the matrix equation associated to Jk in Definition

4.3.3. This gives a presentation of Z in terms of A. Note that Z[1p ] has codimension c
def
= |K|+ |JI |

in A[1p ].

Proposition 4.4.2. Let Jc denote the ideal generated by the c × c minors of the Jacobian matrix
of the presentation O(A)/I. Then p2|JI |+f+|K| ∈ Jc. In particular p4f ∈ Jc.

Remark 4.4.3. Proposition 4.4.2 implies Z̃nv,τ (z̃)[1p ] is smooth over E. Of course this can also be

seen directly from the explicit description of Ỹ mod,η,τ (z̃)[1p ].

We observe the following structural properties of IJk
:

Lemma 4.4.4. Suppose the fragment Jk = {i, · · · , o}. Let κo =

(
ao bo
co do

)
record the o-th GL2

factor of A.
There exists α, β, γ, δ only involving coordinates on the (i− 1)-th to (o+ 1)-th factor of A with

det

(
α β
γ δ

)
= ±p|Jk\{i,o}|

such that:

(1) If i, o are type II then IJk
is principal, generated by an element of the form(
Yo −p

)
κo

(
α β
γ δ

)(
1
−Xi

)
where Yo, Xi are coordinates of Ao,Ai.

(2) If i, o are type I then IJk
is generated by the entries of a matrix either of the form

• (
Do −Bo

−Co Ao

)
κo

(
α β
γ δ

)(
Di −Bi

−Ci Ai

)
;

or
• (

Do Co

Bo Ao

)
κo

(
α β
γ δ

)(
Di −Bi

−Ci Ai

)
;

(3) If i is type II and o is type I then IJk
is generated by the entries of a matrix of the form(

Yo −p
)
κo

(
α β
γ δ

)(
Di −Bi

−Ci Ai

)
where Yo is a coordinate in Ao.

(4) If i is type I and o is type II then IJk
is generated by the entries of a matrix either of the

form
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• (
Do −Bo

−Co Ao

)
κo

(
α β
γ δ

)(
1
−Xi

)
;

or
• (

Do Co

Bo Ao

)
κo

(
α β
γ δ

)(
1
−Xi

)
;

where Xi is a coordinate on Ai.

Proof. The form of IJk
follows from Table 4, after possibly rearranging the entries of the matrix

equations.
□

Proof of Proposition 4.4.2. We will show that for any choices Gj , Hj ∈ {Aj , Dj} with j ∈ JI , the
element p2|JI |+

∑
k |Jk\{i,o}|

∏
j∈JI

GjHj belongs to Jc. This finishes the proof, since this implies Jc
contains

p2|JI |+
∑

k |Jk\{i,o}|
∏
j∈JI

(Aj , Dj) ∋ p2|JI |+
∑

k |Jk\{i,o}|+2

Since the role of Aj , Dj is essentially symmetric in our argument, we will deal with the case
Gj = Hj = Dj for all j ∈ J .

Write J for the Jacobian matrix of our chosen presentation of Z. Our convention is that the
columns are named by the variables and rows are labeleld by (the chosen) generators of I. Then
clearly Jc contains any c× c minor of any matrix of the form JU . In other words, it suffices to find,
after modifying J by column operations, a c× c minor equal to p2|JI |+

∑
k |Jk\{i,o}|

∏
j∈JI

GjHj .

For k ∈ K, we let gk denote the generator of IJk
that correspond to the (1, 1)-th entry of the

matrix equation described in Lemma 4.4.4 (this choice correspond to our choice of Gj = Hj = Dj).
We will choose our c× c minor to have rows corresponding to the gk with k ∈ K and the generators
(p−Dj)Dj −BjCj for j ∈ JI .

We now explain the column operations we will perform on J.
First, consider k ∈ K, giving the fragment Jk = {i, · · · , o}. Write the matrix generating IJk

in
factorized form

X

(
ao bo
co do

)(
α β
γ δ

)
Y

as prescribed by Lemma 4.4.4. Then the entries of Jk corresponding to row gk and column
ao, bo, co, do are exactly the (1, 1)-th entry of the matrices

X

(
1 0
0 0

)(
α β
γ δ

)
Y, X

(
0 1
0 0

)(
α β
γ δ

)
Y, X

(
0 0
1 0

)(
α β
γ δ

)
Y, X

(
0 0
0 1

)(
α β
γ δ

)
Y

respectively. Furthermore, no other row of J has a non-zero entry at the columns ao, bo, co, do.
Hence, given x, y, z, t ∈ O(A), by modifying the columns J to JU where we take linear combinations
of columns ao, bo, co, do but do not modify the remaining columns, we can guarantee that the
resulting matrix has a column which has vanishing entry for any row other than gk, and at row gk
the entry is the (1, 1)-th entry of

X

(
x y
z t

)(
α β
γ δ

)
Y
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Now det

(
α β
γ δ

)
= ±p|Jk\{i,o}|, so choosing x, y, z, t appropriately, we can make

(
x y
z t

)(
α β
γ δ

)
become any matrix among

p|Jk\{i,o}|{
(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
}

Using the explicit form ofX, Y given in Lemma 4.4.4, we thus learn that after taking a linear combi-
nation of columns ao, bo, co, do, we can make the entry in row gk become p|Jk\{i,o}|p, p|Jk\{i,o}|DoDi,
p|Jk\{i,o}|pDi or p

|Jk\{i,o}|Do (corresponding to the four cases in that Lemma, respectively).
Next, we consider j ∈ JI , giving a generator (p−Dj)Dj−BjCj of I. The part of J corresponding

to row (p−Dj)Dj −BjCj and column Bj , Cj , Dj is(
−Cj −Bj p− 2Dj

)
Since (

−Cj −Bj p− 2Dj

) −4Cj

0
p− 2Dj

 = (p− 2Dj)
2 + 4BjCj = p2

we see that taking a linear combination of column Bj , Cj , Dj produces the entry p2 in row (p −
Dj)Dj−BjCj . Moreover that the entries of this linear combination at rows (p−Dj′)Dj′−Bj′Cj′ are
0, where j′ ∈ JI but j′ ̸= j (note however that we have no control on the entries on the remaining
rows).

To summarize, by taking appropriate linear combination among columns ao, bo, co, do (for each
Jk = {i, · · · , o}) and among columns Bj , Cj , Dj (for each j ∈ JI), and look at the rows gk,
(p − Dj)Dj − BjCj , we can find a c × c submatrix with rows gk, (p − Dj)Dj − BjCj of block
triangular form (

P ∗
0 Q

)
where

• P is diagonal of size |K| × |K| whose entries belong to

{p|Jk\{i,o}|p, p|Jk\{i,o}|DoDi, p
|Jk\{i,o}|pDi, p

|Jk\{i,o}|Do};

• Q is p2 the identity matrix of size |JI |.
It follows that this c× c minor divides

p2|JI |+
∑

k |Jk\{i,o}|
∏
j∈JI

D2
j

□

4.5. Proof of Theorem 3.3.8. Set N = p − 2 − maxj⟨µj , α
∨⟩ ≥ p−7

2 . Recall from Proposition
3.3.11 that we have a diagram

Z̃τ ⊗O O/pN−1 ∼ //
� _

��

Z̃mod,τ ⊗O O/pN−1
� _

��
[
LGbd,(v+p)vµ/φ

∏
J

L+
1 G

]
⊗O O/pN−1 ∼ // Gr

bd,(v+p)vµ

1 ⊗OO/pN−1
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In particular, from Proposition 4.3.4 we get a closed immersion

ι : Z̃τ (z̃)⊗O O/pN−1 ∼−→ Z̃mod,τ (z̃)⊗O O/pN−1 ↪→ Z̃nv,τ (z̃)⊗O O/pN−1

We now invoke [Elk73, Lemme 1] as in the proof of [LLHLM23, Proposition 3.3.9]: By Proposition

4.4.2, the integer h in loc.cit. can taken to be 4f while the integer k is 0 since Z̃τ (z̃) is p-torsion

free. It follows that if N −1 > 8f , we can produce a map ι̃ : Z̃τ (z̃)→ Z̃nv,τ (z̃)∧p which agrees with

ι modulo pN−1−4f . In particular, this implies ι̃ is also a closed immersion. Since Z̃τ (z̃) is O-flat
and the O-flat part of Z̃nv,τ (z̃)∧p is exactly Z̃mod,τ (z̃), we can factorize ι̃

Z̃τ (z̃) ↪→ Z̃mod,τ (z̃) ↪→ Z̃nv,τ (z̃)∧p

such that the first map is an isomorphism modulo pN−1−4f . The following Lemma then implies that

the inclusion Z̃τ (z̃) ↪→ Z̃mod,τ (z̃) is in fact an isomorphism, thus finishing the proof of Theorem
3.3.8.

Lemma 4.5.1. Suppose we are given a surjection π : R ↠ S of Noetherian p-adically complete
O-algebras. Assume that π induces an isomorphism π : R/ϖ ∼= S/ϖ. Then π is an isomorphism.

Proof. Let I = kerπ, then since S is O-flat we get a short exact sequence

0 // I/ϖI // R/ϖ // S/ϖ // 0

Since π induces an isomorphism modulo ϖ, we learn that I/ϖI = 0. But I is p-adically separated,
so I = 0. □

The following is immediate from our discussion

Corollary 4.5.2. Assume that either p > 8f + 3 + maxj⟨µj , α
∨⟩ or p > 7 and K = Qp. Then

Z̃τ (z̃) is isomorphic to the p-adic completion of the p-saturation of Z̃nv,τ (z̃).

In particular, this realizes Z̃τ (z̃) as the p-saturation of an explicitly presented affine p-adic formal
scheme.

4.6. Applications.

4.6.1. Galois deformation rings. Recall that we have a shifted conjugation action map

GLJ
2 ×GrJ1 → GrJ1

given by the formula

(gj , Aj) 7→ gjAjg
−1
j−1

This action of GLJ
2 clearly factors through the quotient GLJ

2 /∆Z by the diagonally embedded
copy of the center Z of GL2. Furthermore since∏

det gjAjg
−1
j−1 =

∏
detAj

we see that the quantity
∏

detAj modulo detL+
1 G is invariant along orbits.

Lemma 4.6.1. Let z̃ = (z̃j) = (zjv
νj ) ∈ W̃

∨
such that ⟨νj , α∨⟩ ≠ 0 for some j.
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(1) Suppose
∏

zj = (12). Let x = ((1, · · · 1), (z̃j)j) ∈ GLJ
2 (F) ×

∏
J L−

1 G(F)z̃j and y its
image under the shifted conjugation action. The shifted conjugation action map induces an
isomorphism on completions at x:(

GLJ
2 /∆Z ×

∏
J

L−
1 Gz̃j

)∧

x

∼=
(
GLJ ,det=1

2 ×
∏
J

L−
1 Gz̃j

)∧

y

(Here GLJ ,det=1
2 denotes the kernel of the product of determinant map GLJ

2 → Gm.)
(2) Suppose

∏
zj = 1. Choose a transversal slice V to T∨ near 1 in GL2 such that the tangent

space T1V = n ⊕ n = {
(
0 b
c 0

)
} ⊂ gl2. Let x ∈ GLJ

2 (F) × T∨(F)z̃0 ×
∏

j ̸=0 L
−
1 G(F)z̃j be

the tuple ((1, 1, · · · 1), (tz̃0, (z̃j)j ̸=0)), and y its image under the shifted conjugation action.
Then the shifted conjugation action map induces an isomorphism on completion at x(

V ×GL
J\{0}
2 × (T∨ × L−

1 Gz̃0)×
∏
j ̸=0

L−
1 Gz̃j

)∧

x

∼=
(
GLJ

2 ×
∏
J

L−
1 Gz̃j

)∧

y

Remark 4.6.2. The case ⟨νj , α∨⟩ = 0 for all j happens exactly when z̃j ∈W∨Z(F((v))) for all j. In
this case, the same method of proof shows that for x = ((1, 1, · · · 1), (κz̃0, (z̃j)j ̸=0)) with image y
under the shifted conjugation action(

GL
J\{0}
2 × (GL2 × L−

1 Gz̃0)×
∏
j ̸=0

L−
1 Gz̃j

)∧

x

∼=
(
GLJ

2 ×
∏
J

L−
1 Gz̃j

)∧

y

Proof. (1) On a tangent vector (1 + εKj , (1 + εLj)z̃j) at x, the formula for the action is

(1 + εKj)(1 + εLj)z̃j(1− εKj−1) = (1 + εKj − εAd(z̃j)(Kj−1) + εLj)z̃j

where Kj ∈ LieGL2 = gl2, Lj ∈ LieL−
1 G = 1

vgl2[
1
v ].

