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Abstract

Let p be a prime number and K a finite extension of Q,. We state conjectures
on the smooth representations of GL,, (K) that occur in spaces of mod p automor-
phic forms (for compact unitary groups). In particular, when K is unramified, we
conjecture that they are of finite length and predict their internal structure (exten-
sions, form of subquotients) from the structure of a certain algebraic representation
of GL,,. When n = 2 and K is unramified, we prove several cases of our conjectures,
including new finite length results.
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CHAPTER 1

Introduction

1.1. Preamble

Let p be a prime number and K a local field of residue characteristic p. In the
early nineties, Barthel and Livné had the fancy idea to start classifying irreducible
(admissible) smooth representations of GLz(K) over an algebraically closed field of
characteristic p (|[BL94], [BL95]). They found four nonempty distinct classes of
such representations: 1-dimensional ones, irreducible principal series, special series,
and those which are not an irreducible constituent of a principal series that they
called supersingular. In 2001, one of us classified supersingular representations of
GL2(Q,) with a central character ([Bre03al]) and showed that they are in “natural”
bijection with 2-dimensional irreducible representations of Gal(@p /Q,) in charac-
teristic p. This was one of the starting points of the mod p and p-adic Langlands
programmes for GL2(Q,), which was developed essentially during the decade 2000-
2010 (see for instance [Bre03b], [Brel0], [Emel0b], [Kis10], [Col10], [Ber10],
[Pasi3], [Eme|, [CDP14], [CEGT18|, ...).

There are two main novel features of the mod p local Langlands correspon-
dence for GL2(Q,) (compared to previous Langlands correspondences). The first
one is that it involves reducible representations of GL2(Qp). More precisely, the
representation of GLy(Q),) is irreducible (resp. semisimple, resp. indecomposable)
if and only if its corresponding 2-dimensional representation of Gal(@p /Qp) is, and,
in the reducible case, is given (at least generically) by an extension between two
specific principal series. The second one, found by Colmez in [Coll0], is that
the correspondence can be made functorial by an exact functor from finite length
representations of GLy(Q,) to étale (o, I')-modules, i.e. to finite length representa-
tions of Gal(Q,/Q,) by Fontaine’s equivalence. Thanks to this exact functor, one
can extend the correspondence first to extensions of representations, and then to
deformations on both sides.

When K is not Qp, trouble comes from supersingular representations. Con-
trary to the case K = Qp, they can be more numerous than 2-dimensional irre-
ducible representations of Gal(K/K) ([BP12]) and they cannot be described as
quotients of a compact induction by a finite number of equations ([Hul2l Cor.5.5],
[Sch15l Thm.0.1], [Wu21l Thm.1.1]), justifying a posteriori the terminology “very
strange” that was used to describe them in the introduction of [BL95]. As a con-
sequence, no classification of supersingular representations of GLo(K) is known so
far, which has hitherto made impossible to find a definition of a hypothetical local
mod p correspondence for GLo(K) by purely local (either representation theoretic
or geometric) means.

Fortunately, the global theory comes to the rescue. If a local correspondence ex-
ists, there is a place where it should be realized: the mod p cohomology of Shimura

1
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2 1. INTRODUCTION

varieties. Let us assume now that K is a finite unramified extension of Q, with
residue field F); and let K L pM2(Ok) C GL2(Ok). Following the pio-
neering work of [BDJ10] on Serre weight conjectures, a series of articles ([BP12],
[EGS15], [HW18], [LMS22|, [Lel9]) led to a complete description of the K;-
invariants of the GLg(K)-representations carried by Hecke isotypic subspaces in
such mod p cohomology groups. Although these invariants are only a tiny piece
of the representations of GLo(K), combined with weight cycling this turned out to
give a strong hint on the form of these representations, as well as being a useful
technical result. Indeed, very recently, building on this description and on results
of [BHH™ 23|, Hu and Wang could prove that, at least when K is quadratic un-
ramified and the representation of Gal(@p /K) is a nonsplit extension between two
(sufficiently generic) characters, these GLg (K )-representations are indecomposable
of length 3 (in particular are of finite length), with similar principal series as in
the case K = @, in socle and cosocle, and a supersingular representation “in the
middle” ([HW22, Thm.1.7]).

These recent results maintain the hope of a local Langlands correspondence
for GLo(K). They also prompted us to make public some conjectures we had in
mind for many years on the form of the GL,,(K)-representations carried by Hecke
isotypic subspaces, and on a functorial link to representations of Gal(@p /Qp) via
(p,T')-modules. We state such conjectures in the present work (Conjecture 29
Conjecture 2.19, Conjecture 2I]) and we prove some special cases in the case n = 2
and K unramified, including some new finite length results (Theorem [3102] The-
orem 3105l Corollary BI06]). Moreover, when n = 2 and K is unramified, we also
define (and use in the proofs!) an abelian category C of smooth admissible rep-
resentations of GLy(K') in characteristic p (containing the representations coming
from the global theory) together with an exact functor from C to a new category
of multivariable (¢, T')-modules.

1.2. Conjectures

Let us first describe our conjectures with some details. As usual, we mostly
work in the setting of compact unitary groups (except in §2.1.4]), so that we do not
(yet) mix delicate representation theoretic issues with difficult geometric problems
(ultimately, we think that the representations of GL, (K) should not change from
one global setting to another). We fix F' a CM-field, i.e. a totally imaginary qua-
dratic extension of a totally real number field F', and we assume for simplicity in
this introduction that p is inert in F*. We also assume (not for simplicity) that the
unique p-adic place v of F'* splits in F. We fix a continuous absolutely irreducible
representation

7: Gal(F/F) — GL,(F),
where F is a (sufficiently large) extension of IF,, and we assume that 7 is automorphic
for a unitary group H over F'T that is compact at all infinite places and becomes
GL,, over F'. Equivalently there exists a compact open subgroup U C H (A?f)
such that
def

S(UY,F)[m] = {f: HEF)\H(A%,)/U" — F locally constant }[m] # 0,

where [m] means the Hecke-isotypic subspace associated to 7 (one has to choose a
finite set of bad places ¥ in the definition of m, but we forget this issue here, see

213 below).
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1.2. CONJECTURES 3
Let dlv in F, K et F; the corresponding completion and 75 the restriction of
7 to a decomposition subgroup at ¢. Then S(UY,F)[m] is an admissible smooth
representation of GL,,(K) over F by the usual right translation action on functions.
Our main conjecture gives the form of this GL, (K)-representation (assuming it is
of finite length) as well as a functorial link to T5. But to state it we need a few
preliminaries on certain algebraic representations of GL,, over F.
Let us first assume for simplicity that K = Q,. We let Std be the standard
n-dimensional algebraic representation of GL,, over F and define the following al-
gebraic representation of GL,, over F:

n—1 .
A Q:{l) /\FStd.

We fix P C GL,, a parabolic subgroup containing the Borel B of upper-triangular
matrices, and let Mp be its Levi subgroup containing the torus 7" of diagonal
matrices. We fix P C P a Zariski closed algebraic subgroup containing Mp and we
consider the algebraic representation f®| p of P over F.

DEFINITION 1.1 (Definition 2222)). A subquotient of f®|13 is a good subquotient
if its restriction to the center Zps, of Mp is a (direct) sum of isotypic components

+®
of L |ZMP .

Note that an isotypic component of f®| Znip carries an action of Mp (Lemma
221]). Hence, viewing an isotypic component of f®| Zn, 85 A representation of P
via the surjection P — Mp, one can see f®| 5 as a successive extension of such
isotypic components (Lemma[2.24). On the GL,,(Q))-side, the isotypic components
of f®| Zu, Will play the role of irreducible constituents. Note that the isotypic
components of ° | Zur,, are by definition all distinct.

To an isotypic component C' of f®\ Zu,» We associate a parabolic subgroup
P(C) of GL,, containing B as follows. Let A € X(T) = Homg, (7T, Gy) be any
weight such that C is the isotypic component of A|z,,, and define (see (Z.29))

1
=
W (P)|

> W) € X(T)ezQ,

w'eW (P)

where W (P) is the Weyl group of Mp. Let 6 be the highest weight of f®|T and
w in the Weyl group of GL,, such that w(\’) is dominant with respect to B. Then
one can check that (see Proposition 2:32))

0 —w\)= Z Na,
acsS

where S is the set of simple roots of GL,, (with respect to B) and the n, are in
Q>0. Then P(C) is by definition the parabolic subgroup of GL,, corresponding to
the subset {a € S : ny, # 0} of S. We denote by P(C)~ its opposite parabolic
subgroup.

We now go back to the above global setting. Assuming a weak genericity
condition on 73, one can replace T; by a suitable conjugate so that the image of 73
is contained in the F-points of a Zariski closed algebraic subgroup ﬁ;ﬁ of a parabolic
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4 1. INTRODUCTION

Py, as above which is “as small as possible” (see Definition 263 and Theorem [2.65]).
The following conjecture is part of Conjecture21] (see Definition Z:8Tland Definition

E70).

CONJECTURE 1.2. Assume that T has distinct irreducible constituents and that
the ratio of any two 1-dimensional constituents is not in {w,w™1}, where w is the
mod p cyclotomic character. Then we have a GL,(Q,)-equivariant isomorphism
for some integer d > 1:

S(UY,F)[m] = (IT; @ (0" o det)) ™,
where Il is an admissible smooth representation of GL,(Q,) over F of finite length
with distinct irreducible constituents such that there exists a bijection ® between the

(finite) set of subquotients of Il and the (finite) set of good subquotients off®
satisfying the following properties:

Pr

o}

(i) ® respects inclusions, and thus extends to a bijection between the sets of
all subquotients on both sides;
(ii) @' sends an isotypic component C of f®‘ZMP—,~ to an irreducible con-

stituent of 11 of the form Indf,%g)@‘(’ép) w(C), where ©(C) is a supersin-

gular representation of Mp(c)(Qp) over F.

When K is not necessarily @, the conjecture is completely analogous, defining

®by

L
n—1 .
+® def v
@ (@A)
Gal(K/Q,) i=1
lacing P by PCal(K/Q) & By ...« P and taking isotypi ts of
replacing y P X ---x P and taking isotypic components o
Gal(K/Qp)
Z®|ZMP for the diagonal embedding Zyr, — ZJ\GZ:(K/Q”) in the definition of good
. =
subquotients of L™ | scaicr/ap) -
EXAMPLE 1.3.
(i) If 75 is irreducible, then ﬁ—ﬁ = GL, = Mp,._ and there is only one isotypic

component C' in Z®|ZGLn' It is such that P(C) = GL,: the representation II; in
Conjecture is irreducible and supersingular.

(ii) If 75 is semisimple, then ﬁ,ﬁ = Mp._, and since the direct sum decompo-
sition of f®| Zu,_  into isotypic components for the (diagonal) Zys,. -action is a

direct sum decomposition as a ﬁ—ﬁ = Mp,_-representation, we see that the repre-
sentation II; in Conjecture is also semisimple.

(iii) If K = Q, and n = 2, we have L = Std. When 7y is irreducible, by
(i) the representation II; of GL2(Q,) in Conjecture is supersingular. When
T3 is reducible split, then ﬁ;ﬁ =T =M, Pr, s and f®|T = F\; ® F\s, where A; :
diag(z1,x2) — x;, @ € {1,2}. There are two isotypic components C = FA; or
C = F)\q, both with P(C') = B: the representation I in Conjecture [[.2 is a direct
sum of two irreducible principal series. Finally, when 75 is reducible nonsplit, then

Licensed to Chinese Academy of Sciences. Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



1.2. CONJECTURES 5

ﬁ;ﬁ =B, f®| B is a nonsplit extension of FA; by FA; and II; is a nonsplit extension
between two irreducible principal series. Note that Conjecture is known in that
case ([CS17b|, [CS17a| for 75 irreducible, [BD20), Cor.7.40] for arbitrary 75, all
generalizing methods of [Emel]).

(iv) For K arbitrary (unramified) and n = 2, see Example and Example
1 of 243

Conjecture only gives part of the picture. For instance there should be

reducible subquotients of II; which are also parabolic inductions Indg%g)@fé ) w(C)
P

with 7(C) of the form 7(C) = m(C) @ --- ® mq(C'), where the (reducible) m;(C)
have themselves the same form as II; but for the smaller GL,,(K) appearing in
the Levi Mpcy(K) (which gives a “fractal” flavour to the whole picture!). In fact,
it is possible that, in the end, this “fractal” picture will automatically follow from
property (ii) in Conjecture (i.e. from the statement for irreducible subquotients
only), as one can already see in many of the examples of §2.4.3] using the work of
Hauseux ([Haul8|, [Haul9)), see Remark 2 71](iv). Also some parabolic (possibly
reducible) inductions as above should be deduced from others by a permutation on
the factors m;(C). Tracking down all these internal symmetries (with the various
twists by characters that occur) and all the implications between them is not really
difficult but a bit tedious, as the reader will see from the technical lemmas in §2.4.T]
(see e.g. Proposition [2773). The interested reader should maybe first have a look at
the various examples in §2.4.3] before going into the full combinatorics.

Finally, the full picture has to take into account the Galois action. There
is a simple way to extend Colmez’s functor from representations of GL2(Q,) to
representations of GL,(K) that we recall now (see [Brels| or §2T1). Let & :

Gm — T be the cocharacter x — diag(z"~,2"2,...,1) and N; = Ker(N, N
Ox 2% Z,), where Ny is the unipotent radical of B(Ok) and the map ¢ is the
sum of the entries on the first diagonal (following the notation of [SV11]). Let 7

be a smooth representation of GL,, (K) over F and endow the algebraic dual (771)V
of 71 with the residual F[No/N:] = F[Z,] = F[X]-module structure (where

X € [1] — 1), an action of Z, and an endomorphism ¢ which commutes with the

Z,-action by
(@f)w) € fE@@ ), zeZ, fe @)Y, ver™

G(NW) Z (o jemmem - mE@Y), f€ @)Y, vent

Then one defines a covariant left exact functor V from the category of smooth repre-
sentations of GL,,(K') over F to the category of (filtered) direct limits of continuous
finite-dimensional representations of Gal(Q,/Q,) over F by

(1.1) V(r) < (imVY(D)) ® 94,
D

where the inductive limit is taken over the continuous morphisms of F[X]-modules
h: (7™M)¥Y — D, where D is an étale (¢, I')-module of finite rank over F((X)) and
h intertwines the actions of Z (recall I' = Z ), commutes with ¢ and is surjective
when tensored by F(X)). (Here VV is Fontaine’s contravariant functor associating
a representation of Gal(Q,/Q,) to D and recall that any étale (¢, T')-module is
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6 1. INTRODUCTION

endowed with an endomorphism v which is left inverse to the Frobenius ¢.) In
(@1, ¢ is a certain power of w which is here for normalization issues (see Example
23 see also the end of §2.T.4). In general, one doesn’t know when V() is nonzero
or if it is finite-dimensional.

Using (I.IJ), one can strengthen Conjecture (when K = Q,) so that it takes
into account the action of Gal(Q,/Q,) as follows.

CONJECTURE 1.4 (see Definition 70l and Conjecture 211). There is a bijection
® as in Conjecture that moreover commutes with the action of Gal(Q,/Qy) in
the following sense: for each subquotient I1; of Il one has V(II;) = ®(II}) o 7.
(Recall that ®(11,) is an algebraic representation of Py, over F and that T takes
values in ]3% (F).)

If K is not necessarily Q,, then by definition ®(II}) is an algebraic repre-

sentation of ﬁFG AK/Q) and there is a completely analogous conjecture replac-

ing ®(II;) o 7y Uby O(I15) o (75)sccal(k/Q,), Which is again a representation of
Gal(@,/Q,).

In particular the functor V', when applied to II; and its subquotients IT%, should
behave like an exact functor. Note that Conjecture [[L4]is known when K = Q, and
n = 2 by the same references as in Example [[3[iii). In the special case IT; = IIj,

Conjecture [[L4] implies in particular

CONJECTURE 1.5 (Conjecture Z9). The functor V induces an isomorphism
n—1 .
) — —1 ~ : ®Qp v - @d
V(S(U”,F)[m] @ (w "~V o det)) = (de ((gl)/\Frf,)) :

where ind?}Qp is the tensor induction from Gal(Q,/K) to Gal(Q,/Q,).

The statement in Conjecture makes sense even if K is ramified, and we
conjecture it for an arbitrary finite extension K of Q, and an arbitrary represen-
tation 75 (see Conjecture 29]). In fact, using C-parameters ([BG14]), it can even
be formulated in a more intrinsic way and in a more general global setting, see

Conjecture 219

REMARK 1.6. Assuming K = Q,, the first appearance of the Gal(@p/(@p)—
representation on the right-hand side of the isomorphism in Conjecture [L3l is in
[BH15]|, where its “ordinary part” was related to the “ordinary part” of S(U",F)[m]
(see Theorem for an improvement). Note that the algebraic representation ¥
of GL,, is not irreducible for n > 2. One could have thought about using the irre-
ducible algebraic representation of GL,, of highest weight 6 instead of the reducible
% to make predictions (at least for p big enough the latter strictly contains the

. . =0
former as a direct factor). However, we chose the representation L~ . One reason

is that it can also be seen as a representation of GL,, X --- x GL,, (n — 1 times)

. . . . . . X de — 3
in an obvious way — in which case a better notation is L o &?le AgpStd — and

one can hope to state a stronger variant of Conjecture [L4] replacing ¢ by fg and
O (II;) o7y by O(II}) o (F3, 75, ..., T5) (see [Zab18b], [Zab18a] where such a possi-
bility is mentioned). However one has to be careful with defining a “multivariable”
functor V' in that context (there is a tentative definition in [Zab18b] when K = Q,
generalizing (1)), but see Remark B2Tl when n = 2 and K # Q,).
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1.3. RESULTS 7

If a representation IT; as in Conjecture [[4] exists, we do hope that it will realize
a mod p local Langlands correspondence for GL,,(K).

1.3. Results

Let us now describe our main results when n = 2 and K = Q,s is unramified.
For a finite place w of F' we denote by RED the (unrestricted) framed deformation
ring of 75 & TlGal(Fo/Fy) OVer W(F). We let Jx C Gal(Q,/K) be the inertia
subgroup and wys for f' € {f,2f} be Serre’s fundamental character of level f/. We
make the following extra assumptions on F, H, 7 and U" =[], 20 Uw (recall we
assumed p inert in F'T for simplicity):

(i) F/F* is unramified at all finite places of F';
(ii) H is quasi-split at all finite places of F'*;
ili) T|gaF, r(w1)) i adequate ([TholT, Def.2.20]);
)
)
)

—~
—

(iv
(v

(vi

T is unramified if W|p+ is inert in F
R% is formally smooth over W(F) if 7 is ramified and @|p+ # v;
To5l1, 1s, up to twist, of one of the following forms:

(ro+1)+-4p" M (rpo1+1)
Tolre = (wf °].

0 1
T I (T
_ N wéfOJrl)Jr +p (ry—1+1) 0
TU|IK - p? (same) |
0 Wop

where the r; satisfy the following bounds:

(12) max{12,2f — 1} <r; < p—max{15,2f +2} if j > 0 or 73 is reducible,
max{13,2f} <rg <p-—max{14,2f + 1} if 75 is irreducible;

(vii) U, is maximal hyperspecial in H(F,) if w is inert in F.
(We also need to fix a place v; which splits in F', where nothing ramifies and U,

is contained in the Iwahori subgroup at v, we forget that here along with the set
¥ of bad places and the definition of the ideal m.)

THEOREM 1.7 (Theorem [BI02). Assume n = 2, K/Q, unramified, and the
above conditions (i)—(vii). Then Conjecture holds.

We sketch the proof of Theorem [l We denote by I; the pro-p Iwahori sub-
group in GLy(Ok) and set

_ def _ def

p=T75(1) 1= SU"F)m].
Note that the central character of II is det(p)w™! (Lemma E.I1). There are two
main steps in the proof which involve quite different arguments:
(i) one proves a Gal(Q,/Qy)-equivariant injection (ind%Qpﬁ)@d — V(II);
(ii) one proves dimg V (II) < 2/d (= dimm(ind?}(@pﬁ)@d).
We first sketch the proof of (i). Arguing as in the proof of |[BHHT23,
Prop.8.2.6], there is an integer d > 1 and a GLy (O ) K *-equivariant isomorphism

5 = Dy(p)®4, where Dy(p) is defined as in [BP12, §13] (see Corollary [3.95)).

Taking into account the action of (g (1)) on IT't C II%1, one can promote this iso-

morphism to an isomorphism of diagrams:
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8 1. INTRODUCTION

THEOREM 1.8 ([DL21, Thm.1.3] when d = 1, Theorem B.93] when d > 1).
There is a diagram D(p) = (D1(p) — Do(p)) only depending on p such that one
has an isomorphism of diagrams:

D(p)®? = (Tl — X)),

Theorem [[F can actually be made stronger, i.e. one can show that certain
constants v; € F* associated to the weight cycling on D;(p) = Dy(p)* as in
[Brelll §6] (up to suitable normalization) are as predicted in [Brelll Thm.6.4].
When d = 1, Theorem (and its strengthening) is entirely due to Dotto and Le
(IDL21, Thm.1.3]). When d > 1, we check from their proof that the action of
(96) on II™* = (Dy(p)"1)®? “respects” each copy of Dy(p)"*. Note that Theorem

[L holds under much weaker bounds on the r; than the bounds ([2l), see §34T1
Then item (i) above follows from the following purely local result.

THEOREM 1.9 (Theorem B35). Let m be an (admissible) smooth representation
of GL2(K) over F such that one has an isomorphism of diagrams D(p)®d = (7l —
751). Then one has a Gal(Q,/Q,)-equivariant injection

(ind2%p)® — V().

The proof of Theorem [[9lis a long and technical computation of (¢, I')-modules
that is given in §3.21 It uses the previous computations in [Brell] and the bounds
(C2) (though one can slightly weaken them, see (3.20])).

We now sketch the (longer) proof of (ii). We let Z; be the center of I; (or
of K1) and my, /7, the maximal ideal of the Iwasawa algebra F[I;/Z;]. The main
idea is to focus on the structure of the (algebraic) dual 7V as an F[I;/Z;]-module
and to use the results of [BHH"23|. Recall that the graded ring gr(F[/;/Z1])
for the my, /7 -adic filtration (we use the normalization of [LvO96l §I.2.3]) is not

commutative, but contains a regular sequence of central elements (ho,...,hr_1)

such that R < gr(F[11/Z1])/(ho, - . ., hy_1) is a commutative polynomial algebra

in 2f variables Fly;, z;,0 < i < f — 1] (see BHH" 23| §5.3] and (3)), (317)). We

def

let J = (yizi, hi,0 <i < f—1) (an ideal of gr(F[I;/Z1])) and define
(1.3) R gr(F[L/Z1])/J = Flys, 2,0 <i < f —1]/(:2,0 < i < f —1).
Then po & (2;,0 < i < f —1) is one of the 2/ minimal prime ideals of R. If N
is any finite type gr(F[/1/Z1])-module killed by a power of J, one can define its
multiplicity my,(N) € Z>¢ at po, see [B.23).

For 7 a smooth representation of GLy(K) over F with a central character, we
endow 7" with the my, /z, -adic filtration and we let gr(7") be the associated graded
gr(F[1,/Z,])-module.

THEOREM 1.10 (Theorem B.69). Let w be an (admissible) smooth representa-
tion of GLa(K) over F satisfying the following two properties:
(i) there is a GLa(Ox)K* -equivariant isomorphism Dg(p)®¢ = 7K1,
(ii) for any character x : I — F* appearing in w[my, ;7] there is an equality
of multiplicities

[r[m7, /2, x] = [wlm, 2, < X,

Then gr(m") is killed by J and one has my, (gr(7")) < 2/d.
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1.3. RESULTS 9

By the proof of [BHH™23| Cor.5.3.5], property (ii) in Theorem [[L.I0] implies
that gr(mV) is killed by J. By an explicit computation (using both properties (i)
and (ii)), one proves in Theorem B.67] that there is a surjection of R-modules

(@rezR/a(X)® — gr(xY),

where & is a combinatorial finite set associated to p (in bijection with the set of x
appearing in w[my, 7 |, see §8.3.1)) and the a(A) are explicit ideals of R containing
the image of J (see Definition B.57). Then Theorem [[.T0l follows from the equality
My, (Ore 2 R/a(N)) = 2/ which is an easy computation.

Arguing as in [BHHT™23|, the representation I satisfies all assumptions of
Theorem [[LT0] see Corollary and Theorem Hence the upper bound in
item (ii) below Theorem [I7 follows from Theorem [[T0] combined with the next
result:

THEOREM 1.11 (Corollary B34)). Let w be an admissible smooth representation
of GL2(K) over F with a central character such that gr(nV) is killed by some power
of J. Then one has dimg V(1) < my, (gr(7Y)).

We prove Theorem [[LTT] by first associating to 7 an “étale (o, O )-module over
A” (Definition [B23]). This is the “multivariable (p,T')-module” mentioned at the
end of .11 Though one could probably give a more direct proof without explicitly
introducing them, these étale (p, Ok )-modules are important for our finite length
results below and are likely to play a role later, so we describe them now.

We start with the ring A. Let F[Ny] = F[Ok] be the Iwasawa algebra of the
unipotent radical Ny of B(Ok). Then F[No] = F[Yp, ..., Ys_1], where the Y; are
eigenvectors for the action of the finite torus on F[Ny] (see (3I)). Let S be the
multiplicative system in F[Ny] generated by the Y;. The filtration on F[Ny] by
powers of its maximal ideal my, naturally extends to a filtration on the localized
ring F[Ny] s and we define A to be the completion of F[Ny]s (where F[Ny]s denotes
the localization of F[Ny] at S) for this filtration ([LvO96l, §1.3.4]). The ring A is not
local, but it is a regular noetherian domain (Corollary B2]) and a complete filtered
ring in the sense of [LvO96] §I.3.3] with associated graded ring gr(A) = gr(F[No]s)
(see Remark B3[(iii) for a concrete description of A). Most importantly, the natural
action of O on F[Ny] = F[Ok] by multiplication on Ok extends by continuity
to A (Lemma B4) and any ideal of A preserved by Oj; is either 0 or A (Corollary

B.17).

Let 7 be an admissible smooth representation of GLy(K') over F with a central
character and recall that 7" is endowed with the my, /z,-adic filtration (which, in
general, strictly contains the mpy,-adic filtration). We endow

(WV)S déf ]F[[No]]s ®]F[INO]] 7Tv

with the tensor product filtration and define D4 (w) as the completion of (7V)s.
Then Dy () is a complete filtered A-module such that gr(Da(w)) = gr((7V)s)
(Lemma [3I)). The action of Oj on 7" extends by continuity to D4(7), as well as
the map

bir Y, feo o) (vem s fE@) = 1((39)0))
(Lemma B.T4]). The latter can be linearized into an A-linear morphism

B:Da(r) — A®gp.a Da(r),
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10 1. INTRODUCTION

where ¢ is a Frobenius endomorphism on the characteristic p ring A (see (3.10) for
the definition of 8, and §3.1.1] for the definition of ¢ on A).

We let C be the abelian category of admissible smooth representations 7 with a
central character such that gr((7")g) is a finite type gr(F[Ny]s)-module. Tt follows
from (I3) that

(er(F[L/Z:0)/T)[(yo - yr—1) "1 = Flyo, - yr—1][(yo - - yr—1) '] = gr(F[No]s)
which easily implies that, if gr(7") is killed by a power of J, then 7 is in C (Propo-
sition B20). In particular the representation I is in C. Note that any finite length
admissible smooth representation 7 of GL2(Q)) over F with a central character is
such that gr(n") is killed by a power of J (Corollary B.77)), hence is in C.

For 7 in C, by general results of [Lyu97], there exists a largest quotient D 4 ()
of D4(n) such that the map § induces an isomorphism B¢ : Da(m) = A ®4 4
Da(m)¢ (see the beginning of §3.1.2). We let ¢ : D(m)* — Da(m) such that
Id®p = (8%)~!. Then D(m)® equipped with ¢ and the induced action of O} is
our étale (¢, O )-module over A associated to 7 in C.

THEOREM 1.12 (Proposition [BI2] Corollary BI8  Theorem [B25]
and Corollary B34).
(i) If 7 is in C, then Da(w) and Da(7) are finite projective A-modules and
rka(Da(m)*) < myp, (gr(7")).
(i) The (contravariant) functors m — Da(w) and m — D a(7)% are exact on
the abelian category C.

One key ingredient in the proof of Theorem (cf. the proof of Proposition
[BR) is that if the annihilator of an A-module endowed with an A-semilinear O -
action is nonzero, then this annihilator is A (since there are no proper nonzero
ideals of A which are preserved by O, see above) and hence the A-module must
be 0.

For a smooth representation 7w of GLy(K) over F such that dimp V(7) < 400,
we denote by DY () the unique étale (¢, I")-module over F((X)) such that V(r) =
VY(D¢(m)) @0 (see (LI)). We denote by tr : A — F(X)) the ring morphism
induced by the trace tr: F[No] — F[Z,] = F[X].

THEOREM 1.13 (Theorem B29)). If 7 is in C, then we have an isomorphism of
étale (p,T)-modules over F(X)):

Da(m)* @4 F(X)) — D¢ ().

In particular, dimg V(1) = rka(Da(7)*) < 400 and the functor m — V(x) in
(1) is exact on the category C.

The proof essentially follows by a careful unravelling of all the definitions and
constructions involved. The last statement follows from the first and from Theorem

Theorem [[13] and Theorem [[L12)(i) imply in particular the bound on V(r) in
Theorem [L.T1], which finally proves Theorem [I.7l

We see that the multivariable (p, O})-module D4 (m)¢" plays an important
role in the proof of Theorem [[.TIl One natural question therefore is to understand
more the internal structure of D4 (I1)® (at least conjecturally): does D4 (I1)* only
depend on p? Does it determine p? We plan to come back to these questions, as
well as generalizations in higher dimension, in future work.
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1.3. RESULTS 11

The modules D4 (I1)¢* and DY (II) are also crucial tools in the proof of our
finite length results on the representation II which provide evidence to Conjecture
and Conjecture [[.4 and that we describe now.

THEOREM 1.14 (Theorem B.I04). Assume moreover d = 1, i.e. [IK1 = Dy (p)
(the so-called minimal case). Then the GLo(K)-representation II is generated by
its GLo(Ox)-socle, in particular is of finite type.

Note that the last finiteness assertion in Theorem [[LI4] (with II*! instead of
the GL2(Ofk)-socle) was known for 7 non-semisimple (and sufficiently generic) by
[HW22, Thm.1.6], but the proof there doesn’t extend to the semisimple case.

We sketch the proof of Theorem [[[T4l Let II' C II be a nonzero subrepre-
sentation and IT” % II/II'. As gr(I1V) and hence its quotient gr(II'V) are killed
by J, the representations II, I, TI" are all in C, thus Theorem [[.T2l(i) and The-
orem imply dimg V(II') < my, (gr(I"Y)) and dimg V(ITI”) < my, (gr(I1”V)).
Since V(II") = V(II)/V(II') by the last statement in Theorem [[I3] and since
my, is an additive function by Lemma (and Definition B79), we deduce
dimg V(II') = my, (gr(I'V)) and dimg V (II") = my,, (gr(II”V)) as we have seen that
dimp V (II) = my, (gr(I1V)) (= 2/). On the other hand, by computations analogous
to the ones used in the proofs of Theorem [[L9 and Theorem [[.I0, we also have
inequalities

Mypg (gr(H/V)) < lg(SOCGLz(OK)(HI)) < dimg V(H/)
and thus we deduce
(1.4) My, (gr(IT")) = lg(socgr, (0, (IT')) = dimg V/(IT') # 0.

Now take II' to be the nonzero subrepresentation generated over GLy(K) by the
GLy(Ok)-socle of TI. We wish to prove II” = 0. As

1g(s0caLy(0,0) (1) = 1g(s0cGLy (0, (1) = 27 = dimg V(IT)
we already have by ([L4]) and the exactness of V' that
(1.5) My, (gr(II”V)) = dimg V(II") = 0.
To deduce II” = 0 from (L3), we need the following key new ingredient: II is
essentially self-dual of grade (or codimension) 2f, i.e. ExtﬁF[[I1 J74] (IIY,F[11/Z1]) =
0 if j < 2f and there is a GL2(K)-equivariant isomorphism

(1.6) Extil z (1 FIL/Z1]) =11V @ (det(p)w ),

where Exté{ll/zlﬂ(HV,F[[Il/Zl]]) is endowed with the action of GLo(K) defined
by Kohlhaase in [Kohl?7, Prop.3.2]. This follows by the same argument as in

[HW22, Thm.8.2] (using Remark BI0T)). We then define II as the admissible
smooth representation of GLy(K') over F such that

Y @ (det (p)o ™) =t ( Extzly, ) (1, FIL/Z1]) > Bxti, 0 (07, FIL/Z4) ),

and by (L0 II is a subrepresentation of II. By (CH) and general results on
Ext) (=, A) for Auslander regular rings A, "V C TIY is also of grade 2f if it is
nonzero, and hence EXt?F{Il/Zl]](HHV’F[[Il/Zl]]) is nonzero if and only if II” # 0.
From the short exact sequence

(1.7)

0— 11V ®(det(p)w ') — Ext2/

F[I./Z:1] (H//va F[[Il/Zl]]) _>EXt2f+1 (H/va }F[[Il/Zl]])

F[I./Z1]
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12 1. INTRODUCTION

and the fact that the last Ext?/*! has grade > 2f + 1, we finally obtain:
(1.8) I is nonzero if and only if II” is nonzero.
We now use the following general theorem.

THEOREM 1.15 (Theorem B.83). Let m be an admissible smooth representation
of GL2(K) over F with a central character such that gr(w") is killed by a power of J.
Then  the  gr(F[11/Z1])-module  (for the wy, 7z -adic  filtration  on

Extil, (7" FIL/Z1])):

o (Ext2fy, 7 (V. FIL/Z10) )

is also finitely generated and annihilated by a power of J, and we have

My, (gr(m")) = my, (gr (EXt;f[ch/Zﬂ] (Wv,]F[[Il/Zl]]))).

From the injection in (L) and from Theorem [L.IH applied to m = II” we have

My, (gr(II1V)) < my, (gr(II”Y)), hence we obtain

mip, (gr(I1Y)) = mp, (gr(11"V)) "= 0.
This implies IT = 0 by (4) (applied to the subrepresentation II' = II) and thus
IT"” = 0 by (L), finishing the proof of Theorem [LI4l

The following corollary immediately follows from Theorem [T4land from [BP12]
Thm.19.10(i)].

L=

COROLLARY 1.16 (Theorem BI04). Assume moreover d =1 and p irreducible.
Then the GLo(K)-representation 11 is irreducible and is a supersingular represen-
tation.

When p is reducible (split), we can prove the following result.

THEOREM 1.17 (Theorem BI05)). Assume moreover d =1 and p reducible, i.e.

p= (%1 )?2) Then one has

= Indg%;(()K)(Xl @xw Holl'® Indgl(f(()K)(XQ ®xiw ),
where I is generated by its GLa(Of)-socle and IV is essentially self-dual of grade
2f, i.e. satisfies ([L6Bl). Moreover, when f = 2, I’ is irreducible and supersingular
(and hence 11 is semisimple).

The fact that the two principal series in Theorem [[LI7] occur as subobjects
of II was already known (and is not difficult). To prove that they also occur as
quotients (and that the obvious composition is the identity), we again crucially use
the essential self-duality (L@). The rest of the statement follows from Theorem
[LI4 and [BP12, Thm.19.10(ii)].

The following last corollary sums up the above results.

COROLLARY 1.18 (Theorem BI06). Assume (i) to (vii) as at the beginning of
4.3 and assume d = 1 as in Theorem [L14l Then Conjecture [L4l holds for n = 2
and p irreducible, or for n = 2, K quadratic and p semisimple.

Note finally that when f = 2, p is non-semisimple (sufficiently generic) and
d =1, Conjecture [[2] at least is known and follows from [HW22 Thm.1.7].
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1.4. Notation

We finish this introduction with some very general notation (many more will
be defined in the text).

Throughout the text, we fix @p an algebraic closure of Q, and K an arbitrary
finite extension of Q, in Q, with residue field Fy, ¢ = p/ (f € Z>1). The field K is
unramified from §22on. We also fix a finite extension E of Q,,, with ring of integers
Og, uniformizer wg and residue field FF, and we assume that F contains [F,. The
finite field F is the main coeflicient field in this work. We denote by ¢ the p-adic
cyclotomic character of Gal(Q,/Q,) and by w its reduction mod p. We normalize
Hodge—Tate weights so that € has Hodge—Tate weight 1 at each embedding K — FE.
We normalize local class field theory so that uniformizers correspond to geometric
Frobeniuses.

If H is any split connected reductive algebraic group, we denote by Zg the
center of H and by Ty a split maximal torus. If Py is a parabolic subgroup of
H containing Tp, we denote by Mp,, its Levi subgroup containing Ty, Np, its
unipotent radical and Pj; its opposite parabolic subgroup with respect to Tx (so
Py N PI; e MH).

We let n > 2 be an integer and denote by G the algebraic group GL,, over Z.
The integer n is arbitrary in §2 and is 2 in §3l

Irreducible for a representation always means absolutely irreducible.

Finally, though we mainly work with the group GL,,, several proofs in §2can be
extended more or less verbatim to a split connected reductive algebraic group over
Z with connected center, and §2.1.4] deals with possibly nonsplit reductive groups.
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CHAPTER 2

Local-global compatibility conjectures

We state local-global compatibility conjectures (ConjectureZ9], ConjectureZ.19]
and Conjecture [2.1]) which “functorially” relate Hecke-isotypic components with
their action of GL,,(K) in spaces of mod p automorphic forms to representations
of Gal(Q,/Q,). Conjecture 2] assumes K is unramified but is much stronger and
more precise than ConjectureZ9 and ConjectureZ.19 as it predicts the number, po-
sition and form of the irreducible constituents of these Hecke-isotypic components,
as well as their contribution on the Galois side.

Throughout this chapter, we let T C G = GL,, the diagonal torus over Z and
X(T) the Z-module Homg, (T, Gy,). As usual, we identify X (T') with @7, Ze; via
e; = (diag(z1, ..., 2,) = ;) and define (, ) : X(T) x X(T) = Z, {(e;,¢;) < 8,
which we extend by Q-bilinearity to X (T") ®z Q. This provides an isomorphism of
Z-modules X (T') = Homy (X (T),Z) = Homg, (G, T') given by

(2.1) e —> e} o (z — diag(1,...,1,2,1,...,1)), i€ {l,...,n}.
——

i—1

We denote by R = {e; —e; : 1 <i#j<n} C X(T) the roots of (G,T), by BC G
the Borel subgroup (over Z) of upper-triangular matrices and by N the unipotent
radical of B, so that the positive roots are Rt = {e; —e; : 1 <i < j <n} C R and
the simple roots are S = {e;—e;11: 1 <i<n—1} C RT. An element of X (T)®7Q
is dominant if (A\,e; —e;41) > 0forall i € {1,...,n—1}. If \,p € X(T) ®z Q,
we write A < pif u— X € Z;:ll Q>o(e; —€iq1). If X = Z?;ll ni(e; — ejyq) for
some n; € Q, its support is by definition the set of simple roots e; — e;41 such that
n; # 0. Finally, we denote by W 2 S,, the Weyl group of (G, T'), which acts on the

left on X (T) by w(A)(t) = A(w = tw) for A € X(T) and ¢ € T.
If P is a standard parabolic subgroup of G (that is, containing B), we denote
by S(P) C S the subset of simple roots of Mp, R(P)* C R™ the positive roots of

Mp (generated by S(P)) and W(P) C W its Weyl group.

2.1. Weak local-global compatibility conjecture

We state our first local-global compatibility conjecture (see Conjecture and
its generalization Conjecture 2.T9) which relate Hecke-isotypic components with
their action of GL,(K) to representations of Gal(Q,/Q,) without taking care of
their irreducible constituents.

2.1.1. The functors ngH and V. We review the simple generalization of
Colmez’s functor defined in [Brel5].

Throughout this chapter, we fix a connected reductive algebraic group H which
is split over K with a connected center, By C H a Borel subgroup and Ty C By

15
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16 2. LOCAL-GLOBAL COMPATIBILITY CONJECTURES

a split maximal torus in By. We let (X (Tx), Ry, XV(Tx), RY;) be the associated
root datum, R}; € X(Ty) the (positive) roots of By, Sy C Rj; the simple roots
and SY; the associated simple coroots.

We need to recall some notation of [Brel5| (to which we refer the reader for
any further details). For a € R};, we let N, C Ny be the associated (commutative)
root subgroup, where Ny Y B, is the unipotent radical of By. For a € Sy, we
fix an isomorphism ¢, : N, =+ G, of algebraic groups over K such that

(2.2) La(tnat™) = a(t)ia(ne) Yt €Ty, ¥ ns € N,.
We fix an open compact subgroup Ny C Ny (K) such that HaeR; N, & Ng

induces a bijection HaeRg No(K) N Ny = Ny for any order on the o € R}; and
such that ¢, induces isomorphisms for o € Sg:

N (K)N Ny =5 Ok C K = Go(K).

Yaesy te
We denote by ¢ the composite Ng — [[,cg, Na KT G (a morphism of
algebraic groups over K). The morphism ¢ thus induces a group morphism still
denoted ¢ : Ny — Ok and we define

Tr
(2.3) Ny & Ker(Ny 5 0k 257 Q)

which is a normal open compact subgroup of Ny. We fix an isomorphism of Z,-
modules ¢ : Trg/q, (Ok) = Zy. When Ny # 0, i.e. when H # Ty, this fixes an

isomorphism

TrK/Qp of o
(24) No/N1 L) TrK/Qp(OK) ; Zp.

We fix fundamental coweights (Agv)acs;, (which exist since H has a connected
center) and set

def

(2.5) €r = D Aav € Homey(Gm, Trr) = XY (Th).

aVvesy
Note that & (x)N1&€g(z~1) C Ny for any x € Z,\{0}. Let F[X][F] be the non-
commutative polynomial ring in F over the ring of formal power series F[X] such
that F.S(X) = S(X?)F.
For 7 a smooth representation of By (K) over F, we endow the invariant sub-
space 7Vt C 7 with a structure of an F[X][F]-module as follows:

o

(i) F[X] = F[Z,] acts via F[No/N:] = F[Z,] (here X & [1] — 1);

(ii) F acts via the “Hecke” action
Fv) < Z nmég(pv € 7™M for ver™M.
n1€N1/€u (p)N1€u(p~1)
Note that 71 is a torsion F[X]-module (but not a torsion F[F]-module in general).
We also endow 7' with an action of Z) by making x € Z) act by {g(x). This

action commutes with F and satisfies g (z) o (1+ X) = (14 X)® o &x(x).
As in [Brel5], we denote by ®T* the category of finite-dimensional étale (¢, T')-

modules over F[X][X~!] = F(X)) and by <I/>T]‘Fet the corresponding category of
(pseudocompact) pro-objects, see [Brelsl §2| for more details. Both <I>I’H;ét and
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2.1. WEAK LOCAL-GLOBAL COMPATIBILITY CONJECTURE 17

ﬁ?;t are abelian categories. Let M C 7™ be a finite type F[X][F]-submodule
which is Z -stable and assume that M is admissible as an F[X]-module, that is,
M[X] % {m € M : Xm = 0} is finite-dimensional over F. Let M"Y % Homg (M, F)
(algebraic F-linear dual) which is also an F[X]-module (but not a torsion F[X]-
module in general). Then by a key result of Colmez M"Y [X ~1] can be endowed with
the structure of an object of ®L* ([Coll0], see also [Brel5, Lemma 2.6]). More
precisely X acts on f € MY by (Xf)(m) < f(Xm) (m € M), z € Z, acts by

(zf)(m) < f(z~'m), and the operator ¢ is defined as follows. Take the F-lincar
dual of Id®F : F[X] ®, rjx) M — M, compose withl]

(FIX] @y pixy M) — FIX] @y rpx7 MY
p—1 1
2.6 — Y 14+ X))@ f(—ae @
(2.6) ! ; ) o (g )
and invert X: the resulting morphism MY [X '] — F[X] @, rpx] MY [X '] turns
out to be an F((X))-linear isomorphism whose inverse is by definition Id ®¢.

When H # Ty we then define
(2.7) DY (m) = lim MY [X 7Y,

M
where the projective limit is taken over the finite type F[X][F]-submodules M of
7M1 (for the preorder defined by inclusion) which are admissible as F[X]-modules
and invariant under the action of Z);. When H = T}, one has to replace M VX
by F((X)) ®@r M"Y, we refer the reader to [Brel5l §3]. The functor Dy, is right
exact contravariant from the category of smooth representations of By (K) over F
to the category ﬁ‘;ﬁ and, up to isomorphism, only depends on the choice of the

. 6t

cocharacter {i. Moreover, if DY (7) turns out to be in ®T;* (and not just @1}; ),
then DY, () is exactly the maximal étale (¢, I')-module which occurs as a quotient
of (7™M )V[X 1], see [Brel5, Rem.5.6(iii)].

REMARK 2.1. If H = Gy, = Ty, then by definition £y = 1. It follows, for
dimp 7 = 1, that Dy, (7) is always the trivial (rank one) (¢, T')-module (even if 7
is a nontrivial character).

Let us now assume that the dual group H of H also has a connected center, and
let us fix Oy € X (Ty) such that §goa” =1dg,, for all @ € Sy ([BH15, Prop.2.1.1],
such an element is called a twisting element). In §2T.4below, it is possible to avoid
this assumption using C-parameters, but since our main aim is G = GL,, in the

rest of the paper, there is no harm in making this assumption.
Consider the smooth character

K* —F*, v— w(0r(&n(z)))
and denote by dy the restriction of this character to Q) C K. Seeing wofly o0&y

as a character of Gal(Q,/K) via local class field theory for K (as normalized in §J),
and remembering that the restriction from K* to Q) corresponds via local class

1The formula for this isomorphism given in the proof of [Bre15] Lemma 2.6] is actually wrong,

the present formula is the correct one. Note that it is also the same as f — Zf;ol ﬁ R f((1+
X)Y®:).
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18 2. LOCAL-GLOBAL COMPATIBILITY CONJECTURES

field theory to the composition with the transfer Gal(Q,/Q,)** — Gal(Q,/K)*",
we see that
O = ind?}Q”(w o0y oly),

where ind?}(@p is the tensor induction from Gal(Q,/K) to Gal(Q,/Q,) (see the end
of 212 below).

Denote by Repy the abelian category of continuous linear representations of
Gal(@p /Q,) on finite-dimensional F-vector spaces (equipped with the discrete topol-
ogy) and IndRepy the corresponding category of ind-objects, i.e. the category of
filtered direct limits of objects of Repy. Recall that there is a covariant equivalence
of categories V : ®L* = Repy (see [Fon90, Thm.A.3.4.3] where this functor is
denoted V¢) compatible with tensor products and duals on both sides. We denote
by VV the dual of V (i.e. the dual Galois representation). When H # Tp, we
then define the covariant functor Vg from the category of smooth representations
of By (K) over F to the category IndRepy by

(2.8) Vi (r) < lim (VY(MY[X 7)) @ 04,

M
where the inductive limit is taken over the finite type F[X][F]-submodules of 7Vt
which are admissible as F[X]-modules and preserved by Z). Likewise, when H =
Ty, with F((X)) @r MV instead of MY [X 1] (note that § is then 1).

LEMMA 2.2. The functor Vi is left exact.

PRrOOF. We give the proof for H # Ty, leaving the case H = Ty to the reader.
Let 0 — 7 — 7 3 7 — 0 be an exact sequence of smooth By (K )-representa-
tions over IF, which gives a short exact sequence 0 — 7’ Ny NS N
M is a finite type F[X][F]-submodule of 7™¥* which is admissible as an F[X]-
module and stable under the action of Z,, then so are M N 7™M and s(M) (see e.g.
[Brelsl Lemma 2.1(i)]). The functor M — VV(MY[X1]) being covariant exact
(since both M — MV[X 1] and VV are contravariant exact), each such M C 7™
gives rise to a short exact sequence in Repy:

0— VY((Mna™VIXT) = VY(MV[X ) = VY (s(M)V[XY]) = 0.

Twisting by g and taking the inductive limit over such M, we obtain a short exact

sequence 0 — Vg (') = Vg (7) = lim V" (s(M)¥[X'])®6y — 0 in IndRepy. But
M

we have an injection

lim VY (s(M)"[X]) ® 0 <= Var(x")

M
in IndRepy since all transitions maps in the inductive limits are injective, therefore
we end up with an exact sequence 0 — Vg (7') = Vi (r) = Vi (x"). O

EXAMPLE 2.3. For H = G Xz K = GLy (so H = lfl)7 we take in the sequel
(writing just G as a subscript instead of G xz K)

éa(x) et diag(z"~1,...,z,1) and 9g(diag(m1, ... ,xn)) = ac?_lasg_Q L1,

so that §g = ind}e}(@p(w(”_1)2+(”_2)2+"'+4+1). (In fact, since the tensor induction of
a character is given by composition with the transfer map [Col89], by local class
field theory we see that dg = wK:l(n=1)*+(n=2)*+-+4+1)
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2.1. WEAK LOCAL-GLOBAL COMPATIBILITY CONJECTURE 19

REMARK 2.4.

(i) The covariant functor Vi depends on the choices of £g and ép (though we
don’t include it in the notation). The reader may wonder why we need to assume
the existence of 8y and normalize Vg using the strange twist §y above. This
comes from the local-global compatibility: it turns out that this normalization is
essentially what is going on in spaces of mod p automorphic forms (see [BH15. §4],
[Brel5, Cor.9.8], Example and §§2.1.3] below). This normalization is also
natural if one uses C-parameters, see §2.1.41

(ii) For H as in Example 23] 7 a smooth representation of B(K) over F and
X : K — F* a smooth character, one checks that Vg (7 ® (x o det)) = Vg (m) ® 4,
where § is the continuous character of Gal(@p /Q,) associated via local class field
theory to = + x(det(éa(w))) for = € Q). An explicit computation gives § =

n(n—1) ~ ®
(Xl ) ™7 2 ind g %(x

n(n{n )

When restricted to the abelian category of finite length admissible smooth
representations of H(K) over F with all irreducible constituents isomorphic to irre-
ducible constituents of principal series, it is proven in [Brel5l §9] that the functors
D%/H and Vg are exact. It seems reasonable to us, and also consistent with the
conjectural formalism developed in the sequel (see e.g. Remark 2:82(iii)), to hope
that there exists a suitable abelian category of admissible smooth representations
of H(K) over F containing the previous abelian category and the representations
“coming from the global theory” on which the functors Dg/H and Vi are still exact.
See for instance the category C in §3.1.2l when H = GLg,k and K is unramified.

We now recall the behaviour of the functor Vg with respect to parabolic in-
duction.

We assume for simplicity H = G xz K = GL,,/x and let {g, 0 as in Example
We let P be a standard parabolic subgroup of G xz K and write Mp = H?:l M;
with M; = GLni/K. We define Vj, as in (228)) using nrp et ¢a and Oy, def ]
(to define DY, and dar,). We write Enrp, = B &0 in XV(T) = @, XY(T)

SMp
and Oy, = @ 100, in X(T) = @ X(T;), where T; is the diagonal torus in

M;, and let Vi, = Vau,, but defined with €nz,; and 6y, ;. Finally we define

Vi, def VL, with €7, and 6y, as in Example 23] replacing n by n;, and we recall
that &ar,, 9Mi and &y, are trivial characters if n; = 1.

If 7p is a smooth representation of Mp(K) over F, that we see as a repre-
sentation of P~ (K) via P~ (K) — Mp(K), we define the usual smooth parabolic
induction

Indg(}?}){) WP(iéf{f : G(K) — mwp loc. COHSt.,f(pl’):p(f(x))ap € P_(K), T e WP}?

with G(K) acting (smoothly) on the left by (gf)(¢") = f(d'g).

LEMMA 2.5. Let wp be a smooth representation of Mp(K) over F of the form
p =T Q-+ ® mq, where the m; are smooth representations of M;(K) over F.
Assume that the m; have central characters Z(m;) : K* — F* and that Vi, (7p) =

®g:1 Vvp,i(mi). Then we have an isomorphism in IndRepy (using implicitly local
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20 2. LOCAL-GLOBAL COMPATIBILITY CONJECTURES

class field theory for Gal(Q,/Qy)):
d .
VG<IndIGD(f((2() WP) ® 65t = ® (VM 7) @ (Z(m)"Zim 1) | 6;5).

PROOF. By [BrelB, Thm.6.1] we have Vi (Indg ")) 7p) 2 Vi, (7p) so that
from the assumption (all isomorphisms are in IndRepF):

(2.9) Vo (nd5 " mp) ®VMP7 ).

An easy computation yields in M;(K) for z € K*:
Eatpi(x) = ding(z" S5 a0 ey ()

which implies by [Brel5, Rem.4.3] that
(2.10) Vitp,i(m:) ® O3, 5 = Vi, (m3) ® (Z(my)" " 2=5=179) oz Oni

where 6]\/[}:,,7: déf ind?}Q”(woeMp,iogMP)i) (and recall VML (7T1) =1 1fnz = dlm[g‘ T, = 1,
see Remark [2T]). Since ég = Hle SMp i, twisting 29) by 55" gives the result by

2.10). O

EXAMPLE 2.6. An enlightening and important example is the case of principal

series Ind o (;{)(Xl ® -+ ® Xn), where the x; : K* — F* are smooth characters.

The assumptlons of Lemma are then trivially satisfied and thus we have
Ve (mdg 0 0 ® - @ xn)) ® 05" = (0N 2+ xn1) gy
In particular we deduce (using Example for é¢) that

Vo (Ind5 0 (aw™ "D @ xaw™ "D @ @ xn)) 2 (0N 2 Xn 1)l

. ®
ind 2 (B2 X ),

Il

where x7 'x372---x,_1 on the last line is seen as a character of Gal(Q,/K) via

local class field theory for K.

REMARK  2.7. Using [Brel5, Prop.5.5] the assumptions of
Lemma are satisfied when all finite type F[X][F]-submodules of 7' for i €
{1,...,d} are automatically admissible as F[ X ]-modules. This happens for instance
if the m; are principal series or (when K = Q,) are finite length representations of
GL2(Q,) with a central character, but is not known otherwise. Contrary to what
is stated in [Brel5l Rem.5.6(ii)], we currently do not have a proof of an isomor-
phism V., (7mp) = ®§l=1 Vi i(m;) for any smooth representations m;, though we
expect that it will indeed be satisfied for representations “coming from” the global
theory. Note that, in [Zab18bl Prop.3.2], Zabradi does prove a compatibility of
his functor with the tensor product which looks close to the isomorphism above.
However, loc.cit. deals with an ezternal tensor product, whereas we have an inter-
nal tensor product. In particular he has two operators F', one for each factor in
the external tensor product (whereas we consider the resulting diagonal operator),
and his argument doesn’t extend.
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2.1. WEAK LOCAL-GLOBAL COMPATIBILITY CONJECTURE 21

2.1.2. Global setting. We recall our global setting (see e.g. [EGH13|, §7.1] or
[Thol2| §6] or [BH15| §4.1] or many other references) and define the Gal(@p/(@p)-
representation ° (p) for p: Gal(Q,/K) — G(F).

We let F'T be a totally real finite extension of Q with ring of integers O+, F/F*
a totally imaginary quadratic extension with ring of integers O (do not confuse F’
with the operator F' of §2I.11) and c¢ the nontrivial element of Gal(F/F™T). If v
(resp. ©) is a finite place of ' (resp. F'), we let Fi (resp. F;) be the completion
of F* (resp. F) at v (vesp. ©) and Op+ (resp. Or,) the ring of integers of F,"
(resp. Fy). If v splits in F' and o,0¢ are the two places of F' above v, we have
Op+ = Op, ~ Or,., where the last isomorphism is induced by c. We let A%,
(resp. A%;") denote the finite adeles of F* (resp. the finite adeles of F™ outside
v). Finally we always assume that all places of F'T above p split in F.

