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Abstract

Let p be a prime number and K a finite extension of Qp. We state conjectures
on the smooth representations of GLn(K) that occur in spaces of mod p automor-
phic forms (for compact unitary groups). In particular, when K is unramified, we
conjecture that they are of finite length and predict their internal structure (exten-
sions, form of subquotients) from the structure of a certain algebraic representation
of GLn. When n = 2 and K is unramified, we prove several cases of our conjectures,
including new finite length results.
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CHAPTER 1

Introduction

1.1. Preamble

Let p be a prime number and K a local field of residue characteristic p. In the
early nineties, Barthel and Livné had the fancy idea to start classifying irreducible
(admissible) smooth representations of GL2(K) over an algebraically closed field of
characteristic p ([BL94], [BL95]). They found four nonempty distinct classes of
such representations: 1-dimensional ones, irreducible principal series, special series,
and those which are not an irreducible constituent of a principal series that they
called supersingular. In 2001, one of us classified supersingular representations of
GL2(Qp) with a central character ([Bre03a]) and showed that they are in “natural”

bijection with 2-dimensional irreducible representations of Gal(Qp/Qp) in charac-
teristic p. This was one of the starting points of the mod p and p-adic Langlands
programmes for GL2(Qp), which was developed essentially during the decade 2000-
2010 (see for instance [Bre03b], [Bre10], [Eme10b], [Kis10], [Col10], [Ber10],
[Paš13], [Eme], [CDP14], [CEG+18], . . . ).

There are two main novel features of the mod p local Langlands correspon-
dence for GL2(Qp) (compared to previous Langlands correspondences). The first
one is that it involves reducible representations of GL2(Qp). More precisely, the
representation of GL2(Qp) is irreducible (resp. semisimple, resp. indecomposable)

if and only if its corresponding 2-dimensional representation of Gal(Qp/Qp) is, and,
in the reducible case, is given (at least generically) by an extension between two
specific principal series. The second one, found by Colmez in [Col10], is that
the correspondence can be made functorial by an exact functor from finite length
representations of GL2(Qp) to étale (ϕ,Γ)-modules, i.e. to finite length representa-

tions of Gal(Qp/Qp) by Fontaine’s equivalence. Thanks to this exact functor, one
can extend the correspondence first to extensions of representations, and then to
deformations on both sides.

When K is not Qp, trouble comes from supersingular representations. Con-
trary to the case K = Qp, they can be more numerous than 2-dimensional irre-

ducible representations of Gal(K/K) ([BP12]) and they cannot be described as
quotients of a compact induction by a finite number of equations ([Hu12, Cor.5.5],
[Sch15, Thm.0.1], [Wu21, Thm.1.1]), justifying a posteriori the terminology “very
strange” that was used to describe them in the introduction of [BL95]. As a con-
sequence, no classification of supersingular representations of GL2(K) is known so
far, which has hitherto made impossible to find a definition of a hypothetical local
mod p correspondence for GL2(K) by purely local (either representation theoretic
or geometric) means.

Fortunately, the global theory comes to the rescue. If a local correspondence ex-
ists, there is a place where it should be realized: the mod p cohomology of Shimura

1
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2 1. INTRODUCTION

varieties. Let us assume now that K is a finite unramified extension of Qp with

residue field Fpf and let K1
def
= 1 + pM2(OK) ⊆ GL2(OK). Following the pio-

neering work of [BDJ10] on Serre weight conjectures, a series of articles ([BP12],
[EGS15], [HW18], [LMS22], [Le19]) led to a complete description of the K1-
invariants of the GL2(K)-representations carried by Hecke isotypic subspaces in
such mod p cohomology groups. Although these invariants are only a tiny piece
of the representations of GL2(K), combined with weight cycling this turned out to
give a strong hint on the form of these representations, as well as being a useful
technical result. Indeed, very recently, building on this description and on results
of [BHH+23], Hu and Wang could prove that, at least when K is quadratic un-
ramified and the representation of Gal(Qp/K) is a nonsplit extension between two
(sufficiently generic) characters, these GL2(K)-representations are indecomposable
of length 3 (in particular are of finite length), with similar principal series as in
the case K = Qp in socle and cosocle, and a supersingular representation “in the
middle” ([HW22, Thm.1.7]).

These recent results maintain the hope of a local Langlands correspondence
for GL2(K). They also prompted us to make public some conjectures we had in
mind for many years on the form of the GLn(K)-representations carried by Hecke
isotypic subspaces, and on a functorial link to representations of Gal(Qp/Qp) via
(ϕ,Γ)-modules. We state such conjectures in the present work (Conjecture 2.9,
Conjecture 2.19, Conjecture 2.1) and we prove some special cases in the case n = 2
and K unramified, including some new finite length results (Theorem 3.102, The-
orem 3.105, Corollary 3.106). Moreover, when n = 2 and K is unramified, we also
define (and use in the proofs!) an abelian category C of smooth admissible rep-
resentations of GL2(K) in characteristic p (containing the representations coming
from the global theory) together with an exact functor from C to a new category
of multivariable (ϕ,Γ)-modules.

1.2. Conjectures

Let us first describe our conjectures with some details. As usual, we mostly
work in the setting of compact unitary groups (except in §2.1.4), so that we do not
(yet) mix delicate representation theoretic issues with difficult geometric problems
(ultimately, we think that the representations of GLn(K) should not change from
one global setting to another). We fix F a CM-field, i.e. a totally imaginary qua-
dratic extension of a totally real number field F+, and we assume for simplicity in
this introduction that p is inert in F+. We also assume (not for simplicity) that the
unique p-adic place v of F+ splits in F . We fix a continuous absolutely irreducible
representation

r : Gal(F/F ) −→ GLn(F),

where F is a (sufficiently large) extension of Fp and we assume that r is automorphic
for a unitary group H over F+ that is compact at all infinite places and becomes
GLn over F . Equivalently there exists a compact open subgroup Uv ⊆ H(A∞,v

F+ )
such that

S(Uv,F)[m]
def
= {f : H(F+)\H(A∞

F+)/Uv → F locally constant }[m] �= 0,

where [m] means the Hecke-isotypic subspace associated to r (one has to choose a
finite set of bad places Σ in the definition of m, but we forget this issue here, see
§2.1.3 below).
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1.2. CONJECTURES 3

Let ṽ|v in F , K
def
= Fṽ the corresponding completion and rṽ the restriction of

r to a decomposition subgroup at ṽ. Then S(Uv,F)[m] is an admissible smooth
representation of GLn(K) over F by the usual right translation action on functions.
Our main conjecture gives the form of this GLn(K)-representation (assuming it is
of finite length) as well as a functorial link to rṽ. But to state it we need a few
preliminaries on certain algebraic representations of GLn over F.

Let us first assume for simplicity that K = Qp. We let Std be the standard
n-dimensional algebraic representation of GLn over F and define the following al-
gebraic representation of GLn over F:

L
⊗ def

=

n−1⊗
i=1

∧i

F
Std.

We fix P ⊆ GLn a parabolic subgroup containing the Borel B of upper-triangular
matrices, and let MP be its Levi subgroup containing the torus T of diagonal

matrices. We fix P̃ ⊆ P a Zariski closed algebraic subgroup containing MP and we

consider the algebraic representation L
⊗|P̃ of P̃ over F.

Definition 1.1 (Definition 2.22). A subquotient of L
⊗|P̃ is a good subquotient

if its restriction to the center ZMP
of MP is a (direct) sum of isotypic components

of L
⊗|ZMP

.

Note that an isotypic component of L
⊗|ZMP

carries an action of MP (Lemma

2.21). Hence, viewing an isotypic component of L
⊗|ZMP

as a representation of P̃

via the surjection P̃ � MP , one can see L
⊗|P̃ as a successive extension of such

isotypic components (Lemma 2.24). On the GLn(Qp)-side, the isotypic components

of L
⊗|ZMP

will play the role of irreducible constituents. Note that the isotypic

components of L
⊗|ZMP

are by definition all distinct.

To an isotypic component C of L
⊗|ZMP

, we associate a parabolic subgroup

P (C) of GLn containing B as follows. Let λ ∈ X(T ) = HomGr(T,Gm) be any
weight such that C is the isotypic component of λ|ZMP

and define (see (2.29))

λ′ def
=

1

|W (P )|
∑

w′∈W (P )

w′(λ) ∈ X(T )⊗Z Q,

where W (P ) is the Weyl group of MP . Let θ be the highest weight of L
⊗|T and

w in the Weyl group of GLn such that w(λ′) is dominant with respect to B. Then
one can check that (see Proposition 2.32)

θ − w(λ′) =
∑
α∈S

nαα,

where S is the set of simple roots of GLn (with respect to B) and the nα are in
Q≥0. Then P (C) is by definition the parabolic subgroup of GLn corresponding to
the subset {α ∈ S : nα �= 0} of S. We denote by P (C)− its opposite parabolic
subgroup.

We now go back to the above global setting. Assuming a weak genericity
condition on rṽ, one can replace rṽ by a suitable conjugate so that the image of rṽ
is contained in the F-points of a Zariski closed algebraic subgroup P̃rṽ of a parabolic
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4 1. INTRODUCTION

Prṽ as above which is “as small as possible” (see Definition 2.63 and Theorem 2.65).
The following conjecture is part of Conjecture 2.1 (see Definition 2.81 and Definition
2.70).

Conjecture 1.2. Assume that rṽ has distinct irreducible constituents and that
the ratio of any two 1-dimensional constituents is not in {ω, ω−1}, where ω is the
mod p cyclotomic character. Then we have a GLn(Qp)-equivariant isomorphism
for some integer d ≥ 1:

S(Uv,F)[m] ∼=
(
Πṽ ⊗ (ωn−1 ◦ det)

)⊕d
,

where Πṽ is an admissible smooth representation of GLn(Qp) over F of finite length
with distinct irreducible constituents such that there exists a bijection Φ between the

(finite) set of subquotients of Πṽ and the (finite) set of good subquotients of L
⊗|P̃rṽ

satisfying the following properties:

(i) Φ respects inclusions, and thus extends to a bijection between the sets of
all subquotients on both sides;

(ii) Φ−1 sends an isotypic component C of L
⊗|ZMPrṽ

to an irreducible con-

stituent of Πṽ of the form Ind
GLn(Qp)

P (C)−(Qp)
π(C), where π(C) is a supersin-

gular representation of MP (C)(Qp) over F.

When K is not necessarily Qp, the conjecture is completely analogous, defining

L
⊗

by

L
⊗ def

=
⊗

Gal(K/Qp)

( n−1⊗
i=1

∧i

F
Std
)
,

replacing P̃ by P̃Gal(K/Qp) def
= P̃ × · · · × P̃︸ ︷︷ ︸

Gal(K/Qp)

and taking isotypic components of

L
⊗|ZMP

for the diagonal embedding ZMP
↪→ Z

Gal(K/Qp)
MP

in the definition of good

subquotients of L
⊗|P̃Gal(K/Qp) .

Example 1.3.

(i) If rṽ is irreducible, then P̃rṽ = GLn = MPrṽ
and there is only one isotypic

component C in L
⊗|ZGLn

. It is such that P (C) = GLn: the representation Πṽ in
Conjecture 1.2 is irreducible and supersingular.

(ii) If rṽ is semisimple, then P̃rṽ = MPrṽ
, and since the direct sum decompo-

sition of L
⊗|ZMPrṽ

into isotypic components for the (diagonal) ZMPrṽ
-action is a

direct sum decomposition as a P̃rṽ = MPrṽ
-representation, we see that the repre-

sentation Πṽ in Conjecture 1.2 is also semisimple.

(iii) If K = Qp and n = 2, we have L
⊗

= Std. When rṽ is irreducible, by
(i) the representation Πṽ of GL2(Qp) in Conjecture 1.2 is supersingular. When

rṽ is reducible split, then P̃rṽ = T = MPrṽ
, and L

⊗|T = Fλ1 ⊕ Fλ2, where λi :

diag(x1, x2) �→ xi, i ∈ {1, 2}. There are two isotypic components C = Fλ1 or
C = Fλ2, both with P (C) = B: the representation Πṽ in Conjecture 1.2 is a direct
sum of two irreducible principal series. Finally, when rṽ is reducible nonsplit, then
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1.2. CONJECTURES 5

P̃rṽ = B, L
⊗|B is a nonsplit extension of Fλ2 by Fλ1 and Πṽ is a nonsplit extension

between two irreducible principal series. Note that Conjecture 1.2 is known in that
case ([CS17b], [CS17a] for rṽ irreducible, [BD20, Cor.7.40] for arbitrary rṽ, all
generalizing methods of [Eme]).

(iv) For K arbitrary (unramified) and n = 2, see Example 2.35 and Example
1 of §2.4.3.

Conjecture 1.2 only gives part of the picture. For instance there should be

reducible subquotients of Πṽ which are also parabolic inductions Ind
GLn(Qp)

P (C)−(Qp)
π(C)

with π(C) of the form π(C) ∼= π1(C) ⊗ · · · ⊗ πd(C), where the (reducible) πi(C)
have themselves the same form as Πṽ but for the smaller GLni

(K) appearing in
the Levi MP (C)(K) (which gives a “fractal” flavour to the whole picture!). In fact,
it is possible that, in the end, this “fractal” picture will automatically follow from
property (ii) in Conjecture 1.2 (i.e. from the statement for irreducible subquotients
only), as one can already see in many of the examples of §2.4.3 using the work of
Hauseux ([Hau18], [Hau19]), see Remark 2.71(iv). Also some parabolic (possibly
reducible) inductions as above should be deduced from others by a permutation on
the factors πi(C). Tracking down all these internal symmetries (with the various
twists by characters that occur) and all the implications between them is not really
difficult but a bit tedious, as the reader will see from the technical lemmas in §2.4.1
(see e.g. Proposition 2.73). The interested reader should maybe first have a look at
the various examples in §2.4.3 before going into the full combinatorics.

Finally, the full picture has to take into account the Galois action. There
is a simple way to extend Colmez’s functor from representations of GL2(Qp) to
representations of GLn(K) that we recall now (see [Bre15] or §2.1.1). Let ξ :

Gm → T be the cocharacter x �→ diag(xn−1, xn−2, . . . , 1) and N1
def
= Ker(N0

�−→
OK

trace−→ Zp), where N0 is the unipotent radical of B(OK) and the map � is the
sum of the entries on the first diagonal (following the notation of [SV11]). Let π
be a smooth representation of GLn(K) over F and endow the algebraic dual (πN1)∨

of πN1 with the residual F�N0/N1� ∼= F�Zp� ∼= F�X�-module structure (where

X
def
= [1] − 1), an action of Z×

p and an endomorphism ψ which commutes with the

Z×
p -action by⎧⎨⎩ (xf)(v)

def
= f(ξ(x−1)v), x ∈ Z×

p , f ∈ (πN1)∨, v ∈ πN1

ψ(f)(v)
def
= f
(∑

N1/ξ(p)N1ξ(p)−1 n1ξ(p)v
)
, f ∈ (πN1)∨, v ∈ πN1 .

Then one defines a covariant left exact functor V from the category of smooth repre-
sentations of GLn(K) over F to the category of (filtered) direct limits of continuous
finite-dimensional representations of Gal(Qp/Qp) over F by

(1.1) V (π)
def
=
(
lim
−→
D

V∨(D)
)
⊗ δ,

where the inductive limit is taken over the continuous morphisms of F�X�-modules
h : (πN1)∨ → D, where D is an étale (ϕ,Γ)-module of finite rank over F((X)) and
h intertwines the actions of Z×

p (recall Γ ∼= Z×
p ), commutes with ψ and is surjective

when tensored by F((X)). (Here V∨ is Fontaine’s contravariant functor associating
a representation of Gal(Qp/Qp) to D and recall that any étale (ϕ,Γ)-module is
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6 1. INTRODUCTION

endowed with an endomorphism ψ which is left inverse to the Frobenius ϕ.) In
(1.1), δ is a certain power of ω which is here for normalization issues (see Example
2.3, see also the end of §2.1.4). In general, one doesn’t know when V (π) is nonzero
or if it is finite-dimensional.

Using (1.1), one can strengthen Conjecture 1.2 (when K = Qp) so that it takes

into account the action of Gal(Qp/Qp) as follows.

Conjecture 1.4 (see Definition 2.70 and Conjecture 2.1). There is a bijection
Φ as in Conjecture 1.2 that moreover commutes with the action of Gal(Qp/Qp) in
the following sense: for each subquotient Π′

ṽ of Πṽ one has V (Π′
ṽ) = Φ(Π′

ṽ) ◦ rṽ.

(Recall that Φ(Π′
ṽ) is an algebraic representation of P̃rṽ over F and that rṽ takes

values in P̃rṽ(F).)

If K is not necessarily Qp, then by definition Φ(Π′
ṽ) is an algebraic repre-

sentation of P̃
Gal(K/Qp)
rṽ

and there is a completely analogous conjecture replac-
ing Φ(Π′

ṽ) ◦ rṽ by Φ(Π′
ṽ) ◦ (rσṽ )σ∈Gal(K/Qp), which is again a representation of

Gal(Qp/Qp).
In particular the functor V , when applied to Πṽ and its subquotients Π′

ṽ, should
behave like an exact functor. Note that Conjecture 1.4 is known when K = Qp and
n = 2 by the same references as in Example 1.3(iii). In the special case Π′

ṽ = Πṽ,
Conjecture 1.4 implies in particular

Conjecture 1.5 (Conjecture 2.9). The functor V induces an isomorphism

V
(
S(Uv,F)[m]⊗ (ω−(n−1) ◦ det)

) ∼= ( ind⊗Qp

K

( n−1⊗
i=1

∧i

F
rṽ
))⊕d

,

where ind
⊗Qp

K is the tensor induction from Gal(Qp/K) to Gal(Qp/Qp).

The statement in Conjecture 1.5 makes sense even if K is ramified, and we
conjecture it for an arbitrary finite extension K of Qp and an arbitrary represen-
tation rṽ (see Conjecture 2.9). In fact, using C-parameters ([BG14]), it can even
be formulated in a more intrinsic way and in a more general global setting, see
Conjecture 2.19.

Remark 1.6. Assuming K = Qp, the first appearance of the Gal(Qp/Qp)-
representation on the right-hand side of the isomorphism in Conjecture 1.5 is in
[BH15], where its “ordinary part” was related to the “ordinary part” of S(Uv,F)[m]

(see Theorem 2.9 for an improvement). Note that the algebraic representation L
⊗

of GLn is not irreducible for n > 2. One could have thought about using the irre-
ducible algebraic representation of GLn of highest weight θ instead of the reducible

L
⊗

to make predictions (at least for p big enough the latter strictly contains the

former as a direct factor). However, we chose the representation L
⊗
. One reason

is that it can also be seen as a representation of GLn × · · · ×GLn (n − 1 times)

in an obvious way – in which case a better notation is L
� def

= �n−1
i=1

∧i
FStd – and

one can hope to state a stronger variant of Conjecture 1.4 replacing L
⊗
by L

�
and

Φ(Π′
ṽ) ◦ rṽ by Φ(Π′

ṽ) ◦ (rṽ, rṽ, . . . , rṽ) (see [Záb18b], [Záb18a] where such a possi-
bility is mentioned). However one has to be careful with defining a “multivariable”
functor V in that context (there is a tentative definition in [Záb18b] when K = Qp

generalizing (1.1), but see Remark 3.21 when n = 2 and K �= Qp).
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1.3. RESULTS 7

If a representation Πṽ as in Conjecture 1.4 exists, we do hope that it will realize
a mod p local Langlands correspondence for GLn(K).

1.3. Results

Let us now describe our main results when n = 2 and K = Qpf is unramified.

For a finite place w̃ of F we denote by R�
rw̃

the (unrestricted) framed deformation

ring of rw̃
def
= r|Gal(F w̃/Fw̃) over W (F). We let IK ⊆ Gal(Qp/K) be the inertia

subgroup and ωf ′ for f ′ ∈ {f, 2f} be Serre’s fundamental character of level f ′. We
make the following extra assumptions on F , H, r and Uv =

∏
w 	=v Uw (recall we

assumed p inert in F+ for simplicity):

(i) F/F+ is unramified at all finite places of F+;
(ii) H is quasi-split at all finite places of F+;
(iii) r|Gal(F/F ( p√1)) is adequate ([Tho17, Def.2.20]);

(iv) rw̃ is unramified if w̃|F+ is inert in F ;
(v) R�

rw̃
is formally smooth over W (F) if rw̃ is ramified and w̃|F+ �= v;

(vi) rṽ|IK is, up to twist, of one of the following forms:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
rṽ|IK ∼=

(
ω
(r0+1)+···+pf−1(rf−1+1)
f 0

0 1

)
,

rṽ|IK ∼=
(
ω
(r0+1)+···+pf−1(rf−1+1)
2f 0

0 ω
pf (same)
2f

)
,

where the ri satisfy the following bounds:

(1.2)

{
max{12, 2f − 1} ≤ rj ≤ p−max{15, 2f + 2} if j > 0 or rṽ is reducible,

max{13, 2f} ≤ r0 ≤ p−max{14, 2f + 1} if rṽ is irreducible;

(vii) Uw is maximal hyperspecial in H(F+
w ) if w is inert in F .

(We also need to fix a place v1 which splits in F , where nothing ramifies and Uv1

is contained in the Iwahori subgroup at v1, we forget that here along with the set
Σ of bad places and the definition of the ideal m.)

Theorem 1.7 (Theorem 3.102). Assume n = 2, K/Qp unramified, and the
above conditions (i)–(vii). Then Conjecture 1.5 holds.

We sketch the proof of Theorem 1.7. We denote by I1 the pro-p Iwahori sub-
group in GL2(OK) and set

ρ
def
= rṽ(1) Π

def
= S(Uv,F)[m].

Note that the central character of Π is det(ρ)ω−1 (Lemma 2.11). There are two
main steps in the proof which involve quite different arguments:

(i) one proves a Gal(Qp/Qp)-equivariant injection (ind
⊗Qp

K ρ)⊕d ↪→ V (Π);

(ii) one proves dimF V (Π) ≤ 2fd (= dimF(ind
⊗Qp

K ρ)⊕d).

We first sketch the proof of (i). Arguing as in the proof of [BHH+23,
Prop.8.2.6], there is an integer d ≥ 1 and a GL2(OK)K×-equivariant isomorphism
ΠK1 ∼= D0(ρ)

⊕d, where D0(ρ) is defined as in [BP12, §13] (see Corollary 3.95).
Taking into account the action of

(
0 1
p 0

)
on ΠI1 ⊆ ΠK1 , one can promote this iso-

morphism to an isomorphism of diagrams :
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8 1. INTRODUCTION

Theorem 1.8 ([DL21, Thm.1.3] when d = 1, Theorem 3.93 when d > 1).
There is a diagram D(ρ) = (D1(ρ) ↪→ D0(ρ)) only depending on ρ such that one
has an isomorphism of diagrams:

D(ρ)⊕d ∼= (ΠI1 ↪→ ΠK1).

Theorem 1.8 can actually be made stronger, i.e. one can show that certain
constants νi ∈ F× associated to the weight cycling on D1(ρ) ∼= D0(ρ)

I1 as in
[Bre11, §6] (up to suitable normalization) are as predicted in [Bre11, Thm.6.4].
When d = 1, Theorem 1.8 (and its strengthening) is entirely due to Dotto and Le
([DL21, Thm.1.3]). When d > 1, we check from their proof that the action of(
0 1
p 0

)
on ΠI1 ∼= (D0(ρ)

I1)⊕d “respects” each copy of D0(ρ)
I1 . Note that Theorem

1.8 holds under much weaker bounds on the ri than the bounds (1.2), see §3.4.1.
Then item (i) above follows from the following purely local result.

Theorem 1.9 (Theorem 3.35). Let π be an (admissible) smooth representation
of GL2(K) over F such that one has an isomorphism of diagrams D(ρ)⊕d ∼= (πI1 ↪→
πK1). Then one has a Gal(Qp/Qp)-equivariant injection

(ind
⊗Qp

K ρ)⊕d ↪→ V (π).

The proof of Theorem 1.9 is a long and technical computation of (ϕ,Γ)-modules
that is given in §3.2. It uses the previous computations in [Bre11] and the bounds
(1.2) (though one can slightly weaken them, see (3.26)).

We now sketch the (longer) proof of (ii). We let Z1 be the center of I1 (or
of K1) and mI1/Z1

the maximal ideal of the Iwasawa algebra F�I1/Z1�. The main
idea is to focus on the structure of the (algebraic) dual π∨ as an F�I1/Z1�-module
and to use the results of [BHH+23]. Recall that the graded ring gr(F�I1/Z1�)
for the mI1/Z1

-adic filtration (we use the normalization of [LvO96, §I.2.3]) is not
commutative, but contains a regular sequence of central elements (h0, . . . , hf−1)

such that R
def
= gr(F�I1/Z1�)/(h0, . . . , hf−1) is a commutative polynomial algebra

in 2f variables F[yi, zi, 0 ≤ i ≤ f − 1] (see [BHH+23, §5.3] and (3.1), (3.17)). We

let J
def
= (yizi, hi, 0 ≤ i ≤ f − 1) (an ideal of gr(F�I1/Z1�)) and define

(1.3) R
def
= gr(F�I1/Z1�)/J ∼= F[yi, zi, 0 ≤ i ≤ f − 1]/(yizi, 0 ≤ i ≤ f − 1).

Then p0
def
= (zi, 0 ≤ i ≤ f − 1) is one of the 2f minimal prime ideals of R. If N

is any finite type gr(F�I1/Z1�)-module killed by a power of J , one can define its
multiplicity mp0

(N) ∈ Z≥0 at p0, see (3.23).
For π a smooth representation of GL2(K) over F with a central character, we

endow π∨ with the mI1/Z1
-adic filtration and we let gr(π∨) be the associated graded

gr(F�I1/Z1�)-module.

Theorem 1.10 (Theorem 3.69). Let π be an (admissible) smooth representa-
tion of GL2(K) over F satisfying the following two properties:

(i) there is a GL2(OK)K×-equivariant isomorphism D0(ρ)
⊕d ∼= πK1 ;

(ii) for any character χ : I → F× appearing in π[mI1/Z1
] there is an equality

of multiplicities

[π[m3
I1/Z1

] : χ] = [π[mI1/Z1
] : χ].

Then gr(π∨) is killed by J and one has mp0
(gr(π∨)) ≤ 2fd.
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1.3. RESULTS 9

By the proof of [BHH+23, Cor.5.3.5], property (ii) in Theorem 1.10 implies
that gr(π∨) is killed by J . By an explicit computation (using both properties (i)
and (ii)), one proves in Theorem 3.67 that there is a surjection of R-modules

(⊕λ∈PR/a(λ))⊕d � gr(π∨),

where P is a combinatorial finite set associated to ρ (in bijection with the set of χ
appearing in π[mI1/Z1

], see §3.3.1) and the a(λ) are explicit ideals of R containing
the image of J (see Definition 3.57). Then Theorem 1.10 follows from the equality
mp0

(⊕λ∈PR/a(λ)) = 2f which is an easy computation.
Arguing as in [BHH+23], the representation Π satisfies all assumptions of

Theorem 1.10, see Corollary 3.95 and Theorem 3.100. Hence the upper bound in
item (ii) below Theorem 1.7 follows from Theorem 1.10 combined with the next
result:

Theorem 1.11 (Corollary 3.34). Let π be an admissible smooth representation
of GL2(K) over F with a central character such that gr(π∨) is killed by some power
of J . Then one has dimF V (π) ≤ mp0

(gr(π∨)).

We prove Theorem 1.11 by first associating to π an “étale (ϕ,O×
K)-module over

A” (Definition 3.23). This is the “multivariable (ϕ,Γ)-module” mentioned at the
end of §1.1. Though one could probably give a more direct proof without explicitly
introducing them, these étale (ϕ,O×

K)-modules are important for our finite length
results below and are likely to play a role later, so we describe them now.

We start with the ring A. Let F�N0� ∼= F�OK� be the Iwasawa algebra of the
unipotent radical N0 of B(OK). Then F�N0� ∼= F�Y0, . . . , Yf−1�, where the Yi are
eigenvectors for the action of the finite torus on F�N0� (see (3.1)). Let S be the
multiplicative system in F�N0� generated by the Yi. The filtration on F�N0� by
powers of its maximal ideal mN0

naturally extends to a filtration on the localized
ring F�N0�S and we define A to be the completion of F�N0�S (where F�N0�S denotes
the localization of F�N0� at S) for this filtration ([LvO96, §I.3.4]). The ring A is not
local, but it is a regular noetherian domain (Corollary 3.2) and a complete filtered
ring in the sense of [LvO96, §I.3.3] with associated graded ring gr(A) ∼= gr(F�N0�S)
(see Remark 3.3(iii) for a concrete description of A). Most importantly, the natural
action of O×

K on F�N0� ∼= F�OK� by multiplication on OK extends by continuity

to A (Lemma 3.4) and any ideal of A preserved by O×
K is either 0 or A (Corollary

3.7).
Let π be an admissible smooth representation of GL2(K) over F with a central

character and recall that π∨ is endowed with the mI1/Z1
-adic filtration (which, in

general, strictly contains the mN0
-adic filtration). We endow

(π∨)S
def
= F�N0�S ⊗F�N0� π

∨

with the tensor product filtration and define DA(π) as the completion of (π∨)S .
Then DA(π) is a complete filtered A-module such that gr(DA(π)) ∼= gr((π∨)S)
(Lemma 3.1). The action of O×

K on π∨ extends by continuity to DA(π), as well as
the map

ψ : π∨ −→ π∨, f �−→ ψ(f)
def
=
(
v ∈ π �→ f(ξ(p)v) = f

((
p 0
0 1

)
v
))

(Lemma 3.14). The latter can be linearized into an A-linear morphism

β : DA(π) −→ A⊗φ,A DA(π),
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10 1. INTRODUCTION

where φ is a Frobenius endomorphism on the characteristic p ring A (see (3.16) for
the definition of β, and §3.1.1 for the definition of φ on A).

We let C be the abelian category of admissible smooth representations π with a
central character such that gr((π∨)S) is a finite type gr(F�N0�S)-module. It follows
from (1.3) that(
gr(F�I1/Z1�)/J

)
[(y0 · · · yf−1)

−1] ∼= F[y0, . . . , yf−1][(y0 · · · yf−1)
−1] ∼= gr(F�N0�S)

which easily implies that, if gr(π∨) is killed by a power of J , then π is in C (Propo-
sition 3.20). In particular the representation Π is in C. Note that any finite length
admissible smooth representation π of GL2(Qp) over F with a central character is
such that gr(π∨) is killed by a power of J (Corollary 3.77), hence is in C.

For π in C, by general results of [Lyu97], there exists a largest quotient DA(π)
ét

of DA(π) such that the map β induces an isomorphism β ét : DA(π)
ét ∼→ A ⊗φ,A

DA(π)
ét (see the beginning of §3.1.2). We let ϕ : DA(π)

ét → DA(π)
ét such that

Id⊗ϕ = (β ét)−1. Then DA(π)
ét equipped with ϕ and the induced action of O×

K is

our étale (ϕ,O×
K)-module over A associated to π in C.

Theorem 1.12 (Proposition 3.12, Corollary 3.18, Theorem 3.25,
and Corollary 3.34).

(i) If π is in C, then DA(π) and DA(π)
ét are finite projective A-modules and

rkA(DA(π)
ét)≤ mp0

(gr(π∨)).
(ii) The (contravariant) functors π → DA(π) and π → DA(π)

ét are exact on
the abelian category C.

One key ingredient in the proof of Theorem 1.12 (cf. the proof of Proposition
3.8) is that if the annihilator of an A-module endowed with an A-semilinear O×

K-
action is nonzero, then this annihilator is A (since there are no proper nonzero
ideals of A which are preserved by O×

K , see above) and hence the A-module must
be 0.

For a smooth representation π of GL2(K) over F such that dimF V (π) < +∞,
we denote by D∨

ξ (π) the unique étale (ϕ,Γ)-module over F((X)) such that V (π) =

V∨(D∨
ξ (π)) ⊗ δ (see (1.1)). We denote by tr : A → F((X)) the ring morphism

induced by the trace tr : F�N0� → F�Zp� ∼= F�X�.

Theorem 1.13 (Theorem 3.29). If π is in C, then we have an isomorphism of
étale (ϕ,Γ)-modules over F((X)):

DA(π)
ét ⊗A F((X))

∼−→ D∨
ξ (π).

In particular, dimF V (π) = rkA(DA(π)
ét) < +∞ and the functor π �−→ V (π) in

(1.1) is exact on the category C.
The proof essentially follows by a careful unravelling of all the definitions and

constructions involved. The last statement follows from the first and from Theorem
1.12.

Theorem 1.13 and Theorem 1.12(i) imply in particular the bound on V (π) in
Theorem 1.11, which finally proves Theorem 1.7.

We see that the multivariable (ϕ,O×
K)-module DA(π)

ét plays an important
role in the proof of Theorem 1.11. One natural question therefore is to understand
more the internal structure of DA(Π)ét (at least conjecturally): does DA(Π)ét only
depend on ρ? Does it determine ρ? We plan to come back to these questions, as
well as generalizations in higher dimension, in future work.
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The modules DA(Π)ét and D∨
ξ (Π) are also crucial tools in the proof of our

finite length results on the representation Π which provide evidence to Conjecture
1.2 and Conjecture 1.4 and that we describe now.

Theorem 1.14 (Theorem 3.104). Assume moreover d = 1, i.e. ΠK1 ∼= D0(ρ)
(the so-called minimal case). Then the GL2(K)-representation Π is generated by
its GL2(OK)-socle, in particular is of finite type.

Note that the last finiteness assertion in Theorem 1.14 (with ΠK1 instead of
the GL2(OK)-socle) was known for ρ non-semisimple (and sufficiently generic) by
[HW22, Thm.1.6], but the proof there doesn’t extend to the semisimple case.

We sketch the proof of Theorem 1.14. Let Π′ ⊆ Π be a nonzero subrepre-

sentation and Π′′ def
= Π/Π′. As gr(Π∨) and hence its quotient gr(Π′∨) are killed

by J , the representations Π, Π′, Π′′ are all in C, thus Theorem 1.12(i) and The-
orem 1.13 imply dimF V (Π′) ≤ mp0

(gr(Π′∨)) and dimF V (Π′′) ≤ mp0
(gr(Π′′∨)).

Since V (Π′′) ∼= V (Π)/V (Π′) by the last statement in Theorem 1.13, and since
mp0

is an additive function by Lemma 3.82 (and Definition 3.79), we deduce
dimF V (Π′) = mp0

(gr(Π′∨)) and dimF V (Π′′) = mp0
(gr(Π′′∨)) as we have seen that

dimF V (Π) = mp0
(gr(Π∨)) (= 2f ). On the other hand, by computations analogous

to the ones used in the proofs of Theorem 1.9 and Theorem 1.10, we also have
inequalities

mp0
(gr(Π′∨)) ≤ lg(socGL2(OK)(Π

′)) ≤ dimF V (Π′)

and thus we deduce

(1.4) mp0
(gr(Π′∨)) = lg(socGL2(OK)(Π

′)) = dimF V (Π′) �= 0.

Now take Π′ to be the nonzero subrepresentation generated over GL2(K) by the
GL2(OK)-socle of Π. We wish to prove Π′′ = 0. As

lg(socGL2(OK)(Π
′)) = lg(socGL2(OK)(Π)) = 2f = dimF V (Π)

we already have by (1.4) and the exactness of V that

(1.5) mp0
(gr(Π′′∨)) = dimF V (Π′′) = 0.

To deduce Π′′ = 0 from (1.5), we need the following key new ingredient: Π is

essentially self-dual of grade (or codimension) 2f , i.e. ExtjF�I1/Z1�

(
Π∨,F�I1/Z1�

)
=

0 if j < 2f and there is a GL2(K)-equivariant isomorphism

(1.6) Ext2fF�I1/Z1�

(
Π∨,F�I1/Z1�

) ∼= Π∨ ⊗ (det(ρ)ω−1),

where Ext2fF�I1/Z1�(Π
∨,F�I1/Z1�) is endowed with the action of GL2(K) defined

by Kohlhaase in [Koh17, Prop.3.2]. This follows by the same argument as in

[HW22, Thm.8.2] (using Remark 3.101). We then define Π̃ as the admissible
smooth representation of GL2(K) over F such that

Π̃∨⊗(det(ρ)ω−1)∼=Im
(
Ext2fF�I1/Z1�

(
Π∨,F�I1/Z1�

)
→Ext2fF�I1/Z1�

(
Π′′∨,F�I1/Z1�

))
,

and by (1.6) Π̃ is a subrepresentation of Π. By (1.6) and general results on

ExtjΛ(−,Λ) for Auslander regular rings Λ, Π′′∨ ⊆ Π∨ is also of grade 2f if it is

nonzero, and hence Ext2fF�I1/Z1�(Π
′′∨,F�I1/Z1�) is nonzero if and only if Π′′ �= 0.

From the short exact sequence
(1.7)

0→Π̃∨⊗(det(ρ)ω−1)→Ext2fF�I1/Z1�

(
Π′′∨,F�I1/Z1�

)
→Ext2f+1

F�I1/Z1�

(
Π′∨,F�I1/Z1�

)
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and the fact that the last Ext2f+1 has grade ≥ 2f + 1, we finally obtain:

(1.8) Π̃ is nonzero if and only if Π′′ is nonzero.

We now use the following general theorem.

Theorem 1.15 (Theorem 3.83). Let π be an admissible smooth representation
of GL2(K) over F with a central character such that gr(π∨) is killed by a power of J .
Then the gr(F�I1/Z1�)-module (for the mI1/Z1

-adic filtration on

Ext2fF�I1/Z1�(π
∨,F�I1/Z1�)):

gr
(
Ext2fF�I1/Z1�

(
π∨,F�I1/Z1�

))
is also finitely generated and annihilated by a power of J , and we have

mp0
(gr(π∨)) = mp0

(
gr
(
Ext2fF�I1/Z1�

(
π∨,F�I1/Z1�

)))
.

From the injection in (1.7) and from Theorem 1.15 applied to π = Π′′ we have

mp0
(gr(Π̃∨)) ≤ mp0

(gr(Π′′∨)), hence we obtain

mp0
(gr(Π̃∨)) = mp0

(gr(Π′′∨))
(1.5)
= 0.

This implies Π̃ = 0 by (1.4) (applied to the subrepresentation Π′ = Π̃) and thus
Π′′ = 0 by (1.8), finishing the proof of Theorem 1.14.

The following corollary immediately follows from Theorem 1.14 and from [BP12,
Thm.19.10(i)].

Corollary 1.16 (Theorem 3.104). Assume moreover d = 1 and ρ irreducible.
Then the GL2(K)-representation Π is irreducible and is a supersingular represen-
tation.

When ρ is reducible (split), we can prove the following result.

Theorem 1.17 (Theorem 3.105). Assume moreover d = 1 and ρ reducible, i.e.

ρ =

(
χ1 0
0 χ2

)
. Then one has

Π = Ind
GL2(K)
B(K) (χ1 ⊗ χ2ω

−1)⊕Π′ ⊕ Ind
GL2(K)
B(K) (χ2 ⊗ χ1ω

−1),

where Π′ is generated by its GL2(OK)-socle and Π′∨ is essentially self-dual of grade
2f , i.e. satisfies (1.6). Moreover, when f = 2, Π′ is irreducible and supersingular
(and hence Π is semisimple).

The fact that the two principal series in Theorem 1.17 occur as subobjects
of Π was already known (and is not difficult). To prove that they also occur as
quotients (and that the obvious composition is the identity), we again crucially use
the essential self-duality (1.6). The rest of the statement follows from Theorem
1.14 and [BP12, Thm.19.10(ii)].

The following last corollary sums up the above results.

Corollary 1.18 (Theorem 3.106). Assume (i) to (vii) as at the beginning of
§1.3 and assume d = 1 as in Theorem 1.14. Then Conjecture 1.4 holds for n = 2
and ρ irreducible, or for n = 2, K quadratic and ρ semisimple.