Hence we need to show the map

S : (gl2 ×
1

v
gl2[

1

v
])J → (vgl2[[v]]\gl2((v)))J ∼= (gl2 ⊕

1

v
gl2[

1

v
])J

given by

(Kj , Lj) 7→ Kj −Ad(z̃j)(Kj−1) + Lj

is an isomorphism onto the subspace of the target consisting of tuples (Yj) whose projection

to glJ2 factors through the subspace glJ ,tr=0
2 with sum of tuples whose sum of traces is 0.

Define Πj : gl2 → gl2 to be the linear endomorphism given by sending X to the projection
of Ad(z̃j)X ∈ gl2((v)) onto the gl2 summand, i.e. extracting the v-degree 0 part of Ad(z̃j)X.
Since z̃j = zjv

νj we see that

• Πj(

(
a b
c d

)
) = Ad(zj)

(
a b
c d

)
if ⟨νj , α∨⟩ = 0; and

• Πj(

(
a b
c d

)
) = Ad(zj)

(
a 0
0 d

)
if ⟨νj , α∨⟩ ≠ 0

We first show that S is injective. Let ((Kj)j , (Lj)j) ∈ kerS then

K0 = Π0Π−1 · · ·Π−f+1(K0)
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Set K0 =

(
a b
c d

)
. Then our hypothesis on z̃j shows that the composite Π0Π−1 · · ·Π−f+1

sends K0 to

(
d 0
0 a

)
. Thus we get K0 ∈ Lie(Z), and hence Kj = K0 ∈ Lie(Z) for all j, and

then Lj = 0. This shows the injectivity of S.

For surjectivity, it suffices to prove the surjectivity after projecting to the glJ2 summand.

Let (Yj) ∈ glJ ,tr=0
2 . By repeated substitution in the system

Kj −Πj(Kj−1) = Yj

we see that the system has a solution if and only if

K0 −Π0Π−1 · · ·Π−f+1(K0) = Π0(Y−1) + Π0Π−1(Y−2) + · · ·Π0 · · ·Π−f+1(Y−f )

has a solution K0 =

(
a b
c d

)
. Note that the right-hand side has trace 0. But

K0 −Π0Π−1 · · ·Π−f+1(K0) =

(
a b
c d

)
−
(
d 0
0 a

)
=

(
a− d b
c d− a

)
hence K0−Π0Π−1 · · ·Π−f+1(K0) can become any trace 0 matrix. This gives surjectivity of
S.

(2) The argument is similar to the previous case. The only difference is that at j = 0, 1, the
tangent vector equations (on the v-degree 0 part) we get are modified to

V0 + T0 −Π0(K−1) = Y0

K1 −Π1(V0) = Y1

where V0 ∈ T1V = n⊕ n and T0 ∈ t∨ = LieT∨.
The existence and uniqueness of solutions to the system now boils down to solvability

(in terms of V0, T0) of

V0 + T0 −Π0Π−1 · · ·Π−f+1(V0) = Π0(Y−1) + Π0Π−1(Y−2) + · · ·Π0 · · ·Π−f+1(Y−f ),

which now always has a unique solution since the left-hand side reduces to V0 + T0.
□

Theorem 4.6.3. Let τ be a regular tame type with small presentation (s, µ) and assume that
either p > 8f + 3 + maxj⟨µj , α

∨⟩ or p ≥ 11 and K = Qp. Suppose z̃j = w̃js
−1
j vµj with w̃ =

(w̃j) ∈ Adm∨(η). Assume that for at least one j, z̃j /∈ W∨Z(F((v))). Let t ∈ T∨(F) and ρ be

the unique semisimple Galois representation such that the matrix of the associated φf -module is
tz̃0φ(z̃f−1) · · ·φf−1(z̃1) (see §2.2.2).

(1) Suppose ρ is absolutely irreducible, and let Rη,τ
ρ the potentially Barsotti-Tate deformation

ring of type τ . Then, up to enlarging F, Rη,τ
ρ is isomorphic to the completion of the p-

saturation of Znv,τ (z̃) at z̃ (see Definition 4.3.3).
(2) Suppose ρ is reducible, and let Rη,τ

ρ be the framed potentially Barsotti-Tate deformation ring

of type τ . Then up to adding formal variables, Rη,τ
ρ is isomorphic to the completion of the

p-saturation of (Z̃mod,τ (z̃)×GLJ
2
(T × {1}J\{0}) at (tz̃0, z̃1, · · · , z̃f−1).

Proof. By Corollary 4.5.2, Lemma 4.6.1 and the fact that Z̃mod,τ is invariant under the shifted
conjugation action, Rη,τ

ρ has the desired description up to adding formal power series variables.
This immediately gives the second item, and the first item up to adding power series variables. To
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remove the potential extra power series variables, we use the following fact [Ham75, Theorem 5]:
if R, S are complete local rings such that R[[X]] ∼= S[[X]] then R ∼= S. □

Remark 4.6.4. It follows from the definitions that up to isomorphism, Znv,τ (z̃) is described as
follows:

Given (w̃j)j∈J ∈ Adm∨(η), the fragmentation J =
⋃

k∈K Jk, and the type of the endpoints of
each Jk, Znv,τ (z̃) is the spectrum of ⊗j∈JRj/

∑
k IJk

where for each fragment Jk = (i, i−1, . . . , o+
1, o), IJk

is the ideal of ⊗j∈Jk
Rj generated by the equations

(4.6.5) Mout,o ·

(
i−1∏

ℓ=o+1

Tℓ

)
·Min,i = 0,

and Mout,o (resp. Min,i, resp. Tℓ) is the final matrix (resp. initial matrix, resp. transition matrix)
appearing in the corresponding entry of Table 5 according to the type of i (resp. o).

Table 5. Equations for Znv,τ (z̃)

PPPPPPPPtype
w̃j tη w0tη tw0(η)

II

Rj = O[Xj , Yj ]

Initial matrix:

(
1
−Xj

)
Final matrix:

(
Yj −p

)

Rj = O[Xj , Yj ]

Initial matrix:

(
1
−Xj

)
Final matrix:

(
−p Yj

)

Rj = O[Xj , Yj ]

Initial matrix:

(
1
−Xj

)
Final matrix:

(
0 1

)

I

Rj =
O[Xj , Yj , Zj ]

((p− Yj)Yj −XjZj)

Initial matrix:

(
Yj −Xj

−Zj p− Yj

)
Final matrix:

(
p− Yj −Zj

−Xj Yj

)

Rj =
O[Xj , Yj , Zj ]

((p− Yj)Yj −XjZj)

Initial matrix:

(
Yj −Xj

−Zj p− Yj

)
Final matrix:

(
Yj −Xj

−Zj p− Yj

)

Rj =
O[Xj , Yj , Zj ]

((p− Yj)Yj −XjZj)

Initial matrix:

(
Yj −Xj

−Zj p− Yj

)
Final matrix:

(
p− Yj Xj

Zj Yj

)

0

Rj = O[Xj ]

Transition Matrix:

(
1 0
−Xj p

)
Rj = O[Xj ]

Transition Matrix:

(
0 −1
−p Xj

)
Rj = O[Xj ]

Transition Matrix:

(
p −Xj

0 1

)

4.6.2. Rational smoothness.

Theorem 4.6.6. (1) Let Z̃mod,nm be the normalization of Z̃mod,τ . Then Z̃mod,nm is resolution-

rational (cf. [Kov, Definition 9.1]) and Z̃mod,nm is Gorenstein.

(2) Assume p > 2 + maxj⟨µj , α
∨⟩. Then the same statements hold for the normalization Z̃nm

of Z̃τ .

Proof. (1) The statement is local so it suffices to check it for Z̃mod,nm(z̃).
Since
• Z̃mod,τ (z̃) is the scheme theoretic image of the proper map πmod : Ỹ mod,η,τ (z̃)→ Ũ(z̃),
• πmod is a closed immersion after inverting p (cf. Proposition 4.3.4),
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• Ỹ mod,η,τ (z̃) is normal,
it follows that πmod

∗ O
Ỹ mod,η,τ (z̃)

= OZ̃mod,nm(z̃)
. But Proposition 3.3.14 shows that in fact

Rπmod
∗ O

Ỹ mod,η,τ (z̃)
= OZ̃mod,nm(z̃)

By Grothendieck duality and the properness of πmod we have

(4.6.7) ωZ̃mod,nm(z̃)/O = Rπmod
∗ ω

Ỹ mod,η,τ (z̃)/O

and by Proposition 4.2.14 and Proposition 3.3.14, the RHS of (4.6.7) is

Rπmod
∗ O

Ỹ mod,η,τ (z̃)/O = OZ̃mod,nm(z̃)
.

Thus we learn that Z̃mod,nm(z̃) is Gorenstein. Since Ỹ mod,η,τ (z̃) is easily seen to be

resolution-rational (it is locally isomorphic to a product of SpecO[X,Y ]/(XY−p)), Z̃mod,nm(z̃)
is also resolution-rational.

(2) Let Z̃nm(z̃) be the normalization of Z̃τ . The same argument as above shows that

π∗OỸ η,τ (z̃)
= OZ̃nm(z̃)

By Lemma 3.3.7

Rπ∗OỸ η,τ (z̃)
⊗L

O F = Rπ∗(OỸ η,τ (z̃)
/ϖ) = Rπmod

∗ (O
Ỹ mod,η,τ (z̃)

/ϖ) = Rπmod
∗ O

Ỹ mod,η,τ (z̃)
⊗L

O F

which concentrates in degree 0 by Proposition 3.3.14. Since π is proper, it follows that

(4.6.8) Rπ∗OỸ η,τ (z̃)
= OZ̃nm(z̃)

(4.6.9) Rπ∗(OỸ η,τ (z̃)
/ϖ) = OZ̃nm(z̃)

/ϖ = OZ̃mod,nm(z̃)
/ϖ

Applying Grothendieck duality to (4.6.9) as in the previous part, we conclude that ω
(Z̃nm(z̃)/ϖ)/F =

OZ̃nm(z̃)
/ϖ is trivial. Since Z̃nm(z̃) is an affine p-adic formal scheme, we also get ωZ̃nm(z̃)/O =

OZ̃nm(z̃)
so Z̃nm(z̃) is Gorenstein. This fact, (4.6.8) and the fact that Ỹ η,τ is resolution-rational

now implies Z̃nm(z̃) is resolution rational. □

We can also completely classify the non-normal locus of Z̃τ :

Theorem 4.6.10. Suppose p > 2 + maxj⟨µj , α
∨⟩. Let τ have small presentation (s, µ). A Galois

representation ρ gives a non-normal point of Z̃τ exactly when both of the following holds:

(1) For each j, sj = id and ⟨µj , α
∨⟩ ∈ {0, 1}.

(2) ρ is Fontaine-Laffaille with inertial Hodge-Tate weights at embedding j ∈ J given by
• (1, 0) if ⟨µj , α

∨⟩ = 0.
• (1, 1) if ⟨µj , α

∨⟩ = 1.

Proof. It follows from the proof of Theorem 4.6.6 that the non-normal locus is exactly the support
of

coker(O
Z̃τ → π∗OỸ η,τ )

and when intersecting with Ũ(z̃), it equals the support of

coker(O
Ũ(z̃)

/ϖ → π∗OỸ η,τ /ϖ) = coker(O
Ũ(z̃)

/ϖ → πmod
∗ O

Ỹ mod,η,τ /ϖ)

Thus we reduce to investigating the non-normal locus of Z̃mod,τ (z̃). It follows from the proof
of Proposition 3.3.12 and Theorem 4.6.6 that the non-normal locus is exactly the support of
R1pr

B̃∗I(z̃) in Corollary 4.2.10. But Corollary 4.2.12 shows this support is non-empty exactly



BARSOTTI–TATE LOCAL MODEL THEORY 39

when for each j, either ⟨µj , α
∨⟩ = 0 or (⟨µj , α

∨⟩, sj , w̃j) = (1, id, tw0(η)). This shows that (s, µ) has
the desired form.