We let n € Z~1, N a positive integer prime to p and H a connected reductive
algebraic group over Op+[1/N] satisfying the following conditions:

(i) there is an isomorphism ¢ : H Xo_, (1/n] Or[1/N] — G xz Op[1/N];

(i) H X0, [1/N] F7 is an outer form of G xz F+ = GLy/p+;

(iii) H xo,, [1/N) F is isomorphic to U, (R) at all infinite places of F'T.
One can prove that such groups exist (cf. e.g. [EGH13l §7.1.1]). Condition (i)
implies that if v is any finite place of F'* that splits in F' and if ¥|v in F the
isomorphism ¢ induces t; : H(F,}) = GL,(F5) = G(F;) which restricts to an
isomorphism still denoted by ¢ : H(Op+) = GL,(OF,) if v doesn’t divide N.
Condition (ii) implies that co 1z : H(F}) = GL,(Fgs) (resp. co iy : H(Op+) 5
GL,(Op,.) if v doesn’t divide N) is conjugate in GL,, (Fj<) (resp. in GL,,(Op;.)) to
771 0 15e, where 7 is the transpose in GLy,(Fse) (resp. in GL,(OF,.)).

If U is any compact open subgroup of H (A, ) then

def

S(UF) = {f : H(F")\H(AF.)/U — F}

is a finite-dimensional F-vector space since H(F1)\H(A%,)/U is a finite set. Fix
vlp in F* and a compact open subgroup U? of H(A}"), we define

S(U",F) < lim S(U"U,, F),
U,

where U, runs among compact open subgroups of H(Op+). We endow S(U,F)

with a linear left action of H(F;) by (hof)(h) < f(hhy) (hy € H(FF), h €
H(A%,)). Thus, for ¢ dividing v in F, the isomorphism ¢ gives an admissible
smooth action of G(F,') = GL,,(F5) on S(U",F). By what is above, the action of
G(F,) induced by ¢ is the inverse transpose of the one induced by ¢zc.

If U is a compact open subgroup of H(A%,), following [EGH13, §7.1.2] we
say that U is unramified at a finite place v of F'™ which splits in F' and doesn’t
divide N if we have U = U" x H ((’)Fv+)7 where UV is a compact open subgroup of
H(AZ}"). Note that a compact open subgroup of H(A%, ) is unramified at all but
a finite number of finite places of F* which split in F. If U is a compact open
subgroup of H(A%,) and X a finite set of finite places of F'* containing the set of
places of F'™ that split in F' and divide p/N and the set of places of F'™ that split
in F at which U is not unramified, we denote by 7= & O [Tg )] the commutative

polynomial Og-algebra generated by formal variables Tg ) for je{l,...,n}and
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22 2. LOCAL-GLOBAL COMPATIBILITY CONJECTURES

a place of F' lying above a finite place w of F* that splits in F" and doesn’t belong
to X. The algebra 7= acts on S(U,F) by making Tg ) act by the double coset

p {GLn(OFm) <1n_j wwlj) GLH(OFQ)} 7

where wy is a uniformizer in Op,. Explicitly, if we write
GL(Or,) ("7 i1, ) GLa(Ora) = [T (M s, ) GLalOr,),

we have for f € S(U,F) and g € H(A%,):

1000 5 (00 ()

One checks that Tgc) = (T, 757 ) 1T1£~)"_7) on S(U,F). We let T*(U,F) be the im-
age of 7% in Endp, (S(U,F)) (if U’ C U, we thus have S(U,F) C S(U’,F) and
T=U',F) -» T=(U,F)). If S is any 7>-module and I any ideal of 7>, we set in

def

the sequel S[I] = {x € S : Iz = 0}.

We now fix v[p and a compact open subgroup U” of H(A}"). If ¥ is a finite
set of finite places of F'* containing the set of places of F'* that split in F and
divide pN and the set of places of F'+ prime to p that split in F' and at which UvU,
(for any U,,) is not unramified, the algebra 7= acts on S(U*U,,F) (via its quotient
T=(U"U,,F)) for any U, and thus also on S(U",F). This action commutes with
that of H(F,}"). If m® is a maximal ideal of 7> with residue field F, we can define
the localized subspaces S(UU,,F),= and their inductive limit

hIll S(UUUU, F)mz = S(UU, F)mz,
Uy
which inherits an induced (admissible smooth) action of H(F) together with a

commuting action of lim TE(U U,,F)pus. We have
U’[)

S(U°U,,F)m*|C S(U Uy, F)p= C S(U'U,,F)
and thus inclusions of admissible smooth H(F,)-representations over F:
S(U,F)[m*] € S(U”,F)u= € S(UY,TF).

Moreover, as representations of H(F,"), S(UYF),= is a direct summand of S(U",F)
(= the maximal vector subspace on which the elements of m* act nilpotently).

We now go back to the notation of §2.I.01 For A € X(T') a dominant weight
with respect to B, we consider the following algebraic representation of G xzF over
IF:

(2.11) L) < (indF- ) , @2 F = (ind2 ) g,

where ind means the algebraic induction functor of [Jan03] §1.3.3] and the last
equality follows from [Jan03] 11.8.8(1)]. For oo = e; — e;41 € S, we set

def

(212) Ao = €144 ¢€ € X(T),

so that the A\, for @ € S are fundamental weights of G (see e.g. [BH15, §2.1]).
Let p : Gal(Q,/K) — G(F) be a continuous homomorphism, viewing L(A,) as a
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2.1. WEAK LOCAL-GLOBAL COMPATIBILITY CONJECTURE 23

continuous homomorphism
G(F) — Aut (f()\a)(IF))

(where L(\,)(F) is the underlying F-vector space of the algebraic representation
L(Aa)), we define the Galois representations for o € S:

Z(0a)(P) : Gal(@,/K) 2 G(F) “23) Aut (T(ha)(F)).
Recall that L(A,)(p) = Abp if = ¢; — e;11 ([BHIE, Ex.2.1.3]). We let

® T0)@) =@ N7
a€eS i=1

be the tensor product of the representations L(\,)(p) (over F) and define the fol-
lowing finite-dimensional continuous representation of Gal(Q,/Q,) over F:

+® ,_\ def . ®RQ, - —
(2.13) L%(p) = indi® (@ (L) (@) ).
a€sS
where ind?}Q” means the tensor induction from Gal(Q,/K) to Gal(Q,/Q,)
([Col89], [CR81 §13], see also the end of the proof of Lemma 2.77). Note that
there are Gal(Q,/Q,)-equivariant isomorphisms

—® s TRy L D . = (n—
(2.14) L") = L7 ()" = IT%(p) @ ind} " (det(p)~"V)
(recall ind?}Qp(det(ﬁ)_(n_l)) is still one dimensional).

EXAMPLE 2.8. For n = 2, we thus just have ° (p) = ind%@”(ﬁ).

2.1.3. Weak local-global compatibility conjecture. We state our weak
local-global compatibility conjecture (Conjecture Z.9)).
Let 7 : Gal(F/F) — GL,(F) be a continuous representation and 7" its dual.
We assume:
(i) 7 =7 @wl™ (where 7(g) & F(cgc) for g € Gal(F/F));
(ii) 7 is an absolutely irreducible representation of Gal(F/F).
Fix v|p in F*, V¥ C U C H(A}}") compact open subgroups and ¥ a finite set of
finite places of F* containing
(a) the set of places of F* that split in F' and divide pN;
(b) the set of places of F'™ that split in F' at which V" is not unramified;
(c) the set of places of F'* that split in F' at which 7 is ramified.
We associate to 7 and ¥ the maximal ideal m* in 7> with residue field F generated
by wg and all elements

((=1) Norm(@)0-0/21 — o)
J,w

where j € {1,...,n}, w is a place of F' lying above a finite place w of F'* that splits
in F' and doesn’t belong to ¥, X™ —i—Eg)X"_l +-- -+a§g”1)X +af§) is the character-
istic polynomial of 7(Frobg) (an element of F[X], Frobg is a geometric Frobenius
at w) and where ag) is any element in Op lifting Eg). Note that S(V?,F)[m*] # 0
in fact implies assumption (i) above on 7 (though strictly speaking we need (i) to
define m* in 7). Note also that if U is any subgroup of H (A%,) containing V¥
as a normal subgroup, then U naturally acts on S(V?,F) and S(V?,F)[m*].
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For ¢lv in F, we denote by V¢ 3 the functor defined in (2.8) applied to smooth
representations of H(F,") over IF, where we identify H(F,") with GL,,(F;) = G(F5)
via t5. For any finite place w of F, we denote by 73 the restriction of 7 to a
decomposition subgroup at w.

CONJECTURE 2.9. Let 7 : Gal(F/F) — GL,(F) be a continuous representation
that satisfies conditions (i) and (ii) above and fix a place v of FT which divides
p. Assume that there exist compact open subgroups V¥V C U¥ C H(A%Of) with V'
normal in UY, a finite-dimensional representation ¥ of UY/V" over F and a finite
set 3 of finite places of F* as above such that Homy. (o, S(V?,F)[m¥]) # 0. Let
Olv in F. Then there is an integer d € Z~qo depending only on v, UY, V¥, o and
7 such that there is an isomorphism of representations of Gal(@p/(@p) on F:

“(

(2.15) V.o (Homy (6, S(V?, F)[m¥]) @ (w™ "~V odet)) = T~ (75) <.

T
REMARK 2.10.
(i) In the special case o¥ = 1, Conjecture boils down to

Ves(S(UY, F)[m] @ (w1 odet)) = L% (7).

(ii) Conjecture implies that the G(Fj)-representation Homgw (o
S(VV,F)[m*]) determines the Gal(Q,/Q,)-representation ¢ (75). Note that this
doesn’t imply in general that Homg. (0%, S(V?,F)[m*]) determines the Gal(F;/F;)-
representation 75 itself (though this is also expected, see [PQ22] and the references
therein).

(iii) See §§3.21 B4 below for nontrivial evidence on Conjecture when K is
unramified and n = 2.

We now check that, at least when p is odd, F/F* is unramified at finite places
and H xo_, 15 F T is quasi-split at finite places, Conjecture holds for v if and
only if it holds for ©¢ (these extra assumptions come from the use of [Thol2l §6]
in the next lemma).

LEMMA 2.11. Assume p > 2, F/F' unramified at finite places and
H %o, /N F* quasi-split at finite places of FT. Let ©|v in F. Then the action
of the center (F,))* C GL,(F,}) on S(V?,F)[m*] via 15 is given by det(ﬂ;)w%
(via local class field theory for Fb).

PrROOF. We can assume S(VV F)[m*] # 0. The map S(V'U,,Or) —
S(V*U,,F) being surjective for U, small enough (see e.g. [BH15, Lemma 4.4.1]
or [EGH13] §7.1.2]), we have a surjection of smooth H (F))-representations:

(2.16) SV, 0p)ns — SV, F)us

(where S(VVU,,Og), S(VY,Og)ns are defined as S(V'U,,F), S(V,F),» replac-
ing F by Op). By classical local-global compatibility applied to (lg_l} S(U,0 E)) R0g

U
E, see e.g. [EGH13, Thm.7.2.1], we easily deduce with 2I6) that if (F;F)* acts
via 15 on the whole S(V? F)[m¥] (inside S(V?,F)y,=) by a single character, then
this character must be det(F@)wn(nT_l
Let us prove that (F7)* indeed acts by a character. The functor associating to

any local artinian Og-algebra A with residue field F the set of isomorphism classes
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of deformations 74 of T to A such that r§ = rY{ ® e!™" is pro-representable by a
local complete noetherian Og-algebra Ry x of residue field F. When p > 2, F/F*
is unramified at finite places and H xo_, [1/N] F7 is quasi-split at finite places of
F*, it follows from [Thol2, Prop.6.7] that there is a natural such deformation
with values in 7= (VVU,, O)ns for any U, (where T=(VU,, Op)ms is defined as
TE(VUU,,F)us in I replacing F by Of), and hence by universality a continu-
ous morphism of local Og-algebras:

(2.17) Rﬁg — TE(VUUU,OE),.“E.

Likewise, the functor associating to any A as above the set of isomorphism classes of
Gal(Fy/F5)*P-deformations of det(7;) over A is pro-representable by the Iwasawa
algebra Op[Gal(F;/F;)*], and considering det 4 (ralgai#/ry)) for A= Rz s pro-
vides by the universal property again a continuous morphism of local Og-algebras:
(2.18) Op[Gal(F;/F5)™] — Ry x.

Since T=(VVU,, Op)n= acts by a character on S(V°U,,F)[m*] for any U,, so is

the case of Ry x on S(V?,F)m¥] by I7). Using (ZI6), we see that it is enough
to prove that the induced morphism

Ogp[Gal(F3/F5)*] = Rrx = lim 7 (VUy, Op )ms
Uy
gives an action of Gal(F5/F;)*® on S(V?, Op)ys which, when restricted to F* —
Gal(F;/F;)* (via the local reciprocity map), coincides with the action of F; on

S(VY,Op)m> as center of H(F,") = G(F3). We can work in S(VV, Op)n=R®e, E, in
which case this follows from local-global compatibility (as in [EGH13l, Thm.7.2.1])
and from the fact that, by construction of the map (2.I7) (see [Tho12l] §6]) and by
@I8), Gal(F;/F;)* acts on 7" C S(VY,0p)ms @0, E by multiplication by the
character det(rr)|qa 7/ r,), Where 7 is an irreducible H (A%, )-subrepresentation
of (lg_l} S(U,0F)) ®o, E such that 7" occurs in S(VY,0g)m» ®o, E and where
U
7, is its associated (irreducible) p-adic representation of Gal(F/F) ([EGHIL3]
Thm.7.2.1] again). O

Let 7 be a smooth representation of G(K) = GL,(K) over F with central
character Z(m) and denote by 7* the smooth representation of G(K) with the same
underlying vector space as 7w but where g € G(K) acts by 7(g) L.

LEMMA 2.12. There is a Gal(Q,/Qy)-equivariant isomorphism
Ve (%) 2 Ve (m) @ Z(m) " g
where Z(’R’)‘Q; is seen as a character of Gal(Q,/Q,) via local class field theory.

PROOF. We use the notation of LTIl Let wg € W be the element of maximal
length, the isomorphism 7™Vt 5 7woN1wo 4 s v shows that one can compute
Vi () using woNjwo instead of Ny and conjugating everything by wo (e.g. = € Z
acts by wola(z)wo, ete.). Now, it is easy to check that the F-linear isomorphism
()N 5 gwolNiwo gy 1 apgv is compatible with the F[X][F]-module structure on
both sides but where we twist the F[X][F]-action as follows on the right-hand side:
X acts by (14+X)~! =1 and F acts by p~ (=D F, p~ (=1 being here in the center
of G(K). Likewise, it is compatible with the action of Z; but where x € Z acts
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by = (= D¢g(z) on the right-hand side (with 2=~ in the center of G(K)). All
this easily implies the lemma. (Il

LEMMA 2.13. Assume p > 2, F/FT wunramified at finite places and
H xo_.n/n Ft quasi-split at finite places of F*. We have a Gal(Q,/Qy)-equi-
variant isomorphism

V,5e (Homyw (0, S(V, F)[m*]))

—n(n—1)2
~ Vg5 (Homg (0%, S(V?, F) ™)) @ ind 52 (det (7)™ " M=),
ProoOF. This follows from Lemma applied to m = Homgv(c?,

S(V¥,F)[m¥]) together with Lemma [ZTT] recalling that Z(?T)‘Q; , seen as a charac-

ter of Gal(Q,/Q,) via local class field theory, is ind%?p(Z (7)) (where Z(7) is here
seen as a character of Gal(F5/Fj3)). O

PROPOSITION 2.14. Assume p > 2, F/FT unramified at finite places and
H xo_, (1/n] FT quasi-split at finite places of F*. Conjecture holds for v if
and only if it holds for v°.

PROOF. This follows from Lemma T3] together with 7z = 7Y ®@ w!™", (Z14)
and an easy computation. O

2.1.4. A reformulation using C-groups. We show that one can give a
more general and more natural formulation of Conjecture 2.9 (in the special case
of Remark [ZT0(i)) using C-parameters (Conjecture 2.T9]).

We start by some reminders about L-groups and C-groups.

Let k be a field and k5P a separable closure of k. We note I';y & Gal(k®P /).
Let H be a connected reductive group defined over k, let H be its dual group, “H its
L-group and © H its C-group. We refer to [Bor79, §2], [BG14], §§2,5], [GHS18], §9]
and [Zhul §1.1] for more details concerning these L-groups and C-groups. Note
that these two groups can be defined over Z. Their construction depends on the

choice of a pinning (Bu, Th, {Za},es,, ) of Hiser. The dual group H has a natural

pinned structure (Bg,Tq, {7a},es, ) With By a Borel subgroup of ﬁ, Ty C By
a maximal split torus and {7z} g, a pinning of (Bg,Tg) (see [Conl4 §85,6] for
the fact that everything can be defined over Z) on which the group I'y is acting.
Let 1 — G,, — H — H — 1 be the central G,,-extension of H (over k) whose
existence is proved in [BG14, Prop.5.3.1(a)]. The inverse images T and By of Ty
and By in Hyser are respectively a maximal torus and a Borel subgroup of Hpsen.
Moreover, since the above extension is central, there is a unique pinning {7, }
of (Bg,T5) inducing {z}

rise to a pinned dual data (H, Bz, T, {za}

aESy
aesy on (B,T) via the map Hyser — Hysep. This gives

wesy ) With an action of I'y, (trivial on
some open subgroup) and a ['y-equivariant injection (ﬁ, Bg,Tg) — (IAJ,BE,T?I)
such that {za},cg, induces {Za},cg, -

The L-groups and C-groups are then defined as the group schemes

def 73 def =

(2.19) LH=HxI), ©9H<=HxT.
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We have the following simple description of H given in [Zhul §1.1]. Let H2d and T%d

be the quotients of H and Ty by the center of H and let 0ad be the cocharacter of
T%d C H*! defined as the half sum of positive roots of H with respect to (B, Tq)-
The group H?®d acts on H by the adjoint action and, after precomposition with 6,4,
this defines an action, in the category of Z-group schemes, of G,, on H. There is
an isomorphism of Z-group schemes H=~Hx Gy, identifying Bfl with Bg x Gy,
and T?I with Tz % G, = Ty X Gy, We note that, since 6,4 is fixed by the Galois
action, this isomorphism is Galois equivariant. Using this isomorphism, we identify
X(Tf{) with X (T) xZ = X (Ty) x Z. This shows that we have an exact sequence
of Z-group schemes:

1y ~°g 4G, —1.

Let A be a topological Z,-algebra and assume from now on that k is either
a number field or a finite extension of @Q,, so that we have an A-valued p-adic
cyclotomic character. We recall that a morphism p : 'y — LH(A) is called admis-
sible if its composition with the second projection L H(A) — T, is the identity (see
[Bor79, §3]).

DEFINITION 2.15. An L-parameter (resp. C-parameter) of H over A is an
admissible continuous morphism p : Ty, — ZH(A) (resp. p : I'y, — “H(A) such
that d o p is the p-adic cyclotomic character). When A is moreover an algebraically
closed field, we say that two L-parameters (resp. C-parameters) of H over A are

equivalent if they are conjugate by an element of H(A) (resp. H(A)).

REMARK 2.16. Assume A is an algebraically closed field. Each element of H (A)

is the product of an element of ﬁ(A) and an element of the center of H(A). This
can be deduced from [BG14, Prop.5.3.3] or [Zhul (1.2)]. This implies that two
C-parameters of H over A are equivalent if and only if they are conjugate by an
clement of H(A).

For simplicity, we assume from now on that A is moreover an algebraically
closed field. We also assume (not for simplicity) that H has a connected center.

We generalize now the representation ° (p) ®r F, (see ZI3) for ° (?))-
Let (Aqv)aes, be a family of fundamental coweights of H such that

> v € X(Ty) = XY(Th)

a€ESy

def

(2.20) £y

is fixed under the action of 'y, (compare with (Z3]) and note that the cocharacters
Aqv exist since H has a connected center but each of them doesn’t have to be fixed
by I'y). Let (rx_., Vx,. ) be the irreducible algebraic representation of H of highest
weight A,v over A and let (T?H, Vg;) be the irreducible algebraic representation
of HS1 over A of highest weight (Aqv)aes, = the character of TEIH defined by
(Za)aecsy = 2 Aav(2a). Note that we have an isomorphism of algebraic repre-
sentations of H°#:

(2.21) (re, VE) 2= Q) (ra Va)-

aESy
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Let v € I'y and X,y be the character of H corresponding to the cocharacter
Y(Aav) = Ayav € XV(Zy) € XV (Ty). Comparing the highest weights, for v € T'
there is an isomorphism of algebraic irreducible representations of HS#:

(8,07 19.VE) = (Bacsu(any & 1110000 VE ).

where c, is the automorphism of HS# defined by (Ta)aesy = (Ty-10)acsy- There-
fore there exists an A-linear automorphism M., of Vg;, well defined up to a nonzero

scalar, such that, for (x4 )acs, € ﬁ(A)SH:

(222) M’Y (T?H((,y_lxa)aesH)) Mﬁy_ (®O¢ESHT)\ v H Xoc,”/ xa
aGSH

Moreover the subspaces of highest weight of these two representations over ng
being the same, we can choose M., such that it induces the identity on this line.
With this choice, the map v — M, is a representation of I'y over Vg; Since
£ € XY (Ty)", we have [],cg,, Xa,y = 1 for all 7 € T so that, for = € fI(A), we
have from ([222) and Z2I)) (replacing v~ 'z, by z for all a € Sg):

My (®aesyray (@) M = (@acsy T, (72)) -

All this proves that there is an algebraic representation (L?H, ng) of “H on Vg{
defined by

L® (z, ’V) (®aeSHT>\ V(@) M,

for v € H (A) and v € T'. The isomorphism class of this representation does not
depend on the choice of the A,v such that £y = > A\yv. Namely any other choice
will twist each 7_, by a character whose product over all « is trivial.

If p is an L-parameter of H over A we define the I'y-representation L?H (p) as
the composition L?H op. Moreover if two L-parameters p; and po are equivalent, the
representations L?H (p1) and L?H (p2) are clearly isomorphic. If p is a C-parameter
of H over A, p is in particular an L-parameter of H over A by ([2.19), and we define
the T'y-representation L?I;C( ) L® (p), where

(2.23) &g % (€, 0) € X(T5) = X (Ty) x L.

We now compare L?H (p), L?I;C(p) between k and finite extensions &’ of k.
We fix k' C k5P a finite extension of k, H' a connected reductive group over

k' and we let H % Resy /i (H'). We let ¥y be the set of embeddings k" — k5P
inducing the identity on k and 7y € X+ the inclusion k¥’ C k*°P. For 7 € Xy we
choose g, € T’y such that 7 = g, o 79, and we have I'y, = Hrezk/ G-k The dual

group Hof H is isomorphic to indF"' I/{\’ i.e. the group scheme of functions f : I'y —

H’ such that flgh) = h=1f(g) for all g € Ty, and h € Ty (see [BorT9, §5 1( )])-
More explicitly, the map f — ( f(gT))Tegk, induces an isomorphism 1nd k H’ =

/\E ./ ./
H"™"" and the action of T'; on V2L s is given by

g- (IT)TEEk/ = ((g;lgggflo‘r)nglor).rezkl-
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The map (2;)rex,, — %7, is a ['y-equivariant map H — H'. Tt extends to a

morphism of group schemes H x 'y — LH’ (resp. HxTy — ©H’) inducing the
identity on the T’y factor (resp. the G,, and I'ys factors). If p is an L-parameter
(resp. a C-parameter) of H over A, we can define an L-parameter (resp. a C-
parameter) p’ of H' by restriction of p to I'ys and composition with the above
morphism.

LEMMA 2.17. The map p — p’ induces a bijection between equivalence classes
of L-parameters (resp. of C-parameters) of H over A and equivalence classes of
L-parameters (resp. C-parameters) of H' over A.

PROOF. A map p from I'y, to “H(A) of the form (c,, Id) is admissible if and only
if ¢, is a 1-cocycle of I'y; in H(A) and is continuous if and only if ¢p is continuous.
Moreover two admissible p are equivalent if and only if they are conjugate by an
element of H (A). Therefore the map associating to p the class [c,] of ¢, induces a
bijection between the set of equivalence classes of L-parameters and the set of classes
[c] € Hclont(ljk7 H (A)) The fact that the above map p — p’ induces an isomorphism
HL (T, H(A) S Hclont(Fk/,}/I\’(A)) is a consequence of a nonabelian version of
Shapiro’s Lemma (see for example [Stil0l Prop.8] noting that everything can be
made continuous there or [GHS18| Lemma 9.4.1] in a more restricted context).

Therefore the map associated to a C-parameter p the class [¢,] of ¢, induces
a bijection between the set of equivalence classes of C-parameters and the set of

(T, H(A)) such that d(c) € HY (T, A*) 22 Hom{" (T, AX)
coincides with the p-adic cyclotomic character. Let H, o Resy/ H' , so that H can

be identified to a quotient of Hy. It follows from Remark PZI6] that H! (Tg, FAI/l(A)) is

classes ¢ € H} .

the set of classes of 1-cocycles of I'y, with values in Hy (A) up to H(A)-conjugation. It
follows again from Remark 2.T6] that the set of equivalence classes of C-parameters

of H over A is in bijection with the subset of H, Cont Ty, H1(A)) of classes whose
image in H. (T, (A%)FH]) =~ Homg;)nt(l“k, (AX) k1) is the image of the p-adic
cyclotomic character via the diagonal embedding A* — (AX)[k/:k]. The conclusion
follows from the commutativity of the following diagram

=~

Hcont (Fkv H(A)) — Hcont (Fk’ (Resk/'/?Gm)(A))
b |
Hcont (Fk' E(A)) EEE— Hcont (Fk/7 @;(A))

and from the fact that the classes corresponding to the cyclotomic characters cor-
respond under the right vertical arrow. ]

LEMMA 2.18. Let p be an L-parameter, resp. a C-parameter, of H over A
and p' the L-parameter, resp. C-parameter, of H' over A corresponding to p by
Lemma 2I7. Let £ € X (Tg) be as in (220) (with H' instead of H) and let
En € X(Ty) = X(TA)Ek’ be the character (§q)res,, (which is fived by T'y). Then
we have an isomorphism of representations of I'y, over A:

L?H (p) = indZ" (L?H/ (p))  resp. L?}’Ic(p) = ind ¥ (L?H/c(p/))
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PROOF. Let p’ be an L-parameter of H' over A. If g € Ty and 7 € Xy,
let g9 = ggorh(g,7) with h(g,7) € T'y. For g € T'y, we can check that the
above automorphism M, of Vg‘zfl = (Vgﬂ)@)[k/:k] is defined by My(®;cx,, vr) =
®rex,, (Mpy(g,g-10r)Vg-10r). Moreover, setting for g € T'y:

p(9) X (¢ (hg.9™ 0 7))rem,  g) € H(A)™ 1 T

it is easy to check that p is an admissible morphism and that the equivalence
class of p corresponds to p’ via Lemma 217 The result follows from an explicit
computation together with the definition of the tensor induction ([CR81l §13], see
also the end of the proof of Lemma 277 below). The case of C-parameters can be
deduced from the case of L-parameters as in the proof of Lemma [Z.17] O

We will later need to “untwist” a C-parameter into an L-parameter. This can
be done when the group H has a twisting element (as we assumed in §ZT.T]), i.e.
a character 0y € X (Ty)'* = XV(TI;[)F’c such that (fy,aV) =1 for all a € Sg.

By [Zhul, (1.3)], there exists a Galois equivariant isomorphism H~HxG,, given
explicitly by

P H % G,, = H x Gm

b (ht) = (WO (D), 0).

This induces an isomorphism of group schemes “H = “H x G,,,. The choice of
0y gives a bijection between the equivalence classes of C-parameters and of L-
parameters of H over A given by p© + p, so that tg,, 0 p© = (p, ), where ¢ is (the
image in A*) of the p-adic cyclotomic character.

Let £y € XY(Ty)'™ = X(T7)"™ be a dominant character of H fixed by T},
as above. The algebraic representation r¢_ o te_; of H x G, (see EZZ3) for ¢ i)
is the representation of highest weight (g, —({g,0x)) and similarly L?ﬁ o t;; =

L?H @~ &m:91) (where we note " the character « +— z" of G,,). This proves that
we have

(224) L?}’Ic(pc) o~ L?H (p) ® €*<EH79H>'

On order to state the reformulation/generalization Conjecture (more pre-
cisely of its variant in Remark ZI0(i) and extending scalars from F to F,), we
broaden the global setting of §2.1.2] following [DPS].

We now let H be a connected reductive group defined over Q. We fix some
compact open subgroup UP C H(Ag”p) satisfying the hypotheses of [DPS| §9.2]
(UP there is denoted K%). For i > 0 an integer, let ﬁi(lﬁ‘p) be the completed
cohomology of the tower of locally symmetric spaces associated to H of tame level
UP defined in [Eme06] (see [DPS| §9.2]). Let ¥ be a set of finite places of Q
containing p and the places of Q where H is not unramified or U? is not hyperspecial.
Let T be the abstract Hecke algebra defined as the tensor product of the spherical
Z[p~']-Hecke algebras H, of H(Qy) with respect to U. We recall that a maximal
open ideal m C T is weakly non-Eisenstein [DPS, Def.9.13] if the equivalent
assumptions of [DPS| Lemma 9.10] are satisfied. In this case there is a unique
go > 0 such that ﬁqU(FP)m # 0. Then the H(Q,)representation ﬁqU(FP)[m] is
smooth and admissible and the residue field of m is finite. We choose an embedding
T/m < F,.
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Considering [DPS] Conj.9.3.1], the following construction is natural. Let 7 :
Gal(Q/Q) — “H(F,) be a C-parameter unramified outside a finite number of
primes and choose ¥ big enough to contain all the primes of ramification of 7.
For each ¢ ¢ X, let xp : Hy — Fp be the character such that the semisimplification
of 7 (Froby) is contained in the ﬁ(Fp)—conjugacy class CC(z0)¢(€7Y) of “H(F,)
defined by the version of Satake isomorphism for C-groups in [Zhu](see [DPS|
§9.13] for the definition of CC(z¢)) and ¢ is the cocharacter t — (28.q4(t71), %)

of H (recall 6,4 is defined at the beginning of this section). We define m® as the
maximal ideal of T* generated by the kernels of all the x, with £ ¢ ¥. Note that
this gives us a natural embedding T*/m* — Fp.

Assume that Hg, ' H xg Q, is isomorphic to Resg /g, (H') for a finite exten-
sion K of Q, and some split connected reductive group H’ over K (in particular Hg,
is quasi-split) and that H’ has a connected center. Then we can fix a cocharacter

& of H' such that (€47, 0) = 1for all a € Sy and define 4, = Resg/q, (Su/)l,,

(restriction to the diagonal embedding G,, — Resk/q,(Gm) = Gi¥ :QP]), which is
a cocharacter of Hg, satisfying (§m,, ) = 1 for all & € Sy, . We can finally
conjecture:

CONJECTURE 2.19.  Assume that the H(Q,)-representation
def

7 < H(F)[m*] is nonzero. Then Dg/H, () (defined similarly to [Z)) is finite-
dimensional over F,(X)) and there is an integer d € Z~o such that we have an
isomorphism of representations of Gal(@p/(@p) over Fp:

=~ , . d
VY (DEVH (”)) Qs /mz Fp = (L?ng (7"0\Gal(@p/@p)))GB ‘

We now check that, when H is the restriction of scalars of a compact unitary
group as in §2.T.21 Conjecture is equivalent to the special case of Conjecture
in Remark 2J0(i) where the coefficient field is I, instead of F.

We go back to the notation of §§Z.1.2) 213 and we fix an embedding F < F,,.
For simplification we assume that there is a unique place v of F'™ over p and we fix ©
in F above v, so that we have an isomorphism (Resp+ g H) xqQ, = Resp, /g, GLx.
The base field k at the beginning is now F'T, the connected reductive group H over
k is the compact unitary group H of §2.T.7] (so that H~G= GL,,), &g is the
cocharacter &g of Example 2.3 the twisting element 6 is the character 6 of
Example 23] and the algebraically closed field A is Fp.

Let 7 be a continuous irreducible representation Gal(Q/F) — GL,(F,) as in
213 (composed with our embedding F < F,). Let 7 : Gal(Q/F*) — G, (F,)
be the continuous morphism associated to 7 using [CHTO8 Lemma 2.1.4] and
denote by (7)€ : Gal(Q/F*) — “H(F,) the C-parameter of H over F, obtained
by the construction of [BG14] §8.3]. A simple computation shows that (7')¢ (or
more precisely its composition with H x Gal(Q/FT) — H x Gal(F/F7)) is the
composition of (7, w) with

(2.25) Gn X Gy —  H x (G, x Gal(F/FT))
(@17, A) (90N A )
where g € GL,,(F,), u,\ € F;, v € Gal(F/F*) and 0} € X(T) is the character

01 (diag(z1, ..., 2,)) = 25 w32 -2~ Finally we define 7 as the C-parameter
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of Resp+ g(H) over F,, obtained from the application of Lemma 21T to (7). We
can check that the maximal ideal m* of T> defined by 7 coincides with the ideal
m” defined in Y213l This can be checked using the formulas relating the Satake
isomorphism for C-groups with the usual Satake isomorphism ([Zhul §1.4]) and the
explicit formulas [Gro98| (3.13)], [Gro98| (3.14)].

Note that, seeing now 0y and 0% as cocharacters of T (recall C?I?n =~ GL,), we
have 0 o w = (0 o w)w™ ™!, so that we have, using (2.25):

(™) =ty o (FRW™),w).

def

Let & % &y xps Ff and &, & Resp+ /g, (€o)lG,,- Then (224) and Lemma ZT8]
imply (note that &, is fixed by Gal(Q,/F,") since H x p+ F, is split):
C = ~ s 19Qp _ n—1y, —(€m, =0, -
L?; (rC\Gal(@p/Qp)) = 1ndF? (rg (75 @ w" ™ Hw™ 9"’)) =L (75) ® 65"

This shows that Conjecture 2.19]is equivalent to the special case of Conjecture 29
in Remark 2.10(i) (with F, instead of F).

2.2. Good subquotients of ¢

From now on we assume that K is unramified (i.e. K = Q,s), and we re-
mind the reader that G = GL,, /Z. We define the algebraic representation °
of HaeGal( K /Qp)G together with “good subquotients” of f®, and prove various
properties of these good subquotients. This section is entirely on the “Galois side”
(though no Galois representation appears yet). All the results, except Remark [2.49]

in fact hold for any split reductive connected algebraic group G/Z with connected
center.

2.2.1. Definition and first properties. We define good subquotients of %

If H is an algebraic group over Z, we now write H instead of H xz F (in order
not to burden the notation) and HG2(K/Q) for the group product ngGal(K/Qp)H
(it is not a subgroup of H!).

We define the following algebraic representation of GE2(K/Qr) gyer F:

(2.26) Y & (®Z(>\a))

Gal(K/Q,) «€S

(recall that L()\,) is defined in (ZII)) and ([ZI2)). Note that % is also the tensor
product of all fundamental representations of the product group GG2(E/@)  In

particular the center Zgal(K/Q”) acts on L by the character O0g|z, @ -+ - ® 0a|z.,
Gal(K/Qp)
where 05 is as in Example 23] i.e.
(2.27) o= o€ X(T).
a€esS

REMARK 2.20.

(i) With the notation of §2T.4 the representation I% is the restriction to
H of the representation (L?H,Vg) of YH, where k = F, H = Resg g, (G) and
Eu = (&g, &a) € X(Ty) (& as in Example 2.3)).
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2.2. GOOD SUBQUOTIENTS OF L® 33

(ii) Since Ay € BF_1Z>pe; by [212)), all the weights of X (T") appearing in each
L(A\,)|r are also in @7 ;Z>oe;, and thus the same holds for the weights of f®|T
(where T is diagonally embedded into GG#(5/@)) This follows from the classical

fact that the weights appearing in L(\)|7 for any dominant A € X (T') are the points
in @ ,Ze; =2 X(T) of the convex hull in ®!" ,Re; of the weights w(\), w € W.

Fix P a standard parabolic subgroup of G, if R is a finite-dimensional algebraic
representation of PG(K/Q) over F, we write R|z,,, for the restriction of R to Zu,
acting via the diagonal embedding

Gal(K/Q o ,
(2.28) Zaty < ZMe;( /) GGal(K/Qy),
Since Zyy, is a torus, it follows from [Jan03| §1.2.11] that R|ZZ\/IP is the direct sum

of its isotypic components. For instance, if P = G and R = Z®, there is only one
isotypic component as Zys, = Zg acts on L% via the character fbclze-

LEMMA 2.21. Any isotypic component of R|ZMP carries an action of
MSal(K/QP) when viewed inside R|MSaI(K/Qp).

Proor. This just comes from the fact that the action of Zjs,, commutes with
that of Mg/, m

DEFINITION 2.22. Let P C P be a Zariski closed algebraic subgroup containing
Mp and R an algebraic representation of PG (5/@) gyer F, a subquotient (resp.
subrepresentation, resp. quotient) of R|scaix/q,) is a good subquotient (resp. sub-
representation, resp. quotient) if its restriction to Zys, is a (direct) sum of isotypic
components of R|z,, .

REMARK 2.23. A Zariski closed subgroup P as in Definition actually de-
termines the standard parabolic subgroup P that contains it. Indeed, assume there
is another standard parabolic subgroup P’ such that Mp/ C P C P'. Then we
have Mp: C P which implies P’ C P. Symmetrically, we also have P C P’, hence
P=r.

Since isotypic components of R| Zu,, tautologically occur with multiplicity 1,

we see in particular that there is only a finite number of good subquotients of
R|pcar/a,).  For instance the entire % is the only good subquotient of

f®| Gealx/y) - If P - P is another Zariski closed algebraic subgroup as in Definition
222 any good subquotient (resp. subrepresentation, resp. quotient) of R|scax/a,)
is a good subquotient (resp. subrepresentation, resp. quotient) of R|I§Ga1<x/@p) (but

the converse is wrong).

LEMMA 2.24. There exists a filtration on Z®|ﬁGa1(K/@p) by good subrepresenta-

tions such that the graded pieces exhaust the isotypic components of Z®‘ZMP seen

Gal(K/Qp)
P

as representations of PGal(K/Q) yig the surjection PGal(K/Qp) _, and

Lemma 2211

PROOF. It is enough to prove the lemma for P =P. We prove the follow-
ing statement (which implies the lemma): let H be a split connected reductive
algebraic group over Z with connected center, Ty C H a split maximal torus in
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H, By C H a Borel subgroup containing Ty with set of (positive) roots R;, \%
a finite-dimensional H-module over F, Qg C H a parabolic subgroup containing
By with Levi decomposition Mg, Ng,, and center Znr,, € T, ZMQH a subtorus

of Znmg,, and Ao, € X(ZJ’WQH) o HomGr(waQH,Gm). Then the ZﬁVIQH—isotypic

component VXQ of V' is a quotient of two subrepresentations in Vg, which are
H

both direct sums of isotypic components of V| 7, (one applies this result to
QH

H = GGaE/Q) v — f®, Qpu = PSaKE/Q) and Zhiy, = Zump). Note that as
H
above V = 69,\;911 VXQH and that V,\/QH carries from V|MQH an action of Mg, by the
same proof as for Lemma 221l Let R(Qx)* C R}, be the positive roots of Mg, , if
a € R \R(Qp)™T, denote by @ its image via the quotient map X (Ty) —» X(ZJ’WQH)
and N, C Ng,, the root subgroup. If n, € N, and )\’QH € X(ZMQH)a then we
have na(VXQ ) C Z;;Og Vi, +ia by [Jan03l §I1.1.19] (the sum being finite inside
H H
V). Fix A\, € X(ZMQH) that occurs in V|Z§WQH and let W(Ag,,) be the set of

,C/QH € X(Z}VIQH ) of the form Ay, + ( ZaeR; \R(Qu)* ZZOE) that occur in V|Z§VIQH ,
we deduce that both subspaces

2 Vg, & D Ty,

N EWOG NG, Ny EW0G,,)

are preserved by Ng,,, hence by Q g, inside V. Since their cokernel is exactly V’\b ,
H
this proves the statement. O

We will use the following lemma extensively.

LEMMA 2.25. If Q is a (standard) parabolic subgroup of G containing P, any
1sotypic component 0fR|ZMQ is a good subquotient of R| pcaix /o, (hence of R|pcar/ay))-

ProOF. By Lemma (applied in the case P = P and with P there being
@), such an isotypic component is a good subquotient of R| QGal(K/Tp) 5 and thus is
a subquotient of R| peal(x/e since P C (. It is also obviously a direct sum of
isotypic components of R)| Zaip since Zyo C Zpp- T his proves the lemma. [l

REMARK 2.26. Let P, P and R as in Definition and define a good sub-
quotient of R| (for the diagonal embedding P — PGalK/Q) gimilar to [Z2])) as
a subquotient of R|p such that its restriction to Zys, is a sum of isotypic compo-
nents of R Zu,- Then, using the same kind of argument as for the proof of Lemma
224 one can prove that a good subquotient of R| is also a good subquotient of
R|§Gal<K/Qp), so that good subquotients of R|5 and of R|13Ga1<;</@p) are actually the
same.

2.2.2. The parabolic group associated to an isotypic component. Fix
P C @G a standard parabolic subgroup and Cp an isotypic component of f®\ Znip>
we associate to Cp a subset of the set of simple roots S (see (230)), as well as
the standard parabolic subgroup of G, denoted by P(Cp), corresponding to this
subset.

We will use the following two lemmas, the first being well-known.
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2.2. GOOD SUBQUOTIENTS OF L® 35

LEMMA 2.27. Let A € X(T) ®z Q be dominant. Then the Weyl group of the
root subsystem of R generated by the simple roots a € S such that s, fizes X is the
subgroup of W of elements fixing \.

LemMa 228. Let « € S.  Then ), cywpyw(a) = 0, and we have
>wewpyw(@) = 0 if and only if o € S(P). Moreover, if o € S\S(P), then
o is in the support of 3 -, ey (pyw(a).

ProOF. If a € S(P), it is clear that }_, cy(pyw(a) = 0 since, for each w €
W(P), we also have ws, € W(P). If a € S\S(P), then —«a is dominant for
Mp, that is, —(o, 8) > 0 for 8 € S(P). This implies that w(—«a) < —a for w €

W(P). Summing over W(P) gives — 3 cy(pyw(a) < —|W(P)|a or equivalently
(W(P)|a < 3 ew(py w(a). This proves the lemma. O

If w e W satisfies w(S(P)) C S, we denote by *P the standard parabolic
subgroup of G whose associated set of simple roots is w(S(P)). It has Levi subgroup
Muwp = wMpw™ (so “P = (wMpw~)N) and Weyl group W (¥ P) = wW (P)w~*
(caution: “P is not wPw™! if w # 1!). If A € X(T'), we define
(2.29) NE_L_ S () e (X(T) 2@V,

WP, 2

REMARK 2.29.

(1) Note that A" only depends on A|z,,  since two distinct A with the same
restriction to Zyy,, differ by an element in }° ¢ 5 p) Zov and since 3 /ey (py w(@) =
0 for a € S(P) by Lemma 228

(i) Tt easily follows from the definitions and Lemma 228 that if w € W satisfies
w(S(P)) € S and X € X(T) is any weight, then w(X\) = (w(A))’, where (w(\))’
is given by the same formula as in (229) applied to the parabolic P and the
character w(\).

LEMMA 2.30. Let P be a standard parabolic subgroup of G.

(1) Let A € X(T), there exists w € W such that w(S(P)) C S andw(N)|z,,, ,
coincides with the restriction to Zy,, of a dominant weight of X (T') ®z,
Q.

(i) Let A € X(T) such that A|z,,, occurs in Z®|ZJVIP and let w as in (i).
Then we have flg —w(X) = Y, cgNa for some ny € Z>o (see [2.27)
for 0c) and the subset

(2.30) w(S(P))U{a e S:n, #0}C S
only depends on M|z, , -

PROOF.
(i) We first claim that it is equivalent to find w such that w(S(P)) C S and w(\') is
dominant with A" as in ([2.29). Assume we have such a w, since w'(X)|z,,, = Az,
for all w' € W(P), we have X'|z,, = Az, and thus w(})|z,, , = w(\)|z,,, .-
Conversely, assume that there is w such that w(S(P)) C S and w(A)|z,,, =
1] Zss,, ,, for some dominant pin X (T)®7zQ, and set 1/ & Wlp)‘ Dwewwpy W (p) €
(X(T) @z Q)W("P). Then we have i/ = w(\') by Remark Z229ii) and p > p/ (as
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p > w'(p) for any w’ € W since p is dominant). Thus p — w(N) = p — p/ =
> acs(wp) Nae for some ng € Qo (recall plz,,,, . = 1|z, , ). This implies that

W), 8) = (B = 5 nala,f) >0

a€S(v P)

for any g € S\S(*P) (as p is dominant and (a,5) < 0if @ # 8 € S). Since
(w(N),B) = (W,B) =0 for B € S(*P) (use again Lemma [Z2])), we see that w()\)
is dominant.

Now let us find such a w. First, pick w’ € W such that w’()\') is dominant, by
Lemma applied to w’(\’) the set of elements 8 in S such that sg fixes w'(\)
generate a root subsystem of R with corresponding Weyl group the subgroup of W
of elements that fix w’(\'). This root subsystem has two natural bases of simple
roots: namely the elements 8 above and the elements w'(y) € w’(S) such that
s, fixes A’ (they are usually distinct as W doesn’t preserve S). This second basis
obviously contains w’(S(P)). Therefore, there is w” in the Weyl group of this root
subsystem, i.e. w” € W fixing w’()\’), that maps the second basis to the first. In

particular we have w”w’(S(P)) C S and w”w’(N) = w’(\) dominant, thus we can

def
take w = w"w’.

(ii) The positivity of the n, follows from the fact fOs is the highest weight of
f®|T (for the diagonal embedding of 7' as in ([228))). Let wy,ws as in (i) and
N as in [229). Then wi(N) = wa(N) as these two weights are dominant (by
the first part of the proof of (i)) and in a single W-orbit. Since A only depends
on Az, by Remark 2.29(i), it is therefore enough to prove that the support of
fba—w(N') is exactly the set of simple roots ([230) for one (any) w as in (i). Writing
fle —wN) = (f0g —w(N) + (w(X) — w(N)) and recalling that w(X) —w(X') is
a sum of roots in w(S(P)) C S (as w(A),w(\) have same restriction to Zys, ,
from the proof of (i)), we see that this support is contained in ([230) and that it
contains {a € S\w(S(P)) : no # 0}. It is thus enough to prove that this support
also contains w(S(P)). Since fOg > w(XN) (use flg > ww'(A) for any v’ € W
and sum over w’ € W(P)) and (B,a) <0if a # 3 € S, it is enough to check that
(f0c — w(N),a) > 0 (in Q) for any o € w(S(P)). But this follows from Lemma
228 and (f0c —w(X), ) = fl0c,a) = (w(N),a) = f =0 = f.

(]

REMARK 2.31. Note that it is not true in general that, for A as in Lemma
[2.30(ii), one can find w € W such that w(S(P)) € S and w(A)|z,, , is the restric-
tion to Zps., of a dominant weight of X (T') (one really needs X (T) ®z Q).

The proof of Lemma [2.30] also gives the following equivalent proposition that
we will use repeatedly in the sequel.

PROPOSITION 2.32. Let P be a standard parabolic subgroup of G.
(i) Let \e X(T) and X as in [229), there exists weW such that w(S(P)) C
S and w(X') is a dominant weight of X (T) @z Q.
(ii) Let A € X(T') such that Az, occurs in Z®|ZMP and let w as in (i).
Then we have f0g — w(\') = Y cgnaa for some n, € Qso and the
support of f0g —w(N') is S(P(Cp)).
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Let Cp be an isotypic component of f®‘ZMP associated to some
Ap € X(Znp) = Home(Zarp, Gm). We denote by P(Cp) the unique standard
parabolic subgroup of G whose associated set of simple roots S(P(Cp)) is (Z30)
for one (equivalently any) weight A € X(T') such that A|z,,, = Ap. We also define

def

(2.31) W(Cp) = {w € W as in Proposition 2.32(i) for A € X(T) : Az,,, = Apr}

(W(Cp) doesn’t depend on the choice of such A by the claim in the proof of Lemma
230(i) and by Remark 229(i)). We see from (230) that for all w € W(Cp) we
have the inclusion

(2.32) “P C P(Cp).

Note that the set W (Cp) is not in general a group, in particular it is distinct in
general from the Weyl group W (P(Cp)) (see Lemma [2Z306] below for the relation
between the two).

REMARK 2.33. The inclusion P C P(Cp) for some w € W (such that
w(S(P)) C S) doesn’t imply w € W(Cp) (take P = B). Also P(Cp) doesn’t
necessarily contain P, see e.g. the end of Example [Z30](ii) below. The subgroup
generated by all P for w € W(Cp) may also be strictly contained in P(Cp) (see

e.g. Example 2:35(i) below).
The parabolic subgroups P(Cp) respect inclusions.

LEMMA 2.34. Let P’ C P be two standard parabolic subgroups of G, Cp an
isotypic component of f®|ZJWP and Cpr an isotypic component of Z®‘ZMP/ such
that Cp/ Q CP‘ZMP/ . Then P(Cp/) Q P(Cp)

PRrROOF. Let A € X(T) such that Cps is the isotypic component of )‘|ZMp/'
Then by assumption Cp is the isotypic component of A|z,, .. Define \p € (X (1) ®z
QWP Ny, € (X(T) @z QWP as in @229) for respectively P and P’ and let
(wp,wpr) € W xW such that wp(S(P)) C S and wp(Np) dominant, wp/ (S(P’)) C
S and wps (Np,) dominant (wp,wp: exist by Proposition 2:32(i)). Then we have

wp(xp)zwlp)‘ S wue(h), wp(xp,)zﬁ S wwe())

w' €W (VP P) w €W (¥P P’)
and also
W (P’
(2.33) wp(Np) = % > owp(Np)).

cEW (WP P)/W (wP P')
Since wps(Np,) is dominant, we have wp/(Np/) > wwp/(Np,) for any w € W and
in particular wp/(Np/) > owp(Np,) = (cwpwp )wp(Np). Summing up these
inequalities over o € W(*? P)/W (*? P’) and multiplying by |‘13/V((1;))|‘ , one gets with
)
(2.34) wpr(Np:) > wp(Np).
Now the result follows from

fbc —wp(Np) = (fc —wp/(Npr)) + (wpr(Npr) — wp(Np))
together with Proposition 2.32(ii) and (2.34). O

EXAMPLE 2.35. We give a few simple examples (beyond GL2(Q,)).
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(i) Assumen =2 and P = B. Then ° | Zary, = ° |7 has f+1 isotypic components
C()\) given by the characters \; : diag(zy, z2) — o] “ab for 0 <i < f. Fori < f/2,
A; is dominant, W(C()\;)) = {1} and f0g—\; = i(e1—ez). Fori = f/2 (if f is even),
Ai = Sey—ep(Ai) is dominant, W(C(A;)) = {1, 8¢;—e, ; and fOg —w(X;) = f/2(e1 —
e2) for w € W(C(N;)). For i > /2, s¢;—ey(Ai) is dominant, W(C(A;)) = {Se;—es
and f0g — Se,—e, (M) = (f —i)(e1 —e2). We see that "B = B C P(C(\;)) =G if
i¢{0,f} and B = P(C(\)) =B ifie{0, [}

(ii) Assume n =3 and K = Q,.

If P = B, then f®|T has 7 isotypic components given by the 6 characters A, :
diag(z1, o, 23) — .’L'%U,l(l)fl/'wfl(g) for w € 83 and the character det : diag(zq, 22,
x3) = x1x9x3. If C'p corresponds to some A, one gets that W (Cp) is the singleton
{w} and g — w(\,) = 0, which implies “B = P(Cp) = B. If Cp corresponds to
det, one gets W(Cp) = W and g — w(det) = (e; — e3) + (€2 — e3) for w € W,
which implies “B = B C P(Cp) = G.

If P is the standard parabolic subgroup of Levi diag(GLy, GL1), then Z®|ZI\4P has
3 isotypic components C'p given by the characters

Lo 3 ET] 2 T 2
Ao : diag(x, o1, w2) =y, Ar @ diag(zy, o1, 22) = 27w2, Ag : diag(xy, x1, 22) — 2125,

One has A\ = 3/2(e1 + e2), A] = e1 +e2 + e3, Ay = 1/2(e1 + ea) + 2e3 from which
one deduces for the three respective isotypic components Cp (where w € W(Cp)):

W(Cr) = {1} b — w(Ny) = 1/2(er — e3)
W(Cp) = {1, 8¢, —es8er—c5 | 0 — ’LU()\/l) =(e1 —ea) + (ea — e3)
W(Cp) = {Se;—es8es—es } 0 — ’LU()\/Q) =1/2(eq — e3).

If Cp corresponds to Ay one gets “P = P(Cp) = P, if Cp corresponds to A\; one
gets P C P(Cp) = G (P being P if w = Id and the standard parabolic subgroup
of Levi diag(GLy, GLa) if w = S¢; ¢y Ses—es), and if Cp corresponds to A2 one gets
WP = P(Cp) = the standard parabolic subgroup of Levi diag(GL1, GL3). In this
last case we see that P(Cp) doesn’t contain P.

Finally, if Mp = diag(GLy, GL2), the situation is symmetric.

LEMMA 2.36. We have W(Cp) C W(P(Cp))w for any fized element w €
W(Cp). Equivalently w'w= € W(P(Cp)) for any w,w’ € W(Cp).

PROOF. Let Ap € X(Z),) corresponding to Cp, we, € W(Cp), A € X(T)
such that A|z,,, = Ap and define " as in (2.29). Recall that an element w € W
is in W(Cp) if and only if w(S(P)) C S and w(\') is dominant (see Proposition
232(i)), and that we have w(\) = we, (V) for all w € W(Cp) (see the begin-
ning of the proof of Lemma 230(ii)). We rewrite this ww(}i (wep (X)) = wep (X)
YV w € W(Cp). By the definition of P(Cp) and Proposition Z32{(ii), we know that
S(P(Cp)) is the set of simple roots in the support of f0g —wc, (N). Since we,, (N)
is dominant, by Lemma [2.27] the subgroup of W fixing wc, (\’) is generated by the
simple reflections sg fixing we, (\'), or equivalently such that (wc, (), 8) = 0.
Since (f0g — wep(N),B8) = f — 0= f, we see that these simple roots 3 are all in
the support of f0g — wep (A). Therefore W(P(Cp)) contains the subgroup of W
fixing we,, (A'). Since wwa}lj fixes we,, (X)), it follows that wwa}j e W(P(Cp)). O

REMARK 2.37. The inclusion in Lemma [2.30]is not an equality in general (take
P =Qq).
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2.2.3. The structure of isotypic components of I%. We let P be a stan-
dard parabolic subgroup of G, we prove an important structure theorem on the
isotypic components of f®| Zyp (Theorem 2.40) as well as several useful technical
results.

Recall that W(Cp) is defined in (Z31) and P(Cp) is defined just before.

LEMMA 2.38. If P(Cp) ="P for some w € W(Cp) then W(Cp) has just one
element.

PrOOF. Let we, € W(Cp) such that P(Cp) = ““» P and let wg,, € W(Cp).
Since P(Cp) = wopP we get S(P(Cp)) = we,(S(P)) and W( (Cp)) =
we, W(P)wg,,. By Lemma 236 applied to the element we,,, we deduce W(Cp) C
wep W (P) and thus wcleP € W(P). But since S(P(Cp)) contains w(S(P)
for all w € W(Cp) by definition of W(Cp) and (230), we have wg, (S(P)) C

S(P(Cp)) = we,(S(P)) which implies wg,, (S(P)) = we, (S(P)) since the car-
dinalities are the same on both sides, that is, wEiw'CP(S(P)) = S(P). Since

1
P

~—

we, We, € W(P), this forces wi,, = we,, O

REMARK 2.39.

(i) The converse to Lemma is wrong in general (e.g. consider the C(\;)
with i ¢ {0, /2, f} in Example 2:35(i)).

(ii) For a general isotypic component Cp, it is not true that one can find
w € W(Cp) such that w_lMp(CP)w is the Levi subgroup of a standard parabolic
subgroup of G.

PROPOSITION 2.40. The isotypic components Cp such that P(Cp) = *P for
some (necessarily unique) w € W(Cp) are those isotypic components which are
associated to fw="(0c)|z,,, for the w € W such that w(S(P)) C S.