Note finally that when f = 2, ρ is non-semisimple (sufficiently generic) and
d = 1, Conjecture 1.2 at least is known and follows from [HW22, Thm.1.7].
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1.4. Notation

We finish this introduction with some very general notation (many more will
be defined in the text).

Throughout the text, we fix Qp an algebraic closure of Qp and K an arbitrary

finite extension of Qp in Qp with residue field Fq, q = pf (f ∈ Z≥1). The field K is
unramified from §2.2 on. We also fix a finite extension E of Qp, with ring of integers
OE , uniformizer �E and residue field F, and we assume that F contains Fq. The
finite field F is the main coefficient field in this work. We denote by ε the p-adic
cyclotomic character of Gal(Qp/Qp) and by ω its reduction mod p. We normalize
Hodge–Tate weights so that ε has Hodge–Tate weight 1 at each embedding K ↪→ E.
We normalize local class field theory so that uniformizers correspond to geometric
Frobeniuses.

If H is any split connected reductive algebraic group, we denote by ZH the
center of H and by TH a split maximal torus. If PH is a parabolic subgroup of
H containing TH , we denote by MPH

its Levi subgroup containing TH , NPH
its

unipotent radical and P−
H its opposite parabolic subgroup with respect to TH (so

PH ∩ P−
H = MH).

We let n ≥ 2 be an integer and denote by G the algebraic group GLn over Z.
The integer n is arbitrary in §2 and is 2 in §3.

Irreducible for a representation always means absolutely irreducible.
Finally, though we mainly work with the group GLn, several proofs in §2 can be

extended more or less verbatim to a split connected reductive algebraic group over
Z with connected center, and §2.1.4 deals with possibly nonsplit reductive groups.
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CHAPTER 2

Local-global compatibility conjectures

We state local-global compatibility conjectures (Conjecture 2.9, Conjecture 2.19
and Conjecture 2.1) which “functorially” relate Hecke-isotypic components with
their action of GLn(K) in spaces of mod p automorphic forms to representations
of Gal(Qp/Qp). Conjecture 2.1 assumes K is unramified but is much stronger and
more precise than Conjecture 2.9 and Conjecture 2.19 as it predicts the number, po-
sition and form of the irreducible constituents of these Hecke-isotypic components,
as well as their contribution on the Galois side.

Throughout this chapter, we let T ⊆ G = GLn the diagonal torus over Z and
X(T ) the Z-module HomGr(T,Gm). As usual, we identify X(T ) with ⊕n

i=1Zei via

ei �→
(
diag(x1, . . . , xn) �→ xi

)
and define 〈 , 〉 : X(T )×X(T ) → Z, 〈ei, ej〉 def

= δi,j ,
which we extend by Q-bilinearity to X(T )⊗Z Q. This provides an isomorphism of

Z-modules X(T )
∼→ HomZ(X(T ),Z) ∼= HomGr(Gm, T ) given by

(2.1) ei �−→ e∗i
def
=
(
x �→ diag(1, . . . , 1︸ ︷︷ ︸

i−1

, x, 1, . . . , 1)
)
, i ∈ {1, . . . , n}.

We denote by R = {ei − ej : 1 ≤ i �= j ≤ n} ⊆ X(T ) the roots of (G, T ), by B ⊆ G
the Borel subgroup (over Z) of upper-triangular matrices and by N the unipotent
radical of B, so that the positive roots are R+ = {ei − ej : 1 ≤ i < j ≤ n} ⊆ R and
the simple roots are S = {ei−ei+1 : 1 ≤ i ≤ n−1} ⊆ R+. An element of X(T )⊗ZQ
is dominant if 〈λ, ei − ei+1〉 ≥ 0 for all i ∈ {1, . . . , n − 1}. If λ, μ ∈ X(T ) ⊗Z Q,

we write λ ≤ μ if μ − λ ∈
∑n−1

i=1 Q≥0(ei − ei+1). If λ =
∑n−1

i=1 ni(ei − ei+1) for
some ni ∈ Q, its support is by definition the set of simple roots ei − ei+1 such that
ni �= 0. Finally, we denote by W ∼= Sn the Weyl group of (G, T ), which acts on the

left on X(T ) by w(λ)(t)
def
= λ(w−1tw) for λ ∈ X(T ) and t ∈ T .

If P is a standard parabolic subgroup of G (that is, containing B), we denote
by S(P ) ⊆ S the subset of simple roots of MP , R(P )+ ⊆ R+ the positive roots of
MP (generated by S(P )) and W (P ) ⊆ W its Weyl group.

2.1. Weak local-global compatibility conjecture

We state our first local-global compatibility conjecture (see Conjecture 2.9 and
its generalization Conjecture 2.19) which relate Hecke-isotypic components with
their action of GLn(K) to representations of Gal(Qp/Qp) without taking care of
their irreducible constituents.

2.1.1. The functors D∨
ξH

and VH . We review the simple generalization of

Colmez’s functor defined in [Bre15].
Throughout this chapter, we fix a connected reductive algebraic group H which

is split over K with a connected center, BH ⊆ H a Borel subgroup and TH ⊆ BH

15
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16 2. LOCAL-GLOBAL COMPATIBILITY CONJECTURES

a split maximal torus in BH . We let
(
X(TH), RH , X∨(TH), R∨

H

)
be the associated

root datum, R+
H ⊆ X(TH) the (positive) roots of BH , SH ⊆ R+

H the simple roots
and S∨

H the associated simple coroots.
We need to recall some notation of [Bre15] (to which we refer the reader for

any further details). For α ∈ R+
H , we let Nα ⊆ NH be the associated (commutative)

root subgroup, where NH
def
= NBH

is the unipotent radical of BH . For α ∈ SH , we

fix an isomorphism ια : Nα
∼→ Ga of algebraic groups over K such that

(2.2) ια(tnαt
−1) = α(t)ια(nα) ∀ t ∈ TH , ∀ nα ∈ Nα.

We fix an open compact subgroup N0 ⊆ NH(K) such that
∏

α∈R+
H
Nα

∼→ NH

induces a bijection
∏

α∈R+
H
Nα(K) ∩ N0

∼→ N0 for any order on the α ∈ R+
H and

such that ια induces isomorphisms for α ∈ SH :

Nα(K) ∩N0
∼−→ OK ⊆ K = Ga(K).

We denote by � the composite NH �
∏

α∈SH
Nα

∑
α∈SH

ια
−→ Ga (a morphism of

algebraic groups over K). The morphism � thus induces a group morphism still
denoted � : N0 → OK and we define

(2.3) N1
def
= Ker

(
N0

�→ OK

TrK/Qp−→ Qp

)
which is a normal open compact subgroup of N0. We fix an isomorphism of Zp-

modules ψ : TrK/Qp
(OK)

∼→ Zp. When NH �= 0, i.e. when H �= TH , this fixes an
isomorphism

(2.4) N0/N1

TrK/Qp ◦�
∼−→ TrK/Qp

(OK)
ψ
∼−→ Zp.

We fix fundamental coweights (λα∨)α∈SH
(which exist since H has a connected

center) and set

(2.5) ξH
def
=
∑

α∨∈S∨
H

λα∨ ∈ HomGr(Gm, TH) = X∨(TH).

Note that ξH(x)N1ξH(x−1) ⊆ N1 for any x ∈ Zp\{0}. Let F�X�[F ] be the non-
commutative polynomial ring in F over the ring of formal power series F�X� such
that FS(X) = S(Xp)F .

For π a smooth representation of BH(K) over F, we endow the invariant sub-
space πN1 ⊆ π with a structure of an F�X�[F ]-module as follows:

(i) F�X� ∼= F�Zp� acts via F�N0/N1�
(2.4)∼= F�Zp� (here X

def
= [1]− 1);

(ii) F acts via the “Hecke” action

F (v)
def
=

∑
n1∈N1/ξH(p)N1ξH(p−1)

n1ξH(p)v ∈ πN1 for v ∈ πN1 .

Note that πN1 is a torsion F�X�-module (but not a torsion F[F ]-module in general).
We also endow πN1 with an action of Z×

p by making x ∈ Z×
p act by ξH(x). This

action commutes with F and satisfies ξH(x) ◦ (1 +X) = (1 +X)x ◦ ξH(x).
As in [Bre15], we denote by ΦΓét

F the category of finite-dimensional étale (ϕ,Γ)-

modules over F�X�[X−1] = F((X)) and by Φ̂Γ
ét

F the corresponding category of
(pseudocompact) pro-objects, see [Bre15, §2] for more details. Both ΦΓét

F and
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2.1. WEAK LOCAL-GLOBAL COMPATIBILITY CONJECTURE 17

Φ̂Γ
ét

F are abelian categories. Let M ⊆ πN1 be a finite type F�X�[F ]-submodule
which is Z×

p -stable and assume that M is admissible as an F�X�-module, that is,

M [X]
def
= {m ∈ M : Xm = 0} is finite-dimensional over F. Let M∨ def

= HomF(M,F)
(algebraic F-linear dual) which is also an F�X�-module (but not a torsion F�X�-
module in general). Then by a key result of Colmez M∨[X−1] can be endowed with
the structure of an object of ΦΓét

F ([Col10], see also [Bre15, Lemma 2.6]). More

precisely X acts on f ∈ M∨ by (Xf)(m)
def
= f(Xm) (m ∈ M), x ∈ Z×

p acts by

(xf)(m)
def
= f(x−1m), and the operator ϕ is defined as follows. Take the F-linear

dual of Id⊗F : F�X� ⊗ϕ,F�X� M −→ M , compose with1

(F�X� ⊗ϕ,F�X� M)∨
∼−→ F�X� ⊗ϕ,F�X� M

∨

f �−→
p−1∑
i=0

(1 +X)i ⊗ f
( 1

(1 +X)i
⊗ ·
)

(2.6)

and invert X: the resulting morphism M∨[X−1] → F�X� ⊗ϕ,F�X� M
∨[X−1] turns

out to be an F((X))-linear isomorphism whose inverse is by definition Id⊗ϕ.
When H �= TH we then define

(2.7) D∨
ξH (π)

def
= lim

←−
M

M∨[X−1],

where the projective limit is taken over the finite type F�X�[F ]-submodules M of
πN1 (for the preorder defined by inclusion) which are admissible as F�X�-modules
and invariant under the action of Z×

p . When H = TH , one has to replace M∨[X−1]
by F((X)) ⊗F M∨, we refer the reader to [Bre15, §3]. The functor D∨

ξH
is right

exact contravariant from the category of smooth representations of BH(K) over F

to the category Φ̂Γ
ét

F and, up to isomorphism, only depends on the choice of the

cocharacter ξH . Moreover, if D∨
ξH

(π) turns out to be in ΦΓét
F (and not just Φ̂Γ

ét

F ),

then D∨
ξH

(π) is exactly the maximal étale (ϕ,Γ)-module which occurs as a quotient

of (πN1)∨[X−1], see [Bre15, Rem.5.6(iii)].

Remark 2.1. If H = Gm = TH , then by definition ξH = 1. It follows, for
dimF π = 1, that D∨

ξH
(π) is always the trivial (rank one) (ϕ,Γ)-module (even if π

is a nontrivial character).

Let us now assume that the dual group Ĥ of H also has a connected center, and
let us fix θH ∈ X(TH) such that θH ◦α∨ = IdGm

for all α ∈ SH ([BH15, Prop.2.1.1],
such an element is called a twisting element). In §2.1.4 below, it is possible to avoid
this assumption using C-parameters, but since our main aim is G = GLn in the
rest of the paper, there is no harm in making this assumption.

Consider the smooth character

K× −→ F×, x �−→ ω
(
θH(ξH(x))

)
and denote by δH the restriction of this character to Q×

p ⊆ K×. Seeing ω ◦ θH ◦ ξH
as a character of Gal(Qp/K) via local class field theory for K (as normalized in §1),
and remembering that the restriction from K× to Q×

p corresponds via local class

1The formula for this isomorphism given in the proof of [Bre15, Lemma 2.6] is actually wrong,

the present formula is the correct one. Note that it is also the same as f �→
∑p−1

i=0
1

(1+X)i
⊗f((1+

X)i ⊗ ·).
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18 2. LOCAL-GLOBAL COMPATIBILITY CONJECTURES

field theory to the composition with the transfer Gal(Qp/Qp)
ab → Gal(Qp/K)ab,

we see that

δH ∼= ind
⊗Qp

K (ω ◦ θH ◦ ξH),

where ind
⊗Qp

K is the tensor induction from Gal(Qp/K) to Gal(Qp/Qp) (see the end
of §2.1.2 below).

Denote by RepF the abelian category of continuous linear representations of
Gal(Qp/Qp) on finite-dimensional F-vector spaces (equipped with the discrete topol-
ogy) and IndRepF the corresponding category of ind-objects, i.e. the category of
filtered direct limits of objects of RepF. Recall that there is a covariant equivalence

of categories V : ΦΓét
F

∼→ RepF (see [Fon90, Thm.A.3.4.3] where this functor is
denoted VE ) compatible with tensor products and duals on both sides. We denote
by V∨ the dual of V (i.e. the dual Galois representation). When H �= TH , we
then define the covariant functor VH from the category of smooth representations
of BH(K) over F to the category IndRepF by

(2.8) VH(π)
def
= lim

−→
M

(
V∨(M∨[X−1])

)
⊗ δH ,

where the inductive limit is taken over the finite type F�X�[F ]-submodules of πN1

which are admissible as F�X�-modules and preserved by Z×
p . Likewise, when H =

TH , with F((X))⊗F M
∨ instead of M∨[X−1] (note that δH is then 1).

Lemma 2.2. The functor VH is left exact.

Proof. We give the proof for H �= TH , leaving the case H = TH to the reader.

Let 0 → π′ → π
s→ π′′ → 0 be an exact sequence of smooth BH(K)-representa-

tions over F, which gives a short exact sequence 0 → π′N1 → πN1
s→ π′′N1 . If

M is a finite type F�X�[F ]-submodule of πN1 which is admissible as an F�X�-

module and stable under the action of Z×
p , then so are M ∩π′N1 and s(M) (see e.g.

[Bre15, Lemma 2.1(i)]). The functor M → V∨(M∨[X−1]) being covariant exact
(since both M �→ M∨[X−1] and V∨ are contravariant exact), each such M ⊆ πN1

gives rise to a short exact sequence in RepF:

0 → V∨((M ∩ π′N1)∨[X−1]
)
→ V∨(M∨[X−1]

)
→ V∨(s(M)∨[X−1]

)
→ 0.

Twisting by δH and taking the inductive limit over such M , we obtain a short exact
sequence 0 → VH(π′) → VH(π) → lim

−→
M

V∨(s(M)∨[X−1]
)
⊗δH → 0 in IndRepF. But

we have an injection

lim
−→
M

V∨(s(M)∨[X−1]
)
⊗ δH ↪→ VH(π′′)

in IndRepF since all transitions maps in the inductive limits are injective, therefore
we end up with an exact sequence 0 → VH(π′) → VH(π) → VH(π′′). �

Example 2.3. For H = G×Z K = GLn/K (so H ∼= Ĥ), we take in the sequel
(writing just G as a subscript instead of G×Z K)

ξG(x)
def
= diag(xn−1, . . . , x, 1) and θG

(
diag(x1, . . . , xn)

)
= xn−1

1 xn−2
2 · · ·xn−1,

so that δG = ind
⊗Qp

K (ω(n−1)2+(n−2)2+···+4+1). (In fact, since the tensor induction of
a character is given by composition with the transfer map [Col89], by local class

field theory we see that δG = ω[K:Qp]((n−1)2+(n−2)2+···+4+1).)
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2.1. WEAK LOCAL-GLOBAL COMPATIBILITY CONJECTURE 19

Remark 2.4.

(i) The covariant functor VH depends on the choices of ξH and δH (though we
don’t include it in the notation). The reader may wonder why we need to assume
the existence of θH and normalize VH using the strange twist δH above. This
comes from the local-global compatibility: it turns out that this normalization is
essentially what is going on in spaces of mod p automorphic forms (see [BH15, §4],
[Bre15, Cor.9.8], Example 2.6 and §§2.1.3, 2.5 below). This normalization is also
natural if one uses C-parameters, see §2.1.4.

(ii) For H as in Example 2.3, π a smooth representation of B(K) over F and
χ : K× → F× a smooth character, one checks that VG(π ⊗ (χ ◦ det)) ∼= VG(π)⊗ δ,
where δ is the continuous character of Gal(Qp/Qp) associated via local class field

theory to x �→ χ
(
det(ξG(x))

)
for x ∈ Q×

p . An explicit computation gives δ =

(χ|Q×
p
)

n(n−1)
2 ∼= ind

⊗Qp

K (χ
n(n−1)

2 ).

When restricted to the abelian category of finite length admissible smooth
representations of H(K) over F with all irreducible constituents isomorphic to irre-
ducible constituents of principal series, it is proven in [Bre15, §9] that the functors
D∨

ξH
and VH are exact. It seems reasonable to us, and also consistent with the

conjectural formalism developed in the sequel (see e.g. Remark 2.82(iii)), to hope
that there exists a suitable abelian category of admissible smooth representations
of H(K) over F containing the previous abelian category and the representations
“coming from the global theory” on which the functors D∨

ξH
and VH are still exact.

See for instance the category C in §3.1.2 when H = GL2/K and K is unramified.
We now recall the behaviour of the functor VH with respect to parabolic in-

duction.
We assume for simplicity H = G×Z K = GLn/K and let ξG, θG as in Example

2.3. We let P be a standard parabolic subgroup of G×ZK and writeMP =
∏d

i=1 Mi

with Mi
∼= GLni/K . We define VMP

as in (2.8) using ξMP

def
= ξG and θMP

def
= θG

(to define D∨
ξMP

and δMP
). We write ξMP

= ⊕d
i=1ξMP ,i in X∨(T ) = ⊕d

i=1X
∨(Ti)

and θMP
= ⊕d

i=1θMP ,i in X(T ) = ⊕d
i=1X(Ti), where Ti is the diagonal torus in

Mi, and let VMP ,i
def
= VGLni

but defined with ξMP ,i and θMP ,i. Finally we define

VMi

def
= VGLni

with ξMi
and θMi

as in Example 2.3 replacing n by ni, and we recall
that ξMi

, θMi
and δMi

are trivial characters if ni = 1.
If πP is a smooth representation of MP (K) over F, that we see as a repre-

sentation of P−(K) via P−(K) � MP (K), we define the usual smooth parabolic
induction

Ind
G(K)
P−(K) πP

def
= {f : G(K) → πP loc. const., f(px)=p(f(x)), p ∈ P−(K), x ∈ πP },

with G(K) acting (smoothly) on the left by (gf)(g′)
def
= f(g′g).

Lemma 2.5. Let πP be a smooth representation of MP (K) over F of the form
πP = π1 ⊗ · · · ⊗ πd, where the πi are smooth representations of Mi(K) over F.
Assume that the πi have central characters Z(πi) : K

× → F× and that VMP
(πP ) ∼=⊗d

i=1 VMP ,i(πi). Then we have an isomorphism in IndRepF (using implicitly local

Licensed to Chinese Academy of Sciences.  Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



20 2. LOCAL-GLOBAL COMPATIBILITY CONJECTURES

class field theory for Gal(Qp/Qp)):

VG

(
Ind

G(K)
P−(K) πP

)
⊗ δ−1

G
∼=

d⊗
i=1

(
VMi

(πi)⊗
(
Z(πi)

n−
∑i

j=1 nj
)
|Q×

p
δ−1
Mi

)
.

Proof. By [Bre15, Thm.6.1] we have VG

(
Ind

G(K)
P−(K) πP

) ∼= VMP
(πP ) so that

from the assumption (all isomorphisms are in IndRepF):

(2.9) VG

(
Ind

G(K)
P−(K) πP

) ∼= d⊗
i=1

VMP ,i(πi).

An easy computation yields in Mi(K) for x ∈ K×:

ξMP ,i(x) = diag(xn−
∑i

j=1 nj , . . . , xn−
∑i

j=1 nj︸ ︷︷ ︸
ni

)ξMi
(x)

which implies by [Bre15, Rem.4.3] that

(2.10) VMP ,i(πi)⊗ δ−1
MP ,i

∼= VMi
(πi)⊗

(
Z(πi)

n−
∑i

j=1 nj
)
|Q×

p
δ−1
Mi

,

where δMP ,i
def
= ind

⊗Qp

K (ω◦θMP ,i◦ξMP ,i) (and recall VMi
(πi) = 1 if ni = dimF πi = 1,

see Remark 2.1). Since δG =
∏d

i=1 δMP ,i, twisting (2.9) by δ−1
G gives the result by

(2.10). �

Example 2.6. An enlightening and important example is the case of principal

series Ind
G(K)
B−(K)(χ1 ⊗ · · · ⊗ χn), where the χi : K

× → F× are smooth characters.

The assumptions of Lemma 2.5 are then trivially satisfied and thus we have

VG

(
Ind

G(K)
B−(K)(χ1 ⊗ · · · ⊗ χn)

)
⊗ δ−1

G
∼= (χn−1

1 χn−2
2 · · ·χn−1)|Q×

p
.

In particular we deduce (using Example 2.3 for δG) that

VG

(
Ind

G(K)
B−(K)(χ1ω

−(n−1) ⊗ χ2ω
−(n−2) ⊗ · · · ⊗ χn)

) ∼= (χn−1
1 χn−2

2 · · ·χn−1)|Q×
p

∼= ind
⊗Qp

K (χn−1
1 χn−2

2 · · ·χn−1),

where χn−1
1 χn−2

2 · · ·χn−1 on the last line is seen as a character of Gal(Qp/K) via
local class field theory for K.

Remark 2.7. Using [Bre15, Prop.5.5] the assumptions of

Lemma 2.5 are satisfied when all finite type F�X�[F ]-submodules of πN1
i for i ∈

{1, . . . , d} are automatically admissible as F�X�-modules. This happens for instance
if the πi are principal series or (when K = Qp) are finite length representations of
GL2(Qp) with a central character, but is not known otherwise. Contrary to what
is stated in [Bre15, Rem.5.6(ii)], we currently do not have a proof of an isomor-

phism VMP
(πP ) ∼=

⊗d
i=1 VMP ,i(πi) for any smooth representations πi, though we

expect that it will indeed be satisfied for representations “coming from” the global
theory. Note that, in [Záb18b, Prop.3.2], Zábrádi does prove a compatibility of
his functor with the tensor product which looks close to the isomorphism above.
However, loc.cit. deals with an external tensor product, whereas we have an inter-
nal tensor product. In particular he has two operators F , one for each factor in
the external tensor product (whereas we consider the resulting diagonal operator),
and his argument doesn’t extend.
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2.1.2. Global setting. We recall our global setting (see e.g. [EGH13, §7.1] or
[Tho12, §6] or [BH15, §4.1] or many other references) and define the Gal(Qp/Qp)-

representation L
⊗
(ρ) for ρ : Gal(Qp/K) −→ G(F).

We let F+ be a totally real finite extension ofQ with ring of integersOF+ , F/F+

a totally imaginary quadratic extension with ring of integers OF (do not confuse F
with the operator F of §2.1.1!) and c the nontrivial element of Gal(F/F+). If v
(resp. ṽ) is a finite place of F+ (resp. F ), we let F+

v (resp. Fṽ) be the completion
of F+ (resp. F ) at v (resp. ṽ) and OF+

v
(resp. OFṽ

) the ring of integers of F+
v

(resp. Fṽ). If v splits in F and ṽ, ṽc are the two places of F above v, we have

OF+
v

= OFṽ

c∼= OFṽc , where the last isomorphism is induced by c. We let A∞
F+

(resp. A∞,v
F+ ) denote the finite adèles of F+ (resp. the finite adèles of F+ outside

v). Finally we always assume that all places of F+ above p split in F .
We let n ∈ Z>1, N a positive integer prime to p and H a connected reductive

algebraic group over OF+ [1/N ] satisfying the following conditions:

(i) there is an isomorphism ι : H ×OF+ [1/N ] OF [1/N ]
∼−→ G×Z OF [1/N ];

(ii) H ×OF+ [1/N ] F
+ is an outer form of G×Z F+ = GLn/F+ ;

(iii) H ×OF+ [1/N ] F
+ is isomorphic to Un(R) at all infinite places of F+.

One can prove that such groups exist (cf. e.g. [EGH13, §7.1.1]). Condition (i)
implies that if v is any finite place of F+ that splits in F and if ṽ|v in F the

isomorphism ι induces ιṽ : H(F+
v )

∼→ GLn(Fṽ) = G(Fṽ) which restricts to an

isomorphism still denoted by ιṽ : H(OF+
v
)

∼→ GLn(OFṽ
) if v doesn’t divide N .

Condition (ii) implies that c ◦ ιṽ : H(F+
v )

∼→ GLn(Fṽc) (resp. c ◦ ιṽ : H(OF+
v
)

∼→
GLn(OFṽc ) if v doesn’t divide N) is conjugate in GLn(Fṽc) (resp. in GLn(OFṽc )) to
τ−1 ◦ ιṽc , where τ is the transpose in GLn(Fṽc) (resp. in GLn(OFṽc )).

If U is any compact open subgroup of H(A∞
F+) then

S(U,F)
def
= {f : H(F+)\H(A∞

F+)/U → F}
is a finite-dimensional F-vector space since H(F+)\H(A∞

F+)/U is a finite set. Fix
v|p in F+ and a compact open subgroup Uv of H(A∞,v

F+ ), we define

S(Uv,F)
def
= lim

−→
Uv

S(UvUv,F),

where Uv runs among compact open subgroups of H(OF+
v
). We endow S(Uv,F)

with a linear left action of H(F+
v ) by (hvf)(h)

def
= f(hhv) (hv ∈ H(F+

v ), h ∈
H(A∞

F+)). Thus, for ṽ dividing v in F , the isomorphism ιṽ gives an admissible
smooth action of G(F+

v ) = GLn(Fṽ) on S(Uv,F). By what is above, the action of
G(F+

v ) induced by ιṽ is the inverse transpose of the one induced by ιṽc .
If U is a compact open subgroup of H(A∞

F+), following [EGH13, §7.1.2] we
say that U is unramified at a finite place v of F+ which splits in F and doesn’t
divide N if we have U = Uv ×H(OF+

v
), where Uv is a compact open subgroup of

H(A∞,v
F+ ). Note that a compact open subgroup of H(A∞

F+) is unramified at all but
a finite number of finite places of F+ which split in F . If U is a compact open
subgroup of H(A∞

F+) and Σ a finite set of finite places of F+ containing the set of
places of F+ that split in F and divide pN and the set of places of F+ that split

in F at which U is not unramified, we denote by T Σ def
= OE [T

(j)
w̃ ] the commutative

polynomial OE-algebra generated by formal variables T
(j)
w̃ for j ∈ {1, . . . , n} and w̃
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a place of F lying above a finite place w of F+ that splits in F and doesn’t belong

to Σ. The algebra T Σ acts on S(U,F) by making T
(j)
w̃ act by the double coset

ι−1
w̃

[
GLn(OFw̃

)

(
1n−j

�w̃1j

)
GLn(OFw̃

)

]
,

where �w̃ is a uniformizer in OFw̃
. Explicitly, if we write

GLn(OFw̃
)
(

1n−j

�w̃1j

)
GLn(OFw̃

) =
∐
i

gi

(
1n−j

�w̃1j

)
GLn(OFw̃

),

we have for f ∈ S(U,F) and g ∈ H(A∞
F+):

(T
(j)
w̃ f)(g)

def
=
∑
i

f

(
gι−1

w̃

(
gi

(
1n−j

�w̃1j

)))
.

One checks that T
(j)
w̃c = (T

(n)
w̃ )−1T

(n−j)
w̃ on S(U,F). We let T Σ(U,F) be the im-

age of T Σ in EndOE
(S(U,F)) (if U ′ ⊆ U , we thus have S(U,F) ⊆ S(U ′,F) and

T Σ(U ′,F) � T Σ(U,F)). If S is any T Σ-module and I any ideal of T Σ, we set in

the sequel S[I]
def
= {x ∈ S : Ix = 0}.

We now fix v|p and a compact open subgroup Uv of H(A∞,v
F+ ). If Σ is a finite

set of finite places of F+ containing the set of places of F+ that split in F and
divide pN and the set of places of F+ prime to p that split in F and at which UvUv

(for any Uv) is not unramified, the algebra T Σ acts on S(UvUv,F) (via its quotient
T Σ(UvUv,F)) for any Uv and thus also on S(Uv,F). This action commutes with
that of H(F+

v ). If mΣ is a maximal ideal of T Σ with residue field F, we can define
the localized subspaces S(UvUv,F)mΣ and their inductive limit

lim
−→
Uv

S(UvUv,F)mΣ = S(Uv,F)mΣ ,

which inherits an induced (admissible smooth) action of H(F+
v ) together with a

commuting action of lim
←−
Uv

T Σ(UvUv,F)mΣ . We have

S(UvUv,F)[m
Σ]⊆ S(UvUv,F)mΣ ⊆ S(UvUv,F)

and thus inclusions of admissible smooth H(F+
v )-representations over F:

S(Uv,F)[mΣ] ⊆ S(Uv,F)mΣ ⊆ S(Uv,F).

Moreover, as representations of H(F+
v ), S(Uv,F)mΣ is a direct summand of S(Uv,F)

(= the maximal vector subspace on which the elements of mΣ act nilpotently).
We now go back to the notation of §2.1.1. For λ ∈ X(T ) a dominant weight

with respect to B, we consider the following algebraic representation of G×ZF over
F:

(2.11) L(λ)
def
=
(
indGB− λ

)
/Z

⊗Z F =
(
indG×ZF

B−×ZF
λ
)
/F
,

where ind means the algebraic induction functor of [Jan03, §I.3.3] and the last
equality follows from [Jan03, II.8.8(1)]. For α = ei − ei+1 ∈ S, we set

(2.12) λα
def
= e1 + · · ·+ ei ∈ X(T ),

so that the λα for α ∈ S are fundamental weights of G (see e.g. [BH15, §2.1]).
Let ρ : Gal(Qp/K) −→ G(F) be a continuous homomorphism, viewing L(λα) as a
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continuous homomorphism

G(F) −→ Aut
(
L(λα)(F)

)
(where L(λα)(F) is the underlying F-vector space of the algebraic representation
L(λα)), we define the Galois representations for α ∈ S:

L(λα)(ρ) : Gal(Qp/K)
ρ−→ G(F)

L(λα)−→ Aut
(
L(λα)(F)

)
.

Recall that L(λα)(ρ) =
∧i

Fρ if α = ei − ei+1 ([BH15, Ex.2.1.3]). We let⊗
α∈S

(
L(λα)(ρ)

) ∼= n−1⊗
i=1

∧i

F
ρ

be the tensor product of the representations L(λα)(ρ) (over F) and define the fol-
lowing finite-dimensional continuous representation of Gal(Qp/Qp) over F:

(2.13) L
⊗
(ρ)

def
= ind

⊗Qp

K

(⊗
α∈S

(
L(λα)(ρ)

))
,

where ind
⊗Qp

K means the tensor induction from Gal(Qp/K) to Gal(Qp/Qp)
([Col89], [CR81, §13], see also the end of the proof of Lemma 2.77). Note that
there are Gal(Qp/Qp)-equivariant isomorphisms

(2.14) L
⊗
(ρ∨) ∼= L

⊗
(ρ)∨ ∼= L

⊗
(ρ)⊗ ind

⊗Qp

K

(
det(ρ)−(n−1))

(recall ind
⊗Qp

K

(
det(ρ)

−(n−1))
is still one dimensional).

Example 2.8. For n = 2, we thus just have L
⊗
(ρ) = ind

⊗Qp

K (ρ).

2.1.3. Weak local-global compatibility conjecture. We state our weak
local-global compatibility conjecture (Conjecture 2.9).

Let r : Gal(F/F ) → GLn(F) be a continuous representation and r∨ its dual.
We assume:

(i) rc ∼= r∨ ⊗ ω1−n (where rc(g)
def
= r(cgc) for g ∈ Gal(F/F ));

(ii) r is an absolutely irreducible representation of Gal(F/F ).

Fix v|p in F+, V v ⊆ Uv ⊆ H(A∞,v
F+ ) compact open subgroups and Σ a finite set of

finite places of F+ containing

(a) the set of places of F+ that split in F and divide pN ;
(b) the set of places of F+ that split in F at which V v is not unramified;
(c) the set of places of F+ that split in F at which r is ramified.

We associate to r and Σ the maximal ideal mΣ in T Σ with residue field F generated
by �E and all elements(

(−1)j Norm(w̃)j(j−1)/2T
(j)
w̃ − a

(j)
w̃

)
j,w̃

,

where j ∈ {1, . . . , n}, w̃ is a place of F lying above a finite place w of F+ that splits

in F and doesn’t belong to Σ, Xn+a
(1)
w̃ Xn−1+ · · ·+a

(n−1)
w̃ X+a

(n)
w̃ is the character-

istic polynomial of r(Frobw̃) (an element of F[X], Frobw̃ is a geometric Frobenius

at w̃) and where a
(j)
w̃ is any element in OE lifting a

(j)
w̃ . Note that S(V v,F)[mΣ] �= 0

in fact implies assumption (i) above on r (though strictly speaking we need (i) to
define mΣ in T Σ). Note also that if U is any subgroup of H(A∞

F+) containing V v

as a normal subgroup, then U naturally acts on S(V v,F) and S(V v,F)[mΣ].
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For ṽ|v in F , we denote by VG,ṽ the functor defined in (2.8) applied to smooth
representations of H(F+

v ) over F, where we identify H(F+
v ) with GLn(Fṽ) = G(Fṽ)

via ιṽ. For any finite place w̃ of F , we denote by rw̃ the restriction of r to a
decomposition subgroup at w̃.

Conjecture 2.9. Let r : Gal(F/F ) → GLn(F) be a continuous representation
that satisfies conditions (i) and (ii) above and fix a place v of F+ which divides
p. Assume that there exist compact open subgroups V v ⊆ Uv ⊆ H(A∞,v

F+ ) with V v

normal in Uv, a finite-dimensional representation σv of Uv/V v over F and a finite
set Σ of finite places of F+ as above such that HomUv (σv, S(V v,F)[mΣ]) �= 0. Let
ṽ|v in F . Then there is an integer d ∈ Z>0 depending only on v, Uv, V v, σv and
r such that there is an isomorphism of representations of Gal(Qp/Qp) on F:

(2.15) VG,ṽ

(
HomUv (σv, S(V v,F)[mΣ])⊗ (ω−(n−1) ◦ det)

) ∼= L
⊗
(rṽ)

⊕d.

Remark 2.10.

(i) In the special case σv = 1, Conjecture 2.9 boils down to

VG,ṽ(S(U
v,F)[mΣ]⊗ (ω−(n−1) ◦ det)) ∼= L

⊗
(rṽ)

⊕d.

(ii) Conjecture 2.9 implies that the G(Fṽ)-representation HomUv (σv,

S(V v,F)[mΣ]) determines the Gal(Qp/Qp)-representation L
⊗
(rṽ). Note that this

doesn’t imply in general that HomUv (σv, S(V v,F)[mΣ]) determines the Gal(Fṽ/Fṽ)-
representation rṽ itself (though this is also expected, see [PQ22] and the references
therein).

(iii) See §§3.2, 3.4 below for nontrivial evidence on Conjecture 2.9 when K is
unramified and n = 2.

We now check that, at least when p is odd, F/F+ is unramified at finite places
and H ×OF+ [1/N ] F

+ is quasi-split at finite places, Conjecture 2.9 holds for ṽ if and

only if it holds for ṽc (these extra assumptions come from the use of [Tho12, §6]
in the next lemma).

Lemma 2.11. Assume p > 2, F/F+ unramified at finite places and
H ×OF+ [1/N ] F

+ quasi-split at finite places of F+. Let ṽ|v in F . Then the action

of the center (F+
v )× ⊆ GLn(F

+
v ) on S(V v,F)[mΣ] via ιṽ is given by det(rṽ)ω

n(n−1)
2

(via local class field theory for F+
v ).

Proof. We can assume S(V v,F)[mΣ] �= 0. The map S(V vUv,OE) −→
S(V vUv,F) being surjective for Uv small enough (see e.g. [BH15, Lemma 4.4.1]
or [EGH13, §7.1.2]), we have a surjection of smooth H(F+

v )-representations:

(2.16) S(V v,OE)mΣ � S(V v,F)mΣ

(where S(V vUv,OE), S(V
v,OE)mΣ are defined as S(V vUv,F), S(V v,F)mΣ replac-

ing F by OE). By classical local-global compatibility applied to
(
lim
−→
U

S(U,OE)
)
⊗OE

E, see e.g. [EGH13, Thm.7.2.1], we easily deduce with (2.16) that if (F+
v )× acts

via ιṽ on the whole S(V v,F)[mΣ] (inside S(V v,F)mΣ) by a single character, then

this character must be det(rṽ)ω
n(n−1)

2 .
Let us prove that (F+

v )× indeed acts by a character. The functor associating to
any local artinian OE-algebra A with residue field F the set of isomorphism classes
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2.1. WEAK LOCAL-GLOBAL COMPATIBILITY CONJECTURE 25

of deformations rA of r to A such that rcA
∼= r∨A ⊗ ε1−n is pro-representable by a

local complete noetherian OE-algebra Rr,Σ of residue field F. When p > 2, F/F+

is unramified at finite places and H ×OF+ [1/N ] F
+ is quasi-split at finite places of

F+, it follows from [Tho12, Prop.6.7] that there is a natural such deformation
with values in T Σ(V vUv,OE)mΣ for any Uv (where T Σ(V vUv,OE)mΣ is defined as
T Σ(V vUv,F)mΣ in §2.1.2 replacing F by OE), and hence by universality a continu-
ous morphism of local OE-algebras:

(2.17) Rr,Σ −→ T Σ(V vUv,OE)mΣ .

Likewise, the functor associating to any A as above the set of isomorphism classes of
Gal(Fṽ/Fṽ)

ab-deformations of det(rṽ) over A is pro-representable by the Iwasawa
algebra OE�Gal(Fṽ/Fṽ)

ab�, and considering detA(rA|Gal(Fṽ/Fṽ)
) for A = Rr,Σ pro-

vides by the universal property again a continuous morphism of local OE-algebras:

(2.18) OE�Gal(Fṽ/Fṽ)
ab� −→ Rr,Σ.

Since T Σ(V vUv,OE)mΣ acts by a character on S(V vUv,F)[mΣ] for any Uv, so is
the case of Rr,Σ on S(V v,F)[mΣ] by (2.17). Using (2.16), we see that it is enough
to prove that the induced morphism

OE�Gal(Fṽ/Fṽ)
ab�

(2.18)−→ Rr,Σ
(2.17)−→ lim

←−
Uv

T Σ(V vUv,OE)mΣ

gives an action of Gal(Fṽ/Fṽ)
ab on S(V v,OE)mΣ which, when restricted to F×

ṽ ↪→
Gal(Fṽ/Fṽ)

ab (via the local reciprocity map), coincides with the action of F×
ṽ on

S(V v,OE)mΣ as center of H(F+
v )

ιṽ∼= G(Fṽ). We can work in S(V v,OE)mΣ⊗OE
E, in

which case this follows from local-global compatibility (as in [EGH13, Thm.7.2.1])
and from the fact that, by construction of the map (2.17) (see [Tho12, §6]) and by
(2.18), Gal(Fṽ/Fṽ)

ab acts on πV v ⊆ S(V v,OE)mΣ ⊗OE
E by multiplication by the

character det(rπ)|Gal(Fṽ/Fṽ)
, where π is an irreducible H(A∞

F+)-subrepresentation

of
(
lim
−→
U

S(U,OE)
)
⊗OE

E such that πV v

occurs in S(V v,OE)mΣ ⊗OE
E and where

rπ is its associated (irreducible) p-adic representation of Gal(F/F ) ([EGH13,
Thm.7.2.1] again). �

Let π be a smooth representation of G(K) = GLn(K) over F with central
character Z(π) and denote by π� the smooth representation of G(K) with the same
underlying vector space as π but where g ∈ G(K) acts by τ (g)−1.

Lemma 2.12. There is a Gal(Qp/Qp)-equivariant isomorphism

VG(π
�) ∼= VG(π)⊗ Z(π)−(n−1)|Q×

p
,

where Z(π)|Q×
p
is seen as a character of Gal(Qp/Qp) via local class field theory.