We now suppose (s, µ) has the requisite form. Decompose J = J0
∐
J1 where J0 = {j|⟨µj , α

∨⟩ =
0},J1 = {j|⟨µj , α

∨⟩ = 1}. Furthermore, if (s, µ) is of the right form, the proof of Lemma 4.2.5

furthermore identifies the support of R1pr
B̃∗I(z̃) as the locus of tuples (Aj) ∈ Ũ(z̃)(F) such that

• Aj = gj

(
v 0
0 v

)
if j ∈ J1.

• Aj ∈ {gj
(
v 0
0 1

)(
1 0
C 1

)
, gj

(
1 0
0 v

)(
1 B
0 1

)
} if j ∈ J0;

for some gj ∈ GL2(F) (and B,C ∈ F). After modifying (Aj) by the shifted conjugation action of

GLJ
2 , we can arrange so that Aj ∈ GL2(F)

(
v 0
0 1

)
for j ∈ J0.

Now set λ ∈ X∗(T )
∨ be such that λj = (1, 0) for j ∈ J0 and λj = (1, 1) for j ∈ J1. Analogous to

[LLHM+, Proposition 2.2.6], the moduli space FLλ of mod p Fontaine-Laffaille modules of weight

λ has the following description: Let H ∼= GL
|J1|
2 × B|J0| ⊂ GLJ

2 be the subgroup of tuples (Xj)

such that Xj−1 ∈ GL2 if j ∈ J1 and Xj−1 ∈ B if j ∈ J0. Then FLλ is the quotient [GLJ
2 /H] given

by the action

(Xj) · (gj) 7→ (XjgjX
−1
j−1)

where the overline denotes the projection B ↠ T when j ∈ J0, and is the identity map when
j ∈ J1.

But then, analogous to [LLHM+, Proposition 8.2.4], the natural embedding FLλ ↪→ Φ-Modét,2K
identifies with

(gj) 7→
(
(gj

(
v 0
0 v

)
)j∈J1 , (gj

(
v 0
0 1

)
)j∈J0

)
.

□

Remark 4.6.11. By the definition of small presentation, Theorems 4.6.6, 4.6.10 hold whenever p > 5.
However when K = Qp, the only non-trivial case of these theorems are when ⟨µ, α∨⟩ ≤ 1, and thus
and we only need to impose p > 3 for those cases.

5. Equations of the deformation ring

In this section we apply the main results of Sections 3 and 4 (namely Theorems 3.3.8 and 4.6.3)
to prove the conjectures of the series of papers [CDMb, CDMc, CDM23], in particular that tamely
potentially crystalline Barsotti–Tate deformation rings Rτ

ρ only depend on the combinatorial gene

X(τ, ρ|IK )(Theorem 5.4.16). Throughout this section, except for §5.5, we assume that K ̸= Qp.

5.1. Genetics. We recall and formalize into an abstract setup the notion of genes as introduced
in [CDMc, CDM23], and recall the main conjectures of loc. cit.

5.1.1. Combinatorial genes. Inspired by the terminology of [CDMc, CDM23] we now define the
notion of combinatorial gene associated to a pair (γ, h) ∈ Z/(pf − 1)× Z/(p2f − 1).

Let γ ∈ Z/(pf −1) and h ∈ Z/(p2f −1) such that h ̸∼= 0 modulo q+1 and h−2γ− (
∑f−1

j=0 p
j) ̸∼= 0

modulo pf − 1. Consider the p-expansions

(5.1.1) h− (pf+1)

(
h− γ −

f−1∑
j=0

pj
)
≡ p2f−1v0 + p2f−2v1 + · · ·+ pv2f−2 + v2f−1 (mod p2f − 1)
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with vj′ ∈ {0, . . . , p − 1} for all j′ ∈ J ′. A combinatorial gene associated to (γ, h) is a J ′-tuple

X = X(γ, h) ∈ {A, B, AB, O}J ′
which satisfies the following properties (see [CDM23, Lemma B.1.3]):

(1) if vj′ = 0 and Xj′+1 = O, then Xj′ = AB;
(2) if vj′ = 0 and Xj′+1 ̸= O, then Xj′ = A;
(3) if vj′ = 1 and Xj′+1 = O, then Xj′ = O;
(4) if vj′ = 1 and Xj′+1 ̸= O, then Xj′ = B;
(5) if vj′ ≥ 2, then Xj′ = O.

By [CDM23, Lemma 1.3.3, Lemma B.1.7] a combinatorial gene X associated to (γ, h) is well defined,
and is unique by the proof of [CDM23, Proposition 1.4.4]. Moreover, by [CDM23, Proposition 1.3.2,
Corollary 1.3.4], the J ′-tuple X = X(γ, h) satisfies the following conditions

♣1 if Xj′+1 = O, then Xj′ ∈ {AB, O};
♣2 if Xj′+1 ̸= O, then Xj′ ∈ {A, B, O},
♣3 there exists an integer j′ ∈ J ′ such that Xj′ = O or Xj′ ̸= Xj′+1.

The discussion after [CDMc, Lemme 2.1.7] shows that:

Lemma 5.1.2. Assume that γ + γ′ + (
∑f−1

j=0 p
j) ≡ h modulo pf − 1, h ̸≡ 0 mod pf + 1. Then:

X(γ′, h)j′ =


A if X(γ, h)j′ = B,

B if X(γ, h)j′ = A,

X(γ, h)j′ otherwise,

and

X(γ, pfh)j′ = X(γ, h)j′+f .

Following the conditions (♣1)–(♣3) and Lemma 5.1.2 we define an abstract combinatorial gene
as follows:

Definition 5.1.3. An abstract combinatorial gene is an equivalence class of a J ′-tuple X ∈
{A, B, AB, O}J ′

satisfying conditions (♣1), (♣2),(♣3), by the equivalence relation generated by

X′ ∼ X if

{
X′
j′ = {A, B} \ {Xj′} when Xj′ ∈ {A, B}

X′
j′ = Xj′ otherwise.

(5.1.4)

X′ ∼ X if

{
X′
j′ = Xj′+1

X′
j′+f = Xj′+f+1

(5.1.5)

Note that the relation (5.1.5) implies that (Xj′)j′∈J ′ ∼ (Xj′+f )j′∈J ′ , and that the notion of
abstract combinatorial gene is independent of p.

Let (τ, τ ′) be a pair of tame inertial types satisfying the following determinant condition:

(det) det(τ)⊗O F ≡ det(τ ′)⊗F ω.

If τ = τ(s, µ) = ωγ
f ⊕ ωγ′

f and τ ′ = τ(σ, ν) = ωh
2f ⊕ ωpfh

2f are a tame inertial type of niveau f and

a tame inertial F-type of level 2f as in §2.1.1, then condition (det) translates into the condition of
Lemma 5.1.2. We thus define the gene X(τ, τ ′) of the pair (τ, τ ′) as the abstract combinatorial gene
associated to the J ′-tuple X(γ, h). This gives the motivation behind Definition 5.1.3: the relation

(5.1.4) is imposed by the isomorphism ωγ
f ⊕ ωγ′

f
∼= τ ∼= ωγ′

f ⊕ ωγ
f and the relation (5.1.5) by the

fact that the isomorphism class of τ , τ ′ does not depend on the choice of the embedding σ0. In
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particular, X(τ, τ ′) only depends on the isomorphism class of τ and τ ′, and is insensitive to twist
by characters χ : IK → O×.

5.1.2. Genetic conjectures. The computations of [CDMc, CDM23] showed that the combinatorial
genes contains non-trivial information on the generic and special fiber of Galois deformation rings
with p-adic Hodge theory conditions.

Let ρ : GK → GL2(F) be irreducible and τ a tame inertial type of niveau f . Then ρ|IK defines a
tame inertial F-type, so that the combinatorial gene X(τ, ρ|IK ) is defined. The authors of [CDMc,
CDM23] propose the following conjecture (which is an integral version of [CDMc, Conjecture 5.1.5])

Conjecture 5.1.6 (Conjecture 2 in [CDM23]). The deformation ring Rη,τ
ρ is determined by X(τ, ρ|IK ).

They furthermore refine Conjecture 5.1.6 into the following

Conjecture 5.1.7 (Conjecture 5.2.7 [CDMc], Conjecture 3.1.2 [CDM23]). There exists a decom-
position X(τ, ρ|IK ) = ∪ri=0(Xji ,Xji+f

)ji≤j≤ji+1 such that

Rη,τ
ρ
∼= ⊗̂i=0Ri

where Ri is a complete local Noetherian O algebra depending only on (Xji ,Xji+f
)ji≤j≤ji+1.

Moreover, even if not stated as a conjecture, they suggest that

Conjecture 5.1.8 ([CDM23, CDMa]). The deformation ring Rη,τ
ρ is “independent of p”.

Conjectures 5.1.6, 5.1.7 and 5.1.8 are proven in Theorem 5.4.16 for p > 8f + 3 + maxj⟨µj , α
∨⟩.

In particular throughout sections 5.2, 5.3 and 5.4 we assume that p > 8f + 3 +maxj⟨µj , α
∨⟩.

Prior to this work, Conjecture 5.1.6 was known when either τ has a presentation (s, µ) with

2 < ⟨µj , α
∨⟩ < p − 2 for all j ∈ J or if

(X(τ,ρ|IK )j+f

X(τ,ρ|IK )j

)
=
(
O
O

)
for some j ∈ J . In the first case, we

have O ∈ {Xj ,Xj+f} for all j ∈ J which in turn implies that implies that the Kisin variety of type
(η, τ) attached to ρ is either empty or a single point by [CDMc, Théorème 2.2.1(A)]. Conjecture
5.1.6 is true by Theorem 2.1.9 in this case follow from Theorem 2.1.9 and [CDM23, Theorem 3].
In the second case, the Kisin variety is empty and the deformation ring is zero.

We now elaborate on Conjecture 5.1.8. Given an abstract combinatorial gene X we prove the
conjecture by constructing rings RX which are (possibly zero) quotients of polynomial rings over
Z[t] modulo an ideal IX ⊂ RX. These rings are independent of p (since abstract combinatorial
genes are) and the Conjecture 5.1.8 would be proven by explicitly showing that Rη,τ

ρ is isomorphic

to the completion of RX/(t − p) ⊗ O at the ideal generated by t and the variables of RX, where
X = X(τ, ρ|IK ). Again, by Theorem 2.1.9, the conjecture is known to be true when τ has a 2-generic
lowest alcove presentation.

We conclude with the following observation. By [CDMc, Proposition 4.1.3], we have Rη,τ
ρ = 0

as soon as (X(τ, ρ|IK )j+f ,X(τ, ρ|IK )j) = (O, O) for some j ∈ J . Hence, in what follows, we will be
interested in combinatorial genes X satisfying the further condition

♣4 (Xj+f ,Xj) ̸= (O, O) for all j ∈ J .

5.2. Genetic translation. We fix our setup as in Theorem 4.6.3. Hence, let τ : IK → GL2(O) be
a regular tame inertial type of niveau f with a small presentation (s, µ) and let w̃ = (wjtνj )j∈J ∈
Adm∨(η). Up to twist, we can furthermore assume that µj,2 = 0 for all j ∈ J . We abbreviate

kj
def
= ⟨µj , α

∨⟩ and set z̃
def
= w̃s−1vµ in what follows.