PROOF. Let w € W such that w(S(P)) C S and A € fuw=1(6g) € X(T).
Since w(A) = f0q is dominant and fOg —w(\) = 0, the set [2.30) is w(S(P)). This
implies P(Cp) = “P.

Conversely, let Cp as in the statement, A\ € X(7T) such that Cp is the isotypic
component associated to the character A|z,,, of Zy, and define A" as in (2.29).
Since S(P(Cp)) = w(S(P)) by assumption, from Proposition [Z32)(ii) we obtain

fw™! Z Na
a€eS(P)

(for some ng € Qso), which implies fw™'(0g)|z,, = Nz, Since Nz, =
Nz, (see the beginning of the proof of Lemma 2.30(i)), we deduce that Cp is
the isotypic component associated to the character fw='(6g)| Zarp - O

Note that if Cp is associated to fw™"(0c)|z,, (With w(S(P)) C S), we have
W(Cp) = {w} by Lemma 238

ExAMPLE 2.41. Coming back to Example 2.35] the isotypic components as in
Proposition 240 are the isotypic components C(Xg), C(As) when n = 2, P = B, the
isotypic components associated to the six A, whenn =3, K = Q,, P = B, and the
isotypic components associated to Ao, A2 when n =3, K =Q,, Mp = GLy x GL;.
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We set for o = e; — ej11 € S(P):

(2.35) dap Z Y e e X(T).

ei—ej1ER(P)T
One easily checks that the A\, p for a € S(P) are fundamental weights for the
reductive group Mp and that (A, p,5) < 0 for § € S\S(P). For any A € X(T),
we define Lp(A) as in (ZII) but with (Mp, Mp N B™) instead of (G, B~). When
S(P) = 0, we define Z}‘?ﬁ to be the trivial representation of TG*(K/Q) gyer F
and, when S(P) # 0, we define similarly to ([2.26) the algebraic representation of

Mg’al(K/Q”) over F:

(2.36) Y & (@ EP(AQ,P)).

Gal(K/Qp) acS(P)
We also define

def

(2.37) 0p = Y Aap €X(T) and 0° =06 —0p € X(T).

a€eS(P)
Since for a € S(P) we have (7, a) = (0g,a) — (0p,a) =1 —1 = 0, we see that
67 extends to an element of Homg, (Mp,G,). Likewise we have for o € S(P) and
w € W such that w(S(P)) C S:
<w—1(9wP)7a> = <6,“’P7w(a)> =0

so that w=(#"F) also extends to Homg,(Mp,G,,). Note that, since (9p,3) < 0
for B € S\S(P), we get (87,5) = (0g,B) — (0p,B) > 1, thus 67 is a dominant

weight.
ExamMpLE 2.42. If G = GLg and Mp = GLs x GL3 x GL1, one gets
Op : diag(zy, ..., 2¢) — (21)(x3z4)
0F : diag(xy, ..., z¢) — (m1m2)4(ac3x4a:5).

LEMMA 2.43. If w € W(P), we have w(0F) = 67.

PROOF. The character 7 extends to Mp and factors through Mp /Ml‘ier. But
conjugation by W (P) is trivial on Mp/Mger. O

LEMMA 2.44. Let A € X(T) be a dominant weight and denote by L(X), C L(\)
for u € X(T) the isotypic component of L(\)|r associated to pu (i.e. the weight
space of L(\) for p, see [Jan03, §1.2.11]). Then

@ IW. < IM

HEA=3qes(p) Lo
is an Mp-subrepresentation of L(\)|nr, which is isomorphic to Lp ().

PROOF. Since @, ex—x, ;1) Zzoaf()‘)u is the isotypic component of L(\)
associated to Alz,,, (as A|z,,, = plz,, <= A= € 3 cq(p) Zev), it is endowed
with an action of Mp by the same proof as for Lemma 2211 By [Jan03], 11.2.2(1)],
[Jan03| 1.6.11(2)] and the transitivity of induction ([Jan03l 1.3.5(2)]), we have an

injection of algebraic representations of Mp over F:

(2.38) H°(Np,L(\) < Lp(N)

|ZMP
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(recall Np is the unipotent radical of P) and by [Jan03l I1.2.11(1)] we have an
isomorphism of algebraic representations of Mp over F:

B I, = HNp,LN).
HEA=3 aes(py Lo
It is therefore enough to prove that (Z.38) is an isomorphism, or equivalently that

dimg ( &b f()\)u) = dimg Lp()).

HEA=D aes(py Lzoa

®z B, Lp(\) € (ind?_ . A)

Let L(A) = (ind§- \) P Monp- A) @z B and L(V), C L(X)

the weight space associated to p, we have dimg L()),, = dimg L(\),, and thus
dimg ( b Z(A)H) = dimp ( T L(/\)H).
HEA=>  es(p) Lzo HEA=Y  es(p) Lzo
Likewise, we have dimp Lp(A\) = dimg Lp()). It is therefore enough to have
dimp ( &b L()\)u) = dimp Lp(N).
He)\fzaes(P) Zzooé

But now, we are over a field of characteristic 0, where it is well known that L(\)
and Lp(\) as defined above are simple modules with highest weight A\. Then the
result follows from [Jan03| Prop.I1.2.11]. O

The following lemma is a special case of Lemma [2.44]

LEMMA 2.45. Let A € X(T') be a dominant weight such that (A, «) = 0 for all
a € S(P) (equivalently \ extends to an element in Homg,(Mp,Gy,)). Then any
w € X(T) distinct from X with L(X), # 0 is such that A — p contains at least one
root of S\S(P) in its support.

PROOF. Since A € Homg,(Mp,Gy,), we have Lp(A\) = X by (IZ:D_]) applied
with Mp instead of G. By Lemma 2.44] we deduce EB#E)\72 LN, =X

inside L()\). This clearly implies the lemma. O

a€eS(P) L>oa

MGE/2,)

If R is any algebraic representation of Mp or of and w € W such
-1

that w(S(P)) C S, we define an algebraic representation of Mwp = wMpw™' or

of MS;I(K/Q”) = 11)MSal(K/Qp)u1_1 (w acting diagonally via W — WGal(K/QP)) by

(g S M“’P or MS;I(K/QP)):

(2.39) w(R)(g) = R(w™ guw).

If o € S(P), one then easily checks that w(Aa,p) = Ay(a),»p and w(Lp(Aa,p)) =
pr()\w(a)7'wp), from which one gets

(2.40) w(@p) =Tup.

THEOREM 2.46. Let Cp be an isotypic component of f®|ZMP, associated to
N zu, for X € X(T'). For any w € W(Cp), there is an isomorphism of algebraic
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Gal(K/Qp)

representations of Mg over IF:

(241) Cp = w™ (CP(CP)7UJP) X (w_l(HP(CP)) R ® w_l(QP(CP)) ),

Gal(K/Qp)

where Cp(cpy,wp is the isotypic component of Z?(CP)|ZMwP associated to (w(\) —
fHP(CP))|ZMwP (thus an MS;I(K/QP)-representation, recall YP C P(Cp)) and
w™H(Cp(cpy,wp) is defined in (239).

PROOF. Step 1: Assuming the result holds if w = Id, we prove it for any w.
For p € X(T') we have plz,,, = Az, if and only if w(u)|z,,,, = w(N)|zu,,

therefore the image w(Cp) of Cp for the diagonal action of w € W on % is the iso-

typic component of f®\ Zar , associated to w(A)|z,,, .. Note that, as an algebraic

MSal(K/Qp)—subrepresentation of Z®|MGal(K/@p)7 w(Cp) is indeed isomorphic to g —
-

Cp(w™lgw)ifg € MGal(K/@P) so the notation is consistent with (2.39). By Remark
[2:29(ii) we have w(\') = (w(/\))’ in (X (T)®zQ)"("P). Recall that w()\'), and hence
(w(N))’, are dominant since w € W(Cp) (see Proposition Z32[(i)). Therefore Id €
W (w(Cp)) and by the case w = Id for the parabolic subgroup “ P and the isotypic
component w(Cp), we have w(Cp) = CP(w(Cp)),wP@)(aP(w(CP)) R ® HP(UJ(CP)))'
Moreover S(P(w(Cp))), which is the support of fOg — (w(A\))" by Proposition
232(ii) (applied to w = Id), is the same as S(Pc,), which is the support of
flc — w(N) by loc.cit. (applied to w), i.e. we have P(w(Cp)) = P(Cp). We
thus deduce w(Cp) = Cpcp)wp @ (7€) @ -+ @ §P(CP)) which gives [ZAI) by
applying w1

Step 2: From now on we assume w = Id (so in particular P C P(Cp)). Writing

" (g el (e )

(K/Qp) aeS(P(Cp)) Gal(K/Qp) aeS\S(P(Cp))
we prove that any (u1, p2) € X(T) x X(T') such that
(i) g1 occurs in (®Gal(K/Qp) (®0¢€S(P(CP)) L(Xa)))|r (for the diagonal ac-
tion of T); B
(ii) po occurs in (®Ga1(K/Qp) (®a€S\S(P(CP)) L(\a)))|r (idem);
(111) M1|ZJ\/IP +M2‘ZMP = >\|ZMP
must be such that ps = fZ(XES\S(P(Cp)) Ao (note that ps < fZ(XES\S(P(Cp)) Ao

and 1 < f 3 csp(cpy) Aa)- Let Xy gy, ph as in 2.29) for P(Cp) and the respec-

tive characters A, u1, po, we have X = pf + pb from (iii) and Remark 2:29(i), and
thus

(2.42) foa=X =5 3 A)-m+of( Z Ao) = th.
a€S(P(Cp)) aeS\S(P(Cp))

Assume pg is not fZaeS\S(P(CP)) Aa-  Then writing pio = >, , fi2,j,o Where
(4, ) € Gal(K/Qp) x S\S(P(Cp)) and ps j  occurs in L(A,) and applying Lemma
245 with P = P(Cp), A = Ay and p = pg ;o for o € S\S(P(Cp)) (the assump-
tions in Lemma are satisfied since the A, a € S are fundamental weights),
we get that f3° cq\s(p(cp)) Aa — H2 has at least one root of S\S(P(Cp)) in its
support. Averaging over w € W(P(Cp)) as in (Z29) and using w(A,) = Ay for
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w € W(P(Cp)) and a € S\S(P(Cp)) (same proof as for Lemma 2.43]), we get
applying Lemma to P = P(Cp) that fZaeS\S(P(CP)) Ao — 15 has still at
least one root of S\S(P(Cp)) in its support (and that py < f3° o\ s(p(cp)) Aa)-
Since py < f ZaeS(P(Cp)) A by the proof of Step 3 below, this root doesn’t vanish
in the sum (2.42)). But by Proposition 2.32(ii), S(P(Cp)) is the support of ([2.42),
which is a contradiction. Therefore, we must have u, = fZaeS\S(P(CP)) Ao and
thus from (iii) that

(2.43) Cr = Chepr © & < > Aa>,

Gal(K/Q,) \aeS\S(P(Cp))

where C’ )P is the isotypic component of

( ® ( ® L0z,

Gal(K/Qp) a€S(P(Cp))

associated to ()\ — fZaeS\S(P(CP)) /\a)|ZMP (=~ M2)|ZMP = MI‘ZMP)'
Step 3: We prove that

7 Z)\) e Y Zspa

aeS(P(Cp)) aeS(P(Cp))

(i.e. no root of S\S(P(Cp)) is in the support). Since A, is dominant, we have
Aa = AL, where X\ is defined as in [229) for P = P(Cp) and the character A,.
This implies (with obvious notation)

(2.44)

PO A)mmzf0 Y X =m=(F0 X M) -m) 20

aES(P(Cp)) aES(P(Cp)) aES(P(Cp))
where the last inequality follows from Lemma (applied with P = P(Cp)). If
f(ZaeS(P(CP)) Aa) —p has roots of S\S(P(Cp)) in its support, then by Lemma
again so is the case of (f(X,cs(p(op))Aa) — i), and thus of

f(EaeS(P(CP)) Aa) — py by @Z). As in Step 2, this is again a contradiction
by (Z42)) and the definition of P(Cp).

Step 4: We prove the statement for w = Id. By Lemma [2.44] applied with P =
P(Cp) and the various L(\,) for a € S(P(Cp)), we deduce from Step 3 that y; is

a weight of
® ( ® ZP(CP) ()‘Ot))

Gal(K/Qp) a€S(P(Cp))

inside ®Ga1(K/Qp)(®aeS(P(CP))z(/\a)) (see just after (230)). Let o € S(P(Cp)),
for each 8 € S(P(Cp)) we have (s, B) = (Aa,p(cp), B) (a straightforward check
from Z38)), thus Ao — Ag,p(cp) extends to Homeg,(Mp(c,), Gm) which implies

Lpp)(Aa) = Lpep)(Aa.pcr) @ Ao = Aa,pcp)): Thus =3 e spiopy (Pa—
Aa,P(Cp)) is @ weight of

X ( (09 fp(cp)()\a,P(cp))>ng(cp),

Gal(K/Qp) a€S(P(Cp))
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or in other terms:

benr=Cronr & @ (3 u-duren)).
)

Gal(K/Qp) “aeS(P(Cp))

where Cp(c,),p is the isotypic component of fg(cpﬂsz associated to

()\ —f Z Ao — f Z (/\a - >\(X7P(Cp)))|ZMP'

aeS\S(P(Cp)) aeS(P(Cp))
But by (Z37):
Yo e+ D Ca—daren)= Oa— Y. Aapcn = 07,
a€S\S(P(Cp)) a€S(P(Cp)) a€S(P(Cp))
so together with (Z43]) we are done. O

REMARK 2.47. The character w~=*(§7(P)) of Mp doesn’t depend on w €
W(Cp), as follows from Lemma and Lemma 243 (the latter applied with
P there being P(Cp)). In particular, by (24I]) we see that the representation

w(Cp(cpywp) of MSal(K/Q”) is also independent of w € W(Cp).

MG/

When Cp is as in Proposition 2:40] its underlying -representation

looks like Z but for the reductive group Mp instead of G.
COROLLARY 2.48. Let Cp be an isotypic component of f®|Z1Wp such that

P(Cp) = “P for some (unique) w € W such that w(S(P)) C S. Then there
is an isomorphism

Cpr=Tpe(w (@) 2w (0'"))

Gal(K/Qp)

Gal(K/Qp)

of algebraic representations of Mg over .

& +® . .
Proor. If P(Cp) =P, then Lp(c,|2y,, = Lwplzy,, has only one isotypic
component, corresponding to ffup| Dt p - So the corollary follows from Theorem
2.46] together with ([Z40). Note that, by Proposition 240, Cp corresponds to A =
fw=1(6g), which is consistent with Theorem 2.46] since

(w(A) - ng(Cp))|ZMwP = (w(fwil(eG)) - f@“’P)|ZMwP = f(aG - 0”’P)|ZMwP
= fng|ZJ\/IwP'
]

REMARK 2.49. In this remark, we use that we are working with G = GL,,.
We write Mp(c,) = diag(My,..., Mg) for some d > 0 with M; = GL,,, and
correspondingly T = diag(Th,...,Ty), where T; is the diagonal torus of GL,,, so
that we have X (T) = &%, X(T}) and S(P(Cp)) = I, S(M;), where X(T}) <
Homg, (T, Gy) and S(M;) & S(P(Cp)) N X (T;) is the set of simple roots of M;
(for the Borel subgroup of upper-triangular matrices). Note that S(M;) = 0 if
M; = GL;. For i € {1,...,d} such that n; > 1, one easily checks that A\, p(c,) €
X(T;) € X(T) if a € S(M;) and that the A\, p(c,) € X(T;) for a € S(M;) are
fundamental weights for the reductive group M;. Fori € {1,...,d} and \; € X(T7),
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we define Ly, (\;) as in (ZI) but for the reductive group M; instead of G. When
n; = 1, we define f? to be the trivial representation of MiGal(K/Q”) =~ Gﬁ‘“(K/QP),
Gal(K/Q,)

and when n; > 1, we define as in (Z.26)) the algebraic representation of M,
over F (seeing Ao p(cy) in X(T3)):

(2.45) 'Y & ( X fMi(AmP(cp)))

Gal(K/Qp) «a€eS(M;)

We then clearly have Zf?i(cp) = ®gzlfl®. Likewise, we have 6F(Cr) =
@, (7P, where (0F(CP)); € X(T;) extends to Homg,(M;,G,,) and where
we denote by p; the image in X (T;) of a character p € X(T).

For any w € W(Cp), we define (*P); as the standard parabolic subgroup of
M; which is the image of ¥ P under

YP < P(Cp) - Mpcp) = M,;

(in particular its Levi Mwp), is the image of Mwp under Mwp < Mp(c,) — M;).
Applying w to (241]), it is not difficult to deduce from Theorem 2:46]an isomorphism

of algebraic representations of MS ;I(K/ W) o H?zl M ((,}wallj(f/ ) over F:
d
(2.46) w(Cp) =X (CW- 9 ((07CP), @ - & (§7(CP)), ))7

=t Gal(K/Q,)

where Cy,; is the isotypic component of Z?| I associated to

(w(X) — f7Er)

i|ZI\4(wp)i

(thus an M((iilg()f/ Qp)—representation, note that C,, ; is trivial if n, = 1). If w’ is an-
other element in W(Cp), writing w’ = wp(cpyw with wp(c,) € W(P(Cp)) (Lemma
2306), we have M,p = wp(CP)waw;(lcp), and thus w'(Cp) = wp(c,)(w(Cp))
and Cpicpywp = wp(cp) (Cricp),wp) (as the twist by 67 g ... @ #PCr)
doesn’t involve the choice of w). Since 'LUP(CP)Miw;(lcp) = M; for all i, we get
Muwpy, = wp(CP)M(wp)iwl_D(lcp) (inside M;) and deduce for ¢ € {1,...,d} an iso-

Gal(K/Qp)

morphism of algebraic representations of M ) P);

to (239)):
(2.47) Cur,i Z wp(cp)(Cu,i)-

over F (with notation similar

We will avoid applying w™! to Cy,; since w™' Mp(c,)w is not in general the Levi
subgroup of a standard parabolic subgroup of G (see Remark [Z39((ii)), although it
indeed contains Mp.

2.2.4. From one isotypic component to another. We let P be a standard
parabolic subgroup of G. We show that, if Cp is an isotypic component of ¢ | Znip>
then one can associate to Cp in a natural way another isotypic component w-Cp of
Z®|ZMP for any w € W such that w(S(P(Cp))) C S (see Proposition Z5I). Note
that, on the contrary to w(Cp), w - Cp is an isotypic component of ¢ ‘ZMP for the
same standard parabolic subgroup P as Cp.
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LEMMA 2.50. Let pp € X (T') be a dominant weight. Then p occurs in f®|T (for
the diagonal embedding of T analogous to (Z28) if and only if p < fOg in X(T).

PROOF. Since this statement only concerns weights, we can work in characteris-
tic 0, i.e. with I = Qqax/q,) (®acs L(Xa)); where L(\a) = (indF- Aa) , @z
E (see (ZII)). Arguing as in the proof of [BH15| Lemma 2.2.3], it is equivalent
to prove that u is a weight of the algebraic representation L(ff¢g) of G. The result
then follows from the inequalities w(u) < p < fég for all w € W (the left ones hold
since p is dominant and the right ones since ff¢ is the highest weight) combined
with [Hum78| Prop.21.3]. O

PROPOSITION 2.51. Let Ap € X(Zy,.) be a character of Zyr, which occurs in
Z®|ZMP (for the diagonal embedding, as usual) with associated isotypic component
Cp 0ff®|ZMP, and let w € W such that w(S(P(Cp))) C S.

(i) For we, € W(Cp) the character of Zy,, :
(2.48) Ap = (fwg) (0a) + flwwe,)  (06)) | 2,
doesn’t depend on wc,, .
(ii) The character ([248]) corresponds to an isotypic component w - Cp of

Z®|ZJVIP7 i.e. occurs in f®\ZMP.
(iii) We have P(w-Cp) ="P(Cp).

PROOF. (i) For any a € S(P(Cp)) we have (since w(«) is still in S)
(2.49) (w1 (0g) — 0c,a) = (Bg,w(a)) — (Bg,a) =1—-1=0
which implies s, (w1 (0g) —0c) = w1(0g) — O, and thus for all w’ € W(P(Cp)):
(2.50) w'(w(0a) = 0g) = w ' (0g) — bg-

Let wg, € W(Cp), by Lemma we have w’CPwa}j € W(P(Cp)) and thus by
: 1
(wopwe ) (W™ (0a) — 0a) = w™ ' (0c) — bc.

Applying w’cgl we get in particular

(w5 (W™ (06) — 06))| 20, = (Wi, (W (06) = 0)) |z,

from which (i) follows.

(i) Let A € X(T) such that A|z,,, = Ap. Applying wwe, to 2.48), it is
sufficient to prove that flg — w(f8g — we,. (X)) occurs in f®\T (since f®|T is

acted on by the diagonal action of W — WS&I(K/Q)) Recall from Lemma 230(ii)
(and the definition of P(Cp)) that

(2.51) fba—we,(\) € > Zzoa.
a€S(P(Cp))
For 8 = w(a) € w(S(P(Cp))) and any w' € W, we have
(2.52) (foc —w(fbc —w'(N), B) = (ww' (), B) + f{bc — w(bc), B)
= (ww'(N), B) + flw™ (0c) — Oc, )
= (ww'(X), B),
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where the last equality follows from ([2.49). This can be rewritten as
(2.53)  sp(flc —w(flc —w'(N)) = fla — w(flg —w'(N) — (ww'(N), B)B
= f0c —w(fbg — saw'(N)).
Iterating (2.53)), we see that for any wpc,y € W(P(Cp)), we have for w’ € W that
(254)  wwpcpyw " (fle — w(flc —w'(N)) = fia —w(fc — wpcmw' (N).

Choose wp(c,y € W(P(Cp)) such that wpc,)(we,(A)) is dominant for the root
subsystem generated by S(P(Cp)), equivalently

(2.55) (wwpcpywep(N),B) >0 V3 €w(S(P(Cp))).

As X occurs in f®\T, we get that wp(c,)(wep(N) € wep(A) + Xes(piop)) Lo

occurs in f®\T (f® is stable under W), and thus wpc,)(weop(N)) < fOg. Since
on the other hand by ([Z5I)):

f06 —wpcpy(we,(N) = (fle —we,(\) + Y. Za € > Zao,

a€S(P(Cp)) a€S(P(Cp))
we see that we must have
(256) ng —Wp(Ccp)WCp ()\) S Z ZZ()O(.

a€S(P(Cp))

Since w(S(P(Cp))) € S, we deduce (w(flc — wpcpywey(N)),B) < 0 for B €
S\w(S(P(Cp))). In particular we have for such g:

(2.57) (fc —w(fbc —wpcpywey(N), B) = f — (w(fbe — wpcpywe,(N)), B)
> f.

Combining (Z52) for v’ = WP(Cp)Wep with (258) and (2357), we obtain that
fOc —w(fbq — wpcpywe,(N)) is a dominant weight. Applying w to ([2.56), we
also get since w(S(P(Cp))) C S:

e —w(fbc —wpcpywes (V) < flc.

Lemma 2.50] then implies that f0g —w(ffq —wpcpywep(A)) occurs in f®|T. By
(Z354)) applied with w’ = we,,, we finally deduce that f0g —w(f0c — we, (N)) also

)
occurs in L™ |p.

(iii) By definition S(P(w-Cp)) C S is the union of w'(S(P)) and of the support

of

(2.58) foc —w' (A= fwgh(8a) + fwwe,) ™ (06))

for any w’ € W such that w'(S(P)) C S and w' (X — fuwg ( q) + (wwcp)fl(Gg))
is the restriction to Za,, of a dominant weight of X (T) ®z Consider the

case w' & wwe,, since we, (S(P)) C S(P(Cp)) and w(S(P(Cp))) C S, we get
w'(S(P)) C S. Let us check that

w' (A= fwgl (06) + flwwe,) " (06)) = wwe, (A) — fw(fe) + fOo

is the restriction to Zp,, —of a dominant weight of X(7T) ®z Q. Let X as in
@229), since A|z,,, = Nz, , we have w'(N)[z,, , =w'(X)|z, , and it is enough
wlp wip
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to prove that wwe,(XN) — fw(fg) + fOc is dominant. As in (252) we have if
a € w(S(P(Cp))):

(wwe, (N) = fw(fc) + fla, a) = (wwe, (N), a) + f0c —w(ba), o)
= <wCP (A/)awil(a» >0

since we, (V') is dominant in X (T') ®z Q by Proposition 2:32(i), and as in (ZX1)
we have if o € S\w(S(P(Cp))):

(wwe, () = fw(be) + f0a,a) = f = (w(fle —we, (X)), a) > f

since w(ffe — we, (X)) € > pes(p(cp)) @zow(B) from Proposition 2.32(ii). Now
all that remains is to compute (258) for v’ = wwe,, which gives w(flg —we, (N)),
the support of which is w(support(ffe — we, (A))). Therefore we obtain

S(P(w- Cp)) = w(we, (S(P)) Usupport (f0c — we, (M) ) = w(S(P(Cp))

which finishes the proof.
O

REMARK 2.52. If Cp is one of the isotypic components of Proposition 240, say
associated  to fwalla (0c)|zy, for some wc, € W such that
wep(S(P)) C S, and if w € W is such that w(S(P(Cp))) C S, i.e. wwe, (S(P)) C
S, we see from ([248) that w - Cp is the isotypic component associated to
f(wwcp)_l(QG”ZMp'

EXAMPLE 2.53. Let us consider Example 238(ii) (Example 235(i) only pro-
vides components C'p which are either as in Remark 252 or such that P(Cp) = G).
If P = B and Cp is associated to A\jq = ¢, then w-Cp for w € S3 gives the isotypic
component associated to A, (and there is no w - Cp # Cp if Cp corresponds to
det since P(Cp) is the whole G). If Mp = GLs x GL4, consider Cp associated
to Ao and w € Ss the unique permutation e; — ea, es — e3, es — e1 (so that
w(S(P(Cp))) = w(e; —ez) € S). Then w-Cp is the isotypic component associated
to A2 (here again, there is no w - Cp # Cp for Cp corresponding to \p).

2.3. Good conjugates of p

Following and generalizing the mod p variant of [BH15. §3.2], we define and
study good conjugates of a continuous p : Gal(Q,/K) — G(F) under a mild as-
sumption on p (see Definition 2.63]) and still assuming K unramified. Though some
of the results might hold for more general split reductive groups, we use here in the
proofs that we work with GL,,.

2.3.1. Some preliminaries. We start with a few group-theoretic preliminar-
ies.

We fix a standard parabolic subgroup P of G. Recall that a subset C C RT
is closed if « € C, B € C with a + 3 € RT implies a + 3 € C. For instance
R(P)* C R* is closed.

DEFINITION 2.54. A subset X C R is a closed subset relative to P if it satisfies
the following three conditions:

(i) it contains R(P)¥;
(i) X\R(P)* is a closed subset of R*;
(ili) for any w € W(P), w(X\R(P)") = X\R(P)*.

Licensed to Chinese Academy of Sciences. Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.
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Note that a closed subset relative to B is the same thing as a closed subset and
that RT is the only closed subset relative to G.

LEMMA 2.55. Let X C RT be a closed subset relative to P. Then X is a closed
subset of RT.

PROOF. Since we already know that both R(P)* and X\R(P)* are closed, it
remains to show that if « € R(P)" and 8 € X\R(P)" are such that a + 3 € R™,
then a+ 3 € X. We work with GL,,, and it is then easy to check that a+ 8 = s,().
Since s, € W(P), we have a + 8 € X\R(P)* C X by Definition 254((iii). O

REMARK 2.56. Note that Lemma doesn’t hold for an arbitrary split con-
nected reductive algebraic group (for instance it doesn’t work for GSp,). An al-
ternative definition would be to consider closed subsets Y of RT\R(P)* such that
Y U R(P) is also closed.

If X C RT is any closed subset, we let Ny C N be the Zariski closed algebraic
subgroup generated by the root subgroups N, for o € X (see [Jan03, §I1.1.7]).
Thanks to Lemma [2.55] we can thus consider Nx for any X C RT closed relative
to P.

LEMMA 2.57.

(i) Let X be a closed subset of RT relative to P. Then MpNx is a Zariski
closed algebraic subgroup of P containing Mp.

(ii) Let P C P be a Zariski closed algebraic subgroup containing Mp. Then
there exists a unique closed subset X relative to P such that P= MpNx.

PRrOOF.

(i) Since MpNx = MpNx\gr(p)+, it is enough to prove that Mp normalizes
Nx\r(p)+- Let a € R(P)*, 8 € X\R(P)" and let ny, € N, ng € Ng. Then

(259) nanﬁn;1 = ( H nia+j5)n57
ij>0

where the product is over all integers 7,7 > 0 such that ia.+ j3 € RT (see [Jan03]
§I1.1.2]). Since X C R™T is closed, all these i + j§ are in X, and since 3 ¢
R(P)*, they are all in X\R(P)*. Therefore nongny' € Nx\rp)+. Let w €
W(P), B € X\R(P)" and ng € Ng. Then w(B) € X\R(P)" implies wngw™! €
Nx\r(py+- The Bruhat decomposition for the reductive group Mp then shows that
Mp normalizes Nx\r(p)+-

(ii) Let P C P be a closed algebraic subgroup containing Mp. Then P =
Mp(PNB)=Mp(PNN) (sinceT C Mp C P). By [BH15| Lemma 3.4.1] applied

to PN B C B, we deduce PN N = Ny for a (unique) closed subset X C R*. Since
Mp NN C PN N, the set X contains R(P)". Since PN Np = Nx\g(p)+, the set

X\R(P)" is closed, and moreover P = MpNx\g(py+. Since Mp normalizes Np

and P, it normalizes PN Np = Nx\r(p)+, from which Definition 2.54(iii) easily
follows. O
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REMARK 2.58.

(i) The sets R(P)* and R* are closed with respect to P (they correspond
respectively to P = Mp and P = P in Lemma 257). In particular, if X is
closed with respect to P, from w(RT\R(P)") = R"\R(P)" and w(X\R(P)") =
X\R(P)*, we also get w(RT\X) = RT\X for all w € W(P).

(i) If X C R™ is a closed subset relative to P, it follows from the proof of
Lemma 2.57(i) that Mp normalizes Nx\ g(p)+-

LEMMA 2.59. Let X C R* be a closed subset relative to P. Then there are
roots ai, ...,y € RT\X such that we have a partition

Rt = XTI {w(a;) :w € W(P)}I--- I {w(a,) :we W(P)}

and such that, for all i, c; is not in the smallest closed subset relative to P con-
taining X and the a; for 1 <j <i—1.

PROOF. Since w(RT\X) = RT\X for all w € W(P) (Remark [Z58(i)), we
have a partition Rt = X IT {w(ay) : w € W(P)} 1 --- 1T {w(avy,) : w € W(P)}
for some ay,...,a, € RT\X. Denote by h(-) the height of a positive root (see
e.g. [BH15, Rem.2.5.3]). Replacing each «; by a suitable w(a;) for w € W(P),
we can assume h(«o;) maximal among the h(w(a;)), w € W(P). Permuting the o,
if necessary, we can assume h(ay) > h(az) > -+ > h(ayy,). It is enough to prove
that each set X IT {w(ay) :w e W(P)} - - T {w(ay) :w e W(P)}for 1 <i<m
is closed relative to P, or equivalently that X; “ (X\R(P)*) Il {w(ay) : w €
W(P)} - - I {w(a;) : w € W(P)} satisfies conditions (ii) and (iii) in Definition
254 for 1 < i < m. Since (iii) is clear, let us prove (ii), i.e. that each of the X; is
closed in R*.

This is obvious if i = m since RT\R(P)" is closed, so we can assume i < m. If
X; is not closed for some i < m, then its complement in R contains an element
x which is the sum of at least two roots of X;, at least one being in {w'(¢;) :
w' € W(P),1 < j < i} (since RF\R(P)" is closed). Such an element z is in
R(P)T I {w(ej) : w € W(P),i +1 < j < m} and, since v'(X;) = X; for v’ €
W (P), it also satisfies w'(z) € Rt for any w’ € W(P). In particular x can’t be
in R(P)*, and is thus of the form = = w(ay) for some k € {i +1,...,m} and
some w € W(P). Thus w(oy) is the sum of at least two roots of X;, one at least
being in {w'(a;) : w' € W(P),1 < j < i}. Applying a convenient w’ € W(P)
and using again w’(X;) = X;, we can modify w if necessary and assume that «;
for some j € {1,...,i} appears in the sum of w(qy). This implies in particular
h(w(ow)) > h(e; ) for some j < i (see the argument in the proof of [BH15|, Lemma
3.2.1]), which is impossible since by assumption h(w(ay)) < h(a) < h(a;). Hence
X; is closed for all 7. O

75 def

LEMMA 2.60. Let X C R* be a closed subset relative to P, P = MpNx and
let we W such that w(S(P)) C S. Then the following assertions are equivalent:

(i) wPw™" is contained in " P;
(i) w(X\R(P)") C R".

PROOF. We have

wPw™! = (prw_l)(wNX\R(p)+w_l) = (U}MPw_l)Nw(X\R(P)ﬂ-
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As P = (wMpw )N, we deduce wPw= C “P if and only if w(X\R(P)T) C
RT. O

2.3.2. Good conjugates of a generic p. We define good conjugates of a
Gal(Q,/K)-representation p under a mild genericity assumption and show how two
good conjugates are related (Theorem 2.65]). The intuitive idea is that conjugating

a good conjugate of p can only increase the image in G(IF).
We fix a continuous homomorphism

(2.60) 71 Gal(Q,/K) — P5(F) € G(F),
where P; C G is a standard parabolic subgroup. We consider

pre : Gal(Q,/K) = Py(F) — Mp,(F),
and assume that the image of 577 is not contained in the F-points of a proper
(not necessarily standard) parabolic subgroup of Mp,. This implies in particular
that P, is uniquely determined by the homomorphism p. Finally we let p® be
the homomorphism Gal(Q,/K) — G(F) obtained by composing p’7~* with the
inclusion Mp_(F) C G(FF) (so p* is the usual semisimplification of p). We let X5 be
the smallest closed subset of RT relative to P5 such that ﬁﬁ(lﬁ‘) = P, (F)Nx,(F)
contains all the p(g), g € Gal(Q,/K). By Lemma 257 135 is the smallest closed
algebraic subgroup of P5 containing Mp, such that p takes values in ﬁﬁ(FL i.e.
p: Gal(Q,/K) — P5(F) < P5(F) < G(F). Note that Xz = R(P)* and P r, . =
Mp,.

LEMMA 2.61. Assume that the irreducible constituents of p* of dimension 1
(i.e. the characters of Gal(Q,/K) occurring in p>) are all distinct. Let o € RT\ X5
and no € No(F)\{1}. Then X, -1 is the smallest closed subset relative to P;
containing Xz and a.

PROOF. The proof of this lemma is quite technical, but is no more than simple
computations in GL,,. We denote by X5, C R' the smallest closed subset relative

to P5 containing X5 and o and by X5 C X5 the subset of roots which are not the
sum of at least two roots of X5 . For g € Gal(Q,/K) we can write

(2.61) o) =77 J[ nsl),
BEXF\R(Pp)*
where p'77*(g) € Mp,(F) and ng(g) € Ns(F). Using ([Z59), we see that
(2.62) (T melo)nat € [ @),
BEXF\R(P7)* gl
where 7 runs among the roots in Rt of the form Zsoa + ZsofB1 + + - + Z=oBs for
s > 1 and 8; € X5\R(P5)*. This clearly implies X, 5n:t © Xpa. To prove the

reverse inclusion, it is enough to prove Xz C X, _ -1 and w(a) € X,, 5 -1 for

some w € W(F;) (as then o € X, - -1 by Remark 2.58(i)).

An easy explicit matrix computation in GL,, (that we leave to the reader) gives
that n,p' 7 %5(g)n; " is of the form in GL,, (F):

(2.63) e S (gma €50 [ male)
Be{w(a)weW (Pp)}
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with mg(g) € Ng(F) (note that, as w € W(P;5), w(a) is of the form a + nioq +
-+ 4+ ngoy for some t > 0, oy € S(P5), n; € Z). It then follows from (2:62) and
ZB3) that, for 8 € X,\(X;N R(P5)"), the entry ng(g) in ZBI) is not affected by
the conjugation by n,. In particular, we have )Ai:p - Xnaﬁn;1.

We now prove that w(a) € X, - -1 for some w € W(P5). We first claim that
none of the roots v in ([2.62) are in {w(a) : w € W(P5)}. Indeed, assume w(a) =
ma+mq S+ +mgfs for some s >0, m >0, B; € X5\R(P5)", m; >0. if m =0,
then we get w(a) = m1fB1 + -+ + myBs € X5\R(P5)" since X5\R(P5)" is closed
in R*, which implies a € X5\R(P5)* by Definition 254]iii), a contradiction. If
m > 0, then we get (m—1)a+mi81+---+msBs = n1ag +- - - +ngay (writing w(e)
as in the above form), which implies in particular all 3; € R(P5)", a contradiction.
We deduce from this that for all g € Gal(Q,/K):

nap(g)ng ' € nap 7 = (g)ng [ N (F)
Y

with v in R\ (R(Pp) T I {w(a) : w € W(P5)}).

We can see p'7*%(g) as a block matrix diag(p;(g),...,p4(g9)), where
p; + Gal(Q,/K) — GLy, (F) is irreducible. Assume that {w(a) : w € W(P5)} 2
{a}. Then using that, for fixed i, the p;(g) for g € Gal(Q,/K) do not take all values
in the F-points of a strict (not necessarily standard) parabolic subgroup of GL,,,, one
can check that at least one mg(g) in ([Z63) is nontrivial for some g € Gal(Q,/K).
If {w(e) : w € W(P5)} = {a}, then there are integers 1 < ¢ < j < d such that
ni = n; = 1 and the non-diagonal entry in ma(g) is (p;(9) — p,(9))za, where
o € F* is the non-diagonal entry in n,. By assumption, there is at least one
g € Gal(Q,/K) such that p;(g) # p;(g), which implies mq(g) # 1 for that g.
Hence we finally deduce that

mptane e r =@ I me(a) [[M
Be{w(a):weW (Py)} ¥
with v in RT\(R(P5;)* I {w(a) : w € W(P5)}) and at least one mg(g) being
nontrivial for some g € Gal(Q,/K) and some 8 € {w(a) : w € W(P;)}. This
implies that this £ is in X -1 and finishes the proof. O

NaPNo

PROPOSITION 2.62. Let p: Gal(Q,/K) — P5(F) and X5 as below (Z60), and
assume that the irreducible constituents of p*° of dimension 1 are all distinct. Then
there is hg € P5(IF) (non unique in general) such that Xhoﬁh(;l C Xj5p-1 for all
h € P5(F).

PRrOOF. The proof is modelled on that of [BH15] Prop.3.2.3]. Since Mp,
normalizes Nx \r(p,)+ (Remark 2.58(ii)), it is enough to prove the same statement
with ho, h € Np,(F). Using that p'7(g)"*hp"7 %(g) € Nx_\r(py+(F) for h €
Nx\r(py+(F) € Np,(F) by Remark 2.58(ii) again, and that Nx \gr(p,)+(F) is a
group, we deduce Xj5,-1 € X5 for all h € NXF\R(PE)+(IF). Replacing o by a
suitable conjugate hophg ! with hg € N X \R(Py)+(F), we can assume Xjz,-1 =
Xz for all h € Nx,\r(p,)+(F). It is enough to prove Xz C Xjz,-1 for all h €
Np,(F). Choosing roots ay,...,a, € RT\X5 as in Lemma (for P = P5
and X = X3), we can write any h € Np (F) as h = hphm_1---hihp, where
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hi € gequw(anwew pyy No(F) and hz € Nx\ r(py)+ (F). We have Xhﬁphﬁ—l =Xz
and a straightforward induction applying successively Lemma .61l to X hyph=t and
a = a1, Xp,h,p(hihy) -1 and @ = ag, etc. (which we can do thanks to Lemma 2.59)

gives that Xj5,-1 is the smallest closed subset of R™ relative to P5 containing X5
and the oy, i = 1,...,m. In particular X; C Xj,5,-1 for all h € Np_(IF). |

DEFINITION 2.63. Let p : Gal(Q,/K) — G(F) be a continuous homomor-
phism such that the irreducible constituents of p*° of dimension 1 are all distinct.
A good conjugate of p is a conjugate p’ of p in G(F) which satisfies the two condi-
tions:

(i) it is of the form p' : Gal(Q,/K) — Py (F) C G(F) for a standard para-
bolic subgroup P5 of G such that the image of 7’ Por=ss Gal(Q,/K) LN
Py (F) — Mp,, (F) is not contained in the F-points of a proper parabolic
subgroup of M Py
(11) Xp/ g th/h—l for all h € Pﬁ' (]F)

From Proposition 2.62] we easily deduce that good conjugates always exist. If
p is irreducible, then any conjugate of p in G(F) is a good conjugate.

For p: Gal(Q,/K) — 155(]1?) C P5(FF) as in (2.60), set
pop o T weW u(S(F) C S and wlXA\RF)Y) € BT
. ={we W :w(S(P5)) C S and w]%w‘1 C “P5},

where the second equality follows from Lemma [2.60l Using the definition of X5 we
see that, for any w € W5, we have X,,5,-1 = w(X5), where

wpw ™ 1 Gal(Q,/K) — wPs(F)w™! = Pypy,-1(F) C (“Py)(F).
(and note that the set X,5,-1 is relative to “P5, while the set X5 is relative to
P;).

LEMMA 2.64. Let p : Gal(Q,/K) — G(F) as in Definition 263 and o' :
Gal(Q,/K) — ﬁﬁ/ (F) € Py (F) a good conjugcite of p (where ﬁp/ & Mp,Nx_, =
Mp, NX?,\R(P?,)+). Then any hp'h™! for h € Py (F) and any wp'w™" for w € Wy
is a good conjugate of p. Moreover we have Xpzp-—1 = Xp and Xyp,-1 = w(Xp).

PROOF. Again, the proof is formally the same as that of [BH15, Lemma 3.2.5].
The statement is obvious for h € Py (F) (as hNx\ r(p)+ h=!= Nx\g(p)+ for any X
closed subset relative P and any h € Nx\g(p)+) and the very last equality follows
from the discussion just above. Following the argument in the proof of Proposition
262 it is enough to check

Xh(wﬁ/w—l)h—l = pr/wfl
for all h € NXwﬁlw—l\R(Pwﬁ'w—l)+(F) = Nw(Xﬁ/\R(Pﬁ/)Jr)(F)- We have
h(wp'w DA™t = w(w ™ hw)p (w™th ™ w)w ™.
Since wthw € NXF,\R(pF,)+(IF), we have X (-1 hw)5 (w-1n-1w) C Xp and since p’
is a good conjugate, we have Xz C X (- 1hw)p (w-1h-1w), Nence

Xﬁ/ = X(wflhw)ﬁ/(wflhflw) .
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Applying the discussion just before this lemma to (w~'hw)p’(w~'h~'w) and then
to o/, we thus get Xh(wplw—l)h—l = w(X(w—lhw)ﬁ/(w—lh—lw)) = ’LU(XF) = pr’w—1
O

We now state and prove the main result of this section (see [BH15|, Prop.3.2.6]).

THEOREM 2.65. Let p : Gal(Q,/K) — G(F) be a continuous homomorphism
such that the irreducible constituents of p*° of dimension 1 are all distinct. Let o’
and p” be two good conjugates of p. Then there exist h € ]55/ (F) and w € W5 such
that p”" = w(hp'h~")w™t. In particular we have Xz = w(Xz).

PROOF. By assumption there is z € G(F) such that p”(g) = x7'(g)z~" for all
g € Gal(Q,/K). We can write x = h"wh’ with b’ € Py(F), b’ € P (F) and
w € W such that w(R(Py)*) C RT.
Step 1: We prove that w(S(P5)) = S(P5). We have wh'd (g)h''wt e Psi (F)
for all g € Gal(Q,/K), which implies Wp(g)h' " e (w™Pyrw N Py)(F) C Py (F)
for all g € Gal(@p/K). In particular, using for instance [DM91], Prop.2.1(iii)],
the image of h/ﬁ/h’*1 in Mpﬁ, (F) is contained in the F-points of the parabolic
subgroup w~ ! Pyrw N Mp, of Mp,. But since (h’ﬁ’h’_l)P?’_ss is conjugate to
27 7 (recall I € Py (F)), the image of K/p'h’' " in Mp_, (FF) is not contained in the
F-points of a proper parabolic subgroup of M Py Thus we must have w™! Pyrwn
M P, = M P, which implies M P, C w M P W. The same argument starting
with w_lh”_lﬁ”(g)h”w € Py (F) yields Mp, C prﬁ,w_l, i.e. we have Mp, =
w'Mp_,w. Since by assumption w(R(Py)*) C R*, this forces w(S(Py)) =
S(Py) (and thus w(R(Py)") = R(Py/)™).
Step 2: We choose roots o, ...,al,, € RT\ X5 as in Lemma 259 (for P = P5 and
X = Xp) and we write

h/ == h’lﬂllh”/ﬂl/—l e hah%,

where h) € Hﬁe{w’(a;):w'EW(PE/)}Nﬁ(F) and hy, € Py(F). By Lemma 264 we
can replace 7’ by hl, 7’ h/g/l and thus assume 7, = 1. By Lemma 26l and an
induction as in the proof of Proposition 2.62, X}, -1 is the smallest closed subset
relative to Py containing Xz and those o such that h; # 1. Since wW g~ Hw?
takes values in Py (F) and w(R(Py)) = R(P5) (by Step 1), we must also have
'LU(Xh/ﬁ/h/fl\R(P 1) € RT\R(Py)*. This implies ww'(c)) € RT if w' € W(Py)
and h} # 1, and w(X5z\R(Py)*) C R*. In particular w € W5 together with Step

1.

Step 3: We prove that Xz» = w(X5). Setting
hi L whlwt € 11 Ng(F) C  Py(F)
Be{ww’ (af):w' €W (Pyr)}

(we proved ww'(a) € R™ in Step 2), we have
(2.65) 7 = B (- )P0 (- B,

where b/ hy, ---hy € Py (F) and where p” and wﬁ’w_1 are good conjugates of p

(the latter by Lemma, IZT)ZI) Applying Definition [Z63] to both 7" and wp'w ™', we
get Xp = Xyzr-1 = w(Xp) (and thus w 1P nw = Pﬁ/).
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Step 4 : We complete the proof. We choose again roots af, ..., a2, € R\ X 5,1
as in Lemma 259 for P = P,z ,,-1 = Py (this latter equality from Remark 2.23))
and X = X, 5,,-1 = X5 and we write

B! o=+ ha) = bty = B,

m'’'—1"

Where h;’/ € Hﬂe{w”(a;’):w”EW(Pﬁu)} NB(F) and h;/(ﬁ” € Pwﬁ/w—l(F) = Pp// (]F) FI“OIII
(263) and Lemma 2:61] we see that we must have b = 1 for all ¢ € {1,...,m"}
otherwise Xz would be strictly bigger that X,z ,,~1. Thus we deduce

—1n n—1 n—1

o -/, —1 _ —1pn —/ —1 —1
P = Xﬁllwp w h’Xﬁ// - 'LU('LU h ﬁ//w)p ('LU hXﬁ//w)w .

Setting h & w_lh')’(puw € w_lﬁﬁu (Fw = 155/ (F), this finishes the proof. O

2.4. The definition of compatibility

Given a sufficiently generic n-dimensional representation of Gal(Q,/K) over F
(where K = Q, is still unramified) and a good conjugate p of this representation
as in Definition 2263] we define what it means for a smooth representation of G(K)

over F to be compatible with ﬁﬁ (Definition 2770 see the beginning of §2.3.2 for ﬁﬁ)
and to be compatible with p (Definition 2:8T]).

2.4.1. Compatibility with P. We first define what it means for a smooth
representation of G(K) over F to be compatible with a Zariski closed subgroup P
of a standard parabolic subgroup P as in Definition 2.22 We keep the notation of

§92.2) 2.3

We fix a Zariski closed algebraic subgroup P of a standard parabolic subgroup
P of G as in Definition 2.22] (by Remark 223 P is in fact determined by P). We let
X be the unique closed subset of RT relative to P such that P = MpNx (Lemma

[257) and define
W5 < {we W :w(S(P)) CS, wX\R(P)*) C R}
Note that W is analogous to W5 in (2.64) with ]Bﬁ replaced by P.
Let @ be a parabolic subgroup containing “#P for some wp € Wp, wg an
element of W such that wg(S(Q)) C S and Q' a parabolic subgroup containing

“Q (@) (note that both @ and @' are standard). So we have inclusions of standard
parabolic subgroups “Q@¥sP C Y@ C ' and likewise for the Levi subgroups

Mugqugp = waﬁMp(wals)71 C Mwgg = wQMQwél C Mg
Using that we work with GL,,, we write
Mg = diag(Ms, ..., My)
with M; = GL,,, and we define the standard parabolic subgroup (“2Q); of M; as
(“2Q); = Im(“2Q — Q' — Mg — M;).
We define a standard parabolic subgroup (*2“2P)q of Mwq, resp. a standard

parabolic subgroup (“?"“FP)q ; of Mwqg),, as the image of QPP via “eWEP C
Y@ = Mug g, resp. via YQWPP C "2Q — Mugg — Mvq),. Equivalently,

(VPP q = wq (PP N Mo)uwg' C woMoug' = Muaq
(“eWPP)q,; = Im(wq("PP N Mo)wy' € Mwag — Mag), )
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Note that

Mwovpp), = wQM(‘“ﬁP)mMQwél = woupMp(wqup) ™.
We finally define a Zariski closed algebraic subgroup (waﬁﬁ)Q of (We¥rP)g con-
taining Mwqupp),, resp. a Zariski closed algebraic subgroup (Ye™BP)q.i
of (Ye¥pP)q ; containing Mqupp), , as

(waﬁJB)Q def wQ((wl,;]Swlgl) N MQ)wél C wg (PPN MQ)wg?1 = (“QvWFP)q
wowsTS def = _
(“9#P) . 2 T (wg ((wp Pwzh) N Mo)ug' € Muag = Mrag), ).
We also define the continuous group homomorphism
’ _ Q’ w™ L
w00 QT (K) — Moi(K) o KX “5 Y < FX,

where 69 is defined in (Z37) (applied with P = Q).
We need a quite formal and easy lemma.

LEMMA 2.66. Let IT be a smooth representation of a p-adic analytic group over
F which has finite length and distinct absolutely irreducible constituents. Let H be a
split connected reductive algebraic group over Z, Py C H a parabolic subgroup with
Levi Mp,,, 13H C Py a Zariski closed algebraic subgroup containing Mp, and R

Gal(K/Qp)

a (finite-dimensional) algebraic representation of Py over F. Assume that

there exist
(a) a filtration on R by good subrepresentations for the PGal(K/@P)-action (see
Definition 222)) such that the graded pieces exhaust the isotypic compo-
nents of R\ZMPH ;
(b) a bijection ® of partially ordered finite sets between the set of subre-
presentations of I1 and the set of good subrepresentations of R‘ﬁg}al(}(/@p)

(both being ordered by inclusion).
Then the following hold:
(i) The bijection ® uniquely extends to bijections between subquotients of
II and good subquotients of R|§§a1<x/@p), and between irreducible con-
stituents of 11 and isotypic components of RlZMPH

(ii) IfIU' is a subquotient of I1, then ® induces a bijection of partially ordered
finite sets between the set of subrepresentations of II' and the set of good

subrepresentations of ®(1')| scaix/ap) -
H

PrOOF. Formal and left to the reader. O
REMARK 2.67. (i) Let IT and @ as in Lemma 266, II' a subquotient of II

and II” C II' a subrepresentation. Then the bijection ® also induces a short exact

sequence 0 — ®(1I") — P(II') — P(II'/II") — 0 of algebraic representation of

ﬁga](K/Qp) over F.

(ii) By Lemma applied with P there being the parabolic “2P above, we
see that Lemma [2.66] can be applied with H = G, Py = “#P, Py = wﬁPwil and

R=I° . Using moreover Lemma 2.25] one easily sees that Lemma 2.66] can also be
applied with H = Mg, Py = “PPN Mg, Py = (wPPw~ )N Mg and R any isotypic
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component Cg of f®\ Zarg, (recall from (the proof of) Lemma [2.24] applied with P

there being Q that the action

of QG¥(K/Qr) on the subquotient Cg of ¢ | gaaicc/ap) factors through QGaIK/Qp) _,
Gal(K/Qp)

Mg ).

(iii) Let @ as above, Cg an isotypic component of f®|ZMQ, Q¥ P(Cq) (see
42.2.2) and wg € W(Cq) (see (231)) and note that **Q C Q' by (232))). Lemma
2.66] can also be applied with H = Mvqq),, Py = (Y?"“PP)qi, Py = (w@“’ﬁﬁ)Qyi
and R = Cy,, i, where Cy,, ; is the algebraic representation of M wzl(é{)/ ®) defined
in Remark 249 with P there being @ (it is an isotypic component of LZ | Zus . ).
To prove that assumption (a) of Lemma[2.66is satisfied in that case, note that Cy,, ;

is a good subquotient of f? |
of fi

(%0 Q)CH/ %) and thus a fortiori a good subquotient

Gal(r/Qp) (Lemma [Z28)), where (“*“#P)g/; C (*2Q); € M, is the

(‘U)Q '(UPP)
standard parabohc subgroup of M, with the same Levi as (“2*#P)g ;. We have

(“9"PP)q. C ("VPP)qi C (V“PP)qri C M,
and (wQ“’ﬁﬁ)Qi is a closed algebraic subgroup of (“*"“#P)¢ ; containing
Meovepyy, , = Meavep)g,:
One then applies Lemma with Z? and with
(“2"PP)q C (“9"PP)qri € M;
instead of P C P C @G, which implies that there is a filtration on
Cug, z|(wa};P)Gal<K/@p>

(or on C,

@ z| wQu;PP)Gml(K/Qp), and thus on OwQ i (U;Qwﬁp)Gml(K/Qp)) by good sub-

representations such that the graded pieces exhaust the isotypic components of
CU) - C’LUQ 7

Q”L|ZM(/UJQw~ |ZM UQUp

PP)g,; PPy,

LEMMA 2.68. Let P C P, ws € Wg and Q containing PP as above. Let Cq
be an isotypic component of Z®‘ZMQ and Q' < P(Cq).
(i) For any wg € W(Cq), there is a canonical bijection of partially ordered
finite sets between the set of good subrepresentations of
CQ|(wﬁﬁw;1)cauK/@p> = CQ|((wﬁﬁw;1)ﬂMQ)ca1<K/@p>
(where the equality follows from Remark 261(%)) and the set of good
subrepresentations of wQ(C’Q)\(waﬁﬁ)gaum@p) .

(ii) For any wq,wg € W(Cq) and i € {1,...,d}, there is a canonical bijec-
tion of partially ordered finite sets between the set of good subrepresenta-
tions of Cy, G/ Q) and the set of good subrepresentations of

Cury .

ailrarspy

il Qw};ﬁ)Gdl(K/QI,)
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PROOF.
(i) follows from the definition of wg(Cgq) in ([2.39) and the fact that

(U’Qwﬁﬁ)Q = wQ((wﬁﬁwlgl) N MQ)wél.

(ii) We have wy, = worwq with wg: € W(P(Cq)) = W(Q') by Lemma 2.36]
(applied with P there being (). In particular wg (wo(S(Q))) C S which implies
(“QYPP)qq = wQI(“’Q“’ﬁP)Q’iwé,l inside M(“"QQ)i = 'LUQ'M(“’QQ)iwé/l (viewing wey
as an element in W (M;) by abuse of notation). By (2Z47) (applied with P there
being Q) we have Cw/Q’i = wq/(Cug,i), where the conjugation by wé,l intertwines
the actions of (“@“#P)q.; and of (“@“FP)q ;. The result follows.

(]

REMARK 2.69. The bijections in Lemma [2.68 all extend to bijections between
good subquotients or isotypic components on both sides, as for Lemma [2.66

Let II, H, Py, IBH, R and ® be as in Lemma 266 For any wy € Wy
(the Weyl group of H) such that wHPHw;{l is contained in a standard parabolic
subgroup of H, we can define another bijection wy (P) between the set of subquo-

tients of Il and the set of good subquotients of Rl(wa)Hw;Il)Gal(K/Qp) as follows:

wy (P)(II') is the algebraic representation wy (®(I1')) of (wgr Prwyt) G/ Q)

where wg (®(I'))(g) o () (witgws) if g € (wy Prwyt)SM /@) | see ([Z37).
Here is now the first crucial definition.