Proof. We use the notation of §2.1.1. Let w0 ∈ W be the element of maximal
length, the isomorphism πN1

∼→ πw0N1w0 , v �→ w0v shows that one can compute
VG(π) using w0N1w0 instead of N1 and conjugating everything by w0 (e.g. x ∈ Z×

p

acts by w0ξG(x)w0, etc.). Now, it is easy to check that the F-linear isomorphism

(π�)N1
∼→ πw0N1w0 , v �→ w0v is compatible with the F�X�[F ]-module structure on

both sides but where we twist the F�X�[F ]-action as follows on the right-hand side:
X acts by (1+X)−1 − 1 and F acts by p−(n−1)F , p−(n−1) being here in the center
of G(K). Likewise, it is compatible with the action of Z×

p but where x ∈ Z×
p acts

Licensed to Chinese Academy of Sciences.  Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.
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by x−(n−1)ξG(x) on the right-hand side (with x−(n−1) in the center of G(K)). All
this easily implies the lemma. �

Lemma 2.13. Assume p > 2, F/F+ unramified at finite places and
H ×OF+ [1/N ] F

+ quasi-split at finite places of F+. We have a Gal(Qp/Qp)-equi-
variant isomorphism

VG,ṽc

(
HomUv (σv, S(V v,F)[mΣ])

)
∼= VG,ṽ

(
HomUv (σv, S(V v,F)[mΣ])

)
⊗ ind

⊗Qp

Fṽ

(
det(rṽ)

−(n−1)
ω

−n(n−1)2

2

)
.

Proof. This follows from Lemma 2.12 applied to π = HomUv (σv,
S(V v,F)[mΣ]) together with Lemma 2.11, recalling that Z(π)|Q×

p
, seen as a charac-

ter of Gal(Qp/Qp) via local class field theory, is ind
⊗Qp

Fṽ
(Z(π)) (where Z(π) is here

seen as a character of Gal(Fṽ/Fṽ)). �

Proposition 2.14. Assume p > 2, F/F+ unramified at finite places and
H ×OF+ [1/N ] F

+ quasi-split at finite places of F+. Conjecture 2.9 holds for ṽ if
and only if it holds for ṽc.

Proof. This follows from Lemma 2.13 together with rṽc ∼= r∨ṽ ⊗ ω1−n, (2.14)
and an easy computation. �

2.1.4. A reformulation using C-groups. We show that one can give a
more general and more natural formulation of Conjecture 2.9 (in the special case
of Remark 2.10(i)) using C-parameters (Conjecture 2.19).

We start by some reminders about L-groups and C-groups.

Let k be a field and ksep a separable closure of k. We note Γk
def
= Gal(ksep/k).

LetH be a connected reductive group defined over k, let Ĥ be its dual group, LH its
L-group and CH its C-group. We refer to [Bor79, §2], [BG14, §§2,5], [GHS18, §9]
and [Zhu, §1.1] for more details concerning these L-groups and C-groups. Note
that these two groups can be defined over Z. Their construction depends on the

choice of a pinning (BH , TH , {xα}α∈SH
) of Hksep . The dual group Ĥ has a natural

pinned structure (BĤ , TĤ , {xα̂}α∈SH
) with BĤ a Borel subgroup of Ĥ, TĤ ⊆ BĤ

a maximal split torus and {xα̂}α∈SH
a pinning of (BĤ , TĤ) (see [Con14, §§5,6] for

the fact that everything can be defined over Z) on which the group Γk is acting.

Let 1 → Gm → H̃ → H → 1 be the central Gm-extension of H (over k) whose
existence is proved in [BG14, Prop.5.3.1(a)]. The inverse images TH̃ and BH̃ of TH

and BH in H̃ksep are respectively a maximal torus and a Borel subgroup of H̃ksep .
Moreover, since the above extension is central, there is a unique pinning {x̃α}α∈SH

of (BH̃ , TH̃) inducing {xα}α∈SH
on (B, T ) via the map H̃ksep → Hksep . This gives

rise to a pinned dual data (
̂̃
H,B ̂̃

B
, T ̂̃

H
, {x̃α̂}α∈SH

) with an action of Γk (trivial on

some open subgroup) and a Γk-equivariant injection (Ĥ, BĤ , TĤ) ↪→ (
̂̃
H,B ̂̃

H
, T ̂̃

H
)

such that {xα̂}α∈SH
induces {x̃α̂}α∈SH

.
The L-groups and C-groups are then defined as the group schemes

(2.19) LH
def
= Ĥ � Γk

CH
def
=
̂̃
H � Γk.
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We have the following simple description of
̂̃
H given in [Zhu, §1.1]. Let Ĥad and T ad

Ĥ

be the quotients of Ĥ and TĤ by the center of Ĥ and let δad be the cocharacter of

T ad
Ĥ

⊆ Ĥad defined as the half sum of positive roots of Ĥ with respect to (BĤ , TĤ).

The group Ĥad acts on Ĥ by the adjoint action and, after precomposition with δad,

this defines an action, in the category of Z-group schemes, of Gm on Ĥ . There is

an isomorphism of Z-group schemes
̂̃
H ∼= Ĥ � Gm identifying B ̂̃

H
with BĤ � Gm

and T ̂̃
H

with TĤ �Gm = TĤ ×Gm. We note that, since δad is fixed by the Galois

action, this isomorphism is Galois equivariant. Using this isomorphism, we identify
X(T ̂̃

H
) with X(TĤ)×Z ∼= X∨(TH)×Z. This shows that we have an exact sequence

of Z-group schemes:

1 −→ LH −→ CH
d−−→ Gm −→ 1.

Let A be a topological Zp-algebra and assume from now on that k is either
a number field or a finite extension of Qp, so that we have an A-valued p-adic
cyclotomic character. We recall that a morphism ρ : Γk → LH(A) is called admis-
sible if its composition with the second projection LH(A) → Γk is the identity (see
[Bor79, §3]).

Definition 2.15. An L-parameter (resp. C-parameter) of H over A is an
admissible continuous morphism ρ : Γk −→ LH(A) (resp. ρ : Γk −→ CH(A) such
that d ◦ ρ is the p-adic cyclotomic character). When A is moreover an algebraically
closed field, we say that two L-parameters (resp. C-parameters) of H over A are

equivalent if they are conjugate by an element of Ĥ(A) (resp.
̂̃
H(A)).

Remark 2.16. Assume A is an algebraically closed field. Each element of
̂̃
H(A)

is the product of an element of Ĥ(A) and an element of the center of
̂̃
H(A). This

can be deduced from [BG14, Prop.5.3.3] or [Zhu, (1.2)]. This implies that two
C-parameters of H over A are equivalent if and only if they are conjugate by an

element of Ĥ(A).

For simplicity, we assume from now on that A is moreover an algebraically
closed field. We also assume (not for simplicity) that H has a connected center.

We generalize now the representation L
⊗
(ρ)⊗F Fp (see (2.13) for L

⊗
(ρ)).

Let (λα∨)α∈SH
be a family of fundamental coweights of H such that

(2.20) ξH
def
=
∑

α∈SH

λα∨ ∈ X(TĤ) ∼= X∨(TH)

is fixed under the action of Γk (compare with (2.5) and note that the cocharacters
λα∨ exist since H has a connected center but each of them doesn’t have to be fixed
by Γk). Let (rλα∨ , Vλα∨ ) be the irreducible algebraic representation of Ĥ of highest

weight λα∨ over A and let (r⊗ξH , V ⊗
ξH

) be the irreducible algebraic representation

of ĤSH over A of highest weight (λα∨)α∈SH
= the character of TSH

Ĥ
defined by

(xα)α∈SH
�→
∑

α λα∨(xα). Note that we have an isomorphism of algebraic repre-

sentations of ĤSH :

(2.21) (r⊗ξH , V
⊗
ξH

) ∼=
⊗
α∈SH

(rλα∨ , Vλα∨ ).
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Let γ ∈ Γk and χα,γ be the character of Ĥ corresponding to the cocharacter
γ(λα∨)− λγα∨ ∈ X∨(ZH) ⊆ X∨(TH). Comparing the highest weights, for γ ∈ Γk

there is an isomorphism of algebraic irreducible representations of ĤSH :(
r⊗ξH (γ−1·), V ⊗

ξH

) ∼= (⊗α∈SH
(rλα∨ ⊗ χγ−1α,γ) ◦ cγ , V ⊗

ξH

)
,

where cγ is the automorphism of ĤSH defined by (xα)α∈SH
�→ (xγ−1α)α∈SH

. There-

fore there exists an A-linear automorphism Mγ of V ⊗
ξH

, well defined up to a nonzero

scalar, such that, for (xα)α∈SH
∈ Ĥ(A)SH :

(2.22) Mγ

(
r⊗ξH ((γ−1xα)α∈SH

)
)
M−1

γ =
(
⊗α∈SH

rλα∨ (xγ−1α)
) ∏
α∈SH

χα,γ(xα).

Moreover the subspaces of highest weight of these two representations over V ⊗
ξH

being the same, we can choose Mγ such that it induces the identity on this line.
With this choice, the map γ �→ Mγ is a representation of Γk over V ⊗

ξH
. Since

ξH ∈ X∨(TH)Γk , we have
∏

α∈SH
χα,γ = 1 for all γ ∈ Γk so that, for x ∈ Ĥ(A), we

have from (2.22) and (2.21) (replacing γ−1xα by x for all α ∈ SH):

Mγ

(
⊗α∈SH

rλα∨ (x)
)
M−1

γ =
(
⊗α∈SH

rλα∨ (γx)
)
.

All this proves that there is an algebraic representation (L⊗
ξH

, V ⊗
ξH

) of LH on V ⊗
ξH

defined by

L⊗
ξH

(x, γ)
def
=
(
⊗α∈SH

rλα∨ (x)
)
Mγ

for x ∈ Ĥ(A) and γ ∈ Γk. The isomorphism class of this representation does not
depend on the choice of the λα∨ such that ξH =

∑
λα∨ . Namely any other choice

will twist each rλα∨ by a character whose product over all α is trivial.

If ρ is an L-parameter of H over A we define the Γk-representation L⊗
ξH

(ρ) as

the composition L⊗
ξH

◦ρ. Moreover if two L-parameters ρ1 and ρ2 are equivalent, the

representations L⊗
ξH

(ρ1) and L⊗
ξH

(ρ2) are clearly isomorphic. If ρ is a C-parameter

of H over A, ρ is in particular an L-parameter of H̃ over A by (2.19), and we define

the Γk-representation L⊗,C
ξH

(ρ)
def
= L⊗

ξ
H̃
(ρ), where

(2.23) ξH̃
def
= (ξH , 0) ∈ X(T ̂̃

H
) ∼= X(TĤ)× Z.

We now compare L⊗
ξH

(ρ), L⊗,C
ξH

(ρ) between k and finite extensions k′ of k.

We fix k′ ⊆ ksep a finite extension of k, H ′ a connected reductive group over

k′ and we let H
def
= Resk′/k(H

′). We let Σk′ be the set of embeddings k′ ↪→ ksep

inducing the identity on k and τ0 ∈ Σk′ the inclusion k′ ⊆ ksep. For τ ∈ Σk′ we
choose gτ ∈ Γk such that τ = gτ ◦ τ0, and we have Γk =

∐
τ∈Σk′ gτΓk′ . The dual

group Ĥ ofH is isomorphic to indΓk

Γk′ Ĥ
′, i.e. the group scheme of functions f : Γk →

Ĥ ′ such that f(gh) = h−1f(g) for all g ∈ Γk and h ∈ Γk′ (see [Bor79, §5.1(4)]).
More explicitly, the map f �→ (f(gτ ))τ∈Σk′ induces an isomorphism indΓk

Γk′ Ĥ
′ ∼=

Ĥ ′Σk′
and the action of Γk on Ĥ ′Σk′

is given by

g · (xτ )τ∈Σk′ =
(
(g−1

τ ggg−1◦τ )xg−1◦τ
)
τ∈Σk′

.
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The map (xτ )τ∈Σk′ �→ xτ0 is a Γk′-equivariant map Ĥ → Ĥ ′. It extends to a

morphism of group schemes Ĥ � Γk′ → LH ′ (resp.
̂̃
H � Γk′ → CH ′) inducing the

identity on the Γk′ factor (resp. the Gm and Γk′ factors). If ρ is an L-parameter
(resp. a C-parameter) of H over A, we can define an L-parameter (resp. a C-
parameter) ρ′ of H ′ by restriction of ρ to Γk′ and composition with the above
morphism.

Lemma 2.17. The map ρ �→ ρ′ induces a bijection between equivalence classes
of L-parameters (resp. of C-parameters) of H over A and equivalence classes of
L-parameters (resp. C-parameters) of H ′ over A.

Proof. Amap ρ from Γk to LH(A) of the form (cρ, Id) is admissible if and only

if cρ is a 1-cocycle of Γk in Ĥ(A) and is continuous if and only if cρ is continuous.
Moreover two admissible ρ are equivalent if and only if they are conjugate by an

element of Ĥ(A). Therefore the map associating to ρ the class [cρ] of cρ induces a
bijection between the set of equivalence classes of L-parameters and the set of classes

[c] ∈ H1
cont(Γk, Ĥ(A)). The fact that the above map ρ �→ ρ′ induces an isomorphism

H1
cont(Γk, Ĥ(A))

∼→ H1
cont(Γk′ , Ĥ ′(A)) is a consequence of a nonabelian version of

Shapiro’s Lemma (see for example [Sti10, Prop.8] noting that everything can be
made continuous there or [GHS18, Lemma 9.4.1] in a more restricted context).

Therefore the map associated to a C-parameter ρ the class [cρ] of cρ induces
a bijection between the set of equivalence classes of C-parameters and the set of

classes c ∈ H1
cont(Γk,

̂̃
H(A)) such that d(c) ∈ H1

cont(Γk, A
×) ∼= Homcont

gp (Γk, A
×)

coincides with the p-adic cyclotomic character. Let H̃1
def
= Resk′/k H̃ ′, so that H̃ can

be identified to a quotient of H̃1. It follows from Remark 2.16 that H1(Γk,
̂̃
H1(A)) is

the set of classes of 1-cocycles of Γk with values in
̂̃
H1(A) up to Ĥ(A)-conjugation. It

follows again from Remark 2.16 that the set of equivalence classes of C-parameters

of H over A is in bijection with the subset of H1
cont(Γk,

̂̃
H1(A)) of classes whose

image in H1
cont(Γk, (A

×)[k
′:k]) ∼= Homcont

gp (Γk, (A
×)[k

′:k]) is the image of the p-adic

cyclotomic character via the diagonal embedding A× ↪→ (A×)[k
′:k]. The conclusion

follows from the commutativity of the following diagram

H1
cont

(
Γk,
̂̃
H(A)
)

H1
cont

(
Γk, ( ̂Resk′/k Gm)(A)

)

H1
cont

(
Γk′ ,
̂̃
H ′(A)

)
H1

cont

(
Γk′ , Ĝm(A)

)� �

and from the fact that the classes corresponding to the cyclotomic characters cor-
respond under the right vertical arrow. �

Lemma 2.18. Let ρ be an L-parameter, resp. a C-parameter, of H over A
and ρ′ the L-parameter, resp. C-parameter, of H ′ over A corresponding to ρ by
Lemma 2.17. Let ξH′ ∈ X(T

Ĥ′) be as in (2.20) (with H ′ instead of H) and let

ξH ∈ X(TĤ) ∼= X(T
Ĥ′)

Σk′ be the character (ξH′)τ∈Σk′ (which is fixed by Γk). Then
we have an isomorphism of representations of Γk over A:

L⊗
ξH

(ρ) ∼= ind⊗k
k′
(
L⊗
ξH′ (ρ

′)
)

resp. L⊗,C
ξH

(ρ) ∼= ind⊗k
k′
(
L⊗,C
ξH′ (ρ

′)
)
.
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Proof. Let ρ′ be an L-parameter of H ′ over A. If g ∈ Γk and τ ∈ Σk′ ,
let ggτ = gg◦τh(g, τ ) with h(g, τ ) ∈ Γk′ . For g ∈ Γk, we can check that the

above automorphism Mg of V ⊗
ξH

= (V ⊗
ξH′ )

⊗[k′:k] is defined by Mg(⊗τ∈Σk′ vτ ) =

⊗τ∈Σk′ (Mh(g,g−1◦τ)vg−1◦τ ). Moreover, setting for g ∈ Γk:

ρ(g)
def
=
(
(ρ′(h(g, g−1 ◦ τ ))τ∈Σk′ , g

)
∈ Ĥ ′(A)Σk′ � Γk

it is easy to check that ρ is an admissible morphism and that the equivalence
class of ρ corresponds to ρ′ via Lemma 2.17. The result follows from an explicit
computation together with the definition of the tensor induction ([CR81, §13], see
also the end of the proof of Lemma 2.77 below). The case of C-parameters can be
deduced from the case of L-parameters as in the proof of Lemma 2.17. �

We will later need to “untwist” a C-parameter into an L-parameter. This can
be done when the group H has a twisting element (as we assumed in §2.1.1), i.e.
a character θH ∈ X(TH)Γk ∼= X∨(TĤ)Γk such that 〈θH , α∨〉 = 1 for all α ∈ SH .

By [Zhu, (1.3)], there exists a Galois equivariant isomorphism
̂̃
H ∼= Ĥ ×Gm given

explicitly by

tθH :
Ĥ �Gm

∼= Ĥ ×Gm

(h, t) �→ (hθH(t), t).

This induces an isomorphism of group schemes CH ∼= LH × Gm. The choice of
θH gives a bijection between the equivalence classes of C-parameters and of L-
parameters of H over A given by ρC �→ ρ, so that tθH ◦ ρC ∼= (ρ, ε), where ε is (the
image in A×) of the p-adic cyclotomic character.

Let ξH ∈ X∨(TH)Γk ∼= X(TĤ)Γk be a dominant character of Ĥ fixed by Γk

as above. The algebraic representation rξ
H̃
◦ t−1

θH
of Ĥ × Gm (see (2.23) for ξH̃)

is the representation of highest weight (ξH ,−〈ξH , θH〉) and similarly L⊗
ξ
H̃
◦ t−1

θH
=

L⊗
ξH

⊗x−〈ξH ,θH〉 (where we note xh the character x �→ xh of Gm). This proves that
we have

(2.24) L⊗,C
ξH

(ρC) ∼= L⊗
ξH

(ρ)⊗ ε−〈ξH ,θH〉.

On order to state the reformulation/generalization Conjecture 2.9 (more pre-
cisely of its variant in Remark 2.10(i) and extending scalars from F to Fp), we
broaden the global setting of §2.1.2 following [DPS].

We now let H be a connected reductive group defined over Q. We fix some
compact open subgroup Up ⊆ H(A∞,p

Q ) satisfying the hypotheses of [DPS, §9.2]
(Up there is denoted Kp

f ). For i ≥ 0 an integer, let H̃i(Fp) be the completed
cohomology of the tower of locally symmetric spaces associated to H of tame level
Up defined in [Eme06] (see [DPS, §9.2]). Let Σ be a set of finite places of Q
containing p and the places ofQ whereH is not unramified or Up is not hyperspecial.
Let TΣ be the abstract Hecke algebra defined as the tensor product of the spherical
Z[p−1]-Hecke algebras H� of H(Q�) with respect to Up

� . We recall that a maximal
open ideal m ⊆ TΣ is weakly non-Eisenstein [DPS, Def.9.13] if the equivalent
assumptions of [DPS, Lemma 9.10] are satisfied. In this case there is a unique

q0 ≥ 0 such that H̃q0(Fp)m �= 0. Then the H(Qp)-representation H̃q0(Fp)[m] is
smooth and admissible and the residue field of m is finite. We choose an embedding
T/m ↪→ Fp.
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Considering [DPS, Conj.9.3.1], the following construction is natural. Let rC :
Gal(Q/Q) → CH(Fp) be a C-parameter unramified outside a finite number of
primes and choose Σ big enough to contain all the primes of ramification of rC .
For each � /∈ Σ, let x� : H� → Fp be the character such that the semisimplification

of rC(Frob�) is contained in the Ĥ(Fp)-conjugacy class CC(x�)ζ(�
−1) of CH(Fp)

defined by the version of Satake isomorphism for C-groups in [Zhu](see [DPS,
§9.13] for the definition of CC(x�)) and ζ is the cocharacter t �→ (2δad(t

−1), t2)

of
̂̃
H (recall δad is defined at the beginning of this section). We define mΣ as the

maximal ideal of TΣ generated by the kernels of all the x� with � /∈ Σ. Note that
this gives us a natural embedding TΣ/mΣ ↪→ Fp.

Assume that HQp

def
= H ×Q Qp is isomorphic to ResK/Qp

(H ′) for a finite exten-
sionK of Qp and some split connected reductive groupH ′ overK (in particularHQp

is quasi-split) and that H ′ has a connected center. Then we can fix a cocharacter

ξH′ ofH ′ such that 〈ξH′ , α〉 = 1 for all α ∈ SH′ and define ξHQp

def
= ResK/Qp

(ξH′)|Gm

(restriction to the diagonal embedding Gm ↪→ ResK/Qp
(Gm) = G

[K:Qp]
m ), which is

a cocharacter of HQp
satisfying 〈ξHQp

, α〉 = 1 for all α ∈ SHQp
. We can finally

conjecture:

Conjecture 2.19. Assume that the H(Qp)-representation

π
def
= H̃q0(F)[mΣ] is nonzero. Then D∨

ξH′ (π) (defined similarly to (2.7)) is finite-

dimensional over Fp((X)) and there is an integer d ∈ Z>0 such that we have an

isomorphism of representations of Gal(Qp/Qp) over Fp:

V∨(D∨
ξH′ (π)

)
⊗TΣ/mΣ Fp

∼=
(
L⊗,C
ξHQp

(
rC |Gal(Qp/Qp)

))⊕d
.

We now check that, when H is the restriction of scalars of a compact unitary
group as in §2.1.2, Conjecture 2.19 is equivalent to the special case of Conjecture
2.9 in Remark 2.10(i) where the coefficient field is Fp instead of F.

We go back to the notation of §§2.1.2, 2.1.3 and we fix an embedding F ↪→ Fp.
For simplification we assume that there is a unique place v of F+ over p and we fix ṽ
in F above v, so that we have an isomorphism (ResF+/Q H)×QQp

∼= ResFṽ/Qp
GLn.

The base field k at the beginning is now F+, the connected reductive group H over

k is the compact unitary group H of §2.1.2 (so that Ĥ ∼= G = GLn), ξH is the
cocharacter ξG of Example 2.3, the twisting element θH is the character θG of
Example 2.3 and the algebraically closed field A is Fp.

Let r be a continuous irreducible representation Gal(Q/F ) → GLn(Fp) as in

§2.1.3 (composed with our embedding F ↪→ Fp). Let r′ : Gal(Q/F+) → Gn(Fp)
be the continuous morphism associated to r using [CHT08, Lemma 2.1.4] and
denote by (r′)C : Gal(Q/F+) → CH(Fp) the C-parameter of H over Fp obtained
by the construction of [BG14, §8.3]. A simple computation shows that (r′)C (or

more precisely its composition with
̂̃
H � Gal(Q/F+) � ̂̃H � Gal(F/F+)) is the

composition of (r′, ω) with

(2.25)
Gn ×Gm −→ Ĥ � (Gm ×Gal(F/F+))
(g, μ, γ, λ) �−→ (gθ′H(λ)−1, λ, γ)

where g ∈ GLn(Fp), μ, λ ∈ F
×
p , γ ∈ Gal(F/F+) and θ′H ∈ X(T ) is the character

θ′H(diag(x1, . . . , xn)) = x−1
2 x−2

3 · · ·x1−n
n . Finally we define rC as the C-parameter
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of ResF+/Q(H) over Fp obtained from the application of Lemma 2.17 to (r′)C . We

can check that the maximal ideal mΣ of TΣ defined by rC coincides with the ideal
mΣ defined in §2.1.3. This can be checked using the formulas relating the Satake
isomorphism for C-groups with the usual Satake isomorphism ([Zhu, §1.4]) and the
explicit formulas [Gro98, (3.13)], [Gro98, (3.14)].

Note that, seeing now θH and θ′H as cocharacters of T (recall ĜLn
∼= GLn), we

have θH ◦ ω = (θ′H ◦ ω)ωn−1, so that we have, using (2.25):

(r′)C = t−1
θH

◦ ((r ⊗ ωn−1), ω).

Let ξv
def
= ξH ×F+ F+

v and ξp
def
= ResF+

v /Qp
(ξv)|Gm

. Then (2.24) and Lemma 2.18

imply (note that ξv is fixed by Gal(Qp/F
+
v ) since H ×F+ F+

v is split):

L⊗,C
ξp

(rC |Gal(Qp/Qp)
) ∼= ind

⊗Qp

F+
v

(
r⊗ξv (rṽ ⊗ ωn−1)ω−〈ξH ,θH〉) = L

⊗
(rṽ)⊗ δ−1

G .

This shows that Conjecture 2.19 is equivalent to the special case of Conjecture 2.9
in Remark 2.10(i) (with Fp instead of F).

2.2. Good subquotients of L
⊗

From now on we assume that K is unramified (i.e. K = Qpf ), and we re-

mind the reader that G = GLn /Z. We define the algebraic representation L
⊗

of
∏

σ∈Gal(K/Qp)
G together with “good subquotients” of L

⊗
, and prove various

properties of these good subquotients. This section is entirely on the “Galois side”
(though no Galois representation appears yet). All the results, except Remark 2.49,
in fact hold for any split reductive connected algebraic group G/Z with connected
center.

2.2.1. Definition and first properties. We define good subquotients of L
⊗
.

If H is an algebraic group over Z, we now write H instead of H ×Z F (in order
not to burden the notation) and HGal(K/Qp) for the group product

∏
σ∈Gal(K/Qp)

H

(it is not a subgroup of H!).
We define the following algebraic representation of GGal(K/Qp) over F:

(2.26) L
⊗ def

=
⊗

Gal(K/Qp)

(⊗
α∈S

L(λα)
)

(recall that L(λα) is defined in (2.11) and (2.12)). Note that L
⊗

is also the tensor
product of all fundamental representations of the product group GGal(K/Qp). In

particular the center Z
Gal(K/Qp)
G acts on L

⊗
by the character θG|ZG

⊗ · · · ⊗ θG|ZG︸ ︷︷ ︸
Gal(K/Qp)

,

where θG is as in Example 2.3, i.e.

(2.27) θG =
∑
α∈S

λα ∈ X(T ).

Remark 2.20.

(i) With the notation of §2.1.4, the representation L
⊗

is the restriction to

Ĥ of the representation (L⊗
ξH

, V ⊗
ξH

) of LH, where k = F, H = ResK/Qp
(G) and

ξH = (ξG, . . . , ξG) ∈ X(TĤ) (ξG as in Example 2.3).
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(ii) Since λα ∈ ⊕n
i=1Z≥0ei by (2.12), all the weights of X(T ) appearing in each

L(λα)|T are also in ⊕n
i=1Z≥0ei, and thus the same holds for the weights of L

⊗|T
(where T is diagonally embedded into GGal(K/Qp)). This follows from the classical
fact that the weights appearing in L(λ)|T for any dominant λ ∈ X(T ) are the points
in ⊕n

i=1Zei ∼= X(T ) of the convex hull in ⊕n
i=1Rei of the weights w(λ), w ∈ W .

Fix P a standard parabolic subgroup of G, if R is a finite-dimensional algebraic
representation of PGal(K/Qp) over F, we write R|ZMP

for the restriction of R to ZMP

acting via the diagonal embedding

(2.28) ZMP
↪→ Z

Gal(K/Qp)
MP

⊆ GGal(K/Qp).

Since ZMP
is a torus, it follows from [Jan03, §I.2.11] that R|ZMP

is the direct sum

of its isotypic components. For instance, if P = G and R = L
⊗
, there is only one

isotypic component as ZMG
= ZG acts on L

⊗
via the character fθG|ZG

.

Lemma 2.21. Any isotypic component of R|ZMP
carries an action of

M
Gal(K/Qp)
P when viewed inside R|

M
Gal(K/Qp)

P

.

Proof. This just comes from the fact that the action of ZMP
commutes with

that of M
Gal(K/Qp)
P . �

Definition 2.22. Let P̃ ⊆ P be a Zariski closed algebraic subgroup containing
MP and R an algebraic representation of PGal(K/Qp) over F, a subquotient (resp.
subrepresentation, resp. quotient) of R|P̃Gal(K/Qp) is a good subquotient (resp. sub-
representation, resp. quotient) if its restriction to ZMP

is a (direct) sum of isotypic
components of R|ZMP

.

Remark 2.23. A Zariski closed subgroup P̃ as in Definition 2.22 actually de-
termines the standard parabolic subgroup P that contains it. Indeed, assume there

is another standard parabolic subgroup P ′ such that MP ′ ⊆ P̃ ⊆ P ′. Then we
have MP ′ ⊆ P which implies P ′ ⊆ P . Symmetrically, we also have P ⊆ P ′, hence
P = P ′.

Since isotypic components of R|ZMP
tautologically occur with multiplicity 1,

we see in particular that there is only a finite number of good subquotients of

R|P̃Gal(K/Qp) . For instance the entire L
⊗

is the only good subquotient of

L
⊗|GGal(K/Qp) . If

˜̃
P ⊆ P̃ is another Zariski closed algebraic subgroup as in Definition

2.22, any good subquotient (resp. subrepresentation, resp. quotient) of R|P̃Gal(K/Qp)

is a good subquotient (resp. subrepresentation, resp. quotient) of R|˜̃
P

Gal(K/Qp) (but

the converse is wrong).

Lemma 2.24. There exists a filtration on L
⊗|P̃Gal(K/Qp) by good subrepresenta-

tions such that the graded pieces exhaust the isotypic components of L
⊗|ZMP

seen

as representations of P̃Gal(K/Qp) via the surjection P̃Gal(K/Qp) � M
Gal(K/Qp)
P and

Lemma 2.21.

Proof. It is enough to prove the lemma for P̃ = P . We prove the follow-
ing statement (which implies the lemma): let H be a split connected reductive
algebraic group over Z with connected center, TH ⊆ H a split maximal torus in
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H, BH ⊆ H a Borel subgroup containing TH with set of (positive) roots R+
H , V

a finite-dimensional H-module over F, QH ⊆ H a parabolic subgroup containing
BH with Levi decomposition MQH

NQH
and center ZMQH

⊆ TH , Z ′
MQH

a subtorus

of ZMQH
and λ′

QH
∈ X(Z ′

MQH
)

def
= HomGr(Z

′
MQH

,Gm). Then the Z ′
MQH

-isotypic

component Vλ′
QH

of V is a quotient of two subrepresentations in V |QH
which are

both direct sums of isotypic components of V |Z′
MQH

(one applies this result to

H = GGal(K/Qp), V = L
⊗
, QH = PGal(K/Qp) and Z ′

MQH
= ZMP

). Note that as

above V = ⊕λ′
QH

Vλ′
QH

and that Vλ′
QH

carries from V |MQH
an action of MQH

by the

same proof as for Lemma 2.21. Let R(QH)+ ⊆ R+
H be the positive roots of MQH

, if

α ∈ R+
H\R(QH)+, denote by α its image via the quotient map X(TH) � X(Z ′

MQH
)

and Nα ⊆ NQH
the root subgroup. If nα ∈ Nα and λ′

QH
∈ X(Z ′

MQH
), then we

have nα(Vλ′
QH

) ⊆
∑+∞

i=0 Vλ′
QH

+iα by [Jan03, §II.1.19] (the sum being finite inside

V ). Fix λ′
QH

∈ X(Z ′
MQH

) that occurs in V |Z′
MQH

and let W(λ′
QH

) be the set of

λ′′
QH

∈ X(Z ′
MQH

) of the form λ′
QH

+
(∑

α∈R+
H\R(QH)+ Z≥0α

)
that occur in V |Z′

MQH

,

we deduce that both subspaces∑
λ′′
QH

∈W(λ′
QH

)\{λ′
QH

}
Vλ′′

QH
�

∑
λ′′
QH

∈W(λ′
QH

)

Vλ′′
QH

are preserved by NQH
, hence by QH , inside V . Since their cokernel is exactly Vλ′

QH
,

this proves the statement. �

We will use the following lemma extensively.

Lemma 2.25. If Q is a (standard) parabolic subgroup of G containing P , any
isotypic component of R|ZMQ

is a good subquotient of R|PGal(K/Qp) (hence of R|P̃Gal(K/Qp)).

Proof. By Lemma 2.24 (applied in the case P̃ = P and with P there being
Q), such an isotypic component is a good subquotient of R|QGal(K/Qp) , and thus is

a subquotient of R|PGal(K/Qp) since P ⊆ Q. It is also obviously a direct sum of
isotypic components of R|ZMP

since ZMQ
⊆ ZMP

. This proves the lemma. �

Remark 2.26. Let P̃ , P and R as in Definition 2.22 and define a good sub-

quotient of R|P̃ (for the diagonal embedding P̃ ↪→ P̃Gal(K/Qp) similar to (2.28)) as
a subquotient of R|P̃ such that its restriction to ZMP

is a sum of isotypic compo-
nents of R|ZMP

. Then, using the same kind of argument as for the proof of Lemma

2.24, one can prove that a good subquotient of R|P̃ is also a good subquotient of
R|P̃Gal(K/Qp) , so that good subquotients of R|P̃ and of R|P̃Gal(K/Qp) are actually the
same.

2.2.2. The parabolic group associated to an isotypic component. Fix

P ⊆ G a standard parabolic subgroup and CP an isotypic component of L
⊗|ZMP

,

we associate to CP a subset of the set of simple roots S (see (2.30)), as well as
the standard parabolic subgroup of G, denoted by P (CP ), corresponding to this
subset.

We will use the following two lemmas, the first being well-known.
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Lemma 2.27. Let λ ∈ X(T ) ⊗Z Q be dominant. Then the Weyl group of the
root subsystem of R generated by the simple roots α ∈ S such that sα fixes λ is the
subgroup of W of elements fixing λ.

Lemma 2.28. Let α ∈ S. Then
∑

w∈W (P ) w(α) ≥ 0, and we have∑
w∈W (P )w(α) = 0 if and only if α ∈ S(P ). Moreover, if α ∈ S\S(P ), then

α is in the support of
∑

w∈W (P )w(α).

Proof. If α ∈ S(P ), it is clear that
∑

w∈W (P )w(α) = 0 since, for each w ∈
W (P ), we also have wsα ∈ W (P ). If α ∈ S\S(P ), then −α is dominant for
MP , that is, −〈α, β〉 ≥ 0 for β ∈ S(P ). This implies that w(−α) ≤ −α for w ∈
W (P ). Summing over W (P ) gives −

∑
w∈W (P ) w(α) ≤ −|W (P )|α or equivalently

|W (P )|α ≤
∑

w∈W (P ) w(α). This proves the lemma. �

If w ∈ W satisfies w(S(P )) ⊆ S, we denote by wP the standard parabolic
subgroup of G whose associated set of simple roots is w(S(P )). It has Levi subgroup
MwP = wMPw

−1 (so wP = (wMPw
−1)N) and Weyl group W (wP ) = wW (P )w−1

(caution: wP is not wPw−1 if w �= 1!). If λ ∈ X(T ), we define

(2.29) λ′ def
=

1

|W (P )|
∑

w′∈W (P )

w′(λ) ∈ (X(T )⊗Z Q)W (P ).

Remark 2.29.

(i) Note that λ′ only depends on λ|ZMP
since two distinct λ with the same

restriction to ZMP
differ by an element in

∑
α∈S(P ) Zα and since

∑
w′∈W (P ) w(α) =

0 for α ∈ S(P ) by Lemma 2.28.

(ii) It easily follows from the definitions and Lemma 2.28 that if w ∈ W satisfies
w(S(P )) ⊆ S and λ ∈ X(T ) is any weight, then w(λ′) = (w(λ))′, where (w(λ))′

is given by the same formula as in (2.29) applied to the parabolic wP and the
character w(λ).

Lemma 2.30. Let P be a standard parabolic subgroup of G.

(i) Let λ ∈ X(T ), there exists w ∈ W such that w(S(P )) ⊆ S and w(λ)|ZMwP

coincides with the restriction to ZMwP
of a dominant weight of X(T )⊗Z

Q.

(ii) Let λ ∈ X(T ) such that λ|ZMP
occurs in L

⊗|ZMP
and let w as in (i).

Then we have fθG − w(λ) =
∑

α∈S nαα for some nα ∈ Z≥0 (see (2.27)
for θG) and the subset

w(S(P )) ∪ {α ∈ S : nα �= 0} ⊆ S(2.30)

only depends on λ|ZMP
.

Proof.

(i) We first claim that it is equivalent to find w such that w(S(P )) ⊆ S and w(λ′) is
dominant with λ′ as in (2.29). Assume we have such a w, since w′(λ)|ZMP

= λ|ZMP

for all w′ ∈ W (P ), we have λ′|ZMP
= λ|ZMP

and thus w(λ)|ZMwP
= w(λ′)|ZMwP

.

Conversely, assume that there is w such that w(S(P )) ⊆ S and w(λ)|ZMwP
=

μ|ZMwP
for some dominant μ inX(T )⊗ZQ, and set μ′ def

= 1
|W (P )|

∑
w′∈W (wP )w

′(μ) ∈
(X(T )⊗Z Q)W (wP ). Then we have μ′ = w(λ′) by Remark 2.29(ii) and μ ≥ μ′ (as
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μ ≥ w′(μ) for any w′ ∈ W since μ is dominant). Thus μ − w(λ′) = μ − μ′ =∑
α∈S(wP ) nαα for some nα ∈ Q≥0 (recall μ|ZMwP

= μ′|ZMwP
). This implies that

〈w(λ′), β〉 = 〈μ, β〉 −
∑

α∈S(wP )

nα〈α, β〉 ≥ 0

for any β ∈ S\S(wP ) (as μ is dominant and 〈α, β〉 ≤ 0 if α �= β ∈ S). Since
〈w(λ′), β〉 = 〈μ′, β〉 = 0 for β ∈ S(wP ) (use again Lemma 2.28), we see that w(λ′)
is dominant.
Now let us find such a w. First, pick w′ ∈ W such that w′(λ′) is dominant, by
Lemma 2.27 applied to w′(λ′) the set of elements β in S such that sβ fixes w′(λ′)
generate a root subsystem of R with corresponding Weyl group the subgroup of W
of elements that fix w′(λ′). This root subsystem has two natural bases of simple
roots: namely the elements β above and the elements w′(γ) ∈ w′(S) such that
sγ fixes λ′ (they are usually distinct as W doesn’t preserve S). This second basis
obviously contains w′(S(P )). Therefore, there is w′′ in the Weyl group of this root
subsystem, i.e. w′′ ∈ W fixing w′(λ′), that maps the second basis to the first. In
particular we have w′′w′(S(P )) ⊆ S and w′′w′(λ′) = w′(λ′) dominant, thus we can

take w
def
= w′′w′.

(ii) The positivity of the nα follows from the fact fθG is the highest weight of

L
⊗|T (for the diagonal embedding of T as in (2.28)). Let w1, w2 as in (i) and

λ′ as in (2.29). Then w1(λ
′) = w2(λ

′) as these two weights are dominant (by
the first part of the proof of (i)) and in a single W -orbit. Since λ′ only depends
on λ|ZMP

by Remark 2.29(i), it is therefore enough to prove that the support of

fθG−w(λ′) is exactly the set of simple roots (2.30) for one (any) w as in (i). Writing
fθG − w(λ′) = (fθG − w(λ)) + (w(λ) − w(λ′)) and recalling that w(λ) − w(λ′) is
a sum of roots in w(S(P )) ⊆ S (as w(λ), w(λ′) have same restriction to ZMwP

from the proof of (i)), we see that this support is contained in (2.30) and that it
contains {α ∈ S\w(S(P )) : nα �= 0}. It is thus enough to prove that this support
also contains w(S(P )). Since fθG ≥ w(λ′) (use fθG ≥ ww′(λ) for any w′ ∈ W
and sum over w′ ∈ W (P )) and 〈β, α〉 ≤ 0 if α �= β ∈ S, it is enough to check that
〈fθG − w(λ′), α〉 > 0 (in Q) for any α ∈ w(S(P )). But this follows from Lemma
2.28 and 〈fθG − w(λ′), α〉 = f〈θG, α〉 − 〈w(λ′), α〉 = f − 0 = f .