In order to analyze genetic data associated to τ and w̃ define λ ∈ X∗(T ) by the condition

(5.2.1) (z0zf−1 · · · z1)v(
∑

j∈J pjλj) = z̃0φ(z̃f−1) · · ·φf−1(z̃1).
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and the 2f -tuple (v′j′)j′∈J ′ by(
v′2f−1−j

v′f−1−j

)
def
= λj −

(
kf−j

kf−j

)
δsor,f−1−j ̸=id

where j ∈ {0, . . . , f − 1} and sor,f−1−j =
∏f−1−j

i=0 si (Lemma 2.1.8). By smallness of (s, µ), we have

v′j , v
′
f+j ∈ {−

p+1
2 , . . . , p+3

2 } for all j ∈ {0, . . . , f − 1}. Note that the 2f -tuple (v′j′)j′∈J ′ depends on

the triple (w̃, s, µ), but we omit this dependence for sake of readability.
We assume from now on that

∏
j∈J zj = w0,

∑
j∈J pj(µj,1+µj,2) ≡

∑
j∈J pj(λj,1+1+(λj,2+1))

modulo pf − 1 and
∑

j∈J pj(λj,1 + pfλj,2) ̸≡ 0 modulo pf + 1. By construction, the 2f -tuple

(v′j′)j′∈J ′ extracts precisely the LHS of equation (5.1.1) (using equations (2.1.2) and (2.1.3)), and

hence produces a gene X(v′), satisfying items (♣1), (♣2), (♣3) thanks to the assumptions in the
previous sentence.

Tables 6 and 7 give respectively the explicit description of z̃i and

(
v′f+j

v′j

)
according to (s, µ) and

w̃ and are directly obtained from the definitions.

Table 6. Genetic Translation-I

H
HHHHsi

w̃i tη w0tη tw0(η)

id

(
ki + 1

0

)
(12)

(
ki + 1

0

) (
ki
1

)

(12) (12)

(
ki
1

) (
ki
1

)
(12)

(
ki + 1

0

)

This table records z̃i
def
= w̃is

−1
i tµi .

.

5.3. Fibers of the map (w̃, s, µ) 7→ X(v′). Given a triple (w̃, s, µ) we have produced a tuple(
(sj+1, sor,j ,Σj , zj+1, w̃j , type at j), (v′f+j , v

′
j)
)
j∈J and a gene X(v′) attached to (v′f+j , v

′
j)j∈J , hence

a map

(5.3.1) (w̃, s, µ) 7→
(
(sj+1, sor,j ,Σj , zj+1, w̃j , type at j), (v′f+j , v

′
j)
)
j∈J 7→ (v′f+j , v

′
j)j∈J 7→ X(v′).

In this and the following section we analyze the shapes and types appearing in the fiber of the map
(5.3.1). From now onwards, we furthermore assume that X(v′) satisfies condition (♣4).

As a preliminary step, we record in Table 8 the fiber of the map

(5.3.2)
(
(sj+1, sor,j ,Σj , zj+1, w̃j , type at j), (v′f+j , v

′
j)
)
j∈J 7→ (v′f+j , v

′
j)j∈J

Table 8 is obtained directly from Table 7, and the only relevant property to obtain the Table 8 is
whether v′j ≥ 2, v′j = 1, v′j = 0 or v′j < 0.

Recall that we identify J ′ with Z/2f , and in what follows objects such as Σj , Xj , v
′
j are indexed

by J ′. For objects that are previously indexed by J we extend by f periodicity, with the exception
of Σj where the extension is given by Σj+f = w0Σj .
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Table 7. Genetic Translation-II

w̃j+1

PPPPPPPPsj+1

sor,j id (12)

tη, w0tη
id Σj

(
kj+1 + 1

0

)
Σj

(
1

−kj+1

)

(12) Σj

(
kj+1

1

)
Σj

(
0

1− kj+1

)

tw0η
id Σj

(
kj+1

1

)
Σj

(
0

1− kj+1

)

(12) Σj

(
kj+1 + 1

0

)
Σj

(
1

−kj+1

)

The entries of the table record

(
v′j+f

v′j

)
for j ∈ {0, . . . , f − 1}, where

Σj
def
=
∏j

i=1 z
−1
i = (

∏j
i=1 si)(w0)

Nj and Nj
def
= # {i ∈ {1, . . . , j}, w̃i = w0tη}. Note

that Σ0 = id by definition.

5.3.1. Step one: fiber of the map (v′f+j , v
′
j)j∈J 7→ X(v′). Let X ∈ {A, B, AB, O}J ′

satisfy conditions

(♣1),(♣2),(♣3). In this subsection we determine the fiber above X of the map (v′f+j , v
′
j)j∈J 7→

X(v′).

Lemma 5.3.3. Assume that X = X(v′) for some (v′f+j , v
′
j)j∈J associated to a triple (w̃, s, µ) as

above (in particular X satisfies conditions (♣1),(♣2),(♣3)).
Then, for each j′ ∈ J ′, the values of v′j′ are constraint by the third row of Table 9 according to

the pair Xf+j′ ,Xf+j′+1.

Proof. Let (vj′)j′∈J ′ ∈ {0, . . . , p− 1}J ′
be the tuple defined by

2f−1∑
j′=0

vj′p
2f−1−j′ ≡

2f−1∑
j′=0

v′j′p
2f−1−j′ mod p2f − 1.

We will show that:

• if Xi ∈ {A, B} then vi = v′i;
• if Xi = AB then vi ∈ {v′i, v′i − 1};
• if Xi = O and Xi+1 ̸= O then vi ∈ {v′i, v′i + p}; and
• if Xi = O and Xi+1 = O then vi ∈ {v′i, v′i − 1, v′i + p, v′i + p− 1}.

By definition of combinatorial gene (equations (1)-(5)) we deduce that:

• if Xi ∈ {AB, A} then vi = 0;
• if Xi = B then vi = 1;
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Table 8. Fibre of the map

(sj+1, sor,j ,Σj , zj+1, w̃j , typej) 7→
{(

0
≥ 2

)
,

(
0
1

)
,

(
0
0

)
,

(
0

< 0

)}

sj+1 sor,j Σj

(
v′j+f

v′j

)
=

(
0
≥ 2

) (
v′j+f

v′j

)
=

(
0
1

) (
v′j+f

v′j

)
=

(
0
0

) (
v′j+f

v′j

)
=

(
0

< 0

)

id id id (id, tw0(η), 0)

id id w0 (id, tη, II) (id, tη, 0)
(w0, w0tη, II) (w0, w0tη, 0)

id w0 id (id, tw0(η), 0) (id, tw0(η), I) (id, tw0(η), II)

id w0 w0 (id, tη, 0) (id, tw0(η), I)
(w0, w0tη, 0)

w0 id id

w0 id w0 (w0, tw0(η), II)

w0 w0 id (id, w0tη, I) (id, w0tη, II)
(w0, tη, I) (w0, tη, II)

w0 w0 w0 (id, w0tη, I)
(w0, tη, I)

Given (v′f+j , v
′
j) and (sj+1, sor,j ,Σj), the table entries record the triples

(zj+1, w̃j , type at j) such that
(
(sj+1, sor,j ,Σj , zj+1, w̃j , type at j), (v′f+j , v

′
j)
)
j∈J is

a 7-tuple associated to some (w̃, s, µ). (Here j ∈ Z/fZ.) The table records the
cases where v′f+j = 0, for j ∈ Z/fZ, but we note that we can replace (v′f+j , v

′
j)

with (v′j , v
′
f+j) at the cost of replacing Σj with w0Σj , and, similarly, we can

replace (v′j+f , v
′
j) with (1− v′j+f , 1− v′j) at the cost of replacing Σj and sor,j with

w0Σj and w0sor,j . The blank boxes in the table correspond to configurations of
(sj+1, sor,j ,Σj , (v

′
j+f , v

′
j)) which can not arise.

• if Xi = Xi+1 = O then vi ∈ [1, p− 1]; and
• if Xi = O and Xi+1 ̸= O then vi ∈ [2, p− 1].

By (♣3) there exists ℓ ∈ {0, . . . , 2f − 1} such that vℓ ̸= 0. Let ε ∈ Z be such that

2f−1∑
i=0

vip
2f−1−i =

2f−1∑
i=0

v′ip
2f−1−i + ε(p2f − 1)

As v′i ∈ {−(p+ 1)/2, . . . , (p+ 3)/2} we have

−p2f + 1 <

2f−1∑
i=0

v′ip
2f−1−i < p2f − 1
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Table 9. Genetic Translation-II

Xf+j′ A B AB O O

Xf+j′+1 ̸= O ̸= O O ̸= O O

v′j′ 0 1 {1, 0} {≥ 2, < 0} Any

hence ε ∈ {0, 1}.
Let i0

def
= min{i ≥ 0, v′i ̸= 0} (this is well defined by (♣3)). As

−p2f−i0−1 <

2f−1∑
j=i0+1

v′jp
2f−1−j < p2f−i0−1

we have

(5.3.4) ε =

{
0 if v′i0 > 0,
1 if v′i0 < 0.

If ε = 1 then vi = p − 1 for 0 ≤ i ≤ i0 − 1 and moreover vi0 = p + v′i0 ≥ 2 if i0 < 2f − 1 and
vi0 = p− 1 + v′i0 ≥ 2 if i0 = 2f − 1. We conclude that Xi = O for all 0 ≤ i ≤ i0 if ε = 1.
We have the following relation between v2f−1 and v′2f−1, and we define ε2f−1 ∈ {0, 1} as follows:

• if v′2f−1 < 0 and ε = 0 then v2f−1 = p+ v′2f−1 ≥ 2, X2f−1 = O and we define ε2f−1
def
= 1,

• if v′2f−1 ≥ 0 and ε = 0 then v2f−1 = v′2f−1, and we define ε2f−1
def
= 0,

• if v′2f−1 < 1 and ε = 1 then v2f−1 = p+ v′2f−1 − 1 ≥ 1, X2f−1 = O and we define ε2f−1 = 1,

• if v′2f−1 ≥ 1 and ε = 1 then v2f−1 = v′2f−1 − 1 and we define ε2f−1
def
= 0.

By decreasing induction, we deduce for i ∈ {2f − 2, . . . , 0} the following relations between vi and
v′i, and define εi ∈ {0, 1} as follows:

(a) if v′i < 0 and εi+1 = 0 then vi = p+ v′i ≥ 2, Xi = O and we define εi
def
= 1,

(b) if v′i ≥ 0 and εi+1 = 0 then vi = v′i and we define εi
def
= 0,

(c) if v′i < 1 and εi+1 = 1 then vi = p+ v′i − 1 ≥ 1, Xi = O and we define εi
def
= 1;

(d) if v′i ≥ 1 and εi+1 = 1 then vi = v′i − 1 and we define εi
def
= 0.

By (5.3.4) we have ε = ε0 and hence the relations (a)–(d) between vi and v′i hold for any i ∈ J ′,

and define an element (εi)J ′ ∈ {0, 1}J ′
.

For any i ∈ {0, . . . , 2f − 1} such that εi+1 = 1, we have Xi+1 = O. Hence vi = v′i − 1 only occurs
for Xi ∈ {O, AB} by (♣1). The conclusion follows now from a direct application of conditions (1)-(5)
(for instance if Xi = AB then vi = 0 by 1, and from (b), (d) above we conclude that v′i ∈ {0, 1}).

□

The following lemma improves Lemma 5.3.3.

Lemma 5.3.5. Keep the assumptions of Lemma 5.3.3 let i ∈ {0, . . . , 2f − 1}.
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(a) If Xi = O and v′i = 0, then there exists j ≥ 0 such that v′j+i < 0 and v′i+ℓ = 0 for all
0 ≤ ℓ < j.

(b) If Xi = O and v′i = 1, then there exists j ≥ 0 such that v′j+i ≥ 2 and v′i+ℓ = 1 for all
0 ≤ ℓ < j.

(c) If Xi = AB and v′i = 1, then there exists j ≥ 0 such that v′j+i < 0 and v′i+ℓ = 0 for all
0 ≤ ℓ < j.

(d) If Xi = AB and v′i = 0, then v′i+1 ≥ 1.

Proof. In the notation of the proof of Lemma 5.3.3 we have:

(a) If Xi = O and v′i = 0, then εi+1 = 1 and Xi+1 = O and v′i+1 < 1. The claimed result follows
now by induction.

(b) This is similar to (a).
(c) If Xi = AB and v′i = 1 then vi = v′i− 1, εi+1 = 1 and Xi+1 = O. Thus v′i+1 ≤ 0. We conclude

by (a).
(d) If Xi = AB and v′i = 0, then vi = v′i, εi+1 = 0 and Xi+1 = O. Thus v′i+1 ≥ 1.