DEFINITION 2.70. An admissible smooth representation II of G(K) over F
which has finite length and distinct absolutely irreducible constituents is compatible
with P if there exists a bijection ® of partially ordered finite sets between the set

of subrepresentations of II and the set of good subrepresentations of f®| PGal(K/0p)
(both being ordered by inclusion) which satisfies the following conditions (once
extended to all subquotients as in Lemma [2.60)):

(i) (form of subquotients) for any ws € Wp, any parabolic subgroup

() containing “PP and any isotypic component Cg of Z®| Zaig writing
MP(CQ) = M; x -+ x My with M; = GL,,, we have

- ~ 1o aG -
(2.66) wp(®) " (Cq) = Indpggé),(K) (m(Cq) ® (w™t o F(Ta)y),

where P(Cg) is defined in §22.21 #7(C@) is defined in ([Z37) and where
m(Cq) is a Mp(c,)-representation of the form 7(Cq) = 7, (Co) ® --- ®
mwa(Cq) for some (finite length) admissible smooth representations m;(Cq)
of M;(K) over F;

(ii) (compatibility between subquotients) for any wz € W5, any para-
bolic subgroup @ containing 2P, any isotypic component Cg of 7 | Zarg,
and any w € W such that w(S(P(Cq))) C S, let w(w(Cq)) be the rep-
resentation of Mu p(cy,)(K) = wMp(c,)(K)w™" defined by

w(r(Cq))(g) = m(Co)(w™ gw)
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for 7(Cq) as in ([2.66) and g € Mwp(c,,)(K). Then we have
m(w- Cq) = w(r(Cq)),

where w - Cg is the isotypic component of f®| Zarg, in Propo-
sition 251ii) (applied with P there being Q) and where 7(w - Cg) is
as in ([2.60) for the isotypic component w - C¢ instead of Cg (note that
P(w-Cg) ="P(Cq) by Proposition 251)(iii));

(ili) (product structure) for any ws € W, any parabolic subgroup @ con-
taining PP, any isotypic component Cg of f®| Znig and one, or equiva-
lently any by Lemma 2.G8(ii), element wqg € W(Cq), writing Mp(c,,) =
diag(My, ..., M) with M; = GL,,, the restriction of w(®) to the set
of subquotients of wz(®) ' (Cq) comes from d bijections wp(P)w,,i of
partially ordered sets between the set of M;(K)-subrepresentations of
m;(Cq) (where m;(Cg) is as in (i)) and the set of good subrepresenta-
tions of CwQ’i|(wa};ﬁ)Gail(K/Qp) (where Cy,, ; is the isotypic component of

Z?|ZM('UJ@Qy with its Mo/ %) aetion in [248)) applied with P there

("2Q):
being @) in the following sense: for any subquotient I of ®~!(Cq) of
the form
~ 1. G(K _
= IndPECé),(K) (M@ @) oW ! osfCay)

with 7} a subquotient of m;(Cg), the good subquotient wz(®)(Il') of
CQ|(wﬁﬁw1;1)Gal(K/Qp) = CQ|((w};ﬁw};1)ﬂ1\/lQ)Gal(K/Qp)

corresponds via Lemma [2.68(i) and Remark to the following alge-

braic representation of (“’Qwﬁﬁ)gal(K/Qp) = H?:l(waﬁﬁ)gi‘l(K/Qp)f

d
(wﬁ@’)ww(ﬂé) 2 ( (07 ), - @ (0F(C2), ));

Gal(K/Qp)

i=1

(iv) (supersingular) for any isotypic component Cp of f®| Za,» the (abso-
lutely irreducible) Mp(c,.)(K)-representation 7(Cp) of (2.66) is super-
singular (cf. [Her1l] Def.4.7, Def.9.12, Cor.9.13]).

If (TII, @) is as in Definition 270, then we have in particular ®(II) = 7% and
WH(P)we,i(mi(Cq)) = Cugi- If P = G, then II is compatible with P if and only if
IT is absolutely irreducible supersingular. Also it is clear from Definition 270l that,
for a fixed wz € Wp, 11 is compatible with P if and only if II is compatible with

wﬁﬁwlgl (replace @ by wg(®)).

REMARK 2.71.

(i) In Definition 270, we have used Lemma everywhere (see Remark
267(ii)(iii)). In Definition Z70(iii), we have used Remark Also, Definition
.70 is somewhat redundant since a parabolic subgroup () can contain “FP for
several wp € W, but we found it too tedious to make it “non-redundant”.
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(ii) The representations w(Cg) and m;(Cg) in Definition [RZT0(i) are
uniquely defined since there are no nontrivial intertwinings between parabolic in-
ductions (by [Emel0al).

(ili) When Q = “BP, n(Cwpp) in (266]) is absolutely irreducible, and is thus
automatically of the form 7(Cwpp) = 71 (Cupp) ® -+ @ 7y(Cwpp). It is then
not difficult to deduce from this, together with Lemma 2:34] and [Emel0a] (and
the properties of @), that each m;(Cg) as in (Z66]) has distinct (absolutely) irre-
ducible constituents and that each irreducible constituent of (2266 is of the form

Indggggy),(m (r)®- @)@ (w ohP(C@))), where m} is an irreducible constituent

of m;(Cq). This also justifies the terminology “comes from d bijections wp(®) i

in Definition 270{iii).

(iv) It is in fact possible that Definition 2X70(i) for parabolic subgroups @
strictly containing some “#P and Definition [2.70((iii) both automatically follow from
the other conditions in Definition 270l See for instance how the results of [Haul8]
are used in Example 2, Example 4, Example 5 and Example 6 of §2.4.3] below to
show that several conditions of Definition 2.70] are automatic in special cases.

(v) In Definition [Z70(iii), we have to use some element wg of W(Cg) and
“pass through wg(Cg)” because of Remark 2:39(ii) (see also the end of Remark
[249)). Nothing in here and what follows depends on the choice of such a wg.

(vi) For a given II compatible with P, a bijection ® as in Definition P701is not
unique in general (consider the case P = Mp).

(vii) In Definition 270 it is necessary in general to consider all elements wp €
W5, note just wp = 1, otherwise one misses some condition, see for instance (2.90)
below (note that this is also quite natural in view of Theorem [Z:65]).

EXAMPLE 2.72. Let us consider the case n = 3, K = Q, and P = P with Mp =
GLs x GLj in the last part of Example 235](ii) (see also Example [253]). We denote
by P’ _the standard parabolic subgroup of Levi GL; x GL2. Then II is compatible
with P if and only IT has 3 irreducible constituents and the following form (a line
means a nonsplit extension of length 2 as a subquotient and the constituent on the
left-hand side is the socle):

GL3(Qp) _ GL3(Qp) -
IndeEQIS (7 (w0 det) ® x) SS IndP,f(Qp) (xw?2®mn)

where x : Q; — F* is a smooth character, 7 is a supersingular representation of

GL2(Q,) and SS is a supersingular representation of GL3(Q,). The case P = Mp
is analogous but with a semisimple II (instead of nonsplit extensions). See also
§2.4.3 below for more examples.

The following proposition shows that a representation II as in
Definition 2.70] has internal symmetries.

PROPOSITION 2.73. Assume 11 is compatible with P and let ® be a bijection
as in Definition R.70. Let ws € Wg, Q a parabolic subgroup containing “PP and

Cq an isotypic component of Z®|ZMQ such that P(Cq) = “2Q for some (unique)
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wg € W with wo(S(Q)) € S. Then m;(Cq) is compatible with (waﬁﬁ)Q)i for
i€ {l,...,d}, where m;(Cq) is as in Definition [Z70l(7).

PROOF. The proof is long but essentially formal. Replacing P by w ﬁﬁw; and
® by wi(®) (see the discussion following Definition 2.70), we can assume wp = Id.
We write for simplicity w instead of wg. Recall from Proposition [Z40] that Cq is
the isotypic component of fw=1(6g)| Zaig in f®\ Znigy - More precisely, by (2.40),
Corollary 248 and Remark (especially (246)), we have an isomorphism of

algebraic representations of MSSI(K/Q") = H?:1 MiGal(K/Qp) = H?:1 GLS?I(K/QP):

d
(2.67) w(Cq) 2 Lig® (0% 26"?) =X (f;@ 2 (0"9i® - (9‘“%)).
i=1
Thus the map ®,,; in Definition Z.70(iii) (recall ws = Id and w = wg) is a bijection
of partially ordered sets between the set of M;(K')-subrepresentations of 7;(C¢) and

the set of good subrepresentations of Ci, ;| . = cax/e,) = f®| < aa(k/0p) (recall
(WP PP,

that ("' P)g,; is here a standard parabolic subgroup of M; and (“’JB)QJ a Zariski
closed subgroup of (P)g, containing M(wp)Qyi). We have to check that @, ;
satisfies conditions (i) to (iv) in Definition [Z70 (with M; instead of G and (w]S)Q,i
instead of 15) We will only check condition (i) below, leaving the others, which are
again essentially formal, to the (motivated) reader.

We can assume i = 1. Let P, & ("P)g,a, P (U’IS)QJ (so Mp, C P, C
P, C M; € Mwg) and recall that T is the torus of diagonal matrices in M;. Let
wp € Wp C W (M), Q1 a parabolic subgroup of M; containing “71P; and Cgq,

an isotypic component of Z?|ZI\IQ1 , we have to prove that wp (®41)"H(Cq,) is of
the form (266]).

Step 1: Let @1 = wp x Idx - x Id € W(My) x -+ x W(Mg) = W(“Q) C W
and set wp < wldw € W(Q). Then wp € Wp and @ contains “PP. Indeed,

since wp € Wp and the simple roots of P, are contained in w(5(Q)) C S, we see

1

that ws = w™'wyw sends the simple (resp. positive) roots of PN Mg to simple

(resp. positive) roots of Mg and the roots of P N Ng to positive roots (using that
W(Q) normalizes Ng). Moreover, one easily checks that “»P; = (“WeP)gq =
(“(*#P))q,1- Replacing P by “#P and ® by wz(®), we can thus assume wp = Id.
Step 2: Let A\; € X (T1) be a weight of Z?h«1 such that Cg, is the isotypic com-
ponent of )\1|ZZ\/IQ and recall that 1|z, = fOr,lzy, = fOuqlzy,, where Ouy,
for i € {1,...,d} is defined as in (2Z1) replacing G = GL,, by M; = GL,,,. Let
Awg € X(T) be the unique character such that Awg|r, = A1 and Awgln, = fOu, =
fbuglr, it i € {2,...,d} (here, we use the convention in Remark and recall
that 0y, is trivial if M; = GL1). Then Awg is a weight of ®g:1 Z? T,. We set
A g + 079 € X(T)
which is a weight of f®\T (use (267))). We have

(2'68) )\|Z1\41 = )‘1‘ZM1 + waQ|ZM1 = .](91\/11|ZM1 + fer‘ZMl
= f(Ouq + 0" )|z, = f0clz.,
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and if 7 > 2:

(2.69) Nz, = f0ar, + 10"z, = f(Bug +679)

In particular )‘|ZMwQ = f0g|ZMwQ and thus

(2.70) W (W) 2, = F 7 (06) | 20, -

Let Q1) € @ be the standard parabolic subgroup of G such that “Q ) € “Q has
Levi Mg, x My x --- x My. As P C Q1 by Step 1, we note that “@)(;) contains
“P and hence Q1) contains P, W(* Q1)) = W(Q1) x W(Ma) x --- x W(My) and
w(S(Qq))) = S(Q1) L S(M2) I - - - 1T S(Mg). Let Cq,, be the isotypic component

of f®‘ZMQ associated to wil()\)\ZMQ . From @Z10) we get Cq,, C Cq (inside
(1) (1)

f®| Zng,, )) and from (2.68), (269) an isomorphism of algebraic representations of

MSal(K/Qp) ® H — MGal(K/Qp)
(2.71)

d
w(Cau) = (Car @ (0" 1@ 0 (6") ) o @ (L7 (7@ © (679)) ).

Step 3: Define ', X\, and 0 by the formula (I?ZQI) for P ="Q ) and the respec-
tive characters A, Awg and Og. Set A} = & Tacnl Q1 1 Ewlew (@) Wi(A1) € (X(T) ®z
Q)@ From (the proof of) Lemma 3] we easily get N = Mg + 10" 9 with
Noglry = A1 Let wy € W(My) such that w;(S(Q1)) € S(M1) and wq (A7) is domi-
nant (w; exists by Proposition 2.32(i)). We prove that w;(\') = w1 (\.g) +f0"9is
also dominant (we consider here w; as an element of W (* Q) in the obvious way and
use that W (*Q) acts trivially on 6" 9). "I, = fOg|n,
if i > 2. But H’G is dominant since 0 is (see the proof of Lemma 230(i)), thus
(w1 (N),a) = (N,a) = (fO,a) > 0if o € {ej —ejp1 :m1+1 < j <n-—1}
Since wy (A wQ)|T1 = wi(\)) is dominant by assumption and (f6"?,a) = 0 if
a € {ej—ejp1 11 < j < my—1} (see after [Z3T)), we are left to check that
(w1(N),en, — eny+1) > 0. But an explicit computation gives

<w1(>‘,)a €ny = €ny41) = <w1()‘1ﬂQ)v €ny — €ny41) + <f9wQa €ny — €ny+1)

= (w1(Aog), en,) — (W1(Nug), €ny 1) + fnz
—1
:<w1()\<vQ)7€n1>—fn22 + fna
n2—|—1
>
> f=5

where the last inequality follows (w1 (. g), en,) > 0 by Remark 220(ii) applied to
Z?|T1 (instead of f®|T) together with formula (2:29).

Step 4: By definition, S(P(Cyg,)) is the support of f0y, —w1(A]) (see Proposition
232(ii)). By Remark EZ2Z9(ii) we have w1 (\) = (w~'(\)) in (X(T) @, Q)W (Qw),
where the latter is given by (2.29) applied to the parabolic Q(;) and the character
w=H(A). Since wiw(S(Q(1))) € S and wiw((w'(N))) = wyw(w (N)) = wi(N)
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is dominant (Step 4), S(P(Cgq,,,)) is by definition the support of

(272) fgg — wl()\') = ng — (wl()\ﬁuQ) + fan) = f@wQ — wl(AiuQ)
d
= (O, —wi(N)) + Y (fOu, — [Ohs,),
i=2

where ¢, is defined by ([229) applied to P = M; = G and the character 0y, of
T;. In fact, OM is the character det"iT_1 of T;, from which we easily see that the
support of [(Z72) is exactly S(P(Cgq,)) I S(My) 11 --- 11 S(Mg). This implies
(273) MP(CQ(l)) = diag(MP(CQl)v Mz, ceey Md).

Step 5: We now finally prove that ®,, ;1 satisfies condition (i) in Definition 270l
Write Mp(cq,) = M1 X~ xMiq, (for some dy > 1), by condition (i) in Definition
2770 for the map ® we have using (273):

(2 74)

~ 1 G(K 1 _,P(C
(CQ“)) Ind EC(;( )~ (K) ((Wl(CQm) ® - @ma(Cq,)) ® (w Lo g™ Q(l))))a

where 71 (Cq,,,) = m,1(Cq,,) ® - @14, (Cq,,) (with obvious notation). Let

(2.75) m = In dM(l(K)) (K) (m1(Cquy) ® (w0 g7 (Ca))),

it is enough to prove that 7] is a subquotient of m1(Cg) and that
P,1 (7)) = CQ1|13f;a1(K/Qp) (= CQ1|(1310MQ1)Ga1(K/Q,,)).

Note first that
(2.76) 9P(Caqn)) — gP(Ca) 4 P (Cay)

where we view 7(¢@1) as a character of T (not just T7) by sending the coordinates
in T; to 1 for ¢ > 2 (this is straightforward to check from 231)). From (274),

75 and (T6), we gt
*I(OQ(U) Ind E o)~ (K) ((7T,1®7T2(CQ(1))®~..®7rd(CQ(1)))®(w7109P(CQ)))_

Since Cq,, is a subquotient of Cg (both being good subquotients of f®|13<;a1(x/@p) ),

~1(Cq,,) is a subquotient of ®~*(Cq). This implies in particular (using the ordi-
nary functor of [Emel0al together with Remark 2 T71(iii)) that 7 (resp. mi(Cq,,,)
for ¢ > 2) is a subquotient of m1(Cq) (resp. of m;(Cg) for i > 2). By condition (iii)
for @ (in Definition 270) applied to II' = ®~1(Cq,,) (together with P(Cq) = “Q),
(wP)G"‘l(K/Qp)

we also get an isomorphism of algebraic representations of HZ 1 over
F:
(277) w(Cqp) = (Pualr)) ®((0" )18+ & (679)1) )&
d
R (Builmi(Cauy) (07 -2 (0°9),)),
=2

Where ®ya(m)) and @44 (mi(Cq,,)) (i > 2) are good subquotients of

L;|
wP (‘U)P)
factor of (IZ'_Z[I) and @77, @TI) and @T7) imply P, 1(7)) = C’Q1|13Gd1(x/@p)
1

qu(K/Qp) Since we have good subquotients of f

Gml(K/@p) in each
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64 2. LOCAL-GLOBAL COMPATIBILITY CONJECTURES

and ®,(m(Cq,,)) = L;

i |(,wﬁ)<;a1<x/@,,) for ¢ > 2 (recall isotypic components of

Q.1

ZZ@| 2GR /2p) tautology occur with multiplicity 1, so there is no multiplicity issue).
(w P)Q,i

This finishes the proof of condition (i) in Definition for @y, 1. O

REMARK 2.74. When P(C() is strictly bigger than @@ for one, or equivalently
any by Lemma 238 wg € W(Cg), there is no real analogue of Proposition 273

since fz@ has to be replaced by Cy,, ; in ([248) which is not f? in general.

2.4.2. Compatibility with p. We define what it means for a representation
of G(K) over F to be compatible with a good conjugate p : Gal(Q,/K) — ]%(]F)
as in §2.3.2] Essentially, an admissible smooth representation II is compatible with
p if it is compatible with ﬁ; in the sense of Definition Z70] and if the bijection ®
of loc.cit. satisfies some natural compatibilities with the functor Vg in (Z8) (see

Definition 2.8T]).
We now fix a continuous homomorphism
p:Gal(Q,/K) — G(F)

and recall that p* denotes the semisimplification of the associated representation
of Gal(Q,/K) (see §2.3.2). We assume that p is generic in the following sense:

(a) p* has distinct irreducible constituents;

(b) the ratio of any two irreducible constituents of p* of dimension 1 is not

in {w,w 1}

By Proposition [Z62] conjugating p by an element of G(F) if necessary, we can
assume that p is a good conjugate in the sense of Definition 2.G3] that is we have
p: Gal(Q,/K) — P5(F) C P5(F) C G(F),
where P5; is a standard parabolic subgroup of G such that p* is given by the
composition Gal(Q,/K) 25 Po(F) — Mp,(F) (see (2.60)), ]35 C P5 is the smallest
closed algebraic subgroup of P5 containing Mp, and the p(g) for g € Gal(@p /K)
(in its F-points), and where, for any h € P5(IF), if we define Pyz,-1 C P as for p,
then we have P; C Pj,5,-1. Good conjugates are not unique, see Theorem [Z.65] but

we fix such a good conjugate p (and the associated pair (Pg, P5)) for the moment.
For any w € W5 = Wp_ (see (2.64))) and any parabolic subgroup @) containing
P

@Pg, we define the Q-semisimplification 59~ of 7 as the continuous homomorphism

ﬁQ_SS . Gal(@p/K) {[)ﬁ;l ﬁpﬁ(lﬁ‘) — Q(F) - MQ (]F)

(strictly speaking, it also depends on w). More generally, for any w € W such that
w(S(Q)) C S, we define the continuous homomorphisms

Q- . Aal(T. /R P 1
w(E@) : Cal(@,/K) T wMg(F)w " = Mug(F)

and note that w(p@ %) actually takes values in
(“"P5)Q(F) C (“"P5)Q(F) € Muq(F)

(recall from the beginning of 4 IIthat (V*P5) g = w("P;NMg)w™! and (“’“7]55)Q =
w((wP;w') N Mg)w™1).
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2.4. THE DEFINITION OF COMPATIBILITY 65

Let w € W45, Q a parabolic subgroup containing ﬁPp, w € W such that
w(S(Q)) € S and Q' a parabolic subgroup containing “@Q. We write Mgy =
diag(Ma, ..., My) with M; = GL,,, and we set for i € {1,...,d}:

W), : Gal(@,/K) "5 Maug(F) = Mo (F) — M,(F).
We also have (recall from §2ZZ.T] that (*'@Q); is a standard parabolic subgroup of
Mi)l

278)  w(E? ) : Gal(@,/K) " T Mug(F) — Mg, (F) — Mi(F).

Composing w(p?~%); with M;(F) — (M; /M) (F) = F*, we obtain by class field
theory for K a continuous group homomorphism

(2.79) det(w(p97%),) : KX — F*.

LEMMA 2.75. Let p, Q as above, Cg an isotypic component of E®‘ZMQ and

Q P(Cgq). Then the characters Z19) for i € {1,...,d} and w € W(Cgq) (see
(Z31)) don’t depend on the choice of w € W(Cq). Moreover, we have

Hdet (B975%),) = det(p).

PrOOF. This follows from Lemma 236 (applied to P = Q) together with the
fact that conjugation by W(P(Cg)) (seen in MP(CQ)( ) is trivial on Mp(c,,) /M P(Co)’

and thus on each M;/Mge". The last assertion is obvious. ]
As previously, w(p%® ), in (ZT8) takes values in
(“®Pp)Q.i(F) € (V7 Py)Qui(F) € Mug), (F) € M;(F) = GLy, (F)

(recall from the beginning of §ZZ.I] that (“*P;) ; is a standard parabolic subgroup
of M(wg), and that (“UP5)q,: is a Zariski closed algebraic subgroup of (V“P;)q
containing Mwap,),, ,)-

PROPOSITION 2.76. Let p, Q as above, w € W such that w(S(Q)) C S and
Q' L vQ. Then w(p? ), : Gal(Q,/K) — M;(F) is a good conjugate with values
n (“"P5)qi(F) fori€ {1,...,d}.

PROOF. Note that wpw ! is a good conjugate (with values in @Jgﬁ(lﬁ‘)@_l -
UP5(F)) by Lemma 264 Since w(p? %) is obtained from p?~% by permuting
the blocs M; = GL,, of Mg, it is equivalent to prove the statement for w = Id.
Assume that p; & (p@), : Gal(Q,/K) — M;(F) is not a good conjugate. Then
it follows from Proposition 2.62 that there is h; € ("P;)q.:(F) such that h;p;h; " is
a good conjugate, and thus Xhiﬁihi—l C X5, (with the notation of §2.3.2)). Let o
be a positive root of GL,,, in Xﬁi\Xhiﬁihzl and note that, if a; is a sum of roots

in R (viewing «; in R"), then all of these roots are positive roots of GL,,. Set
dcf

h Idgr, € GLy,(F) if j # ¢ and define h = (h1,..., hq) € diag(My, ..., Mg) =

Mg ((F) C Q( ). If we had o € X}, g55-15-1, then from what we just said necessarily
we would have a; € X(jp0-ssp-1), = Xhiﬁihi—l which is impossible. Therefore
a; &€ Xpapg-1p-1. But since a; € X5, € Xgpp—1 (viewing the positive roots of
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GL,, as a subset of R*) we deduce Xnapa—1h-1 & Xgpg-1 which is impossible as

wpw ! is a good conjugate. |

For o € Gal(K/Q,) = Gal(Q,s /Q,) consider
7 Gal(@,/K) — By(F) C Py(F) C G(F),

where 57 (g) & p(ogo!). Here g € Gal(Q,/K) and o is any lift of o in Gal(Q,/Q,).
Since Gal(Q,/K) is normal in Gal(Q,/Q,), p° (g) is well defined up to conjugation
(by elements in ]%(IF)) If C is a good subquotient of f®\ﬁ§al(x/@p) (Definition
222), we can view in particular C' as a continuous homomorp}fism

(2.80) P5(F) x -+ x P5(F) — Aut (C(F))

Gal(K/Qy)

(denoting by C(F) the underlying F-vector space of the algebraic representation C')
and define a Gal(Q,/K)-representation C(p) as

Gal(@,/K) L& By(F) x - x Py(F) -5 Aut (C(F)),

where, in the first arrow, we choose any order on the elements o of Gal(K/Q,).

LEMMA 2.77. The Gal(Q,/K)-representation C(p) is well-defined up to iso-
morphism and canonically extends to a Gal(Q,/Q,)-representation.

BGal(K/Qy)
Pﬁ

PrOOF. The algebraic representation C of over F doesn’t depend

up to isomorphism on the order of the copies of ﬁg, i.e. any permutation of the ﬁg’s
yields an algebraic representation which is conjugate by an element of Aut(C(F)).

Indeed, this clearly holds when C' is an isotypic component of f®| Znp 88 4 Mp,
I3

embeds diagonally into ]SFG AlK/Q) hus, for a general good subquotient C, any
permutation of the P5’s gives a representation C” which contains the same isotypic

components of ° | Zu,,_ as those of C. Assume now that C'is a good subrepresenta-
P
tion of f®| BGal(K/Qp) - Then C’" must be isomorphic to C since isotypic components
I3
of f®| Zu,, tautologically occur with multiplicity 1. In general, one writes C' as
2

the quotient of two good subrepresentations of f®| BGal(K/Qp) - All this implies that
C(p) is well-defined. ’

We now prove that it extends to Gal(Q,/Qy). First, if C = f®|ﬁGal(K/Qp), then C(p)

F p—

is the tensor induction (ZI3)) and thus canonically extends to Gal(Q,/Q,). Let us
recall explicitly how it extends. Fix o1,..., 0y some representatives in Gal(@p /Qp)
of the elements of Gal(K/Q,) = Gal(Q,s/Q,) and define permutations wy, ..., wy
on {1,...,f} by Ui:f;l = a;il(j)hi’j, where h;; € Gal(K/Qp,). The underlying

F-vector space f®(IF) of I is
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where (®,cs L(Aa))(F) is the underlying Vector space of ®a€S L()\a), and the
action of o; then sends v1 @ V2 ® - - ® vy € % (F) to u1 ®ug ® - -- @ uy, where:

(2.81) ) = (R TOW)) lhig) ) v)).
a€es

This yields an action of Gal(Q,/Q,) which doesn’t depend on any choice (up to
isomorphism). It is enough to prove that this action of Gal(Q,/Q,) preserves the

subspaces C(F) C ¥ (F), where C is any good subrepresentation of Z®| BCaIK/Qp)
2

But this is clear from (238I) since C(F) is preserved by the action of Gal(Q,/K)
and by any permutation of the v; (as we have seen at the beginning). (Il

REMARK 2.78. One could also use L-groups as in §2.T.4] in order to have more
intrinsic definitions (see Remark [2.20(i)). However the above pedestrian approach
will be sufficient for our purpose.

The following lemma is in the same spirit as Lemma 2. 75)]

LEMMA 2.79. Let p, Q as above, Cq an isotypic component of Z®‘ZMQ and
Q' ¥ P(Cy). Forwe W(Cq) andi € {1,...,d}, let
o Cy,; be the isotypic component of Z?|ZM(WQ), defined in [246) (applied
with P there being Q); B
o w(p? ), the representation of Gal(Q,/K) with values in Mgy, (F) de-
fined in [2I8) (applied to Q' = P(Cg));
o Cu;i(w(p9™);) the representation of Gal(Q,/Q,) defined in Lemma
277 (applied to p = w(p®~*);, Z? and C = Cy ;).
Then the Gal(Q,/Q,)-representation Cy;(w(p?™);) doesn’t depend on w €
W(Cq).

PROOF. Let w' be another element in W(Cq). Then w' = wpcy,)w with
wp(cy) € W(P(Cq)) by Lemma (with P there being Q). Since wp(c,) re-
spects M;, we have

w'(P97)i = we(co)w(P? ) itp ey
The result then follows from (Z47T) (applied with P = Q). O
REMARK 2.80. Lemma 279 still holds replacing C, ; by any good subquotient

of Cy, l|(wa Gal(i/2p) and using the proof of Lemma [Z68(ii) and Remark 2.69] to
compare w1th the corresponding good subquotient of
Cuw il i Galx/2p)- The proof is the same as for Lemma 279 using that w(p% %),

(“""Pg)q
takes values in (wap) ().

We now state the second crucial definition. We use the functor Vg defined in
21T in the case H = GL,;,, m > 1 (with the convention of Example 23)). If a
smooth representation 7 of H(K) has a central character, we denote it by Z () (so
writing Z(7) in the sequel implicitly means that 7 has a central character). We
also define

O, \

(2.82) w0 by, Zag, (K) = K* MR Y X
(Oas, as in (221) replacing G by M;).
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DEFINITION 2.81. An admissible smooth representation II of G(K) over F
which has finite length and distinct absolutely irreducible constituents is compatible
with p if there exists a bijection ® as in Definition 2.70] for P= ﬁﬁ (in particular II
is compatible with Jgﬁ) which satisfies the following extra conditions:

(i) for any subquotient II' of II, we have an isomorphism of Gal(Q,/Q,)-
representations over [F:

(2.83) Ve (Il') = (1) (p),

where ®(II')(p) is the associated representation of Gal(Q,/Q,) defined
in Lemma 2.7

(ii) for any w € Wp, any parabolic subgroup @ containing aPﬁ and any
isotypic component Cg of f®|ZMq, writing Mp(c,,) = diag(My, ..., Mg)
with M; =2 GL,, we have for one, or equivalently any, element w €
W(Cq) and for any subquotient 7} of m;(Cgp):

(2.84) Z(ﬂ';) = det(’w(ﬁQiss)i) ~wlo GML
Vi, () 2 @(@)w,i () (w(p¥)s),
where
o 1;(Cg) is the admissible smooth representation of M;(K) over I in
Definition 2770(1);
o det(w(p?™%);) (resp. w™! 0 fyy,) is the character of K* defined in

@209) (resp. in (2382));

o W(®P), ;(n}) is the good subquotient of Ow7i|(w@135)Q,i defined in Def-
inition Z70(iii);

e w(p?™™); is the representation of Gal(Q,/K) with values in
(“®P5),i(F) € M), (F) defined in (ZT8) (applied to Q' =P(Cq));

o W(P)y; (7)) (w(p?);) is the representation of Gal(Q,/Q,) defined
in Lemma 277 (applied to p = w(p?~%);, fz@ and C =
W(P)uw,i (7))

If 11 is compatible with 7, then we have in particular Vg (IT) 2 f®(ﬁ) and
Vi, (m:(Cg)) =2 Cupi(w(p?™);) for Q,w,i as in Definition 28Iii) (recall that
Vi, (m:(Cq)) is always the trivial representation of Gal(Q,/Q,) whenn; = 1). If pis
(absolutely) irreducible, then ﬁﬁ = P; = G, W5 = {Id} and II is compatible with
if and only if IT is absolutely irreducible supersingular, Z(I1) = det(p)-w~'o(0c|z.)
and V(1) = % (p).

REMARK 2.82.

(i) The isomorphisms in (284 are consistent with Lemma 2775 Lemma 279
and Remark [Z.80 since their left-hand sides don’t depend on w € W(Cq).

(i) Let II be compatible with p. From (2.66) applied with ws = 1 and Q = P,
(Z84)) applied with w = 1 and @ = P, the last assertion in Lemma 275] and from

d
06120 = 07D |250p(cq)l 26 = 07|24 (H9Mi|zw)
1=1
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(which follows from (2.37)), we deduce that each irreducible constituent II' of II
is such that Z(Il') = det(p) - w™! o (6g|z,). Since these irreducible constituents
are all distinct by assumption, we obtain that IT has a central character Z(II) =

det(p) - w0 (Bg|zs) = det(p) - w3

(iii) Let II be compatible with p, II" a subquotient of 1T and II” C II" a subrep-
resentation. Then from Remark [Z.67(i) we have an exact sequence of Gal(Q,/Q,)-
representations:

0 — o(I1")(p) — @(11')(p) — (1" /11" (p) — 0.

Thus ([283) implies that the sequence 0 — Vg(I1") — Vo (I') — Vg (II'/11") — 0
is exact. In other terms, when applied to II and its subquotients Vi behaves like
an exact functor.

(iv) Let x : K* — F* be a smooth character. Then it easily follows from
Remark [24)(ii) that IT is compatible with p if and only if II® (x odet) is compatible
with p® x.

(v) For a given II compatible with p, a bijection ® as in Definition m is

still not unique in general. For instance consider the case n = 4, K = Q,,, P5 =
Mp, = diag(GL2, GL2) and p = p, ®p, with p; : Gal(Q,/Q,) — GL2(F) absolutely

irreducible distinct for i = 1,2 but such that A2p; = AZp,.

Definition 2.8T] doesn’t depend on the choice of a good conjugate.

PROPOSITION 2.83. If 7' : Gal(Q,/K) — ﬁp/(]F) C Py (F) is another good
conjugate of p, then II is compatible with p if and only if I1 is compatible with p’.

PROOF. From Theorem 265 we have p' = whph~tw~! for some h € ]%(]F)
and some w € W5. By symmetry, it is enough to prove that II compatible with
7 implies IT compatible with p’. We have first that II is compatible with hph~'.
Indeed, ﬁhﬁha = ]55 and the conditions in Definition 2:81]for hph~! follow from the
conditions for 7 since w(p%®~%); and w((hph~1)?~%),; are conjugate in (wﬁ’ﬁ;)Q7i(]F)
(with @, w here as in Definition [Z8T]). Thus we can assume h = Id. But then, it is
clear from Definition Z.81] that II is compatible with 7’ = wpw~!. O

Just as some statements in Definition 270 should follow from others (see Re-
mark 27TI(iv)), we expect the isomorphisms ([2:83)) to follow in many cases from the

isomorphisms (2:84)):

PROPOSITION 2.84. Assume 11 is compatible with p and let ® be a bijection as
in Definition 28Il Let w € W5, Q a parabolic subgroup containing “P5, Cq an
isotypic component of f®|ZM and 11 a subquotient of W(®)~1(Cq) of the form

~ G K —
I = Indip (&) ey (] @ @ 7)) @ (w7 0 67(C)),

where m, is a subquotient of the representation m;(Cq) of M;(K) over F defined
in Definition 210(7) (so that w(®)(Il') is a good subquotient of Cql,zcmuc/ap =

CQ|((,L'D§?ﬂ)'71)m]\/[Q)Gal(K/Qp) ). Assume that

VMP(CQ) (771 "® 7Td ® VMP(CQ) i
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(with the notation used in Lemma2H). Then the isomorphism ([2.83)) for II' follows
from the isomorphisms (2.84]).

ProoOF. For i € {1,...,d}, we have (easy computation):
(2.85) (0P(Ca)), = det" Xi=1"s

Let «} s T ® W to det)”‘zézlnj, we have by Lemma 20 ([285) and Remark
ﬂ(n)

Ve(Il') = VG(Ind(;EIC( - (K)( b )@ w o QP(CQ)))
d .
> (X (VMi (7)) @ (Z ()"~ >0=17) | o %ﬁ)) ® d¢
(Vantrty (205 00 03) =) g ) ) 05,

where § & (6c: H?Zl 5];[1) ind?}(@p(w— i1 e) with (by an explicit computation):

—nl<n—z_:lnj) (nl —1—|—n—z_:1nj>
(2.86) = nz(n - inj) (n— 1-— Snj)

Now, assuming (2.84) we have for one, or equivalently any, w of W (Cgp):

B(IT)(p) = @(2)(IT) (7)
= @(@) () (72)

X =

~ (w@)wm ) (w(p )2

1

.
Il

(0700 07D)) o (20 (wp*)0))) )

(Vi) @ ((det(w(p®); ))"_25':1”")@;)

(R

.
Il
_

®-

Il
_

(VM,L, (r}) ® ((Z(ﬂ;.) cwoly,)" e ”) \QX),

D
(2

where the first isomorphism follows from p = wpw !, the second equality is obvi-
ous (w(®P)(IT") being a representation of MGal(K/Q”) as it is a subquotient of Cg),
the second isomorphism follows from Deﬁnltlon 2.70(iii), and the last two isomor-

phisms from ([2:84), ([280) and local class field theory for Q,. So we have to prove
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(oc Hz 10 )1nd®Q”( - ¢) =1, which amounts to checking the following ex-
plicit 1dent1ty (using (286) and Example 23)):

n—1 d n;—1
Zj ZZ] -l—Z(nzn—an n—l—an)
j=1 i=1 j=1 Jj=1

This follows easily by induction on d using the case d = 2 and the identity
(n—m)?*+(n-m+1)7>*+--+(n-12=14+22+---+(m—-1)* +m(n—m)(n—1)

for any integers n > m > 1. O

The following proposition is analogous to Proposition [Z.73]

PROPOSITION 2.85. Assume II is compatible with p and let ® be a bijection as
in Definition 28Il Let w € W5, Q a parabolic subgroup containing “Ps and Cq an
isotypic component of Z®|ZM such that P(Cq) = *Q for some (unique) w € W

with w(S(Q)) C S. Then 71'1(0@) is compatible with w(p®~*); for i € {1,...,d},
where m;(Cq) is as in Definition RT0(i) and w(p®™%); as in 2ZIF).

PROOF. We use the notation in the proof of Proposition 273l Replacing p by
wpw 1 and ® by w(®), we can assume w = Id. We have to prove that the map
®,, ; satisfies conditions (i) and (ii) of Definition 8] with M; instead of G and
w(p?~%%); instead of 5. Note that this makes sense thanks to Proposition 276l We
can assume ¢ = 1. Condition (i) clearly follows from the second equality in (Z:84])
applied to 7] = m1(Cg). Arguing as in Step 1 of Lemmal[273] we need only consider
a standard parabolic subgroup @ of M; containing (' P5)g,1 and Cg, an isotypic
component of fi@| Znig, - Let Cq,,, be the isotypic component of f®\ Zg,,, defined
in Step 2 of the proof of Proposition 273l Then it is easy to check that condition
(ii) for My, w(p? )1, Cg, and an element w; € W(Cq,) follows from condition
(ii) with G, p, Cq,, and wyw € W(Cq,,,) (see Step 3, Step 4 and Step 5 of the
proof of Proposition [2Z.73)). O

2.4.3. Explicit examples. We explicitly give the form of a representation IT
compatible with p for various p.

In the examples below, as in Example 272 a line means a nonsplit extension
between two irreducible constituents, the constituent on the left being the subobject
of the corresponding (length 2) subquotient.

EXAMPLE 1. We start with GL2(Q,,s) and 155 = P; = B as in Example [2Z30(i),

i.e. we have
—~ (X1 ¥
p - (O X2> 9

where y; are two smooth characters Q;f — F* (via class field theory) with ratio

# 1,w*! (and where * is nonsplit). Let IT be compatible with p. Then IT has f + 1
irreducible constituents and the following form:

GL2(Q,r) GL2(Q,r)

Indp_ ") (xiw™'®@x2) —SS; — S8y — - — SSy_1 —Ind @) (xow™'®@x1)
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72 2. LOCAL-GLOBAL COMPATIBILITY CONJECTURES

where the SS; for i € {1,..., f — 1} are distinct supersingular representations of
GL2(Q,r) over I such that Z(SS;) = det(p)w ™! and

sz @ ((Qx) e (®x9))

ICGal(K/Qp) oel ol
H|=f—i
(here x¢ © Yi(o - o) and Vg(SS;) is immediately checked to be a representation
of Gal(Q,/Qy)). Moreover it follows from Example that

2(pr)(

(Ind xyiw ' ® Xz)) Y ®seqal(K/Q,) X1

and likewise with Ind B,,Z(SQ(Q;))’))H(Xzo.F1 ® x1). Finally the conditions in ([2.83]) imply
that Vi behaves as an exact functor on the (not necessarily irreducible) subquo-
tients of II (see Remark [Z.82((iii)).

Still with GL2(Q,s) but when ﬁﬁ =T, ie p=x1® X2, then II (compatible with
p) is semisimple, i.e. has the same form as above but with split extensions every-
where. This is consistent with the discussion at the end of [BP12] §19]. Note
that, if we only require II to be compatible with 135 (Definition [2Z770), then IT has

the same form as above, but with arbitrary distinct supersingular representations of

GL2(Q,) and arbitrary distinct irreducible principal series Ind 2((Q f)) (mw™t@n)

and IndB (((Q, pf))(WQw* ®@mn1). See [HW22] §10.6] and §3.4.4) for instances of rep-

resentations II (coming from mod p cohomology) satisfying (special cases of) the
above properties.

EXAMPLE 2. We go on with GL3(Q,) as in Example Z35(ii) and .ﬁﬁ = P; =B,
i.e. we have

X1 * *
ﬁ = 0 X2 * )
0 0 xs

where x; are three smooth characters Q) — F* (via class field theory) of ratio
# 1,w*l. For 7 € W = 83, we define

def 1 1GL3(Q,) _a _
PSXT(1)7XT(2)7XT(3) =In dB 3(@5 (XT(l)w & Xr(2)W '® XT(3))'

Let IT be compatible with p. Then II has 7 irreducible constituents and the following

form:
X27X17X3 XQ,X'a,X1
PSXI:Xz:X'i / \ PSX37X2:X1
X1 X3,X2 Xs X1,X2

where SS 1s a supersingular representation of GL3(Q)) over F such that Z(SS) =

(
det(p) - w3 and Vg(SS) = (x1x2xs)®? = det(p)™. It follows from the proof
of [Hau167 Thm.5.2.1], or from [Haul8 Thm.1.4(i)], combined with [Emel0al,
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Cor.4.3.5], that the nonsplit extensions between two principal series in subquo-
tient are automatically parabolic inductions as required in condition (i) of Defi-
nition [Z70] (looking at isotypic components of f®‘ZMQ with Mg € {GLa x GLq,
GL; x GLo}, see Example [Z35((ii)). Conditions (ii) to (iv) in Definition are
then easily checked. Concerning Definition [Z8T] the subquotients involving only
principal series do satisfy ([2:83) and (2384) by [Brels, Rem.9.9]. The reader can
then easily work out the remaining conditions in (2.83]) which all involve the super-
singular representation SS, and also work out the shape of a Il which is compatible
with ﬁﬁ = B only (but not necessarily with p).

EXAMPLE 3. We stay with GL3(Q,) but where ﬁﬁ = P; = P with Mp =
diag(GLs2, GLq), i.e. we have
~ [P1 %

where 7, : Gal(Q,/Q,) — GL2(F) is any absolutely irreducible representation and
Xz is any smooth character Q, — F* (via class field theory). Note that such a p
is always generic (see the beginning of §24.2)). Then II is compatible with p if and
only II has the same form as in Example

GL3(Q N OLs(Qy) -
Tndp- ?Ef@ 13) (m1 - (W™ o det) ® x») SS Indp, 3EQ ) (xew™2 @)

and where moreover
e 7 is the supersingular representation of GL2(Q,) over F corresponding
to p; by the mod p local Langlands correspondence for GL2(Q),), i.e. we
have Z(m1) = det(p;)w™"! (via class field theory) and Vgr, (m1) & py;
Z(SS) = det(p)w™3;

o Vo(Il) = 5 @r AZ7;

° Vg( In d(;LengQ’;) (71'1 (wlo det)®X2)

$S ) Ker(pnnZp — x3@
p1)-

The properties of Vi in §21.7] (in particular Lemma which can be applied here

thanks to Remark [2Z7) then automatically give the remaining conditions in (2:83):

Vo (ndSHG) (m1 - (0! o det) @ x2) ) 27 @x A1 = 7y @ det(7y)

VG(SS Indg?sﬁgpi Xow 2 @) )N P ®r AFD)/ (P ®r AEDY)
GL3(Q, ~ =
(I dplgggg Xow 2 ®m ) ~ 5 ® X5
Ve (SS) = (7 @ x2) ® det(py) x2

The case ﬁﬁ = Mp, ie. p = (%1 )?), is analogous and easier since II is then
2

semisimple.
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ExAMPLE 4. We consider GL4(Q),) and ]Bﬁ = P; = P, where Mp = diag(GLo,
GL1, GL4), that is we have a good conjugate

P * X
p = 0 X2 * )
0 0 xs

where 7, : Gal(Q,/Q,) — GL4(F) is any absolutely irreducible representation and
Xi two smooth characters Q; — F* (via class field theory) of ratio # 1,w*!. If
1 <4i<4and Z;Zl n; = 4 with 1 < n; <4, we write P,, . ,, for the standard
parabolic subgroup of GL4 of Levi diag(GL,,,...,GLy,) (so P11 =P, P11 =
B, etc.). As in Example 3 above, we let m; be the supersingular representation of
GL2(Q,) over F corresponding to p; by the mod p local Langlands correspondence
for GL2(Qy) (so Z(m1) = det(p,) -w™! and Vgr,(m1) = p,). We define the following
parabolic inductions:

def GL4(Qp)
PIX27X3JF1 =1In dpl—jz((ap

Plr, yons = In dg;j%p (m1 - (w2 o det) ® xaw ™' © x3)

Pl = W20 ) (m1- (@7 0det) © xaw™ @ x2)

Pl mne = In di?:%p (xow @1 - (W' o det) ® x3)

PL, r\ s def 1 d(;jj:(l%ap (ng @7 - (wlodet)® X2)
(

Xow ®x3w ®ﬂ'1)

def GL4(Qp)

Plysxom = In dpfl (@) (xsw™? @ xow 2 ®@m)

and also, for ssy,ssy two (not necessarily distinct) supersingular representations of
GL3(Qp) over F:

PIssl,X3 ' In ngLfgg: (ssl -1, det) ® X3)
Ply o & Ind 2 () (55 - (w7 " o det) @ x)
Pl = In dcfzggz (x2w ™ @ s89)
PI,, ss, def 1 dGlmégp) (xsw™® ®@ssy).

We then let SS3,SS4,SS5,SS¢ be 4 distinct supersingular representations of
GL4(Qp) over F. If II is compatible with 3, then it has the following form:

PIX257"11X3 PIX2s552 P X2:X3,71

I
/

\

Plas, xs \ S, / \ SSg / Tegxaim
w2 N N
\ / \P / \ /

PI""I«XSvXQ 1552«,)(2 PIX377"1 X2
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where we have

N ~ GL _
Plz, xoxs Plss, xs PLy,mxs =1In d 4(Qp)(H1 (w Yo det) ® x3)
P31 (Qp)
(2.87) N CLa(@,) L
Plys,mixe Ply,,ss Plisxom = I?’Ld i (XSW & Hl)

1 3(@]))

GL3(Qp)

for II; = IndGLs(Qp) (71'1 . (w_l o det) ® XQ) — 8817 — IndP{Q(Qp) (XQ

-2
Pry (@) wem),

and also

(2‘88) PLH,Xz,XS - PIW1,X3,X2 =

Q GL2(Qp) _ GL2(Qp _
Ind 2:§@2)( e adet)o(Ind 515 (xaw L @xs) —— Ind 48 (aw ™t 9x)))
and an analogous isomorphism for Ply, v, 7, — Pl yo,m - It actually easily

follows from [Haul8, Thm.1.4(i)] (see also [Hey, Thm.B(b)(ii)]) together with
[Emel0al Cor.4.3.5] that the isomorphism in (Z88) and the analogous isomor-

phism with PI,, v, =, — PL, y,,= hold (i.e. are not conjectural). It also follows
from [Haul8, Thm.1.2(ii)] and [Haul8| Thm.1.2(iii)] that we automatically have
isomorphisms
o GLi(Q GL3(Qy) _
Pl as — Plasyxa = Ind)” oo (nd}! L0 (m1 - (0 det) @ xa) — 1)
~ GL D GL (QP) —
Plas, vy — PLymoxs 2 Ind Sjggp; (ss1 Ind} 0 (w2 ®m))
and likewise with the two “halves” of Ply, r vo — PLi,ss; — PLyy yo,m . It is

likely that the full isomorphisms (287 are in fact also automatic.
We must have moreover Z(ss;) = det(p;)xaw ™3, Z(ssz) = det(p;)xsw 2,
Z(SS;) = det(p)w ¢ for i € {3 4,5,6} and
Vars (ss1) 2 (Y% @ x2) @ det(py) x2

> ® x3) ® det(p;)xs
)@3

Vars (ss2) = (A7
Ve, (SS3) (
VL, (SSs) = (py ® det(p,) X2X3)
Ve, (SSs) = (p

Var, (SS6) 2 (552 @ x3x2) ® @ (det(py) 323

The reader can work out all the other conditions of Definition 28] (applying Vi to

subquotients of IT). Note that by Proposition 2.85] the GL3(Q),)-representation IIy
P1 *
0 x2

o~

@ (det(p,) X2X3)®2
@ (51 ® X2X3)

Py ® det(p, xng) o (2% @ x2x3)
)

P2 @ det(p;)x2xs
D5

is compatible with the subrepresentation ( ) of 7 (see the last part in Example

2).

EXAMPLE 5. We stay with GL4(Q,) but where P; = P with Mp = diag(GL,
GL2,GL1) and a good conjugate of the form

X2 * *
p = 0 ﬁl 0 ’
0 0 xs
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where the * are nonzero, p; : Gal(Q,/Q,) — GLy(F) is any absolutely irreducible
representation and y; are two smooth characters Q; — F* (via class field theory)
of ratio # 1,w*!. One has (see [Z64)) W5 = {Id, S¢,—csSes—c, } = the set of per-
mutations of the last two blocks GLs and GL;. Using the notation and conventions
of the previous case, we can check that any Il compatible with p has the following

form:
PITFhXQ;Xa
/ \
Plae, xs Plr) xaxe
PI — \ ss —
X2,71,X3 3
s52,X2
y / \ SS5 /
X2,582
\ ss / \PI
6 X3,T1,X2
Pl vom Pl ss,
\ /

PI

X3,X2,T1

(recall the socle is the first layer on the left), where condition (i) in Definition 2701
yields, when applied to a suitable Co with Mg = diag(GL3, GL1):

PIX277\'11X3 - PISSle(S - PITI'17X27X3 = IndGL4(QP)(H1 : (Wil © det) Y X3)

P31 (Qp)
(289) PI PI PI =~ Ind% @) (yaw B @ 11
X3,X2,T1 X3,881 — X3,71,X2 — L P.(Q )(XSW ® 1)
1,3 P
for II; = Indg?zgg:; (sz_2 ® 7T1) (S p— IndeESEg:; (7T1 . (w—l o det) ® Xz),

and yields, when applied to a suitable Co with Mg = diag(GLg, GL2) (that is,
Sea—esSes—ea Py C (), note that here P; Z @, see Remark R2.7T)(vii)):

(2'90) PIX2’X3’7T1 - PIX31X2,7T1 =

GL4(Q GL2(Qp _ _ GL2(Qp _ _
I @) (nd 553 (v~ @ v ) — nd G5 (xaw 2 © o 2)) @ )

and an analogous isomorphism for Plq, y,.vs — Plr, ys.x. - As in Example 4,
it follows from [Haul8 Thm.1.4(i)] that (2300) and the analogous isomorphism
are automatic, and from [Haul8| Thm.1.2(ii)], [Haul8| Thm.1.2(iii)] that isomor-
phisms as in ([2:89) but for every “half” only of the extensions on the left are also
automatic.

One can again work out all the conditions of Definition [2Z:81] (conditions on
Z(ss;), Z(SS;) and on Vg, (ss;), Var, (SS;) are the same as in Example 4).
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2.4. THE DEFINITION OF COMPATIBILITY 7

EXAMPLE 6. We consider GL3(Q,2) and ]Bﬁ =P; =B, ie.

where x; are three smooth characters (@;2 — F* (via class field theory) of ratio

# 1,wr!. We let ssy,ss2,ss3 be 3 (not necessarily distinct) supersingular represen-
tations of GLg(Q,2) over IF and SS;, i € {4,...,10} be 7 distinct supersingular rep-
resentations of GL3(Q,2) over F. We use without comment notation for GL3(Q,?2)
analogous to the ones in Example 2, Example 4 and Example 5 to denote principal
series and parabolic inductions. If II is compatible with p, then it has the following

form:
PSXQ:XlaX3 PIXLSSS PSX2 X35X1
~N 7 NS
PIssmm/ SS5 SSs \]‘315321)(1
NN N
Psxmcwm/ 5S4 SS7 SS10 PSyaxema
N N N
PLy, sso SSe SSe PL,, s,
N N
PSXlaXS X2 PISSE‘» X2 PSXS X1,X2

where we have
(2.91)

1 .GL3(Q,2) _
PSyixeaxs — Plssine — PSxaane & Inszff(sz) (Hl (W™ odet) ® X3)
L+ GL3(Q,2) _
PSysxixe — Phygssi — PSygxoa = Ind o (ng ’® Hl)
P172(Q;;2)
1. 1CL3(Q,2) _
PSyaxsxi — Plssss — PSys o = Ind 2o (H2 (w Yo det) ® Xl)
P, 1(Q,2)
o GLs(Q,2) _
PSX17X2,X3 — Pl sy — PSX1,X37X2 = Indpf:(ij) (Xlw ’® H2)
for
o 1. 1CGL2(Q,2) _ GL2(Q,2) _
I = Ind, 5 7 (xiw™" ® x2) 581 —— Ind " %) (xaw ™ @ x1)
o 1. 1CGL2(Q,2) _ GL(Q,2) _
I, = IndBf(ij) (xaw™! ® x3) s ——— IndB,jij) (xsw™' @ x2).

By a straightforward induction, it follows from [Haul8, Thm.1.3] combined with
[Emel0al Cor.4.3.5] that all isomorphisms (291]) are actually true!

We must have moreover Z(ss;) = xixaw !, Z(ss2) = xaxsw ', Z(ss3) =
xixsw ™!, Z(SS;) = det(p)w3 for i € {4,...,10} and, denoting by o the only
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78 2. LOCAL-GLOBAL COMPATIBILITY CONJECTURES

nontrivial element of Gal(Q,2/Q,):

Il

Var, (s81) = x1x5 © X7 X2
Var, (ss2) = x2x3 © X3 X2
Var, (ss3) = x1x3 © X3 X1

2 —\ o 2 o — @3 2 2 o 2 o.2
Ve, (SS4) = (xle det(p)” & (x1x2) det(p)) ® (X1X3(X2X1) @ (Xx1X3) x2><1)
Vaw, (SS;) = analogous for i € {5,6,8,9,10} (left to reader)

_ —\o\ D9 o o
Vir, (SS7) 2 (det(p) det(p)?) ™ @ (Xfo(xﬁm) ® (Xix2) x%m)@

Il

(x%m(x%x?,)" ® (x%m)"x%x:s) @ (X§X1(><§X1)" ® (x%xﬂ"x%m)

(all obviously representations of Gal(Q,/Q,) over F). The reader can then work
out the conditions in (2.83]) involving the various subquotients of II. Finally, by
Proposition 285 the GL2(Q,2)-representation II; (resp. II5) is compatible with the

subrepresentation (% ,) (resp. with the quotient (%7 ', )) of p (see Example 1).

EXAMPLE 7. We end up with GL,(Q,) and P, = P, = B, i.e.

where y; are four smooth characters Q, — F* of ratio # 1, wtl. The structure of
a II compatible with p is given in the next 3D diagram. Just like the previous 2D
diagrams look like stacked squares, this 3D diagram looks like stacked cubes: there
are 8 cubes, one being entirely “behind”. As before, each vertex is an irreducible
constituent with PS (in green) meaning principal series, SS (in red) meaning su-
persingular and PI; (resp. PIy) (in blue) meaning parabolic induction from the
standard parabolic subgroup of Levi GL3 x GL; (resp. of Levi GL; x GL3). The
socle is the principal series at the very bottom and the cosocle is the principal series
at the very top. Like previously, each edge is a nonsplit extension between two ir-
reducible constituents, the dashed edges being those which are “behind” in the 3D
picture. Near each vertex we write the value of Vg1, applied to the corresponding
irreducible constituent.

The interested reader can then check all the other conditions and compatibilities
in Definition [Z70] and Definition 28Tl for instance the two left faces on the bottom
correspond to the parabolic induction PI; of Example 2 tensored by the character

X4-
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L, FS
x3xixz

[x3 (x1x2x3)]P®

< lxaxaxa)?)1®3

Ixixs

PS

[x3(x1Xx2X4) (x1xaxa)1®?