�

Remark 2.31. Note that it is not true in general that, for λ as in Lemma
2.30(ii), one can find w ∈ W such that w(S(P )) ⊆ S and w(λ)|ZMwP

is the restric-

tion to ZMwP
of a dominant weight of X(T ) (one really needs X(T )⊗Z Q).

The proof of Lemma 2.30 also gives the following equivalent proposition that
we will use repeatedly in the sequel.

Proposition 2.32. Let P be a standard parabolic subgroup of G.

(i) Let λ∈X(T ) and λ′ as in (2.29), there exists w∈W such that w(S(P )) ⊆
S and w(λ′) is a dominant weight of X(T )⊗Z Q.

(ii) Let λ ∈ X(T ) such that λ|ZMP
occurs in L

⊗|ZMP
and let w as in (i).

Then we have fθG − w(λ′) =
∑

α∈S nαα for some nα ∈ Q≥0 and the
support of fθG − w(λ′) is S(P (CP )).
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Let CP be an isotypic component of L
⊗|ZMP

associated to some

λP ∈ X(ZMP
) = HomGr(ZMP

,Gm). We denote by P (CP ) the unique standard
parabolic subgroup of G whose associated set of simple roots S(P (CP )) is (2.30)
for one (equivalently any) weight λ ∈ X(T ) such that λ|ZMP

= λP . We also define

(2.31) W (CP )
def
= {w ∈ W as in Proposition 2.32(i) for λ ∈ X(T ) : λ|ZMP

= λP }
(W (CP ) doesn’t depend on the choice of such λ by the claim in the proof of Lemma
2.30(i) and by Remark 2.29(i)). We see from (2.30) that for all w ∈ W (CP ) we
have the inclusion

(2.32) wP ⊆ P (CP ).

Note that the set W (CP ) is not in general a group, in particular it is distinct in
general from the Weyl group W (P (CP )) (see Lemma 2.36 below for the relation
between the two).

Remark 2.33. The inclusion wP ⊆ P (CP ) for some w ∈ W (such that
w(S(P )) ⊆ S) doesn’t imply w ∈ W (CP ) (take P = B). Also P (CP ) doesn’t
necessarily contain P , see e.g. the end of Example 2.35(ii) below. The subgroup
generated by all wP for w ∈ W (CP ) may also be strictly contained in P (CP ) (see
e.g. Example 2.35(i) below).

The parabolic subgroups P (CP ) respect inclusions.

Lemma 2.34. Let P ′ ⊆ P be two standard parabolic subgroups of G, CP an

isotypic component of L
⊗|ZMP

and CP ′ an isotypic component of L
⊗|ZMP ′ such

that CP ′ ⊆ CP |ZMP ′ . Then P (CP ′) ⊆ P (CP ).

Proof. Let λ ∈ X(T ) such that CP ′ is the isotypic component of λ|ZMP ′ .

Then by assumption CP is the isotypic component of λ|ZMP
. Define λ′

P ∈ (X(T )⊗Z

Q)W (P ), λ′
P ′ ∈ (X(T ) ⊗Z Q)W (P ′) as in (2.29) for respectively P and P ′ and let

(wP , wP ′) ∈ W×W such that wP (S(P )) ⊆ S and wP (λ
′
P ) dominant, wP ′(S(P ′)) ⊆

S and wP ′(λ′
P ′) dominant (wP , wP ′ exist by Proposition 2.32(i)). Then we have

wP (λ
′
P ) =

1

|W (P )|
∑

w′∈W (wP P )

w′wP (λ), wP (λ
′
P ′) =

1

|W (P ′)|
∑

w′∈W (wP P ′)

w′wP (λ)

and also

(2.33) wP (λ
′
P ) =

|W (P ′)|
|W (P )|

∑
σ∈W (wP P )/W (wP P ′)

σwP (λ
′
P ′).

Since wP ′(λ′
P ′) is dominant, we have wP ′(λ′

P ′) ≥ wwP ′(λ′
P ′) for any w ∈ W and

in particular wP ′(λ′
P ′) ≥ σwP (λ

′
P ′) = (σwPw

−1
P ′ )wP ′(λ′

P ′). Summing up these

inequalities over σ ∈ W (wPP )/W (wPP ′) and multiplying by |W (P ′)|
|W (P )| , one gets with

(2.33):

(2.34) wP ′(λ′
P ′) ≥ wP (λ

′
P ).

Now the result follows from

fθG − wP (λ
′
P ) =
(
fθG − wP ′(λ′

P ′)
)
+
(
wP ′(λ′

P ′)− wP (λ
′
P )
)

together with Proposition 2.32(ii) and (2.34). �
Example 2.35. We give a few simple examples (beyond GL2(Qp)).
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(i) Assume n = 2 and P = B. Then L
⊗|ZMB

= L
⊗|T has f+1 isotypic components

C(λi) given by the characters λi : diag(x1, x2) �→ xf−i
1 xi

2 for 0 ≤ i ≤ f . For i < f/2,
λi is dominant, W (C(λi)) = {1} and fθG−λi = i(e1−e2). For i = f/2 (if f is even),
λi = se1−e2(λi) is dominant, W (C(λi)) = {1, se1−e2} and fθG − w(λi) = f/2(e1 −
e2) for w ∈ W (C(λi)). For i > f/2, se1−e2(λi) is dominant, W (C(λi)) = {se1−e2}
and fθG − se1−e2(λi) = (f − i)(e1 − e2). We see that wB = B � P (C(λi)) = G if
i /∈ {0, f} and wB = P (C(λi)) = B if i ∈ {0, f}.
(ii) Assume n = 3 and K = Qp.

If P = B, then L
⊗|T has 7 isotypic components given by the 6 characters λw :

diag(x1, x2, x3) �→ x2
w−1(1)xw−1(2) for w ∈ S3 and the character det : diag(x1, x2,

x3) �→ x1x2x3. If CP corresponds to some λw, one gets that W (CP ) is the singleton
{w} and θG − w(λw) = 0, which implies wB = P (CP ) = B. If CP corresponds to
det, one gets W (CP ) = W and θG − w(det) = (e1 − e2) + (e2 − e3) for w ∈ W ,
which implies wB = B � P (CP ) = G.

If P is the standard parabolic subgroup of Levi diag(GL2,GL1), then L
⊗|ZMP

has
3 isotypic components CP given by the characters

λ0 : diag(x1, x1, x2) �→x3
1, λ1 : diag(x1, x1, x2) �→x2

1x2, λ2 : diag(x1, x1, x2) �→x1x
2
2.

One has λ′
0 = 3/2(e1 + e2), λ

′
1 = e1 + e2 + e3, λ

′
2 = 1/2(e1 + e2) + 2e3 from which

one deduces for the three respective isotypic components CP (where w ∈ W (CP )):

W (CP ) = {1} θG − w(λ′
0) = 1/2(e1 − e2)

W (CP ) = {1, se1−e2se2−e3} θG − w(λ′
1) = (e1 − e2) + (e2 − e3)

W (CP ) = {se1−e2se2−e3} θG − w(λ′
2) = 1/2(e2 − e3).

If CP corresponds to λ0 one gets wP = P (CP ) = P , if CP corresponds to λ1 one
gets wP � P (CP ) = G (wP being P if w = Id and the standard parabolic subgroup
of Levi diag(GL1,GL2) if w = se1−e2se2−e3), and if CP corresponds to λ2 one gets
wP = P (CP ) = the standard parabolic subgroup of Levi diag(GL1,GL2). In this
last case we see that P (CP ) doesn’t contain P .
Finally, if MP = diag(GL1,GL2), the situation is symmetric.

Lemma 2.36. We have W (CP ) ⊆ W (P (CP ))w for any fixed element w ∈
W (CP ). Equivalently w′w−1 ∈ W (P (CP )) for any w,w′ ∈ W (CP ).

Proof. Let λP ∈ X(ZMP
) corresponding to CP , wCP

∈ W (CP ), λ ∈ X(T )
such that λ|ZMP

= λP and define λ′ as in (2.29). Recall that an element w ∈ W

is in W (CP ) if and only if w(S(P )) ⊆ S and w(λ′) is dominant (see Proposition
2.32(i)), and that we have w(λ′) = wCP

(λ′) for all w ∈ W (CP ) (see the begin-
ning of the proof of Lemma 2.30(ii)). We rewrite this ww−1

CP
(wCP

(λ′)) = wCP
(λ′)

∀ w ∈ W (CP ). By the definition of P (CP ) and Proposition 2.32(ii), we know that
S(P (CP )) is the set of simple roots in the support of fθG−wCP

(λ′). Since wCP
(λ′)

is dominant, by Lemma 2.27 the subgroup of W fixing wCP
(λ′) is generated by the

simple reflections sβ fixing wCP
(λ′), or equivalently such that 〈wCP

(λ′), β〉 = 0.
Since 〈fθG − wCP

(λ′), β〉 = f − 0 = f , we see that these simple roots β are all in
the support of fθG − wCP

(λ′). Therefore W (P (CP )) contains the subgroup of W
fixing wCP

(λ′). Since ww−1
CP

fixes wCP
(λ′), it follows that ww−1

CP
∈ W (P (CP )). �

Remark 2.37. The inclusion in Lemma 2.36 is not an equality in general (take
P = G).
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2.2.3. The structure of isotypic components of L
⊗
. We let P be a stan-

dard parabolic subgroup of G, we prove an important structure theorem on the

isotypic components of L
⊗|ZMP

(Theorem 2.46) as well as several useful technical
results.

Recall that W (CP ) is defined in (2.31) and P (CP ) is defined just before.

Lemma 2.38. If P (CP ) =
wP for some w ∈ W (CP ) then W (CP ) has just one

element.

Proof. Let wCP
∈ W (CP ) such that P (CP ) =

wCP P and let w′
CP

∈ W (CP ).
Since P (CP ) = wCP P we get S(P (CP )) = wCP

(S(P )) and W (P (CP )) =
wCP

W (P )w−1
CP

. By Lemma 2.36 applied to the element wCP
, we deduce W (CP ) ⊆

wCP
W (P ) and thus w−1

CP
w′

CP
∈ W (P ). But since S(P (CP )) contains w(S(P ))

for all w ∈ W (CP ) by definition of W (CP ) and (2.30), we have w′
CP

(S(P )) ⊆
S(P (CP )) = wCP

(S(P )) which implies w′
CP

(S(P )) = wCP
(S(P )) since the car-

dinalities are the same on both sides, that is, w−1
CP

w′
CP

(S(P )) = S(P ). Since

w−1
CP

w′
CP

∈ W (P ), this forces w′
CP

= wCP
. �

Remark 2.39.

(i) The converse to Lemma 2.38 is wrong in general (e.g. consider the C(λi)
with i /∈ {0, f/2, f} in Example 2.35(i)).

(ii) For a general isotypic component CP , it is not true that one can find
w ∈ W (CP ) such that w−1MP (CP )w is the Levi subgroup of a standard parabolic
subgroup of G.

Proposition 2.40. The isotypic components CP such that P (CP ) = wP for
some (necessarily unique) w ∈ W (CP ) are those isotypic components which are
associated to fw−1(θG)|ZMP

for the w ∈ W such that w(S(P )) ⊆ S.

Proof. Let w ∈ W such that w(S(P )) ⊆ S and λ
def
= fw−1(θG) ∈ X(T ).

Since w(λ) = fθG is dominant and fθG−w(λ) = 0, the set (2.30) is w(S(P )). This
implies P (CP ) =

wP .
Conversely, let CP as in the statement, λ ∈ X(T ) such that CP is the isotypic
component associated to the character λ|ZMP

of ZMP
and define λ′ as in (2.29).

Since S(P (CP )) = w(S(P )) by assumption, from Proposition 2.32(ii) we obtain

fw−1(θG)− λ′ =
∑

α∈S(P )

nαα

(for some nα ∈ Q>0), which implies fw−1(θG)|ZMP
= λ′|ZMP

. Since λ|ZMP
=

λ′|ZMP
(see the beginning of the proof of Lemma 2.30(i)), we deduce that CP is

the isotypic component associated to the character fw−1(θG)|ZMP
. �

Note that if CP is associated to fw−1(θG)|ZMP
(with w(S(P )) ⊆ S), we have

W (CP ) = {w} by Lemma 2.38.

Example 2.41. Coming back to Example 2.35, the isotypic components as in
Proposition 2.40 are the isotypic components C(λ0), C(λf ) when n = 2, P = B, the
isotypic components associated to the six λw when n = 3, K = Qp, P = B, and the
isotypic components associated to λ0, λ2 when n = 3, K = Qp, MP = GL2 ×GL1.
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We set for α = ej − ej+1 ∈ S(P ):

(2.35) λα,P
def
=

∑
ei−ej+1∈R(P )+

ei ∈ X(T ).

One easily checks that the λα,P for α ∈ S(P ) are fundamental weights for the
reductive group MP and that 〈λα,P , β〉 ≤ 0 for β ∈ S\S(P ). For any λ ∈ X(T ),

we define LP (λ) as in (2.11) but with (MP ,MP ∩ B−) instead of (G,B−). When

S(P ) = ∅, we define L
⊗
P to be the trivial representation of TGal(K/Qp) over F

and, when S(P ) �= ∅, we define similarly to (2.26) the algebraic representation of

M
Gal(K/Qp)
P over F:

(2.36) L
⊗
P

def
=
⊗

Gal(K/Qp)

( ⊗
α∈S(P )

LP (λα,P )
)
.

We also define

(2.37) θP
def
=
∑

α∈S(P )

λα,P ∈ X(T ) and θP
def
= θG − θP ∈ X(T ).

Since for α ∈ S(P ) we have 〈θP , α〉 = 〈θG, α〉 − 〈θP , α〉 = 1 − 1 = 0, we see that
θP extends to an element of HomGr(MP ,Gm). Likewise we have for α ∈ S(P ) and
w ∈ W such that w(S(P )) ⊆ S:

〈w−1(θ
wP ), α〉 = 〈θwP , w(α)〉 = 0

so that w−1(θ
wP ) also extends to HomGr(MP ,Gm). Note that, since 〈θP , β〉 ≤ 0

for β ∈ S\S(P ), we get 〈θP , β〉 = 〈θG, β〉 − 〈θP , β〉 ≥ 1, thus θP is a dominant
weight.

Example 2.42. If G = GL6 and MP = GL2 ×GL3 ×GL1, one gets

θP : diag(x1, . . . , x6) �−→ (x1)(x
2
3x4)

θP : diag(x1, . . . , x6) �−→ (x1x2)
4(x3x4x5).

Lemma 2.43. If w ∈ W (P ), we have w(θP ) = θP .

Proof. The character θP extends to MP and factors through MP /M
der
P . But

conjugation by W (P ) is trivial on MP /M
der
P . �

Lemma 2.44. Let λ ∈ X(T ) be a dominant weight and denote by L(λ)μ ⊆ L(λ)

for μ ∈ X(T ) the isotypic component of L(λ)|T associated to μ (i.e. the weight
space of L(λ) for μ, see [Jan03, §I.2.11]). Then⊕

μ∈λ−
∑

α∈S(P ) Z≥0α

L(λ)μ ⊆ L(λ)

is an MP -subrepresentation of L(λ)|MP
which is isomorphic to LP (λ).

Proof. Since ⊕μ∈λ−
∑

α∈S(P ) Z≥0αL(λ)μ is the isotypic component of L(λ)|ZMP

associated to λ|ZMP
(as λ|ZMP

∼= μ|ZMP
⇐⇒ λ − μ ∈

∑
α∈S(P ) Zα), it is endowed

with an action of MP by the same proof as for Lemma 2.21. By [Jan03, II.2.2(1)],
[Jan03, I.6.11(2)] and the transitivity of induction ([Jan03, I.3.5(2)]), we have an
injection of algebraic representations of MP over F:

(2.38) H0(NP , L(λ)) ↪→ LP (λ)
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(recall NP is the unipotent radical of P ) and by [Jan03, II.2.11(1)] we have an
isomorphism of algebraic representations of MP over F:⊕

μ∈λ−
∑

α∈S(P ) Z≥0α

L(λ)μ
∼−→ H0(NP , L(λ)).

It is therefore enough to prove that (2.38) is an isomorphism, or equivalently that

dimF

( ⊕
μ∈λ−

∑
α∈S(P ) Z≥0α

L(λ)μ

)
= dimF LP (λ).

Let L(λ)
def
=
(
indGB− λ

)
/Z

⊗Z E, LP (λ)
def
=
(
indMP

MP∩B− λ
)
/Z

⊗Z E and L(λ)μ ⊆ L(λ)

the weight space associated to μ, we have dimF L(λ)μ = dimE L(λ)μ, and thus

dimF

( ⊕
μ∈λ−

∑
α∈S(P ) Z≥0α

L(λ)μ

)
= dimE

( ⊕
μ∈λ−

∑
α∈S(P ) Z≥0α

L(λ)μ

)
.

Likewise, we have dimF LP (λ) = dimE LP (λ). It is therefore enough to have

dimE

( ⊕
μ∈λ−

∑
α∈S(P ) Z≥0α

L(λ)μ

)
= dimE LP (λ).

But now, we are over a field of characteristic 0, where it is well known that L(λ)
and LP (λ) as defined above are simple modules with highest weight λ. Then the
result follows from [Jan03, Prop.II.2.11]. �

The following lemma is a special case of Lemma 2.44.

Lemma 2.45. Let λ ∈ X(T ) be a dominant weight such that 〈λ, α〉 = 0 for all
α ∈ S(P ) (equivalently λ extends to an element in HomGr(MP ,Gm)). Then any
μ ∈ X(T ) distinct from λ with L(λ)μ �= 0 is such that λ − μ contains at least one
root of S\S(P ) in its support.

Proof. Since λ ∈ HomGr(MP ,Gm), we have LP (λ) ∼= λ by (2.11) applied
with MP instead of G. By Lemma 2.44, we deduce

⊕
μ∈λ−

∑
α∈S(P ) Z≥0α

L(λ)μ ∼= λ

inside L(λ). This clearly implies the lemma. �

If R is any algebraic representation of MP or of M
Gal(K/Qp)
P and w ∈ W such

that w(S(P )) ⊆ S, we define an algebraic representation of MwP = wMPw
−1 or

of M
Gal(K/Qp)
wP = wM

Gal(K/Qp)
P w−1 (w acting diagonally via W ↪→ WGal(K/Qp)) by

(g ∈ MwP or M
Gal(K/Qp)
wP ):

(2.39) w(R)(g)
def
= R(w−1gw).

If α ∈ S(P ), one then easily checks that w(λα,P ) = λw(α),wP and w(LP (λα,P )) =

LwP (λw(α),wP ), from which one gets

(2.40) w(L
⊗
P ) = L

⊗
wP .

Theorem 2.46. Let CP be an isotypic component of L
⊗|ZMP

, associated to

λ|ZMP
for λ ∈ X(T ). For any w ∈ W (CP ), there is an isomorphism of algebraic
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representations of M
Gal(K/Qp)
P over F:

(2.41) CP
∼= w−1

(
CP (CP ),wP

)
⊗
(
w−1(θP (CP ))⊗ · · · ⊗ w−1(θP (CP ))︸ ︷︷ ︸

Gal(K/Qp)

)
,

where CP (CP ),wP is the isotypic component of L
⊗
P (CP )|ZMwP

associated to (w(λ)−
fθP (CP ))|ZMwP

(thus an M
Gal(K/Qp)
wP -representation, recall wP ⊆ P (CP )) and

w−1(CP (CP ),wP ) is defined in (2.39).

Proof. Step 1: Assuming the result holds if w = Id, we prove it for any w.
For μ ∈ X(T ) we have μ|ZMP

= λ|ZMP
if and only if w(μ)|ZMwP

= w(λ)|ZMwP
,

therefore the image w(CP ) of CP for the diagonal action of w ∈ W on L
⊗
is the iso-

typic component of L
⊗|ZMwP

associated to w(λ)|ZMwP
. Note that, as an algebraic

M
Gal(K/Qp)
wP -subrepresentation of L

⊗|
M

Gal(K/Qp)
wP

, w(CP ) is indeed isomorphic to g �→

CP (w
−1gw) if g ∈ M

Gal(K/Qp)
wP , so the notation is consistent with (2.39). By Remark

2.29(ii) we have w(λ′) = (w(λ))′ in (X(T )⊗ZQ)W (wP ). Recall that w(λ′), and hence
(w(λ))′, are dominant since w ∈ W (CP ) (see Proposition 2.32(i)). Therefore Id ∈
W (w(CP )) and by the case w = Id for the parabolic subgroup wP and the isotypic
component w(CP ), we have w(CP ) ∼= CP (w(CP )),wP⊗

(
θP (w(CP )) ⊗ · · · ⊗ θP (w(CP ))

)
.

Moreover S(P (w(CP ))), which is the support of fθG − (w(λ))′ by Proposition
2.32(ii) (applied to w = Id), is the same as S(PCP

), which is the support of
fθG − w(λ′) by loc.cit. (applied to w), i.e. we have P (w(CP )) = P (CP ). We
thus deduce w(CP ) ∼= CP (CP ),wP ⊗

(
θP (CP ) ⊗ · · · ⊗ θP (CP )

)
which gives (2.41) by

applying w−1.
Step 2: From now on we assume w = Id (so in particular P ⊆ P (CP )). Writing

L
⊗
=

( ⊗
Gal(K/Qp)

( ⊗
α∈S(P (CP ))

L(λα)
))⊗( ⊗

Gal(K/Qp)

( ⊗
α∈S\S(P (CP ))

L(λα)
))

,

we prove that any (μ1, μ2) ∈ X(T )×X(T ) such that

(i) μ1 occurs in
(⊗

Gal(K/Qp)

(⊗
α∈S(P (CP )) L(λα)

))
|T (for the diagonal ac-

tion of T );
(ii) μ2 occurs in

(⊗
Gal(K/Qp)

(⊗
α∈S\S(P (CP )) L(λα)

))
|T (idem);

(iii) μ1|ZMP
+ μ2|ZMP

= λ|ZMP

must be such that μ2 = f
∑

α∈S\S(P (CP )) λα (note that μ2 ≤ f
∑

α∈S\S(P (CP )) λα

and μ1 ≤ f
∑

α∈S(P (CP )) λα). Let λ
′, μ′

1, μ
′
2 as in (2.29) for P (CP ) and the respec-

tive characters λ, μ1, μ2, we have λ′ = μ′
1 + μ′

2 from (iii) and Remark 2.29(i), and
thus

(2.42) fθG − λ′ = f
( ∑
α∈S(P (CP ))

λα

)
− μ′

1 + f
( ∑
α∈S\S(P (CP ))

λα

)
− μ′

2.

Assume μ2 is not f
∑

α∈S\S(P (CP )) λα. Then writing μ2 =
∑

j,α μ2,j,α where

(j, α) ∈ Gal(K/Qp)×S\S(P (CP )) and μ2,j,α occurs in L(λα) and applying Lemma
2.45 with P = P (CP ), λ = λα and μ = μ2,j,α for α ∈ S\S(P (CP )) (the assump-
tions in Lemma 2.45 are satisfied since the λα, α ∈ S are fundamental weights),
we get that f

∑
α∈S\S(P (CP )) λα − μ2 has at least one root of S\S(P (CP )) in its

support. Averaging over w ∈ W (P (CP )) as in (2.29) and using w(λα) = λα for
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w ∈ W (P (CP )) and α ∈ S\S(P (CP )) (same proof as for Lemma 2.43), we get
applying Lemma 2.28 to P = P (CP ) that f

∑
α∈S\S(P (CP )) λα − μ′

2 has still at

least one root of S\S(P (CP )) in its support (and that μ′
2 ≤ f

∑
α∈S\S(P (CP )) λα).

Since μ′
1 ≤ f
∑

α∈S(P (CP )) λα by the proof of Step 3 below, this root doesn’t vanish

in the sum (2.42). But by Proposition 2.32(ii), S(P (CP )) is the support of (2.42),
which is a contradiction. Therefore, we must have μ2 = f

∑
α∈S\S(P (CP )) λα and

thus from (iii) that

(2.43) CP
∼= C ′

P (CP ),P ⊗
⊗

Gal(K/Qp)

( ∑
α∈S\S(P (CP ))

λα

)
,

where C ′
P (CP ),P is the isotypic component of( ⊗

Gal(K/Qp)

( ⊗
α∈S(P (CP ))

L(λα)
))
|ZMP

associated to
(
λ− f

∑
α∈S\S(P (CP )) λα

)
|ZMP

(= (λ− μ2)|ZMP
= μ1|ZMP

).

Step 3: We prove that

f
( ∑
α∈S(P (CP ))

λα

)
− μ1 ∈

∑
α∈S(P (CP ))

Z≥0α

(i.e. no root of S\S(P (CP )) is in the support). Since λα is dominant, we have
λα ≥ λ′

α, where λ′
α is defined as in (2.29) for P = P (CP ) and the character λα.

This implies (with obvious notation)
(2.44)

f
( ∑
α∈S(P (CP ))

λα

)
− μ′

1 ≥ f
( ∑
α∈S(P (CP ))

λ′
α

)
− μ′

1 =
(
f
( ∑
α∈S(P (CP ))

λα

)
− μ1

)′
≥ 0,

where the last inequality follows from Lemma 2.28 (applied with P = P (CP )). If
f
(∑

α∈S(P (CP )) λα

)
−μ1 has roots of S\S(P (CP )) in its support, then by Lemma

2.28 again so is the case of
(
f
(∑

α∈S(P (CP )) λα

)
− μ1

)′
, and thus of

f
(∑

α∈S(P (CP )) λα

)
− μ′

1 by (2.44). As in Step 2, this is again a contradiction

by (2.42) and the definition of P (CP ).
Step 4: We prove the statement for w = Id. By Lemma 2.44 applied with P =
P (CP ) and the various L(λα) for α ∈ S(P (CP )), we deduce from Step 3 that μ1 is
a weight of ⊗

Gal(K/Qp)

( ⊗
α∈S(P (CP ))

LP (CP )(λα)
)

inside
⊗

Gal(K/Qp)

(⊗
α∈S(P (CP )) L(λα)

)
(see just after (2.35)). Let α ∈ S(P (CP )),

for each β ∈ S(P (CP )) we have 〈λα, β〉 = 〈λα,P (CP ), β〉 (a straightforward check
from (2.35)), thus λα − λα,P (CP ) extends to HomGr(MP (CP ),Gm) which implies

LP (CP )(λα) ∼= LP (CP )(λα,P (CP ))⊗ (λα−λα,P (CP )). Thus μ1−f
∑

α∈S(P (CP ))(λα−
λα,P (CP )) is a weight of⊗

Gal(K/Qp)

( ⊗
α∈S(P (CP ))

LP (CP )(λα,P (CP ))
)
= L

⊗
P (CP ),
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or in other terms:

C ′
P (CP ),P

∼= CP (CP ),P ⊗
⊗

Gal(K/Qp)

( ∑
α∈S(P (CP ))

(λα − λα,P (CP ))

)
,

where CP (CP ),P is the isotypic component of L
⊗
P (CP )|ZMP

associated to(
λ− f

∑
α∈S\S(P (CP ))

λα − f
∑

α∈S(P (CP ))

(λα − λα,P (CP ))
)
|ZMP

.

But by (2.37):∑
α∈S\S(P (CP ))

λα +
∑

α∈S(P (CP ))

(λα − λα,P (CP )) = θG −
∑

α∈S(P (CP ))

λα,P (CP ) = θP (CP ),

so together with (2.43) we are done. �

Remark 2.47. The character w−1(θP (CP )) of MP doesn’t depend on w ∈
W (CP ), as follows from Lemma 2.36 and Lemma 2.43 (the latter applied with
P there being P (CP )). In particular, by (2.41) we see that the representation

w−1
(
CP (CP ),wP

)
of M

Gal(K/Qp)
P is also independent of w ∈ W (CP ).

When CP is as in Proposition 2.40, its underlying M
Gal(K/Qp)
P -representation

looks like L
⊗

but for the reductive group MP instead of G.

Corollary 2.48. Let CP be an isotypic component of L
⊗|ZMP

such that

P (CP ) = wP for some (unique) w ∈ W such that w(S(P )) ⊆ S. Then there
is an isomorphism

CP
∼= L

⊗
P ⊗
(
w−1(θ

wP )⊗ · · · ⊗ w−1(θ
wP )︸ ︷︷ ︸

Gal(K/Qp)

)
of algebraic representations of M

Gal(K/Qp)
P over F.

Proof. If P (CP ) =
wP , then L

⊗
P (CP )|ZMwP

= L
⊗
wP |ZMwP

has only one isotypic

component, corresponding to fθwP |ZMwP
. So the corollary follows from Theorem

2.46 together with (2.40). Note that, by Proposition 2.40, CP corresponds to λ =
fw−1(θG), which is consistent with Theorem 2.46 since

(w(λ)− fθP (CP ))|ZMwP
=
(
w(fw−1(θG))− fθ

wP
)
|ZMwP

= f(θG − θ
wP )|ZMwP

= fθwP |ZMwP
.

�

Remark 2.49. In this remark, we use that we are working with G = GLn.
We write MP (CP ) = diag(M1, . . . ,Md) for some d > 0 with Mi

∼= GLni
, and

correspondingly T = diag(T1, . . . , Td), where Ti is the diagonal torus of GLni
, so

that we have X(T ) = ⊕d
i=1X(Ti) and S(P (CP )) = �d

i=1S(Mi), where X(Ti)
def
=

HomGr(Ti,Gm) and S(Mi)
def
= S(P (CP )) ∩ X(Ti) is the set of simple roots of Mi

(for the Borel subgroup of upper-triangular matrices). Note that S(Mi) = ∅ if
Mi

∼= GL1. For i ∈ {1, . . . , d} such that ni > 1, one easily checks that λα,P (CP ) ∈
X(Ti) ⊆ X(T ) if α ∈ S(Mi) and that the λα,P (CP ) ∈ X(Ti) for α ∈ S(Mi) are
fundamental weights for the reductive group Mi. For i ∈ {1, . . . , d} and λi ∈ X(Ti),
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we define LMi
(λi) as in (2.11) but for the reductive group Mi instead of G. When

ni = 1, we define L
⊗
i to be the trivial representation of M

Gal(K/Qp)
i

∼= G
Gal(K/Qp)
m ,

and when ni > 1, we define as in (2.26) the algebraic representation of M
Gal(K/Qp)
i

over F (seeing λα,P (CP ) in X(Ti)):

(2.45) L
⊗
i

def
=
⊗

Gal(K/Qp)

( ⊗
α∈S(Mi)

LMi
(λα,P (CP ))

)
.

We then clearly have L
⊗
P (CP )

∼=
⊗d

i=1L
⊗
i . Likewise, we have θP (CP ) =

⊗d
i=1(θ

P (CP ))i, where (θP (CP ))i ∈ X(Ti) extends to HomGr(Mi,Gm) and where
we denote by μi the image in X(Ti) of a character μ ∈ X(T ).

For any w ∈ W (CP ), we define (wP )i as the standard parabolic subgroup of
Mi which is the image of wP under

wP ↪→ P (CP ) � MP (CP ) � Mi

(in particular its Levi M(wP )i is the image of MwP under MwP ↪→ MP (CP ) � Mi).
Applying w to (2.41), it is not difficult to deduce from Theorem 2.46 an isomorphism

of algebraic representations of M
Gal(K/Qp)
wP

∼=
∏d

i=1 M
Gal(K/Qp)

(wP )i
over F:

(2.46) w(CP ) ∼=
d⊗

i=1

(
Cw,i ⊗

(
(θP (CP ))i ⊗ · · · ⊗ (θP (CP ))i︸ ︷︷ ︸

Gal(K/Qp)

))
,

where Cw,i is the isotypic component of L
⊗
i |ZM(wP )i

associated to

(w(λ)− fθP (CP ))i|ZM(wP )i

(thus an M
Gal(K/Qp)

(wP )i
-representation, note that Cw,i is trivial if ni = 1). If w′ is an-

other element inW (CP ), writing w
′ = wP (CP )w with wP (CP ) ∈ W (P (CP )) (Lemma

2.36), we have Mw′P = wP (CP )MwPw
−1
P (CP ), and thus w′(Cp) ∼= wP (CP )(w(CP ))

and CP (CP ),w′P
∼= wP (CP )

(
CP (CP ),wP

)
(as the twist by θP (CP ) ⊗ · · · ⊗ θP (CP )

doesn’t involve the choice of w). Since wP (CP )Miw
−1
P (CP ) = Mi for all i, we get

M(w′P )i
= wP (CP )M(wP )iw

−1
P (CP ) (inside Mi) and deduce for i ∈ {1, . . . , d} an iso-

morphism of algebraic representations of M
Gal(K/Qp)

(w′P )i
over F (with notation similar

to (2.39)):

(2.47) Cw′,i
∼= wP (CP )(Cw,i).

We will avoid applying w−1 to Cw,i since w−1MP (CP )w is not in general the Levi
subgroup of a standard parabolic subgroup of G (see Remark 2.39(ii)), although it
indeed contains MP .

2.2.4. From one isotypic component to another. We let P be a standard

parabolic subgroup of G. We show that, if CP is an isotypic component of L
⊗|ZMP

,
then one can associate to CP in a natural way another isotypic component w ·CP of

L
⊗|ZMP

for any w ∈ W such that w
(
S(P (CP ))

)
⊆ S (see Proposition 2.51). Note

that, on the contrary to w(CP ), w ·CP is an isotypic component of L
⊗|ZMP

for the
same standard parabolic subgroup P as CP .
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Lemma 2.50. Let μ ∈ X(T ) be a dominant weight. Then μ occurs in L
⊗|T (for

the diagonal embedding of T analogous to (2.28)) if and only if μ ≤ fθG in X(T ).

Proof. Since this statement only concerns weights, we can work in characteris-

tic 0, i.e. with L⊗
def
=
⊗

Gal(K/Qp)

(⊗
α∈S L(λα)

)
, where L(λα)

def
=
(
indGB− λα

)
/Z

⊗Z

E (see (2.11)). Arguing as in the proof of [BH15, Lemma 2.2.3], it is equivalent
to prove that μ is a weight of the algebraic representation L(fθG) of G. The result
then follows from the inequalities w(μ) ≤ μ ≤ fθG for all w ∈ W (the left ones hold
since μ is dominant and the right ones since fθG is the highest weight) combined
with [Hum78, Prop.21.3]. �

Proposition 2.51. Let λP ∈ X(ZMP
) be a character of ZMP

which occurs in

L
⊗|ZMP

(for the diagonal embedding, as usual) with associated isotypic component

CP of L
⊗|ZMP

, and let w ∈ W such that w
(
S(P (CP ))

)
⊆ S.

(i) For wCP
∈ W (CP ) the character of ZMP

:

λP −
(
fw−1

CP
(θG) + f(wwCP

)−1(θG)
)
|ZMP

(2.48)

doesn’t depend on wCP
.

(ii) The character (2.48) corresponds to an isotypic component w · CP of

L
⊗|ZMP

, i.e. occurs in L
⊗|ZMP

.

(iii) We have P (w · CP ) =
wP (CP ).

Proof. (i) For any α ∈ S(P (CP )) we have (since w(α) is still in S)

〈w−1(θG)− θG, α〉 = 〈θG, w(α)〉 − 〈θG, α〉 = 1− 1 = 0(2.49)

which implies sα(w
−1(θG)−θG) = w−1(θG)−θG, and thus for all w′ ∈ W (P (CP )):

(2.50) w′(w−1(θG)− θG) = w−1(θG)− θG.

Let w′
CP

∈ W (CP ), by Lemma 2.36 we have w′
CP

w−1
CP

∈ W (P (CP )) and thus by
(2.50):

(w′
CP

w−1
CP

)(w−1(θG)− θG) = w−1(θG)− θG.

Applying w′
CP

−1
we get in particular(

w−1
CP

(w−1(θG)− θG)
)
|ZMP

=
(
w′

CP

−1
(w−1(θG)− θG)

)
|ZMP

from which (i) follows.

(ii) Let λ ∈ X(T ) such that λ|ZMP
= λP . Applying wwCP

to (2.48), it is

sufficient to prove that fθG − w
(
fθG − wCP

(λ)
)
occurs in L

⊗|T (since L
⊗|T is

acted on by the diagonal action of W ↪→ WGal(K/Qp)). Recall from Lemma 2.30(ii)
(and the definition of P (CP )) that

(2.51) fθG − wCP
(λ) ∈

∑
α∈S(P (CP ))

Z≥0α.

For β = w(α) ∈ w(S(P (CP ))) and any w′ ∈ W , we have

〈fθG − w(fθG − w′(λ)), β〉 = 〈ww′(λ), β〉+ f〈θG − w(θG), β〉(2.52)

= 〈ww′(λ), β〉+ f〈w−1(θG)− θG, α〉
= 〈ww′(λ), β〉,
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where the last equality follows from (2.49). This can be rewritten as

sβ
(
fθG − w(fθG − w′(λ))

)
= fθG − w(fθG − w′(λ))− 〈ww′(λ), β〉β(2.53)

= fθG − w(fθG − sαw
′(λ)).

Iterating (2.53), we see that for any wP (CP ) ∈ W (P (CP )), we have for w
′ ∈ W that

(2.54) wwP (CP )w
−1
(
fθG − w(fθG − w′(λ))

)
= fθG − w(fθG − wP (CP )w

′(λ)).

Choose wP (CP ) ∈ W (P (CP )) such that wP (CP )(wCP
(λ)) is dominant for the root

subsystem generated by S(P (CP )), equivalently

(2.55) 〈wwP (CP )wCP
(λ), β〉 ≥ 0 ∀ β ∈ w(S(P (CP ))).

As λ occurs in L
⊗|T , we get that wP (CP )(wCP

(λ)) ∈ wCP
(λ) +

∑
α∈S(P (CP )) Zα

occurs in L
⊗|T (L

⊗
is stable under W ), and thus wP (CP )(wCP

(λ)) ≤ fθG. Since
on the other hand by (2.51):

fθG − wP (CP )(wCP
(λ)) = (fθG − wCP

(λ)) +
∑

α∈S(P (CP ))

Zα ∈
∑

α∈S(P (CP ))

Zα,

we see that we must have

(2.56) fθG − wP (CP )wCP
(λ) ∈

∑
α∈S(P (CP ))

Z≥0α.

Since w(S(P (CP ))) ⊆ S, we deduce 〈w(fθG − wP (CP )wCP
(λ)), β〉 ≤ 0 for β ∈

S\w(S(P (CP ))). In particular we have for such β:

〈fθG − w(fθG − wP (CP )wCP
(λ)), β〉 = f − 〈w(fθG − wP (CP )wCP

(λ)), β〉(2.57)

≥ f.

Combining (2.52) for w′ = wP (CP )wCP
with (2.55) and (2.57), we obtain that

fθG − w(fθG − wP (CP )wCP
(λ)) is a dominant weight. Applying w to (2.56), we

also get since w(S(P (CP ))) ⊆ S:

fθG − w(fθG − wP (CP )wCP
(λ)) ≤ fθG.

Lemma 2.50 then implies that fθG −w(fθG −wP (CP )wCP
(λ)) occurs in L

⊗|T . By
(2.54) applied with w′ = wCP

, we finally deduce that fθG −w(fθG −wCP
(λ)) also

occurs in L
⊗|T .