□

5.3.2. Step 2: Types and shapes in the fibers. In this section we conclude our analysis on the fibers
of (5.3.2). The main result is Proposition 5.3.6.

In the following we assume that X ∈ {A, B, AB, O}J ′
satisfies conditions (♣1)–(♣4). The following

proposition analyzes the fiber of the composite map(
(sj+1, sor,j ,Σj , zj+1, w̃j , type at j), (v′f+j , v

′
j)
)
j∈J 7→ (v′f+j , v

′
j)j∈J 7→ X(v′)

where the domain is the set of -tuples attached to triples (w̃, s, µ) as in the end of Section 5.2.

Proposition 5.3.6. Let X ∈ {A, B, AB, O}J ′
satisfy conditions (♣1)–(♣4). Assume that X = X(v′)

for some (sj+1, sor,j ,Σj , zj+1, w̃j , type of j, (v′j+f , v
′
j)) associated to a triple (w̃, s, µ).

(1) If
(Xj+f

Xj

)
=
(
A
O

)
then (sj+1, sor,j ,Σj , zj+1, w̃j , type of j, (v′j+f , v

′
j)) belongs to the set{

(−, w0, id,−,−, II, (0, < 0)), (id, w0, id, id, tw0(η), I, (0, 0)),
(id, id, w0, id, tη, 0, (0, 1)), (−, id, w0,−,−, II, (0,≥ 2))

}
.

If
(Xj+f

Xj

)
=
(
B
O

)
then (sj+1, sor,j ,Σj , zj+1, w̃j , type of j, (v′j+f , v

′
j)) belongs to the set{

(−, w0, id,−,−, II, (1, < 0)), (id, w0, id, id, tη, 0, (1, 0)),
(id, id, w0, id, tw0(η), I, (1, 1)), (−, id, w0,−,−, II, (1,≥ 2))

}
.

(2) If
(Xj+f

Xj

)
=
(
O
AB

)
then (sj+1, sor,j ,Σj , zj+1, w̃j , type of j, (v′j+f , v

′
j)) belongs to the set{

(id, id, id, w0, w0tη, II, (≥ 2, 0)), (w0, id, id, id, w0tη, II, (≥ 2, 1)),
(w0, w0, w0, id, w0tη, II, (< 0, 0)), (id, w0, w0, w0, w0tη, II, (< 0, 1))

}
.

(3) If
(Xj+f

Xj

)
=
(
A
AB

)
then (sj+1, sor,j ,Σj , zj+1, w̃j , type of j, (v′j+f , v

′
j)) belongs to the set{

(w0, w0, id, w0, tη, I, (0, 0)), (id, w0, id, id, tw0(η), 0, (0, 1)),
(w0, w0, w0, id, w0tη, I, (0, 0)), (id, w0, w0, w0, w0tη, 0, (0, 1))

}
.

If
(Xj+f

Xj

)
=
(
B
AB

)
, then (sj+1, sor,j ,Σj , zj+1, w̃j , type of j, (v′j+f , v

′
j)) belongs to the set{

(w0, id, w0, w0, tη, I, (1, 1)), (id, id, w0, id, tw0(η), 0, (1, 0)),
(w0, id, id, id, w0tη, I, (1, 1)), (id, id, id, w0, w0tη, 0, (1, 0))

}
.
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(4) If
(Xj+f

Xj

)
∈ {
(
A
A

)
,
(
A
B

)
,
(
B
A

)
,
(
B
B

)
} then sj+1, sor,j , (v

′
j+f , v

′
j) and type of j are determined by X.

Moreover if
(Xj+f

Xj

)
∈ {
(
A
A

)
,
(
B
B

)
}, then X determines if either w̃j = tw0(η) or w̃j ∈ {w0tη, tη}.

The other cases are deduced by the transformation
(Xj+f

Xj

)
7→
( Xj

Xj+f

)
(see the caption of Table 8).

Proof. Proof of (1). Assume Xj = O and v′j = 1. Let j1 = max{j′ ≥ j such that v′ℓ = 1, j0 ≤ ℓ ≤ j′}.
Then v′j1+1 ≥ 2 and for all j ≤ j′ ≤ j1 we have

(Xf+j′
Xj′

)
∈
{(

A
O

)
,
(
B
O

)}
, (sj′+1, sor,j′ ,Σj′ , zj′+1) =

(id, id, w0, id) and

(w̃j′ , type of j′, (v′f+j′ , v
′
j′)) =

{
(tη, 0, (0, 1)) if Xf+j′ = A,

(tw0(η), I, (1, 1)) if Xf+j′ = B.

Indeed by (♣4) and Lemma 5.3.5, j1 is well defined, Xj′ = O, for all j ≤ j′ ≤ j1 + 1 and v′j1+1 ≥ 2.

Hence
(v′j1+1+f

v′j1+1

)
∈
{(

0
≥2

)
,
(

1
≥2

)}
.

By Table 8 and symmetry, the index j1 + 1 is of type II and sor,j1+1 = id, Σj1+1 = w0.
By (♣1) and (♣4), for all j ≤ j′ ≤ j1 we have Xj′+f ∈ {A, B}, hence v′f+j′ ∈ {0, 1} is determined

by Xf+j′ . That is, for j ≤ j′ ≤ j1,
(v′

j′+f

v′
j′

)
∈
{(

0
1

)
,
(
1
1

)}
.

By decreasing induction and Table 8, since sor,j1+1 = id and Σj1+1 = w0, we have for j ≤ j′ ≤ j1

• if
(v′

j′+f

v′
j′

)
=
(
0
1

)
, (sj′+1, sor,j′ ,Σj′ , zj′+1, w̃j′ , type of j′) = (id, id, w0, id, tη, 0),

• if
(v′

j′+f

v′
j′

)
=
(
1
1

)
,(sj′+1, sor,j′ ,Σj′ , zj′+1, w̃j′ , type of j′) = (id, id, w0, id, tw0(η), I).

The proof for v′j = 0 can be deduced directly by symmetry. The cases v′j < 0 and v′j ≥ 2 follow
from Table 8.

Proof of (2). Assume
(Xj+f

Xj

)
=
(
O
AB

)
. By (♣1) and item ♣4 of this Proposition we have Xj+1+f ̸=

O. Hence v′f+j ≥ 2 or < 0. By Table 8 and (1) we have (sor,j+1,Σj+1) ∈ {(w0, id), (id, w0)}.
Then

(sj+1, sor,j ,Σj , zj+1) ∈ {(w0, id, id, id), (id, id, id, w0), (id, w0, w0, w0), (w0, w0, w0, id)}

and w̃j = w0tη and the type of j is II.

Proof of (3). If
(Xj+f

Xj

)
∈
{(

A
AB

)
,
(
B
AB

)}
, then

(v′j+f

v′j

)
=
{(

0
0,1

)
,
(

1
0,1

)}
, Xj+1 = O and

v′j+1 =

{
≥ 1 if v′j = 0, hence (sor,j+1,Σj+1) = (id, w0),

≤ 0 if v′j = 1, hence (sor,j+1,Σj+1) = (w0, id).

We conclude from Table 8.
Proof of (4). Assume Xj ,Xj+f ∈ {A, B}.
• Assume that there exists j1 such that{

Xj′ ,Xj′+f ∈ {A, B}, j ≤ j′ ≤ j1 − 1,
AB ∈ {Xj1 ,Xj1+f}.

By (3) we see that sor,j1 is determined by
(Xj1+f

Xj1

)
. Since Xj′ ,Xj′+f ∈ {A, B}, for j ≤ j′ ≤

j1 − 1 we deduce by symmetry and decreasing induction from Table 8 that sj′+1, sor,j′ and

the type at j′ are determined by
(Xj′+f

Xj′

)
for j ≤ j′ ≤ j1 − 1.
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• Assume that such j1 does not exist, i.e. that Xj′ ∈ {A, B} for all j′ ∈ J ′. Then for all

j′ ∈ J ′ either sj′+1 or sor,j′ is determined by
(Xj′+f

X′
j

)
(cf. Table 8). If there exists i ∈ J

such that
(Xi+f

Xi

)
∈
{(

A
B

)
,
(
B
A

)}
, there is an unique choice of sor,i such that sor,f−1 = id. If(Xi+f

Xi

)
∈
{(

A
A

)
,
(
B
B

)}
for all i ∈ Z/fZ then the J -tuple (sor,i) is determined by X. By (♣3)

there exists j′ ∈ J ′ with Xj′ ̸= Xj′+1. By Tables 8 and symmetry we obtain sj′+1 = w0.
By induction we conclude that (sj+1, sor,j)j∈J and the type of j are determined by X.

Moreover, for
(Xj+f

Xj

)
∈ {

(
A
A

)
,
(
B
B

)
}, we deduce from Table 8 (and symmetry) that the data of

(sj+1, sor,j) determines whether w̃j = tw0(η) or w̃j ∈ {w0tη, tη} □

5.4. Naive equations associated to a gene. Let X ∈ {A, B, AB, O}J ′
be a gene satisfying condi-

tions (♣1)–(♣4). Assume that X = X(v′) for some (v′f+j , v
′
j)j∈J associated to a triple (w̃, s, µ).

Definition 5.4.1. Let X = (Xj)j∈J ′ be a gene satisfying (♣1)–(♣4). A cluster for X is a sequence
(Xj+f ,Xj)j0≤j≤j1 such that there exists ℓ ∈ {j0, . . . , j1} satisfying

• Xj = O for all j ∈ {ℓ, . . . , j1}, Xj1+1 ̸= O and Xℓ−1 = AB,
• O ̸∈ {Xj ,Xj+f}, j0 + 1 ≤ j ≤ ℓ− 1,
• O ∈ {Xj0 ,Xj0+f}.

We remark that X = (Xj)j∈J ′ has either a unique decomposition X = ∪ri=0(Xji ,Xji+f
)ji≤j≤ji+1 into

clusters (with the convention jr+1 = j0), or does not have any cluster (in which case Xj ∈ {A, B}
for all j ∈ J ′). Note finally that ji are of type II for all i = 0, . . . , r by Table 9.

Let ∪k∈KJk be the fragmentation associated to the triple (w̃, s, µ) (Definition 4.3.12). Assume
X admits a decomposition into clusters X = ∪ri=0(Xji ,Xji+f

)ji≤j≤ji+1 . Note that given a cluster
(Xj+f ,Xj)ji≤j≤ji+1 the sequence (ji, . . . , ji+1) is a union of fragments of K, as both ji and ji+1 are
of type II. For i ∈ {0, . . . , r}, we denote

R[ji,ji+1]
def
= O[Yji ]⊗

(
⊗ji+1≤j≤ji+1−1Rj

)
⊗O[Xji+1 ] and I[ji,ji+1]

def
=

∑
k∈K∩[ji,ji+1]

Ik

where for all k ∈ K ∩ [ji, ji+1], the ideal Ik ⊂ R[ji,ji+1] is generated by the entries of the matrix
equation (4.6.5) associated to Jk.

Proposition 5.4.2. Let X = (Xj ,Xj+f )j∈J be a gene satisfying (♣1)–(♣3).
(1) Assume that X has a decomposition into clusters X = ∪ri=0(Xji ,Xji+f

)ji≤j≤ji+1. Let (w̃, s, µ)
be a triple in the fiber above X of the map (5.3.1). Then

Znv,τ (z̃) = Spec
(
⊗r

i=0R[ji,ji+1]/I[ji,ji+1]

)
.

Moreover, the p-saturation of Znv,τ (z̃) depends only on X.
(2) Assume X does not admit a decomposition into fragment (i.e. X ∈ {A, B}J ′

). Then Znv,τ (z̃)
depends only on X. In particular, the p-saturation of Znv,τ (z̃) depends only on X.

The proof of Proposition 5.4.2 relies on the analysis of each of the ideals I[ji,ji+1]. This analysis
is preformed, for a fixed cluster, in Lemmas 5.4.3, 5.4.9 and 5.4.13 below, which deal with the O,
the AB, and the (A, B)-part of the cluster.

Thus, we fix once and for all a cluster (Xj ,Xj+f )j0≤j≤j1 of X. We let {k0, . . . , ks}
def
= K ∩ [j0, j1]

so that
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• for all j = 0, . . . , s−1, Jkj = (ikj , ikj−1, . . . , okj+1, okj ) ⊂ (j1, j1−1, . . . , j0) and okj = ikj+1

• ik0 = j1, oks = j0.