: < <1
]@3)\/ - [<X1X2X4)2]/ 2T -
LT PI2 L - -~

< . <
- S e ~ S PS,
]@8 XTX1X2

[x3 (x1x3x4)

\
7
i

.
<((x1x2)%(x3X4)

x5 (x2x3x4)] 93
! 3.2
1 1X3X2
2
X2 X1 X4~
LIPST S
- \\\
. <
. ~_
-7 ~~ Jps
. 477 X3 X3 x4
X5X71X3
PS
3.2
XfXQXﬁ}
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2.5. Strong local-global compatibility conjecture

Back to the setting of §2.1] but assuming that F," is unramified and that 73
(for o|v) is generic as at the beginning of §24.2] we conjecture that the G(Fj)-
representation Homg. (¥, S(V?,F)[m¥]) is a direct sum of copies of a G(Fj)-
representation which is (up to twist) compatible with any good conjugate of 7
(Definition 2.8T]).

We consider exactly the same global setting as in §2.1.20 We fix v|p in F'* such
that F,’ is an unramified extension of Q, and consider a continuous representation
7: Gal(F/F) — GL,(F) such that

(i) 7 =27 @ w! ™™ (recall 7°(g) = T(cgc) for g € Gal(F/F));

(ii) 7 is an absolutely irreducible representation of Gal(F/F);
(iii) 75 for ©|v has distinct irreducible constituents and the ratio of any two

irreducible constituents of dimension 1 is not in {w,w=1}

(note that condition (iii) doesn’t depend on the place ¥ of F dividing v since
Toe =Ty Qw'™").
The following is the main conjecture of this paper.

CONJECTURE 2.1. Let 7 : Gal(F/F) — GL,(F) be a continuous homomor-
phism that satisfies conditions (i) to (ii1) above and fix a place v of F'T which di-
vides p such that F} is unramified. Assume that there exist compact open subgroups
Vv C Uv C H(A%Of) with V' normal in U", a finite-dimensional representation
v of UY/VV over F and a finite set ¥ of finite places of F* as in §2.1.3 such
that Homyr. (0%, S(VY, F)[m¥]) # 0, where m* is the mazimal ideal of T* associ-
ated to 7. Let Olv in F and see Homy. (o¥, S(VV,F)[m¥]) as a representation of
H(FE)) = GL,(F;) = G(F5) via v (¢f. $2I2). Then there is an integer d € Zsg
depending only on v, UV, V¥, ¢¥ and 7 and an admissible smooth representation
II; of G(Fy) over F (depending a priori on v, UY, V¥, ¥ and T) such that

Homy (0, S(V°, F)[m™]) 2 (I1; @ ("~ o det))

where I is compatible with one (equivalently any by Proposition 283)) good conju-
gate of Ty in the sense of Definition [2.63]

REMARK 2.2.

(i) Conjecture [T implies in particular that the G(Fj)-representation
Homge (0¥, S(V?,F)[m¥]) is of finite length with all constituents of multiplicity
d (under assumptions (i) to (iii) on 7), which is already far from being known in
general. See however §3.4] below for nontrivial evidence in the case of GLa. It also
implies that Homg. (a%, S(V,F)[m*]) has a central character, but this is known
(at least under some extra assumptions), see Lemma 21Tl

(ii) When F;" is unramified and 75 is as in (iii) above, Conjecture [ZI] of course
implies (and is in fact much stronger than) Conjecture 2.9

(iii) Assuming that p is unramified in F* and that 74 is generic as in (iii)
above for all w|p, an even stronger conjecture would be as follows.

CONJECTURE 2.3. For UP C H(AY") such that S(UP,F)[m*] # 0 (where
contains the set of places of F* that split in F' and divide pN, or at which UP is not
unramified, or at which ¥ ramifies, and where S(UP,F)[m¥] is defined as in §2.1.21
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2.5. STRONG LOCAL-GLOBAL COMPATIBILITY CONJECTURE 81

replacing UY by UP) and for any ®|w in F with w|p, there is an integer d € Zsq
depending only on p, UP and T and admissible smooth representations g of G(Fy)
over F, where Il is compatible with one (equivalently any) good conjugate of T

such that
dd

S(UP, F)[m®] = (® (I ® (W' o det)))
wlp
As in §2.1.3] we prove that Conjecture 2.1] holds for ¥ if and only if it holds for
0° (we do not need here extra assumptions). We start with two formal lemmas. We
use the previous notation and denote by wyg € W the unique element with maximal
length.

LEMMA 2.4. Let p: Gal(Q,/K) — Jgp(F) C P5(F) C G(F) be a good conjugate
as in 232 Then the continuous homomorphism Gal(Q,/K) — G(F) = GL,(F)
defined by

(2.92) g— wor(ﬁ(g))_lwo

is a good conjugate of the dual of the representation associated to p.

Proor. Denote by “°P; the standard parabolic subgroup of G' with set of
simple roots —wy(S(P5)) C S. Using that W("°P5) = woW (P5)wp, one checks
that —wo(X7) C RT is a closed subset relative to “°P5 (Definition 254) and thus
corresponds to a Zariski-closed algebraic subgroup “’(’?ﬁ © woMpwoN_y,(x,) of
woP; (Lemma [Z57). Denote by wo7(p) 'wo the homomorphism ([2.92), its associ-
ated representation is the dual of the representation associated to p. Moreover one

has Puor@)-1we = 5 and Xhwor(p)~1woh—1 = _'LUO(XU)OT(h)*leﬁon(h)wo) for any
h € “oP5(F) (note that wor(h) *wy € P5(F)). The result follows from Definition
O

As in §2T3) if 7 is a smooth representation of G(K) over F we denote by 7*
the smooth representation of G(K) with the same underlying vector space as 7 but
where g € G(K) = GL,(K) acts by 7(g) "

LEMMA 2.5. Let p: Gal(Q,/K) — G(F) be a continuous homomorphism such
that p*° has distinct irreducible constituents and the ratio of any two irreducible
constituents of dimension 1 is not in {w,w™'}. Let I be a smooth representation
of G(K) over F. Then II is compatible with one (equivalently any by Proposition
2383) good conjugate of p if and only if II* is compatible with one (ibid.) good
conjugate of p¥ @ w1 (denoting by p" the dual of the representation associated to
7).

PRrROOF. We use the notation in the proof of Lemma 2.4l Assuming p is a good
conjugate, it is enough to show that if IT is compatible with p, then IT* is compatible
with w7 (p) "twe @ w1, If R is a (finite-dimensional) algebraic representation of
GGaUK/Q) gver I, let R* be the algebraic representation where g € GG#1(K/Qp) acts
by 7(g)~! (inverse transpose on each factor). Then one checks that ¥ =1%g
(det™(""Y®IK:Q] | Let @ be a bijection as in Definition 281 and define ®* from
the set of subquotients II'* of IT* (where Il is a subquotient of II) to the set of good

subquotients of ¢ | (o) Gal(K /Qp) BS follows: ®*(II'*) is the algebraic representation
def

of (0P5) S/ %) given by &*(I1")(g) £ ®(IT)(wor(g)~"wo)det(g)" " for g €
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(“’f’lsp)Gal(K/ @) (with obvious notation). We leave to the reader the tedious but
formal task to check that ®* satisfies all conditions of Definitions 270 and 28Tl
with “°P; and wo7(p) 'wo ® w™ ! instead of P5 and p using (for Q any standard
parabolic subgroup of G):

G(K * G(K
(IndQ(,(;() (Mme- - Wd)) o~ Ind(’“(OQ))*(K)(T"d* ® - @m*)
and Lemma O
PROPOSITION 2.6. Conjecture 2.1 holds for v if and only if it holds for ©°.

ProoF. This follows from Lemma together with T5c 2 7Y @ w!™", Remark
2.82)(iv) and an easy computation. O

There is an obvious analogous statement with Conjecture 2.3] instead of Con-

jecture 211

REMARK 2.7. Let m be an admissible smooth representation of G(K) over
F with a central character. In [Koh17, Cor.3.15], Kohlhaase associates higher
smooth duals S*(7), i > 0 to 7 which are also admissible (smooth) representations
of G(K) over F with a central character. In view of the results when n = 2
(see condition (iii) in 335 below and [HW22, Thm.8.2]), it is natural to expect
that, when K = Fj; and II; is as in Conjecture 21 we have S*(Il;) # 0 if and

only if i = iy & K : Qp]w and that S%(Il;) is compatible with (a good

conjugate of) 7¥ ® w1 (when n = 2, this is indeed consistent with loc.cit. since
7Y 2 7; ®det(T5) 1), It is also natural to ask if we have S% (II;) 2 IT% (see Lemma

7).

From the results of [BH15| §4.4] and [Enn|, we can at least give some very
weak evidence for Conjecture 2.1l more precisely for the stronger Conjecture in
Remark [2.2](iii), when p is totally split in F* and Ty is upper-triangular sufficiently
generic for all w|p in FT.

If II is an admissible smooth representation of G(K) over F, we denote by
11°rd C 1I the maximal G(K)-subrepresentation such that all its irreducible con-
stituents are isomorphic to irreducible subquotients of principal series of G(K') over
F. The following lemma is not difficult using Proposition 240, [BH15, Thm.2.2.4]
and the results of [BH15] §3.3], [BH15 §3.4] (the proof is left to the reader).

LEMMA 2.8. Assume K = Q, and let p : Gal(Q,/Q,) — B(F) C G(F) be
generic (as at the beginning of §2.42) and a good conjugate (as in Definition [ZG3]).
Let 11 be compatible with p (as in Definition E81). Then 'Y 22 T1(p)°*d, where
I (p)ord is the representation of G(Q,) over F defined in [BHIS), §3.4].

Note that one can explicitly determine Vi (I1(5)°") inside ° (p), see [Brelb,
§9].

We let S, be the set of places of F* dividing p. Recall that an injection between
two representations of a group is called essential if it induces an isomorphism on
the respective socles.

THEOREM 2.9 ([Enn]). Assume that F/F" is unramified at finite places, that
H is defined over Op+ with H Xo,_, FT quasi-split at finite places of F+, and that

p is totally split in F. Assume that 7 : Gal(F/F) — GL,(F) satisfies assumptions
Al to A6 of [Ennl §3.1], let v be a finite place of FT as in [Enn, Lemma 3.1.2]
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and £ ¥ S, U{v1}. Choose ti|vy in F and let UP = [Ty, Uw © H(ATP) such
that Uy, = H(Op+) if w splits in F, Uy, is mazimal hyperspecial in H(F,}) if w is
inert in F and v5 (U,,) is the Twahori subgroup of GL,(Fys). Then for any w|w
in F and any good conjugates Ty (where w € S),), we have an essential injection of
admissible smooth representations of [],,, H(F}) over F:

<® (H(?m)ord ® W lo det))@n! — S(va7 F)[mz}orda
wlp
where S(UP,F)[m*]°rd C S(UP, F)[m*] is defined as 11°™4 C 11 above replacing G(K)
by [Ty H(ES)-
PrOOF. This follows from [Enn|, Thm.3.3.3] (which itself improves [BH15
Thm.4.4.7]) and its proof (see just before [Ennl Lemma 3.2.1] for the n!). a

REMARK 2.10. The cokernel of the injection in Theorem [2.9] is an admissible
smooth representation of [[,,, H(F;) over F, and its [T H(F;)-socle is by con-
struction a direct sum of finitely many irreducible subquotients of principal series.
If we could prove that all these irreducible subquotients are irreducible principal
series which do not appear in the [, , H(F;})-socle of ®w|p(H(Fu~})°rd®w”*1 odet),
then it would follow from the mod p version of [Haul9l Cor.1.4] that the essential
injection in Theorem [2.9]is an isomorphism.
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CHAPTER 3

The case of GLy(Q,r)

We give evidence for ConjectureZ9 and Conjecture 2l when F, is unramified
and G = GLz. We now assume K = Q,s and n = 2 till the end. We fix an

embedding o : F,y = F, — F and let o; &t o o ¢ for o the arithmetic Frobenius
and 7 > 0.

3.1. (¢,0f)-modules and (¢, T')-modules

We associate étale (¢, O )-modules to certain admissible smooth representa-
tions of GL2(K) over IF and relate them to the étale (p,I')-modules of §2.T.11

We assume p > 2. We let T < (p%x( gf ) be the Iwahori subgroup of GL2(Ok),
K YK

def 1 O O . def 1 O (@]
K = ( ;gKK 1-1;-;0(}9{1() the pro-p radical of GL2(Ok), I; = ( ';(’;KK 1+pf(<9K) the

pro-p radical of I, N, = (:9¢)C LI, Ny Lf (b, 9)C L and
T, (H%OK IH?OK)Q I;. We denote by Z; the center of I;. If C is a pro-p

group then F[C] denotes its Iwasawa algebra over F, which is a local ring, and m¢
the maximal ideal of F[C]. If R (resp. M) is a filtered ring (resp. filtered module) in
the sense of [LvO96l, §1.2], we denote by F,, R (resp. F,, M) for n € Z its ascending
filtration and gr(R) < @,ezFnR/Fn_1R (resp. with M) the associated graded ring
(resp. module). When R = F[C], we set F,R % my" if n <0 and F,R R if
n > 0. If M is an R-module, the filtration defined by F,,M = m;"M if n < 0 and
F,M = M if n > 0 is called the mg-adic filtration on M.

3.1.1. The ring A. We describe some properties of a complete noetherian
ring A which will be a coefficient ring for some multivariable (¢, O )-modules and
(¢, Of)-modules.

Let vy, be the my,-adic valuation on the ring F[Ny] defined by the my,-adic
filtration (i.e. F,F[No] = {x € F[No] : vn, () > —n} for n € Z). We use the same
notation to denote the unique extension of vy, to a valuation of the fraction field
of F[No]. For i € {0,..., f —1} let

e _pt 1 d
(3.1) Y Y og(a) (0 1) € my, \m3,

a€lFy

(where @ € O} denotes the Teichmiiller lift of a) and write y; & gr(Y;) for the image
of Y; in my, /m%, C gr(F[No]). Then F[No] is isomorphic to the power series ring
F[Yo,...,Ys_1] and gr(F[No]) to the polynomial algebra Flyo,...,ys—1]. Let S

be the multiplicative subset of F[Ny] whose elements are the (Yj---Y;_1)™ for
n > 0, F[No]s the corresponding localization and F,F[No]s < {z € F[No]s :
UN, () > —n}. We define the ring A as the completion of the filtered ring F[Ny]s

85
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26 3. THE CASE OF GL2(Qpr)

(ILvO96, §1.3.4]). Note that vy, extends to A, which is thus a complete filtered
ring. As A is complete, an element x € A is invertible in A if and only if gr(z) is
invertible in gr(A) (as is easily checked, here gr(z) is the “principal part” of z as
in [LvO96l §1.4.2]).

Let M be a filtered F[No]-module. The tensor product A ®gy,j M is then a
filtered A-module for the tensor product filtration as defined in [LvO96l p.57]. We
let A@F[[ No]M be its completion. This filtered A-module can also be described as
the completion of the localization Mg endowed with the tensor product filtration
associated to the isomorphism Mg = F[No]s ®rpn,] M.

LEMMA 3.1. We have an isomorphism
(3:2) gr(A®pn, M) 2= gr(Ms) = gr(M)|[(yo - ys-1) ']

PROOF. As A®FHNOHM is the completion of Mg, it is sufficient to prove that
gr(Ms) = gr(M)[(yo- - ys— 1)_1]. Note that we have an isomorphism of F[Ny]-
algebras F[Ny]s = IF[[NO]][ 1/(Yo---Yy_1)T — 1). Moreover if we endow the ring
F[No][T] with the filtration

Fo(F[No][T]) = > mpl—"*
k>0

(with the convention mfy, = F[No] for i < 0), the filtration on F[No]s is the
quotient filtration via F[No][T] — F[No]s. Therefore the filtration on Mg is the

quotient filtration of the tensor product filtration on M[T] % F[No][T] ®rny] M.

As the filtered F[Ng]-module F[No][T] is filtered-free by definition
(see [LvO96| Def.1.6.1]), it follows from [LvO96l Lemma 1.6.14] that gr(M[T]) =
gr(M)[T] with deg(T) = f. We claim that the following sequence of filtered mod-
ules is strict exact:

(Yo Y;_1)T—1
_—

MIT] M[T] — Mg — 0.

Namely the exactness of the second arrow follows from the definition of the quotient
filtration. As (Yo ---Yy_1)T and 1 have degree 0 in F[Ny][T7], the multiplication by
(Yo---Yy—1)T — 1 induces the multiplication by (yo---ys—1)T — 1 on gr(M[T]) =
gr(M)[T] which is injective. It follows from [LvO96, Thm.I.4.2.4(2)] (applied with
L=0,M=N=M[T], f =0and g being the multiplication by (Yy---Y;_1)T'—1)
that the multiplication by (Y ---Y;_1)T — 1 is a strict map.

It then follows from [LvO96, Thm.I.4.2.4(1)] that the following sequence is

exact:
(33) gr(MT]) 2 gr(MT]) — gr(Ms) — 0.
Finally, since gr(M[T]) = gr(M)[T], we have gr(Mg) = gr(M)[(yo - --ys—1)"*]. O

COROLLARY 3.2. We have an isomorphism

gr(A) = Flyo, ..., ys—1, Wo - yr—1)""].

As a consequence the ring A is a reqular domain, i.e. a noetherian domain which
has a finite global dimension ([Ser00l §IV.D]).

PRroOF. The first sentence is a direct consequence of Lemma [BI] applied with
= F[No]. This implies that the ring gr(A) is a noetherian domain. Then
the noetherianity of A follows from [LvO96, Thm.I.5.7] applied to the ideals of
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A, and the fact that A is a domain follows easily from gr(x)gr(y) = gr(zy) if
z,y € A\{0} (using gr(z)gr(y) # 0). As gr(A4) is a regular commutative ring, it
follows from [LvO96, Thm.I11.2.2.5] that A is an Auslander regular ring (note that
A is Zariskian by [LvO96l Prop.11.2.2.1]) and a fortiori has finite global dimension
(ILxO96, Def.I11.2.1.7]). O

REMARK 3.3.

(i) The ring A can also be defined as the microlocalization of F[Ny] along the
set {(yo---yr=1)"n > 0} C gr(F[No]) (see [LvO96, Cor.IV.1.20]). This shows
that the ring A does not depend on our choice of elements Y; but rather on the
elements y;.

(ii) If M is a filtered F[Ny]-module, the filtration on Mg is given explicitly by
the following formula:

F,(Mg) = Z(YO Y1) TFF, g (M), neZ.
k>0
As (Yo Y5 1)"Fp(M) C Fy_ g (M) for all n € Z and m € N, we have
(Yo Yyo1) " Fokg (M) € (Yo - Yyo1) " Ry gy s (M)
so that F,,(Mg) can also be described as the increasing union
Fu(Ms) = | (Yo Yy-1) FFo iy (M).
E>0

Note that the filtration on Mg is not necessarily separated even if the filtration on
M is separated.

(iii) The ring A can also be defined as the set of series

Pd d
A= E — P, Yo, ..., Yy q)dt/ma >0,d >0
{d>>_oo (YO"'Yf_l)nd7 d e( 0, y L f 1) , g 2 U, +fnd = }>

equivalently, A is the set of infinite sums of monomials in the Y; with F-coefficients
such that the total degree of the monomials tends to +oc.

Let n > 0 be an integer and let NJ ’ C Ny be the subgroup of p™-th powers
(which is p"Ok under the identification Ny = Ok). Let SP" be the set of p"-
th powers of S and let AP" be the completion of IF[[Ng"}] gon for the filtration
coming from the valuation UN0|]F[[N§’"]] = p"vNéJn. As the saturation of SP" (see
[LvO96, §IV.1]) contains S, we have by [Lv0O96l Cor.IV.1.20]

(3.4) F[No]s = F[Nolser 2 F[N} Jso» ®ppyeny FINo]-

It is easy to check that F[Ny] is a filtered free IF[[Ngn]]—module with respect to the

basis (Y(}O"‘Y;iil)ogijgp”71~ Hence, by [LvO96| Lemma 1.6.15] and 4], we
0<j<f—1

conclude that F[No|s is a filtered free F[NJ "] g»-module with respect to the same

basis, and thus by [LvO96| Lemma 1.6.13(3)] that A is a filtered free AP"-module

with respect to the same basis again. Moreover, by [LvO96l, Lemma 1.6.14], we

have an isomorphism of graded modules

(3.5) gr(A) 2 gr(A") @, epne ) &1 (EFINO]).
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Note that the p™-power Frobenius map z — 2" induces an isomorphism
of filtered rings (F[No]s,vn,) — (F[N§ ]som, vy ) and thus, as UNO\F[[an]] =
0 0
p"v e, an isomorphism of topological rings
0

(F[Nols. vx,) = (FINE Tsom .o, lgpany)-

It induces an isomorphism of complete topological rings A — AP" such that the
composite map A — AP" < A is the p"-power Frobenius. This implies that the
image of AP" in A is the subring of p"-th powers of A.

The group O acts on the group Ny via a- (§%) = (§ %) and thus on F[No],
preserving the valuation vy,, and hence the filtration. This induces an action of
O} on the graded ring gr(F[No]), where it is immediately checked that 1 + pOg
acts trivially. Moreover if a € Fy and 0 <7 < f — 1, we have a - y; = 0i(a)y;.

LEMMA 3.4. There is a unique continuous action of O on the ring A extending
the action of O on F[No].

PROOF. As Oj; acts by ring endomorphisms on F[Ny] and as F[Ny] g is dense
in A, the uniqueness is clear.

For the existence, let a € O and consider the composition F[No] < F[No] C
A which extends to a ring homomorphism F[Ny]s — A since the elements of a(S)
are invertible in A (because they are invertible in gr(A4) as gr(a(S)) = gr(9)).
The precomposition of the valuation vy, on A with this map is a valuation on
F[No]s which coincides with vy, on F[Ny] since the multiplication by a preserves
the valuation on F[Ny]. Therefore the map F[Ny]s — A is isometric and extends
to a filtered ring homomorphism A — A ([LvO96, Thm.I.3.4.5]). This defines an
action of O on A. O

We recall that ¢ is the cocharacter x +— (£9) of GLs. The conjugation by
the matrix £(p) in GLy(K) induces a group endomorphism of Ny and a continuous
endomorphism ¢ of F[Ny]. We have ¢(Y;) =Y? | for 1 <i < f —1 and ¢(Yp) =
Yfp_l. This implies that ¢ is the composite of the (relative) Frobenius endomorphism
with a permutation of the variables Y;. It follows that ¢ extends to a continuous
injective endomorphism of the ring A with image AP. More generally, for n > 0,
the subring AP" is the image of ¢".

PROPOSITION 3.5. Let H C O be an open subgroup and let a C A be an ideal
of A which is H-stable. Then a is controlled by AP, which means

a= A(an AP).

PROOF. As H is open in O it contains a subgroup of the form 1+ p™ Oy for
m > 1 so that we can assume that H =1+ p™Og.

The proof follows closely the strategy of [AWQ9].

We note that the pair (A, AP) is a Frobenius pair in the sense of [AWQ9,
Def.2.1] (to see this use [AWZO08| Prop.6.6] applied to G = Ny together with
[AWO09, Lemma 2.2.(a)] and Remark B3i)). We endow AP with the filtration

def

F,A? = AP N F, A induced by the filtration of A.

Let F % a/A(an AP). Endow A(an AP) and a with the filtration induced by
A, and F with the quotient filtration. Then by [Lv096| Rk.1.5.2(2)] and [LvO96,
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Cor.1.5.5(1)] all these filtrations are good in the sense of [LvO96, Def.1.5.1]. More-
over a and A(a N AP) are complete filtered A-modules by [LvO96] Cor.1.6.3(2))]
and thus so is F by [LvO96l Prop.1.3.15].

We want to prove that F' = 0. Assume for a contradiction that F' # 0, or
equivalently gr(F) # 0 by [LvO96l, Prop.1.4.2(1)].

def

Let T = H = 1+ p™Ofk (this not the T of the (¢,T')-modules!). This is a
uniform pro-p-group. Note that the action of I" on Ny is uniform in the sense of
[AW09, §4.1]. In the notation of [AWO09, §4.2], we have Ly, = Ok, g = F, and
the action of Fy on Ly, /pLn, is given by the multiplication in F,.

Let P be a (homogeneous) prime ideal in the support of the gr(A)-module
gr(F') (which exists since gr(F') # 0).

Let x € F and ~, ' exp(p™z]) € Aut(Ny) < End(A). It follows from

[AWO09| Prop.4.4] and [AW09, Prop.3.2(a)] that the family

e 2
a(w) = (v vy )
is a source of derivations of (A, AP) in the sense of [AWQ9] Def.3.2]. Let Tp C
gr(A) be the set of homogeneous elements of gr(A) which are not in P and let
TI(DP) ' TpNgr(AP). It follows again from [AW09, Prop.3.2(a)] that a(z) induces on
(Qrr(A), Q) (AP)) asource of derivations ar,, (), where Qr,, (A) (resp. Q. (AP))
P P

is the microlocalization of A (resp. AP) with respect to Tp (resp. Tﬁ,p )). Let
S Y {a(z),z € Fx} and Sp E fag, (z),2 € Fx}.
As a is [-invariant, a is also S-invariant, i.e. for all z € F* and r > 0, we have

v"a C a. Then ap = Qr,(a) = Qr,(A) ®4 a ([LvO96, Cor.IV.1.18(2)], though
here everything is simpler as all rings are commutative) is an ideal of Q7. (A) which
is Sp-invariant.

def

Let Py = Pngr(F[No]) (inside gr(A)). We prove that Py contains Ly, /pLn,,
where the latter is seen in gr_;(F[No]) (recall Ly, = Ny). Assume this is not

true. Let J < gr(ap) = gr(a)p (JAWZ08, Lemma 4.4]), which is a graded ideal of
the localization gr(A)p of gr(A) with respect to the set of homogeneous elements
which are not in P, and let Y € gr(A)p such that Y € JS7 (see [AWQ9, Def.3.4]
for the definition of JS7). Noticing that gr(A)p = gr(F[No])p, and that Ly, /pLy,
is a 1-dimensional F,-vector space, we can apply [AW09] Prop.4.3] (together with
[AWO09 Prop.4.4(c)]) to the graded prime ideal Py of B = gr(F[Ny]) and the
graded ideal J of gr(F[No])p,- We deduce Dp(Y) C J (see [AWO09, §4.3] for the
definition of Dp). It follows from [AWO09, Thm.3.5] applied to the Frobenius pair
(Qrp (A), QT}f') (AP)) and the ideal ap that ap is controlled by QTI(!” (AP). Then
[AWO09| Lemma 2.3] shows that gr(F')p = 0. This is a contradiction.

As Ly, /pLy, generates the F-vector space gr_, (F[No]) = @/ Fy;, it follows
that y; € P for all 0 <4 < f — 1 and then that gr(A) = P. This is a contradiction
so that F =0 1ie. a= A(an AP). O

LEMMA 3.6. Let a C A be a proper ideal of A. Then Ny>o(A(an AP")) = 0.
In particular, if ¢(a) C a we have Ny,>0AP™(a) = 0.

PROOF. Let a, & A(an AP"). We endow a N AP" with the induced filtration

of AP" (or equivalently A). As A is a finite free AP"-module, we have a,, = A ® 4,»
(an AP"). We endow this A-module with the tensor product filtration. Since A is
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a filtered free AP"-module, it follows from [LvO96] Lemma 1.6.14] that gr(a,) =
gr(A) ®gp(army gr(an AP"). Since gr(A) is a finite free gr(AP")-module, the natural
map gr(a,) — gr(A) is injective (and the filtration on a,, is in fact the one induced
from A). Moreover from (B.1) we deduce

(3.6) gr(a,) = gr(F[No]) D FINE"T) gr(an AP").

Assume that a # A. Then as both a and A are complete and the injection
a — A is strict, it follows as for the A-module F' in the proof of Proposition 3.5l that
gr(A/a) # 0 (with the quotient filtration on A/a), hence by [LvO96, Thm.I.4.4(1)]
that gr(a) # gr(A), and a fortiori gr(a,) # gr(A).

Using (B.6) and the fact gr(F[No]) = Flyo,. .., ys—1] is free of finite rank over
ar(F[NE']) = F[y2, ... ,y?il], we have inside gr(A) that

(3.7)  gr(an) N er(FINO]) = gr(F[No]) ,, opneey, (600 47") N gr(FINE T)).

The ideal gr(a,) N gr(F[No]) is therefore generated by homogeneous elements of
gr(F[No]) which are of degree < —p" since homogeneous elements of Flyg ..., 7 ]

of degree zero are invertible and gr(a,) does not contain invertible elements (as
gr(ay,) # gr(A)). We conclude that

gr(an) N gr(F[No])  F-pn (gr(F[No]))-
Consequently (recall (1,5 an has the induced filtration from A)

(3-8) gr (1) an) Ner(FINo]) < (1) (gr(an) Ner(F[No])) = 0.

n>0 n>0

As gr((,50 an) is an ideal in gr(A) = Flyo,...,ys-1, (Yo --ys—1)" '], it follows
from (B.8) that we must have gr((,>oa.) = 0, and hence that (,5,a, = 0 by
[LvO96l, Prop.1.4.2(1)]. O

COROLLARY 3.7. Let H C Oy be an open subgroup. The only ideals of A which
are H-stable are 0 and A.

PROOF. Let a be such an ideal and assume that a # A. It follows from Propo-
sition applied recursively with A, AP, etc. that a = A(an AP") for all n > 0.
Then Lemma implies a = 0. O

If H is an open subgroup of O, an H-module over A is a finitely generated

A-module with a semilinear action of H.

PROPOSITION 3.8. Let H be an open subgroup of O and let M be an H-module
over A. Then M is a finite projective A-module.

PROOF. (We thank Gabriel Dospinescu for suggesting the following proof which
is shorter than our original one.) Let M be an H-module. For k > —1 let Fity (M)
be the k-th Fitting ideal (see for example [Stal9l Def.07Z9]). As M is a finitely
generated A-module, it follows from [Stal9, Lemma 07ZA] that there exists some
r > 0 such that Fit.(M) # 0. Let r > 0 be the smallest integer such that
Fit,. (M) # 0. Let v € H. Tt follows easily from the definition of Fit; (M) that
Fity(M @4, A) = v(Fity(M)) as ideals of A. The action of v on M induces an
A-linear isomorphism M ® 4 , A = M, showing that v(Fit,(M)) = Fity(M). It fol-
lows then from Corollary B7lthat all the ideals Fity (M) are zero or A. Therefore we
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have Fit,_1(M) = 0 and Fit,. (M) = A and we deduce from [Stal9] Lemma 07ZD]
that M is projective of rank r. (Il

We record one more useful consequence of Corollary [377

COROLLARY 3.9. Let H be an open subgroup of Oj. We have AH =T, ie.
the H-invariants in A are given by F.

PRrROOF. If x € A¥ then xA is an H-stable ideal of A. It follows that = = 0 or
x € AX by Corollary B, i.e. A¥ is a field. Therefore, the composition A¥ — A LN
F((T)) is injective. But tr is also ZX-equivariant, so A injects into F(T)""%
and it suffices to show that F((T)™ = F for any open subgroup M C ZX. As
the Z-action is F-linear, there is no loss in assuming that F = F,. To see that
Fp(T)™ = Fp, recall that the Z-action on F,((T) is given by interpreting F, (1)

as the field of norms of Q(pp<)/Q, (With Galois group Z,°). Let Lo = Qp(pp )M,
which is a finite totally ramified extension of Q,. Thus every z € F,(X)M is
given by a norm-compatible system of elements x;, € Ly, L running through finite
subextensions of Q,(tp)/Lo. In particular, if « is nonzero, then z, is p-divisible
in Lg, so xp, € [F]. As x is then determined by 2, (,,), we deduce the claim. [

3.1.2. Multivariable (¢, O )-modules. We define a functor from a certain
abelian category of admissible smooth representations of GLo(K) over F to a cat-
egory of multivariable (¢, Oy )-modules.

Let R be a noetherian commutative ring of characteristic p endowed with an

injective ring endomorphism Fg such that R is a finite free Fr(R)-module. If M

is an R-module, we define F}; (M) “R ®rp.r M. Examples of such pairs (R, Fr)

are given by (F[No], ¢) and (A, ¢) in §3.171

A -module over R is a pair (M, 3), where M is an R-module and § is an R-
linear homomorphism M — Fj;(M). When R is a regular ring, Fg is the Frobenius
endomorphism of R and § is an isomorphism, we recover the notion of Fr-module
of [Lyu97, Def.1.1]. We say that a ¢-module (M, 8) is étale if /5 is injective.

If (M,pB) is a y-module, the exact functor F}; gives us, for each n > 0, an
R-linear map (F3)"(8) : (F)"(M) — (Ff)" (M) and we can define

B E (FR)" " (B) oo (FR)(B) o B: M — (FR)™(M).

The inductive limit of the system ((F'%)" (M), (Ff)"(8))n gives rise to a 1-module
(M, B) with 8 an isomorphism. Then (M, ) generates (M, 3) in the sense of
[Lyu97, Def.1.9]. Let M¢ be the image of M in M and M the kernel of M —
M. The map § induces a structure of i)-module on M and M® and M is
an étale ¢-module. The 1)-module M® is called the étale part of M and MO the
nilpotent part of M. We note that (M, 3) and (M¢, 3%) generate the same Fg-
module and (M?, 3°) generates the trivial Fr-module whose underlying module is
zero. Note that the constructions (M, B) — (M¢*, 3) and (M, B) — (M?, %) are
functorial in (M, 3) and that, if 8 is injective, we have M = 0. This implies that
if f:(M,B8)— (M',53") is a morphism of ¥-modules with (M’, 8") étale, then f
factors through M€t

We are mainly interested in ¥-modules with extra structures, which we call
(¢, O )-modules over A. If M is a finitely generated A-module, we always endow it
with the topology defined by any good filtration (note that good filtrations generate
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the same topologies, cf. [LvO96l Lemma 1.5.3]). It is also the quotient topology
given by any surjection A®? — M (as follows from [LvO96, Rk.1.5.2(2)]), and we
call it the canonical topology on M. The group O acts continuously on A and
this action commutes with the endomorphism ¢. If M is an A-module which is
endowed with an action of O, we consider the diagonal action on ¢*(M), which
is well defined since ¢ commutes with Oj.

DEFINITION 3.10. A (¢, O%)-module over A is a ¢-module (M, 8) over A such
that M is a finitely generated A-module with a continuous semilinear action of O
such that f is Oj-equivariant (here, continuity means that the map O x M — M
is continuous). We say that a (¢, O )-module over A is étale if the underlying
1-module over A is.

We remark that if (M, 8) is a (¢, O )-module, then M is an Oj:-module and
is therefore finite projective as an A-module by Proposition

PROPOSITION 3.11. Let (M, ) be an étale (v, Of)-module over A. Then 3 is
an isomorphism.

PROOF. We note that the two A-modules M and ¢*(M) = A®4 4 M have the
same generic rank. As f is an injective A-linear map between two finitely generated
modules of the same generic rank over a noetherian domain, its cokernel is torsion.
This cokernel is then an Oy-module which is moreover torsion as an A-module, it
follows from Proposition 3.8 that it is zero and 3 is an isomorphism. |

We now define a functor from certain representations of GLo(K) over F to
(¢, O )-modules over A.

Let 7w be an admissible smooth representation of GLo(K) over F. Its (F-linear)
dual 7V is then a finitely generated F[I;]-module. We fix a good filtration on 7.
As above, we endow A®p[ NO]]ﬂ'V with the tensor product filtration and define the
filtered A-module

(3.9) Da(m) = ABspnyy” = (1%)s.

Note that the action of F[Ny] on 7V is given by 64(f) & foa™! for f € nV,

a € Ny. As all the good filtrations on 7V are equivalent ([LvO96, Lemma 1.5.3]),
the underlying topological A-module does not depend on the choice of the good
filtration on V. An example of a good filtration on 7V is given by the my,-adic
filtration, as follows directly from the definition. It is very important to note that
the topology used on 7 is not the my,-adic topology but the my, -adic topology,
which is actually coarser.

PROPOSITION 3.12. The functor m — D a(7) is exact.

ProOOF. Let 0 — 7’ — m — 7@ — 0 be an exact sequence of admissible
smooth representations of GL2(K) over F. The sequence 0 — (7)Y — 7¥ —
(') — 0 is still exact. We endowed 7" with a good filtration, (7’)¥ with the
quotient filtration and (7”)Y with the induced filtration (which are again good
by e.g. [LvO96l Prop.I1.1.2.3]). With these choices, the exact sequence remains
exact after applying the functor gr (see for example [LvO96, Thm.I.4.2.4(1)]).
It follows from Lemma Bl from the exactness of localization and from [LvO96.
Thm.1.4.2.4(2)]) that the sequence 0 — (7”)4 — (7V)s — (7')4 — 0 is exact and
strict. The exactness of 0 — Dy (n"”) — Da(w) — Da(n’) — 0 then follows from
[LvO96, Thm.1.3.4.13]. O
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Y

We define a continuous action of Oy on 7V as follows, for f € 7V, v € O we

" (P f ((”51 (f) x) Vrenm

As OF normalizes I, the action of O} on 7V is continuous for the my,-adic topol-
ogy. We use the continuous action of Oy on A to extend this action diagonally
to A ®p[n,] 7V and, by continuity, to Da(m). The action of O is continuous and
A-semilinear in the sense that

v-(af) =(v-a)(v-f) Y (v.a,f) €O x Ax Da(m).

We define an F-linear endomorphism v of 7V by the formula

(3.10) G()(@) = fEP)T) V(f.a)en x .

This endomorphism is continuous, clearly commutes with the action of O and
satisfies the relation

P(¢(a)f) = a(¥(f))
for all a € F[No], f e .

LEMMA 3.13. Let M be some F[Ny]-module and let ¢ be an F-linear endomor-
phism of M satisfying the relation

P(g(a)m) = ayp(m) V¥ (a,m) € F[No] x M.
Then for all integers n > 0, we have
AR At Vo RaR YAy V)
As a consequence, forn > pf — (f — 1), we have
. r2]-f
P(my, M) Cmpp " M.

PRrROOF. For n = 0, the result follows from the fact that, if Y ° - ~-Yfifll €

m%}_(f_l), there exists some 0 < j < f — 1 such that 7; > p. Then, for all m € M,

we have

Y(YGo Y7 m) = V(Yo Y 7Y m) € m M.
The general statement follows from a simple induction on n.

For the last statement, we choose m such that

pm+pf—(f=1) <n<pm+1)+pf—(f-1)
and we use the first statement to deduce that
(il M) C p(m P UV Cmpt Cmly 0
We extend 4 to an F-linear map (7¥)g — (7")s (recall (7V)s = F[No]s @pn,]
V) by the formula

m . Y(m)
(311) dj ((YO"'Yf—l)pn) B (YO...Yf_l)n

for all me ¥ and n>0. Each element of (7¥)g can be written as (Y -+ - Yy_1)7""m
for some m € 7V and n > 0, and it follows from the properties of ¥ on 7V that the
right-hand side of (BI1]) does not depend on this choice. For any element g in I3,
we denote by ¢, the corresponding element [g] in F[I;].

Licensed to Chinese Academy of Sciences. Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



94 3. THE CASE OF GL2(Qpr)

LEMMA 3.14. The map ¢ : (7¥)s — (7¥)s is continuous.

PROOF. As all the good filtrations on 7V are equivalent, we choose the my,-
adic filtration on 7V for this proof, i.e. F,mV¥ = mi"ﬂv for n <0 and F,7¥ =7V
for n > 0. From the proof of [BHHT 23| Prop.5.3.3] we have an equality for n > 0:

n __ r S t
(3.12) my, = E M M, My -
r,s,t>0
r4+2s+t=n

As &(p) commutes with each element in Tp, and &(p) =1 (L 9)&(p) = (L 9)” for any
(19) € Ny, it is easily checked from the definition of ¢ and the F[I;]-action on

v that
(3.13) Y(On0= - f) = 0nd=rt(f)
for all h € Ty, z € N, . In particular,

zp(m%omjvo, ™) C mr}om’]’\fo_ .

and it follows from Lemma B.I3that if » > pf — (f — 1) we have

(3.14)

2 r+2s+t
(i my )ij[vw fm%omﬁ_ﬁv gmLH stpi=f_y Cm( 11 v
0

If r<pf—(f—1), we need the following lemma.
LEMMA 3.15. Let M C ¥ be a closed F[N; |-submodule. Then
P(F[NoJmy - M) € mp, p(F[No] M).
As a consequence, for allt > 0, w(FHNOHm}tVD—WV) Cmj

PrOOF. Note that my, x F[Ng] x M is compact, as M is closed, hence so is the
image my, Y(F[No]M) of the continuous map my, X F[Ng] x M — V', (a,b,m) —
a(bm). As my- s generated as a right F[N; J-module by the ¢, — 1 for y € Ny

and as 1 is continuous on 7Y, it is thus sufficient to prove that, for y € Ny,
x € Ny and m € M, we have 9(6,(5, — 1)m) € mp »(F[No|M). As Ny C K,
K, is normalized by Ny and Ky = NJToN; , we can write zy = zlt;y;2 with
(x1,t1,y1) € No x Ty x N . Therefore
V(02 (6y — 1)m) = (8,2 t, 6y, 0m) — Yp(6,m)
= 6m1t1ypw(6 m) ¢(5mm) = (6m1t1yf - 1)’(/}(6a:m)
C my, ¢(F[No]M).

For the second statement, inductively apply the first to M = mt nv, M = m
etc. O

2
- 7
O

Whenr<pf—(f—-1)=@pm-1)f+1, wehave 2s+t >r+2s+t—(p—1)f
so that, using Lemma [3.15] and the fact that Ty normalizes Ny, we obtain
(3.15)

w(mNOmTOmN,w ) € my, z/)(IF[[NO]}mN,ﬂ ) CmyPHaY C m;:r%“*(p*l)fﬂv.
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We deduce from BII), 314) and BIH) that, for alln € Z, r >0, s >0,¢t >0
and k > 0 such that r +2s+¢ > pf, we have

dj ;mr ms mt 7_‘_\/ C 7111[—”2;“171&\/
(Yy - ,,Yfil)pk No ™™o "N = (Yo ,,Yfil)k I
so that, for n > pf by (B12) we have

1 1 (21—
v ((%-~-Yf_1)pkm?l7rv> S Moy T C Fppporay((@)s).

From Remark B3(ii), we know that, for n € Z, F,,((7")s) is the increasing union
over k > max{0, -} of the subspaces

1 —n+pkf
(Yo Yy_q)Pk 5!

v,
hence we deduce for all n € Z that
CE(E)NE U Frppyormmsmn (7)s) € Frapz) (77)s).
kZmax{O,ﬁ}
This proves the continuity of . O

We can therefore extend 1 to a continuous F-linear map ¢ : D (w) — Da(m)
such that

(playm) = av(m) ¥ (a,m) € A x 7.
We fix {ao,...,aq—1} a system of representatives of the cosets of N} = pOg
in Ny = O, so that F[No] = @) 6., F[NZ]. As ¢(F[No]) = F[NZ] and A =
EB?;OI 0q,$(A), we have a canonical isomorphism for any A-module M:

Ju

o* (M) = (Féo, @r M).

Q

s
I
o

We define an F-linear map 5 : Da(w) = ¢*(Da(m)) = A®gp 4 Da(mr) by

Da(m) — @I, (Fda, @& Daln))

3.16 -
(3.16) mo o Y e @6 (55 m)

(we write £ ®4 y instead of just # ® y in order not to forget the map ¢ in the tensor
product).

REMARK 3.16. The definition of the map § does not depend on the choice of
the system {a;}, namely, replacing a; with ;0P for some b € Ny, we have

da;br ®g ¢(5;},pm) = Ga,r @ Y(D(6) 716, ) = Ga,pr @y 8, "10(8, ' m)
= aybrOpp' @ (0, m) = 0a, ®g (6, 'm).
Using Remark B.16] we easily check that S is actually an A-linear map (note
that it is enough to check it for an element in d,,¢(A) using A = @;1:—01 0q,#(A), and

thus for d,, and for an element in ¢(A)), hence 8 : Dy (7)) — ¢*(D (7)) can be seen
as a “linearization” of ¢ : Da(m) — Da(m). Moreover, letting Oy act diagonally
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on A ®g a Da(m), the map f is then Ox-equivariant. Indeed, for a € O and
m € D4 (m), we have

g—1 qg—1
aﬁ(fﬂ)‘d'(Z% ®¢w<6;1m> G, B 0 V(6! m)
=0
qg—1

q—
= Z a-a; ®¢ w(a 6 m) = 5(1'% ®¢' w((s;}z, (Cl : m))

=0
= ﬂ(a ' m)a

the last equality coming from Remark and the fact that {a - ag,...,a-as-1}
is another system of representatives of N§ in Np.

It is convenient to assume that the admissible smooth representation 7 has a
central character, in which case Z; acts trivially on 7 and 7V is a finitely gen-
erated F[I,/Z;]-module. We recall from [BHHT23, §5.3] that the graded ring
gr(F[I1/Z1]) of F[I/Z1] is isomorphic to a tensor product of (noncommutative)
graded rings

f-1
(317) F[yiazi7hi]7

i=0
where variables with different indices commute, where [y;,z;] = hq, [hi,y)] =
[hi, zi] = 0, where y;,z; are homogeneous of degree —1, and h; is homogeneous

of degree —2. Note that the my, /7 -adic topology on F[I;/Z;] induces the mpy,-
adic topology on F[Ng] via the inclusion F[Ny] C F[I1/Z1]. Therefore the map
gr(F[No]) — er(F[I1/Z:1]) is injective and its image is Flyo,...,ys—1] in
gr(F[1y/21]).-

REMARK 3.17. The A-module D4(w) can also be defined as the microlocal-

ization of ¥ with respect to the multiplicative subset T & {(yo--yr—1)* k €
N} C gr(F[11/Z1]). This shows that D4(m) can be promoted to a module over the
noncommutative ring which is the microlocalization of F[I; /Z;] with respect to T

We now let C be the category of admissible smooth representations 7 of GLo(K)
over F with a central character and such that there exists a good filtration on the
F[11/Z1]-module 7 such that gr(D4 (7)) is a finitely generated gr(A)-module, or
equivalently by Lemma B and Corollary B2 gr(7V)[(yo - - - ys—1) '] is finitely gen-
erated over gr(F[No])[(yo - ys—1)""']. By [LvO96, Thm.1.5.7] this is also equiva-
lent to require that D4 () is finitely generated over A and that its natural filtration
in (B3) is good (equivalently gives the canonical topology). In particular, if this
holds for one good filtration on 7V, then this holds for all good filtrations. It easily
follows from the proof of Proposition and the noetherianity of gr(A) (Corollary
B2) that C is an abelian subcategory stable under subquotients and extensions in
the category of smooth representations of GLo(K) over F with a central character.

For 7 in C, the pair (Da(w), 3) is an example of (¢, O )-module over A as in
Definition B.I0l We can in particular consider its étale part D4 (). The action of
O} on D,(m) preserves its nilpotent part D4 (7)? and thus induces a continuous
action of O on Da(m)®. In particular, D4 () is an étale (1, O} )-module over
A. Note that the canonical topology on the finitely generated A-module D 4(m)
is also the quotient topology of D4 () — D4 ()
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COROLLARY 3.18. Let 7 in C. Then the A-modules Da(m) and Da(m)t are

finite projective over A. Moreover the map B : Da(m)¢* — ¢*Da(m)¥ is an
isomorphism.
Proor. This is a special case of Propositions 3.8 and [B.111 |

REMARK 3.19. If m is Il-dimensional (a character of GLg(K)), then
Da(m) = Da(m)% = 0.

We give an important condition on an admissible smooth representation 7 (with
a central character) which ensures that = is in C. Let J be the following graded
ideal of gr(IF[I1/Z1]):
(3.18) J = (yizi, hi,0< i < f — 1),
From the definition of equivalent filtrations (see [LvQO96l §1.3.2]), one easily sees
(using [LvO96| Lemma 1.5.3]) that if gr(7") is annihilated by some power of J

for one good filtration on m, then it is so for all good filtrations (but note that the
power of J which annihilates gr(7") may depend on the fixed good filtration).

PROPOSITION 3.20. Assume that gr(mV) is annihilated by some power of J.
Then the A-module D4 () is finite projective and the gr(A)-module gr(Da(w)) is
finitely generated.

PROOF. As the hypothesis does not depend on the choice of the good filtra-
tion on 7Y, we are free to work with the my, /z,-adic topology on mV. Let us
first prove that gr(Da(n)) is a finitely generated gr(A)-module. It follows from
the admissibility of 7 and from the hypothesis that gr(m") is a finitely generated
gr(F[11/Z1])/JN-module for some N > 1. Lemma[3.1] then implies that gr(D4())
is a finitely generated (gr(F[I1/Z1])/J™)[(yo - ys—1)~']-module. It is therefore
sufficient to prove that (gr(F[I1/Z1])/J™)[(yo---ys—1)"1] is a finitely generated
gr(A)-module. Since gr(F[I1/Z1]) is noetherian, we are reduced by dévissage to
the case N = 1, where we have

(er(F[L1/Zu0)/T) (o - yr—1) "1 = (Flyis 2o, hil / (yizis ha)) [(yo - yp—1) ']
Finally, as D(7) is a complete filtered A-module, it then follows from [LvO96.

Thm.I.5.7] that D4 () is finitely generated over A and from Proposition B.§ that
it is projective. ([l

It follows from Proposition that the admissible smooth representations m
(with a central character) such that gr(7") is annihilated by some power of J for at
least one good filtration is a full subcategory of the category C. Moreover this full
subcategory is abelian and stable under subquotients and extensions in C. Namely,
for a short exact sequence 0 — 7' — 7 — 7’/ — 0 in C, the filtrations induced on
(7")¥ and (7")V by a good filtration of 7V are good. For these filtrations we have
a short exact sequence 0 — gr((7”)V) — gr(7¥) — gr((7')¥) — 0 which shows that
gr(m") is annihilated by a power of J if and only if gr((7')¥) and gr((x")V) are.

REMARK 3.21. It is natural to consider the image Dil(ﬂ') of ¥ in Dy(r) =
A@FHNO]]WV. Indeed, as the map 7 — D,(w) is continuous and 7" is compact,
it follows that Di‘(ﬂ') is a compact F[Np]-submodule of D4(w). However, the
F[No]-module Dil(w) is not finitely generated when 7 is an irreducible admissible
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supersingular representation and [K : Q] > 1 (even if D4 () is finitely generated
over A). Namely, if this were the case, this would give us the existence of a nontrivial
finitely generated F[No][(?9)]-submodule of 7 that is admissible as an F[No]-
module and this would contradict the results of [Sch15|] and [Wu21]. Likewise, the
image of 7V in the quotient D 4 ()% of D4 (7) won’t be finitely generated over F[No]
in general (see Remark[3.88((ii)). Finally, we conjecture in [BHH™ 22, Conj.1.4] that
for those m coming from cohomology we always have D4 (1) = D 4(m)%".

REMARK 3.22. Recall that the action of F[Ny] on 7V is defined by d,(f) =
foa=lfor f € ¥ and a € Ny. We could have defined it by the formula 6,(f) = foa
for f € ¥ and a € Ny and would have obtained isomorphic (), O )-modules
Da(m) and D4 (m)¢* (for instance, this is the convention used in [Brel5, Lemme
2.6]). Namely the map f — ~v_1 - f, with v = <_01 (1)) induces an intertwining,
commuting with ¢ and O, between the two F[Ny]-structures.

3.1.3. Multivariable (¢, O} )-modules. Using the results of §3.1.2] we pro-
mote the functor m — D4 (7)® to an exact functor from C to a category of étale
multivariable (¢, O )-modules (Theorem B.25]) and we compare D 4(m)® with the
functor DY () of §ZT.T1 (Theorem E.29).

Let R be a noetherian commutative ring of characteristic p endowed with an
injective ring endomorphism Fgr such that R is a finite free Fr(R)-module (as at
the beginning of §3.1.2). A @-module (D, p) over R is an R-module D with an
Fg-semilinear map ¢ : D — D. We say that a ¢-module (D, ) is étale if the
R-linear map Fj(D) — D defined by a ® d — ap(d) is an isomorphism.

DEFINITION 3.23. A (¢, OF)-module over A is a p-module (D, ¢) over A such
that D is a finitely generated A-module, the endomorphism ¢ is continuous (for the
canonical topology on D as at the beginning of §8.1.2) and D is endowed with a
continuous A-semilinear action of O commuting with . We say that a (¢, O%)-
module over A is étale if the underlying ¢-module over A is.

We note that, by Proposition B8 if (D, ) is a (¢, O )-module over A, then
D is a finite projective A-module.

If (D, B) is an étale (1, O )-module over A as in Definition 310, by Proposition
[B.I1 we can define a ¢-semilinear endomorphism ¢ of D such that Id ®¢ = 37!, so
that (D, ¢) is an étale (¢, O )-module over A. (Note that ¢ is continuous, as the
topology of D is defined by any good filtration and ¢ : A — A is continuous.)

We now go back to representations 7 of GLo(K'), but we first need some more
notation. The trace map tr : Ny = Ok — Z, induces a ring homomorphism
tr: F[No] — F[Z,] = F[X], where we recall that X = (} 1) — 1. Moreover, for Y;
as in (B), we have tr(Y;) = —X mod X? (see Lemma[B.38 and the last statement
in Lemma[340 below) and the universal property of the ring A shows that this map
extends to a continuous ring homomorphism tr: A — F(X)). We let

p & Ker(tr : A — F(X)).
Then p is a closed maximal ideal of A. Note that

p NF[No] = Ker(tr : F[No] — F[X]) = mn,F[No] = (Yo — Y3, ..., Yy — Yy_1),
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where N1 C Ny is as in (23] (for the second isomorphism write Ny = N1 & Zye,
where tr(e) = 1, noting that tr : Ox — Z, is surjective, as K is unramified, and
for the third use the first statement of Lemma [B:40 below).

REMARK 3.24. Let B be the completion of F[Ny]s along the prime ideal gen-
erated by (Yo —Y1,...,Yy — Ys_1) (see the beginning of §3.1.1] for S). Expanding
Y= (Yo—(Yo—-Y;))™ if n > 0, and writing ¥;"* = ( ;O:OO (Y;;—ill)m)fn and expand-
ing everything if n < 0, one can see using Remark [3.3(iii) tﬁ)at the ring A embeds
into B. The endomorphism ¢ on A extends to B but only the action of Z) C 0%
extends to B, as (Yo — Y1,...,Yy — Yy_1) is not preserved by all of Oj. Then
from Corollary B.I8 and as B is a local ring, we see that D (7)¢ ®4 B is a finite
free étale (¢, Z) )-module over B, which is similar to the generalized (¢, I')-modules
defined in [SV11] (though loc.cit. only considers split algebraic groups over Q).

Let 7 be in the category C. Using Corollary BI8] we can define a ¢-semilinear
endomorphism ¢ of D4 ()¢ such that Id ®¢p = (3%*) 71, so that D4 ()" is an étale
(¢, OF)-module over A. As p is a ¢-stable ideal of A, we deduce that D (7)) /p =
Da(m)® @4 F(X)) is an étale (i, Z, )-module over F((X)).

THEOREM 3.25.

(i) The functor m — Da(m)% is exact from the category C to the category
of étale (p, O )-modules over A.

(ii) The functor m — D (1) @ 4 F(X)) is exact from the category C to the
category of étale (p,Z,;)-modules over F(X)).

PRrROOF.

(i) is a consequence of Proposition 312 of the exactness of ¢* and of the
exactness of direct limits, together with the description (see the beginning of §3.1.2))

Da(m)* = lim  (¢")"(Da(m)*) = limg (¢")"(Da(n)).
(=) (B%) (#*)™(8)
(ii) is a consequence of (i), of Corollary BI8 and of the exactness of (—) ®4
F((X)) on short exact sequences of finite projective A-modules.