(iii) By definition S(P (w·CP )) ⊆ S is the union of w′(S(P )) and of the support
of

(2.58) fθG − w′(λ− fw−1
CP

(θG) + f(wwCP
)−1(θG)

)
for any w′ ∈ W such that w′(S(P )) ⊆ S and w′(λ− fw−1

CP
(θG) + f(wwCP

)−1(θG)
)

is the restriction to ZMw′
P

of a dominant weight of X(T ) ⊗Z Q. Consider the

case w′ def
= wwCP

, since wCP
(S(P )) ⊆ S(P (CP )) and w(S(P (CP ))) ⊆ S, we get

w′(S(P )) ⊆ S. Let us check that

w′(λ− fw−1
CP

(θG) + f(wwCP
)−1(θG)

)
= wwCP

(λ)− fw(θG) + fθG

is the restriction to ZMw′
P

of a dominant weight of X(T ) ⊗Z Q. Let λ′ as in

(2.29), since λ|ZMP
= λ′|ZMP

, we have w′(λ)|ZMw′
P

= w′(λ′)|ZMw′
P

and it is enough
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to prove that wwCP
(λ′) − fw(θG) + fθG is dominant. As in (2.52) we have if

α ∈ w(S(P (CP ))):

〈wwCP
(λ′)− fw(θG) + fθG, α〉 = 〈wwCP

(λ′), α〉+ f〈θG − w(θG), α〉
= 〈wCP

(λ′), w−1(α)〉 ≥ 0

since wCP
(λ′) is dominant in X(T ) ⊗Z Q by Proposition 2.32(i), and as in (2.57)

we have if α ∈ S\w(S(P (CP ))):

〈wwCP
(λ′)− fw(θG) + fθG, α〉 = f − 〈w(fθG − wCP

(λ′)), α〉 ≥ f

since w
(
fθG − wCP

(λ′)
)
∈
∑

β∈S(P (CP ))Q≥0w(β) from Proposition 2.32(ii). Now

all that remains is to compute (2.58) for w′ = wwCP
, which gives w(fθG−wCP

(λ)),
the support of which is w(support(fθG − wCP

(λ))). Therefore we obtain

S(P (w · CP )) = w
(
wCP

(S(P )) ∪ support
(
fθG − wCP

(λ)
))

= w
(
S(P (CP ))

)
which finishes the proof.

�
Remark 2.52. If CP is one of the isotypic components of Proposition 2.40, say

associated to fw−1
CP

(θG)|ZMP
for some wCP

∈ W such that

wCP
(S(P )) ⊆ S, and if w ∈ W is such that w(S(P (CP ))) ⊆ S, i.e. wwCP

(S(P )) ⊆
S, we see from (2.48) that w · CP is the isotypic component associated to
f(wwCP

)−1(θG)|ZMP
.

Example 2.53. Let us consider Example 2.35(ii) (Example 2.35(i) only pro-
vides components CP which are either as in Remark 2.52 or such that P (CP ) = G).
If P = B and CP is associated to λId = θG, then w ·CP for w ∈ S3 gives the isotypic
component associated to λw (and there is no w · CP �= CP if CP corresponds to
det since P (CP ) is the whole G). If MP = GL2 ×GL1, consider CP associated
to λ0 and w ∈ S3 the unique permutation e1 �→ e2, e2 �→ e3, e3 �→ e1 (so that
w(S(P (CP ))) = w(e1−e2) ⊆ S). Then w ·CP is the isotypic component associated
to λ2 (here again, there is no w · CP �= CP for CP corresponding to λ1).

2.3. Good conjugates of ρ

Following and generalizing the mod p variant of [BH15, §3.2], we define and
study good conjugates of a continuous ρ : Gal(Qp/K) → G(F) under a mild as-
sumption on ρ (see Definition 2.63) and still assuming K unramified. Though some
of the results might hold for more general split reductive groups, we use here in the
proofs that we work with GLn.

2.3.1. Some preliminaries. We start with a few group-theoretic preliminar-
ies.

We fix a standard parabolic subgroup P of G. Recall that a subset C ⊆ R+

is closed if α ∈ C, β ∈ C with α + β ∈ R+ implies α + β ∈ C. For instance
R(P )+ ⊆ R+ is closed.

Definition 2.54. A subset X ⊆ R+ is a closed subset relative to P if it satisfies
the following three conditions:

(i) it contains R(P )+;
(ii) X\R(P )+ is a closed subset of R+;
(iii) for any w ∈ W (P ), w(X\R(P )+) = X\R(P )+.
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Note that a closed subset relative to B is the same thing as a closed subset and
that R+ is the only closed subset relative to G.

Lemma 2.55. Let X ⊆ R+ be a closed subset relative to P . Then X is a closed
subset of R+.

Proof. Since we already know that both R(P )+ and X\R(P )+ are closed, it
remains to show that if α ∈ R(P )+ and β ∈ X\R(P )+ are such that α + β ∈ R+,
then α+β ∈ X. We work with GLn, and it is then easy to check that α+β = sα(β).
Since sα ∈ W (P ), we have α+ β ∈ X\R(P )+ ⊆ X by Definition 2.54(iii). �

Remark 2.56. Note that Lemma 2.55 doesn’t hold for an arbitrary split con-
nected reductive algebraic group (for instance it doesn’t work for GSp4). An al-
ternative definition would be to consider closed subsets Y of R+\R(P )+ such that
Y ∪R(P ) is also closed.

If X ⊆ R+ is any closed subset, we let NX ⊆ N be the Zariski closed algebraic
subgroup generated by the root subgroups Nα for α ∈ X (see [Jan03, §II.1.7]).
Thanks to Lemma 2.55, we can thus consider NX for any X ⊆ R+ closed relative
to P .

Lemma 2.57.

(i) Let X be a closed subset of R+ relative to P . Then MPNX is a Zariski
closed algebraic subgroup of P containing MP .

(ii) Let P̃ ⊆ P be a Zariski closed algebraic subgroup containing MP . Then

there exists a unique closed subset X relative to P such that P̃ = MPNX .

Proof.

(i) Since MPNX = MPNX\R(P )+ , it is enough to prove that MP normalizes

NX\R(P )+ . Let α ∈ R(P )+, β ∈ X\R(P )+ and let nα ∈ Nα, nβ ∈ Nβ . Then

nαnβn
−1
α =
( ∏
i,j>0

niα+jβ

)
nβ,(2.59)

where the product is over all integers i, j > 0 such that iα+ jβ ∈ R+ (see [Jan03,
§II.1.2]). Since X ⊆ R+ is closed, all these iα + jβ are in X, and since β /∈
R(P )+, they are all in X\R(P )+. Therefore nαnβn

−1
α ∈ NX\R(P )+ . Let w ∈

W (P ), β ∈ X\R(P )+ and nβ ∈ Nβ . Then w(β) ∈ X\R(P )+ implies wnβw
−1 ∈

NX\R(P )+ . The Bruhat decomposition for the reductive group MP then shows that
MP normalizes NX\R(P )+ .

(ii) Let P̃ ⊆ P be a closed algebraic subgroup containing MP . Then P̃ =

MP (P̃ ∩B) = MP (P̃ ∩N) (since T ⊆ MP ⊆ P̃ ). By [BH15, Lemma 3.4.1] applied

to P̃ ∩B ⊆ B, we deduce P̃ ∩N = NX for a (unique) closed subset X ⊆ R+. Since

MP ∩N ⊆ P̃ ∩N , the set X contains R(P )+. Since P̃ ∩NP = NX\R(P )+ , the set

X\R(P )+ is closed, and moreover P̃ = MPNX\R(P )+ . Since MP normalizes NP

and P̃ , it normalizes P̃ ∩ NP = NX\R(P )+ , from which Definition 2.54(iii) easily
follows. �

Licensed to Chinese Academy of Sciences.  Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



50 2. LOCAL-GLOBAL COMPATIBILITY CONJECTURES

Remark 2.58.

(i) The sets R(P )+ and R+ are closed with respect to P (they correspond

respectively to P̃ = MP and P̃ = P in Lemma 2.57). In particular, if X is
closed with respect to P , from w(R+\R(P )+) = R+\R(P )+ and w(X\R(P )+) =
X\R(P )+, we also get w(R+\X) = R+\X for all w ∈ W (P ).

(ii) If X ⊆ R+ is a closed subset relative to P , it follows from the proof of
Lemma 2.57(i) that MP normalizes NX\R(P )+ .

Lemma 2.59. Let X ⊆ R+ be a closed subset relative to P . Then there are
roots α1, . . . , αm ∈ R+\X such that we have a partition

R+ = X � {w(α1) : w ∈ W (P )} � · · · � {w(αm) : w ∈ W (P )}
and such that, for all i, αi is not in the smallest closed subset relative to P con-
taining X and the αj for 1 ≤ j ≤ i− 1.

Proof. Since w(R+\X) = R+\X for all w ∈ W (P ) (Remark 2.58(i)), we
have a partition R+ = X � {w(α1) : w ∈ W (P )} � · · · � {w(αm) : w ∈ W (P )}
for some α1, . . . , αm ∈ R+\X. Denote by h(·) the height of a positive root (see
e.g. [BH15, Rem.2.5.3]). Replacing each αi by a suitable w(αi) for w ∈ W (P ),
we can assume h(αi) maximal among the h(w(αi)), w ∈ W (P ). Permuting the αi

if necessary, we can assume h(α1) ≥ h(α2) ≥ · · · ≥ h(αm). It is enough to prove
that each set X � {w(α1) : w ∈ W (P )} � · · · � {w(αi) : w ∈ W (P )} for 1 ≤ i ≤ m

is closed relative to P , or equivalently that Xi
def
= (X\R(P )+) � {w(α1) : w ∈

W (P )} � · · · � {w(αi) : w ∈ W (P )} satisfies conditions (ii) and (iii) in Definition
2.54 for 1 ≤ i ≤ m. Since (iii) is clear, let us prove (ii), i.e. that each of the Xi is
closed in R+.
This is obvious if i = m since R+\R(P )+ is closed, so we can assume i < m. If
Xi is not closed for some i < m, then its complement in R+ contains an element
x which is the sum of at least two roots of Xi, at least one being in {w′(αj) :
w′ ∈ W (P ), 1 ≤ j ≤ i} (since R+\R(P )+ is closed). Such an element x is in
R(P )+ � {w(αj) : w ∈ W (P ), i + 1 ≤ j ≤ m} and, since w′(Xi) = Xi for w′ ∈
W (P ), it also satisfies w′(x) ∈ R+ for any w′ ∈ W (P ). In particular x can’t be
in R(P )+, and is thus of the form x = w(αk) for some k ∈ {i + 1, . . . ,m} and
some w ∈ W (P ). Thus w(αk) is the sum of at least two roots of Xi, one at least
being in {w′(αj) : w′ ∈ W (P ), 1 ≤ j ≤ i}. Applying a convenient w′ ∈ W (P )
and using again w′(Xi) = Xi, we can modify w if necessary and assume that αj

for some j ∈ {1, . . . , i} appears in the sum of w(αk). This implies in particular
h(w(αk)) > h(αj) for some j ≤ i (see the argument in the proof of [BH15, Lemma
3.2.1]), which is impossible since by assumption h(w(αk)) ≤ h(αk) ≤ h(αj). Hence
Xi is closed for all i. �

Lemma 2.60. Let X ⊆ R+ be a closed subset relative to P , P̃
def
= MPNX and

let w ∈ W such that w(S(P )) ⊆ S. Then the following assertions are equivalent:

(i) wP̃w−1 is contained in wP ;
(ii) w(X\R(P )+) ⊆ R+.

Proof. We have

wP̃w−1 = (wMPw
−1)(wNX\R(P )+w

−1) = (wMPw
−1)Nw(X\R(P )+).

Licensed to Chinese Academy of Sciences.  Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



2.3. GOOD CONJUGATES OF ρ 51

As wP = (wMPw
−1)N , we deduce wP̃w−1 ⊆ wP if and only if w(X\R(P )+) ⊆

R+. �
2.3.2. Good conjugates of a generic ρ. We define good conjugates of a

Gal(Qp/K)-representation ρ under a mild genericity assumption and show how two
good conjugates are related (Theorem 2.65). The intuitive idea is that conjugating
a good conjugate of ρ can only increase the image in G(F).

We fix a continuous homomorphism

ρ : Gal(Qp/K) −→ Pρ(F) ⊆ G(F),(2.60)

where Pρ ⊆ G is a standard parabolic subgroup. We consider

ρPρ−ss : Gal(Qp/K)
ρ−→ Pρ(F) � MPρ

(F),

and assume that the image of ρPρ−ss is not contained in the F-points of a proper
(not necessarily standard) parabolic subgroup of MPρ

. This implies in particular
that Pρ is uniquely determined by the homomorphism ρ. Finally we let ρss be

the homomorphism Gal(Qp/K) → G(F) obtained by composing ρPρ−ss with the
inclusion MPρ

(F) ⊆ G(F) (so ρss is the usual semisimplification of ρ). We let Xρ be

the smallest closed subset of R+ relative to Pρ such that P̃ρ(F)
def
= MPρ

(F)NXρ
(F)

contains all the ρ(g), g ∈ Gal(Qp/K). By Lemma 2.57, P̃ρ is the smallest closed

algebraic subgroup of Pρ containing MPρ such that ρ takes values in P̃ρ(F), i.e.

ρ : Gal(Qp/K) → P̃ρ(F) ↪→ Pρ(F) ↪→ G(F). Note that Xρss = R(P )+ and P̃ρPρ−ss =

MPρ .

Lemma 2.61. Assume that the irreducible constituents of ρss of dimension 1
(i.e. the characters of Gal(Qp/K) occurring in ρss) are all distinct. Let α ∈ R+\Xρ

and nα ∈ Nα(F)\{1}. Then Xnαρn−1
α

is the smallest closed subset relative to Pρ

containing Xρ and α.

Proof. The proof of this lemma is quite technical, but is no more than simple
computations in GLn. We denote by Xρ,α ⊆ R+ the smallest closed subset relative

to Pρ containing Xρ and α and by X̃ρ ⊆ Xρ the subset of roots which are not the

sum of at least two roots of Xρ,α. For g ∈ Gal(Qp/K) we can write

ρ(g) = ρPρ−ss(g)
∏

β∈Xρ\R(Pρ)+

nβ(g),(2.61)

where ρPρ−ss(g) ∈ MPρ(F) and nβ(g) ∈ Nβ(F). Using (2.59), we see that

nα

( ∏
β∈Xρ\R(Pρ)+

nβ(g)
)
n−1
α ∈
∏
γ

Nγ(F),(2.62)

where γ runs among the roots in R+ of the form Z≥0α + Z>0β1 + · · ·+ Z>0βs for
s ≥ 1 and βi ∈ Xρ\R(Pρ)

+. This clearly implies Xnαρn−1
α

⊆ Xρ,α. To prove the

reverse inclusion, it is enough to prove X̃ρ ⊆ Xnαρn−1
α

and w(α) ∈ Xnαρn−1
α

for

some w ∈ W (Pρ) (as then α ∈ Xnαρn−1
α

by Remark 2.58(i)).

An easy explicit matrix computation in GLn (that we leave to the reader) gives
that nαρ

Pρ−ss(g)n−1
α is of the form in GLn(F):

nαρ
Pρ−ss(g)n−1

α ∈ ρPρ−ss(g)
∏

β∈{w(α):w∈W (Pρ)}
mβ(g)(2.63)
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with mβ(g) ∈ Nβ(F) (note that, as w ∈ W (Pρ), w(α) is of the form α + n1α1 +
· · · + ntαt for some t ≥ 0, αi ∈ S(Pρ), ni ∈ Z). It then follows from (2.62) and

(2.63) that, for β ∈ X̃ρ\(X̃ρ ∩R(Pρ)
+), the entry nβ(g) in (2.61) is not affected by

the conjugation by nα. In particular, we have X̃ρ ⊆ Xnαρn−1
α
.

We now prove that w(α) ∈ Xnαρn−1
α

for some w ∈ W (Pρ). We first claim that

none of the roots γ in (2.62) are in {w(α) : w ∈ W (Pρ)}. Indeed, assume w(α) =
mα+m1β1+ · · ·+msβs for some s ≥ 0, m ≥ 0, βi ∈ Xρ\R(Pρ)

+, mi > 0. If m = 0,
then we get w(α) = m1β1 + · · · +msβs ∈ Xρ\R(Pρ)

+ since Xρ\R(Pρ)
+ is closed

in R+, which implies α ∈ Xρ\R(Pρ)
+ by Definition 2.54(iii), a contradiction. If

m > 0, then we get (m−1)α+m1β1+ · · ·+msβs = n1α1+ · · ·+ntαt (writing w(α)
as in the above form), which implies in particular all βi ∈ R(Pρ)

+, a contradiction.

We deduce from this that for all g ∈ Gal(Qp/K):

nαρ(g)n
−1
α ∈ nαρ

Pρ−ss(g)n−1
α

∏
γ

Nγ(F)

with γ in R+\
(
R(Pρ)

+ � {w(α) : w ∈ W (Pρ)}
)
.

We can see ρPρ−ss(g) as a block matrix diag(ρ1(g), . . . , ρd(g)), where
ρi : Gal(Qp/K) → GLni

(F) is irreducible. Assume that {w(α) : w ∈ W (Pρ)} �
{α}. Then using that, for fixed i, the ρi(g) for g ∈ Gal(Qp/K) do not take all values
in the F-points of a strict (not necessarily standard) parabolic subgroup of GLni

, one
can check that at least one mβ(g) in (2.63) is nontrivial for some g ∈ Gal(Qp/K).
If {w(α) : w ∈ W (Pρ)} = {α}, then there are integers 1 ≤ i < j ≤ d such that
ni = nj = 1 and the non-diagonal entry in mα(g) is (ρi(g) − ρj(g))xα, where

xα ∈ F× is the non-diagonal entry in nα. By assumption, there is at least one
g ∈ Gal(Qp/K) such that ρi(g) �= ρj(g), which implies mα(g) �= 1 for that g.
Hence we finally deduce that

nαρ(g)n
−1
α ∈ ρPρ−ss(g)

( ∏
β∈{w(α):w∈W (Pρ)}

mβ(g)

)∏
γ

Nγ(F)

with γ in R+\
(
R(Pρ)

+ � {w(α) : w ∈ W (Pρ)}
)
and at least one mβ(g) being

nontrivial for some g ∈ Gal(Qp/K) and some β ∈ {w(α) : w ∈ W (Pρ)}. This
implies that this β is in Xnαρn−1

α
and finishes the proof. �

Proposition 2.62. Let ρ : Gal(Qp/K) → Pρ(F) and Xρ as below (2.60), and
assume that the irreducible constituents of ρss of dimension 1 are all distinct. Then
there is h0 ∈ Pρ(F) (non unique in general) such that Xh0ρh

−1
0

⊆ Xhρh−1 for all

h ∈ Pρ(F).

Proof. The proof is modelled on that of [BH15, Prop.3.2.3]. Since MPρ

normalizes NXρ\R(Pρ)+ (Remark 2.58(ii)), it is enough to prove the same statement

with h0, h ∈ NPρ(F). Using that ρPρ−ss(g)−1hρPρ−ss(g) ∈ NXρ\R(Pρ)+(F) for h ∈
NXρ\R(Pρ)+(F) ⊆ NPρ(F) by Remark 2.58(ii) again, and that NXρ\R(Pρ)+(F) is a
group, we deduce Xhρh−1 ⊆ Xρ for all h ∈ NXρ\R(Pρ)+(F). Replacing ρ by a

suitable conjugate h0ρh
−1
0 with h0 ∈ NXρ\R(Pρ)+(F), we can assume Xhρh−1 =

Xρ for all h ∈ NXρ\R(Pρ)+(F). It is enough to prove Xρ ⊆ Xhρh−1 for all h ∈
NPρ(F). Choosing roots α1, . . . , αm ∈ R+\Xρ as in Lemma 2.59 (for P = Pρ

and X = Xρ), we can write any h ∈ NPρ
(F) as h = hmhm−1 · · ·h1hρ, where
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hi ∈
∏

β∈{w(αi):w∈W (Pρ)} Nβ(F) and hρ ∈ NXρ\R(Pρ)+(F). We have Xhρρh
−1
ρ

= Xρ

and a straightforward induction applying successively Lemma 2.61 to Xhρρh
−1
ρ

and

α = α1, Xh1hρρ(h1hρ)−1 and α = α2, etc. (which we can do thanks to Lemma 2.59)

gives that Xhρh−1 is the smallest closed subset of R+ relative to Pρ containing Xρ

and the αi, i = 1, . . . ,m. In particular Xρ ⊆ Xhρh−1 for all h ∈ NPρ(F). �

Definition 2.63. Let ρ : Gal(Qp/K) −→ G(F) be a continuous homomor-
phism such that the irreducible constituents of ρss of dimension 1 are all distinct.
A good conjugate of ρ is a conjugate ρ′ of ρ in G(F) which satisfies the two condi-
tions:

(i) it is of the form ρ′ : Gal(Qp/K) → Pρ′(F) ⊆ G(F) for a standard para-

bolic subgroup Pρ′ of G such that the image of ρ′
Pρ′−ss

: Gal(Qp/K)
ρ′

→
Pρ′(F) � MPρ′ (F) is not contained in the F-points of a proper parabolic
subgroup of MPρ′ ;

(ii) Xρ′ ⊆ Xhρ′h−1 for all h ∈ Pρ′(F).

From Proposition 2.62, we easily deduce that good conjugates always exist. If
ρ is irreducible, then any conjugate of ρ in G(F) is a good conjugate.

For ρ : Gal(Qp/K) −→ P̃ρ(F) ⊆ Pρ(F) as in (2.60), set

Wρ
def
= {w ∈ W : w(S(Pρ)) ⊆ S and w(Xρ\R(Pρ)

+) ⊆ R+}
= {w ∈ W : w(S(Pρ)) ⊆ S and wP̃ρw

−1 ⊆ wPρ},
(2.64)

where the second equality follows from Lemma 2.60. Using the definition of Xρ we
see that, for any w ∈ Wρ, we have Xwρw−1 = w(Xρ), where

wρw−1 : Gal(Qp/K) −→ wP̃ρ(F)w
−1 = P̃wρw−1(F) ⊆ (wPρ)(F).

(and note that the set Xwρw−1 is relative to wPρ, while the set Xρ is relative to
Pρ).

Lemma 2.64. Let ρ : Gal(Qp/K) → G(F) as in Definition 2.63 and ρ′ :

Gal(Qp/K) → P̃ρ′(F) ⊆ Pρ′(F) a good conjugate of ρ (where P̃ρ′
def
= MPρ′NXρ′ =

MPρ′NXρ′\R(Pρ′ )
+). Then any hρ′h−1 for h ∈ P̃ρ′(F) and any wρ′w−1 for w ∈ Wρ′

is a good conjugate of ρ. Moreover we have Xhρ′h−1 = Xρ′ and Xwρ′w−1 = w(Xρ′).

Proof. Again, the proof is formally the same as that of [BH15, Lemma 3.2.5].

The statement is obvious for h ∈ P̃ρ′(F) (as hNX\R(P )+h
−1 = NX\R(P )+ for any X

closed subset relative P and any h ∈ NX\R(P )+) and the very last equality follows
from the discussion just above. Following the argument in the proof of Proposition
2.62, it is enough to check

Xh(wρ′w−1)h−1 = Xwρ′w−1

for all h ∈ NXwρ′w−1\R(Pwρ′w−1 )+(F) = Nw(Xρ′\R(Pρ′ )
+)(F). We have

h(wρ′w−1)h−1 = w(w−1hw)ρ′(w−1h−1w)w−1.

Since w−1hw ∈ NXρ′\R(Pρ′ )
+(F), we have X(w−1hw)ρ′(w−1h−1w) ⊆ Xρ′ and since ρ′

is a good conjugate, we have Xρ′ ⊆ X(w−1hw)ρ′(w−1h−1w), hence

Xρ′ = X(w−1hw)ρ′(w−1h−1w).
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Applying the discussion just before this lemma to (w−1hw)ρ′(w−1h−1w) and then
to ρ′, we thus get Xh(wρ′w−1)h−1 = w(X(w−1hw)ρ′(w−1h−1w)) = w(Xρ′) = Xwρ′w−1 .

�

We now state and prove the main result of this section (see [BH15, Prop.3.2.6]).

Theorem 2.65. Let ρ : Gal(Qp/K) → G(F) be a continuous homomorphism
such that the irreducible constituents of ρss of dimension 1 are all distinct. Let ρ′

and ρ′′ be two good conjugates of ρ. Then there exist h ∈ P̃ρ′(F) and w ∈ Wρ′ such
that ρ′′ = w(hρ′h−1)w−1. In particular we have Xρ′′ = w(Xρ′).

Proof. By assumption there is x ∈ G(F) such that ρ′′(g) = xρ′(g)x−1 for all
g ∈ Gal(Qp/K). We can write x = h′′wh′ with h′ ∈ Pρ′(F), h′′ ∈ Pρ′′(F) and
w ∈ W such that w(R(Pρ′)+) ⊆ R+.

Step 1: We prove that w(S(Pρ′)) = S(Pρ′′). We have wh′ρ′(g)h′−1
w−1 ∈ Pρ′′(F)

for all g ∈ Gal(Qp/K), which implies h′ρ′(g)h′−1 ∈ (w−1Pρ′′w ∩ Pρ′)(F) ⊆ Pρ′(F)
for all g ∈ Gal(Qp/K). In particular, using for instance [DM91, Prop.2.1(iii)],

the image of h′ρ′h′−1
in MPρ′ (F) is contained in the F-points of the parabolic

subgroup w−1Pρ′′w ∩ MPρ′ of MPρ′ . But since (h′ρ′h′−1
)Pρ′−ss is conjugate to

ρ′
Pρ′−ss

(recall h′ ∈ Pρ′(F)), the image of h′ρ′h′−1
inMPρ′ (F) is not contained in the

F-points of a proper parabolic subgroup of MPρ′ . Thus we must have w−1Pρ′′w ∩
MPρ′ = MPρ′ which implies MPρ′ ⊆ w−1MPρ′′w. The same argument starting

with w−1h′′−1
ρ′′(g)h′′w ∈ Pρ′(F) yields MPρ′′ ⊆ wMPρ′w

−1, i.e. we have MPρ′ =

w−1MPρ′′w. Since by assumption w(R(Pρ′)+) ⊆ R+, this forces w(S(Pρ′)) =

S(Pρ′′) (and thus w(R(Pρ′)+) = R(Pρ′′)+).
Step 2: We choose roots α′

1, . . . , α
′
m′ ∈ R+\Xρ′ as in Lemma 2.59 (for P = Pρ′ and

X = Xρ′) and we write

h′ = h′
m′h′

m′−1 · · ·h′
1h

′
ρ,

where h′
i ∈
∏

β∈{w′(α′
i):w

′∈W (Pρ′ )}Nβ(F) and h′
ρ′ ∈ P̃ρ′(F). By Lemma 2.64, we

can replace ρ′ by h′
ρ′ρ′h′−1

ρ′ and thus assume h′
ρ′ = 1. By Lemma 2.61 and an

induction as in the proof of Proposition 2.62, Xh′ρ′h′−1 is the smallest closed subset

relative to Pρ′ containing Xρ′ and those α′
i such that h′

i �= 1. Since w(h′ρ′h′−1
)w−1

takes values in Pρ′′(F) and w(R(Pρ′)) = R(Pρ′′) (by Step 1), we must also have
w(Xh′ρ′h′−1\R(Pρ′)+) ⊆ R+\R(Pρ′′)+. This implies ww′(α′

i) ∈ R+ if w′ ∈ W (Pρ′)

and h′
i �= 1, and w(Xρ′\R(Pρ′)+) ⊆ R+. In particular w ∈ Wρ′ together with Step

1.
Step 3: We prove that Xρ′′ = w(Xρ′). Setting

hi
def
= wh′

iw
−1 ∈

∏
β∈{ww′(α′

i):w
′∈W (Pρ′ )}

Nβ(F) ⊆ Pρ′′(F)

(we proved ww′(α′
i) ∈ R+ in Step 2), we have

ρ′′ = h′′(hm′ · · ·h1)(wρ
′w−1)(h−1

1 · · ·h−1
m′ )h

′′−1
,(2.65)

where h′′hm′ · · ·h1 ∈ Pρ′′(F) and where ρ′′ and wρ′w−1 are good conjugates of ρ
(the latter by Lemma 2.64). Applying Definition 2.63 to both ρ′′ and wρ′w−1, we

get Xρ′′ = Xwρ′w−1 = w(Xρ′) (and thus w−1P̃ρ′′w = P̃ρ′).
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Step 4 : We complete the proof. We choose again roots α′′
1 , . . . , α

′′
m′′ ∈ R+\Xwρ′w−1

as in Lemma 2.59 for P = Pwρ′w−1 = Pρ′′ (this latter equality from Remark 2.23)
and X = Xwρ′w−1 = Xρ′′ and we write

h′′(hm′ · · ·h1) = h′′
m′′h′′

m′′−1 · · ·h′′
1h

′′
Xρ′′

,

where h′′
i ∈
∏

β∈{w′′(α′′
i ):w

′′∈W (Pρ′′ )}Nβ(F) and h′′
Xρ′′

∈ P̃wρ′w−1(F) = P̃ρ′′(F). From

(2.65) and Lemma 2.61, we see that we must have h′′
i = 1 for all i ∈ {1, . . . ,m′′}

otherwise Xρ′′ would be strictly bigger that Xwρ′w−1 . Thus we deduce

ρ′′ = h′′
Xρ′′

wρ′w−1h′′−1
Xρ′′

= w(w−1h′′
Xρ′′

w)ρ′(w−1h′′−1
Xρ′′

w)w−1.

Setting h
def
= w−1h′′

Xρ′′
w ∈ w−1P̃ρ′′(F)w = P̃ρ′(F), this finishes the proof. �

2.4. The definition of compatibility

Given a sufficiently generic n-dimensional representation of Gal(Qp/K) over F
(where K = Qpf is still unramified) and a good conjugate ρ of this representation
as in Definition 2.63, we define what it means for a smooth representation of G(K)

over F to be compatible with P̃ρ (Definition 2.70, see the beginning of §2.3.2 for P̃ρ)
and to be compatible with ρ (Definition 2.81).

2.4.1. Compatibility with P̃ . We first define what it means for a smooth

representation of G(K) over F to be compatible with a Zariski closed subgroup P̃
of a standard parabolic subgroup P as in Definition 2.22. We keep the notation of
§§2.2, 2.3.

We fix a Zariski closed algebraic subgroup P̃ of a standard parabolic subgroup

P of G as in Definition 2.22 (by Remark 2.23, P is in fact determined by P̃ ). We let

X be the unique closed subset of R+ relative to P such that P̃ = MPNX (Lemma
2.57) and define

WP̃

def
= {w ∈ W : w(S(P )) ⊆ S, w(X\R(P )+) ⊆ R+}.

Note that WP̃ is analogous to Wρ in (2.64) with P̃ρ replaced by P̃ .
Let Q be a parabolic subgroup containing wP̃P for some wP̃ ∈ WP̃ , wQ an

element of W such that wQ(S(Q)) ⊆ S and Q′ a parabolic subgroup containing
wQQ (note that both Q and Q′ are standard). So we have inclusions of standard
parabolic subgroups wQwP̃P ⊆ wQQ ⊆ Q′ and likewise for the Levi subgroups

MwQw
P̃P = wQwP̃MP (wQwP̃ )

−1 ⊆ MwQQ = wQMQw
−1
Q ⊆ MQ′ .

Using that we work with GLn, we write

MQ′ = diag(M1, . . . ,Md)

with Mi
∼= GLni

and we define the standard parabolic subgroup (wQQ)i of Mi as

(wQQ)i
def
= Im
(
wQQ ↪→ Q′ � MQ′ � Mi

)
.

We define a standard parabolic subgroup (wQwP̃P )Q of MwQQ, resp. a standard
parabolic subgroup (wQwP̃P )Q,i of M(wQQ)i , as the image of wQwP̃P via wQwP̃P ⊆
wQQ � MwQQ, resp. via

wQwP̃P ⊆ wQQ � MwQQ � M(wQQ)i . Equivalently,

(wQwP̃P )Q = wQ(
wP̃P ∩MQ)w

−1
Q ⊆ wQMQw

−1
Q = MwQQ

(wQwP̃P )Q,i = Im
(
wQ(

wP̃P ∩MQ)w
−1
Q ⊆ MwQQ � M(wQQ)i

)
.
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Note that

M(
wQw

P̃P )Q
= wQM(

w
P̃P )∩MQ

w−1
Q = wQwP̃MP (wQwP̃ )

−1.

We finally define a Zariski closed algebraic subgroup (wQwP̃P̃ )Q of (wQwP̃P )Q con-

taining M(
wQw

P̃P )Q
, resp. a Zariski closed algebraic subgroup (wQwP̃P̃ )Q,i

of (wQwP̃P )Q,i containing M(
wQw

P̃P )Q,i
, as

(wQwP̃P̃ )Q
def
= wQ

(
(wP̃ P̃w−1

P̃
) ∩MQ

)
w−1

Q ⊆ wQ(
wP̃P ∩MQ)w

−1
Q = (wQwP̃P )Q

(wQwP̃P̃ )Q,i
def
= Im
(
wQ

(
(wP̃ P̃w−1

P̃
) ∩MQ

)
w−1

Q ⊆ MwQQ � M(wQQ)i

)
.

We also define the continuous group homomorphism

ω−1 ◦ θQ′
: Q′−(K) −→ MQ′(K)

θQ′

−→ K× ω−1

−→ F×
p ↪→ F×,

where θQ
′
is defined in (2.37) (applied with P = Q′).

We need a quite formal and easy lemma.

Lemma 2.66. Let Π be a smooth representation of a p-adic analytic group over
F which has finite length and distinct absolutely irreducible constituents. Let H be a
split connected reductive algebraic group over Z, PH ⊆ H a parabolic subgroup with

Levi MPH
, P̃H ⊆ PH a Zariski closed algebraic subgroup containing MPH

and R

a (finite-dimensional) algebraic representation of P
Gal(K/Qp)
H over F. Assume that

there exist

(a) a filtration on R by good subrepresentations for the P
Gal(K/Qp)
H -action (see

Definition 2.22) such that the graded pieces exhaust the isotypic compo-
nents of R|ZMPH

;

(b) a bijection Φ of partially ordered finite sets between the set of subre-
presentations of Π and the set of good subrepresentations of R|

P̃
Gal(K/Qp)

H

(both being ordered by inclusion).

Then the following hold:

(i) The bijection Φ uniquely extends to bijections between subquotients of
Π and good subquotients of R|

P̃
Gal(K/Qp)

H

, and between irreducible con-

stituents of Π and isotypic components of R|ZMPH
.

(ii) If Π′ is a subquotient of Π, then Φ induces a bijection of partially ordered
finite sets between the set of subrepresentations of Π′ and the set of good
subrepresentations of Φ(Π′)|

P̃
Gal(K/Qp)

H

.

Proof. Formal and left to the reader. �
Remark 2.67. (i) Let Π and Φ as in Lemma 2.66, Π′ a subquotient of Π

and Π′′ ⊆ Π′ a subrepresentation. Then the bijection Φ also induces a short exact
sequence 0 → Φ(Π′′) → Φ(Π′) → Φ(Π′/Π′′) → 0 of algebraic representation of

P̃
Gal(K/Qp)
H over F.

(ii) By Lemma 2.24 applied with P there being the parabolic wP̃P above, we

see that Lemma 2.66 can be applied with H = G, PH = wP̃P , P̃H = wP̃ P̃w−1

P̃
and

R = L
⊗
. Using moreover Lemma 2.25, one easily sees that Lemma 2.66 can also be

applied with H = MQ, PH = wP̃P ∩MQ, P̃H = (wP̃ P̃w−1

P̃
)∩MQ and R any isotypic
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component CQ of L
⊗|ZMQ

(recall from (the proof of) Lemma 2.24 applied with P

there being Q that the action

of QGal(K/Qp) on the subquotient CQ of L
⊗|QGal(K/Qp) factors through QGal(K/Qp) �

M
Gal(K/Qp)
Q ).

(iii) Let Q as above, CQ an isotypic component of L
⊗|ZMQ

, Q′ def
= P (CQ) (see

§2.2.2) and wQ ∈ W (CQ) (see (2.31) and note that wQQ ⊆ Q′ by (2.32)). Lemma

2.66 can also be applied with H = M(wQQ)i , PH = (wQwP̃P )Q,i, P̃H = (wQwP̃P̃ )Q,i

and R = CwQ,i, where CwQ,i is the algebraic representation of M
Gal(K/Qp)

(wQQ)i
defined

in Remark 2.49 with P there being Q (it is an isotypic component of L
⊗
i |ZM

(
wQQ)i

).

To prove that assumption (a) of Lemma 2.66 is satisfied in that case, note that CwQ,i

is a good subquotient of L
⊗
i |(wQQ)

Gal(K/Qp)

i

, and thus a fortiori a good subquotient

of L
⊗
i |(wQw

P̃P )
Gal(K/Qp)

Q′,i
(Lemma 2.25), where (wQwP̃P )Q′,i ⊆ (wQQ)i ⊆ Mi is the

standard parabolic subgroup of Mi with the same Levi as (wQwP̃P )Q,i. We have

(wQwP̃P̃ )Q,i ⊆ (wQwP̃P )Q,i ⊆ (wQwP̃P )Q′,i ⊆ Mi

and (wQwP̃P̃ )Q,i is a closed algebraic subgroup of (wQwP̃P )Q′,i containing

M(
wQw

P̃P )Q′,i
= M(

wQw
P̃P )Q,i

.

One then applies Lemma 2.24 with L
⊗
i and with

(wQwP̃P̃ )Q,i ⊆ (wQwP̃P )Q′,i ⊆ Mi

instead of P̃ ⊆ P ⊆ G, which implies that there is a filtration on

CwQ,i|(wQw
P̃P̃ )

Gal(K/Qp)

Q,i

(or on CwQ,i|(wQw
P̃P )

Gal(K/Qp)

Q′,i
, and thus on CwQ,i|(wQw

P̃P )
Gal(K/Qp)

Q,i

) by good sub-

representations such that the graded pieces exhaust the isotypic components of
CwQ,i|ZM

(
wQw

P̃P )Q,i

= CwQ,i|ZM
(
wQw

P̃P )
Q′,i

.

Lemma 2.68. Let P̃ ⊆ P , wP̃ ∈ WP̃ and Q containing wP̃P as above. Let CQ

be an isotypic component of L
⊗|ZMQ

and Q′ def
= P (CQ).

(i) For any wQ ∈ W (CQ), there is a canonical bijection of partially ordered
finite sets between the set of good subrepresentations of

CQ|(wP̃ P̃w−1

P̃
)Gal(K/Qp) = CQ|((wP̃ P̃w−1

P̃
)∩MQ)Gal(K/Qp)

(where the equality follows from Remark 2.67(ii)) and the set of good
subrepresentations of wQ(CQ)|(wQw

P̃P̃ )
Gal(K/Qp)

Q

.

(ii) For any wQ, w
′
Q ∈ W (CQ) and i ∈ {1, . . . , d}, there is a canonical bijec-

tion of partially ordered finite sets between the set of good subrepresenta-
tions of CwQ,i|(wQw

P̃P̃ )
Gal(K/Qp)

Q,i

and the set of good subrepresentations of

Cw′
Q,i|

(
w′

Q
w

P̃P̃ )
Gal(K/Qp)

Q,i

.
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Proof.

(i) follows from the definition of wQ(CQ) in (2.39) and the fact that

(wQwP̃P̃ )Q = wQ

(
(wP̃ P̃w−1

P̃
) ∩MQ

)
w−1

Q .

(ii) We have w′
Q = wQ′wQ with wQ′ ∈ W (P (CQ)) = W (Q′) by Lemma 2.36

(applied with P there being Q). In particular wQ′(wQ(S(Q))) ⊆ S which implies

(w
′
QwP̃P̃ )Q,i = wQ′(wQwP̃P̃ )Q,iw

−1
Q′ inside M

(
w′

QQ)i
= wQ′M(wQQ)iw

−1
Q′ (viewing wQ′

as an element in W (Mi) by abuse of notation). By (2.47) (applied with P there
being Q) we have Cw′

Q,i = wQ′(CwQ,i), where the conjugation by w−1
Q′ intertwines

the actions of (w
′
QwP̃P̃ )Q,i and of (wQwP̃P̃ )Q,i. The result follows.

�

Remark 2.69. The bijections in Lemma 2.68 all extend to bijections between
good subquotients or isotypic components on both sides, as for Lemma 2.66.