Let s′ ∈ [0, s] such that ℓ− 1 ∈ (oks′ , . . . , iks′ − 1).

Given j ∈ [0, s], we define Ikj as the image of Ikj in R[j0,j1]/
∑j−1

j′=0 Ikj′ . We still denote by

Xi, Yi, Zi etc. the variables of R[j0,j1] in the quotient R[j0,j1]/
∑j−1

j′=0 Ikj′ .

Lemma 5.4.3 (the O-part of a cluster). For any 0 ≤ i ≤ s′− 1, the ideal Iki satisfies the following
property: there exists rki ∈ N such that

(1) Iki = (Yoki ) if the type of both oki and iki is II,

(2) Iki = (fki , gki) if the type of oki is I and the type of iki is II,
(3) prkiIki = prki (fki , gki)(p,Xiki

) if the type of both oki and iki is I,

(4) prkiIki = prki (Yoki )(p,Xiki
) if the type of oki is II and the type of iki is I,

where {
fki

def
= p− Yoki −Xoki+1Xoki

,

gki
def
= Zoki

−Xoki+1(p−Xoki+1Xoki
).

Proof. If s′ = 0, there is nothing to prove. We assume now s′ ≥ 1.
By definition of ℓ, Xj = O for all j ∈ {ℓ, . . . , j1} and Xj+f ∈ {A, B} for all j ∈ {ℓ, . . . , j1 − 1}.

Thus by Proposition 5.3.6(1) and an induction (using Table 8 to deal when j is of type II) we have
for j ∈ {ℓ, . . . , j1 − 1}:

(5.4.4) (w̃j , type of j) ∈ {(tη, 0), (tw0(η), I), (tη, II), (tw0(η), II)}.

Recall that for any k ∈ K and fragment (ik, ik + 1, . . . , ok − 1, ok), we know that ik and ok are of
type either I or II, and ik − 1, . . . , ok + 1 are of type 0. Thus for any i ∈ {0, . . . , s′ − 1} we get
from (5.4.4) and Table 5:

iki−1∏
l=oki+1

Tl =

iki−1∏
l=oki+1

(
1 0
−Xl p

)
=

(
1 0∑iki−oki−2

l=0 −plXoki+1+l piki−oki−1

)
.

To prove the lemma we proceed by induction on i ∈ {0, . . . , s′− 1} analyzing the matrices Mout,oki

and Min,iki
on the fragments Jki . We abbreviate k

def
= ki in what follows. For i = 0, only the items

(1) and (2) can happen (as ik0 is of type II).

Proof of item (1). Assume ok and ik are of type II. Then by (5.4.4) and Table 5:

Mout,ok =

{
(Yok ,−p) if w̃ok = tη,
(0, 1) if w̃ok = tw0(η),

and Min,ik =

(
1

−Xik

)
.

After the change of variable Xok+1 7→
∑ik−ok−1

l=0 plXok+1+l in R[j0,j1] we have

(5.4.5)

 ik−1∏
l=ok+1

Tl

Min,ik =

(
1

−Xok+1

)
.

(In particular, note that the “inner” variables of R[j0,j1] in the outcome of the Lemma are
not the same as those used in Table 5. This change of variable can be checked not to be
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relevant in the gluing of Proposition 5.4.2, which uses equations from Table 5 involving only
the “outer” variables of R[j0,j1] for each cluster.) Then

Ik =

{
(Yok − pXok+1) if w̃ok = tη,

(Xok+1) if w̃ok = tw0(η).

Thus, up to the change of variable Yok 7→ Yok − pXok+1 if w̃ok = tη or Yok 7→ Xok+1,
Xok+1 7→ Yok if w̃ok = tw0(η), we have Ik = (Yok) and item (1) holds.

Proof of item (2). Assume ok is of type I and ik is of type II. As before we have (5.4.5) after replacing Xok+1

by
∑ik−ok−1

l=0 plXok+1+l and hence, using again (5.4.4) and Table 5

(5.4.6) Mout,ok

 ik−1∏
l=ok+1

Tl

Min,ik =

(
p− Yok Xok
Zok Yok

)(
1

−Xok+1

)
=

(
p− Yok −Xok+1Xok

Zok − YokXok+1

)
Thus Ik = (p− Yok −Xok+1Xok , Zok −Xok+1(p−Xok+1Xok)) and item (2) holds.

Proof of item (3). Assume ok and ik are both of type I. Since j1 is of type II and i > 0, there exist i′ ∈ [0, i−1]
such that okl = ikl+1

is of type I for i′ ≤ l ≤ i−1 and iki′ is of type II. By item (2) applied
to ki′ and noting that oki′ = iki′+1

we see that Min,iki′+1
equals:

(5.4.7)(
Yiki′+1

−Xiki′+1

−Ziki′+1
p− Yiki′+1

)
≡
(

1

−Xiki′+1
+1

)
(p−Xiki′+1

+1Xiki′+1
,−Xiki′+1

) modulo Iki′ .

We conclude by (5.4.4) and Table 5) that the image Iki′+1
of Iki′+1

in R[j0,j1]/(
∑i′

l=0 Ikl) is
generated by the equations

(5.4.8)(
p− Yok

i′+1
Xok

i′+1

Zok
i′+1

Yok
i′+1

)(
1

−(
∑ik

i′+1
−ok

i′+1
−2

l=0 plXok
i′+1

+1+l − p
ok

i′
−ok

i′+1
−1

Xik
i′+1)

)
(p−Xik

i′+1
+1Xik

i′+1
,−Xik

i′+1
) = 0.

Hence, after the change of variableXoki′+1
+1 7→

∑iki′+1
−oki′+1

−2

l=0 plXoki′+1
+1+l−p

oki′
−oki′+1

−1
Xiki′+1

,

the image Iki′+1
of Iki′+1

in R[j0,j1]/(
∑i′

i=0 Iki) satisfies Iki′+1
= (fki′+1

, gki′+1
)(p,Xiki′+1

)

where fki′+1
= p−Yoki′+1

−Xoki′+1
Xoki′+1+1

and gki′+1
= Zoki′+1

−Xoki′+1
+1(p−Xoki′+1

Xoki′+1+1
).

We now induct on l ∈ {0, . . . , i − i′ − 1} the case l = 0 being covered above. Indeed,
assuming by induction that pl−1Iki′+l−1

= pl−1(fki′+l−1
, gki′+l−1

)(p,Xiki′+l−1
) (note that

the term (p,Xiki′+l−1
) only appears for l > 1) we can repeat the same computations

above (multiplying bot side of equations (5.4.7), (5.4.8) by pl−1) to show that the image

Iki′+l
of Iki′+l

in R[j0,j1]/
∑l−1

l′=0 Iki′+l′ satisfies p
lIki′+l′ = pl(fki′+l′ , gki′+l′ )(p,Xiki′+l′

), where

fki′+l′ = p−Yoki′+l′
−Xoki′+l′

Xoki′+l′+1
and gki′+l′ = Zoki′+l′

−Xoki′+l′
+1(p−Xoki′+l′

Xoki′+l′+1
).

Proof of item (4). Assume ik is of type I and ok is of type II. Then ki−1 satifies the hypotheses of (2) or (3)

Similar computations as in (3) show now that the image of prkIk in R[j0,j1]/(
∑i−1

l=0 IJkl
) is

generated by the equations

prkMout,ok

(
1

−(
∑ik−ok−2

l=0 plXok+1+l − poki−1
−ok−1Xik+1

)

)
(p−Xik+1Xik ,−Xik ) = 0
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where

Mout,ok =

{
(Yok ,−p) if w̃ok = tη,
(0, 1) if w̃ok = tw0(η),

Then (after exchanging and/or replacing the variables in the same way as we did for (1)),
we have rk ∈ N sucht that prkIk = prk(Yok)(p,Xik).

□

Lemma 5.4.9 (the AB-part of a cluster). Let k
def
= ks′.

(1) If the type of ℓ− 1 is I then the image Ik of Ik in R[j0,j1]/
∑s′−1

i=0 Iki satisfies the following
property: there exists rk ∈ N such that{

Ik = (fk, gk) if ik is of type II,
prkIk = prk(fk, gk)(p,Xik) if ik is of type I,

with fk
def
= p − Yok − Xok+1Xok , gk

def
= Zok − Xok+1(p − Xok+1Xok). Moreover there exists

rks′+1
∈ N such that p

rks′+1Iks′+1
is generated by the equations

p
rks′+1Mout,ok

 ℓ−2∏
l=ok+1

Tl

Mℓ−1 = 0

where,

Mℓ−1 =

{
Σℓ−1

( −Xℓ−1

p−XℓXℓ−1

)
if Xℓ−1+f = A,

w0Σℓ−1

( −Xℓ−1

p−XℓXℓ−1

)
if Xℓ−1+f = B.

(2) If the type ℓ − 1 is 0, then the image Ik of Ik in R[j0,j1]/
∑s′−1

i=0 Iki satisfies the following

property: there exists rk ∈ N such that prkIk is generated by the equations

prkMout,ok

 ℓ−2∏
l=ok+1

Tl

Mℓ−1 = 0

where

Mℓ−1
def
=

{
(w0)

δXf+ℓ−1=BΣℓ−1

( −Xℓ−1

p−Xℓ−1Xℓ

)
if ik is of type II,

(w0)
δXf+ℓ−1=BΣℓ−1

( −Xℓ−1

p−Xℓ−1Xℓ

)
(Xℓ+1, p) if ik is of type I,

(3) If the type of ℓ−1 is II, then the image Ik of Ik in R[j0,j1]/
∑s′−1

i=0 Iki satisfies the following
property: there exists rk ∈ N such that{

Ik = (hk) if ik is of type II,
prkIk = prk(hk)(p,Xik) if ik is of type I,

where hk = (p+Xok+1Yok).

Proof. If the type of ℓ − 1 is I or 0, then ℓ − 1 > j0 (as j0 is of type II) and (Xℓ−1,Xℓ−1+f ) ∈
{(AB, A), (AB, B)}. By Proposition 5.3.63,

(w̃ℓ−1, type of ℓ− 1) ∈ {(tη, I), (w0tη, I), (w0tη, 0), (tw0(η), 0)}.
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Proof of Item (1). If ℓ − 1 is of type I, then ok = ℓ − 1. Using 5.4.3 (2)-(3) to describe

R[j0,j1]/
∑s′−1

l=0 Ikl and performing the reasoning of the proof of loc. cit. (replacing the final ma-
trix at ok in equations (5.4.6), (5.4.8) with the final matrix associated to either (tη, I) or (w0tη, I)

according to w̃ok) there exists rk ∈ N such that the image Ik of Ik in R[j0,j1]/
∑s′−1

l=0 Ikl satisfies{
Ik = (fk, gk) if ik is of type II,

prkIk = prk(fk, gk)(p,Xik) if ik is of type I,

where

(5.4.10)

{
fk

def
= p− Yok −XokXok+1,

gk
def
= Zok −Xok+1(p−XokXok+1)

Again, note that the above equations are obtained by replacing Xok+1 by −Xok+1 and, more
importantly in what follows, exchangingXok and Zok (resp. replacing Yok by p−Yok) when w̃ℓ−1 = tη
(resp. w̃ℓ−1 = w0tη).
Letting rks′+1

be rks′ + 1 if ik is of type I and be 0 if ik is of type II, we furthermore claim that

p
rks′+1Iks′+1

is generated by the equations

p
rks′+1Mout,oks′+1

 ℓ−2∏
l=oks′+1

+1

Tl

Mℓ−1 = 0

where,

Mℓ−1
def
= (w0)

δ(Xf+ℓ−1=B) Σℓ−1

(
−Xℓ−1

p−XℓXℓ−1

)
.