O

REMARK 3.26. One can prove that if # € C then the endomorphism ) :
D (7)) = Da(n) (defined right after Lemma[B.13]) is always surjective. (This follows
ultimately from the fact that the image of the natural map A®gpy,j7" — Da(7) is
surjective since A is complete and Noetherian, and A ®p[n,] v is endowed with a
surjective endomorphism that is compatible with ¢ on D4 ().) In particular, this
implies that D (7)) # 0 as soon as D4(m) # 0, since 1 cannot be nilpotent if it
is surjective on D4 (7) and the latter is nonzero. Note that for the representations
7 of particular interest for us here, we will actually have D4(m) = Da(7)%; see

Remark B.88|(ii).

We now compare the étale (¢, Z)-module D (m)* /p with DY (7) @)
Let 1 be the F-linear endomorphism of 7V /my, = (77V1)V defined by

(3.19) @)= > (0F) mod my,,

beN1/NY
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where b € N is a lift of b, # € 7V is a lift of  and ¢ is as in @I0) (it is easy
to check that the definition of ¥ does not depend on the choice of these lifts). We
have ¥(S(XP)m) = S(X)i(m) for all S(X) € F[X] and m € 7V /my,, and ¥ is
the dual of the endomorphism F of 7™ in §21.01 We define an endomorphism v
of Da(m)/p (vesp. Da(m)/p) by the same formula replacing 7V by Da(7) (resp.
Da(7)®) and my, by p, it is then clear that the following diagram commutes:

Wv/le L) Wv/le

(3.20) l B l

Da(m)/p —2 Da(m)/p,

together with an analogous diagram with D (7)/p — D4 ()% /p that we leave to
the reader.

Let B : Da(m)/p — ¢*(Da(m)/p) = FIX] @y ppxy (Da(m)/p) = ¢*(Da(m))/p
be the F((X))-linear map defined by

p—1

Bm) 371+ X) 7 @y B((1+ X)'m).

=0

LEMMA 3.27. The following diagram is commutative (where the horizontal maps
are the canonical surjections):

DA )—»DA /p

Js I
¢*(Da(m)) — ¢*(Da(m)/p).

PROOF. We choose a system of representatives (¢g7°b;) o<i<p—1 of No/N§ such

1<j<p! ™t
that g & (11) € Ny and bi,...,byr—1 are in Ni. We then have for m € D4(w)
that
p—1p/7?
= 1(5bj ®¢ w(éélégim))
=0 j=1
p—1
=Y (6, @ Z (8, H(8,im)))  mod pe*(Da(r))
=0
p—1

d il g E((Sglm) mod p(b* (DA(W))v

g

where the first equality follows from (B.I6]), the second from 6, —1 € p C A (and the
commutativity of Ny), and the third from the analog of ([B.I9) for D 4(7)/p. Noting
that the image of 4, in F[X] is (14 X)’, we obtain the desired compatibility. [

LEMMA 3.28. Let M C 7t be an F[X]-submodule that is admissible as an
F[X]-module. Then the surjective map 7™ — MY is continuous for the my, -adic
topology on © and the X -adic topology on MY .

PROOF. The map ¥ — MV is continuous with respect to the natural profinite
topologies arising from Pontryagin duality. As M is admissible as an F[X]-module,
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the natural topology on MV is the X-adic topology. It thus suffices to show that
the my,-adic topology is at least as fine as the natural topology on 7V. Dually this
means that any finite-dimensional subspace of 7 is contained in w[mﬁ ] for some
sufficiently large integer N, which is true by smoothness. O

Recall that we defined in (2.7)) a projective limit DY () of étale (¢, Z,)-modules
over F((X)) associated to .

THEOREM 3.29. We have an isomorphism of étale (p, Z,;)-modules over F((X)):
Da(m)*/p > D{ (r).

In particular, DY () is finite-dimensional over F((X)) and the functor m +—— DY ()
is exact on C. '

PRrROOF. For the purpose of this proof it is convenient to use the action of F[Ny]
on " given by d,(f) = foafor f € ¥ and a € Ny. This does not, change D 4 ()¢
up to isomorphism by Remark

As a first step we construct the map. Let M C 7™ be a finitely gener-
ated F[X][F]-submodule that is admissible as an F[X]-module and Z,-stable.
By Lemma 328 the map 7V — MV is continuous. It extends to a surjection of
F[No]s-modules (7¥)s — MY[X~!]. By definition of the tensor product filtra-
tion on (7V)g, this surjection is continuous if MY [X '] is endowed with its natural
topology of finite-dimensional F(( X ))-vector space. As MY [X ~1] is complete for this
topology, by completion we obtain a continuous surjection of topological A-modules
Car o Da(m) - MY[X Y. Since Nj acts trivially on M, (ys factors through a sur-
jection of F((X))-vector spaces (ys : Da(n)/p — MY[X~!]. By definition of ¥, we
obtain a commutative diagram (where F'V is the F-linear dual of F': M — M that
we extend to MY [X '] using FY(X~If) = X ' F(X*P=1 f))

Da(m)/p 2 MY[X ]

o

Da(r)/p —Ms MV[X1.

It then follows from Lemma that, identifying ¢*(M") = F[X] @, rpxy M
with (F[X] ®, rpxy M) via (Z8), the following diagram is commutative:

Da(r) —— Da(n)/p — s MV[XY

(3.21) lﬁ lg B J{(Id ®F)Y
$*(Da(r)) — ¢*(Dalm)/p) K ¢*(MV[X 1),

where (Id®F)Y comes from F-linear dual of Id®F : F[X] @, px; M — M. As
(Id®F)Y is an isomorphism (see just after ([2.6])), the map Cys : Da(w) - MYV[X 1]
factors through D4 ()¢ and the map (pr : Da(m)/p — MY [X 1] factors through
Da(m)®/p. The map (pr : Da(m)®/p — MV[X '] clearly commutes with the
action of Z) and the commutative diagram (B.ZI)) shows that it is a morphism
w-modules. These maps are obviously compatible when M is varying among the
finitely generated F[X][F]-submodules of 7 that are admissible as F[ X ]-modules
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102 3. THE CASE OF GL2(Qpr)

and Z, -stable so that we obtain a map

¢: Da(m) fp — hm MY [X '] = DY ().
M

We prove that the map ( is surjective. Since D4 ()% /p is a finite-dimensional
F((X))-vector space, the dimension of the vector spaces MY[X~!] when M is
varying is bounded. This implies that there exists some M such that ng (m) =
MV[X~' and that the map ¢ : Da(m)¢/p — D¢ () is surjective. In particular,
dimF((X)) Dg/ (m) < +o0.

We prove that the map ¢ is an isomorphism. Let Di(7)® be the image
of 7V in D4(w)®/p. This is a compact F[X]-module in the finite-dimensional
F((X))-vector space D4 (m)¢/p, hence a finite free F[X]-module. Since the maps
7 — Da(m)/p — Da(m)®/p commute with the action of ZY, D*(m)® is pre-
served by ZX. The image of (7V)s in Da(m)®"/p coincides with D*(m)*[X ~!]. As
(mV)s has a dense image in D4 (7) by definition, Df(7)*[X 1] is a dense F((X))-
vector subspace of D4(7)%/p and thus equal to D4 ()% /p by finiteness of the
dimension. The surjective map 7V — D%(7) factors through 7V /my, = (71V1)Y
so that the topological F-linear dual (D%(m)¢)Y of Df(7)¢ is identified with an
F[X]-submodule of 7™V (endowed with the discrete topology) preserved by Zy. As
Db(7) is stable by ¢ by @B20), (Df(7)*)Y is actually an F[X][F]-submodule of
V1. Since B : Da(m)® = ¢*(Da(m)) is an isomorphism, it easily follows from
Lemma that the map 8 induces a surjective map of finite-dimensional F((X))-
vector spaces B : Da(m)¢/p — ¢*(Da(m)%/p). As these spaces have the same
dimension, Bm is actually an isomorphism, and in particular Bm| DE(r)et Dh(w)ét —
F[X] ®rpx) D¥(7)®" is an injection and becomes an isomorphism after inverting

We claim that (D(7)¢)Y is finitely generated as an F[X][F]-module. Note that
(D5(m)¢)V is admissible as an F[X]-module since D(7)® is a finitely generated
F[X]-module. Hence, the claim follows from [Brel5| Lemma 5.2] using the last
statement of the previous paragraph.

We now give another proof of the claim using results of [Lyu97], §4]. In fact, we
even prove that (D (7)%)Y is of finite length as an F[X][F]-module. As F is a finite
extension of F,, the F,[X]-module (Df(7)¢)Y is artinian so that the F,[X][F]-
module (D%(7)®)Y is a cofinite F,[X][F]-module in the sense of [Lyu97} §4] (the
ring F,[X][F] is isomorphic to the ring A{f} of loc. cit. where A = F,[X]). It
follows from Theorem 4.7 in loc. cit. that (D?(7)%)Y has a filtration

0=MoC M C-- C M, = (D¥m)")
by F,[X][F]-submodules such that M;y1/M; is a simple F,[X][F]-module or a
nilpotent F,, [ X][F]-module, i.e. such that some power of F' is zero on M;11/M;. Let
M;- be the kernel of Df(7)®t — M) for alli. As Bet|Dh(ﬂ-)ét coincides with (Id @ F')Y
(this is analogous to (321 using ([Z06) with M = (D(7)¢)Y), the map B induces
an isomorphism of F,, (X)) ®g, 1x] M;" onto Fy,(X)) ®,r,1x] M;". In particular, if
M;+1/M; is nilpotent then FV induces a nilpotent endomorphism of M;-/M , so
that F,, (X)) ®r, [x] M} = IFp((X))‘g’lb‘p[[X]]]V[z‘JJ-l (as Fp(X)®4 F, [X] (MZJ'/Mth) =0
in this case) and hence M- /M, is a torsion F,,[ X ]-module. As D?(r)% is a finitely
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generated F,[X]-module, we conclude that when M;1/M; is nilpotent the F,[X]-
module M;-/M;7;, is finite-dimensional over F,, in particular it is an F,[X][F]-
module of finite length. Since M;11/M; is obviously of finite length when M;,/M;
is irreducible, the claim follows.

The claim implies that (D%(7)¢)Y is one of the modules M C 7™ in §Z111 in
particular

dimg(x) D¢ () > dimp( ) (D (m)*[X 1) = dimg(x) (Da(m)/p).

This implies that the map ( is an isomorphism (and that Da(m)%/p =
DA ()4 [ XY =D/ (m)). The very last statement follows from Theorem B.25(ii). O
3.1.4. An upper bound for the ranks of D(m)* and Dy (). For m in
C we bound the dimension of D (7) in terms of gr(7"). When gr(rV) is killed by
some J", we give an interpretation of this bound as a certain multiplicity.
We keep all previous notation. We start with the following lemma.

LEMMA 3.30. Let M be a finitely generated A-module endowed with a good
filtration. Then the generic rank of the A-module M and the generic rank of the
gr(A)-module gr(M) coincide.

PRrROOF. We first note that if N is an A-module of generic rank 0, then N ® 4
Frac(A) = 0 and N is a torsion module. This implies that gr(N) is a torsion module
and that its generic rank is 0.

Let d be the generic rank of M and f : A®? — M ®4 Frac(A) be a morphism
of A-modules sending an A-basis of the left-hand side to a Frac(A)-basis of the
right-hand side. The kernel of f is then a torsion A-submodule of A®¢ and is zero
since A is a domain. Moreover there exists a € A\{0} such that the image of af
is contained in M. As Frac(A) is a flat A-module, the generic rank is an additive
map on the abelian category of finitely generated A-modules. As af is injective
and A®? and M have identical generic ranks, this implies that the cokernel Q of
af has generic rank 0. We fix a good filtration on M: it induces good filtrations
on af(A®9) and on Q. For these filtrations we have a short exact sequence

0 — gr(af(A%%) — gr(M) — gr(Q) — 0.

As @Q has generic rank 0, so does gr(Q) so that it suffices to prove that gr(af(A%%))
has generic rank d. It follows from the second paragraph after [Bjo89], Def.4.2] that,
for a finitely generated A-module N, the generic rank of gr(/N) does not depend on
the choice of good filtration. We can thus choose a good filtration af(A9?) = A®4
which is filtered free with respect to the canonical basis of A®?, for which the result
is obvious. (]

Let 7 be in the category C and choose a good filtration on the F[I; /Z;]-module
7. Since the finitely generated A-module D 4(7) doesn’t depend up to isomorphism
on the choice of this good filtration (see §3.1.2]), it follows from Lemma B30 (applied
to M = Dy4(n)) and Lemma [B.] (applied to M = 7V) that the generic rank of
gr(A) Qgr(mn,]) &r(mY) also doesn’t depend on this choice.

PROPOSITION 3.31. Let m € C. Then rka(Da(m)®) = dimg(x) DY (n) is
bounded by the generic rank of the gr(A)-module gr(A) @gywn,]) gr(m").

PROOF. As D4 (7)% is a quotient of D4(n), the result follows from Lemma
3.30, Lemma [3.1] and Theorem O
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104 3. THE CASE OF GL2(Qpr)

When gr(7") is moreover killed by the ideal J" for some n > 1 (here J is as
in (BI8) and recall this doesn’t depend on the good filtration), the generic rank of

gr(A) Qgr(w[n,]) g(m") has a nice and useful interpretation that we give now.
- def

We define R = gr(F[I1/Z1])/J. Recall using (BI7) that we have
(3.22) R2Fly;, 2,0 <i< f—1]/(yi2,0 <i < f—1).

Therefore R has 2/ minimal prime ideals which are the ideals (y;, z;,i € J,j ¢ J)
with J a subset of {0,..., f —1}. Let

Po = (2;,0<5<f-1)
be the minimal prime ideal corresponding to the choice of J = 0.

If N is a finitely generated module over E_and q is a minimal prime ideal of R,
we denote by mq(N) the length of Ny over Ry,. More generally, if N is a finitely
generated gr(IF[I;/Z,])-module annihilated by J" for some n > 1, we define the
multiplicity of N at q to be

n—1
(3.23) mg(N) =Y mg(J'N/JTIN).
i=0

LEMMA 3.32. If0 — N; = N — Ny — 0 is a short exact sequence of finitely
generated gr(F[1,/Z1])/J™-modules, then mq(N) = mgq(Ny1) + mgq(N2).

ProoF. This is checked by a standard dévissage. If n = 1, the statement is
obvious since gr(F[I1/Z1])/J = R is commutative (and noetherian). Assume n > 2
and by induction we assume that the result holds if N is annihilated by J"~!.

Assume first that Ny and Ny are both annihilated by J"~! (but not necessarily
N). Then Ny is a quotient of N/J" 1 N. Let Ker & Ker(N/J" N — N3) be the
corresponding kernel. Then we have two short exact sequences

0 — Ker — N/J"'N = Ny =0

(3.24) 0— J" !N = N, = Ker — 0.
By definition of mq(N) and the inductive hypothesis, we then obtain
ma () = mg(J""LN) + mg(N/T""IN) = mq(N7) + mq(IVy).

Assume now that Ny is annihilated by J"~! (but not necessarily for N;). Then
the surjection N — Ny factors through the quotient N/J""'N of N. Again let
Ker & Ker(N/J" N — N,). Then mg(N/J""IN) = mq(Ker) + mq(N2) by the
inductive hypothesis. On the other hand, both J* ' N and Ker are annihilated by
Jn=1, thus mg(-) is additive for the short exact sequence ([3.24) by the discussion
in last paragraph. The result also holds in this case.

To finish the proof it suffices to decompose further N as 0 — Ker’ — N —
Ny/J""tNy — 0, with Ker’ sitting in the exact sequence 0 — N; — Ker’ —
J" "INy — 0, and apply the above discussion. (Il

If N is a finitely generated module over gr(F[Iy/Z1])/J" for some n > 1 recall
that the gr(A)-module gr(A) ®grn,) N is finitely generated by Proposition

LEMMA 3.33. Let N be a finitely generated module over gr(F[I1/Z1])/J" for
somen > 1. Then the generic rank of the gr(A)-module gr(A) ®gwn,y) N is equal
to my, (N).
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ProoF. By Corollary 3.2 gr(A) is flat over gr(F[No]), so gr(A) Qg @n,g) NV
has a finite filtration with graded pieces given by gr(A) ®grn,y) (J'N/JTIN) for
0 < i < n—1. Since taking generic rank and taking my,(-) are both additive in
short exact sequences (by Lemma for the latter), we are reduced to the case
where N is killed by J.

In that case we have

gr(A) ®gr(ﬂ<‘[[No]]) N = (gr(A) ®gr(]F[[No]]) E) ®§ N.
Since the image of gr(F[No]) in R is F[yo, ..., ys—1], we have
g1(A) @grrrnog) B = Rl(yo - yr-1)""] = gr(A).

Since the fraction field of R[(yo - --y—1) '] is just Ry,, we see that the generic rank
of the R[(yo - ys—1)~*J-module gr(A) Qgpw[no)) N is equal to my,(N). O

We finally deduce from Proposition B.31] and Lemma B.33t

COROLLARY 3.34. Let m be an admissible smooth representation of GLa(K)

over F with a central character having at least one good filtration such that the
gr(F[11/Z1])-module gr(w") is killed by some power of J. Then we have

kg (Da(m)®) = dimgxy DY () < my, (gr(7”)).

3.2. Tensor induction for GL2(Q,r)

We prove that Vgr,(7) (as defined in (Z8) contains some copies of a tensor
induction as in Example 2.8 for certain admissible smooth representations 7 of
GL2(K) over F (Theorem [339]).

We recall that the definition of the functor V1, depends on the choice of a
cocharacter £gr,,, which we have fixed to be {g1,(x) = diag(z, 1), and depends on

a normalizing character dgr,, = ind%Qp(w) (cf. Example 2.3]).

3.2.1. Lower bound for Vgi,(m): statement. We state the main theo-
rem of this section on Vgr, () for certain admissible smooth representations 7 of
GL2(K) over F (Theorem B35). After some simple reductions, this theorem will
be proved in §§3.2.2] to B24

We keep all the previous notation and denote by Ix the inertia subgroup of
Gal(Q,/K). We fix an embedding o{, : F,2; — F such that a(’)hppf = 09 (see the
very beginning of §3]), and denote by wy,wey : Ix — F* Serre’s corresponding
fundamental characters of level f and 2f.

We consider 7 : Gal(Q,/K) — GLa(F) of the following form up to twist:

1 ;
- WZLO it g if p is reducible,

5 f
Pl = F=1 1 q)pd F=Lp 1) it
wzzf’:(’ (rs1)p ® wzzf’:(’ (ry )P if p is irreducible,

(3.25)

where the integers r; satisfy the following (strong) genericity condition:
2f=1<r; <p—2-2f if 7 > 0 or p is reducible,

(3.26) 2f <rg<p—1-—2f  if pis irreducible

(note that this implies in particular p > 4f + 1). Let x : Gal(@p/[() — F* such

1)
that (p ® x)|1, is as in (B28) and moreover det(p ® x) = w%j(rﬁl)p .
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We refer to [Pas04] and [BP12, §§9,13] (and the references therein) for the
background and definitions about diagrams.

We choose one diagram D(p® x) = (D1 < Dy) associated to p® x in [Brelll
§5], and we set
(327)  D(p) = (Di(p) = Do) (D1 @ (x o det) = Dy @ (x 1 o det),
where the actions of GL2(Of) and the center K* on Dg(p) (resp. of I, (9 §) and
K> on D;(p)) are multiplied by x~!odet via local class field theory for K (note that
x is trivial on K7 and I; and recall that (2 (1)) normalizes I and I7). Recall that the
action of GL2(Ox) on Dy(p) factors through GLo(Ok ) — GL2(F,). More precisely,
denoting by W(p) the set of Serre weights of p defined in [BDJ10} §3], Do(p) is
the (unique) maximal finite-dimensional representation of GLo(F,) over F with
socle isomorphic to @,cw ()0 such that each o € W (p) occurs with multiplicity
1 in Dy(p). (For instance, recall that the Serre weight (rg,71,...,77—1) with the

S0 (r+1)p?
notation of (B.29) below is in W(p) if p is an extension of 1 by w;™'=° )

Finally K* acts on Dy(p) by the character det(p)w™?.

If 7 is an admissible smooth representation of GLy(K) over F, recall that
(rfr — K1) is naturally a diagram. We aim to prove the following theorem.

THEOREM 3.35. Let 7 be an admissible smooth representation of GLa(K) over
F. Assume that there exists an integer r > 1 such that one has an isomorphism of
diagrams

D)% = (a5 7fr),
Then one has an Ig,-equivariant injection (ind%@”(ﬁ))ﬁz = Ve, ()1, - If we
assume moreover that the constants v; associated to D(p ® x) at the beginning of
[Brelll, §6] are as in [Brelll Thm.6.4], then one has a Gal(Q,/Q,)-equivariant
injection (ind?}(@p(ﬁ))@r — Var, (7).

Let us first make some straightforward reductions. In order not to repeat ar-
guments, we assume from now on that the constants v; associated to D(p ® x) in
[Brelll §6] are as in [Brelll Thm.6.4] and we will prove the last statement of
Theorem B35 (the proof for the first one being the same up to some trivial mod-
ifications). It is enough to prove Theorem B35l for the GLy(K)-subrepresentation
of 7 generated by Dg(p)®". Hence we can assume that m has a central character
which is xr & det(p)w!. Using Remark Z4(ii) (for n = 2), it is also enough to
prove Theorem [3.35] for p ® x as above and replacing 7w by m ® x o det, i.e. we can

(r.+1)p?
assume |, is as in (B25) and det(p) = waJ(rﬂr s

In the sequel, for any F[X][F]-submodule M of 7™ which is stable under Z,
denote by M ® x, ! the same F[X]-module but where the action of F' is multiplied
by xx(p)~" and the action of z € Z is multiplied by x(z)~'.

LEMMA 3.36. With the notation in §2.1.1, in order to prove Theorem [B.35] it is
enough to prove that (t@x; )™ contains a finite type F[ X ][F]-submodule M which
is admissible as an F[X]-module and stable under Z) such that V(M"[1/X]) =

. 10Qp—\\ B
(deQp(P)) "
PROOF. As (m ® x;1)M = 7M1 as F-vector subspaces of , it is equivalent

to assume that 7' contains a finite type F[X][F]-submodule M which is admis-
sible as an F[X]-module and stable under Z* such that V((M ® x;')¥[1/X]) =
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(ind}e}(@p(ﬁ))@r. From the definition of Vgr, in (Z8]), it is enough to prove
VY(MV[1/X]) @ dgL, = (ind%@"(ﬁ))@r. From Example 23] and as in Remark
24(ii) (both for n = 2), we have
VY(MY[1/X])) @ dar, = V((M @ x;")[1/X])" @ (xx) g
. pr—\\ BT . » —
= ((indz*(2)”")" © indg(det(p))
B (ind3® ()™’

which finishes the proof. |

The sections that follow will be devoted to the proof that there exists a certain
finite type F[X][F]-submodule M, of 7™ which is admissible as an F[X]-module

and stable under Z such that V((M,®x;')"[1/X]) = (ind}e}(@p(ﬁ))@r (see Propo-

(r.+1)p?
sition B56). Note that the assumption det(p) = wfzj(rﬁ I implies x.(p) = 1, so
that the operator F' on M, ® x;! is the same as on M,, but the action of v € Zy

. 10
now comes from the action of (0 41 ) on 7V,

3.2.2. Preliminaries. We give some technical results on F[Ng], F[No/N:]
and on certain modules over these rings coming from Serre weights.

We let H & (Fg ]FOX )= I/I; € GLy(F,) (this finite group H shouldn’t be

confused with the algebraic group H in §2T.0] or in §20). Note that the trace
Trg,q, : Ox — Z, is surjective (using that K is unramified) hence directly induces

an isomorphism No/N; = Z,,. Recall we defined the elements Y; for i € {0,..., f —
1} in (31). We define analogously

. (1 a
Y=y ot (0 1) € F[Z,] = F[No/M].
aGJF;

We write i for an element (ig,...,i;_1) in Z7, Y* for Yg° .- Y;f_’ll and set |i| <

Z;:_c} i;. We also write ¢ < ¢’ to mean i; < it forall0 <j < f—1.
LEMMA 3.37. We have the following isomorphisms and equalities:
(i) F[No] =F[Yo,...,Ys—1] and
F[No/NE = F[Yo, ..., Y]/ (YD, ... ,Y;’,l);

(i) Y7 (53)= (59)Yirr and (3 8)Y: = ™)' Yi(38) for A p ey

(ii) F[No/N1] =F[Y] and (§9)Y = (A=Y (3 9) for A, € Fy.

PROOF. Note that F[Ny/N§] = F[(é ]qu )]. The first equality in (i) and the ex-

plicit action of (é‘ 2) on Yt in (ii) are immediately obtained from [Mor17, Lemma
3.2] (after conjugating by the element (}§)). The second equality in (i) follows
from the first by dimension reasons, as Y = 0 in F[Ny/N}]. The action of (49

01
on Y41 in (ii) is a direct computation (see also [Morl7, Lemma 5.1]). Finally, (iii)
is a special case of (i) and (ii). O

Note that F[No/N;] = F[X] = F[Y] with X = (}1)—1 as in §Z1.T] but it is
more convenient in the computations to use the “H-eigenvariable” Y rather than
the variable X. To compare them the following lemma will be useful.
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108 3. THE CASE OF GL2(Qpr)

LEMMA 3.38. We have X € =Y (1 + YF[Y]) and Y € —X(1 + XF[X]) in
F[No/N1].

PROOF. Equivalently, we have to prove Y = —X in m/m?, where m is the max-
imal ideal of F[Ny/N;]. We can work modulo m?, i.e. in F[Ny/N; N[| = F[(é ]Flp )]
In that group ring we have

p—1
Y = Z a'(39)= Za71(1+X)a =-X
a€Fy a=1

(where the last congruence is taken modulo the image of m? in that group ring). 0O

For A\, u € F; we set
X def
a((§ 7)) = At e Fr.
REMARK 3.39. By Lemma B37(ii), if Visa representation of GL2(F,) and
v e V=X then Yiv € VH:XQ where ot 4 X750 47
LEMMA 3.40. Assume p > 2. The kernel of the map h : F[No] — F[No/N1]

is generated by the elements Y; —Y; (i # j). Moreover, there exists f(Y) €
F[No/N1] 2 F[Y] such that h(Y;) =Y + YPf(Y).

PRroOOF. Note that TrK/Qp(S\#) = TrK/Qp(S\) for all A € F and i € Z, hence
Y; - Y; € Ker(h). As F[No]/(Y; —Yj,i # j) and F[Ny/N1] are both isomorphic
to power series rings in one variable, the quotient map F[No]/(Y; — Yj,i # j) —
F[No/N1] has to be an isomorphism. To establish the final claim it suffices to prove

that the image of Yy in F[Y]/(Y?) = F[No/N1NJ] = F[(} )] is Y. We compute

(3.28) D ATy )= Z( ) A1)(3%)-

AEF a€lp AEF
Tre, /v, (N)=a

If a # 0, the index A runs over the distinct roots of Y7/ ' +YP " ... 4V —a =0,
so the inside sum on the right hand side of [B28)) equals 1/a (from the last two

coefficients). If @ = 0 the index A runs over the distinct roots of yr g
YP~1 41 =0, so the inside sum in ([3.28) equals 0 as p > 2. Hence the right-hand
side of (B28) is just Y. O

By Lemma [3:40 if V is a representation of GL(F,), then Y; =Y on V1.
Forogigq—l we set

et Z A (32)€ F[No/NE) = F[(éwf)]
A€F,

SoY; = 6,1, in F[No/N{]. In what follows we write p — 1 for the constant
f-tuple (p—1,p—1,...,p—1) € Z7.

LEMMA 3.41. Suppose i € {0,...,p— 1} and let i < Zf;ol ip7.
(i) We have

f-1
0i = (-1)/~! ( II z’ﬂ)xﬂ‘i
j=0

in F[No /N for 0 <i<gq—1.
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(i) For fo,..., fq—1 and ¢ as defined in [BP12| §2] we have

fi= (HZJ) plz?é)(b

for0<i<q-1.

PRrROOF. Part (i) follows from [Morl Lemma 0.2] after conjugation by (O 1)
Indeed, in the notation of loc.cit. we take m = n = 1 (so that A;; is the group
algebra of (pOK/lszK ?)): we see that 6; corresponds (under conjugation) to Fj
if 0 <4 < g—1, and the constant r,_1—; equals (—1)f71(H§:_3 ij!)fl. Part (ii)
follows immediately from (i) and the definition of 6;. O

As in [BP12] we write (sg, s1,...,57—1) ®n for the Serre weight
(3.29) Sym®® F? @p (Sym®! F?)" @ - .. @p (Sym®/ ! F2)Frf71 ®F 1 o det,

where the s; are integers between 0 and p — 1, 7 is a character F; — F* and

GL2(F,) acts on (Sym® IFQ)Fri via o; : Fy — F. If x = x1 ® x2 is a character of

FX 0
H= (7 ) welet x* = x2 @ 1.

LEMMA 3.42. Let O'd:ef(SO, S, 8f21)®m, §d§f(so7 Sty 85-1)€{0,...,p—1},

and firv € o™No, v # 0. Let x, denote the H-eigencharacter on oo,

(i) The F[No/Ni] = F[Y]-module o™ is cyclic of dimension min{sy, ...,

Sf— 1} + 1.
(ii) If0 < i < s and i < p—1 then o contains a unique H -eigenvector,

which we call Y v, that is sent by Y% to v. The corresponding H-
eigencharacter is xoa L. Also, Y;Y v =0 if i; = 0.

(iii) If 0 <i < min{sp,...,s;-1} and i < p— 1, then o™V contains a unique
(Fg FOX )-eigenvector Y v that is sent by Y' to v. The corresponding
p
eigencharacter is xoa~'. We have Y "v = 2 Jill=i ¥ Y .

PROOF.

(i) Note that o™ is a torsion module over F[Ny/N;] = F[Y] as o™ is finite-
dimensional. To show cyclicity it suffices to note that o™ = oM[X] is
1-dimensional. Then from [Morl7, Prop.3.3] applied with n = 1 we have an
isomorphism

FlYo,...,Y; /(YT 0<j<f-1) S0
g(Y) — g(¥)(95)v-

(Restrict equation (9) in [Morl?] to (,é, 1) and conjugate by (9§). Note that

o is self-dual up to twist.) In particular, {Xk(l )U :0 < k < s} is a basis of o
consisting of H-eigenvectors.

(3.30)

Let m < min{sg, ..., ss—1}. We claim that the vectors
(3.31) u= Y YE(QL)v, 0<i<m
0<k<s
ll&l[=Ils]l—

Licensed to Chinese Academy of Sciences. Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



110 3. THE CASE OF GL2(Qpr)

form a basis of o1, If i < m and ||k|| = ||s|| — i, then k; > 0 for all j. By using
also ([B30) we see that v; = Yjv;44 for all j. Also, Yjug = 0 for all j. In particular,
Y; — Y;, annihilates v; for all i, so v; € o™ by Lemma 340l Moreover, Xv; 1 = v;
(0 <i<m)and Xvg =0. It remains to show that v, ¢ Xo™. Choose j such
that sj, =m. Then [, Y, (9 ¢)v is the only term appearing in the sum (B31)

for i = m that is not d1v151ble by Yj,. Hence v,, ¢ Yj 0, and thus v, ¢ Xo™1.
def

(i) Let v/ = Y*(9§)v, which is a scalar multiple of v. By @30),

(Xﬁ(‘l) é)v) forms a basis of o consisting of H-eigenvectors with eigencharac-
0<k<

ters x5k = x,akT. The eigencharacters are pairwise distinct, except if s = p — 1
where Y2=L(9 1)v and (9 })v have the same eigencharacter. Hence, as i < p— 1,

the unique H-eigenvector in the preimage (Y%)~!(v') is Xé_é((l) §)v. Note also that

Y;YE" 7( §)v=0if i; =0 by B30).

(iii) Using the notation in (i), we have v; = >, Y i for 0 <i < m

o FX 0y . . . ;

and it is a ( 0 Fx )—elgenvector with eigencharacter y,a~*. These characters for
P

0 < i < m are pairwise distinct, except if s = p — 1, in which case vy and v,_; have

the same eigencharacter. As we assume i < p — 1 the claim follows.

O

LEMMA 3.43. Suppose V is a representation of GLo(F,) generated by some
vector v € VNo that is an eigenvector for the action of H. If dimp V < q, then the
map

IF[D/(), .. .,Yf_lﬂ —V
) = ) (98)v

is surjective and its kernel is generated by monomials. In particular, if Xi(? (lJ)v =
Xi(? (1))11 # 0, then i = j.

PROOF. Let x denote the eigencharacter of H on v. Then we have a GLo(Fy)-
equivariant surjection S : IndGL2 Ox )( ) = V sending ¢ to v, where ¢ is the unique
function supported on I Wthh sends 1 to 1. Consider

i F[Yo, ..., Y1) /(Y0 ... YE ) — Ind (9 (y)

sending f(Y) to f(Y)(9§)¢. By LemmaBAll f; € Im(q) for all j (evenif j = g—1),
so by [BP12| Lemma 2.5], Ind?h(ok)(x) = Im(i) ® F¢ (as F-vector spaces) and 4
is injective.

Suppose first x % x°. By [BP12| Lemma 2.7(i)] and as dimV < g we
have f, + ¢ € Ker(95) for some r = Z;;ép]sj € {0,...,9 — 2} and some sign
+ (both depending on x), so S o i is surjective. If Ker(S) is irreducible (as a
GLg(F,)-representation), then by [BP12, Lemma 2.7}, Ker(S) = (fs= piq,,0 < dj <
sj (not all equal), f. £ ¢)r. Intersecting with Im(i) = (fs:pia,,0 < dj <p—L)p
we get

Ker(S)NIm(i) = <fzpjdj,0 <d; < s; (not all equal)>F.
By Lemma[34TL(ii), it follows in particular that Ker(So7) is generated by monomials.
If Ker(S) is reducible, the argument is analogous using [BP12] Lemma 2.7(ii)]. If
X = x*, it is again almost identical, using [BP12] Lemma 2.6] instead. ([l
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LEMMA 3.44. Suppose f > 1. In F[No/N§] we have

> () (—D“(Xu > x)

A€Fy, Trg, /5, (A)=0 llz H (p=1(f=1)

<i;j<p—1
PROOF. First we have (using 27! = 1 if € F)):
> (63) = (Tre,m, () 7H(67)
AEF,, Tre, /s, ()70 XeF,
= ST TP())
AeF,
=Y X A gy
A€F, zEZf
lli]]=p—1
( _1) f—1 . p—1—i
B SIS, e
i€zl 7 J
llil]=p—1

where the last equality follows from Lemma B.41]i), noting that 25;01 i’ <q—1
since f > 1. Letting i’ © p—1 —i we get (as (p—1)! = —1 in Fp):
> )=y Y v
AEF g, Trp, /v, (A)#0 g’ezfzo
&' I=(p—1)(f-1)

On the other hand, Lemma B.4T[(i) gives

> (31)= (-1 vt

A€EF,
The result follows. O

PROPOSITION 3.45. Fiz jo € {0,...,f —1}. In
F[No/NP] 2 F[Yo, ... Y]/ ((Y: = V)P0 # )

Yo on=(=1)" ]

nE€Ny/NY J#jo
modulo terms of degree > f(p —1).

we have

ProOOF. The statement being trivial if f = 1, we can assume f > 1. We
prove the first isomorphism. As Y; —Y; € Ker(F[No] — F[No/N:1]) by Lemma
.40, we deduce that (Y; — Y;)? € Ker(F[No] — F[No/N7]), and we thus have a
surjection F[Yp,...,Yy_1]/((Yi = Y;)P,i # j) — F[No/N{]. Since both terms are
free modules of rank p(f — 1) over a power series ring in one variable over F, the
surjection has to be an isomorphism.

Let A % F[N,/NP], B ¥ F[Ny/N?] and B % F[Ny/NE], they are complete
local commutative rings of respective maximal ideals denoted by my4, mp, mpg.

- def

Let Z & ZneNl /Nr 1 E A. Note that m, is the augmentation ideal of A, hence
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the m4-torsion A[my] in A equals FZ. As Ny/N} = (Z/pZ)/~!, we have an iso-
morphism A = F[Zy,...,Zy1]/(Z7,...,Z}_}), so m%il)(ffl)ﬂ = 0 and hence
7 c m(p D(fF-1).
Let 1 : A — B denote the inclusion and denote by gr"™(z) the induced map
w7y /my = mB/mPtt for m > 0. We claim that gr!(s) is injective with image
generated by all Y; —Yj, (j # jo) in mp/m%. If so, then gr®=D{/=1)(3) has to send
the 1-dimensional F-vector space mfffl)(ffl) to a multiple of [[,_; (V; — ¥j,)P~

modulo m(p DU=DH - By (é\ 2)2 = Z( ) for A, € F)\, and considering the
action of H, it follows from the sentence followmg Lemma B:{ZI that we must have

Z)=c¢ H(Yj—on)p + (element ofm (p- 1))
Jj#jo
for some ¢ € F (note that every element of B can be written uniquely as ), ciXi
with 7; < p for all j # jo and that mp is generated by the Yi i 0). By passing
to B and using Lemma [3.44] we deduce that we must have ¢ = (—1)/ L.
It remains to prove the claim. As B = B/(Y{,..., Y7 ), we_have mp/m% =
m§/mQ§ and it is equivalent to prove the claim with 7 : A — B. We first note

that gr'(7) is injective with 1-dimensional cokernel, because for any finite abelian

p-group U the cotangent space of SpecF[U] at its closed point is identified with
def

F ®Z U. Consider the natural map s : B - C = F[Ny/N1N}| = F[Y]/(YP). As
gr (soi) =0 and s(Y;) =Y by Lemma [340, we deduce from loc.cit. that the image
of gr'(7) is indeed spanned by all Y; —Y;, (j # jo)- a

3.2.3. A computation for the operator F. We give a crucial computation
for the operator F' on 7™ for 7 as at the end of §3.2.11 The main result of this
section is Proposition B.40](ii).

We keep the notation of 8221 For o = (to,...,t;—1) @ n € W(p), recall
we have t; € {rj,r; +1,p—2—1r;,p—3—r;} if j > 0 or p is reducible and
to € {ro—1,70,p — 1 —rog,p — 2 — 1o} if p is irreducible (see e.g. [Brelll §2]). We
deduce from ([B26]) that

(3.32) tie{2f—-1,...,p—1—-2f} forallj.

We identify W (p) with the subsets of {0,1,...,f — 1} as in [Brelll §2] and let
Jo €H0,..., f—1} be the subset associated to 0. We have t; € {p—2—7;,p—3—7;}
for j € J, if j > 0 or pis reducible, to € {p —2 —ro,p—1—1ro} if 0 € J, and p is
irreducible.

Let o = (tg,...,t;—1) ® n € W(p). Denote 6(o) & §rea(0) if 7 is reducible and
4(o) def dirr(0) if P is irreducible the Serre weights dyed(0), 0irr (o) defined in [Brelll,
§5]. We write d(c) = (so,...,87-1) ®n'. Let 2, € o™V \ {0} and let x, : H — F*
denote the H-eigencharacter of x,. We also identify the irreducible constituents of
IndGLz(OK)(XU) with the subsets of {0,...,f — 1} as in [BP12] §2] (for instance
() corresponds to the socle o of IndGL2 OK)(XU)). For any J C {0,...,f — 1} let

Q(x3, J) denote the unique quotient of IndGLz(oK)( 5) with irreducible GLy (O )-

socle parametrized by J (see [BP12, Thm.2.4(iv)]). We know that the Serre weight

GLQ(OK)(

d(o) occurs in Ind X5 ) (see the proof of [Brelll Prop.5.1]) and we denote
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by Jm**(g) C{0,..., f — 1} the associated subset. We thus have

S0CQL, (0x) (X5, /" (0)) = 0(0)

(by definition of §(c), it is the only constituent of Q(x5, J™**(0)) that is in W (p)).
We also have from [BP12] §2] (with —1 = f —1):

5] =p— 2 - t] + ].JmaX(o-)(j - 1) lfj € Jmax(a))
8j =1t — Lymax(o)(J — 1) it j ¢ J7(0).

(Above, we write 1 jmax(,) for the indicator function of J™**(s).) Moreover, using
[BP12| Lemma 2.7] it is a combinatorial exercise (left to the reader) to prove

(3.34) T () = (Jo U Js(0) \ (Jo N (o))
‘We define

(3.33)

m < | J™(g)| € {0,..., f}.

We have m = 0 if and only if 6(0) 2 o, and this occurs precisely if p is reducible
and o is an “ordinary” Serre weight of p, i.e. such that J, =@ or J, = {0,..., f—1}
(this follows, for example, from the proof of Lemma B.47 below).

We consider a GLg(K)-representation 7 as at the end of §8:20] and fix an
embedding o < socqr, (o) () (recall there are 7 copies of o inside socgr, (0, )(7))-
From the assumption on 7, we know that (} )z, generates Q(x5, J™*(0)) as a
GL2(Of )-subrepresentation of 7|gr,(0y), in particular §(o) can also be seen in

socqL, (o) () (its embedding being determined by that of o up to a scalar).
PROPOSITION 3.46.
(i) The vector

(3.35) wo = I v II Y2 '(39)
jeTmix(e) | jgrme(o)

spans 6(a)No as an F-vector space.
(ii) We have in 7™ that

Y 2 jeamax (o) SJ'F(Ylfmxa) = (—1)f71Y17m$5(J) if m >0,
VP F(2,) = (—1) as( if m = 0.

PROOF OF PROPOSITION B40)(1). Suppose first m > 0. From [BP12] Lemma
2.7(ii)] and Lemma[B.41)ii) we see that §(o) has basis Xi(g %)z, where 0 < i; < s;
if jeJm™(g)and p—1—s; <i; <p—1ifj¢ J" (o). Hence the only vectors
in 6(o) that are killed by all Y; are the multiples of x5(,). The statement follows
by an inspection of the H-action on this basis (which is formed by H-eigenvectors),
see Remark

If m = 0, then d(o) is the socle of Ind?LQ(OK)(x‘;). By [BP12] Lemma 2.7(i)],
fo is the unique I-invariant element of (o) C Ind?LQ(OK)(Xf,). The statement

follows from Lemma BATLii). O

In order to prove Proposition [3.46(ii), we first need several lemmas.

LEMMA 3.47. We have |J™(g)| = |[J™**(§(0))|.
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PROOF. If  is reducible, identifying {0,..., f — 1} with Z/f we have J5,) =
J, — 1 as subsets of Z/f by [Brelll §5], and the statement follows in that case
by B34). If p is irreducible, let J. < J,[[(J, + f) € {0,...,2f — 1} as in
[Brelll, §5], where J, is the complement of .J, in {0,..., f — 1}. It follows from
@34) that [J™*(0)| = 3|(J, U Jg(a)) \ (Jn J(g(a))|. Identifying {0,...,2f — 1}
with Z/2f, we again have Jg(g) = J! — 1 as subsets of Z/(2f) by [Brelll §5], and
the statement follows. O

The three lemmas that follow only apply to m > 0 and require the strong gener-
icity assumption. In these three lemmas, we identify without comment {0, ..., f—1}
with Z/fZ (so —1 = f —1, f =0, etc.).

LEMMA 3.48. Assume m >0 and let i € ZJ;O with ||i]] < m —1. Then we have

(3:36) (GL2(Ox)(59)Y a) / D7 (GLa(0x)(59)Y 2as)

0<j<i
=~ Q(xsah{j € J™(a) 1ijp1 = 0}).

PROOF. Note first that ¢; € {2i; +1,...,p — 2} for all j by [B32) and the
assumption on 4, so that the vectors Y *z, and Y 2z, are well-defined elements
of o by Lemma [B.42[(ii). We rewrite

(GL2(0k) (2 9)Y Lz,) = (GL2(Ok) (5 §)Y La,)

and, using notation from [BHH 23| §§2.1,2.2], 0 = F(\) where A = (A, ..., Af_1)
with )\j = (/\] 1, A ) S {0 .., p— 1}2. We have )\j71 — )\j72 = tj for all J-

Let W' (resp. W) be the I-subrepresentation of  generated by Y ‘. (resp.
(98)Y “z,). We deduce from Lemma B22/(ii) that W’ = (NoY "‘z,) has F-basis
Y iz, for all 0 < J < i, and soc;(W’) = Fx,. We moreover have W = (2 (1))W’
since I is normalized by (9 (). In particular we see that W injects into the I-

representation 7, of [BHH'23| Cor.6.1.4] and that W has Jordan-Holder factors

xsal for 0 < J < i, each occurring with multiplicity 1. Let V < In dGLQ(OK)(W).

Then V' is the representation appearing in the first paragraph of the proof of
IBHH™ 23| Prop.6.2.2], with B; taken to be 2i; + 1 for all j (and note the bounds
on Aj 1 — Aj2 which let us invoke loc.cit.). Hence, by [BHH™ 23| Prop.6.2.2] and its
proof in the case; = —1 and Bj = 2i;+1 for all j, we get that V is multiplicity-free,

has Jordan—Holder factors Ua ENAINEDS a;7;)) for 0 < a < 2i+1 with the nota-

t10n of [BHH+23 §2.4], and GL2 (O K) socle o. Moreover, the unique subrepresen-

Ind?LQ(OK)(W) has a filtration with Subquotlents IndGLQ(OK)(

and by [BHH" 23| Lemma 6.2.1(i)] the constituents of Ind xSal) are the

Serre weights o, with 2j < a < 2j+1. By the proof of [ BHH' 23, Lemma 6.2.1(i)],

\ood) for 0< j <
GL2(OK)(

one easily checks that the constituent o, of Ind; Xf,al) corresponds to the
subset {¢ : ap41 is odd} C {0,...,f — 1} in the parametrization of [BP12l §2]
(note that twisting x2 by a corresponds to shifting by —2 3" 5,7, in the extension
graph).

By Frobenius reciprocity V & <GL2(OK)( $)Y “tz,) is the image of a nonzero
map IndGL"’(OK)(W) — 7w and any Serre weight in its GL2(Ok)-socle has to be
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in W(p). By [BHH'23, Prop.2.4.2] if 0, € W(p), then 0 < a < 1, so g,
is a constituent of IndGLQ(OK)(Xf,) C V. Thus by the definition of §(c) and as
i/ S0CGL, (0x) ™ does not contain any Serre weight of W (p) it follows that Vis
the unique quotient of V' with GL2(Ok)-socle §(o). By the previous paragraph and
the definition of J™**(o), we have §(0) = 0, where bj = 1 jmax(5)4+1(j) for all j, and
V has constituents o, with 1 jmax(o)41(J) < a; < 25+ 1 for all j. By construction,
the left-hand side of (30]) is a quotient of IndGLZ(OK )(Xo %). Moreover, by what
is before, it must have constituents o, with max(ljmx(a)ﬂ( ),2i5) <a; <2i;+1
for all j. It follows that its GL2(Ok)-socle is irreducible and isomorphic to o,
where c; & max (1 jmax(y)41(J), 2i5) for all j. Since 2i;,1 is even and > 1 as soon
as 1,41 7# 0, we see that ¢;;1 is odd if and only if 4,41 = 0 and j € J™* (o). Hence
the GL2 (O )-socle of this quotient of IndGLQ(OK)( at) corresponds to the subset
{j € J™(0) :i;41 = 0}, as required. O

LEMMA 3.49. Assumem > 0 and leti € Zéo, £ e J™¥(g) such that ||i|| < m—1
and igy1 = 0. Then -
Yo (3 )y i, 0.

PRrROOF. Recall p — t; + 2i, > 0 by [B32), so that Yp_t”z”(po)Y_i:vg is
well-defined. Suppose on the contrary that Y~ tHQ”(g ?)Y_Za:(, # 0 for some
¢ € J™(g) such that igy; = 0 and ||i] < m — 1. By Lemma B37(ii) and
Lemma [B:42)(ii) this is an eigenvector for {((5)‘ 2): A, p € FX} with eigencharacter
Xaa_ia(p_t”%-’)pe. By Lemma [3.48] it suffices to show that the H-eigencharacter
Xc,a_?a(p_““‘z”)pe does not occur in

Ve € Qxsat Ji)
for any ' such that 0 <’ < i, where Jy & {j € J™*(q) : i1 = 0}.

Using the notation A = (Ao(zo),..., Aj—1(zp—1)) and P(zo,...,z5-1)
of [BP12, Thm.2.4], the irreducible constituents of Vj: are given by the Serre
weights (Ao(to —24p), .-, Ap—1(ty—1— 23 _;)) (up to twist) for those A € P(zo, ...,
xy_1) such that J(A) 2 Jy. Recall that A\j(z) = p —2 —a + 1,0 — 1) if
jeJA) and \j(z) =x — 1J()\)(] —1)ifj ¢ J( ). By [BP12| Lemma 2.5(i)] and
[BP12, Lemma 2.7], the H-eigencharacters that occur in Vs are Xaa_i/ak, where
k is such that there exists A € P(zo,...,z;—1) with J(A) D Ji and

0<kj<p—2—(t;—2i5) + 1) —1) ifje I,
p—1—(t; =25 -1, — 1) <k; <p—1 ifj¢ J().
(Note that Ji # ) as £ € Jy, noting that £ € J™*(¢) and 0 < i), < igp1 =0.)

. . Vi -/
Assume Xga_la(p_“””)p =y, ! ok for some \ and k as above. Then

(3.37)

/-1 -1 f-1
=D i+ (p—te+2i)p" == iip' +> kjp'  (mod g—1)
Jj=0 j=0 j=0
or equivalently
f-1 f-1
(3.38) (p—te+2i0)p" =D (i, —ip)p’ =Y k;p’ (mod g —1).
Jj=0 j=

Note that, since ¢ € Jy, we have in particular £ € J(\).
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If i = 4; for all j # £ (for example if i = 7 or if f = 1), then (B.38) gives
(p—te+ic+ip)p' = > kjp?, so ke = p —to +ip + i) as (using (B32) for ¢, and
0<ip<ip<m-—-1<f—1)

(3.39) p—tetig+i,e{2f+1,...,p—1}.

This contradicts [8.37) as £ € J(A) and iy < i,. Therefore f > 1 and 7; < i; for some
j # L. For m € Zx>g, let [m] the unique element of {0, ..., f —1} which is congruent
to m modulo f. In particular p™ = pl™ (mod ¢—1). Let h € {{+1,..., 0+ f—1}
be minimal such that ifh] <ifp). Then modulo ¢ — 1:

f—1 i+ f L+ f

D =i’ = Y (i — i) = Y (i — ify)pV!

§=0 j=t+1 j=h

and we deduce the following congruences modulo ¢ — 1:

f—1
(p—te + 2i)p" =Y _(i; — i)p’
j=0
L+ f
=(p—1—te+2i)p" +p" = (i) — if;)pY
j=h
11 ’ o+ f
=(p—1—to+2i)p" + > (p—1p? +p" = (i) — if;))p"”
j=h+1 j=h
l+f—1 l+f _
=(p—1—te+2i)p"+ Y (p—Dp +pMH =3 (i - if )Y
j=h+1 j=h
L+f-1
(3.40) = (p—1—te+ip+ip)p’ + Y (p—1—(igg—if;))pY + (p— (i —ify))p!".
j=h+1

Note that all powers of p in ([B.40]) are distinct in {0, ..., f—1} and all coefﬁcients are
in {0,...,p—1}. Moreover these coefficients cannot all equal 0 as p— (if,) —if,;) # 0,

nor p — 1 by (339). Hence by B38) we get ky =p — 1 — t; + iy + ). AsﬂEJ( )
and i, < iy, we get from [B37) that i, = ), and £—1 € J(A\). By B37) for j =¢—1
and by (3.40), B.38) we get

p—1— (i1 —ip_q) <hke—1 <p—1—ty_1+2i)_,

(note that by ([B40) the left-hand side is an equality as soon as £ — 1 # h mod f
which can only occur if f > 2). This implies t;—1 < ip—1+17;,_; <2(m—1) <2f—2,
which contradicts genericity (832). This finishes the proof. O

LEMMA 3.50. Assume m >0 and let k € Zéo
(i) IFYE(2O)Yi=m2, #£0, then

Ikl < (f=Dp-1)+m-1+ > s

jeJmax (0’)
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If moreover equality holds, then Xﬁ(g’ NY1""mg, = 250 (see [B35))
and

kj=s; (modp) ifje J"™ (o),

kj=-1 (modp) ifj¢ J" (o).

(i) IFIEl = (f = 1D)(p—= 1)+ 3 jmax(o) 55 then YE(5 )Y, € 6(0), more
precisely:

YE(p )Y e, € (Y twgo, Il = m = 1) .

ProOF. We prove the following statements inductively on ||i|| < m — 1 for
i€z
(a) If Xk(g ?)Z_ixg # 0 then

K< (f=Dp-D+m-1)+ Y s (m—1-]ilp.

JjeJImax(o)
If moreover equality holds, then XE(g ?)Xﬁixg = T'5(s) and
kj =1ij41p+ s; if j € J"(0),
ki =ijpp+(p—1) if j & J" (o).
(b) T E[ = (f = D(p = 1) + X jmax(oy 5 — (m = 1 = |[il[)p then

YE(§ )Y a0 =Y 5o

for some ||£|| =m — 1, or it is zero.
By Lemma [B42(iii) we have

Ylimfljo’ = Z Xﬁixa
i€z,
lléll=m—1

and we see that [(a)] and [(D)] for [|i| = m — 1 imply (i) and (ii) (note that in [(a)]
if Xk(g ?)X_fxg # 0 and equality holds, then 7 is uniquely determined by k& and
Jmax(o.))-

We first prove by induction on ||z]] < m—1fori € Zéo that if |k|| > (f—1)(p—
1) + 3 jmax(oy 85 — (m = 1= [|il)p and YE(5 )Y "z, # 0, then YE(§ )Y "ty =
Yk (g ?)xa for k' € Zéo such that k;; =k; —i;41p for all j. A examination of@
and @ shows it will then be enough to prove them for i = 0 (replacing k by k').

There is nothing to prove for ¢ = 0, so we can assume ¢ # 0. If k;, > p for some
Jo, then using Lemma B37(ii):

Zk(g (IJ)Z*Z'xU — XE—PEJ-O Y*]Z; (;8 ?)Xﬁixo — ZE—Péjo (g ?)X—(i—éjoﬂ)xm

where ¢g; &of (0,...,0,1,0,...,0) with 1 in position j and 0 elsewhere (note that
Yj(,-s—lel‘l”a = X’(1*§j0+1)3;0 is nonzero by assumption, and hence i —g; 1 € ZJ;O

by the last statement in Lemma[3.42(ii)). As [li—¢g; 4[| = [|il| -1 and ||k —pe;, | =
Bl =p = (f =1)(p = 1) + 3 jmax(o) 55 — (m = 1= [[i = &5, 41 [)p, we can apply the
induction hypothesis and a small computation shows that k' is the right one, so we
are done in that case.
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We assume k; < p for all j and derive below a contradiction (so this case can’t
happen). Define

JE{j € J"(0) sijn =0},
then by Lemma [3.49 (applied to £ = j and using Y ( ?)X_ixg #0):

ki <p—-1—t; +2i; ifjeJ,

by <p—1 if ) ¢ J,
which implies [|k|| < (f —[J)(p — 1) + X jes(p — 1 — t; + 2i;). From (B.33) we
deduce

Ikl < (f = 100 = 1) + Y (s + 2i5) + [T\ (J"™(0) + 1))
jeJ

So to get a contradiction it is enough to show that

(f = 1IN = 1) + D (s +2i5) + [\ (J™ (o) + 1) < (f = D)(p— 1)

jeJ
+ > si—(m—1—|ilp,

] e Jnlax )
or equivalently

pm+ [\ (o) + DEp - DI +pY i+ (=2 i+ >

il i€l jerma(o)\J
(3.41) =2l +E-1+ (2D G+ D ).
Jj&J jeJmax(g)\J
Case 1: assume [J™*(g) \ J| > 0.
If j € J™*(o)\ J, then i;41 > 0, so |[J™**(a)\ J| < ||i]|. As|J™**(o)\J| =m—|J],
this means m < ||i|| + |.J|, hence [B4I) is implied by

(3.42) 2+ I\ (@) D) <+ (2D 5+ > ),

i¢J jeJmax(g)\J
Using |J \ (J™* (o) 4+ 1)| < |J], B42) is implied by

(3.43) o< Y sy

jegmax(a)\J
Genericity [B32) with B33) give s; > 2f —1 > 2m — 1 for j € J™*(0), hence
(3:43) holds if either s; > 2m for at least one j € J™*(o)\ J or if |J™**(a)\ J| > 2
(using 2m — 2 > 0 for the latter). Therefore, the only way inequality (842) may
fail is when J™**(g) \ J = {jo} (for some jp) and moreover J \ (J™**(o) +1) = J
and i; = 0 for all j ¢ J. But then 7,41 > 0 so we have jo+1 € JN(J™(0) + 1),
which contradicts J N (J™**(o) + 1) = (). Hence inequality (3.42]) holds.
Case 2: assume J™(g) = J.
Then using

[T )+ )] < {O, .o, f=IN(I (o) +D)] = {0, .., f=INT (o) = f—m
and |J| = m, we see that [B41) is implied by (p—1)m+ f < (p—2)||i]| + (p — 1)m
which is true as ||i]] > 0 and f < p — 2 by B28]).