Let Π, H, PH , P̃H , R and Φ be as in Lemma 2.66. For any wH ∈ WH

(the Weyl group of H) such that wH P̃Hw−1
H is contained in a standard parabolic

subgroup of H, we can define another bijection wH(Φ) between the set of subquo-
tients of Π and the set of good subquotients of R|(wH P̃Hw−1

H )Gal(K/Qp) as follows:

wH(Φ)(Π′) is the algebraic representation wH

(
Φ(Π′)
)
of (wH P̃Hw−1

H )Gal(K/Qp),

where wH

(
Φ(Π′)
)
(g)

def
= Φ(Π′)(w−1

H gwH) if g ∈ (wH P̃Hw−1
H )Gal(K/Qp), see (2.39).

Here is now the first crucial definition.

Definition 2.70. An admissible smooth representation Π of G(K) over F
which has finite length and distinct absolutely irreducible constituents is compatible

with P̃ if there exists a bijection Φ of partially ordered finite sets between the set

of subrepresentations of Π and the set of good subrepresentations of L
⊗|P̃Gal(K/Qp)

(both being ordered by inclusion) which satisfies the following conditions (once
extended to all subquotients as in Lemma 2.66):

(i) (form of subquotients) for any wP̃ ∈ WP̃ , any parabolic subgroup

Q containing wP̃P and any isotypic component CQ of L
⊗|ZMQ

, writing

MP (CQ) = M1 × · · · ×Md with Mi
∼= GLni

we have

(2.66) wP̃ (Φ)
−1(CQ) ∼= Ind

G(K)
P (CQ)−(K)

(
π(CQ)⊗ (ω−1 ◦ θP (CQ))

)
,

where P (CQ) is defined in §2.2.2, θP (CQ) is defined in (2.37) and where
π(CQ) is a MP (CQ)-representation of the form π(CQ) ∼= π1(CQ) ⊗ · · · ⊗
πd(CQ) for some (finite length) admissible smooth representations πi(CQ)
of Mi(K) over F;

(ii) (compatibility between subquotients) for any wP̃ ∈ WP̃ , any para-

bolic subgroup Q containing wP̃P , any isotypic component CQ of L
⊗|ZMQ

and any w ∈ W such that w
(
S(P (CQ))

)
⊆ S, let w(π(CQ)) be the rep-

resentation of MwP (CQ)(K) = wMP (CQ)(K)w−1 defined by

w(π(CQ))(g)
def
= π(CQ)(w

−1gw)
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for π(CQ) as in (2.66) and g ∈ MwP (CQ)(K). Then we have

π
(
w · CQ

) ∼= w
(
π(CQ)

)
,

where w · CQ is the isotypic component of L
⊗|ZMQ

in Propo-

sition 2.51(ii) (applied with P there being Q) and where π(w · CQ) is
as in (2.66) for the isotypic component w · CQ instead of CQ (note that
P (w · CQ) =

wP (CQ) by Proposition 2.51(iii));

(iii) (product structure) for any wP̃ ∈ WP̃ , any parabolic subgroup Q con-

taining wP̃P , any isotypic component CQ of L
⊗|ZMQ

, and one, or equiva-

lently any by Lemma 2.68(ii), element wQ ∈ W (CQ), writing MP (CQ) =
diag(M1, . . . ,Md) with Mi

∼= GLni
, the restriction of wP̃ (Φ) to the set

of subquotients of wP̃ (Φ)
−1(CQ) comes from d bijections wP̃ (Φ)wQ,i of

partially ordered sets between the set of Mi(K)-subrepresentations of
πi(CQ) (where πi(CQ) is as in (i)) and the set of good subrepresenta-
tions of CwQ,i|(wQw

P̃P̃ )
Gal(K/Qp)

Q,i

(where CwQ,i is the isotypic component of

L
⊗
i |ZM

(
wQQ)i

with its M
Gal(K/Qp)

(wQQ)i
-action in (2.46) applied with P there

being Q) in the following sense: for any subquotient Π′ of Φ−1(CQ) of
the form

Π′ ∼= Ind
G(K)
P (CQ)−(K)

(
(π′

1 ⊗ · · · ⊗ π′
d)⊗ (ω−1 ◦ θP (CQ))

)
with π′

i a subquotient of πi(CQ), the good subquotient wP̃ (Φ)(Π
′) of

CQ|(wP̃ P̃w−1

P̃
)Gal(K/Qp) = CQ|((wP̃ P̃w−1

P̃
)∩MQ)Gal(K/Qp)

corresponds via Lemma 2.68(i) and Remark 2.69 to the following alge-

braic representation of (wQwP̃P̃ )
Gal(K/Qp)
Q =

∏d
i=1(

wQwP̃P̃ )
Gal(K/Qp)
Q,i :

d⊗
i=1

(
wP̃ (Φ)wQ,i(π

′
i)⊗
(
(θP (CQ))i ⊗ · · · ⊗ (θP (CQ))i︸ ︷︷ ︸

Gal(K/Qp)

))
;

(iv) (supersingular) for any isotypic component CP of L
⊗|ZMP

, the (abso-

lutely irreducible) MP (CP )(K)-representation π(CP ) of (2.66) is super-
singular (cf. [Her11, Def.4.7, Def.9.12, Cor.9.13]).

If (Π,Φ) is as in Definition 2.70, then we have in particular Φ(Π) = L
⊗

and

wP̃ (Φ)wQ,i(πi(CQ)) = CwQ,i. If P̃ = G, then Π is compatible with P̃ if and only if
Π is absolutely irreducible supersingular. Also it is clear from Definition 2.70 that,

for a fixed wP̃ ∈ WP̃ , Π is compatible with P̃ if and only if Π is compatible with

wP̃ P̃w−1

P̃
(replace Φ by wP̃ (Φ)).

Remark 2.71.

(i) In Definition 2.70, we have used Lemma 2.66 everywhere (see Remark
2.67(ii)(iii)). In Definition 2.70(iii), we have used Remark 2.69. Also, Definition
2.70 is somewhat redundant since a parabolic subgroup Q can contain wP̃P for
several wP̃ ∈ WP̃ , but we found it too tedious to make it “non-redundant”.
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(ii) The representations π(CQ) and πi(CQ) in Definition 2.70(i) are
uniquely defined since there are no nontrivial intertwinings between parabolic in-
ductions (by [Eme10a]).

(iii) When Q = wP̃P , π(Cw
P̃P ) in (2.66) is absolutely irreducible, and is thus

automatically of the form π(Cw
P̃P )

∼= π1(Cw
P̃P ) ⊗ · · · ⊗ πd(Cw

P̃P ). It is then
not difficult to deduce from this, together with Lemma 2.34 and [Eme10a] (and
the properties of Φ), that each πi(CQ) as in (2.66) has distinct (absolutely) irre-
ducible constituents and that each irreducible constituent of (2.66) is of the form

Ind
G(K)
P (CQ)−(K)

(
(π′

1⊗· · ·⊗π′
d)⊗(ω−1◦θP (CQ))

)
, where π′

i is an irreducible constituent

of πi(CQ). This also justifies the terminology “comes from d bijections wP̃ (Φ)wQ,i”
in Definition 2.70(iii).

(iv) It is in fact possible that Definition 2.70(i) for parabolic subgroups Q
strictly containing some wP̃P and Definition 2.70(iii) both automatically follow from
the other conditions in Definition 2.70. See for instance how the results of [Hau18]
are used in Example 2, Example 4, Example 5 and Example 6 of §2.4.3 below to
show that several conditions of Definition 2.70 are automatic in special cases.

(v) In Definition 2.70(iii), we have to use some element wQ of W (CQ) and
“pass through wQ(CQ)” because of Remark 2.39(ii) (see also the end of Remark
2.49). Nothing in here and what follows depends on the choice of such a wQ.

(vi) For a given Π compatible with P̃ , a bijection Φ as in Definition 2.70 is not

unique in general (consider the case P̃ = MP ).

(vii) In Definition 2.70, it is necessary in general to consider all elements wP̃ ∈
WP̃ , note just wP̃ = 1, otherwise one misses some condition, see for instance (2.90)
below (note that this is also quite natural in view of Theorem 2.65).

Example 2.72. Let us consider the case n = 3, K = Qp and P̃ = P with MP =
GL2 ×GL1 in the last part of Example 2.35(ii) (see also Example 2.53). We denote
by P ′ the standard parabolic subgroup of Levi GL1 ×GL2. Then Π is compatible

with P̃ if and only Π has 3 irreducible constituents and the following form (a line
means a nonsplit extension of length 2 as a subquotient and the constituent on the
left-hand side is the socle):

Ind
GL3(Qp)

P−(Qp)

(
π · (ω−1 ◦ det)⊗ χ

)
SS Ind

GL3(Qp)

P ′−(Qp)

(
χω−2 ⊗ π

)
where χ : Q×

p → F× is a smooth character, π is a supersingular representation of

GL2(Qp) and SS is a supersingular representation of GL3(Qp). The case P̃ = MP

is analogous but with a semisimple Π (instead of nonsplit extensions). See also
§2.4.3 below for more examples.

The following proposition shows that a representation Π as in
Definition 2.70 has internal symmetries.

Proposition 2.73. Assume Π is compatible with P̃ and let Φ be a bijection
as in Definition 2.70. Let wP̃ ∈ WP̃ , Q a parabolic subgroup containing wP̃P and

CQ an isotypic component of L
⊗|ZMQ

such that P (CQ) =
wQQ for some (unique)
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wQ ∈ W with wQ(S(Q)) ⊆ S. Then πi(CQ) is compatible with (wQwP̃P̃ )Q,i for
i ∈ {1, . . . , d}, where πi(CQ) is as in Definition 2.70(i).

Proof. The proof is long but essentially formal. Replacing P̃ by wP̃ P̃w−1

P̃
and

Φ by wP̃ (Φ) (see the discussion following Definition 2.70), we can assume wP̃ = Id.
We write for simplicity w instead of wQ. Recall from Proposition 2.40 that CQ is

the isotypic component of fw−1(θG)|ZMQ
in L

⊗|ZMQ
. More precisely, by (2.40),

Corollary 2.48 and Remark 2.49 (especially (2.46)), we have an isomorphism of

algebraic representations of M
Gal(K/Qp)
wQ

∼=
∏d

i=1 M
Gal(K/Qp)
i

∼=
∏d

i=1 GLGal(K/Qp)
ni

:

(2.67) w(CQ) ∼= L
⊗
wQ ⊗
(
θ
wQ ⊗ · · · ⊗ θ

wQ
) ∼= d⊗

i=1

(
L
⊗
i ⊗
(
(θ

wQ)i ⊗ · · · ⊗ (θ
wQ)i
))

.

Thus the map Φw,i in Definition 2.70(iii) (recall wP̃ = Id and w = wQ) is a bijection
of partially ordered sets between the set ofMi(K)-subrepresentations of πi(CQ) and

the set of good subrepresentations of Cw,i|(wP̃ )
Gal(K/Qp)

Q,i

= L
⊗
i |(wP̃ )

Gal(K/Qp)

Q,i

(recall

that (wP )Q,i is here a standard parabolic subgroup of Mi and (wP̃ )Q,i a Zariski
closed subgroup of (wP )Q,i containing M(wP )Q,i

). We have to check that Φw,i

satisfies conditions (i) to (iv) in Definition 2.70 (with Mi instead of G and (wP̃ )Q,i

instead of P̃ ). We will only check condition (i) below, leaving the others, which are
again essentially formal, to the (motivated) reader.

We can assume i = 1. Let P1
def
= (wP )Q,1, P̃1

def
= (wP̃ )Q,1 (so MP1

⊆ P̃1 ⊆
P1 ⊆ M1 ⊆ MwQ) and recall that T1 is the torus of diagonal matrices in M1. Let
wP̃1

∈ WP̃1
⊆ W (M1), Q1 a parabolic subgroup of M1 containing

wP̃1P1 and CQ1

an isotypic component of L
⊗
1 |ZMQ1

, we have to prove that wP̃1
(Φw,1)

−1(CQ1
) is of

the form (2.66).

Step 1: Let w̃1
def
= wP̃1

× Id× · · · × Id ∈ W (M1) × · · · × W (Md) = W (wQ) ⊆ W

and set wP̃

def
= w−1w̃1w ∈ W (Q). Then wP̃ ∈ WP̃ and Q contains wP̃P . Indeed,

since wP̃1
∈ WP̃1

and the simple roots of P1 are contained in w(S(Q)) ⊆ S, we see

that wP̃ = w−1w̃1w sends the simple (resp. positive) roots of P̃ ∩ MQ to simple

(resp. positive) roots of MQ and the roots of P̃ ∩NQ to positive roots (using that
W (Q) normalizes NQ). Moreover, one easily checks that

wP̃1P1 = (wwP̃P )Q,1 =
(w(wP̃P ))Q,1. Replacing P by wP̃P and Φ by wP̃ (Φ), we can thus assume wP̃1

= Id.

Step 2: Let λ1 ∈ X(T1) be a weight of L
⊗
1 |T1

such that CQ1
is the isotypic com-

ponent of λ1|ZMQ1
and recall that λ1|ZM1

= fθM1
|ZM1

= fθwQ|ZM1
, where θMi

for i ∈ {1, . . . , d} is defined as in (2.27) replacing G = GLn by Mi = GLni
. Let

λwQ ∈ X(T ) be the unique character such that λwQ|T1
= λ1 and λwQ|Ti

= fθMi
=

fθwQ|Ti
if i ∈ {2, . . . , d} (here, we use the convention in Remark 2.49 and recall

that θMi
is trivial if Mi = GL1). Then λwQ is a weight of

⊗d
i=1 L

⊗
i |Ti

. We set

λ
def
= λwQ + fθ

wQ ∈ X(T )

which is a weight of L
⊗|T (use (2.67)). We have

(2.68) λ|ZM1
= λ1|ZM1

+ fθ
wQ|ZM1

= fθM1
|ZM1

+ fθ
wQ|ZM1

= f(θwQ + θ
wQ)|ZM1

= fθG|ZM1
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and if i ≥ 2:

(2.69) λ|Ti
= fθMi

+ fθ
wQ|Ti

= f(θwQ + θ
wQ)|Ti

= fθG|Ti
.

In particular λ|ZMwQ
= fθG|ZMwQ

and thus

(2.70) w−1(λ)|ZMQ
= fw−1(θG)|ZMQ

.

Let Q(1) ⊆ Q be the standard parabolic subgroup of G such that wQ(1) ⊆ wQ has
Levi MQ1

×M2 × · · · ×Md. As P1 ⊆ Q1 by Step 1, we note that wQ(1) contains
wP and hence Q(1) contains P , W (wQ(1)) = W (Q1)×W (M2)× · · · ×W (Md) and
w(S(Q(1))) = S(Q1)� S(M2)� · · · � S(Md). Let CQ(1)

be the isotypic component

of L
⊗|ZMQ(1)

associated to w−1(λ)|ZMQ(1)
. From (2.70) we get CQ(1)

⊆ CQ (inside

L
⊗|ZMQ(1)

) and from (2.68), (2.69) an isomorphism of algebraic representations of

M
Gal(K/Qp)
Q1

⊗
∏d

i=2 M
Gal(K/Qp)
i :

(2.71)

w(CQ(1)
) ∼=
(
CQ1

⊗
(
(θ

wQ)1⊗· · ·⊗ (θ
wQ)1
))

⊗
d⊗

i=2

(
L
⊗
i ⊗
(
(θ

wQ)i⊗· · ·⊗ (θ
wQ)i
))

.

Step 3: Define λ′, λ′
wQ and θ′G by the formula (2.29) for P = wQ(1) and the respec-

tive characters λ, λwQ and θG. Set λ′
1

def
= 1

|W (Q1)|
∑

w′
1∈W (Q1)

w′
1(λ1) ∈ (X(T1)⊗Z

Q)W (Q1). From (the proof of) Lemma 2.43, we easily get λ′ = λ′
wQ + fθ

wQ with

λ′
wQ|T1

= λ′
1. Let w1 ∈ W (M1) such that w1(S(Q1)) ⊆ S(M1) and w1(λ

′
1) is domi-

nant (w1 exists by Proposition 2.32(i)). We prove that w1(λ
′) = w1(λ

′
wQ)+fθ

wQ is

also dominant (we consider here w1 as an element of W (wQ) in the obvious way and
use that W (wQ) acts trivially on θ

wQ). From (2.69) we easily get λ′|Ti
= fθ′G|Ti

if i ≥ 2. But θ′G is dominant since θG is (see the proof of Lemma 2.30(i)), thus
〈w1(λ

′), α〉 = 〈λ′, α〉 = 〈fθ′G, α〉 ≥ 0 if α ∈ {ej − ej+1 : n1 + 1 ≤ j ≤ n − 1}.
Since w1(λ

′
wQ)|T1

= w1(λ
′
1) is dominant by assumption and 〈fθwQ, α〉 = 0 if

α ∈ {ej − ej+1 : 1 ≤ j ≤ n1 − 1} (see after (2.37)), we are left to check that
〈w1(λ

′), en1
− en1+1〉 ≥ 0. But an explicit computation gives

〈w1(λ
′), en1

− en1+1〉 = 〈w1(λ
′
wQ), en1

− en1+1〉+ 〈fθwQ, en1
− en1+1〉

= 〈w1(λ
′
wQ), en1

〉 − 〈w1(λ
′
wQ), en1+1〉+ fn2

= 〈w1(λ
′
wQ), en1

〉 − f
n2 − 1

2
+ fn2

≥ f
n2 + 1

2
,

where the last inequality follows 〈w1(λ
′
wQ), en1

〉 ≥ 0 by Remark 2.20(ii) applied to

L
⊗
1 |T1

(instead of L
⊗|T ) together with formula (2.29).

Step 4: By definition, S(P (CQ1
)) is the support of fθM1

−w1(λ
′
1) (see Proposition

2.32(ii)). By Remark 2.29(ii) we have w−1(λ′) = (w−1(λ))′ in (X(T )⊗ZQ)W (Q(1)),
where the latter is given by (2.29) applied to the parabolic Q(1) and the character

w−1(λ). Since w1w(S(Q(1))) ⊆ S and w1w((w
−1(λ))′) = w1w(w

−1(λ′)) = w1(λ
′)
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is dominant (Step 4), S(P (CQ(1)
)) is by definition the support of

(2.72) fθG − w1(λ
′) = fθG −

(
w1(λ

′
wQ) + fθ

wQ
)
= fθwQ − w1(λ

′
wQ)

= (fθM1
− w1(λ

′
1)) +

d∑
i=2

(fθMi
− fθ′Mi

),

where θ′Mi
is defined by (2.29) applied to P = Mi = G and the character θMi

of

Ti. In fact, θ′Mi
is the character det

ni−1

2 of Ti, from which we easily see that the
support of (2.72) is exactly S(P (CQ1

))� S(M2)� · · · � S(Md). This implies

(2.73) MP (CQ(1)
) = diag(MP (CQ1

),M2, . . . ,Md).

Step 5: We now finally prove that Φw,1 satisfies condition (i) in Definition 2.70.
Write MP (CQ1

) = M1,1×· · ·×M1,d1
(for some d1 ≥ 1), by condition (i) in Definition

2.70 for the map Φ we have using (2.73):
(2.74)

Φ−1(CQ(1)
) ∼= Ind

G(K)
P (CQ(1)

)−(K)

((
π1(CQ(1)

)⊗ · · · ⊗ πd(CQ(1)
)
)
⊗ (ω−1 ◦ θP (CQ(1)

)
)
)
,

where π1(CQ(1)
) = π1,1(CQ(1)

)⊗ · · · ⊗ π1,d1
(CQ(1)

) (with obvious notation). Let

(2.75) π′
1

def
= Ind

M1(K)
P (CQ1

)−(K)

(
π1(CQ(1)

)⊗ (ω−1 ◦ θP (CQ1
))
)
,

it is enough to prove that π′
1 is a subquotient of π1(CQ) and that

Φw,1(π
′
1) = CQ1

|
P̃

Gal(K/Qp)

1

(= CQ1
|(P̃1∩MQ1

)Gal(K/Qp)).

Note first that

(2.76) θ
P (CQ(1)

)
= θP (CQ) + θP (CQ1

),

where we view θP (CQ1
) as a character of T (not just T1) by sending the coordinates

in Ti to 1 for i ≥ 2 (this is straightforward to check from (2.37)). From (2.74),
(2.75) and (2.76), we get

Φ−1(CQ(1)
) ∼= Ind

G(K)
P (CQ)−(K)

((
π′
1 ⊗ π2(CQ(1)

)⊗ · · · ⊗ πd(CQ(1)
)
)
⊗ (ω−1 ◦ θP (CQ))

)
.

Since CQ(1)
is a subquotient of CQ (both being good subquotients of L

⊗|P̃Gal(K/Qp)),

Φ−1(CQ(1)
) is a subquotient of Φ−1(CQ). This implies in particular (using the ordi-

nary functor of [Eme10a] together with Remark 2.71(iii)) that π′
1 (resp. πi(CQ(1)

)

for i ≥ 2) is a subquotient of π1(CQ) (resp. of πi(CQ) for i ≥ 2). By condition (iii)
for Φ (in Definition 2.70) applied to Π′ = Φ−1(CQ(1)

) (together with P (CQ) =
wQ),

we also get an isomorphism of algebraic representations of
∏d

i=1(
wP̃ )

Gal(K/Qp)
Q,i over

F:

(2.77) w(CQ(1)
) =
(
Φw,1(π

′
1)⊗
(
(θ

wQ)1 ⊗ · · · ⊗ (θ
wQ)1
))

⊗
d⊗

i=2

(
Φw,i(πi(CQ(1)

))⊗
(
(θ

wQ)i ⊗ · · · ⊗ (θ
wQ)i
))

,

where Φw,1(π
′
1) and Φw,i(πi(CQ(1)

)) (i ≥ 2) are good subquotients of

L
⊗
i |(wP̃ )

Gal(K/Qp)

Q,i

. Since we have good subquotients of L
⊗
i |(wP̃ )

Gal(K/Qp)

Q,i

in each

factor of (2.71) and (2.77), (2.71) and (2.77) imply Φw,1(π
′
1) = CQ1

|
P̃

Gal(K/Qp)

1
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and Φw,i(πi(CQ(1)
)) = L

⊗
i |(wP̃ )

Gal(K/Qp)

Q,i

for i ≥ 2 (recall isotypic components of

L
⊗
i |MGal(K/Qp)

(wP )Q,i

tautology occur with multiplicity 1, so there is no multiplicity issue).

This finishes the proof of condition (i) in Definition 2.70 for Φw,1. �

Remark 2.74. When P (CQ) is strictly bigger than wQQ for one, or equivalently
any by Lemma 2.38, wQ ∈ W (CQ), there is no real analogue of Proposition 2.73

since L
⊗
i has to be replaced by CwQ,i in (2.46) which is not L

⊗
i in general.

2.4.2. Compatibility with ρ. We define what it means for a representation

of G(K) over F to be compatible with a good conjugate ρ : Gal(Qp/K) → P̃ρ(F)
as in §2.3.2. Essentially, an admissible smooth representation Π is compatible with

ρ if it is compatible with P̃ρ in the sense of Definition 2.70 and if the bijection Φ
of loc.cit. satisfies some natural compatibilities with the functor VG in (2.8) (see
Definition 2.81).

We now fix a continuous homomorphism

ρ : Gal(Qp/K) −→ G(F)

and recall that ρss denotes the semisimplification of the associated representation
of Gal(Qp/K) (see §2.3.2). We assume that ρ is generic in the following sense:

(a) ρss has distinct irreducible constituents;
(b) the ratio of any two irreducible constituents of ρss of dimension 1 is not

in {ω, ω−1}.
By Proposition 2.62, conjugating ρ by an element of G(F) if necessary, we can
assume that ρ is a good conjugate in the sense of Definition 2.63, that is we have

ρ : Gal(Qp/K) −→ P̃ρ(F) ⊆ Pρ(F) ⊆ G(F),

where Pρ is a standard parabolic subgroup of G such that ρss is given by the

composition Gal(Qp/K)
ρ−→ Pρ(F) � MPρ

(F) (see (2.60)), P̃ρ ⊆ Pρ is the smallest

closed algebraic subgroup of Pρ containing MPρ
and the ρ(g) for g ∈ Gal(Qp/K)

(in its F-points), and where, for any h ∈ Pρ(F), if we define P̃hρh−1 ⊆ Pρ as for ρ,

then we have P̃ρ ⊆ P̃hρh−1 . Good conjugates are not unique, see Theorem 2.65, but

we fix such a good conjugate ρ (and the associated pair (P̃ρ, Pρ)) for the moment.
For any w̃ ∈ Wρ = WP̃ρ

(see (2.64)) and any parabolic subgroup Q containing
w̃Pρ, we define the Q-semisimplification ρQ−ss of ρ as the continuous homomorphism

ρQ−ss : Gal(Qp/K)
w̃ρw̃−1

−→ w̃Pρ(F) ↪→ Q(F) � MQ(F)

(strictly speaking, it also depends on w̃). More generally, for any w ∈ W such that
w(S(Q)) ⊆ S, we define the continuous homomorphisms

w(ρQ−ss) : Gal(Qp/K)
wρQ−ssw−1

−→ wMQ(F)w
−1 = MwQ(F)

and note that w(ρQ−ss) actually takes values in

(ww̃P̃ρ)Q(F) ⊆ (ww̃Pρ)Q(F) ⊆ MwQ(F)

(recall from the beginning of §2.4.1 that (ww̃Pρ)Q = w(w̃Pρ∩MQ)w
−1 and (ww̃P̃ρ)Q =

w
(
(w̃P̃ρw̃

−1) ∩MQ

)
w−1).
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Let w̃ ∈ Wρ, Q a parabolic subgroup containing w̃Pρ, w ∈ W such that
w(S(Q)) ⊆ S and Q′ a parabolic subgroup containing wQ. We write MQ′ =
diag(M1, . . . ,Md) with Mi

∼= GLni
and we set for i ∈ {1, . . . , d}:

w(ρQ−ss)i : Gal(Qp/K)
w(ρQ−ss)−→ MwQ(F) ↪→ MQ′(F) � Mi(F).

We also have (recall from §2.4.1 that (wQ)i is a standard parabolic subgroup of
Mi):

(2.78) w(ρQ−ss)i : Gal(Qp/K)
w(ρQ−ss)−→ MwQ(F) � M(wQ)i(F) ↪→ Mi(F).

Composing w(ρQ−ss)i with Mi(F) � (Mi/M
der
i )(F) ∼= F×, we obtain by class field

theory for K a continuous group homomorphism

(2.79) det(w(ρQ−ss)i) : K
× −→ F×.

Lemma 2.75. Let ρ, Q as above, CQ an isotypic component of L
⊗|ZMQ

and

Q′ def
= P (CQ). Then the characters (2.79) for i ∈ {1, . . . , d} and w ∈ W (CQ) (see

(2.31)) don’t depend on the choice of w ∈ W (CQ). Moreover, we have

d∏
i=1

det(w(ρQ−ss)i) = det(ρ).

Proof. This follows from Lemma 2.36 (applied to P = Q) together with the
fact that conjugation byW (P (CQ)) (seen inMP (CQ)(F)) is trivial onMP (CQ)/M

der
P (CQ),

and thus on each Mi/M
der
i . The last assertion is obvious. �

As previously, w(ρQ−ss)i in (2.78) takes values in

(ww̃P̃ρ)Q,i(F) ⊆ (ww̃Pρ)Q,i(F) ⊆ M(wQ)i(F) ⊆ Mi(F) ∼= GLni
(F)

(recall from the beginning of §2.4.1 that (ww̃Pρ)Q,i is a standard parabolic subgroup

of M(wQ)i and that (ww̃P̃ρ)Q,i is a Zariski closed algebraic subgroup of (ww̃Pρ)Q,i

containing M(ww̃Pρ)Q,i
).

Proposition 2.76. Let ρ, Q as above, w ∈ W such that w(S(Q)) ⊆ S and

Q′ def
= wQ. Then w(ρQ−ss)i : Gal(Qp/K) −→ Mi(F) is a good conjugate with values

in (ww̃P̃ρ)Q,i(F) for i ∈ {1, . . . , d}.

Proof. Note that w̃ρw̃−1 is a good conjugate (with values in w̃P̃ρ(F)w̃−1 ⊆
w̃Pρ(F)) by Lemma 2.64. Since w(ρQ−ss) is obtained from ρQ−ss by permuting
the blocs Mi

∼= GLni
of MQ, it is equivalent to prove the statement for w = Id.

Assume that ρi
def
= (ρQ−ss)i : Gal(Qp/K) → Mi(F) is not a good conjugate. Then

it follows from Proposition 2.62 that there is hi ∈ (w̃Pρ)Q,i(F) such that hiρih
−1
i is

a good conjugate, and thus Xhiρih
−1
i

� Xρi
(with the notation of §2.3.2). Let αi

be a positive root of GLni
in Xρi

\Xhiρih
−1
i

and note that, if αi is a sum of roots

in R+ (viewing αi in R+), then all of these roots are positive roots of GLni
. Set

hj
def
= IdGLnj

∈ GLnj
(F) if j �= i and define h = (h1, . . . , hd) ∈ diag(M1, . . . ,Md) =

MQ(F) ⊆ Q(F). If we had αi ∈ Xhw̃ρw̃−1h−1 , then from what we just said necessarily
we would have αi ∈ X(hρQ−ssh−1)i = Xhiρih

−1
i

which is impossible. Therefore

αi /∈ Xhw̃ρw̃−1h−1 . But since αi ∈ Xρi
⊆ Xw̃ρw̃−1 (viewing the positive roots of
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GLni
as a subset of R+) we deduce Xhw̃ρw̃−1h−1 � Xw̃ρw̃−1 which is impossible as

w̃ρw̃−1 is a good conjugate. �

For σ ∈ Gal(K/Qp) = Gal(Qpf /Qp) consider

ρσ : Gal(Qp/K) → P̃ρ(F) ⊆ Pρ(F) ⊆ G(F),

where ρσ(g)
def
= ρ(σgσ−1). Here g ∈ Gal(Qp/K) and σ is any lift of σ in Gal(Qp/Qp).

Since Gal(Qp/K) is normal in Gal(Qp/Qp), ρ
σ(g) is well defined up to conjugation

(by elements in P̃ρ(F)). If C is a good subquotient of L
⊗|

P̃
Gal(K/Qp)

ρ

(Definition

2.22), we can view in particular C as a continuous homomorphism

(2.80) P̃ρ(F)× · · · × P̃ρ(F)︸ ︷︷ ︸
Gal(K/Qp)

−→ Aut
(
C(F)
)

(denoting by C(F) the underlying F-vector space of the algebraic representation C)
and define a Gal(Qp/K)-representation C(ρ) as

Gal(Qp/K)
∏

ρσ

−→ P̃ρ(F)× · · · × P̃ρ(F)
C−→ Aut

(
C(F)
)
,

where, in the first arrow, we choose any order on the elements σ of Gal(K/Qp).

Lemma 2.77. The Gal(Qp/K)-representation C(ρ) is well-defined up to iso-

morphism and canonically extends to a Gal(Qp/Qp)-representation.

Proof. The algebraic representation C of P̃
Gal(K/Qp)
ρ over F doesn’t depend

up to isomorphism on the order of the copies of P̃ρ, i.e. any permutation of the P̃ρ’s
yields an algebraic representation which is conjugate by an element of Aut(C(F)).

Indeed, this clearly holds when C is an isotypic component of L
⊗|ZMPρ

as ZMPρ

embeds diagonally into P̃
Gal(K/Qp)
ρ . Thus, for a general good subquotient C, any

permutation of the P̃ρ’s gives a representation C ′ which contains the same isotypic

components of L
⊗|ZMPρ

as those of C. Assume now that C is a good subrepresenta-

tion of L
⊗|

P̃
Gal(K/Qp)

ρ

. Then C ′ must be isomorphic to C since isotypic components

of L
⊗|ZMPρ

tautologically occur with multiplicity 1. In general, one writes C as

the quotient of two good subrepresentations of L
⊗|

P̃
Gal(K/Qp)

ρ

. All this implies that

C(ρ) is well-defined.

We now prove that it extends to Gal(Qp/Qp). First, if C = L
⊗|

P̃
Gal(K/Qp)

ρ

, then C(ρ)

is the tensor induction (2.13) and thus canonically extends to Gal(Qp/Qp). Let us

recall explicitly how it extends. Fix σ1, . . . , σf some representatives in Gal(Qp/Qp)
of the elements of Gal(K/Qp) = Gal(Qpf /Qp) and define permutations w1, . . . , wf

on {1, . . . , f} by σiσ
−1
j = σ−1

wi(j)
hi,j , where hi,j ∈ Gal(K/Qp). The underlying

F-vector space L
⊗
(F) of L

⊗
is

f⊗
i=1

((⊗
α∈S

L(λα)
)
(F)
)
,
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where
(⊗

α∈S L(λα)
)
(F) is the underlying vector space of

⊗
α∈S L(λα), and the

action of σi then sends v1 ⊗ v2 ⊗ · · · ⊗ vf ∈ L
⊗
(F) to u1 ⊗ u2 ⊗ · · · ⊗ uf , where:

(2.81) uwi(j)
def
=
((⊗

α∈S

L(λα)
)
(ρ(hi,j))

)
(vj).

This yields an action of Gal(Qp/Qp) which doesn’t depend on any choice (up to

isomorphism). It is enough to prove that this action of Gal(Qp/Qp) preserves the

subspaces C(F) ⊆ L
⊗
(F), where C is any good subrepresentation of L

⊗|
P̃

Gal(K/Qp)

ρ

.

But this is clear from (2.81) since C(F) is preserved by the action of Gal(Qp/K)
and by any permutation of the vi (as we have seen at the beginning). �

Remark 2.78. One could also use L-groups as in §2.1.4 in order to have more
intrinsic definitions (see Remark 2.20(i)). However the above pedestrian approach
will be sufficient for our purpose.

The following lemma is in the same spirit as Lemma 2.75.

Lemma 2.79. Let ρ, Q as above, CQ an isotypic component of L
⊗|ZMQ

and

Q′ def
= P (CQ). For w ∈ W (CQ) and i ∈ {1, . . . , d}, let

• Cw,i be the isotypic component of L
⊗
i |ZM(wQ)i

defined in (2.46) (applied

with P there being Q);
• w(ρQ−ss)i the representation of Gal(Qp/K) with values in M(wQ)i(F) de-
fined in (2.78) (applied to Q′ = P (CQ));

• Cw,i

(
w(ρQ−ss)i

)
the representation of Gal(Qp/Qp) defined in Lemma

2.77 (applied to ρ = w(ρQ−ss)i, L
⊗
i and C = Cw,i).

Then the Gal(Qp/Qp)-representation Cw,i

(
w(ρQ−ss)i

)
doesn’t depend on w ∈

W (CQ).

Proof. Let w′ be another element in W (CQ). Then w′ = wP (CQ)w with
wP (CQ) ∈ W (P (CQ)) by Lemma 2.36 (with P there being Q). Since wP (CQ) re-
spects Mi, we have

w′(ρQ−ss)i = wP (CQ)w(ρ
Q−ss)iw

−1
P (CQ).

The result then follows from (2.47) (applied with P = Q). �
Remark 2.80. Lemma 2.79 still holds replacing Cw,i by any good subquotient

of Cw,i|(ww̃P̃ρ)
Gal(K/Qp)

Q,i

and using the proof of Lemma 2.68(ii) and Remark 2.69 to

compare with the corresponding good subquotient of
Cw′,i|(w′w̃P̃ρ)

Gal(K/Qp)

Q,i

. The proof is the same as for Lemma 2.79 using that w(ρQ−ss)i

takes values in (ww̃P̃ρ)Q,i(F).

We now state the second crucial definition. We use the functor VH defined in
§2.1.1 in the case H = GLm, m ≥ 1 (with the convention of Example 2.3). If a
smooth representation π of H(K) has a central character, we denote it by Z(π) (so
writing Z(π) in the sequel implicitly means that π has a central character). We
also define

(2.82) ω−1 ◦ θMi
: ZMi

(K) = K× θMi
|ZMi−→ K× ω−1

−→ F×
p ↪→ F×

(θMi
as in (2.27) replacing G by Mi).
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Definition 2.81. An admissible smooth representation Π of G(K) over F
which has finite length and distinct absolutely irreducible constituents is compatible

with ρ if there exists a bijection Φ as in Definition 2.70 for P̃ = P̃ρ (in particular Π

is compatible with P̃ρ) which satisfies the following extra conditions:

(i) for any subquotient Π′ of Π, we have an isomorphism of Gal(Qp/Qp)-
representations over F:

(2.83) VG(Π
′) ∼= Φ(Π′)(ρ),

where Φ(Π′)(ρ) is the associated representation of Gal(Qp/Qp) defined
in Lemma 2.77;

(ii) for any w̃ ∈ Wρ, any parabolic subgroup Q containing w̃Pρ and any

isotypic component CQ of L
⊗|ZMQ

, writing MP (CQ) = diag(M1, . . . ,Md)

with Mi
∼= GLni

we have for one, or equivalently any, element w ∈
W (CQ) and for any subquotient π′

i of πi(CQ):

Z
(
π′
i

) ∼= det(w(ρQ−ss)i) · ω−1 ◦ θMi
(2.84)

VMi

(
π′
i

) ∼= w̃(Φ)w,i(π
′
i)
(
w(ρQ−ss)i

)
,

where
• πi(CQ) is the admissible smooth representation of Mi(K) over F in
Definition 2.70(i);

• det(w(ρQ−ss)i) (resp. ω−1 ◦ θMi
) is the character of K× defined in

(2.79) (resp. in (2.82));
• w̃(Φ)w,i(π

′
i) is the good subquotient of Cw,i|(ww̃P̃ρ)Q,i

defined in Def-

inition 2.70(iii);
• w(ρQ−ss)i is the representation of Gal(Qp/K) with values in

(ww̃P̃ρ)Q,i(F)⊆ M(wQ)i(F) defined in (2.78) (applied to Q′=P (CQ));

• w̃(Φ)w,i(π
′
i)
(
w(ρQ−ss)i

)
is the representation of Gal(Qp/Qp) defined

in Lemma 2.77 (applied to ρ = w(ρQ−ss)i, L
⊗
i and C =

w̃(Φ)w,i(π
′
i)).

If Π is compatible with ρ, then we have in particular VG(Π) ∼= L
⊗
(ρ) and

VMi

(
πi(CQ)

) ∼= Cw,i

(
w(ρQ−ss)i

)
for Q,w, i as in Definition 2.81(ii) (recall that

VMi
(πi(CQ)) is always the trivial representation of Gal(Qp/Qp) when ni = 1). If ρ is

(absolutely) irreducible, then P̃ρ = Pρ = G, Wρ = {Id} and Π is compatible with ρ
if and only if Π is absolutely irreducible supersingular, Z(Π) ∼= det(ρ)·ω−1◦(θG|ZG

)

and VG(Π) ∼= L
⊗
(ρ).

Remark 2.82.

(i) The isomorphisms in (2.84) are consistent with Lemma 2.75, Lemma 2.79
and Remark 2.80 since their left-hand sides don’t depend on w ∈ W (CQ).

(ii) Let Π be compatible with ρ. From (2.66) applied with wP̃ = 1 and Q = P ,
(2.84) applied with w̃ = 1 and Q = Pρ, the last assertion in Lemma 2.75, and from

θG|ZG
= θP (CQ)|ZG

θP (CQ)|ZG
= θP (CQ)|ZG

( d∏
i=1

θMi
|ZMi

)
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(which follows from (2.37)), we deduce that each irreducible constituent Π′ of Π
is such that Z(Π′) = det(ρ) · ω−1 ◦ (θG|ZG

). Since these irreducible constituents
are all distinct by assumption, we obtain that Π has a central character Z(Π) =

det(ρ) · ω−1 ◦ (θG|ZG
) = det(ρ) · ω−n(n−1)

2 .

(iii) Let Π be compatible with ρ, Π′ a subquotient of Π and Π′′ ⊆ Π′ a subrep-
resentation. Then from Remark 2.67(i) we have an exact sequence of Gal(Qp/Qp)-
representations:

0 −→ Φ(Π′′)(ρ) −→ Φ(Π′)(ρ) −→ Φ(Π′/Π′′)(ρ) −→ 0.