Indeed, keeping in mind the change of variables Xok ↔ Zok (resp. Yok ↔ p− Yok) when w̃ℓ−1 = tη
(resp. w̃ℓ−1 = w0tη) we obtain from row I of Table 5 (recall iks′+1

= oks′ = ℓ− 1 is of type I) and

(5.4.10)

p
rks′+1Min,iks′+1

≡ p
rks′

+1
wℓ−1

(
p−Xℓ−1Xℓ −Xℓ(p−Xℓ−1Xℓ)
−Xℓ−1 Xℓ−1Xℓ

)
w−1
ℓ−1

= p
rks′+1

(
p−Xℓ−1Xℓ

−Xℓ−1

)
(1,−Xℓ)w

−1
ℓ−1

in R[j0,j1]/
∑s′

l=0 Ikl , where wℓ−1 is the permutation part of w̃ℓ−1. As iks′+1
is of type I we deduce

from Proposition 5.3.6(3) that wℓ−1 = (w0)
δXf+ℓ−1=BΣℓ−1 and the claim follows noting that the term

(1,−Xℓ)w
−1
ℓ−1 can be ignored when imposing condition (4.6.5).

Proof of item (2). A similar reasoning as in the proof of Lemma 5.4.3 shows that there exists rk ∈ N
and a change of variable for Xℓ such that we have the following equality in R[j0,j1]/

∑s′−1
i=0 Iki :

(5.4.11) prk
( ik−1∏

l=ℓ

Tl

)
in,ik

=


prk

(
1

−Xℓ

)
if ik is of type II

prk

(
1

Xℓ

)(
p−Xik+1Xik , −Xik

)
if ik is of type I
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Moreover if ℓ− 1 of type 0, then (w̃ℓ−1, type of ℓ− 1) ∈ {((w0tη, 0), (tw0(η), 0)} and by Table 5 we
have

(5.4.12) Tℓ−1 = wℓ−1

(
p −Xℓ−1

0 1

)
where wℓ−1 is the permutation part of w̃ℓ−1.

As in the previous item, we now claim that there exists rk ∈ N such that prkIk is generated by
the equations

prkMout,ok

 ℓ−2∏
l=ok+1

Tl

Mℓ−1 = 0

where

Mℓ−1 =

{
(w0)

δXf+ℓ−1=BΣℓ−1

(p−Xℓ−1Xℓ

−Xℓ−1

)
if ik is of type II,

(w0)
δXf+ℓ−1=BΣℓ−1

(p−Xℓ−1Xℓ

−Xℓ−1

)
(p,Xℓ+1) if ik is of type I.

But this is clear from (5.4.11), (5.4.12) noting that from Proposition 5.3.6(3)) we have wℓ−1 =

(w0)
δXf+ℓ−1=BΣℓ−1 and that, when ik is of type I, we can replace (p−Xik+1Xik , −Xik) by (p, −Xik)

to obtain a system of equations equivalent to (4.6.5).

Proof of item (3). If ℓ− 1 is of type II then ℓ− 1 = j0 = ok and
(Xok+f

Xok

)
=
(
O
AB

)
. The argument in

the proof of Lemma 5.4.3(1) and (4) shows that there exists rk ∈ N such that prkIk is generated
by the equations (after an adequate change of variables){

prkMout,ok

(
1

−Xok+1

)
= 0, rk = 0 if ik is of type II,

prkMout,ok

(
1

−Xok+1

)
(p−Xik+1Xik ,−Xik ) = 0 if ik is of type I

where Mout,ok = (−p, Yok) (since w̃ok = w0tη by Proposition 5.3.6(2)). The result follows. □

Lemma 5.4.13 (the A, B-part of a cluster). Assume j0 ̸= ℓ− 1.

(1) There exists rks′ ∈ N such that

p
rks′ Iks′ =

{
p
rks′ I ′ks′ if type of iks′ is II,

p
rks′ I ′ks′ (p,Xℓ+1) if type of iks′ is I,

where I ′ks′ is an ideal of R[j0,j1]/
∑s′−1

i=0 Iki generated by elements which do not depend (up

to an automorphism induced by an explicit change of variables at oks′ ) on the choice of
(w̃, s, µ) in the fiber above X of the map (5.3.1).

(2) For all s′′ ∈ {s′ + 1, . . . , s}, Iks′′ is an ideal of R[j0,j1]/
∑s′′−1

l=0 Ikl generated by elements
which do not depend on the choice of (w̃, s, µ) in the fiber above X of the map (5.3.1).

Proof. Since j0 ̸= ℓ − 1, Xℓ−1 = AB, Xℓ−1+f ∈ {A, B} and Xj ,Xj+f ∈ {A, B} for all j ∈ {j0 +
1, . . . , ℓ − 2}. By Proposition 5.3.6 the triple (sj+1, sor,j , type of j) are determined by X, for all
j ∈ {j0 + 1, . . . , ℓ− 2}.
Proof of item (1). The case oks′ = ℓ− 1 follows from Lemma 5.4.9 (1).

Assume oks′ < ℓ− 1. By Lemma 5.4.9 (2), there exists rks′ ∈ N such that p
rks′ Iks′ is generated

by the equations

(5.4.14) p
rks′Mout,oks′

 ℓ−2∏
l=ok+1

Tl

Mℓ−1 = 0
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where

Mℓ−1
def
=

{
(w0)

δXf+ℓ−1=BΣℓ−1

( −Xℓ−1

p−Xℓ−1Xℓ

)
if iks′ is of type II,

(w0)
δXf+ℓ−1=BΣℓ−1

( −Xℓ−1

p−Xℓ−1Xℓ

)
(Xℓ+1, p) if iks′ is of type I.

We first prove, by decreasing induction on j ∈ {oks′ + 1, . . . , ℓ− 1}, that in (5.4.14) we can replace(∏ℓ−2
l=j Tl

)
Mℓ−1 by {

ΣjM
′
j(p,Xℓ+1) if iks′ is of type I,

ΣjM
′
j if iks′ is of type II,

where M ′
j depends only on X.

The result is true for ℓ− 1. For the inductive step, using the relation M ′
j = Σ−1

j TjΣj+1M
′
j+1, it

is enough to prove that up to sign the matrix Σ−1
j TjΣj+1 = Σ−1

j TjΣjzj+1 only depends on X for

j ∈ (oks′ +1, . . . , ℓ− 2). This is a casewise check using Table 8 and Table 5. Indeed, as j is of type
0 for all j ∈ (oks′ + 1, . . . , ℓ− 2) we have from Table 8 that

((w0)
δXf+j=BΣj , w̃j , zj+1) ∈ {(id, tw0(η), id), (w0, tη, w0), (w0, tη, id)}

(The factor (w0)
δXf+j=B is justified by Table 9) and an elemetary computation from Table 5 shows

that

Σ−1
j TjΣjzj+1 = (±)(w0)

δXf+j=B

(
p −Xj

0 1

)
(w0)

δXf+j=B .

We conclude that p
rks′ Iks′ is generated by the equations

(5.4.15) p
rks′Mout,oks′

Moks′
= 0

where

Moks′
=

{
Σoks′+1

M ′
oks′+1

(p,Xℓ+1) if iks′ is of type I,

Σoks′+1
M ′

oks′+1
if iks′ is of type II,

and M ′
oks′+1

depends only on X.

We now perform a casewise analysis according to the type of ȷ
def
= oks′ .

♠1 Assume ȷ is of type I. Then by Tables 9 and 8 we have
(Xȷ+f

Xȷ

)
∈ {
(
A
A

)
,
(
B
B

)
}. The system of

equations (5.4.15) is equivalent to

p
rks′ΣȷMout,ȷΣȷ+1M

′
ȷ+1(p,Xℓ+1)

δiks′
=I

= 0.

A direct check on Table 8 and Table 5 shows that ΣȷMout,ȷΣȷzȷ+1 only depends on whether
w̃j = tw0η or w̃j ∈ {tη, w0tη} up to the change of variables Xȷ ←→ Zȷ, Yȷ ←→ p−Yȷ (change
of variables which happens exactly when Σȷ = w0). By Proposition 5.3.6(4) we conclude
that the system of equation (5.4.15) only depends on X up to the the change of variables
Xȷ ←→ Zȷ, Yȷ ←→ p− Yȷ.

♠2 Assume ȷ = oks′ is of type II. By definition of cluster and the fact that oks′ ≤ ℓ − 1, we
conclude that ȷ is of type II. A direct check on Table 8 (which provides the possible choices
for (w̃ȷ,Σȷ, zȷ)) and Table 5 shows that Mout,ȷΣȷzȷ+1 only depends on whether w̃j = tw0η

or w̃j ∈ {tη, w0tη}. We conclude from Proposition 5.3.6(4) that the system of equation
(5.4.15) only depends on X.
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Proof of item (2). In this case we necessarily have s′ < s. Starting from case (♠1) above, we
inductively analyze, for s ≥ s′′ > s′, the system of equations

Mout,oks′′

 iks′′
−1∏

l=oks′′
+1

Tl

Σoks′′−1
Min,oks′′−1

Σoks′′−1
= 0

where the presence of the Σoks′′−1
-conjugation on the matrix Min,oks′′−1

(defined in Table 5) is

explained by the change of variables Xoks′′−1
←→ Zoks′′−1

, Yoks′′−1
←→ p− Yoks′′−1

when Σoks′′−1
=

w0. Since the expression Min,oks′′−1
is independent of X, we can now perform the same argument

appearing in the proof of item (1) (where we replace M ′
ℓ−1 by Min,oks′′−1

in the initial inductive

argument there). □

Proof of Proposition 5.4.2. . Let (Xj ,Xj+f )j∈J be a gene satisfying (♣1)–(♣3). If there exists
i ∈ J such that (Xi,Xi+f ) = (O, O) then the deformation ring is zero and the result is obvious. In
what follows we assume that (Xj ,Xj+f )j∈J satisfies (♣1)– (♣4).

Assume that there exists i ∈ J ′ such that Xi = O and let X = ∪ri=0(Xji ,Xji+f
)ji≤j≤ji+1 be the

decomposition of X into clusters.
Proof if item (1). By Lemmas 5.4.3-5.4.13 applied on each fragments of X we have

Znv,τ (z̃) = Spec
(
⊗r

i=0R[ji,ji+1]/I[ji,ji+1]

)
.

and each I[ji,ji+1] is a sum of the ideals described in

• Lemma 5.4.3, so that after p-saturation we can solve the variables Yi, Zi, while the variable
Xi is free,
• Lemma 5.4.9 and Lemma 5.4.13 (1) so that after p-saturation these ideals produce equations
which do not depend on the choice of (w̃, s, µ) in the fiber of the map (5.3.1) at X.
• Lemma 5.4.13 (2), and these ideals admits generators which do not depend on the choice
of (w̃, s, µ) in the fiber of the map (5.3.1) at X.

We concude that the p-saturation of Znv,τ (z̃) depends only on X.
Proof of item (2). The proof is similar to the proof of Proposition 5.3.6(4) If Xj′ ∈ {A, B} for all
j′ ∈ J ′ then either sj+1 or sor,i is determined by Xj′ , for all j

′ ∈ J . If there exists j0 ∈ J such that( Xj0
Xj0+f

)
∈
{(

A
B

)
,
(
B
A

)}
then sj0+1 is uniquely determined (cf. Table 8). As sor,f−1 = id by Lemma

2.1.8 we conclude that (sj+1, sor,j)j∈J is uniquely determined by (Xj ,Xj+f )j∈J .

If
( Xj

Xj+f

)
∈
{(

A
A

)
,
(
B
B

)}
for all j ∈ J then (sor,j)j∈J is determined by X. By (♣3) there exists

j′ ∈ J ′ with Xj′ ̸= Xj′+1. By Table 8, we obtain sj′+1 = (12) and by induction (sj+1, sor,j)j∈J are
determined.

As (sj+1, sor,j , type of j) are determined for all j ∈ J , Znv,τ (z̃) is determined by X. □

Theorem 5.4.16. Assume that p > 8f +3+maxj⟨µj , α
∨⟩. Let τ be a regular tame inertial type of

niveau f and ρ : GK → GL2(F) be absolutely irreucible and such that det(ρ) ⊗F ω = det(τ) ⊗O F.
Then Rη,τ

ρ depends only on X(τ, ρ|IK ). Moreover, there exists an integer r ≥ 0 and a decomposition

X(τ, ρ|IK ) = ∪ri=0(Xji ,Xji+f
)ji≤j≤ji+1 such that

Rη,τ
ρ
∼= ⊗̂i=0Ri

where Ri is a complete local Noetherian O algebra depending only on (Xji ,Xji+f
)ji≤j≤ji+1.