To prove @ and @, it therefore suffices to consider the case ¢ = 0, which we
prove now.
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Recall (GL2(Ok)(58)z0) = Q(x5, J™(0)). By [BP12, Thm.2.4(iv)] the
constituents of this GLQ(OK) representation are the Serre weights (Ao(to), -
Ar—1(ty—1)) up to twist, where A € P(zo,...,xz5_1), J(A) D J™(o) and A;(t )
p—2—1t;+1;00( —1)if j € J(A) (we use the notation of [BP12} §2] as in the
proof of Lemma B:49)). By [BP12| Lemma 2.7, Lemma 2.6] and Lemma B4TLii),
Q(xz, J™(¢)) has F-basis X@(’g 9)a,, where

OSIC] S)\j(t]) lfJEJ()\),
p—1=X(t;) <kj<p-1 if j & J(A)
for some A € P(zg,...,xp—1) with J(A) D J™*(o). We see that (344)) implies

(3.45) kI < (f = 1T -D+ Y (p=2-t;+ 1,000 — 1)

JEJI(N)

(3.44)

with equality if and only if k; = A;(t;) if j € J(A) and k; = p— 1 otherwise. More-
over, Xﬁ(g 9z, € 6(0)\{0} if and only if B.44) holds with J(A) = J™*(c). Hence
if X&(g 9z, ¢ 6(0) we deduce that ([3.44) holds for some A € P(zq,...,zs_1) with
J(A) 2 Jm¥(qg).

We claim that the right-hand side of (48] is smaller or equal than (f —
Dp—1)4+m—=143 juu(y s —p(m — 1) if J(A) = J"**(0) and strictly smaller
than (f = 1)(p — 1) + X juax() 85 — p(m — 1) if J(A) 2 J™*(0). Recalling that
55 = P —2—1j + 1ymax(o)(j — 1) for j € J™*(0), the first case follows from
(f=1J™()|)(p—1)=(f—=1)(p—1)+m—1—p(m—1). For the second case, as
(f=D(p-1)—pm—1)=(f —|J™**(0)])(p—1) — (m — 1), it is enough to prove

(f= D=1+ D (p=2-t;)+ [TV NI + 1)

JEJI(N)

<=1 @)P =D+ D (p=2—t;) +[T"(o) N (T (0) + 1)

JEJTMax(g)
- (m - 1);

or equivalently (by an easy calculation):

(m—1)+ [J\) N (JA) +1)| = [J™(a) N (J™(0) +1)| < S (t+1).
JEJ(N)\Jmax (o)
This is true, as m — 1 < f — 1 (so the left-hand side is at most (f — 1) + f),
J(A)\ J™** () # 0 and t; + 1 > 2f for any j by genericity (3.32).
Therefore ||k < (f=1)(p—1)+(m—1)+3_ juax(y) $;—P(m—1) ifXE(g Na, #0
and Y(£ %), € d(0) if ] > (F — Dip—1) + Z( S5 plm 1)
Jmax(o
We prove the remaining statements in [(a)] and [(b)] (for i = 0). If ||k >
(f-Hp-1)+ > s;—pim—1)and Xﬁ(g %)z, # 0, we know by above that
Jmax (o)
J(A) = J™*(o). By B44) we then have k; < s; if j € J™(0) and k; < p—1
if j ¢ J™*(0). By the definition of x5,y in ([B35) and by Lemma B.42(ii) (and
Remark [339) we deduce Y%(? %)z, =Y La;,), where {; = s; — k; if j € J™*(0)
and ¢; = p—1—k; if j ¢ J™* (o). This implies ||¢|| = (f— m)(p 1)+ Yo si—llEl,
Jmax )
and in particular [[£]| = 0if [|k]| = (f =1)(p— 1)+ (m—1) + 3 jmax(py 5 — (m—1)p
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and ||{| =m—1if k| =(f-1)(p—1)+ >  s; —p(m —1). This finishes the
Jmax(g)

proof of @ and @ O

Now we can finally complete the proof of Proposition [3.40]

PROOF OF PROPOSITION B40)(11). Suppose first that m > 0 and fix jp, €
JM¥(g). By Lemma Proposition B.45] and the definition of F' (see |(ii)| in
y

§2.1.70), we have

Yzjerxlax((,) Sj F(Yl_mxg)

= Iy T - v + @) | (B9)Y ™,

JEJmaxX(0)  j#jo
for some f(Y) € F[Yo,...,Y;_1] of mpy,-adic valuation (i.e. total degree)
=) gmax(e) i+ (—1)f. Asp> f=m wehave (p—1)f > (p—1)(f-1)+m—1
and by Lemma B50(i) we get f(Y)(? %)Y "™a, = 0, hence

YEJH]&X(G) SjF(Yl_me'g—) — (_1)f—1 H Y;-Sj H(Yj _Y—jo)p—l(gg)yl—mxa-
jeJmax(qg) J#Jo
Moreover, the right-hand side is contained in (X_gx(;(g), Il€]] = m — 1)p C (o) by

Lemma[B50(ii). As it is also Ny-invariant, it is contained in ]FYl_mx5(g) by Lemma
B.42[(iii). It is therefore enough to show that

YT mex o) 5 p(Y Mg ) = (< 1) g,
or again by Lemma [340, Proposition B:45 and Lemma B50(i) that

vt T v TG =) ()Y "0 = .
jeJmax(g) J#Jo

As (pzl) = (=1) for 0 < i < p — 1, the left-hand side equals

m—1 sj E' (p0yy1-
(3.46) vt I v oo YRRy,
Jmax(o) &' [=(p—1)(f~1)
ki <p—1if j # jo
By Lemma B.50(i), as k; + s; can never be congruent to s; modulo p when £ €
{1,...,p— 1}, only the terms with &} = 0 for j € J"*(0)\ {jo} and kj = p—1 for
j ¢ Jm¥ (o) survive. As [[E'|| = (p —1)(f — 1), we must have k} = (p—1)(m —1),
and by Lemma B.50(i) again it follows that (8.46]) equals z5(,), as required.
Finally suppose m = 0. As Yjp(g (1))37[, = 0 for all j, we get again by Lemma

B0, Proposition B:45 and B35]):

YP U F(z0) = ()Y T - Yo (5 9) e,
J#0

=
= (DY () 2e = (R s, O
§=0

Licensed to Chinese Academy of Sciences. Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



3.2. TENSOR INDUCTION FOR GL2(Qpr) 121

3.2.4. Lower bound for Vgi,(7): proof. We prove Theorem B35

We keep the notation of §§8.2.1] B.22 B23 Fix o € W(p) and define o; €
W (p) inductively by oy < o and o; d:ef‘é(ai_l) for ¢ > 1 (o; here shouldn’t be
confused with the embedding o; = g 0 ¢*). Let n > 1 be the smallest integer such
that 0,41 = 01 and write o; = (séi), R sgf)_l) ® n;. Recall that n = 1 if and only
if J™@ () = @ if and only if p is reducible and o corresponds to J, =0 or J, = S
(see the beginning of §3.2.3). We set m & |J™3%(¢;)| if n > 1 (this doesn’t depend
oni€{l,...,n} by LemmaBa7) and m © 1 if n = 1, so that m € {1,..., f}. For
i€{1,...,n} we let x; denote the H-eigencharacter on o'° = o/*. We also define
forie{1,...,n}:

S; def Z sg.i“) ifn>1,
jeJmax(oi)

sldéfp—l if n=1.

The following lemma will be useful later.
LEMMA 3.51. We have > ;s; =0 (mod p — 1).

ProOOF. Let s(x;) € {0,...,q — 1} such that x;41 = x;a *X?) and denote by
Is(xi)| € {0,...,(p —1)f} the sum of the digits of s(x;) in its p-expansion. Then
it follows from (53] below that we have

S e gmax oy 55 TP Y g ymax g (-1
a—Ii€J (o) 73 igJ (a4) Xi = Xi+1

and so
(3.47) sha) = Y, (p—1-s")p
jeJmax(o;)

which implies [s(x;)| = (p — 1)m — 5. As X1 = X1 = x10~ 2i=15%3) | we have
Sor 1 s(xi) =0 (mod g — 1), hence > | [s(x;)] = 0 (mod p — 1) and the result
follows. O

Recall 7 is as at the end of 8211 In [Brelll §4] there is defined an F-linear
isomorphism

(348) S : (SOCGLQ(OK) 7T')I1 L) (SOCGLQ(OK) 7T)Il.

Fixing an embedding o < socgr,(o,) 7, for i € {2,...,n} there are unique embed-
dings 0; < socqr,(0,) T such that the morphism S cyclically permutes the lines

ail . In particular there exists v € F* (which depends on o but not on the fixed
embedding o < socqr, (o) T) such that S"| 1, is the multiplication by v for all

i€ {l,...,n}. We define p; € F* forl<i<mnbypu Cvifn=1andifn>1:

@OV T e
d:cf (ngtlgn HjeJmax(a.i/)(p - ]. — Sj )) v 1f 1=n,
1 otherwise.

Hi
We let M, be the F[X][F]-submodule of 7!, or equivalently the F[Y][F]-

submodule, generated by Y'="oN0 = Y=gl for 1 <4 < n. Recall v € 7} acts
on M, @ x;! by the action of (é 791 ) (see the end of §3.2.1)).
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PROPOSITION 3.52. The module M,®x; ! is admissible as an F[X]-module (see
§2.10), Z -stable, and such that (M, @ x; ') is free of rank n as an F[X]-module.
Moreover the étale (p,T')-module (M, ®x,; 1)V [1/X] admits a basis (e1, ..., e,) over
F[X][1/X] such that for i€ {1,...,n} (with e,q1 < €1):

(3.49) ples) = pi ' X e,
(3.50) v(e:) € xi((69))7™ (1 + XF[X])e; for all v € Z)
where 7 is the image of v € Z; in F. Moreover vy(e;) is uniquely determined by

B.A3) and B.50).

To prepare for the proof, fix z; € o1'° \ {0} and define for 1 <i <n — 1:

) (i4+1)
a2 Ty T v () e oy \ {0}

jerm o) eI
and 2,41 < 21 (note that this formula is (Z35) multiplied by (—1)7~1).

LEMMA 3.53. Fori e {1,...,n} we have

(3.51) S(xi)z( I1 (p—l—sg.”“))!)mm

jeTmax(q;)
and
(3.52) YSF(YY ") = Y ™2
Proor. If i € {1,...,n} we have
(l+1)
(3.53) (—1)7! H YJ H VP (B )2,
jeTmax(o;) j¢Tmax (o)
1
=( IT @-1=s7) b (e, (5
jeJmax(g;) JMAX (o)

-( 11 <p—1—s§””>!)_ls<xi>,

jeJnlax ((TL)

where the first equality follows from Lemma B:41(i) and the second from the defini-
tion of the function S in [Brelll §4]. From the definition of x;11, we obtain (B2
for i < n. For ¢ = n, using inductively

, -1
Tiy1 = ( I e-1- 5§Z+1))!) S(zi)
jeTmax (o)
fori=n—1,i=n—2till i = 1 we obtain (as S is F-linear):
-1
Swa)=( II -1-s")) S )

jeJmax(Jnil)

H H (p—1-— s§-i+1))!)715”(a:1).

1<i<n—1 jeJmax(g;)

Since S™(z1) = vz and from the definition of p,, we get (B51) for ¢ = n. The last
part follows from Proposition combined with (353) and BXI). O

Licensed to Chinese Academy of Sciences. Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



3.2. TENSOR INDUCTION FOR GL2(Qpr) 123

The following lemma is stated with the variable Y, but remains the same with
the variable X.

LEMMA 3.54. Suppose M is a torsion F[Y]-module. Let ¥ C M be a subset

spanning M as an F-vector space and set Yy Upes FXv. If

(i) Y C S U{0};
(ii) FY vy = FYws #£ 0= vy = vy for vy,vy € 3;
(iii) XN MIY] is a finite set of F-linearly independent vectors,
then ¥ is an F-basis of M and M is an admissible F[Y]-module. If moreover
YX =X U{0}, then MY is a finite free F[Y]-module of rank dimp M[Y].

Proor. Write X N M[Y] = {v1,...,v4} (assuming ¥ N M[Y] # 0 otherwise
M = 0 and there is nothing to prove) For £ € {1,....d} let £, & {v € ¥ :
YJv € FXv, for some j > 0}. Then M, Lof Byex, Fv is an IF[[Y]} module usmg ) If
v,v" € Xy, then usmgthere is j > 0 such that either Fv = FY v/, or Fv' = FY v,
from which one easily deduces M;[Y] = Fuy, in particular M, is adm1881ble Since
¥ spans M over F and ¥ = [];_, ¥, the natural map f : @Zzl My, — M is
surjective, and thus M is also admissible. Since @, M;[Y] = @, Fv, — M[Y] (the
last injection following from|(iii)]), we deduce that Ker(f)[Y] = 0, hence Ker(f) =0
and f is an isomorphism. This proves the first part of the statement. It follows
from Y = ¥ U {0} that the multiplication by Y is surjective on each My, i.e.
we have exact sequences 0 — Fvy, — M, X M,y — 0. Dualizing, this gives 0 —
M) 5 M) — (Fv;)Y — 0, which shows M)’ is free of rank 1 over F[Y]. The last
statement follows. O

Recall that M, is the F[Y][F]-submodule of 7"t generated by Y'~™z; for
1 <i<n. Let

5 def YIFk(Yl=mg):1<i<n, k>0, 0<j<prls; ifk>1
- 0<ji<m if k=0

We now check that M, and ¥ satisfy all the assumptions in Lemma [354] Define
for £ € Z>1:

dcf

{YIFF(Y'""™z;) € S:k+i=( (modn)}

def

and My, = @, ey, Fv. We have ¥ = [[;_; 3. Applying F*~! to B52) for k > 1
we get (recall that F oY =YP o F on 7V1):

(3.54) yP s R (Y ) € FXFR N (Y M),

hence ¥ spans M, and condition |(i)| of Lemma B.54] holds for 3. Using B.54) we
also see that the multiplication by Y induces an injection ¥, — i[ U {0} and that
Yig = i[ U {0}, hence My, is an F[Y]-submodule of M, and condition of
Lemma [3.54 holds for ¥, and ¥. Moreover, Y = ¥ U {0}. Finally, ¥ N M,[Y] =
{z1,..., 25} (and ENM; ,[Y] = x¢). By Lemma [3.54] and its proof, we deduce that
¥ is an F-basis of M,, that M, = @?:1 My, and that each MZU is free of rank 1
over F[Y]. In fact one can visualize the “Y-divisible line” M;4; ., as follows using
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mel _ Y si _ YPsi—1
Fa;py +— FY' " g &~ FR(Y' ™) " —

FE2 (Y12 )

2
YP Si—2 « _
— FR3(Y'Y™Mz_g) — -,

where Fz; 11 = M; 11 ,[Y] and the arrows mean “multiplication by the power of ¥
just above”. In particular we see that if d(v)  min{j > 1: Yo =0} forv ey,
then v € ¥4, is contained in F(X) if and only if d(v) = s; + m (mod p).

Define a basis fi,..., f, of the free F[Y]-module M) by

def

filz) € 1and fi(S\{z}) o0, ie{l,...,n}

From what is above we then easily deduce the following formula, where F(f)(v) =
f(F(v)) for f € MY and v € M, (and using conventions as in §2.1.1)):

Y™ Vf, i 6 =0,

3.55 F Y[+(S +m—1)
(8:55) ( f) =9 if1<i<p—1.

LEMMA 3.55. The module M, ® x;! is Z, -stable, hence Z; acts on (M, ®
Xz1)Y. Moreover we have for v € L) (recall v(f)(v) = f((o ) for f e (M, ®
Xx')Ys v € M,y):

(i) exi((69)) 1+ YF[Y]) f:

for1 <i<n.

PROOF. As M, = @, F[Y][F]Y'"™z; and Y'~™x; is a ZX-eigenvector by
Lemma [3.42(iii) we deduce that M,, and hence M, ® x; ', are ZX-stable.

From yoX = ((14+X)Y—1)ovy and Lemmal[3.38it is easy to deduce that yoY =
fy(Y) o for some f,(Y) € 7Y + Y?F[Y], hence Z* preserves the decomposition
of F[Y]-modules M, ® x;* = @}, Mi, ® x;'. In particular, v(f;) annihilates
My » @ x5! for all i’ # i. Let Y Jz; for j > 0 denote the unique element of ¥
such that Y7 (Y ~Jx;) = z; (this is compatible with our previous notation in Lemma
[B.42[(iii)). Then

V() =D ()Y )Y f € xi((§9)) 1+ YFIY] £:. O
j=0

PROOF OF PROPOSITION We have already seen above that M, ® y;! is
admissible, ZX-stable, and that (M, ® x;')¥ is free of rank n as an F[No/N1]-
module. To find the basis (e;);, first note from Lemma B:38 and ([B.55]) that (using
FoYP=YoF on (M, ®x;")):

F(Xs i+m— 1f1+1 Zc ys i+m— 1+]fl+1)
7>0

=iy cpY ",

i>0
(3.56) € (—1)%u;(1+ XF[X)X™ 1 f;
for some ¢; € F with ¢ = (—1)%T™~1. Similarly for £ € {1,...,p— 1}
(3.57) F(Xstm=tty 1) € FIX]X™ fi.
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It easily follows from (2.6]) that

p—1
(3.58) S A+X) T p(F(1+ X)) =f

=0
for all f € (My®x;)V[1/X]. Let f % Xsitm=1¢ | by [356) and B57) we have
for £€{0,...,p—1}:

F((1+X) f) € (=1)%m(1+ XFIX)X™ ' fi,
and so
P(F(L+ X)) € (=1)% ui(1 + XPE[X])p(X™ 1 fy).

Using

p—1 _
Z(1+X) <1fX)p 1EXP_1 (mod XP?),
=0

we see that (3.58) applied to f = X*T™~1f; 1 becomes
(1) s X2 (XM i) € (14 XF[X]) X fi
or equivalently in (M, ® x,;1)V[1/X]:
(3.59) P(X™fi) = (=1)% i ga (X)X fii
for some g;(X) € 1+ X]F[[Xﬂ

def

Let e; = (— 1)23 sy (X)X™f; for some h;(X) € 1 + XF[X] and note that
the sign doesn’t change if i is replaced by ¢ + n by Lemma B.5Il Then [3.49) is
equivalent to

hi(XP)p(X™ fi) = (=1)% 47 Hhiga (X) X5 X fipa,
or equivalently h;(X?)g;(X) = hi+1(X) by 59). This system has the unique

solution
X) =[] o (x"
j=1

in 14+ XF[X], where the indices are considered modulo n. Then (Z50) follows from
Lemma The final uniqueness assertion follows from v o ¢ = ¢ oy and is left
as an exercise (similar to [Brelll Lemma 4.5]). O

Let O(r) (resp. O(p)) be a set of representatives for the orbits of § on the set
of Serre weights in socqr,, (0, ) 7 counted with their multiplicity r (resp. on the set
W(p)). We define M, < Docox) Mo (with M, as above). It follows from the
assumptions on 7 that we have

71- o~ @ MéBr

oceO(p)

In particular (M, ® x,;1)V[1/X] is an étale (p,T')-module over F((X)) of rank
r[W(p)| = 2. From the description of M,[X], we also see that the natural
map M, — 7™ of torsion F[X]-modules is injective as the following composition
is injective:

M,[X] 2 @olt — 7l € 7M1 [X],
where the direct sum is over all Serre weights ¢ in socgr,(o,) 7 (counting their
multiplicity r).

Licensed to Chinese Academy of Sciences. Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



126 3. THE CASE OF GL2(Qpr)

PROPOSITION  3.56. We have an isomorphism of representations of
Gal(Q,/Qp) over IF:

_ ~ [ I
V((Mr @ x:")"[1/X]) = (ind () ™"
PROOF. We are going to use a computation of [Brelll §4]. Associated to the

diagram D < D(p)®" of §3.2.T] there is defined in loc.cit. an étale (p, I')-module
over F(( X)) denoted there M (D) and which is of the form M (D) = @er(ﬂ)M(D),
where M (D), is a rank n étale (¢, I')-module over F((X)) associated to the or-
bit of o, i.e. to the cycle ¢ = o1,...,0, as above (so in fact one has M (D) =

DocomM(D)ST).
Let N % F((X))e be the rank 1 étale (o, T')-module over F((X)) defined by
ole) = X~ PVt
7X Zj(rj+1)
0= (rxm1)
We have V(N) = 2 (it — ind%Qp(det 7) (using ind?}(@”(wf) >~ w) by [Brelll
Prop.3.5] and
V(M (D)) = (indi™(p® (detp) ™))" = (indg(p) @ ind g (detp "))
by [Brelll Thm.6.4]. We therefore deduce
~ [ pr—\\ DT
V(M(D) @r(x) N) = (indy"(p))

Therefore it suffices to show that M (D), ®p(x) N = M)/[1/X] for each o € O(r),
or equivalently each o € (9(_)

Let zy,...,z) € (D7, 0/*)Y be the dual basis of the F-basis (2;); of @], 0",
it follows from its definition in [Brelll, §4] and from (B47) that M (D), has basis
xy,...,x, as F(X))-module with

olat) = x0T 1= 0S| L),
jeTmax(a,)

where S~! is the inverse of the bijection S of (348) (which preserves @, oi').

By (B51) we have
-1
wosih = (I w-1-s0) el

Jmax (U”L)

or

so we obtain

p()) = pyt XDy

Also we have for v € Z) (using the hypothesis on the central character of ):
w0 (7 9) =72 (@ 0 (59))
=75 > TjX.((l 0))13;/,

hence with the definition of vy(z}) given in [Brelll Lemma 4.5]:

e
YY) e xi((§9))7 =" (1 + XF[X])ay .

LA more consistent notation with the ones of this article would have been M(D)Y and
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We deduce that M (D), ®r(x)y N = @;_; F[X](z} @ e) with

play ®e) = p L XHT@TDEE ) (0¥ @),
vy ®e) e xi((§9))7 =" (1 + XFIX]) (2} ®e).

Now, let ¢} & X™ 357 (zY @e) for all i. Then ¢}, ..., €., is a basis of M(D)s®r(x)

N and we have for i € {1,...,n} (with e}, e en):

plef) = py X Vel
y(ep) € xi((65))7™ (1 + XF[X])e;.

From Proposition we see that M (D), ®@p(x) N = M) [1/X]. O

By Lemma [3.36] this completes the proof of Theorem B35l when the constants v;
are as in [Brelll Thm.6.4]. When they are arbitrary, the proof of Proposition
gives V((M, ® Xgl)v[l/X])h% = (ind%@”(ﬁ)) %’; using [Brelll Cor.5.4], which
finishes the proof of Theorem

3.3. On the structure of some representations of GLy(K)

We prove results on the structure of an admissible smooth representation 7 of
GLy(K) over F associated to a semisimple sufficiently generic representation p of
Gal(Q,/K) as in [BP12] when 7 satisfies a further multiplicity one assumption as
in [BHH™23| and a self-duality property. In particular we prove that such a 7 is
irreducible if and only if p is, and is semisimple when f = 2 (Corollary and

Corollary [3.90]).

We keep the notation at the beginning of §43] B.I] and set A = F[I,/Z1]. We
recall that the graded ring gr(A) is isomorphic to ®lf:_01]F[yi, 2i, h;] with h; lying in
the center (see (B17)). We set

def

R= gr(A)/(ho, ..., hy-1),

which is commutative and isomorphic to Fy;, z;,0 < i < f —1], and recall that R =
R/(yizi,0 <i < f—1) = gr(A)/J (see B.22)). Moreover the finite torus H naturally
acts on A by the conjugation on I (via its Teichmiiller lift) and we see (using
(1)) that the induced action on gr(A) is trivial on h; and is the multiplication
by the character a; (resp. o; ') on y; (resp. z;), where a; ({3} 2)) (At for
(39)e H.

Notice that gr(A) is an Auslander regular ring (see [LvO96l, Def.I11.2.1.7],
[LvO96l Def.I11.2.1.3]) by the first statement in [BHH"23, Thm.5.3.4] and so
is A itself by [LvO96, Thm.I11.2.2.5]. This allows us to apply (many) results of
[LvO96, §II1.2).

For any ring S and any S-module M, we set Ejy(M) & Ext% (M, S) for i > 0.
This is a right S-module. If S = A or S = gr(A), we can and will use the anti-
involution g + ¢~ on I/Z; to consider any right S-module (with compatible
H-action or not) as a left S-module.
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3.3.1. Combinatorial results. We define some explicit ideals a(A) of R and
study some of their properties.

We fix a continuous representation p : Gal(Q,/K) — GLy(F) which is generic
in the sense of [BP12] §11] and let Dy(p) be the representation of GLo(F,) over
F defined in [BP12| §13] (see also §3.2.1] when 7 is semisimple). Recall from
[BP12, Cor.13.6] that Do(p)t is multiplicity-free as a representation of H = I /1.
By [Breldl §4], there is a bijection between the characters of H appearing in
Do(p)+ and a certain set of f-tuples, denoted by

PID(xo,...,x¢-1), resp. PRAD(xo,...,x5-1), resp. PD(xg,...,T5-1),

if p is irreducible, resp. reducible split, resp. reducible nonsplit. We refer to
[Breldl §4] for the precise definition of these sets and we simply write &2 for
the set associated to p. We write x, for the character of H associated to A € &
(more precisely, in loc.cit. one rather associates a Serre weight oy to A, and xx
is the action of H = I/I; on the 1-dimensional subspace 0’3’\1, different o giving
different x,).

On the other hand, the set W(p) is in bijection with another set of f-tuples,
denoted by (see [BP12] §11])

I D(xo,...,x5-1), resp. ZD(xo,...,2f-1), resp. D(xg,...,x5-1),

depending on p as above. We simply write & for the set associated to p. Since the
socle of Dy(p) is ©yew ()0, we may view Z as a subset of &2. For example, if p is
reducible split, then Z is the subset of & consisting of A such that

N(zy) € {zj,z;+1,p—2—2a;,p—3—x;},

while if 5 is nonsplit, then we require moreover that A;(z;) € {z; +1,p — 3 — 2;}
implies j € J5, where J5 is a certain subset of {0,..., f — 1} uniquely determined
by the Fontaine-Laffaille module of p (cf. [Brel4, (17)]).
DEFINITION 3.57. We associate to A € &2 an ideal a(\) of R as follows.
o If 5 is irreducible, then a(\) = (to,...,tr—1), where
20 if /\0(1‘0) E{J)o—l,p—Z—xo}
to= Qyo  if Mo(wo) € {zo +1,p — w0}
Yozo if Ao(zo) € {zo,p — 1 — 20},
and if j # 0
zj  if Aj(ay) € {ajp =3 — a5}
tp =y i A(z) e{rj +2,p—1 -5}
YjZj if )\j((Ej) € {l’j+1,p—2—$j}.
e If 5 is reducible nonsplit, then a(\) = (to,...,ty—1), where
z; if \j(z;) € {zj,p—3—=z,;} and j € J5
g, def Yj if \j(z;) e{z;j+2,p—1—2z;} and j€ J5
’ yjz; it Nj(zj) € {z;,p—1—x;} and j ¢ J5
yizi i Aj(z5) € {z; +1,p— 2 — x5}
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e If p is reducible split, then a(\) = (to,...,ty—1) is defined as in the
nonsplit case by letting J; = {0, ..., f — 1}, namely
Zj if)\j((Ej)G{.’[j,p—?)—l'j}
ti =y i) €{z+2,p—1 -}
yizi A Aj(ey) € {o; + 1,p — 2 — a5}
In particular, if p is reducible nonsplit and J; = 0, then a(\) = (yozo, -
yr—127-1) for any A € &. Note that R/a()) is always a quotient of R.

ey

REMARK 3.58. Under the hypothesis that p is 2-generic, an equivalent form of
Definition B.57 is as follows (compare the proof of Theorem B.67)). Given A € 22,
t; = y; (resp. t; = z;) if and only if the character anfl (resp. xaeyj) occurs in
Do(p)!1 (i.e. has the form xy/ for some N € &), and t; = y;z; if and only if neither
of XAa;-tl occurs in Do(p)!t.

LEMMA 3.59. Let A\ € .

(i) Assume p is semisimple. Then A\ € 2 if and only if y; ¢ a(\) for any
je{o,...,f—1}.

(ii) Assume p is reducible nonsplit and let p*° be the semisimplification of p.
Then there is a bijection between P (p*°) (defined as the set 9 associated
to p%) and the set of A € & such thaty; ¢ a(\) forany j € {0,..., f—1}.

PRrOOF.

(i) It is clear by definition of 2 and a(\).

(ii) Let A € & such that y; ¢ a(X) for any j € {0,..., f —1}. By definition,
we have (for p reducible nonsplit)

A(z;) € {zjzj+1l,p—1—z;,p—2—2j,p—3—x;}

and from the definition of a(A) if Aj(z;) = p—1— z; then j ¢ J5 (note that if
Aj(z;) = p— 3 — z; then it is automatic that j € J5). We define an f-tuple p by

() de p—3—z; ifX(z;)=p—1—u;
I Aj(z4) otherwise.

It is then easy to see that u is an element of 2(p*) and that any element of 2(p°)
arises (uniquely) in this way.

O

COROLLARY 3.60. The set {\ € & :y; ¢ a(A\) V j € {0,...,f —1}} has
cardinality 27 .

PROOF. This is a direct consequence of Lemma [3.59 and of |[W (5)| =2/. O

Given A € &, write a(\) = (to,...,ts—1) as in Definition B57] and define
(3.60) AN E {je{o,...,f =1} t; =y;z} C{0,...,f—1}.

The following proposition will only be used in Corollary B.71] below.

PROPOSITION 3.61. We have 3, _ 5 2N = 47,
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Proor. We will only give the proof in the case p is reducible (split or not),
the irreducible case can be treated similarly. _
First assume that p is split. Given A € &, we define an element A € Z as

follows:
T if /\j(Ij) € {Ij,.ﬁtj + 2}
~ def .
Nj(zj) = Sp—3—x; ifN(z;)e{p—1—aj,p—3—=x;}
Aj(x;) otherwise.

It is easy to see that A € 2. By definition of & (see [Breld, §4] and recall
P = PR (xg,...,77-1)), for each X\ € P, there are exactly 210, S =1NAQ)
elements \ in & giving rise to A under the above rule. Moreover, it is direct from

the definitions that A(X) = A(\). Hence

S 24 = §7 (27 - MPIg AR = 9f| g = 272f = 4,
re 7 PN=17

Now assume that p is nonsplit. Let 2 be the subset of & considered in the
proof of Lemma [B59(ii), namely A € & if and only if

A(z;) € {zjz;j+1l,p—1—z;,p—2—2j;,p—3—x;}

and \j(z;) = p— 1 — x; implies j ¢ J5. By the proof of loc.cit., we have |Z| =
|2(7°%)| = 2/. Given A € &, we define an element \ € & as follows:

R £ if Aj(z5) € {aj, xj + 2}
Nj(zj) = Sp—3—x; ifN(z;)=p—3—z;or (N\j(z;)=p—1—=xjand j € J5)
Aj(z5) otherwise.

As in the split case it is easy to see that A(X\) = A()\) and that given \ € &, there

exist exactly 21{0. F=INAMN glements A in 2 giving rise to X. The result follows
as in the split case. O

DEFINITION 3.62. Given A € &, we define another f-tuple \* as follows:
p—3—XNi(z;) ift; =z
Aj () Elpt+1- Nj(zy) ift; =vy;
p—1—X(z;) ift; =y;z;.
If A € 9, we define its “length” ¢(X) to be (see [BP12] §4]):
(3.61) (N Ejefo,...,f—1}: M) e{p—2—z; £ 1,z; £1}}].

LEMMA 3.63. Let A € Z.
(i) We have A* € & and a(\) = a(A*).
(ii) Assume that p is semisimple. Then A\ € 2 if and only if \* € P, and in
this case L(A*) = f —£(N).
PROOF.

(i) The first statement can be checked directly using the definition of & and
the second one is obvious from the definitions.
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(ii) The first statement follows from (i) and Lemma B.59(i). By definition of
P (see [BP12] §11]), £()\) can be computed as the cardinality of the following set:

{je{0,....f=1}: Nj(zj) e{p—1—zj,p—2—x;,p—3—x;}}.
For example, when p is reducible split, we have (cf. the beginning of [BP12] §11])
)\j(l’j) € {p -2 Tj,p— 3— .’[j} <~ >‘j+1(xj+1) € {p -3 - Tjt1,Tj+1 + 1}
The second statement of (ii) follows from this and Definition
|

LEMMA 3.64. Let A € P, xx the character of H associated to A, (to,...,
ty—1) the ideal a(\) in Definition B5T and nx be the character of H acting on
H;:()l tj. Then we have

XaXas = na(n o det),

where \* is as in Definition and n(a) dof xA((89)) fora e Fx (n does not
depend on X € &).

Proor. This is an easy computation, but we give some details. Note that
Aj(w5) + Nj(w5) = (p— 1) + 2¢;, where ¢; equals 1, 0 or —1 if ; equals y;, y;2; or
z; respectively. Moreover, in the notation of [Breld] §4], we have

f—1
o)+ e = 3 (0 14 30 (s~ Nylay) + ;= X))
=0

f-1
= V(zj—g5)

Jj=0

The conclusion follows now from a simple computation, noting that for (3 2)6 H
a((89)) = Uo(a)(z,f;& pfAj<rj>)+e<A>(ro,...,rf-1>UO(b)e(mw,m,rf-l)
(see [Breld, §4]) and that H acts on y; (resp. z;) via a; (tesp. a; *). O

Note that H acts on I1 /Z; by conjugation and hence on A and gr(A), preserving
the filtration and the graded pieces on the former and the latter respectively. This
induces H-actions also on R, R, and R/a()\) for any A € &. We say that a gr(A)-
module M has a compatible H-action if it has an H-action such that h(rm) =
h(r)h(m) for all h € H, r € gr(A), and m € M. In this case Efgr(A)(M) is again a
gr(A)-module with compatible H-action for any i > 0.

LEMMA 3.65. If M is a gr(A)-module with compatible H-action that is annihi-
lated by (ho,...,hy_1), then we have isomorphisms of gr(A)-modules with compat-
ible H-action for ¢ > 0:

(3.62) Byl (M) 2 Ef(M).

If moreover M is annihilated by J, then we have isomorphisms of gr(A)-modules
with compatible H-action for i > 0:

(3.63) Byl (M) = B (M) = B (M).
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132 3. THE CASE OF GL2(Qpr)

PROOF. Since (ho,...,hf_1) is a regular sequence of central elements in gr(A)
and (yo2o,...,Yf—12f—1) is a regular sequence in R (which is commutative), the
isomorphisms [B:62) and [B63) as gr(A)-modules are proved as in the proof of
IBHH" 23| Lemma 5.1.3]. Moreover, H acts trivially on h; and y;z; (for 0 <
j < f—1), so the isomorphisms are also H-equivariant, from which the results
follow. O

We don’t use the following proposition in the sequel, but it is consistent with
Remark [B772(i) and the essential self-duality assumption (iii) in §3.3.5] below (see

Proposition B:84]).

PROPOSITION 3.66. For A\ € & there is an isomorphism of gr(A)-modules with
compatible H-action:

EX ) (06 @ R/a(V) = (x5! @ R/a(\) @nodet.

PRrROOF. Applying (B:63) with i = 0 and M = x)' ® R/a()\), we are left to
prove
Homp(xy ' ® R/a(\), R) = (x)_\*l ® R/a(\)) @ nodet.
Using Lemma [3.64] it suffices to construct an isomorphism of gr(A)-modules with
compatible H-action

(3.64) Homp(R/a(\), R) = ny' ® R/a()),
where 7 is the character of H acting on ij;é t; if we write a(A) = (to,...,tr-1)

Yith ti € {y;.2,y;2}. Put t/ o H;;gl(yjzj/tj). One easily checks that 'R =
R[a(A\)] and there is an isomorphism of R-modules

0: n'@R/a(\) = t'R,

where the first map sends 1 to ¢’. As H acts on ' via 77;1, 0 is also H-equivariant.
The isomorphism (B64) is then obtained by sending r € 7' ® R/a()) to ¢ €
Homy(R/a()\), R) such that ¢(1) < 6(r). 0

3.3.2. On the structure of gr(m). We give a partial result on the struc-
ture of gr(m") for certain admissible smooth representations m of GLg(K) over F
associated to p when gr(7") comes from the my, /z -adic filtration on 7.

We let p be as in §8.3.7] (in particular p is not necessarily semisimple) and keep
the notation of loc.cit. As in §8.2.0] when p is semisimple, we consider Dy(p) as a
representation of GLy (O ) K™, where GL2(Ok ) acts via its quotient GLo(F,) and
the center K* acts by the character det(p)w™'. We now write m for my, /7, .

We consider an admissible smooth representation 7 of GLo(K) over F satisfying
the following two conditions:

(i) thereis 7> 1 such that 751 = Dy(p)®" as a representation of GLa(Ox ) K
and 7 has central character det(p)w™?.
(ii) for any A € &, we have an equality of multiplicities

[r[m?] = xa] = [w[m] : xa]-
Note that (ii) implies that the gr(A)-module gr(7") (defined with the m-adic fil-

tration on 7) is annihilated by the ideal J in (BI8) by the proof of [BHH 23,
Cor.5.3.5], and in particular is an R-module.
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THEOREM 3.67. For m as above, there is a surjection of gr(A)-modules with
compatible H-action

(3.65) (P 3t @R/a(N)®" — gi(xY),

rez?
where a(\) is as in Definition B0

PrOOF. Consider the gr(A)-module with compatible H-action:

M et @X © R/af ))

re

Since there is a bijection A — yx between & and the characters of H on Dy(p)"
(see §3.3.T), we can choose a basis of 7/t over F, say {vy; : A € 2,1 < k <
r}, such that each vy is an eigenvector for I of character x). We denote by
{exr : A € 2,1 < k < r} the basis of gr’(7¥) over F which is the dual basis
of {vyx}, and note that {ey x} generates the gr(A)-module gr(w). To prove that
there exists a surjective morphism M — gr(m") it suffices to prove that, for any
A€ P and any k € {1,...,r}, the vector ey j is annihilated by the ideal a(\) of
R = gr(A)/(ho,...,hy—1). Writing a(\) = (to,...,t;—1) as in Definition B57] we
already see that if ¢; = y;z;, then ¢; kills all the e, j since gr(w") is annihilated by
J.

Let j € {0,..., f —1} such that t; € {y;, z;} and define x’ o X)\a;l ift; = yj,

y < xaq; if t; = z;. By Definition B.57 one checks that x’ = xa/, where A’ € & is
def def

defined by A(x;) = Ai(2;) if i # j, and N)(2;) = Aj(x;)+e;, where €; equals either
—2 or 2 when t; equals either y; or z; respectlvely Note that x'~! is equal to the
character of I acting on tjexr € gri(nY). Thus, if tjey , # 0, then dually the x'-
isotypic subspace of 7[m?]/m[m] would be nonzero. But this contradicts condition

(ii) above. Hence ey i, is annihilated by the whole ideal a()\) and we are done. [J

COROLLARY 3.68. Let 7' be a subrepresentation of ® and P2’ C & be the
subset corresponding to the characters (without multiplicities) of H appearing in
71t Then gr(n'V) (with the m-adic filtration on ') is a quotient of (D ez Xy @

R/a(A)®"

PROOF. We have a natural quotient map 7" — 7'V which induces a quotient
map gr(m¥) — gr(7’V). It is enough to prove that the composition

@ X ®R/a( @ X ®R/a( )) - gr(ﬂv) - gr(ﬂ'/v)
re’ reP

is surjective (where the second map is the surjection of Theorem B.G7). The as-
sumption implies that it is surjective on gr’(—), and we conclude using that gr(7'V)
is generated by gr’(7’V) as a gr(A)-module. O

If N is a finitely generated R-module and q a minimal prime ideal of R, recall
that mq(N) € Z>o denotes the multiplicity of N at q, see (3.23).

THEOREM 3.69. We have dimg VoL, () =dimg(x) DY () <my, (gr(z¥)) < 27,
where the minimal ideal pg 15 as in §3.1.4

Proor. This is a direct consequence of (2.8]), of Corollary B34, of Theorem
[B:67 and of Corollary B.60, noting that, if y; € a(X) for some j € {0,..., f — 1},
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134 3. THE CASE OF GL2(Qpr)

then my,(R/a(X)) = 0 (as y; € po), and if y; ¢ a(X) V j € {0,..., f — 1}, then
mEOA})]?/a()‘)) =1 (as (R/a(M\)[(o - yr-1) "1 = Flyo, - yr-allwo - yp-1) 7] ;
gr(A)).

Combined with the results of §3.21 we can deduce the following important
corollary.

COROLLARY 3.70. Assume moreover that p is semisimple, satisfies the gener-
icity condition [B26]) and that condition (i) above can be enhanced into an isomor-
phism of diagrams (71t — 75K1) = D(p)®", where D(p) is as in B27). Then we
have an isomorphism of representations of Iy, :

~ [ 1®Qp — r
Va, (m)lr, = (inde ()17

In particular we have dimg Var, (1) = dimg(x) DY (1) = my, (1Y) = 277, If more-
over the constants v; associated to D(p ® x) (x as in 8210 at the beginning of
[Brelll §6] are as in [Brelll Thm.6.4], then we have an isomorphism of repre-

sentations of Gal(Q,/Qy):
~ [ ® —\\ BT
Var, (r) 2 (ind (7)) %"
PROOF. It follows from Theorem and Theorem as
dimg (ind§%(p)) "= 2/7. O
It is also worth mentioning the following corollary of Theorem

COROLLARY 3.71. We have 3 mq (gr(mV)) < 4fr, where the sum is taken over
all minimal prime ideals q of R.

PROOF. By an easy computation, we have » 5, mq(R/a(A)) = 214N (see (B60)
for A(X)). Thus the result follows from Proposition B.61] and Theorem O

REMARK 3.72.

(i) Tt seems possible to us that the surjection in Theorem could actually
be an isomorphism, at least for m coming from the global theory as in §3.4.1] below.
Note that such an isomorphism implies in particular E;r( algr(mY)) # 0 if and only
if i = 2f (i.e. the gr(A)-module gr(7") is Cohen-Macaulay of grade 2f), which
in turns implies E% (V) # 0 if and only if i = 2f (use [Ven02] Cor.6.3] and the
similar result with gr(A) instead of A, the first statement in [Ven02, Thm.3.21(ii)]
and [LvO96l Thm.I.7.2.11(1)]). Note moreover that by [HW22, Prop.A.8] we
know that 7V is Cohen-Macaulay for 7 coming from the global theory in the so-
called minimal case (see §3.4.4), but we don’t know this for gr(m) without extra
assumptions (e.g. that the surjection of Theorem is an isomorphism).

(ii) It is worth recalling here the following implications that we have seen.
Consider the following conditions on an admissible smooth representation 7 of
GL2(K) over IF with a central character:

(a) [r[m3]: x] = [w[m] : x] for every character x : I — F* appearing in 7[m];
(b) gr(x") is killed by J, where gr(r") is computed with the m-adic filtration on
v

(c) gr(mY) is killed by some power of J, where gr(n") is computed with any good
filtration on the A-module 7V;
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(d) = is in the category C of §8.1.2
Then we have (a) = (b) = (¢) = (d). We suspect that every implication is strict.
(At least when K = Q, we can show that (c) does not imply (b).)

3.3.3. Examples. We completely compute the gr(F[I/Z;])-module gr(V")
for certain irreducible admissible smooth representations V of GLy(K) over F (with
V'V endowed with the m-adic filtration). We assume p > 5 in this section.

We keep the previous notation. If V' is a smooth representation of I1/Z; over

F, we write gr(V") for the graded module associated to the m-adic filtration on
vV,

LEMMA 3.73. Let V' be a smooth representation of I /Zy over F such that V|,
is admissible as a representation of No and such that the natural map gry, (VV) —

gr(VY) (induced by the inclusions mi V¥ C m"VY forn > 0) is surjective. Then
this map is an isomorphism.

PROOF. Since V|1vv0 is a finite type F[Ny]-module by assumption, it is a com-
plete filtered F[Ng]-module for the mpy,-adic filtration. As all the maps
m}i,OVV/mR,ngVV — m"VY/m" V'V are surjective, any element in v € m"V" can
be written v = vg + w, where vo € 3, -, m{ VY =mR VY (as V[, is complete)
and w € Nyp>,m™VY = 0 (as the m-adic filtration is separated since V is smooth).
Thus the inclusion my, V¥ € m"V" is an equality for n > 0, and we are done. [

The following two lemmas are motivated by [Pas10, Prop.7.1, Prop.7.2]. We
consider the finite group H as subgroup of I via the Teichmiiller lift.

LEMMA 3.74. Let V' be an admissible smooth representation of I/Z; over F.
Assume that V| g N, is isomorphic to an injective envelope of some character x in the
category of smooth representations of HNy over F (so in particular dimp VNo =1).
Then Ext}/zl(xajl,V) =0 forany0<j5< f—1.

ProoF. Consider an extension class in Ext} /7 (Xajfl, V') represented by 0 —
VoV > onj_l — 0. By assumption on V, this extension splits when restricted
to HNp, hence we may find v € V'\V on which HNj acts via onj_l (in particular
v' € V'No). Notice that (g — 1)v’ € V for any g € I;. Let v € Vo be a nonzero
vector so that VN0 = Fy by assumption.

First take g € (H%OK 1+1?0K ). It is easy to see that (g — 1)v’ is again fixed
by Ny and H acts on it via onj_l. But, by assumption V0 is 1-dimensional on
which H acts via y, thus we must have (g — 1)v’ = 0. We deduce that v’ is fixed
by I1 N B(OK)

We claim that o' is fixed by Ny < (,4,. 9). This will imply that o’ is fixed by
I by the Iwahori decomposition, and consequently V' splits as an I-representation.
Let & > 1 be the smallest integer such that v’ is fixed by N, o (pkéK ?); such
an integer always exists, as V' is a smooth representation of I. Suppose k& > 2 and
take g € N,_,. Using the matrix identity (see [Pas10, Eq.(14)])

(6 ?)(H): (c(1+2c)*1 2)(146170 (1+zfc)*1)

/ 1+pOk Ok
and the fact that v’ is fixed by ( PFOR 14pOx

Consequently, Fv @ Fv’ gives rise to an extension in Ext

), one checks that (g — 1)v" € Vo,
1

HN (Xaj*l, x) which
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is nonsplit by the choice of k. But, as in [Pasl0, Lemma 5.6], one shows that
Ext}{N];l(X’,X) # 0 if and only if X’ = x«; for some 0 <4 < f — 1. Indeed, after

conjugating by (Pk(;z ‘f), we are reduced to the case k = 2, in which case the result

is proved by determining the H-action on Hom(N; ,F) as in [Pas10, Lemma 5.3]
(see the proof of [BP12, Prop.5.1] for the computation). This finishes the proof as
onj_l;éxoziforanyogi,jgf—l(asp25). O

LEMMA 3.75. Let V' be an admissible smooth representation of I/Zy over F.
Assume that V| g, is isomorphic to an injective envelope of some character x in the
category of smooth representations of HNy over F (so in particular dimp VNo = 1).
Then we have an isomorphism of gr(F[I/Z1])-modules:

gr(VY) 2 x ' ®@ R/(205- ., 25-1).

PRrROOF. By assumption, V[m] = V[my,] is one-dimensional and isomorphic to
X, hence we may view gr(VV) as a cyclic module over gr(A) generated by e, €
gr'(VY) = V[m]", where H acts on e, by x~!. Let a C gr(A) be the annihilator of
Ey-

We first prove that z; € a for 0 < j < f — 1. Since H acts on z; via ozj_l (see
just above §3.30]), to prove zje, = 0 in gr* (V') it is equivalent to prove that

Homy (xay, VIm?]/Vim]) =0 Vj€{0,...,f—1}.

If not, then V' would admit a subrepresentation isomorphic to Ey y, (for some j),
where E, v, denotes the unique I/Z;-representation which is a nonsplit extension
of xa; by x. But by [BHH"23, Lemma 6.1.1(ii)] (after conjugating by the element
(98)), No acts trivially on Ey yq,, which implies dimg V[my,] > 2, a contradiction
to the assumption on V.

Using |[BHH 23, Lemma 6.1.1(ii)], we then deduce an embedding

(3.66) Vm?]/Vm] = & xa; .

On the other hand, since HomI(Xajfl, V) = 0, we deduce from Lemma 74 that
Hom]()(ozj_l7 V[m?]/Vm]) = HomI(Xaj_l, V/Vim]) = Ext}/zl (onj_l, X)
which have dimension 1 over F by |[BHH 23, Lemma 6.1.1(ii)] again. Combining

this with (3.66]), we obtain
(3.67) 0—x = Vm?] = &/ xa;' —0.
and that V[m?] = V[m3].

Next, we prove that Ext} 12, (X B has dimension 1 over F for any 0 <

X,Xa;l)
j < f—1. A straightforward dévissage using Ext}/Z1 (x, x) = 0 and dimp Ext}/z1 (x,
Xajfl) =1 (see [BHH™23| Lemma 6.1.1(ii)]) yields dimp Ext}/z1 (x, EX)XO[J_A) <1
So it suffices to explicitly construct a nonzero element in this space, as follows. Let
&; et Fug @ Fvy @ Fos equipped with the action of I/Z; determined by:

e H acts on vg, v, v2 by ¥, onjfl, X respectively;

o ifg=("17" )€ I, then
guo = vo, gv1 =1 + 0j(b)vy,

guo = V2 +0j(6)’l)1 —+ %(O'j(a) —Uj(a) -I-O'j(EE))’Uo.
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One easily checks that &£; is well defined and yields the desired nonsplit extension

class in Ext}/Z1 (X, B, ,o-1)- Moreover one also checks that EJNO = Fug @ Fos.
X

We prove that h; € a for 0 < j < f — 1. Since Ext}/z1 (x, x) = 0, the sequence
BE10) induces an embedding

Ext}/z, (x, V[m?]) = Ext},, (x, &2 xa; ).
Note that the right-hand side has dimension f over F. Since &;/x is nonzero in
Ext}/z1 (X,onjfl) for 0 < j < f — 1, we easily see that the above embedding is
actually an isomorphism and that Ext}/z1 (x, V[m?]) is spanned by the &£;’s. By the
last statement of the previous paragraph, if an extension £ € Ext} 12, (X V[m?]) is

nonzero then dimg EMo > 2. Since dimg VN0 = 1 by assumption, we see that there
exists no embedding £ < V. From (B.67) we then easily deduce

Homp (x, V[m®]/V[m?)) = 0.
Since H acts trivially on h; and hje, € gr?(VV) = (V[m3]/V[m?])V, we thus must
have hje, =0, i.e. hj € afor 0 < j < f — 1. This proves the claim.

We deduce a surjection gr(A)/(zj,hj, 0 < j < f—1) — gr(VY). As the
left-hand side is Flyo,...,yr—1] = gr(F[No]) and (V|n,)Y = F[No] from the as-
sumption, we obtain a surjection gry, (VV) — gr(VY). By Lemma this
surjection is an isomorphism (and hence a = (z;,h;,0 < j < f —1)). This finishes
the proof. O

If x = x1 ® x2 is a character of H or of T'(K), recall x* = x2 ® x1.

PROPOSITION 3.76. Let V' be an irreducible smooth F-representation of GLa(K)
with a central character.
(i) If V =24 odet for some smooth character ¢ : K* — F* | then gr(VV) =
(Y ®@19)"r @F, where 1 @1 is viewed as a character of H.

(i) If V = Indgl(f{()m X for some smooth character x : T(K) — F*, then

gr(VY) = (OCle) ' @ R/ (20,5 27-1)) @ (X)) " @ R/ (yo, - - yp-1))-

(iii) If V = (Indgl(f(()K) 1)/1 is the special series, then gr(VV) = R/(y;z;,0 <
i, < f-1).

(iv) Assume K = Q. If 'V is supersingular, i.e. isomorphic to
(c—IndGLQ(Q”)QX o)/T for some Serre weight o (recall that c-Ind here

GL2(Zp)
means compact induction and that Endgr,(q,)( V=TF[T]),

then

gr(VY) = (x; ' @ R/(yo20)) ® ((x3) ™" @ R/ (y020)),
Il'

GLZ(QP)
c—IndGLz(Zp)Q; o

where X, 18 the action of H on o
PROOF.
(i) It is trivial.
(ii) The restriction of V' to I admits a decomposition

(3.68) V| & Indjnpxy X ® Indjnp- 5 X°
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(cf. the proof of [Pasl0, Prop.11.1]). By loc.cit., when restricted to H Ny,
Indfm B-(Kk)X" 18 an injective envelope of x* in the category of smooth represen-
tations of H Ny over IF, hence

gr((Indinp- () X*)") = (i)~ © R/ (20, 25-1)
by Lemma One handles the other direct summand by taking conjugation by
the element (2 § )

(iii) By assumption we have a short exact sequence 0 — 1 — Indgl(f{()m 1—

V — 0. Write W = (Indg%;{()K) 1)|r and decompose W = Wy @ Wy as in (3.63).
The image of 1 — W is equal to the subspace of constant functions, hence the
composition 1 < W — W; is nonzero for i € {1,2}. Consequently, the dual
morphism gr(W;Y) — gr(1V) is also nonzero, and using (ii) (applied to W) we
obtain an exact sequence of gr(F[I/Z;])-modules

3.69 0= R/(y;z:,0< 4,5 < f=1) = gr(W) @ gr(Wy) — gr(1V) = 0.
J 1 2

Denote by F the induced filtration on V'V from the m-adic filtration on WV. By
(3:69) we have an isomorphism grp(V"Y) = R/(y;z;,0 < i,j < f —1). To finish
the proof, it suffices to prove that F coincides with the m-adic filtration on V'V,
or equivalently the inclusion m"VVY C m"WY NVY (for n > 0) is an equality. As
in the proof of Lemma B.73] it suffices to prove that the induced graded morphism
gro(VV) — grp(VV) is surjective. But, grp(VV) is generated by gr&(VV), so it
suffices to show that gri (V) — gr%(VV) is surjective, which follows from (B.63)
and the exact sequence

grm (V) = gro(WY) — grp (1Y) = 0

induced by 0 — 17t — Wi — V11 (this sequence is actually right exact but we
don’t need this fact).

(iv) The proof is analogous to (iii), using [Pas10, Thm.1.2] together with
[Pas10, Prop.4.7].

O

By the classification of irreducible admissible smooth representations of
GL2(Q,) over F, we deduce from Proposition B.76] and the results of §3.1.2¢

COROLLARY 3.77. Let V be an admissible smooth representation of
GL2(Qp) over F which has a central character and is of finite length. Then there is
an integer n > 0 such that gr(VV) is annihilated by J"™. In particular V is in the

category C of 3121

Finally, we give the first example of an explicit D4 (w) for arbitrary f > 1.

PROPOSITION 3.78. Suppose m = Indg%f(()m X 1S a principal series for some

smooth character X = x1 ® x2. Then 7 lies in category C and D(w) = Da(m)®
is étale and free of rank 1. More precisely, let k € © be the element sending

fe Indgl(f(()K)X to f((1 1)) € F. Then the image of k in Dy(w) is a basis of
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D (), and we have

(3.70) p(r) = x2(p) 'K,
(3.71) a(k) = x2(a) 'k V¥ a€ OF.