Thus (2.83) implies that the sequence 0 → VG(Π
′′) → VG(Π

′) → VG(Π
′/Π′′) → 0

is exact. In other terms, when applied to Π and its subquotients VG behaves like
an exact functor.

(iv) Let χ : K× → F× be a smooth character. Then it easily follows from
Remark 2.4(ii) that Π is compatible with ρ if and only if Π⊗ (χ◦det) is compatible
with ρ⊗ χ.

(v) For a given Π compatible with ρ, a bijection Φ as in Definition 2.81 is

still not unique in general. For instance consider the case n = 4, K = Qp, P̃ρ =

MPρ
= diag(GL2,GL2) and ρ = ρ1⊕ρ2 with ρi : Gal(Qp/Qp) → GL2(F) absolutely

irreducible distinct for i = 1, 2 but such that ∧2
Fρ1

∼= ∧2
Fρ2.

Definition 2.81 doesn’t depend on the choice of a good conjugate.

Proposition 2.83. If ρ′ : Gal(Qp/K) → P̃ρ′(F) ⊆ Pρ′(F) is another good
conjugate of ρ, then Π is compatible with ρ if and only if Π is compatible with ρ′.

Proof. From Theorem 2.65, we have ρ′ = whρh−1w−1 for some h ∈ P̃ρ(F)
and some w ∈ Wρ. By symmetry, it is enough to prove that Π compatible with
ρ implies Π compatible with ρ′. We have first that Π is compatible with hρh−1.

Indeed, P̃hρh−1 = P̃ρ and the conditions in Definition 2.81 for hρh−1 follow from the

conditions for ρ since w(ρQ−ss)i and w((hρh−1)Q−ss)i are conjugate in (ww̃P̃ρ)Q,i(F)
(with w̃, w here as in Definition 2.81). Thus we can assume h = Id. But then, it is
clear from Definition 2.81 that Π is compatible with ρ′ = wρw−1. �

Just as some statements in Definition 2.70 should follow from others (see Re-
mark 2.71(iv)), we expect the isomorphisms (2.83) to follow in many cases from the
isomorphisms (2.84):

Proposition 2.84. Assume Π is compatible with ρ and let Φ be a bijection as
in Definition 2.81. Let w̃ ∈ Wρ, Q a parabolic subgroup containing w̃Pρ, CQ an

isotypic component of L
⊗|ZMQ

and Π′ a subquotient of w̃(Φ)−1(CQ) of the form

Π′ ∼= Ind
G(K)
P (CQ)−(K)

(
(π′

1 ⊗ · · · ⊗ π′
d)⊗ (ω−1 ◦ θP (CQ))

)
,

where π′
i is a subquotient of the representation πi(CQ) of Mi(K) over F defined

in Definition 2.70(i) (so that w̃(Φ)(Π′) is a good subquotient of CQ|w̃P̃Gal(K/Qp)

ρ

=

CQ|((w̃P̃ρw̃−1)∩MQ)Gal(K/Qp)). Assume that

VMP(CQ)
(π′

1 ⊗ · · · ⊗ π′
d)

∼=
d⊗

i=1

VMP(CQ),i(π
′
i)
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(with the notation used in Lemma 2.5). Then the isomorphism (2.83) for Π′ follows
from the isomorphisms (2.84).

Proof. For i ∈ {1, . . . , d}, we have (easy computation):

(2.85) (θP (CQ))i = detn−
∑i

j=1 nj .

Let π′′
i

def
= π′

i ⊗ (ω−1 ◦ det)n−
∑i

j=1 nj , we have by Lemma 2.5, (2.85) and Remark
2.4(ii):

VG(Π
′) = VG

(
Ind

G(K)
P (CQ)−(K)(⊗

d
i=1π

′
i)⊗ (ω−1 ◦ θP (CQ))

)
∼=
( d⊗

i=1

(
VMi

(π′′
i )⊗
(
Z(π′′

i )
n−

∑i
j=1 nj
)
|Q×

p
δ−1
Mi

))
⊗ δG

∼=
( d⊗

i=1

(
VMi

(π′
i)⊗
((

Z(π′
i) · ω ◦ θMi

)n−∑i
j=1 nj
)
|Q×

p

))
⊗ δ,

where δ
def
=
(
δG
∏d

i=1 δ
−1
Mi

)
ind

⊗Qp

K (ω−
∑d

i=1 ci) with (by an explicit computation):

ci = ni(ni − 1)
(
n−

i∑
j=1

nj

)
+ ni

(
n−

i∑
j=1

nj

)2
= ni

(
n−

i∑
j=1

nj

)(
ni − 1 + n−

i∑
j=1

nj

)

= ni

(
n−

i∑
j=1

nj

)(
n− 1−

i−1∑
j=1

nj

)
.(2.86)

Now, assuming (2.84) we have for one, or equivalently any, w of W (CQ):

Φ(Π′)(ρ) ∼= w̃(Φ)(Π′)(ρ)

= w̃(Φ)(Π′)(ρQ−ss)

∼=
d⊗

i=1

(
w̃(Φ)w,i(π

′
i)
(
w(ρQ−ss)i

)
⊗

((
(θP (CQ))i ⊗ · · · ⊗ (θP (CQ))i

)
◦
(
⊕σ (w(ρQ−ss)i)

σ
)))

∼=
d⊗

i=1

(
VMi

(π′
i)⊗
((

det(w(ρQ−ss)i)
)n−∑i

j=1 nj
)
|Q×

p

)
∼=

d⊗
i=1

(
VMi

(π′
i)⊗
((

Z(π′
i) · ω ◦ θMi

)n−∑i
j=1 nj
)
|Q×

p

)
,

where the first isomorphism follows from ρ ∼= w̃ρw̃−1, the second equality is obvi-

ous (w̃(Φ)(Π′) being a representation of M
Gal(K/Qp)
Q as it is a subquotient of CQ),

the second isomorphism follows from Definition 2.70(iii), and the last two isomor-
phisms from (2.84), (2.85) and local class field theory for Qp. So we have to prove

Licensed to Chinese Academy of Sciences.  Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



2.4. THE DEFINITION OF COMPATIBILITY 71

(δG
∏d

i=1 δ
−1
Mi

) ind
⊗Qp

K (ω−
∑d

i=1 ci) = 1, which amounts to checking the following ex-
plicit identity (using (2.86) and Example 2.3):

n−1∑
j=1

j2 =

d∑
i=1

ni−1∑
j=1

j2 +

d∑
i=1

(
ni

(
n−

i∑
j=1

nj

)(
n− 1−

i−1∑
j=1

nj

))
.

This follows easily by induction on d using the case d = 2 and the identity

(n−m)2+(n−m+1)2+ · · ·+(n− 1)2 = 1+22+ · · ·+(m− 1)2+m(n−m)(n− 1)

for any integers n ≥ m ≥ 1. �

The following proposition is analogous to Proposition 2.73.

Proposition 2.85. Assume Π is compatible with ρ and let Φ be a bijection as
in Definition 2.81. Let w̃ ∈ Wρ, Q a parabolic subgroup containing w̃Pρ and CQ an

isotypic component of L
⊗|ZMQ

such that P (CQ) =
wQ for some (unique) w ∈ W

with w(S(Q)) ⊆ S. Then πi(CQ) is compatible with w(ρQ−ss)i for i ∈ {1, . . . , d},
where πi(CQ) is as in Definition 2.70(i) and w(ρQ−ss)i as in (2.78).

Proof. We use the notation in the proof of Proposition 2.73. Replacing ρ by
w̃ρw̃−1 and Φ by w̃(Φ), we can assume w̃ = Id. We have to prove that the map
Φw,i satisfies conditions (i) and (ii) of Definition 2.81 with Mi instead of G and

w(ρQ−ss)i instead of ρ. Note that this makes sense thanks to Proposition 2.76. We
can assume i = 1. Condition (i) clearly follows from the second equality in (2.84)
applied to π′

1 = π1(CQ). Arguing as in Step 1 of Lemma 2.73, we need only consider
a standard parabolic subgroup Q1 of M1 containing (wPρ)Q,1 and CQ1

an isotypic

component of L
⊗
1 |ZMQ1

. Let CQ(1)
be the isotypic component of L

⊗|ZMQ(1)
defined

in Step 2 of the proof of Proposition 2.73. Then it is easy to check that condition
(ii) for M1, w(ρ

Q−ss)1, CQ1
and an element w1 ∈ W (CQ1

) follows from condition
(ii) with G, ρ, CQ(1)

and w1w ∈ W (CQ(1)
) (see Step 3, Step 4 and Step 5 of the

proof of Proposition 2.73). �

2.4.3. Explicit examples. We explicitly give the form of a representation Π
compatible with ρ for various ρ.

In the examples below, as in Example 2.72, a line means a nonsplit extension
between two irreducible constituents, the constituent on the left being the subobject
of the corresponding (length 2) subquotient.

Example 1. We start with GL2(Qpf ) and P̃ρ = Pρ = B as in Example 2.35(i),
i.e. we have

ρ ∼=
(
χ1 ∗
0 χ2

)
,

where χi are two smooth characters Q×
pf → F× (via class field theory) with ratio

�= 1, ω±1 (and where ∗ is nonsplit). Let Π be compatible with ρ. Then Π has f +1
irreducible constituents and the following form:

Ind
GL2(Qpf

)

B−(Q
pf

) (χ1ω
−1⊗χ2) SS1 SS2 · · · SSf−1 Ind

GL2(Qpf
)

B−(Q
pf

) (χ2ω
−1⊗χ1)
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where the SSi for i ∈ {1, . . . , f − 1} are distinct supersingular representations of
GL2(Qpf ) over F such that Z(SSi) = det(ρ)ω−1 and

VG(SSi) ∼=
⊕

I⊆Gal(K/Qp)

|I|=f−i

((⊗
σ∈I

χσ
1

)
⊗
(⊗
σ/∈I

χσ
2

))

(here χσ
i

def
= χi(σ · σ−1) and VG(SSi) is immediately checked to be a representation

of Gal(Qp/Qp)). Moreover it follows from Example 2.6 that

VG

(
Ind

GL2(Qpf
)

B−(Qp)
(χ1ω

−1 ⊗ χ2)
)
∼= ⊗σ∈Gal(K/Qp)χ

σ
1

and likewise with Ind
GL2(Qpf

)

B−(Qp)
(χ2ω

−1 ⊗ χ1). Finally the conditions in (2.83) imply

that VG behaves as an exact functor on the (not necessarily irreducible) subquo-
tients of Π (see Remark 2.82(iii)).

Still with GL2(Qpf ) but when P̃ρ = T , i.e. ρ = χ1 ⊕ χ2, then Π (compatible with
ρ) is semisimple, i.e. has the same form as above but with split extensions every-
where. This is consistent with the discussion at the end of [BP12, §19]. Note

that, if we only require Π to be compatible with P̃ρ (Definition 2.70), then Π has
the same form as above, but with arbitrary distinct supersingular representations of

GL2(Qpf ) and arbitrary distinct irreducible principal series Ind
GL2(Qpf

)

B−(Q
pf

) (η1ω
−1⊗η2)

and Ind
GL2(Qpf

)

B−(Q
pf

) (η2ω
−1 ⊗ η1). See [HW22, §10.6] and §3.4.4 for instances of rep-

resentations Π (coming from mod p cohomology) satisfying (special cases of) the
above properties.

Example 2. We go on with GL3(Qp) as in Example 2.35(ii) and P̃ρ = Pρ = B,
i.e. we have

ρ ∼=

⎛⎝χ1 ∗ ∗
0 χ2 ∗
0 0 χ3

⎞⎠ ,

where χi are three smooth characters Q×
p → F× (via class field theory) of ratio

�= 1, ω±1. For τ ∈ W ∼= S3, we define

PSχτ(1),χτ(2),χτ(3)

def
= Ind

GL3(Qp)

B−(Qp)
(χτ(1)ω

−2 ⊗ χτ(2)ω
−1 ⊗ χτ(3)).

Let Π be compatible with ρ. Then Π has 7 irreducible constituents and the following
form:

PSχ1,χ2,χ3

PSχ2,χ1,χ3

PSχ1,χ3,χ2

SS

PSχ2,χ3,χ1

PSχ3,χ1,χ2

PSχ3,χ2,χ1

�����������

���
���

���
��

���
���

���
���

������������

������������

���
���

���
���

������������
���

���
���

��

�����������

where SS is a supersingular representation of GL3(Qp) over F such that Z(SS) =

det(ρ) · ω−3 and VG(SS) ∼= (χ1χ2χ3)
⊕3 = det(ρ)

⊕3
. It follows from the proof

of [Hau16, Thm.5.2.1], or from [Hau18, Thm.1.4(i)], combined with [Eme10a,
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Cor.4.3.5], that the nonsplit extensions between two principal series in subquo-
tient are automatically parabolic inductions as required in condition (i) of Defi-

nition 2.70 (looking at isotypic components of L
⊗|ZMQ

with MQ ∈ {GL2 ×GL1,

GL1 ×GL2}, see Example 2.35(ii)). Conditions (ii) to (iv) in Definition 2.70 are
then easily checked. Concerning Definition 2.81, the subquotients involving only
principal series do satisfy (2.83) and (2.84) by [Bre15, Rem.9.9]. The reader can
then easily work out the remaining conditions in (2.83) which all involve the super-
singular representation SS, and also work out the shape of a Π which is compatible

with P̃ρ = B only (but not necessarily with ρ).

Example 3. We stay with GL3(Qp) but where P̃ρ = Pρ = P with MP =
diag(GL2,GL1), i.e. we have

ρ ∼=
(
ρ1 ∗
0 χ2

)
,

where ρ1 : Gal(Qp/Qp) → GL2(F) is any absolutely irreducible representation and

χ2 is any smooth character Q×
p → F× (via class field theory). Note that such a ρ

is always generic (see the beginning of §2.4.2). Then Π is compatible with ρ if and
only Π has the same form as in Example 2.72:

Ind
GL3(Qp)

P−(Qp)

(
π1 · (ω−1 ◦ det)⊗ χ2

)
SS Ind

GL3(Qp)

P ′−(Qp)

(
χ2ω

−2 ⊗ π1

)
and where moreover

• π1 is the supersingular representation of GL2(Qp) over F corresponding
to ρ1 by the mod p local Langlands correspondence for GL2(Qp), i.e. we
have Z(π1) = det(ρ1)ω

−1 (via class field theory) and VGL2(π1) ∼= ρ1;

• Z(SS) = det(ρ)ω−3;

• VG(Π) ∼= ρ⊗F ∧2
Fρ;

• VG

(
Ind

GL3(Qp)

P−(Qp)

(
π1 · (ω−1 ◦ det)⊗χ2

)
SS
)
∼=Ker(ρ⊗F∧2

Fρ � χ2
2⊗

ρ1).

The properties of VG in §2.1.1 (in particular Lemma 2.5 which can be applied here
thanks to Remark 2.7) then automatically give the remaining conditions in (2.83):

VG

(
Ind

GL3(Qp)

P−(Qp)

(
π1 · (ω−1 ◦ det)⊗ χ2

)) ∼= ρ1 ⊗F ∧2
Fρ1

∼= ρ1 ⊗ det(ρ1)

VG

(
SS Ind

GL3(Qp)

P ′−(Qp)

(
χ2ω

−2 ⊗ π1

) ) ∼= (ρ⊗F ∧2
Fρ)/(ρ1 ⊗F ∧2

Fρ1)

VG

(
Ind

GL3(Qp)

P ′−(Qp)

(
χ2ω

−2 ⊗ π1

)) ∼= ρ1 ⊗ χ2
2

VG(SS) ∼= (ρ⊗2
1 ⊗ χ2)⊕ det(ρ1)χ2.

The case P̃ρ = MP , i.e. ρ ∼=
(
ρ1 0
0 χ2

)
, is analogous and easier since Π is then

semisimple.
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Example 4. We consider GL4(Qp) and P̃ρ = Pρ = P , where MP = diag(GL2,
GL1,GL1), that is we have a good conjugate

ρ ∼=

⎛⎝ρ1 ∗ ∗
0 χ2 ∗
0 0 χ3

⎞⎠ ,

where ρ1 : Gal(Qp/Qp) → GL2(F) is any absolutely irreducible representation and

χi two smooth characters Q×
p → F× (via class field theory) of ratio �= 1, ω±1. If

1 ≤ i ≤ 4 and
∑i

j=1 nj = 4 with 1 ≤ nj ≤ 4, we write Pn1,...,ni
for the standard

parabolic subgroup of GL4 of Levi diag(GLn1
, . . . ,GLni

) (so P2,1,1 = P , P1,1,1,1 =
B, etc.). As in Example 3 above, we let π1 be the supersingular representation of
GL2(Qp) over F corresponding to ρ1 by the mod p local Langlands correspondence
for GL2(Qp) (so Z(π1) = det(ρ1) ·ω−1 and VGL2(π1) ∼= ρ1). We define the following
parabolic inductions:

PIπ1,χ2,χ3

def
= Ind

GL4(Qp)

P−
2,1,1(Qp)

(
π1 · (ω−2 ◦ det)⊗ χ2ω

−1 ⊗ χ3

)
PIπ1,χ3,χ2

def
= Ind

GL4(Qp)

P−
2,1,1(Qp)

(
π1 · (ω−2 ◦ det)⊗ χ3ω

−1 ⊗ χ2

)
PIχ2,π1,χ3

def
= Ind

GL4(Qp)

P−
1,2,1(Qp)

(
χ2ω

−3 ⊗ π1 · (ω−1 ◦ det)⊗ χ3

)
PIχ3,π1,χ2

def
= Ind

GL4(Qp)

P−
1,2,1(Qp)

(
χ3ω

−3 ⊗ π1 · (ω−1 ◦ det)⊗ χ2

)
PIχ2,χ3,π1

def
= Ind

GL4(Qp)

P−
1,1,2(Qp)

(
χ2ω

−3 ⊗ χ3ω
−2 ⊗ π1

)
PIχ3,χ2,π1

def
= Ind

GL4(Qp)

P−
1,1,2(Qp)

(
χ3ω

−3 ⊗ χ2ω
−2 ⊗ π1

)
and also, for ss1, ss2 two (not necessarily distinct) supersingular representations of
GL3(Qp) over F:

PIss1,χ3

def
= Ind

GL4(Qp)

P−
3,1(Qp)

(
ss1 · (ω−1 ◦ det)⊗ χ3

)
PIss2,χ2

def
= Ind

GL4(Qp)

P−
3,1(Qp)

(
ss2 · (ω−1 ◦ det)⊗ χ2

)
PIχ2,ss2

def
= Ind

GL4(Qp)

P−
1,3(Qp)

(
χ2ω

−3 ⊗ ss2
)

PIχ3,ss1
def
= Ind

GL4(Qp)

P−
1,3(Qp)

(
χ3ω

−3 ⊗ ss1
)
.

We then let SS3, SS4, SS5, SS6 be 4 distinct supersingular representations of
GL4(Qp) over F. If Π is compatible with ρ, then it has the following form:

PIπ1,χ2,χ3

PIss1,χ3

PIχ2,π1,χ3

PIπ1,χ3,χ2

SS3

SS4

PIχ2,ss2

PIss2,χ2

SS5

SS6

PIχ2,χ3,π1

PIχ3,π1,χ2

PIχ3,ss1

PIχ3,χ2,π1
��������
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where we have

(2.87)

PIπ1,χ2,χ3
PIss1,χ3

PIχ2,π1,χ3
∼= Ind

GL4(Qp)

P−
3,1(Qp)

(Π1 · (ω−1 ◦ det)⊗ χ3)

PIχ3,π1,χ2
PIχ3,ss1 PIχ3,χ2,π1

∼= Ind
GL4(Qp)

P−
1,3(Qp)

(χ3ω
−3 ⊗Π1)

for Π1
∼= Ind

GL3(Qp)

P−
2,1(Qp)

(
π1 · (ω−1 ◦ det)⊗ χ2

)
ss1 Ind

GL3(Qp)

P−
1,2(Qp)

(
χ2ω

−2 ⊗ π1

)
,

and also

(2.88) PIπ1,χ2,χ3
PIπ1,χ3,χ2

∼=

Ind
GL4(Qp)

P−
2,2(Qp)

(
π1·(ω−2◦det)⊗

(
Ind

GL2(Qp)

B−(Qp)
(χ2ω

−1⊗χ3) Ind
GL2(Qp)

B−(Qp)
(χ3ω

−1⊗χ2)
))

and an analogous isomorphism for PIχ2,χ3,π1
PIχ3,χ2,π1 . It actually easily

follows from [Hau18, Thm.1.4(i)] (see also [Hey, Thm.B(b)(ii)]) together with
[Eme10a, Cor.4.3.5] that the isomorphism in (2.88) and the analogous isomor-

phism with PIχ2,χ3,π1
PIχ3,χ2,π1 hold (i.e. are not conjectural). It also follows

from [Hau18, Thm.1.2(ii)] and [Hau18, Thm.1.2(iii)] that we automatically have
isomorphisms

PIπ1,χ2,χ3
PIss1,χ3

∼= Ind
GL4(Qp)

P−
3,1(Qp)

(
Ind

GL3(Qp)

P−
2,1(Qp)

(
π1 · (ω−1 ◦ det)⊗ χ2

)
ss1
)

PIss1,χ3
PIχ2,π1,χ3

∼= Ind
GL4(Qp)

P−
3,1(Qp)

(
ss1 Ind

GL3(Qp)

P−
1,2(Qp)

(
χ2ω

−2 ⊗ π1

))
and likewise with the two “halves” of PIχ3,π1,χ2

PIχ3,ss1 PIχ3,χ2,π1 . It is

likely that the full isomorphisms (2.87) are in fact also automatic.
We must have moreover Z(ss1) = det(ρ1)χ2ω

−3, Z(ss2) = det(ρ1)χ3ω
−3,

Z(SSi) = det(ρ)ω−6 for i ∈ {3, 4, 5, 6} and

VGL3
(ss1) ∼= (ρ⊗2

1 ⊗ χ2)⊕ det(ρ1)χ2

VGL3(ss2)
∼= (ρ⊗2

1 ⊗ χ3)⊕ det(ρ1)χ3

VGL4
(SS3) ∼=

(
ρ⊗2
1 ⊗ det(ρ1)χ2χ3

)⊕3 ⊕
(
det(ρ1)

2χ2χ3

)⊕2

VGL4(SS4)
∼=
(
ρ1 ⊗ det(ρ1)χ

2
2χ3

)⊕5 ⊕
(
ρ1
⊗3 ⊗ χ2

2χ3

)
VGL4

(SS5) ∼=
(
ρ1 ⊗ det(ρ1)χ2χ

2
3

)⊕5 ⊕
(
ρ1
⊗3 ⊗ χ2χ

2
3

)
VGL4(SS6)

∼=
(
ρ⊗2
1 ⊗ χ2

2χ
2
3

)⊕3 ⊕
(
det(ρ1)χ

2
2χ

2
3

)⊕2
.

The reader can work out all the other conditions of Definition 2.81 (applying VG to
subquotients of Π). Note that by Proposition 2.85 the GL3(Qp)-representation Π1

is compatible with the subrepresentation
( ρ1 ∗

0 χ2

)
of ρ (see the last part in Example

2).

Example 5. We stay with GL4(Qp) but where Pρ = P with MP = diag(GL1,
GL2,GL1) and a good conjugate of the form

ρ ∼=

⎛⎝χ2 ∗ ∗
0 ρ1 0
0 0 χ3

⎞⎠ ,
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where the ∗ are nonzero, ρ1 : Gal(Qp/Qp) → GL2(F) is any absolutely irreducible

representation and χi are two smooth characters Q×
p → F× (via class field theory)

of ratio �= 1, ω±1. One has (see (2.64)) Wρ = {Id, se2−e3se3−e4} = the set of per-
mutations of the last two blocks GL2 and GL1. Using the notation and conventions
of the previous case, we can check that any Π compatible with ρ has the following
form:

PIχ2,π1,χ3

PIss1,χ3

PIπ1,χ2,χ3

PIχ2,ss2

SS4

SS3

PIπ1,χ3,χ2

PIχ2,χ3,π1

SS6

SS5

PIss2,χ2

PIχ3,χ2,π1

PIχ3,ss1

PIχ3,π1,χ2
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(recall the socle is the first layer on the left), where condition (i) in Definition 2.70
yields, when applied to a suitable CQ with MQ = diag(GL3,GL1):

(2.89)

PIχ2,π1,χ3
PIss1,χ3

PIπ1,χ2,χ3
∼= Ind

GL4(Qp)

P−
3,1(Qp)

(Π1 · (ω−1 ◦ det)⊗ χ3)

PIχ3,χ2,π1
PIχ3,ss1 PIχ3,π1,χ2

∼= Ind
GL4(Qp)

P−
1,3(Qp)

(χ3ω
−3 ⊗Π1)

for Π1
∼= Ind

GL3(Qp)

P−
1,2(Qp)

(
χ2ω

−2 ⊗ π1

)
ss1 Ind

GL3(Qp)

P−
2,1(Qp)

(
π1 · (ω−1 ◦ det)⊗ χ2

)
,

and yields, when applied to a suitable CQ with MQ = diag(GL2,GL2) (that is,
se2−e3

se3−e4Pρ ⊆ Q, note that here Pρ �⊆ Q, see Remark 2.71(vii)):

(2.90) PIχ2,χ3,π1
PIχ3,χ2,π1

∼=

Ind
GL4(Qp)

P−
2,2(Qp)

((
Ind

GL2(Qp)

B−(Qp)
(χ2ω

−3 ⊗ χ3ω
−2) Ind

GL2(Qp)

B−(Qp)
(χ3ω

−3 ⊗ χ2ω
−2)
)
⊗ π1

)
and an analogous isomorphism for PIπ1,χ2,χ3

PIπ1,χ3,χ2 . As in Example 4,

it follows from [Hau18, Thm.1.4(i)] that (2.90) and the analogous isomorphism
are automatic, and from [Hau18, Thm.1.2(ii)], [Hau18, Thm.1.2(iii)] that isomor-
phisms as in (2.89) but for every “half” only of the extensions on the left are also
automatic.

One can again work out all the conditions of Definition 2.81 (conditions on
Z(ssi), Z(SSi) and on VGL3

(ssi), VGL4
(SSi) are the same as in Example 4).
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Example 6. We consider GL3(Qp2) and P̃ρ = Pρ = B, i.e.

ρ ∼=

⎛⎝χ1 ∗ ∗
0 χ2 ∗
0 0 χ3

⎞⎠ ,

where χi are three smooth characters Q×
p2 → F× (via class field theory) of ratio

�= 1, ω±1. We let ss1, ss2, ss3 be 3 (not necessarily distinct) supersingular represen-
tations of GL2(Qp2) over F and SSi, i ∈ {4, . . . , 10} be 7 distinct supersingular rep-
resentations of GL3(Qp2) over F. We use without comment notation for GL3(Qp2)
analogous to the ones in Example 2, Example 4 and Example 5 to denote principal
series and parabolic inductions. If Π is compatible with ρ, then it has the following
form:

PSχ1,χ2,χ3

PIss1,χ3

PSχ2,χ1,χ3

PIχ1,ss2

SS4

SS5

PIχ2,ss3

PSχ1,χ3,χ2

SS6

SS7

SS8

PSχ2,χ3,χ1

PIss3,χ2

SS9

SS10

PIss2,χ1

PSχ3,χ1,χ2

PIχ3,ss1

PSχ3,χ2,χ1
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�������

where we have
(2.91)

PSχ1,χ2,χ3
PIss1,χ3

PSχ2,χ1,χ3
∼= Ind

GL3(Qp2 )

P−
2,1(Qp2 )

(
Π1 · (ω−1 ◦ det)⊗ χ3

)
PSχ3,χ1,χ2

PIχ3,ss1 PSχ3,χ2,χ1
∼= Ind

GL3(Qp2 )

P−
1,2(Qp2 )

(
χ3ω

−2 ⊗Π1

)
PSχ2,χ3,χ1

PIss2,χ1
PSχ3,χ2,χ1

∼= Ind
GL3(Qp2 )

P−
2,1(Qp2 )

(
Π2 · (ω−1 ◦ det)⊗ χ1

)
PSχ1,χ2,χ3

PIχ1,ss2 PSχ1,χ3,χ2
∼= Ind

GL3(Qp2 )

P−
1,2(Qp2 )

(
χ1ω

−2 ⊗Π2

)
for

Π1
∼= Ind

GL2(Qp2 )

B−(Qp2 )

(
χ1ω

−1 ⊗ χ2

)
ss1 Ind

GL2(Qp2 )

B−(Qp2 )

(
χ2ω

−1 ⊗ χ1

)
Π2

∼= Ind
GL2(Qp2 )

B−(Qp2 )

(
χ2ω

−1 ⊗ χ3

)
ss2 Ind

GL2(Qp2 )

B−(Qp2 )

(
χ3ω

−1 ⊗ χ2

)
.

By a straightforward induction, it follows from [Hau18, Thm.1.3] combined with
[Eme10a, Cor.4.3.5] that all isomorphisms (2.91) are actually true!

We must have moreover Z(ss1) = χ1χ2ω
−1, Z(ss2) = χ2χ3ω

−1, Z(ss3) =
χ1χ3ω

−1, Z(SSi) = det(ρ)ω−3 for i ∈ {4, . . . , 10} and, denoting by σ the only
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nontrivial element of Gal(Qp2/Qp):

VGL2
(ss1) ∼= χ1χ

σ
2 ⊕ χσ

1χ2

VGL2
(ss2) ∼= χ2χ

σ
3 ⊕ χσ

3χ2

VGL2(ss3)
∼= χ1χ

σ
3 ⊕ χσ

3χ1

VGL3(SS4)
∼=
(
χ2
1χ2 det(ρ)

σ ⊕ (χ2
1χ2)

σ det(ρ)
)⊕3

⊕
(
χ2
1χ3(χ

2
2χ1)

σ ⊕ (χ2
1χ3)

σχ2
2χ1

)
VGL3(SSi)

∼= analogous for i ∈ {5, 6, 8, 9, 10} (left to reader)

VGL3
(SS7) ∼=

(
det(ρ) det(ρ)σ

)⊕9 ⊕
(
χ2
1χ2(χ

2
3χ2)

σ ⊕ (χ2
1χ2)

σχ2
3χ2

)
⊕(

χ2
1χ3(χ

2
2χ3)

σ ⊕ (χ2
1χ3)

σχ2
2χ3

)
⊕
(
χ2
2χ1(χ

2
3χ1)

σ ⊕ (χ2
2χ1)

σχ2
3χ1

)

(all obviously representations of Gal(Qp/Qp) over F). The reader can then work
out the conditions in (2.83) involving the various subquotients of Π. Finally, by
Proposition 2.85 the GL2(Qp2)-representation Π1 (resp. Π2) is compatible with the

subrepresentation
( χ1 ∗

0 χ2

)
(resp. with the quotient

( χ2 ∗
0 χ3

)
) of ρ (see Example 1).

Example 7. We end up with GL4(Qp) and P̃ρ = Pρ = B, i.e.

ρ ∼=

⎛⎜⎜⎝
χ1 ∗ ∗ ∗
0 χ2 ∗ ∗
0 0 χ3 ∗
0 0 0 χ4

⎞⎟⎟⎠ ,

where χi are four smooth characters Q×
p → F× of ratio �= 1, ω±1. The structure of

a Π compatible with ρ is given in the next 3D diagram. Just like the previous 2D
diagrams look like stacked squares, this 3D diagram looks like stacked cubes: there
are 8 cubes, one being entirely “behind”. As before, each vertex is an irreducible
constituent with PS (in green) meaning principal series, SS (in red) meaning su-
persingular and PI1 (resp. PI2) (in blue) meaning parabolic induction from the
standard parabolic subgroup of Levi GL3 ×GL1 (resp. of Levi GL1 ×GL3). The
socle is the principal series at the very bottom and the cosocle is the principal series
at the very top. Like previously, each edge is a nonsplit extension between two ir-
reducible constituents, the dashed edges being those which are “behind” in the 3D
picture. Near each vertex we write the value of VGL4 applied to the corresponding
irreducible constituent.

The interested reader can then check all the other conditions and compatibilities
in Definition 2.70 and Definition 2.81, for instance the two left faces on the bottom
correspond to the parabolic induction PI1 of Example 2 tensored by the character
χ4.
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PS

PS

PS

PS

PI1
PI2

PS

SS
PS

PS

PS

PS

PI1

PI2

PS

PS

SS

SS

SS

PS

PS

SS

PS

PS

PI1

PI2

SS

PS

PS

PS

PS

PI2

PI1

PS

PS

PS

PS

PS

χ3
4χ

2
3χ2

χ3
3χ

2
4χ2

χ3
4χ

2
2χ3

χ3
4χ

2
3χ1

[(χ2χ3χ4)
2]⊕3

[χ3
4(χ1χ2χ3)]

⊕3

χ3
3χ

2
4χ1

[(χ3χ4)
2(χ1χ2)]

⊕8 χ3
4χ

2
1χ3

χ3
4χ

2
2χ1

χ3
3χ

2
2χ4

χ3
2χ

2
4χ3

[(χ1χ3χ4)
2]⊕3

[χ3
3(χ1χ2χ4)]

⊕3

χ3
4χ

2
1χ2

χ3
2χ

2
3χ4

[(χ2χ4)
2(χ1χ3)]

⊕8

[(χ1χ4)
2(χ2χ3)]

⊕8

[(χ2χ3)
2(χ1χ4)]

⊕8

χ3
3χ

2
1χ4

χ3
2χ

2
4χ1

[(χ1χ3)
2(χ2χ4)]

⊕8 χ3
1χ

2
4χ3

χ3
3χ

2
2χ1

[(χ1χ2χ4)
2]⊕3

[χ3
2(χ1χ3χ4)]

⊕3

[(χ1χ2)
2(χ3χ4)]

⊕8 χ3
1χ

2
4χ2

χ3
1χ

2
3χ4

χ3
2χ

2
3χ1

χ3
3χ

2
1χ2

[χ3
1(χ2χ3χ4)]

⊕3

[(χ1χ2χ3)
2]⊕3

χ3
2χ

2
1χ4

χ3
1χ

2
2χ4

χ3
1χ

2
3χ2

χ3
2χ

2
1χ3

χ3
1χ

2
2χ3
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2.5. Strong local-global compatibility conjecture

Back to the setting of §2.1 but assuming that F+
v is unramified and that rṽ

(for ṽ|v) is generic as at the beginning of §2.4.2, we conjecture that the G(Fṽ)-
representation HomUv (σv, S(V v,F)[mΣ]) is a direct sum of copies of a G(Fṽ)-
representation which is (up to twist) compatible with any good conjugate of rṽ
(Definition 2.81).

We consider exactly the same global setting as in §2.1.2. We fix v|p in F+ such
that F+

v is an unramified extension of Qp and consider a continuous representation

r : Gal(F/F ) → GLn(F) such that

(i) rc ∼= r∨ ⊗ ω1−n (recall rc(g) = r(cgc) for g ∈ Gal(F/F ));
(ii) r is an absolutely irreducible representation of Gal(F/F );
(iii) rṽ for ṽ|v has distinct irreducible constituents and the ratio of any two

irreducible constituents of dimension 1 is not in {ω, ω−1}
(note that condition (iii) doesn’t depend on the place ṽ of F dividing v since
rṽc ∼= r∨ṽ ⊗ ω1−n).

The following is the main conjecture of this paper.

Conjecture 2.1. Let r : Gal(F/F ) → GLn(F) be a continuous homomor-
phism that satisfies conditions (i) to (iii) above and fix a place v of F+ which di-
vides p such that F+

v is unramified. Assume that there exist compact open subgroups
V v ⊆ Uv ⊆ H(A∞,v

F+ ) with V v normal in Uv, a finite-dimensional representation
σv of Uv/V v over F and a finite set Σ of finite places of F+ as in §2.1.3 such
that HomUv (σv, S(V v,F)[mΣ]) �= 0, where mΣ is the maximal ideal of T Σ associ-
ated to r. Let ṽ|v in F and see HomUv (σv, S(V v,F)[mΣ]) as a representation of
H(F+

v ) ∼= GLn(Fṽ) = G(Fṽ) via ιṽ (cf. §2.1.2). Then there is an integer d ∈ Z>0

depending only on v, Uv, V v, σv and r and an admissible smooth representation
Πṽ of G(Fṽ) over F (depending a priori on ṽ, Uv, V v, σv and r) such that

HomUv (σv, S(V v,F)[mΣ]) ∼=
(
Πṽ ⊗ (ωn−1 ◦ det)

)⊕d
,

where Πṽ is compatible with one (equivalently any by Proposition 2.83) good conju-
gate of rṽ in the sense of Definition 2.63.

Remark 2.2.

(i) Conjecture 2.1 implies in particular that the G(Fṽ)-representation
HomUv (σv, S(V v,F)[mΣ]) is of finite length with all constituents of multiplicity
d (under assumptions (i) to (iii) on r), which is already far from being known in
general. See however §3.4 below for nontrivial evidence in the case of GL2. It also
implies that HomUv (σv, S(V v,F)[mΣ]) has a central character, but this is known
(at least under some extra assumptions), see Lemma 2.11.

(ii) When F+
v is unramified and rṽ is as in (iii) above, Conjecture 2.1 of course

implies (and is in fact much stronger than) Conjecture 2.9.

(iii) Assuming that p is unramified in F+ and that rw̃ is generic as in (iii)
above for all w|p, an even stronger conjecture would be as follows.

Conjecture 2.3. For Up ⊆ H(A∞,p
F+ ) such that S(Up,F)[mΣ] �= 0 (where Σ

contains the set of places of F+ that split in F and divide pN , or at which Up is not
unramified, or at which r ramifies, and where S(Up,F)[mΣ] is defined as in §2.1.2
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replacing Uv by Up) and for any w̃|w in F with w|p, there is an integer d ∈ Z>0

depending only on p, Up and r and admissible smooth representations Πw̃ of G(Fw̃)
over F, where Πw̃ is compatible with one (equivalently any) good conjugate of rw̃
such that

S(Up,F)[mΣ] ∼=
(⊗

w|p

(
Πw̃ ⊗ (ωn−1 ◦ det)

))⊕d

.

As in §2.1.3, we prove that Conjecture 2.1 holds for ṽ if and only if it holds for
ṽc (we do not need here extra assumptions). We start with two formal lemmas. We
use the previous notation and denote by w0 ∈ W the unique element with maximal
length.

Lemma 2.4. Let ρ : Gal(Qp/K) → P̃ρ(F) ⊆ Pρ(F) ⊆ G(F) be a good conjugate

as in §2.3.2. Then the continuous homomorphism Gal(Qp/K) → G(F) = GLn(F)
defined by

g �−→ w0τ
(
ρ(g)
)−1

w0(2.92)

is a good conjugate of the dual of the representation associated to ρ.

Proof. Denote by w0Pρ the standard parabolic subgroup of G with set of
simple roots −w0(S(Pρ)) ⊆ S. Using that W (w0Pρ) = w0W (Pρ)w0, one checks
that −w0(Xρ) ⊆ R+ is a closed subset relative to w0Pρ (Definition 2.54) and thus

corresponds to a Zariski-closed algebraic subgroup w0P̃ρ
def
= w0MPρw0N−w0(Xρ) of

w0Pρ (Lemma 2.57). Denote by w0τ (ρ)
−1w0 the homomorphism (2.92), its associ-

ated representation is the dual of the representation associated to ρ. Moreover one

has P̃w0τ(ρ)−1w0
= w0P̃ρ and Xhw0τ(ρ)−1w0h−1 = −w0(Xw0τ(h)−1w0ρw0τ(h)w0

) for any

h ∈ w0Pρ(F) (note that w0τ (h)
−1w0 ∈ Pρ(F)). The result follows from Definition

2.63. �

As in §2.1.3, if π is a smooth representation of G(K) over F we denote by π�

the smooth representation of G(K) with the same underlying vector space as π but
where g ∈ G(K) = GLn(K) acts by τ (g)−1.