Proof. This follows from Theorem 4.6.3 and Proposition 5.4.2. □
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5.5. Examples. We collect some examples computing potentially Barsotti–Tate deformation rings
using the techniques of this article.

In what follows, given x ∈ F× we denote by unx the unramified character of GK sending p to x.

5.5.1. Examples when f=1. By Theorem 4.6.3, we see immediately that if we are in a Type II
situation of Table 4 then Rη,τ

ρ is formally smooth over O or O[[X,Y ]]/(XY − p). We are thus left
with the following cases

(1) Case 1: τ = τ((12), (1, 0)) (thus τ = ω2⊕ωp
2) and w̃ ∈ {tη, w0tη}, with z̃ ∈ {w0t(1,1), t(1,1)}.

(2) Case 2: τ = τ(id, (1, 0)) (thus τ = 1⊕ ω) and w̃ = tw0(η), z̃ = t(1,1).

We wish to compute the p-saturation of Z̃nv,τ (z̃) in those cases.
We start with case 1. Since the two subcases give isomorphic spaces, we will work with w̃ = w0tη,

so that z̃ = t(1,1). From Table 4, Z̃nv,τ (z̃) is presented as the quotient ofO[B,C,D, α, β, γ, δ] subject
to D(p−D) = BC, αδ − βγ invertible, and the relation(

D −B
−C (p−D)

)(
α β
γ δ

)(
D −B
−C (p−D)

)
= 0

Using D(p−D) = BC, a simple manipulation shows that the above matrix equation is equivalent
to DF = BF = CF = (p −D)F = 0 where F = γB + βC − αD − δ(p −D). It follows that the

p-saturation Z̃mod,τ (z̃) is given by the equations

D(p−D) = BC, γB + βC = αD + δ(p−D)

We check on Macaulay 2 that the ideal of 2 × 2 minors of the Jacobian matrix of the above
relations together with the relations themselves contains p2, and has radical (p,B,C,D). Thus the

non-smooth locus of Z̃mod,τ (z̃)/O is p = B = C = D = 0, which correspond to ρ⊗ ε−1 unramified.
After twisting ρ, we see that Rη,τ

ρ is isomorphic to the completion of

O[B,C,D, α, β, γ, δ]/(D(p−D)−BC, γB + βC − αD − δ(p−D))

at either (p,B,C,D, α−1, δ−1, β, γ), (p,B,C,D, α−s, δ−t, β, γ) (with s ̸= t ∈ F×) or (p,B,C,D, α−
1, δ − 1, β − 1, γ).

We note that the second ideal correspond to the point ρ = unsε ⊕ untε with s ̸= t, and after
eliminating D using the fact that α − δ is unit, and making a change of variable on B,C, we see

that the completion of Z̃mod,τ (z̃) at ρ is a power series ring over O[[X,Y ]]/(XY − p2).

We now move to case 2. Reading off from Table 4 like in case 1, Z̃nv,τ (z̃) is presented as the
quotient of O[B,C,D, α, β, γ, δ] subject to D(p−D) = BC, αδ − βγ invertible, and the relations

BCα+DCβ +DBγ −BCδ − pCβ = 0,

DCα− C2β −BCγ −DCδ + pDγ = 0

DBα−BCβ −B2γ −DBδ − pBα− pDβ + pBδ + p2β = 0.

One can check that Z̃nv,τ (z̃) is already p-saturated, hence agrees with Z̃mod,τ (z̃). We check on
Macaulay 2 that the ideal of 2 × 2 minors of the Jacobian matrix of the above relations together
with the relations themselves contains p3, and has radical (p,B,C,D). Thus the non-smooth locus

of Z̃mod,τ (z̃)/O is p = B = C = D = 0, which correspond to ρ⊗ε−1 unramified. We again conclude
that after twisting ρ, Rη,τ

ρ is isomorphic to the completion of

O[B,C,D, α, β, γ, δ]

/(
D(p − D) − BC, BCα + DCβ + DBγ − BCδ − pCβ,
DCα − C2β − BCγ − DCδ + pDγ,
DBα − BCβ − B2γ − DBδ − pBα − pDβ + pBδ + p2β

)



BARSOTTI–TATE LOCAL MODEL THEORY 57

at either (p,B,C,D, α−1, δ−1, β, γ), (p,B,C,D, α−s, δ−t, β, γ) (with s ̸= t ∈ F×) or (p,B,C,D, α−
1, δ − 1, β − 1, γ).

Remark 5.5.1. (Bounds on p for f = 1) Our explicit computations in this section allows us to
slightly relax the requirement on p in Theorem 3.3.8. Specifically, the improvement in the proof of
Theorem 3.3.8 comes from two sources

• We can get a map out of O[[X,Y ]]/(XY − pk) as soon as we have a map modulo pk+1,
instead of using the general Elkik bound which would have required a map modulo p2k+1.
This shows that our above models are valid for p ≥ 7, unless (up to twists) ρ ⊗ ε−1 is
unramified and has scalar semisimplification and τ = ω2⊕ωp

2 , or ρ⊗ ε−1 is unramified and
τ = 1⊕ ω. We remark that these computations justify the claims made in [EGH, §7.5.13].
• In the remaining cases, we get a small saving in the bound required to apply Elkik’s approx-
imation theorem compared to the general bound of Proposition 4.4.2. This in particular
shows that our models for these cases are valid for p > 7.

5.5.2. Examples with f = 3. Tables 11, 10 record several examples of deformation rings correspond-
ing to the examples of the left column (resp. right column) of [CDMc, Table 4] (by completion at
the ideal generated by the variables X0, X1, X2, Y0 . . . ). In particular, contrary to the expectations
of [CDMc, §5.3.2], the deformation rings extracted from the first three rows of Table 11 are not all
of the form “XY + p2”, despite the fact that these examples share the same stratified Kisin variety
and the type τ is non degenerate in the sense of [CDMc]. This gives a counterexample to [CDMc,
Conjecture 5.1.5] when the coefficient ring OE of loc. cit. is absolutely unramified (but not after
enlarging it).

Table 10. Examples from [CDMc, §5.3] for f = 3

O B B

A A AB
(II, w0tη), (0, tw0(η)), (0, tw0(η))

R = O[X0, Y0, X1, X2]

Inv = Ip-sat = (X0Y0 + p3)

O A B

B A AB
(II, w0tη), (I, w0tη), (0, w0tη)

R = O[X0, Y0, X1, Y1, Z1, X2]

Inv =

(
Y1(p− Y1)−X1Z1, pY1 + Y0Z1, pX1 + Y0(p− Y1),
Y1X0 +X1(p+X0X2), Z1X0 + (p− Y1)(p+X0X2)

)
Ip-sat =

(
Y0Z1 + pY1, Y 2

1 +X1Z1 − pY1, Y0Y1 − pY0 − pX1,
X0X1X2 +X0Y1 + pX1, X0Y1X2 −X0Z1 − pX0X2 + pY1 − p2

)

A A B

A B B
(I, w0tη), (0, tw0(η)), (I, tη)

R = O[X0, Y0, Z0, X1, X2, Y2, Z2]

Inv = Ip-sat =


(p− Y2)Y0 + Z2Z0, (p− Y2)X0 + Z2(p− Y0)

X2Y0 + Z0Y2, X2X0 + Y2(p− Y0),
Y0(pY2 +X1Z2) +X0Z2, Z0(pY2 +X1Z2) + Z2(p− Y0),

Y0(pX2 +X1(p− Y2)) +X0(p− Y2), Z0(pX2 +X1(p− Y2)) + (p− Y0)(p− Y2),
Y2(p− Y2)−X2Z2, Y0(p− Y0)−X0Z0
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Table 11. Examples from [CDMc, §5.3] for f = 3

Gene (type of j, w̃j)j=0,1,2 Equations for Z̃nv,τ (z̃) and (Z̃nv,τ (z̃))p-sat

O B A

A AB O
(II, tη), (0, w0tη), (II, tη)

R = O[X0, X1, X2, Y0]

Inv = Ip-sat = (X2Y0 + p2)

O B B

A AB O
(II, tη), (0, w0tη), (II, tw0(η))

R = O[X0, X1, X2, Y0]

Inv = Ip-sat = (X2Y0 + p2)

O B B

B A AB
(II, tη), (0, tη), (0, w0tη)

R = O[X0, X1, X2, Y0]

Inv = Ip-sat = (X0Y0 + p3)

A B B

A A A
(I, w0tη), (0, tη), (0, w0tη)

R = O[X0, X1, X2, Y0, Z0]

Inv =

(
(Y0(Z0 + p2Y0 + (p− Y0)X1), Z0(Z0 + p2Y0 + (p− Y0)X1), X0(Z0 − p2X0 + (p− Y0)X1),

(p− Y0)(Z0 − p2X0 + (p− Y0)X1), (p− Y0)Y0 −X0Z0

)

Ip-sat =


Y 2
0 +X0Z0 − pY0, pX0Y0 −X1Y0 − pX0Z0 − p2X0 + pX1 + p2Y0 + Z0

pX1Y0 +X0Z0 + Y0Z0 + p3X0 − p2X1 − pZ0,
X2

0Y0 +X0Z
2
0 +X1Y0 + 2pX0Z0 + p2X0 − pX1 − p2Y0 − Z0

pX3
0 −X2

0X1 + pY0Z
2
0 + p2X2

0 − pX0X1 + (p4 − 2p2)X0Z0 + (p4 + 1)Y0Z0 + p3Y0



A B A

A A B
(II, tw0η), (0, tw0(η)), (0, w0tη)

R = O[X0, X1, X2, Y0, Z0]

Inv =

pZ0(p− Y0) + (X0 −X1(p− Y0))(−pY0 − Z0X2), −p(p− Y0)
2 + (X0 −X1(p− Y0))(pX0 +X2(p− Y0)),

pZ2
0 + (−Z0X1 + Y0)(−pY0 − Z0X2), −pZ0(p− Y0) + (−Z0X1 + Y0)(pX0 +X2(p− Y0)),

(p− Y0)Y0 −X0Z0



Ip-sat =

 Y 2
0 +X0Z0 − pY0, X1X2Z

2
0 + pX1Y0Z0 −X2Y0Z0 + pX0Z0 + pZ2

0 − p2Y0,
X1X2Y0Z0 − pX0X1Z0 +X0X2Z0 − pX1X2Z0 + pX0Y0 + pY0Z0 − p2Z0,

X0X1X2Z0 + pX0X1Y0 −X0X2Y0 + pX1X2Y0 + pX2
0 − p2X0X1 + pX0X2 − p2X1X2 + pX0Z0 + p2Y0 − p3



O B B

A B AB
(II, tη), (I, tw0η), (0, w0tη)

R = O[X0, Y0, X1, Y1, Z1, X2]

Inv =

(
Y0Y1 + pZ1, Y0X1 + p(p− Y1), X1(p+X0X2)−X0(p− Y1),

Y1(p+X0X2)−X0Z1, (p− Y1)Y1 −X1Z1

)

Ip-sat =

(
Y 2
1 +X1Z1 − pY1, Y0Y1 + pZ1, Y0X1 − pY1 + p2

X0Y0 + pX0X2 + p2, X0Y1X2 −X0Z1 + pY1, X0X1X2 +X0Y1 − pX0 + pX1

)

O A B

AB O AB
(II, w0tη), (II, tη), (0, tw0(η))

R = O[X0, Y0, X1, Y1, X2]

Inv = Ip-sat = (p+ Y0X1, X0X2Y1 + p(X0 + Y1))

O A B

A B AB
(II, tη), (0, tw0(η)), (0, w0tη)

R = O[X0, Y0, X1, X2]

Inv = Ip-sat = (pX0Y0 + (p+X1Y0)(p+X0X2))

In the third column we express Z̃nv,τ (z̃) as Spec (R/Inv), where R = ⊗2
j=0Rj and

Inv, (Rj)j=0,1,2 are extracted from the data of the second column and Table 5
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[CDMc] , Variétés de Kisin stratifiées et déformations potentiellement Barsotti-Tate, J. Inst. Math.
Jussieu, 2018.
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