PRrROOF. Note that m € C by Proposition B70(ii). The torus T(K) (hence also
H) acts on k by the character (x*)~!; in particular, we get (3.71). On graded pieces
the map m¥ — D (m) becomes the map gr(r¥) — gr(7V)[(yo - yf-1)"'] (Lemma
B1). As x does not annihilate 7, it induces a nonzero element of gr’(7V) = (711)V,
which is in fact a gr(A)-basis of gr(m")[(yo - --yr—1) '] by Proposition B.76/ii). (If
x = x° the argument still works because x annihilates the first direct summand in
the Mackey decomposition ([B:68]).) By the proof of [LvO96l Thm.1.5.7] it follows
that Da(w) = Ak. As Dy(rm) is a projective A-module and gr(Da(w)) # 0, it
follows that D4 () is free of rank 1 with basis &.

It remains to show B70). First, from the definitions we see that ¥(k) = x2(p)x.
This implies that the (¢, O )-module D 4 () is étale and so by the previous sentence
it becomes an étale (¢, O )-module, cf. BI6). Say (k) = ak for some a € A*.
As the actions of ¢ and Oy commute, equation ([B7I) and Corollary B9limply that
a € F*. We deduce [B70). O

3.3.4. Characteristic cycles. We define the characteristic cycle of a finitely
generated filtered A-module M such that gr(M) is annihilated by a power of J and
prove an important property (Theorem [3.83).

Recall from §3.T.4that the minimal prime ideals of R = R/(y;z;,0 < j < f—1)
are the (y;,2;,1 € J,j ¢ J) with J a subset of {0,..., f —1}.

DEFINITION 3.79. Let N be a finitely generated module over gr(A) which is
annihilated by some power of J. We define the characteristic cycle of N, denoted
by Z(N )E as follows:

Z(N) =Y ma(N)g € DgZxoq,
q

where q runs over all minimal prime ideals of R.

LEMMA 3.80. Letn > 0. If 0 > Ny =& N — Ny — 0 is a short exact sequence
of finitely generated gr(A)/J™-modules, then Z(N) = Z(N1) + Z(Na) in ©qZ>0q.

PROOF. It is a direct consequence of Lemma [3.32] O

Let M be a finitely generated A-module which is equipped with a good filtration
def

F = {F,M : n € Z} (in the sense of [LvO96, §1.5]) such that gr; (M) is annihilated
by some power of J. Recall that this condition doesn’t depend on the choice of the
good filtration F' (see just before Proposition B.20) and that gr(M) is also finitely
generated over gr(A) ([LvO96l Lemma 1.5.4]).

LEMMA 3.81. If F, F' are two such good filtrations on M, then
Z(grp(M)) = Z(grp (M)).

2A more standard notation is Z¢(N), where f indicates the dimension of the cycles.

Licensed to Chinese Academy of Sciences. Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



140 3. THE CASE OF GL2(Qpr)

PrOOF. The proof is (almost) the same as in [Bjo89] §4]. We recall it for
the convenience of the reader. Since F' and F’ are equivalent by [LvO96] Lemma
1.5.3], we may find ¢ € Z>¢ such that

Fo. MCF MCF, ..M, VneZ.

For i € {—c,—c+1,...,c} define a sequence of filtrations F(*) = {FY(LZ)M :n €7}
on M by

FOM Y F, .M N F M.
It is clear that F(-=¢) = F[—¢] and F(®) = F’, where F[—c| denotes the shifted
filtration F[—c], et F,_., n € Z. Hence it suffices to show that each F® g a good
filtration on M such that

(3.72) Z(grpm (M)) = Z(grpa+n (M)).
Put for —c<i<e:

T, % @ (FysM 0 ELM)/(Fy MO F,_ (M),
nez

Si E P (Fosis1M N F,M)/(FpsiM 0 F,M).
neZ
Since T; is a gr(A)-submodule of gr, (M) and S; is a gr(A)-submodule of gr (M) [i+
1], both T; and S; are finitely generated gr(A)-modules and are annihilated by some
power of J. Moreover, one checks that there are short exact sequences of gr(A)-
modules (annihilated by some power of .J):

0— E — ng(i+1)(M) — Sl — O,
0— SZ[—l] — 8l pa) (M) — Tz — 0.
Hence, grpu) (M) is also finitely generated over gr(A) and annihilated by a power of

J. Consequently, F')) is a good filtration on M by [LvO96, Thm.1.5.7] and ([B.72)
follows from Lemma O

Thanks to Lemma B8], we can define mq(M) to be mq(grp(M)) and Z(M)
to be Z(grp(M)) for any minimal prime ideal q of R and any good filtration F on
M.

LEMMA 3.82. Let M be as above and let 0 — My — M — Ms — 0 be an exact
sequence of A-modules. Then we have in ®qZ>0q:

Z(M) = Z(M,) + Z(My).

PROOF. We may equip My (resp. M3) with the induced filtration (resp. quo-
tient filtration) from the one of M, which are automatically good by [LvO96,
Cor.1.5.5(1)] and [LvO96, Rem.I.5.2(2)]. Moreover the sequence 0 — gr(M;) —
gr(M) — gr(Msy) — 0 is again exact. In particular, both gr(M;) and gr(Ms;) are
finitely generated gr(A)-modules annihilated by some power of J, and the result
follows from Lemma O

If M is a finitely generated A-module, recall from [LvO96l Def.I11.2.1.1] that

the grade of M is by definition the smallest integer jr(M) > 0 such that
def

EiA(M)(M) # 0 (with jo(M) = 4oc if B4 (M) = 0 for all j > 0). For a good
filtration F' on M, we define similarly the grade jg(a)(grp(M)) of the gr(A)-
module grp(M). By [Lv0O96, Thm.II1.2.5.2] we have jga)(grp(M)) = ja(M)
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(note that A is a left and right Zariski ring by [LvQ96l Prop.I1.2.2.1]), in particu-
lar jgr(a)(grp(M)) doesn’t depend on the good filtration F.

Recall that the Krull dimension dimp(N) of a finitely generated module N
over R (which is commutative) is the Krull dimension of R/ Anng(N). For such a
module N, by the argument in the proof of [BHH" 23, Lemma 5.1.3] applied to
A=gr(A), I =(ho,...,hs_1) and with N instead of gr,, M there, we have

(3.73) Jer(n)(N) = dim(I1/Z;) — dimg(N).

Now, for M as above, assume that grp(M) is annihilated by a power of J. Then
applying (3.73) to the R-modules N = Jigrp(M)/J*! gr.(M) for i > 0 and by
an obvious dévissage using [LvO96, Lemma I11.2.1.2(1)], we deduce

(3.74) Ja(M) = dim(11/Zy) — dim(R) = 3f — f = 2f.

Moreover, by the same dévissage using [LvO96, Cor.IT1.2.1.6] (note that all as-
sumptions are satisfied since gr(A) is Auslander regular) and [B73)), we deduce that
if jA(M) = jer(a)(grp(M)) > 2f, then we have dimp(Jigrp(M)/JH erpn(M)) < f
for all 4, hence Z(J'grp(M)/J grp(M)) = 0 for all i > 0 and Z(M) = 0 (see
B.23)).

THEOREM 3.83. Let M be a finitely generated A-module such that gr(M) is
annihilated by a power of J for one (equivalently every) good filtration on M. Then
Z(Eif(M)) is well-defined and we have

Z(M) = Z(EY (M)).

PROOF. If jA (M) > 2f, then the result is trivial since both terms are 0 by the
sentence just before the proposition. So from [B74) we may assume jp (M) = 2f
in the rest of the proof.

Choose a good filtration F' of M so that Z(M) = Z(grp(M)). We first show
that the gr(A)-module Ezf(A)
Indeed, grp(M) has a finite filtration whose graded pieces are annihilated by J,
hence by dévissage it suffices to show that Ezf ( A)(N ) is annihilated by J if N is a

(grp(M)) is also annihilated by some power of J.

finitely generated R-module. As in the proof of Proposition it is equivalent to
prove the same property for Ej;(N ), which is obvious as R is commutative.

As a consequence, by the first statement in Proposition [3.84] below the graded
module associated to the filtration on Eif (M) in loc.cit. is again finitely generated
over gr(A) and annihilated by some power of J. Hence Z(Eif (M)) can be defined.
By Proposition 384 the cokernel of the injection gr(EY (M)) < Ezf(A)(ng(M))
has grade > 2f, hence its associated characteristic cycle is 0, as explained above.
From Lemma we deduce an equality of cycles

Z(gr(BY (M) = Z(EY , (rp(M))).

Hence, we are left to show that
Z(grp(M)) = Z(E2 ) (rp(M))).

As gr(A) is an Auslander regular ring, any subquotient N of grp(M) has grade

> 2f (by [LvO96l Prop.I11.2.1.6]) and is such that Eér(A)(N) has grade > j for

any j > 0, so that Eér(A)(N) and all its subquotients have zero cycle if j < 2f or
if 5 > 2f (by Lemma[3.80 and the discussion before the proposition for the latter).
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142 3. THE CASE OF GL2(Qpr)

Hence, for n large enough so that J” annihilates grp(M), we deduce using again
Lemma [B.80

n—1
Z(E ) (err (M) =D Z(BY ) (T erp(M) /T grp(M))).
i=0

By the definition of Z and of mq(N), see [B:23)), it thus suffices to show
Z(N) = Z(Bf (V)
for any finitely generated R-module N. Using Lemma it suffices to show
Z(N) = Z(Homg(N, R)),
which is equivalent to show that for any minimal prime ideal q of R,
lgg, (Nq) = lgg, (Homg(N, R),).

Using the isomorphism Homz(N, R)q & Homg (Ng, Rq) and noting that R, is a

field (being artinian, and reduced as R is), the result is clear. ]

The first part of the following general result was used in the proof of Theorem
B83l Recall that a finitely generated gr(A)-module of grade j is Cohen—-Macaulay
if all its Eér(A) are 0 when i # j.

PROPOSITION 3.84. Let M be a finitely generated A-module of grade jo with a
good filtration. Then there exists a good filtration on EY’ (M) such that gr(EY (M))

is a submodule of Eé‘;(A)(gr(M)) and the corresponding cokernel has grade (over
gr(A)) > jo+ 1. If gr(M) is moreover Cohen—Macaulay, then

gr(EY (M) = EX \, (er(M)).

PROOF. See [Bj689, Prop.3.1] and the remark following it. We explain the
proof following the presentation of [LvO96! §III.2.2].
As in [LvO96| §I11.2.2], we may construct a filtered free resolution of M

o= L= Lj 4= —=Lo—M—=0

and taking E{ (—) = Homa(—,A) obtain a filtered complex of finitely generated
A-modules

(3.75) 0 — EQ(Lo) = EQ(Ly) — -+,

where each E} (L) is endowed with a good filtration as in loc.cit.. Taking the as-
sociated graded complex of (B.7H]), we obtain a complex of gr(A)-modules (denoted
G(*) in loc.cit.):

0 — gr(ER(Lo)) — gr(ER(L1)) — -+
and by [LvO96l Lemma II11.2.2.2(2)] we have isomorphisms Egr(A)(gr(Lj)) =

gr(EQ(L;)) for j > 0. Next, as in [LvO96] §III.1] we may associate a spectral
sequence {E7 : 7 > 0,j > 0} to the filtered complex (3.75) and define a good fil-

tration on Ei\ (M) for j > 0 with the following properties (for convenience we have
shifted the numbering):

(a) B9 = gr(EY(L;)) and B} = B/, , (gr(M)) for any j;
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(b) for any fixed r > 1, there is a complex
0= Ey—- = E = EL =

whose homology gives E]T-H;
(c) for r large enough (depending on j), ES° = Ef = gr(E) (M)).

Since ja(M) = jo by assumption, we also have jg(a)(gr(M)) = jo by [LvO96,
Thm.I11.2.5.2] and so EJ1 =0 for j < jo. By (b), this implies short exact sequences

r—+1 T I
0—-E," = FEj —E; ., Vr>1

In particular, by taking r large enough, gr(E}\“(M)) = E5¢ is a submodule of Ejlo.
Moreover, since E7 ., has grade > jo + 1 for all r and so do its subquotients, the
cokernel of E2° — E}O also has grade > jo + 1.

If moreover gr(M) is Cohen—Macaulay, then EJ1 = 0 except for j = jo, hence
EX = E]lo which implies the last claim. ([

3.3.5. On the length of 7 in the semisimple case. For p as in §3.31]
assumed moreover semisimple and strongly generic, and 7 as in §3.3.2 with moreover
r = 1 and satisfying one more hypothesis, we prove that 7 is generated over GLg(K)
by its GLo(Ok)-socle, is irreducible if p is, and is semisimple of length 3 if p is
reducible split and f = 2.

We keep the notation in §3.3.2] and we assume moreover that p is semisimple
and satisfies the strong genericity condition ([B.26) (we will use the results of §3.2)).
We fix an admissible smooth representation m of GLg(K) over F satisfying the
conditions (i), (i) in loc.cit. with » = 1 in (i), i.e. 781 = Dg(p). Recall this
implies that gr(7") is annihilated by J, where gr(7") is computed with the m-adic
filtration. We assume moreover:

(i) 7V is essentially self-dual of grade 2f, i.e. there is a GLg(K)-equivariant
isomorphism of A-modules

(3.76) EY (7V) 2 1V @ (det(p)w ™)

(recall det(p)w 1! is the central character of 7). Here EZ\(’ITV) is endowed
with the action of GLy(K) (compatible with the A-module structure)
defined in [Koh17, Prop.3.2].

(Note that, compared with [HW22] Def.A.7], in the definition of essentially self-
dual we do not assume that 7V is Cohen-Macaulay. However, by [LvO96!
Prop.I11.4.2.8(1)] 7V is pure in the sense of [LvO96| Def.111.4.2.7].)

REMARK 3.85. Conditions (i) to (iii), with » = 1 in (i), will be satisfied for
7 coming from the global theory in the minimal case (see §344). The reason to
impose the extra assumption » = 1 in (i) is that although for general r we have an
equality of diagrams

(nft = 7" = (Do(p)™ = Do(p))®"

for the representations m coming from cohomology (see Theorem [3:93 below), we
do not know if this implies that 7 has the form 7/%" for some representation 7’ of

GLy(K).
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Given o € W(p), we define the length of ¢ as follows: if A € & corresponds to
o (see §3370), then ¢(o) & £(N), see BEBI). For 0 < ¢ < f, let

We(p) © {o € W(p),l(o) = 1}

and define 4(p) & Docw,(5)0- We call Wy(p), or by abuse of notation 7,(p), an
orbit in W (p). Note that this is different from an orbit of § in W(p) as defined in
324 (see Y323 for ¢), i.e. in general 74(p) contains several orbits of 4.

LEMMA 3.86. If ' is a nonzero subrepresentation of m, then socgy, (o) (7') is
a direct sum of orbits in W (p).

PROOF. It is clear that (7't < 7'K1) is a subdiagram of (7lt — 7F1).
The result follows from this using [BP12, Thm.15.4] together with the proof of
[BP12, Thm.19.10]. Actually, when 7 is irreducible, we even have socgr,, (0, )(7') =
s0CaL, (0x) () by (the proof of) [BP12, Thm.19.10]. O

We use without comment the notation and definitions in §3.1.4] and denote by
lg(7) the length of a finite-dimensional representation 7 of GLy(Of) over F.

PROPOSITION 3.87. Let 7' be a subquotient of .
(i) We have dimg(xy DY (n') = my, (7).
(ii) Assume that @' is a subrepresentation of w. Then

dimg(x) D¢ (') = mp, (7"") = 1g(socaL, (o) (7'))-

In particular, if 7" # 0, then D¢ (n") # 0.
(iii) Assume that 7' is a nonzero quotient of m. Then DY (') # 0.

PRrOOF.

(i) First, for any subquotient ©’ of , we equip the A-module 7'V with a good
filtration F' by choosing two submodules 7wy C 7y of 7" (with filtrations induced
from the m-adic one on 7¥) such that 7’V = 73/ /7y and taking the induced filtra-
tion] Then grp(7'V) is again an R-module, and dimp(xy D¢ (7) < my, (") by
Corollary B34l Since dimp(x) Dy (7) = my, (1) by Corollary B.70, since D¢ (—)
is an exact functor by Theorem and since Z(—), and in particular my,(—), are
additive by Lemma [3.82] the result follows.

(i) By assumption 7’ is a subrepresentation of 7. Using that socgr,, (o) (7')
is a union of orbits of §, or equivalently of S as in (48], by Lemma 386 it follows
from Proposition that

dlmF((X)) Dg/ (71'/) > lg(SOCGLQ(OK) (71'/)).

On the other hand, by Lemma [B319(i) and Corollary B.G8 we have
mp, (") < 1g(socgr,(ox) (7)) (see the proof of Theorem [B.69). Hence all the
three quantities are equal by (i).

(iii) Let ©” be the kernel of the quotient map = — 7’ so that we have an exact
sequence of A-modules:

07 sx¥ =7V 5o

3The filtrations on my and 7y might not be the m-adic ones, and the resulting filtration on

7'V might depend on the choice of m) and 3.
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Since 7" is essentially self-dual of grade 2f by assumption, 7'V also has grade 2f by
[LvO96l, Prop.I11.4.2.8(1)] and [LvO96l Prop.111.4.2.9]. Taking Ej} (—), we obtain
a long exact sequence of A-modules

(3.77) 0—EY (") = EY(xY) - EY (") - EY T (")

which gives rise by Pontryagin duality to an exact sequence of admissible smooth
representations of GLo(K) with central character (see [Kohl7, Cor.1.8]). Define
7 to be the admissible smooth representation of GLy(K) such that

(3.78) 7V @ (det(p)w™) = Im(EY («V) — EY (V).

\Y%

Since 7 is essentially self-dual by assumption (see (3.76)), 7" is a quotient of 7"

and dually 7 is a subrepresentation of 7. Since Eif +1(7T” V) has grade > 2f + 1 as
A is Auslander regular, we have by (1) and the discussion before Theorem 383k

Z(EY (7)) = 27 ® (det(p)w™)),
hence Z(n'V) = Z(7V) by Theorem .83 which implies in particular by (i):
Since ja(7'V) = 2f, Z(x'V) is nonzero (using e.g. [3.73)), hence 7 is nonzero, thus

D¢ (7) # 0 by (ii), and finally D¢ (7') # 0 by (B.79).
(]

REMARK 3.88.

(i) The construction of 7 in the proof of Proposition B.87(iii) does not use the
assumption that p is semisimple. Moreover, items (i) and (ii) of Proposition B.87]
do not require the essential self-duality of 7V (equation (B.76]) above).

(ii) It follows from Proposition B.87((ii), from Corollary B:34] from Lemma[3.33]
from Lemma and from (B9) that for 7/ C 7 as in Proposition B.87(ii) we have
(3.80) IkA(DA(Tr/)ét) = dim]p((x)) Dg/(ﬂ'/) = My, (gr(w'v)) = rkA(DA(W/)).

By Corollary BI8, both D (') and D(n')¢t are finite projective A-modules and

it follows from (B.80) that the surjection of A-modules D4 (7") — Da(7')® is here
an isomorphism.

THEOREM 3.89. As a GLo(K)-representation, w is generated by its
GLy (O )-socle.

PROOF. Let 7 % S0CGL, (0x) (), let 7’ et (GLy(K).7) be the subrepresenta-

tion of 7 generated by 7 and let 7/ m/m’. Since D¢ (—) is exact by Theorem
329, we have
dimF((X)) ng (7T) = dim]p((x)) Dg/ (7T/) + dimﬂr((x)) D%/ (7‘1’”).
However, since m and 7" have the same GL2(Of)-socle, we have
dimﬁr((x)) Dg/ (’R’) = dim]F((X)) D%/ (7'(/)

by Proposition B8T(ii), thus Dy (7") = 0. If 7" is nonzero this contradicts Propo-
sition B.87(iii). O

COROLLARY 3.90. Assume that p is irreducible. Then 7 is irreducible and is a
supersingular representation.
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Proor. This follows from Theorem and [BP12, Thm.19.10(i)]. O

REMARK 3.91.

(i) A result analogous to Theorem when 7 is not semisimple is proved in
[HW22, Thm.1.6].

(ii) While we believe that Proposition B.87 and Theorem B.89 should be true
without assuming r = 1, we don’t know how to prove a generalization of Corollary
390 (i.e. 7 is semisimple and has length r in general), as mentioned in Remark
.30

COROLLARY 3.92. Assume that p is reducible split. Then 7 has the form
(3.81) T=mo®TFd T,

where
o my and my are irreducible principal series such that Eif(wlv) = ’R’}/_i ®
(det(p)w™1), i € {0, f};
o 7' is generated by its GLo(Ok)-socle and ©'V is essentially self-dual (as
in BI6)). Moreover, 7' is irreducible and supersingular when f = 2.

v

PRrROOF. By the definition of W(p) (see [BP12, §11]), there exists a unique
Serre weight o9 € W (p) such that ¢(o¢) = 0. Let x4, be the character of I acting
on ol'. Tt is easy to check that

JH(Ind$" ) Y n W (B) = {o0}-

Let mp & (GLy(K).00), a subrepresentation of 7. We claim that g is an irreducible
principal series. Indeed, by [HW22, Lemma 5.14] and its proof, the morphism
(induced from oy < 7 by Frobenius reciprocity)

c-IndSH2 (&)

GLa(0Ox)Kx 00 = T

. . GLa(K)
(where c-Ind means compact induction) factors through c-Indg;> (Ox)Kx 00 /(T —
po) for some pg € F* (as socqr, (o) () is multiplicity-free). Note that the generic-
ity of p implies that dimp o9 > 2, hence the representation C-Indgizggl) Fox 00 /(T —
o) is irreducible and isomorphic to some principal series by [BL94, Thm.30].
This proves the claim. Moreover, the GLy (O )-socle of 7y is exactly og, and if
Ty = Indg(L;(()K) Xo for some smooth character xo : T(K) — F* then x|z = Xoo-
Similarly, there exists a unique Serre weight oy € W (p) such that ¢(oy) = f. It

satisfies again
JH(Ind ™% x, Y nW(p) = {o}

and by the same argument as above the subrepresentation ' (GLy(K ).op) of

m is an irreducible principal series with GL2(Og)-socle equal to oy, and if 7y
Indg%f(()m Xs then Xff|H = Xo;- The map my & 7y — = is injective since it is
injective on the GL2(Og)-socles.

Letting /< 7/(mo @ 7s), we have an exact sequence of A-modules:

v
0— 7' —>7rv—>7r(¥697r}/—>0.
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As A is Auslander regular and 7 is of grade 2f, it follows from [LvO96l

v
Cor.II1.2.1.6] that 7'" is of grade > 2f, hence Eif_l(w’v) = 0 and there is an
exact sequence of (finitely generated) A-modules

—~~ =

0— EY () @ BY (r}) = EXY (V) = EY (=7Y).

Since 7V is essentially self-dual by assumption (see B76)) and since E3/ ()Y and
Eif (’R’}/)V are also irreducible principal series by [Koh17), Prop.5.4], we see that 7
admits a quotient isomorphic to 7@, where ; (for i € {0, f}) is the (irreducible)
principal series such that

(3.82) @ (det(p)w™") = EY (n}_,).

Explicitly, if «} & Indgl(f(()K) X; for some smooth characters x} : T(K) — F*, and

if welet ap € w@w ! : T(K) = F* and n < det(p)w! (for short), then by
[HW22| Lemma 10.7] (which is based on [Koh17, Prop.5.4]):

(3.83) Xr=x0 as(m®n), xo=x;'asn®n).

Let us compute the GL2 (O )-socle of 7 (the case of 7 is similar). Since 7 is equal

to the central character of m, we have x;'(n ® 1) = x§, so that (3.83) becomes
X/f = x$ap. Since x§|g = X0, as seen in the first paragraph, we deduce

(3.84) (X0l = X5, 05" = Xoy

where the last equality holds by an easy check using the definition of oy and oy
(see [BP12, §11]). In particular, our genericity assumption on p implies that
X7 # X7 when restricted to T'(Ok). Using [BL94, Thm.34(2)], this implies that
the GL2(Ok)-socle of s is irreducible and actually isomorphic to oy by (B.84).
Similarly, the GL2(Of)-socle of m{) is isomorphic to oyg.

We claim that the composite morphism

71'0@71'f<—>ﬂ'—»7r6@7r}

is an isomorphism. Since 7 is generated by its GLa(Of )-socle, namely EBaeW(ﬁ) o,
the composite morphism

is nonzero. Since the image is contained in socqr,, (0, )(7g), which is equal to g as
seen in the last paragraph, ¢ is nonzero when restricted to og. But, by construction
we have (GLa(K).0¢) = mp inside 7, hence the composite morphism 7y — 7 — 7,
is nonzero, hence an isomorphism as both my and 7(, are irreducible. In the same
way the composite morphism 7y < 7 — 7r/f is also an isomorphism. This proves
the claim, from which the decomposition B.8I) immediately follows. From (B82)
we also deduce the isomorphism E3/ (7)) = my_; @mn forie {0, f}.

We now finish the proof. First, 7’ is generated by its GL2 (O )-socle by Theo-
rem [3.89 Explicitly, we have

SOCGL, (05) (') = EB o.

oceW (p)
0<l(o)<f
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In particular, if f = 2, then 7’ is irreducible and is a supersingular representation
by [BP12] Thm.19.10(ii)]. Finally we prove that 7'V is essentially self-dual (as in

@BI@)). In fact, using (B81)) and noting that
EY () @n=monr o EY (@) @,
it suffices to prove that the composite morphism
e S (BY (7)Y @ — (B (n)Y @
is an isomorphism. Since both the source and the target have the same GLo(Og
socle, the morphism is injective because it is when restricted to the GL2(Ox

)_
)_
socle of ' and is surjective because (Eif(w’v))v ® 7 is generated by its GLs (O )-
socle. |

3.4. Local-global compatibility results for GL2(Q,r)

We prove special cases of Conjecture 29 and Conjecture 21 when Ff = Qs
and n = 2. We assume E = W(F)[1/p] (thus O = W(F) and wg = p).

3.4.1. Global setting and results. We refine the global setting of §§2.11
when n = 2 in order to apply the results of [BHH™23|] and we state the first main
global result.

We come back to the setting of §2.1] when n = 2 and we assume p > 7. We
make the following extra assumptions on the field F' and the unitary group H:

(i) F/F* is unramified at all finite places;

(ii) p is unramified in FT;

(iii) H is defined over Op+ and H X0uy F T is quasi-split at all finite places

of F'T.

Condition (i) (together with the fact that any p-adic place of F'™ splits in F') implies
[FT: Q] is even (see [GK14], §3.1]). By [GK14], §3.1.1] such groups H always exist.
We denote by R% the universal framed deformation ring of 75 over W (F) (@ is
any finite place of F). We set K % Ff and f < [K : Qp).

We let 7 : Gal(F/F) — GLg(F) as in 213 and make the following extra
assumptions on 7 (recall that S, is the set of places of F* dividing p):

(iv) F‘Gal(F/F( uT)) is adequate ([Thol7l Def.2.20));

(v) T is unramified if @|p+ is inert in F;
(vi) RE@ is formally smooth over W (F) if 7 is ramified and @|p+ ¢ Sp;
(vii) Ty is generic in the sense of [BP12] Def.11.7] if w|p+ € Sp\{v};
(viii) T3 is, up to twist, of one of the following forms for o|p+ = v:
LL}(ro+1)+~-+zﬂ’*1(r_f_1+1) 0
o Tyl = | 3<ri<p-—6,
0 1
G R i 0
L4 F’L~)|IK = 2f f(same) 4§T0§p_5’3§
0 wgf

r; <p—=6 fori>0.
Note that conditions (iv) to (viii) only depend on @|p+ and ¥|p+ using condition (i)
in §21.3] (the genericity conditions in (viii) are satisfied in [DL21], §3.3] and don’t
depend on the choices of o, o). We denote by S the finite set of finite places of
F* such that w|p+ € Sr if and only if 75 is ramified. Thus S, C S7 and by (ii)
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any place in Sr splits in F'". We fix a finite place v; of F'™ which is not in S and
satisfies the assumptions in [EGS15| §6.6], and we choose 01|v; in F.
We choose S a finite set of finite places of F'T that split in F' containing S but
not vy, and a compact open subgroup U =[], U, € H(A$,) such that
(ix) Uy € H(Op+) if w splits in F}
(x) U, is maximal hyperspecial in H(F;) if w is inert in F};
(xi) Uy = H(Op+) if w ¢ SU{v1} and w splits in F or if w € Sy;
(xii) tg (U, ) is contained in the upper-triangular unipotent matrices mod 7.

We also define V & UP ]

subgroup of U, if w € S, (hence V' is normal in U). We set X < S U{v} and
assume S(V,F)[m*] # 0 (see §2.1.2). Note that S(V,F)m*] doesn’t depend on S
as above by the proof of [BDJ10|, Lemma 4.6(a)]. For each place w € S, we choose
a place w|w in F. For w € S, recall from §3.2T] that W (75(1)) is the set of Serre

ef _

weights associated to (1) & 7y ® w defined as in [BDJL0, §3]. Then it follows
from [GLS14, Thm.A] and [BLGG13| Def.2.9] that we have

(3.85) Homy (®ues, 05, S(V,F)[m*]) # 0 <= 05 € W(Fg(1)) Vw € S,,

weS, Vi, where UP & ng S, U, and V,, is a pro-p normal

where we consider ®yes, 0 as a representation of U viaU —»U/V = Hwesp Uw/Vi
and the isomorphisms ¢5. Note that the left-hand side of (B85 is also isomorphic
to Homy (®wes, 0w, S(UP,F)[m*]), where S(UP,F)[m*] is defined as in §ZT2 re-
placing U? by UP.

We freely use the previous local notation (I is the pro-p Iwahori subgroup in
GLy(Ok) = GLy(Op,) ete.) and set % 75(1).

THEOREM 3.93. Choose Serre weights o5 € W(Tg(1)) for w € Sy\{v} and set

7 = Homy (®yes,\ (o} 0y S(VY, F)[m™]).
Then there exist an integer r > 1 only depending on v, U”, V', Ques,\{v}0w andT
and a diagram D(p) = (D1(p) < Do(p)) as in §3211 only depending on p = 75(1)
(and satisfying the assumptions in loc.cit. on the constants v;) such that there is an
isomorphism of diagrams
D)% = (rlt — ),

The case 7 = 1 of Theorem [3.93) is known and due to Dotto and Le ([DL21]
Thm.1.3]). We generalize below their proof to the case r > 1 using the results in
IBHH 23| §8.2]. Moreover the diagram D(p) in Theorem [3.93is in fact the same
as the diagram D(mgion(p)) of [DL21, Thm.1.3].

3.4.2. Review of patching functors. We recall the patching functors of
[EGS15] §6.6] and some results of [BHH™' 23, §8.2].

We keep the notation of §8.401 We choose Serre weights o5 € W (75 (1)) for
w € Sp\{v} and set

wes,\{v}
For each w € Sp\{v} we fix a tame inertial type 73 at the place @ such that,
denoting by o(7g) the irreducible smooth representation of GLy(Op, ) over E asso-

ciated by Henniart to 7 in the appendix to [BMO02], JH(o (7)) contains exactly
one Serre weight in W (7;(1)) (where (—) means the mod p semisimplification).
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The existence of such 7 follows from [EGS15| Prop.3.5.1], and the fact o(73) can
be realized over E = W (F)[1/p] follows from [EGS15] Lemma 3.1.1]. For each
w € Sp\{v} we also fix a GLa(OF, )-invariant W (F)-lattice o°(73) in o(75).

We define
o0 ® o (13),
weSp\{v}
and for any continuous representation oz of GL2(Op,;) on a finite type W (F)-
module, we consider %" ®w () 05 as a representation of U via U — Hwesp Uy
and the isomorphisms t5. We define S(UP, W(F)),,= exactly as in §2.T.2 replac-
ing F by W(F) and U" by UP. Then, as in [EGS15| §§6.2,6.6], by “patching”
Homy (6% @y ()05, S(UP, W (F)) q=)* for various U (where (—)* et Homyy ) ((—),
E/W(F)) as in loc.cit.), we obtain a patching functor
My = 05— Moo (0% Qw (F) T5)

which is an exact functor from the category of continuous representations o of
GL2(Op;) on finite type W (FF)-modules to the category of finite type Ro.-modules
(though this patching functor depends on 0%V, we just write M, (o5) in the sequel).
The local ring R is (see [GK14] §4.3] or [DL21l §6.2]):

R def RY°[Xq,... y Xg—rrql,
where ¢ is an integer > [F'T : Q] and
loc def (= 0 ~ -~ 0,(1,0),7¢ \ & O
Rl°¢ = (®w65\spR;@<1>)®w<F> (®wesp\{v}R;@<1> )®W(F>Rn<1>~

Recall RE@’((ll’)O)’T“"’ is the reduced p-torsion free quotient of RTD@(I) parametrizing
framed potentially Barsotti—Tate deformations with inertial type 74 (by local-global
compatibility and the inertial Langlands correspondence, for w € S, \{v} the action
of RFDﬂu) on My, (a%? ®w (r) 0v) factors through this quotient, see [EGS15], §6.6]).
As in [BHH™ 23| §8.1] (see the discussion before [BHH" 23| Rem.8.1.3] but note
that we do not need to fix the determinant here) we have isomorphisms RE 1 =

W(F)[ X1, X2, X3, X4] for w € S\S,, and, by genericity of 7, ’
R ) 2 WE)[X1,. .., Xavair,]-
By [EGS15, Thm.7.2.1(2)] (and [GK14l Rk.5.2.2]) we have

0,(1,0), 7% ~
Rﬁﬂ((l) : = W(F)[[le S ’X4+[FwZQp]]]a

so that we finally get
(3.86)

Y D [a¥)
Roo 2= Ry, ()[X1, -+ Xy(isj-1yrq-trr gl = WIENXL, o Xyjsppgiairt gl

Moreover, if o5 is free of finite type over W (F), then M, (o) is free of finite type
over a subring So of Reo, where S = W(F)[x1,...,%45)44]. Finally, denoting
by ms the maximal ideal of R, we have
(3.87)
Mo (03) /Moo = Homp (@wes,\v0a) @ 75, S(UP, F)[m])” 2 Homy, (75, 7)",

where 7 is as in Theorem [3.931

Since everything is now at the place v, we drop the index 0. If 7 is a tame
inertial type, we set Ry < R @ RO R?(LO)’T. If 0 € W(p), we denote by P,
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the projective F[GLy(F,)]-envelope of o and by P, the projective W (F) [GL2(Fy)]-
module lifting P,. We recall that the scheme theoretic support of an R..,-module
M is Roo/ Anng_(M). The following theorem then follows by exactly the same
proof as for [BHH" 23| Prop.8.2.3] and |[BHH" 23, Prop.8.2.6].

THEOREM 3.94. There exists an integer r > 1 such that

(i) for any o € W(p) the module M (o) is free of rank r over its scheme-
theoretic support which is a domain;
(ii) for any o € W(p) the modules Moo (P,) and M (P,) are free of rank r
over their respective scheme-theoretic support;
(iii) for any tame inertial type T such that JH(o (7)) N W(p) # 0 and any
GL2(Og)-invariant W (F)-lattice o°(t) in o(7) with irreducible cosocle,
the module My, (c° (7)) is free of rank r over its scheme-theoretic support,

which is the domain RE,};W.

COROLLARY 3.95. Let m as in Theorem [B93] and r as in Theorem B.94. We
have an isomorphism of GLa(Ok)K * -representations Do(p)®" = w1,

PROOF. The action of the center K* being by definition the same on both sides,
we can focus on the action of GLy(Of). It follows from Theorem [3.94i) and (ii) and
from ([B87) that the surjection P, — ¢ induces an isomorphism of r-dimensional
F-vector spaces Homgr, o) (7, k) 5 HomGLz(@K)(Pg,ﬂ'Kl). In particular the
multiplicity of each o € W(p) in 7%t is . It follows from M. (Do ,(p)/o) = 0
(recall Do(p) = ®oew (5)Do,0(p)) and from ([B.8T) that the injection o — Dy ,(p) in-
duces an isomorphism Homgr, (04) (Do, (p), k1) =
Homgr, (0, (0, 7%1). This gives an inclusion Dy(p)®" < 71, If this inclusion
is strict, then by maximality of Do(p)®” (an obvious generalization of [BP12]
Prop.13.1]) this implies there exists o € W (p) which appears in 751 /Dq(p)®", and
hence has multiplicity > r in 751, which is a contradiction. (Il

REMARK 3.96. In the proof of Theorem [3.94] and hence also in Corollary [3.95]
one only needs the slightly weaker bounds 1 < r; < p—4 (and 2 <79 < p—3
if 75 is irreducible) in the genericity conditions (viii) on 75 (or equivalently p)
in §347] (these bounds are used in [LMS22| §4] which is used in the proof of
IBHH 23, Prop.8.2.6]).

3.4.3. Direct sums of diagrams. We prove Theorem [3.93] using the method
of [DL21l §4].

We keep the notation in §§3.4.1] Everything in this section being at the
place v, we drop it from the notation. Recall we identify the set of embeddings
F, — F with {0,..., f — 1} via ¢ 0 " — i. We denote by P the set of subsets of
{0,...,f — 1} and by J¢ € P the complement of a subset J € P.

We start by fixing a tame inertial type 7 such that JH(o(7)) N W(p) # 0
and a GLa(Ok)-invariant W (IF)-lattice 6y in o(7) with irreducible cosocle. With
the notation of [EGS15| §5.1] there is I € P such that this cosocle is &(7) and
0o = 09(7). As in [EGS15| p.77] we can reindex the irreducible constituents of
0o /p by elements J' in P as follows:

op = Gyuren(nre)(T),
so that (by [EGS15, Thm.5.1.1]) the j-th layer of the cosocle filtration of 6y /p
consists of the oy for |J'| = f —j, 0 < j < f. By the beginning of the proof
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of [EGS15| Thm.10.1.1] (see loc.cit. p.77), there is J! ., C J

min ax I P such that
H(fo/p) "W (p) = {0 : J.. CJ' C.J'...}. By [EGS15, Thm.7.2.1] we have
RO 2= (W (E)(X.Y])se a0

AR 1/(X5Y] = p)jes o U, Udl

for some integer d > 0. Up to renumbering the variables we can assume that the
irreducible component of RO " /p corresponding to oy, J.. C J C J/

min max’

[EGS15| p.77] (which is the support of My (o) by Theorem B.94i)) is given by
the ideal ((X )jejl\J (Y )jejl \J/).

We first fix J € P such that |J| = f —1, so that J¢ = {j} for some j €
{0,...,f —1}. We let 0 be the unique (up to homothety) GLa(Ok)-invariant
W (F)-lattice in o(7) with irreducible cosocle o; ([EGS15 Lemma 4.1.1]). Up to
multiplication by an element in W (F)*, there is a unique GL2(Of)-equivariant
saturated inclusion ¢ : @ < 6y, i.e. such that the induced morphism 7 : /p — 6y /p

is nonzero. Recall that by Theorem B94(iii) both M () and M (6y) are free of
), T

mm

1,0
rank r over Rgo

LEMMA 3 97. The image ofM (L ) My (0) = My (90) is *Myo(6p), where
w=pifj €I, v=Xj i j € Ja\Spin and w =1 if j & S

Proor. It follows from [EGS15, Thm.5.2.4(4)] (up to a reindexation as above)
that p(6p/t(#)) = 0 and that the irreducible constituents of 6y/c(#) are the o for
J' containing j. In particular 6y/:(6) is of the form 7 for a capped interval J as in
[EGS15] p.81] (namely J = {J': j € J'}). By the proof of [ BHH'23, Prop.8.2.3]
the module My, (0p/1(6)) = Mo (57) is free of rank r over its schematic support,
which is the unique reduced quotient of R(1 0.7 /p with irreducible components
corresponding to the oy such that j € J'and J' ., CJ CJ. . . Ifjé¢ J max, there

are no such J', so this quotient is 0 (i.e. Moo (00/(0)) = 0). If j € J} 1ok \Jhoin, then
all

this quotient is clearly ( (0.7 TIp)/(X}) = R(l’o)’T/(X’-). Finally, if j € J/,
irreducible components remain, i.e. this quotient is R " /p. The lemma follows

J min’
(1,0),7
by exactness of M. O

We now consider an arbitrary J € P and let 6 be the unique invariant W (F)-
lattice in o(7) with irreducible cosocle ;. If J¢ # () we set J¢ = {j1,...,jn} and
Ji LT {1, ... jn_i} for i € {0,...,h} (so Jo = {0,...,f —1} and J, = J).
As above we then denote by 6; for i € {0,...,h} the unique (up to homothety)
invariant W (F)-lattice in o(7) with irreducible cosocle o, and ¢; : 6; < 6;_; the
corresponding saturated inclusion for ¢ € {1,...,h} (so 6y is the same as before
and 0, = 6). The composition

Li Li—1 L1
t10---01;:0; 50,1 = ---0; = b
is still saturated since one can check using [EGS15| Thm.5.1.1] that the cosocle
oy, of 0y/p remains in the image of 6;/p — 6,_1/p for all ¢ € {h,h —1,...,1}
(indeed, by loc. cit. the Serre weights o5, — o ,_, in 6/p form a nonsplit extension
as J; C Ji_y and |J;_1\Ji| = 1). In particular & 11 0 --- 01, is the unique (up to
scalar) saturated inclusion 6 < 6.

PROPOSITION 3.98. There is € RSS™7 such that the image of Moo () -

Moo (8) = Moo (00) is Moo (0o). Moreover the principal ideal aREDT only depends
on (the semisimplification of) 6y/.(6).
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PROOF. The statement being trivial if J¢ = @ (equivalently if § = 6y) we
can assume J¢ # (). For i € {1,...,h} we can apply Lemma [3.97 to ¢; : 6; <
0;,_1 instead of ¢ : 8 — 0y. Hence there is x; € R&’O)"T such that the image of
Moo (ti) is ;Moo (6;—1). The image of M (¢) is thus (H?:1 ;) Moo (6p), ie. we
can take z = Hf 1 ;. It follows that My (0o/c(0)) = (Rg’o)’T/(ac))@’“. Hence the
irreducible components of R(1 0.7 "/(x) are the ones corresponding to the o such
that J), € J' C J} .. and oy appears in 6y/:(6), and their multiplicities are the
multiplicities of the o in 6p/t(0). The second assertion then follows by the same
argument as at the end of the proof of [DL21l Prop.4.17] (it also follows from an
explicit computation of z via Lemma B.97]). O

Till the end of this section, we now extensively use notation and results from
[DL21, §4] to which we refer the reader for more details.

Recall that Dy(p) = @rew (5)Do,o (). If x : I — F* is a character appearing in
Do(p)+ and IFUX C Dy(p) is the corresponding eigenspace (which is 1-dimensional),
we define as in [DL21), Def.4.1] Rx as the character of I on

(socar, (o) (F GL2 (Or)o )™,

which is also 1-dimensional as it is ot for the unique o € W (p) such that y appears
in Dy, (p)"*. As in [BP12| p.8] we denote by x* the character of I on (3§ §)v, €

Do(p)"* and by o(x) the Serre weight which is the cosocle of IndGL2(0K)
We define as in [DL21], Prop.4.14] an isomorphism

EX : Moo (0(RX?)) /Moo — Moo (0(Rx))/Moo

(the “one-dimensional by Theorem 4.6” in the proof of loc.cit. can just be replaced
by “of the same dimension by Theorem [3.94F; also note that h,, is an isomorphism,
as it is dual to the isomorphism g, in loc.cit.).

PROPOSITION 3.99. Let k > 1 and xo, - .., Xx—1 arbitrary characters of I which
occur on it (equivalently on Do(p)™) such that Rxi = Rxit1 fori€{0,...,k—2}
and Rxj_, = Rxo. Then the isomorphism

th o h ’ OEXIc—l o EXO : Moo (a(Rxp)) /Moo — My (o(Rxp))/ Moo

is the multiplication by a scalar in F* which depends neither on r nor on My,. In
particular this scalar is the same as in [DL21] (34)].

PROOF. We just indicate the steps in the proofs of [DL21l §§4.4, 4.5], where
the assumption r = 1 is used, and how one can extend the argument there to r > 1.
We use without comment the notation of loc cit.
e The definition of the isomorphism h Moo (07X7) 5 Mo (#%x) in [DL21] (28)]
holds because one only needs to know that MOO(HRX ) and M (67X) are free of the
same finite rank over R (7).
e By Proposition B8 there exists U, (x) € Roo(7) such that Mu,(1)(Mao(65%)) =
Up(x)M (07X7), where ¢ : %X < 97X is as in the unlabelled commutative di-
agram below [DL21] (27)]. Since Roo(7) is a domain by [EGS15, Thm.7.2.1(2)]
and Moo (07X), Mo, (67X7) are free of rank r over R.(7) by Theorem B.94(iii),
there is a unique R, (7)-linear isomorphism 7, : M, (87X) 5 M., (67X") such that
My (1) = TXOU']H(X)7 where U, (x) here means multiplication by U, (x) on M, (65x).
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Then we have a commutative diagram analogous to [DL21l, (29)] replacing the mul-
tiplication by U, () in the diagonal map by the map h ol oUp(x) = Uy(x )(h Oly)-
e By the commutativity of the right-hand side of (the analog of) [DL21] (28)] and
by the isomorphism M, (Q(x*)fX) & M. (6(x*)7X)/p, we deduce that the map

hy 0 1q : Mao(Q(X*)™) — Moo(Q(x*)™)
is the multiplication by the image of p~¢)U,(x) in Reo(7(x*))/p. As the image of

hy o1 is Up(X) Maso (Q(x*)BX) by the commutativity of the left-hand side of (the
analog of) [DL21], (28)] and the definition of Uy (x), we deduce that

Up(X) (Roo (T (x*))/P) = (0~ *OT, () (Roo (T(x*)) /p)-

In particular, multiplying ﬁp(x) by a unit in R, (7) we can assume that ﬁp(x) and
p°XU,(x) have the same image in the quotient Re(7(x*))/p of Reo(7). As a
consequence the analogue of [DL21] Prop.4.17] holds.

e Since by definition p~*MU,(x) € Reo(T(x*))\PRoo(T(Xx?)), we have

(3.88) Anng_(r(x))/p (P00 (1)) € Moo (Rec(7(x"))/)-

As U, »(X) = p~¢XU,(x) € Roo(7(x*))/p (previous point), we deduce ﬁp(x)(ﬁx o

LX - Id) — 0 in Endg__ (- (x=))/p(Moo (Q(x*) X)) by the analog of [DL21], (28)]. As
Moo (Q(x*)FX) 22 Moo (0(x*)BX) /p is free of rank r over Roo(7(x*))/p (by Theorem
B94(iii)), (B88)) implies the image of h oty —Idin

Endg_ ((x+))/p (Moo (Q(x*) ™))
lands in Moo End g (r(y2))/p (Moo (Q(x*) X)) Since Ker(Roo(T) = Roo(T(x*))/p) €
Moo Roo(T), we also have
(3.89) By 0Ty —1d € mog Endp_ () (Moo (87%)).

e The big unlabelled diagram before [DL21l (33)] still holds but the diagonal
maps are not simply multiplication by some ﬁp(xl-). For instance in the case
k = 3 (the general case being similar) one has to replace the left diagonal maps
in loc.cit. by successively (from top to bottom) ﬁp(XO)((Tm 0ly,) to (EXO o
vaXo) OZX2 OZXI)’ UP(X2)(T;11 o (hX2 OTX?,) OTXI)’ and U;D(Xl)(hX1 OTXI)' By (m)
and the R, (7)-linearity of the isomorphisms 7,,, all these diagonal maps are in
ﬁp(xi)(Id +m. Endg_ (r) (Moo (650))), and their composition is thus in

k—1
(3.90) (TT Up(x0) (1d +moe Endp_ (r) (Moo (6759))).
i=0
e For v > 1 defined as above [DL21] (33)], we have from the definition of the 7,,:
k=1
(3.91) (T1000) o 0Ty 0+ 0T) =p1d
=0

which implies p‘”(Hfz_Ol Up(xi)) € Roo(7)* since the Ty, are isomorphisms. By the
commutativity in the (analog of) the big unlabelled diagram before [DL21 (33)]
(see the previous point) together with [B90) and I we finally obtain

k—1

By, 0 0hy,  0ohy, € (p,,, H ﬁp(Xi)) (Id +meo Ende(T)(Mw(HRX'S)))

1
i=0

Licensed to Chinese Academy of Sciences. Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



3.4. LOCAL-GLOBAL COMPATIBILITY RESULTS FOR GL2(Qpr) 155

which is our analog of [DL21) (33)]. Then [DL21l (34)] follows by the same
argument. The rest of the proof in [DL21] §5] is unchanged. O

We can now prove Theorem [3.931

Proor oF THEOREM B.93] We let D(p) = (D1(p) — Do(p)) be the diagram
denoted by D(mgion(p)) in [DL21], which only depends on p. Let D(7) = (D1 (7)) —
Do(7)) & (x1t < 7K1) be the diagram defined by 7. We will show that D(p)®" =
D(r) as diagrams.

Define first R : 7/t — (socaL,(0x) 7)1t as in [DL21], Def.4.1], i.e. Rv = Si(x)V
with S;(y) as in [DL21], Rem.4.2] if v € 71 is an I-eigenvector with eigencharacter
X- Note that the eigencharacter of Rv is Ry.

Starting from D(p) we define a groupoid G with objects x¢, where £ is any
character of I such that (socgr,(o,) Do(p))"*[£] # 0, and morphisms freely gener-
ated by gy : Xry — Xgys, where x is any character of I such that D;(p)[x] # 0,
as in [DL21], Def.4.3].

The diagram D(r) defines an r-dimensional representation of G, sending x¢ to
the vector space (socgr,, (o) Do(m))[¢] and gy to the linear map

gy (socar, (0k) DO(7T))I1 [Rx] — (socar,(0k) DO(7T))I1 [Rx®]

as in [DL21] §4]. Similarly, we have an r-dimensional representation of G defined
by the diagram D(p)®"; we denote the linear maps by g7.

To check that the two r-dimensional representations of G are isomorphic it
suffices to check that for each object x the restrictions of the two representations
to the automorphism group Gy are isomorphic (see [DL21] Prop.4.5]), which is the
case by Proposition [3.99, remembering that g7 is the dual of hy, by (the analog of)
[DL21] Prop.4.14].

Therefore there exists an isomorphism

A (S0CGL, (05) Do(m)) ™ = (s0car, (o) Do(p)®)"
of I-representations such that Ao g7 = g2 o\ on (S0cGL, () Do(7))1[Ry] for all .
As 751 =2 Dy(p)®" as K-representations we can extend A\ uniquely to an isomor-
phism A : Do(m) == Do(p)®" of K-representations (extending to the GLa(Ok)-
socle first). As in the proof of [DL21) Prop.4.4] we deduce that A restricts to an
isomorphism A : Dy (m) = D1 (p)®" commuting with (9 §) and I, which completes
the proof. O

3.4.4. Local-global compatibility results. We collect our previous results
to deduce (together with the results of [HW22]) special cases of Conjecture [2.9]
and Conjecture 2.I] when n = 2 and K is unramified.

We keep all the previous notation. We also keep the assumptions (i) to (xii) of
§34.T] (in particular 75 is semisimple), except that we replace the bounds on the r;
in (viii) by the stronger bounds (which are those of |[BHH™ 23| §1]):

12<r; <p—-15 if 7 > 0 or p is reducible;
13<rg<p-—14 if p is irreducible.

Recall that we choose Serre weights oz € W (75 (1)) for w € S,\{v} and con-
sider m = Homy (Ques,\ (v} 0, S(VY, F)[m*]) (see Theorem B.93).
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THEOREM 3.100. We have [ﬂ[mi/zl] cx] = [rlmp 2] o x] for all smooth
characters x : I — F* appearing in w[my, /7, |.

PROOF. The statement of [BHH'23, Thm.8.3.11] applies verbatim with the
same proof to 7 as above using Theorem [3.94] and (B.87). Combining this with
Corollary 395 we see that 7 satisfies all the assumptions of [BHH™23| Thm.1.4],
whence the result by [BHH™23, Thm.1.5]. O

REMARK 3.101. A similar argument as in (ii) of the proof of [BHHT23|
Thm.8.4.1] (which uses [GN22], App.A]) shows that we also have dimgr,, (x)(7) =
[, where dimgr,(x)(m) is the Gelfand-Kirillov dimension of 7 as defined
in [(BEHEL23, §5.1].

The following theorem is one of the main results of this paper.

THEOREM 3.102. Keep all the previous assumptions and assume that the r; in
T5 satisfy the following stronger bounds:
(3.92) max{12,2f — 1} <r; <p—max{15,2f +2} if j > 0 or p is reducible;
max{13,2f} <rg<p-—max{l4,2f + 1} if p is irreducible.

Let ov & @uwes,\{v}Ta, where the o5 are Serre weights in W(Tz(1)) for w €
Sp\{v}. Then Conjecture holds for Homy. (¥, S(V?,F)[m*]).

PrOOF. This follows from Corollary B70l applied to 7 = Homyv(c?,
S(V?,F)[m*]), which satisfies all the assumptions there by Theorem 393 and The-
orem [B.100] and by Remark 2(ii). O

We now give some evidence for Conjecture [Z1] still assuming ([3.92). As we
also need r = 1, and to make things as simple as possible, we replace assumptions

(v) and (vii) in §34T] by

7 is unramified at all finite places outside S,

and we then take § & Sp (hence ¥ = S, U {v1}). We also replace assumption (xii)
in 34T by

t (Uy,) is equal to the upper-triangular unipotent matrices

mod 77.
We take VV = UP Hwesp\{v} Vw with Lu;(Vw) =1 -i-ng((’)Fm) - GLQ(OFJ)) =
te(Uw). We let T be the Hecke operator acting on S(V?,F) by the double coset

i {Lﬁ(le) <wﬁ 1) Lﬁ(le)] ,

where wy; is a uniformizer in (’)Fﬁ. Increasing F if necessary, we fix a choice of
eigenvalues @5 € F of p5(Froby ) (the image of a geometric Frobenius at v7) and
consider the ideal
m® & (%, Ty, — ag) € T5(T5),

where oz is any element in W (F) lifting @5 (see §2.1.2 for 7). Then, replacing
m”> by m® everywhere in §§3.4.1] B4 B43] by a multiplicity 1 result analogous
to the one in [BD14, Prop.3.5.1] (see for instance the argument in the proof of
[Ennl Lemma 3.1.4]) all the previous global results hold with r being 1.
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PROPOSITION 3.103. Choose Serre weights o5 € W (T3(1)) for w € Sp\{v}
and let
© = Homyw (®ues,\ (0} 0 SV, F)[m®)).
The representation 7 satisfies all the assumptions of §8.3.5 (with p = T5(1)).

PROOF. The only missing assumption is the essential self-duality (3.7€). But it
holds by the same proof as for the definite case of [HW22] Thm.8.2] using Remark
BI011 O

From the results of §3.3.5] we thus deduce the following theorems.

THEOREM 3.104. The GLo(F;)-representation w is generated by its
GL2(Op,)-socle, in particular is of finite type.

THEOREM 3.105.

(i) Assume thatTs is irreducible. Then 7 is irreducible and is a supersingular
representation.
(ii) Assume that T3 is reducible (split) and write p = T5(1) = (%1 )?)
2
Then one has

T = Indglf"(sga))(xlwfl R x2) BT B Indg]ir"((;z) (xow ' @ x1),

where 7' is generated by its GLa(OF,)-socle and 7'V is essentially self-

dual, i.e. satisfies BI6). Moreover, when f = 2, @' is irreducible and
supersingular (and hence  is semisimple).

PrROOF. Everything is in Corollary B.90] and Corollary B.92] except the precise
form of the irreducible principal series my, 7 in loc.cit., but this easily follows from

B33) and Theorem B93] (which is [DL21l §5] since r = 1). O
Combining Theorem with Theorem B.102] we obtain:

COROLLARY 3.106. Keep the same assumptions as just before Proposition B.I103l
If 75 is irreducible or if f = 2, then 7 is compatible with p (Definition 281). In par-
ticular  in  these cases Conjgecture 211 holds  for  Homgw(c?,
S(VY.F)[m®]).

REMARK 3.107. When 75 is reducible nonsplit, a similar proof as
for [HW22], Thm.1.6] (with the hypothesis of loc.cit. on T5) implies that 7 is
generated over GLo(F;) by 7%1. When moreover f = 2, a similar proof as for
[HW?22, Thm.1.7] implies that  is at least compatible with Py = P; = B (Defini-

tion 2770)).
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