Lemma 2.5. Let ρ : Gal(Qp/K) → G(F) be a continuous homomorphism such
that ρss has distinct irreducible constituents and the ratio of any two irreducible
constituents of dimension 1 is not in {ω, ω−1}. Let Π be a smooth representation
of G(K) over F. Then Π is compatible with one (equivalently any by Proposition
2.83) good conjugate of ρ if and only if Π� is compatible with one (ibid.) good
conjugate of ρ∨⊗ωn−1 (denoting by ρ∨ the dual of the representation associated to
ρ).

Proof. We use the notation in the proof of Lemma 2.4. Assuming ρ is a good
conjugate, it is enough to show that if Π is compatible with ρ, then Π� is compatible
with w0τ (ρ)

−1w0 ⊗ ωn−1. If R is a (finite-dimensional) algebraic representation of
GGal(K/Qp) over F, let R� be the algebraic representation where g ∈ GGal(K/Qp) acts

by τ (g)−1 (inverse transpose on each factor). Then one checks that L
⊗� ∼= L

⊗ ⊗
(det−(n−1))⊗[K:Qp]. Let Φ be a bijection as in Definition 2.81 and define Φ� from
the set of subquotients Π′� of Π� (where Π′ is a subquotient of Π) to the set of good

subquotients of L
⊗|(w0P̃ρ)

Gal(K/Qp) as follows: Φ�(Π′�) is the algebraic representation

of (w0P̃ρ)
Gal(K/Qp) given by Φ�(Π′�)(g)

def
= Φ(Π′)(w0τ (g)

−1w0)det(g)
n−1 for g ∈
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(w0P̃ρ)
Gal(K/Qp) (with obvious notation). We leave to the reader the tedious but

formal task to check that Φ� satisfies all conditions of Definitions 2.70 and 2.81
with w0P̃ρ and w0τ (ρ)

−1w0 ⊗ ωn−1 instead of P̃ρ and ρ using (for Q any standard
parabolic subgroup of G):(

Ind
G(K)
Q−(K)(π1 ⊗ · · · ⊗ πd)

)� ∼= Ind
G(K)
(w0Q)−(K)(πd

� ⊗ · · · ⊗ π1
�)

and Lemma 2.12. �
Proposition 2.6. Conjecture 2.1 holds for ṽ if and only if it holds for ṽc.

Proof. This follows from Lemma 2.5 together with rṽc ∼= r∨ṽ ⊗ω1−n, Remark
2.82(iv) and an easy computation. �

There is an obvious analogous statement with Conjecture 2.3 instead of Con-
jecture 2.1.

Remark 2.7. Let π be an admissible smooth representation of G(K) over
F with a central character. In [Koh17, Cor.3.15], Kohlhaase associates higher
smooth duals Si(π), i ≥ 0 to π which are also admissible (smooth) representations
of G(K) over F with a central character. In view of the results when n = 2
(see condition (iii) in §3.3.5 below and [HW22, Thm.8.2]), it is natural to expect
that, when K = Fṽ and Πṽ is as in Conjecture 2.1, we have Si(Πṽ) �= 0 if and

only if i = i0
def
= [K : Qp]

n(n−1)
2 and that Si0(Πṽ) is compatible with (a good

conjugate of) r∨ṽ ⊗ ωn−1 (when n = 2, this is indeed consistent with loc.cit. since
r∨ṽ

∼= rṽ⊗det(rṽ)
−1). It is also natural to ask if we have Si0(Πṽ) ∼= Π�

ṽ (see Lemma
2.5).

From the results of [BH15, §4.4] and [Enn], we can at least give some very
weak evidence for Conjecture 2.1, more precisely for the stronger Conjecture 2.3 in
Remark 2.2(iii), when p is totally split in F+ and rw̃ is upper-triangular sufficiently
generic for all w|p in F+.

If Π is an admissible smooth representation of G(K) over F, we denote by
Πord ⊆ Π the maximal G(K)-subrepresentation such that all its irreducible con-
stituents are isomorphic to irreducible subquotients of principal series of G(K) over
F. The following lemma is not difficult using Proposition 2.40, [BH15, Thm.2.2.4]
and the results of [BH15, §3.3], [BH15, §3.4] (the proof is left to the reader).

Lemma 2.8. Assume K = Qp and let ρ : Gal(Qp/Qp) → B(F) ⊆ G(F) be
generic (as at the beginning of §2.4.2) and a good conjugate (as in Definition 2.63).
Let Π be compatible with ρ (as in Definition 2.81). Then Πord ∼= Π(ρ)ord, where
Π(ρ)ord is the representation of G(Qp) over F defined in [BH15, §3.4].

Note that one can explicitly determine VG(Π(ρ)ord) inside L
⊗
(ρ), see [Bre15,

§9].
We let Sp be the set of places of F

+ dividing p. Recall that an injection between
two representations of a group is called essential if it induces an isomorphism on
the respective socles.

Theorem 2.9 ([Enn]). Assume that F/F+ is unramified at finite places, that
H is defined over OF+ with H ×OF+ F+ quasi-split at finite places of F+, and that

p is totally split in F . Assume that r : Gal(F/F ) → GLn(F) satisfies assumptions
A1 to A6 of [Enn, §3.1], let v1 be a finite place of F+ as in [Enn, Lemma 3.1.2]
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and Σ
def
= Sp ∪ {v1}. Choose ṽ1|v1 in F and let Up =

∏
w�p Uw ⊆ H(A∞,p

F+ ) such

that Uw = H(OF+
w
) if w splits in F , Uw is maximal hyperspecial in H(F+

w ) if w is

inert in F and ιṽ1(Uv1) is the Iwahori subgroup of GLn(Fṽ1). Then for any w̃|w
in F and any good conjugates rw̃ (where w ∈ Sp), we have an essential injection of
admissible smooth representations of

∏
w|p H(F+

w ) over F:(⊗
w|p

(
Π(rw̃)

ord ⊗ ωn−1 ◦ det
))⊕n!

↪→ S(Up,F)[mΣ]ord,

where S(Up,F)[mΣ]ord ⊆ S(Up,F)[mΣ] is defined as Πord ⊆ Π above replacing G(K)
by
∏

w|p H(F+
w ).

Proof. This follows from [Enn, Thm.3.3.3] (which itself improves [BH15,
Thm.4.4.7]) and its proof (see just before [Enn, Lemma 3.2.1] for the n!). �

Remark 2.10. The cokernel of the injection in Theorem 2.9 is an admissible
smooth representation of

∏
w|p H(F+

w ) over F, and its
∏

w|p H(F+
w )-socle is by con-

struction a direct sum of finitely many irreducible subquotients of principal series.
If we could prove that all these irreducible subquotients are irreducible principal
series which do not appear in the

∏
w|p H(F+

w )-socle of
⊗

w|p(Π(rw̃)
ord⊗ωn−1◦det),

then it would follow from the mod p version of [Hau19, Cor.1.4] that the essential
injection in Theorem 2.9 is an isomorphism.
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CHAPTER 3

The case of GL2(Qpf )

We give evidence for Conjecture 2.9 and Conjecture 2.1 when F+
v is unramified

and G = GL2. We now assume K = Qpf and n = 2 till the end. We fix an

embedding σ0 : Fpf = Fq ↪→ F and let σi
def
= σ0 ◦ ϕi for ϕ the arithmetic Frobenius

and i ≥ 0.

3.1. (ϕ,O×
K)-modules and (ϕ,Γ)-modules

We associate étale (ϕ,O×
K)-modules to certain admissible smooth representa-

tions of GL2(K) over F and relate them to the étale (ϕ,Γ)-modules of §2.1.1.
We assume p > 2. We let I

def
=
( O×

K OK

pOK O×
K

)
be the Iwahori subgroup of GL2(OK),

K1
def
=
( 1+pOK pOK

pOK 1+pOK

)
the pro-p radical of GL2(OK), I1

def
=
( 1+pOK OK

pOK 1+pOK

)
the

pro-p radical of I, N0
def
=
(
1 OK
0 1

)
⊆ I1, N−

0
def
=
(

1 0
pOK 1

)
⊆ I1 and

T0
def
=
( 1+pOK 0

0 1+pOK

)
⊆ I1. We denote by Z1 the center of I1. If C is a pro-p

group then F�C� denotes its Iwasawa algebra over F, which is a local ring, and mC

the maximal ideal of F�C�. If R (resp. M) is a filtered ring (resp. filtered module) in
the sense of [LvO96, §I.2], we denote by FnR (resp. FnM) for n ∈ Z its ascending

filtration and gr(R)
def
= ⊕n∈ZFnR/Fn−1R (resp. with M) the associated graded ring

(resp. module). When R = F�C�, we set FnR
def
= m

−n
R if n ≤ 0 and FnR

def
= R if

n ≥ 0. If M is an R-module, the filtration defined by FnM = m
−n
R M if n ≤ 0 and

FnM = M if n ≥ 0 is called the mR-adic filtration on M .

3.1.1. The ring A. We describe some properties of a complete noetherian
ring A which will be a coefficient ring for some multivariable (ψ,O×

K)-modules and

(ϕ,O×
K)-modules.
Let vN0

be the mN0
-adic valuation on the ring F�N0� defined by the mN0

-adic
filtration (i.e. FnF�N0� = {x ∈ F�N0� : vN0

(x) ≥ −n} for n ∈ Z). We use the same
notation to denote the unique extension of vN0

to a valuation of the fraction field
of F�N0�. For i ∈ {0, . . . , f − 1} let

(3.1) Yi
def
=
∑
a∈F×

q

σ0(a)
−pi

(
1 ã
0 1

)
∈ mN0

\m2
N0

(where ã ∈ O×
K denotes the Teichmüller lift of a) and write yi

def
= gr(Yi) for the image

of Yi in mN0
/m2

N0
⊆ gr(F�N0�). Then F�N0� is isomorphic to the power series ring

F�Y0, . . . , Yf−1� and gr(F�N0�) to the polynomial algebra F[y0, . . . , yf−1]. Let S
be the multiplicative subset of F�N0� whose elements are the (Y0 · · ·Yf−1)

n for

n ≥ 0, F�N0�S the corresponding localization and FnF�N0�S
def
= {x ∈ F�N0�S :

vN0
(x) ≥ −n}. We define the ring A as the completion of the filtered ring F�N0�S

85
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([LvO96, §I.3.4]). Note that vN0
extends to A, which is thus a complete filtered

ring. As A is complete, an element x ∈ A is invertible in A if and only if gr(x) is
invertible in gr(A) (as is easily checked, here gr(x) is the “principal part” of x as
in [LvO96, §I.4.2]).

Let M be a filtered F�N0�-module. The tensor product A ⊗F�N0� M is then a
filtered A-module for the tensor product filtration as defined in [LvO96, p.57]. We
let A⊗̂F�N0�M be its completion. This filtered A-module can also be described as
the completion of the localization MS endowed with the tensor product filtration
associated to the isomorphism MS

∼= F�N0�S ⊗F�N0� M .

Lemma 3.1. We have an isomorphism

(3.2) gr(A⊗̂F�N0�M) ∼= gr(MS) ∼= gr(M)[(y0 · · · yf−1)
−1].

Proof. As A⊗̂F�N0�M is the completion of MS , it is sufficient to prove that

gr(MS) ∼= gr(M)[(y0 · · · yf−1)
−1]. Note that we have an isomorphism of F�N0�-

algebras F�N0�S ∼= F�N0�[T ]/((Y0 · · ·Yf−1)T − 1). Moreover if we endow the ring
F�N0�[T ] with the filtration

Fn(F�N0�[T ]) =
∑
k≥0

m
kf−n
N0

T k

(with the convention mi
N0

= F�N0� for i ≤ 0), the filtration on F�N0�S is the
quotient filtration via F�N0�[T ] � F�N0�S . Therefore the filtration on MS is the

quotient filtration of the tensor product filtration on M [T ]
def
= F�N0�[T ]⊗F�N0� M .

As the filtered F�N0�-module F�N0�[T ] is filtered-free by definition
(see [LvO96, Def.I.6.1]), it follows from [LvO96, Lemma I.6.14] that gr(M [T ]) ∼=
gr(M)[T ] with deg(T ) = f . We claim that the following sequence of filtered mod-
ules is strict exact:

M [T ]
(Y0···Yf−1)T−1−−−−−−−−−−→ M [T ] −→ MS −→ 0.

Namely the exactness of the second arrow follows from the definition of the quotient
filtration. As (Y0 · · ·Yf−1)T and 1 have degree 0 in F�N0�[T ], the multiplication by
(Y0 · · ·Yf−1)T − 1 induces the multiplication by (y0 · · · yf−1)T − 1 on gr(M [T ]) ∼=
gr(M)[T ] which is injective. It follows from [LvO96, Thm.I.4.2.4(2)] (applied with
L = 0, M = N = M [T ], f = 0 and g being the multiplication by (Y0 · · ·Yf−1)T−1)
that the multiplication by (Y0 · · ·Yf−1)T − 1 is a strict map.

It then follows from [LvO96, Thm.I.4.2.4(1)] that the following sequence is
exact:

(3.3) gr(M [T ])
(y0···yf−1)T−1−−−−−−−−−−→ gr(M [T ]) −→ gr(MS) −→ 0.

Finally, since gr(M [T ]) ∼= gr(M)[T ], we have gr(MS) ∼= gr(M)[(y0 · · · yf−1)
−1]. �

Corollary 3.2. We have an isomorphism

gr(A) ∼= F[y0, . . . , yf−1, (y0 · · · yf−1)
−1].

As a consequence the ring A is a regular domain, i.e. a noetherian domain which
has a finite global dimension ([Ser00, §IV.D]).

Proof. The first sentence is a direct consequence of Lemma 3.1 applied with
M = F�N0�. This implies that the ring gr(A) is a noetherian domain. Then
the noetherianity of A follows from [LvO96, Thm.I.5.7] applied to the ideals of
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A, and the fact that A is a domain follows easily from gr(x) gr(y) = gr(xy) if
x, y ∈ A\{0} (using gr(x) gr(y) �= 0). As gr(A) is a regular commutative ring, it
follows from [LvO96, Thm.III.2.2.5] that A is an Auslander regular ring (note that
A is Zariskian by [LvO96, Prop.II.2.2.1]) and a fortiori has finite global dimension
([LvO96, Def.III.2.1.7]). �

Remark 3.3.

(i) The ring A can also be defined as the microlocalization of F�N0� along the
set {(y0 · · · yf−1)

n, n ≥ 0} ⊆ gr(F�N0�) (see [LvO96, Cor.IV.1.20]). This shows
that the ring A does not depend on our choice of elements Yi but rather on the
elements yi.

(ii) If M is a filtered F�N0�-module, the filtration on MS is given explicitly by
the following formula:

Fn(MS) =
∑
k≥0

(Y0 · · ·Yf−1)
−kFn−kf (M), n ∈ Z.

As (Y0 · · ·Yf−1)
mFn(M) ⊆ Fn−mf (M) for all n ∈ Z and m ∈ N, we have

(Y0 · · ·Yf−1)
−kFn−kf (M) ⊆ (Y0 · · ·Yf−1)

−k−1Fn−(k+1)f (M)

so that Fn(MS) can also be described as the increasing union

Fn(MS) =
⋃
k≥0

(Y0 · · ·Yf−1)
−kFn−kf (M).

Note that the filtration on MS is not necessarily separated even if the filtration on
M is separated.

(iii) The ring A can also be defined as the set of series

A =

{ ∑
d�−∞

Pd

(Y0 · · ·Yf−1)nd
, Pd ∈ (Y0, . . . , Yf−1)

d+fnd , nd ≥ 0, d+ fnd ≥ 0

}
,

equivalently, A is the set of infinite sums of monomials in the Yi with F-coefficients
such that the total degree of the monomials tends to +∞.

Let n ≥ 0 be an integer and let Npn

0 ⊆ N0 be the subgroup of pn-th powers
(which is pnOK under the identification N0

∼= OK). Let Spn

be the set of pn-

th powers of S and let Apn

be the completion of F�Npn

0 �Spn for the filtration
coming from the valuation vN0

|
F�Npn

0 �
= pnv

Npn

0
. As the saturation of Spn

(see

[LvO96, §IV.1]) contains S, we have by [LvO96, Cor.IV.1.20]

(3.4) F�N0�S = F�N0�Spn
∼= F�Npn

0 �Spn ⊗
F�Npn

0 �
F�N0�.

It is easy to check that F�N0� is a filtered free F�Npn

0 �-module with respect to the

basis (Y i0
0 · · ·Y if−1

f−1 )0≤ij≤pn−1
0≤j≤f−1

. Hence, by [LvO96, Lemma I.6.15] and (3.4), we

conclude that F�N0�S is a filtered free F�Npn

0 �Spn -module with respect to the same
basis, and thus by [LvO96, Lemma I.6.13(3)] that A is a filtered free Apn

-module
with respect to the same basis again. Moreover, by [LvO96, Lemma I.6.14], we
have an isomorphism of graded modules

(3.5) gr(A) ∼= gr(Apn

)⊗
gr(F�Npn

0 �)
gr(F�N0�).
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Note that the pn-power Frobenius map x �→ xpn

induces an isomorphism

of filtered rings (F�N0�S , vN0
)

∼−→ (F�Npn

0 �Spn , vNpn

0
) and thus, as vN0

|
F�Npn

0 �
=

pnv
Npn

0
, an isomorphism of topological rings

(F�N0�S , vN0
)

∼−→ (F�Npn

0 �Spn , vN0
|
F�Npn

0 �
).

It induces an isomorphism of complete topological rings A
∼−→ Apn

such that the
composite map A

∼−→ Apn

↪→ A is the pn-power Frobenius. This implies that the
image of Apn

in A is the subring of pn-th powers of A.
The group O×

K acts on the group N0 via a · ( 1 b
0 1 ) = ( 1 ab

0 1 ) and thus on F�N0�,
preserving the valuation vN0

, and hence the filtration. This induces an action of
O×

K on the graded ring gr(F�N0�), where it is immediately checked that 1 + pOK

acts trivially. Moreover if a ∈ F×
q and 0 ≤ i ≤ f − 1, we have ã · yi = σi(a)yi.

Lemma 3.4. There is a unique continuous action of O×
K on the ring A extending

the action of O×
K on F�N0�.

Proof. As O×
K acts by ring endomorphisms on F�N0� and as F�N0�S is dense

in A, the uniqueness is clear.

For the existence, let a ∈ O×
K and consider the composition F�N0�

a−→ F�N0� ⊆
A which extends to a ring homomorphism F�N0�S → A since the elements of a(S)
are invertible in A (because they are invertible in gr(A) as gr(a(S)) = gr(S)).
The precomposition of the valuation vN0

on A with this map is a valuation on
F�N0�S which coincides with vN0

on F�N0� since the multiplication by a preserves
the valuation on F�N0�. Therefore the map F�N0�S → A is isometric and extends
to a filtered ring homomorphism A → A ([LvO96, Thm.I.3.4.5]). This defines an
action of O×

K on A. �

We recall that ξ is the cocharacter x �→ ( x 0
0 1 ) of GL2. The conjugation by

the matrix ξ(p) in GL2(K) induces a group endomorphism of N0 and a continuous
endomorphism φ of F�N0�. We have φ(Yi) = Y p

i−1 for 1 ≤ i ≤ f − 1 and φ(Y0) =
Y p
f−1. This implies that φ is the composite of the (relative) Frobenius endomorphism

with a permutation of the variables Yi. It follows that φ extends to a continuous
injective endomorphism of the ring A with image Ap. More generally, for n ≥ 0,
the subring Apn

is the image of φn.

Proposition 3.5. Let H ⊆ O×
K be an open subgroup and let a ⊆ A be an ideal

of A which is H-stable. Then a is controlled by Ap, which means

a = A(a ∩ Ap).

Proof. As H is open in O×
K it contains a subgroup of the form 1+ pmOK for

m ≥ 1 so that we can assume that H = 1 + pmOK .
The proof follows closely the strategy of [AW09].
We note that the pair (A,Ap) is a Frobenius pair in the sense of [AW09,

Def.2.1] (to see this use [AWZ08, Prop.6.6] applied to G = N0 together with
[AW09, Lemma 2.2.(a)] and Remark 3.3(i)). We endow Ap with the filtration

FnA
p def
= Ap ∩ FnA induced by the filtration of A.

Let F
def
= a/A(a ∩ Ap). Endow A(a ∩ Ap) and a with the filtration induced by

A, and F with the quotient filtration. Then by [LvO96, Rk.I.5.2(2)] and [LvO96,
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Cor.I.5.5(1)] all these filtrations are good in the sense of [LvO96, Def.I.5.1]. More-
over a and A(a ∩ Ap) are complete filtered A-modules by [LvO96, Cor.I.6.3(2))]
and thus so is F by [LvO96, Prop.I.3.15].

We want to prove that F = 0. Assume for a contradiction that F �= 0, or
equivalently gr(F ) �= 0 by [LvO96, Prop.I.4.2(1)].

Let Γ
def
= H = 1 + pmOK (this not the Γ of the (ϕ,Γ)-modules!). This is a

uniform pro-p-group. Note that the action of Γ on N0 is uniform in the sense of
[AW09, §4.1]. In the notation of [AW09, §4.2], we have LN0

= OK , g = Fq and
the action of Fq on LN0

/pLN0
is given by the multiplication in Fq.

Let P be a (homogeneous) prime ideal in the support of the gr(A)-module
gr(F ) (which exists since gr(F ) �= 0).

Let x ∈ F×
q and γx

def
= exp(pm[x]) ∈ Aut(N0) ↪→ End(A). It follows from

[AW09, Prop.4.4] and [AW09, Prop.3.2(a)] that the family

a(x)
def
= (γx, γ

p
x, γ

p2

x , . . . )

is a source of derivations of (A,Ap) in the sense of [AW09, Def.3.2]. Let TP ⊆
gr(A) be the set of homogeneous elements of gr(A) which are not in P and let

T
(p)
P

def
= TP∩gr(Ap). It follows again from [AW09, Prop.3.2(a)] that a(x) induces on

(QTP
(A), Q

T
(p)
P

(Ap)) a source of derivations aTP
(x), whereQTP

(A) (resp.Q
T

(p)
P

(Ap))

is the microlocalization of A (resp. Ap) with respect to TP (resp. T
(p)
P ). Let

S def
= {a(x), x ∈ F×

q } and SP
def
= {aTP

(x), x ∈ F×
q }.

As a is Γ-invariant, a is also S-invariant, i.e. for all x ∈ F×
q and r ≥ 0, we have

γpr

x a ⊆ a. Then aP
def
= QTP

(a) ∼= QTP
(A) ⊗A a ([LvO96, Cor.IV.1.18(2)], though

here everything is simpler as all rings are commutative) is an ideal of QTP
(A) which

is SP -invariant.

Let P0
def
= P ∩ gr(F�N0�) (inside gr(A)). We prove that P0 contains LN0

/pLN0
,

where the latter is seen in gr−1(F�N0�) (recall LN0
∼= N0). Assume this is not

true. Let J
def
= gr(aP ) ∼= gr(a)P ([AWZ08, Lemma 4.4]), which is a graded ideal of

the localization gr(A)P of gr(A) with respect to the set of homogeneous elements
which are not in P , and let Y ∈ gr(A)P such that Y ∈ JSP (see [AW09, Def.3.4]
for the definition of JSP ). Noticing that gr(A)P = gr(F�N0�)P0

and that LN0
/pLN0

is a 1-dimensional Fq-vector space, we can apply [AW09, Prop.4.3] (together with
[AW09, Prop.4.4(c)]) to the graded prime ideal P0 of B = gr(F�N0�) and the
graded ideal J of gr(F�N0�)P0

. We deduce DP (Y ) ⊆ J (see [AW09, §4.3] for the
definition of DP ). It follows from [AW09, Thm.3.5] applied to the Frobenius pair
(QTP

(A), Q
T

(p)
P

(Ap)) and the ideal aP that aP is controlled by Q
T

(p)
P

(Ap). Then

[AW09, Lemma 2.3] shows that gr(F )P = 0. This is a contradiction.

As LN0
/pLN0

generates the F-vector space gr−1(F�N0�) = ⊕f−1
i=0 Fyi, it follows

that yi ∈ P for all 0 ≤ i ≤ f − 1 and then that gr(A) = P . This is a contradiction
so that F = 0 i.e. a = A(a ∩Ap). �

Lemma 3.6. Let a � A be a proper ideal of A. Then ∩n≥0(A(a ∩ Apn

)) = 0.
In particular, if φ(a) ⊆ a we have ∩n≥0Aφn(a) = 0.

Proof. Let an
def
= A(a ∩ Apn

). We endow a ∩ Apn

with the induced filtration
of Apn

(or equivalently A). As A is a finite free Apn

-module, we have an
∼= A⊗Apn

(a ∩ Apn

). We endow this A-module with the tensor product filtration. Since A is
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a filtered free Apn

-module, it follows from [LvO96, Lemma I.6.14] that gr(an) ∼=
gr(A)⊗gr(Apn ) gr(a∩Apn

). Since gr(A) is a finite free gr(Apn

)-module, the natural
map gr(an) → gr(A) is injective (and the filtration on an is in fact the one induced
from A). Moreover from (3.5) we deduce

(3.6) gr(an) ∼= gr(F�N0�)⊗gr(F�Npn

0 �)
gr(a ∩ Apn

).

Assume that a �= A. Then as both a and A are complete and the injection
a ↪→ A is strict, it follows as for the A-module F in the proof of Proposition 3.5 that
gr(A/a) �= 0 (with the quotient filtration on A/a), hence by [LvO96, Thm.I.4.4(1)]
that gr(a) �= gr(A), and a fortiori gr(an) �= gr(A).

Using (3.6) and the fact gr(F�N0�) ∼= F[y0, . . . , yf−1] is free of finite rank over

gr(F�Npn

0 �) ∼= F[yp
n

0 , . . . , yp
n

f−1], we have inside gr(A) that

(3.7) gr(an) ∩ gr(F�N0�) ∼= gr(F�N0�)⊗gr(F�Npn

0 �)
(gr(a ∩ Apn

) ∩ gr(F�Npn

0 �)).

The ideal gr(an) ∩ gr(F�N0�) is therefore generated by homogeneous elements of

gr(F�N0�) which are of degree≤−pn since homogeneous elements of F[yp
n

0 , . . . , yp
n

f−1]

of degree zero are invertible and gr(an) does not contain invertible elements (as
gr(an) �= gr(A)). We conclude that

gr(an) ∩ gr(F�N0�) ⊆ F−pn(gr(F�N0�)).

Consequently (recall
⋂

n≥0 an has the induced filtration from A)

(3.8) gr
( ⋂
n≥0

an
)
∩ gr(F�N0�) ⊆

⋂
n≥0

(gr(an) ∩ gr(F�N0�)) = 0.

As gr(
⋂

n≥0 an) is an ideal in gr(A) ∼= F[y0, . . . , yf−1, (y0 · · · yf−1)
−1], it follows

from (3.8) that we must have gr(
⋂

n≥0 an) = 0, and hence that
⋂

n≥0 an = 0 by

[LvO96, Prop.I.4.2(1)]. �

Corollary 3.7. Let H ⊆ O×
K be an open subgroup. The only ideals of A which

are H-stable are 0 and A.

Proof. Let a be such an ideal and assume that a �= A. It follows from Propo-
sition 3.5 applied recursively with A, Ap, etc. that a = A(a ∩ Apn

) for all n ≥ 0.
Then Lemma 3.6 implies a = 0. �

If H is an open subgroup of O×
K , an H-module over A is a finitely generated

A-module with a semilinear action of H.

Proposition 3.8. Let H be an open subgroup of O×
K and let M be an H-module

over A. Then M is a finite projective A-module.

Proof. (We thank Gabriel Dospinescu for suggesting the following proof which
is shorter than our original one.) Let M be an H-module. For k ≥ −1 let Fitk(M)
be the k-th Fitting ideal (see for example [Sta19, Def.07Z9]). As M is a finitely
generated A-module, it follows from [Sta19, Lemma 07ZA] that there exists some
r ≥ 0 such that Fitr(M) �= 0. Let r ≥ 0 be the smallest integer such that
Fitr(M) �= 0. Let γ ∈ H. It follows easily from the definition of Fitk(M) that
Fitk(M ⊗A,γ A) = γ(Fitk(M)) as ideals of A. The action of γ on M induces an

A-linear isomorphism M⊗A,γA
∼−→ M , showing that γ(Fitk(M)) = Fitk(M). It fol-

lows then from Corollary 3.7 that all the ideals Fitk(M) are zero or A. Therefore we
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have Fitr−1(M) = 0 and Fitr(M) = A and we deduce from [Sta19, Lemma 07ZD]
that M is projective of rank r. �

We record one more useful consequence of Corollary 3.7.

Corollary 3.9. Let H be an open subgroup of O×
K . We have AH = F, i.e.

the H-invariants in A are given by F.

Proof. If x ∈ AH , then xA is an H-stable ideal of A. It follows that x = 0 or

x ∈ A× by Corollary 3.7, i.e. AH is a field. Therefore, the composition AH ↪→ A
tr−→→

F((T )) is injective. But tr is also Z×
p -equivariant, so AH injects into F((T ))H∩Z×

p

and it suffices to show that F((T ))M = F for any open subgroup M ⊆ Z×
p . As

the Z×
p -action is F-linear, there is no loss in assuming that F = Fp. To see that

Fp((T ))
M = Fp, recall that the Z×

p -action on Fp((T )) is given by interpreting Fp((T ))

as the field of norms of Qp(μp∞)/Qp (with Galois group Z×
p ). Let L0

def
= Qp(μp∞)M ,

which is a finite totally ramified extension of Qp. Thus every x ∈ Fp((X))M is
given by a norm-compatible system of elements xL ∈ L0, L running through finite
subextensions of Qp(μp∞)/L0. In particular, if x is nonzero, then xL is p-divisible
in L×

0 , so xL ∈ [F×
p ]. As x is then determined by xL0(μp), we deduce the claim. �

3.1.2. Multivariable (ψ,O×
K)-modules. We define a functor from a certain

abelian category of admissible smooth representations of GL2(K) over F to a cat-
egory of multivariable (ψ,O×

K)-modules.
Let R be a noetherian commutative ring of characteristic p endowed with an

injective ring endomorphism FR such that R is a finite free FR(R)-module. If M

is an R-module, we define F ∗
R(M)

def
= R ⊗FR,R M . Examples of such pairs (R,FR)

are given by (F�N0�, φ) and (A, φ) in §3.1.1.
A ψ-module over R is a pair (M,β), where M is an R-module and β is an R-

linear homomorphism M → F ∗
R(M). When R is a regular ring, FR is the Frobenius

endomorphism of R and β is an isomorphism, we recover the notion of FR-module
of [Lyu97, Def.1.1]. We say that a ψ-module (M,β) is étale if β is injective.

If (M,β) is a ψ-module, the exact functor F ∗
R gives us, for each n ≥ 0, an

R-linear map (F ∗
R)

n(β) : (F ∗
R)

n(M) → (F ∗
R)

n+1(M) and we can define

βn
def
= (F ∗

R)
n−1(β) ◦ · · · ◦ (F ∗

R)(β) ◦ β : M −→ (F ∗
R)

n(M).

The inductive limit of the system ((F ∗
R)

n(M), (F ∗
R)

n(β))n gives rise to a ψ-module
(M, β) with β an isomorphism. Then (M,β) generates (M, β) in the sense of

[Lyu97, Def.1.9]. Let M ét be the image of M in M and M0 the kernel of M →
M ét. The map β induces a structure of ψ-module on M0 and M ét and M ét is
an étale ψ-module. The ψ-module M ét is called the étale part of M and M0 the
nilpotent part of M . We note that (M,β) and (M ét, β ét) generate the same FR-
module and (M0, β0) generates the trivial FR-module whose underlying module is
zero. Note that the constructions (M,β) �→ (M ét, β ét) and (M,β) �→ (M0, β0) are
functorial in (M,β) and that, if β is injective, we have M0 = 0. This implies that
if f : (M,β) → (M ′, β′) is a morphism of ψ-modules with (M ′, β′) étale, then f
factors through M ét.

We are mainly interested in ψ-modules with extra structures, which we call
(ψ,O×

K)-modules over A. If M is a finitely generated A-module, we always endow it
with the topology defined by any good filtration (note that good filtrations generate
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the same topologies, cf. [LvO96, Lemma I.5.3]). It is also the quotient topology
given by any surjection A⊕d � M (as follows from [LvO96, Rk.I.5.2(2)]), and we
call it the canonical topology on M . The group O×

K acts continuously on A and
this action commutes with the endomorphism φ. If M is an A-module which is
endowed with an action of O×

K , we consider the diagonal action on φ∗(M), which

is well defined since φ commutes with O×
K .

Definition 3.10. A (ψ,O×
K)-module over A is a ψ-module (M,β) over A such

that M is a finitely generated A-module with a continuous semilinear action of O×
K

such that β is O×
K-equivariant (here, continuity means that the map O×

K ×M → M

is continuous). We say that a (ψ,O×
K)-module over A is étale if the underlying

ψ-module over A is.

We remark that if (M,β) is a (ψ,O×
K)-module, then M is an O×

K-module and
is therefore finite projective as an A-module by Proposition 3.8.

Proposition 3.11. Let (M,β) be an étale (ψ,O×
K)-module over A. Then β is

an isomorphism.

Proof. We note that the two A-modules M and φ∗(M) = A⊗φ,AM have the
same generic rank. As β is an injective A-linear map between two finitely generated
modules of the same generic rank over a noetherian domain, its cokernel is torsion.
This cokernel is then an O×

K-module which is moreover torsion as an A-module, it
follows from Proposition 3.8 that it is zero and β is an isomorphism. �

We now define a functor from certain representations of GL2(K) over F to
(ψ,O×

K)-modules over A.
Let π be an admissible smooth representation of GL2(K) over F. Its (F-linear)

dual π∨ is then a finitely generated F�I1�-module. We fix a good filtration on π∨.
As above, we endow A⊗F�N0�π

∨ with the tensor product filtration and define the
filtered A-module

(3.9) DA(π)
def
= A⊗̂F�N0�π

∨ ∼= (̂π∨)S .

Note that the action of F�N0� on π∨ is given by δa(f)
def
= f ◦ a−1 for f ∈ π∨,

a ∈ N0. As all the good filtrations on π∨ are equivalent ([LvO96, Lemma I.5.3]),
the underlying topological A-module does not depend on the choice of the good
filtration on π∨. An example of a good filtration on π∨ is given by the mI1 -adic
filtration, as follows directly from the definition. It is very important to note that
the topology used on π∨ is not the mN0

-adic topology but the mI1 -adic topology,
which is actually coarser.

Proposition 3.12. The functor π �−→ DA(π) is exact.

Proof. Let 0 → π′ → π → π′′ → 0 be an exact sequence of admissible
smooth representations of GL2(K) over F. The sequence 0 → (π′′)∨ → π∨ →
(π′)∨ → 0 is still exact. We endowed π∨ with a good filtration, (π′)∨ with the
quotient filtration and (π′′)∨ with the induced filtration (which are again good
by e.g. [LvO96, Prop.II.1.2.3]). With these choices, the exact sequence remains
exact after applying the functor gr (see for example [LvO96, Thm.I.4.2.4(1)]).
It follows from Lemma 3.1, from the exactness of localization and from [LvO96,
Thm.I.4.2.4(2)]) that the sequence 0 → (π′′)∨S → (π∨)S → (π′)∨S → 0 is exact and
strict. The exactness of 0 → DA(π

′′) → DA(π) → DA(π
′) → 0 then follows from

[LvO96, Thm.I.3.4.13]. �
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We define a continuous action of O×
K on π∨ as follows, for f ∈ π∨, γ ∈ O×

K we
have

(γ · f)(x) def
= f

((
γ−1 0
0 1

)
x

)
∀ x ∈ π.

As O×
K normalizes I1, the action of O×

K on π∨ is continuous for the mI1-adic topol-

ogy. We use the continuous action of O×
K on A to extend this action diagonally

to A⊗F�N0� π
∨ and, by continuity, to DA(π). The action of O×

K is continuous and
A-semilinear in the sense that

γ · (af) = (γ · a)(γ · f) ∀ (γ, a, f) ∈ O×
K ×A×DA(π).

We define an F-linear endomorphism ψ of π∨ by the formula

(3.10) ψ(f)(x) = f(ξ(p)x) ∀(f, x) ∈ π∨ × π.

This endomorphism is continuous, clearly commutes with the action of O×
K and

satisfies the relation

ψ(φ(a)f) = a(ψ(f))

for all a ∈ F�N0�, f ∈ π∨.

Lemma 3.13. Let M be some F�N0�-module and let ψ be an F-linear endomor-
phism of M satisfying the relation

ψ(φ(a)m) = aψ(m) ∀ (a,m) ∈ F�N0� ×M.

Then for all integers n ≥ 0, we have

ψ(m
pf−(f−1)+pn
N0

M) ⊆ m
n+1
N0

M.

As a consequence, for n ≥ pf − (f − 1), we have

ψ(mn
N0

M) ⊆ m
�n

p �−f

N0
M.

Proof. For n = 0, the result follows from the fact that, if Y i0
0 · · ·Y if−1

f−1 ∈
m

pf−(f−1)
N0

, there exists some 0 ≤ j ≤ f − 1 such that ij ≥ p. Then, for all m ∈ M ,
we have

ψ(Y i0
0 · · ·Y if−1

f−1 m) = Yj+1ψ(Y
i0
0 · · ·Y ij−p

j · · ·Y if−1

f−1 m) ∈ mN0
M.

The general statement follows from a simple induction on n.
For the last statement, we choose m such that

pm+ pf − (f − 1) ≤ n < p(m+ 1) + pf − (f − 1)

and we use the first statement to deduce that

ψ(mn
N0

M) ⊆ ψ(m
pm+pf−(f−1)
N0

M) ⊆ m
m+1
N0

M ⊆ m
�n

p �−f

N0
M. �

We extend ψ to an F-linear map (π∨)S → (π∨)S (recall (π∨)S = F�N0�S⊗F�N0�

π∨) by the formula

(3.11) ψ

(
m

(Y0 · · ·Yf−1)pn

)
=

ψ(m)

(Y0 · · ·Yf−1)n

for all m∈π∨ and n≥0. Each element of (π∨)S can be written as (Y0 · · ·Yf−1)
−pnm

for some m ∈ π∨ and n ≥ 0, and it follows from the properties of ψ on π∨ that the
right-hand side of (3.11) does not depend on this choice. For any element g in I1,
we denote by δg the corresponding element [g] in F�I1�.
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Lemma 3.14. The map ψ : (π∨)S → (π∨)S is continuous.

Proof. As all the good filtrations on π∨ are equivalent, we choose the mI1-
adic filtration on π∨ for this proof, i.e. Fnπ

∨ = m
−n
I1

π∨ for n ≤ 0 and Fnπ
∨ = π∨

for n > 0. From the proof of [BHH+23, Prop.5.3.3] we have an equality for n ≥ 0:

(3.12) mn
I1 =

∑
r,s,t≥0

r+2s+t=n

mr
N0

ms
T0
mt

N−
0

.

As ξ(p) commutes with each element in T0, and ξ(p)−1 ( 1 0
z 1 ) ξ(p) = ( 1 0

z 1 )
p
for any

( 1 0
z 1 ) ∈ N−

0 , it is easily checked from the definition of ψ and the F�I1�-action on
π∨ that

(3.13) ψ(δhδz · f) = δhδzpψ(f)

for all h ∈ T0, z ∈ N−
0 . In particular,

ψ(ms
T0
m

t
N−

0
π∨) ⊆ m

s
T0
m

pt

N−
0

π∨,

and it follows from Lemma 3.13 that if r ≥ pf − (f − 1) we have
(3.14)

ψ(mr
N0

m
s
T0
m

t
N−

0
π∨) ⊆ m

� r
p �−f

N0
m

s
T0
m

pt

N−
0

π∨ ⊆ m
� r
p �+2s+pt−f

I1
π∨ ⊆ m

� r+2s+t
p �−f

I1
π∨.

If r < pf − (f − 1), we need the following lemma.

Lemma 3.15. Let M ⊆ π∨ be a closed F�N−
0 �-submodule. Then

ψ(F�N0�mN−
0
M) ⊆ mI1ψ(F�N0�M).

As a consequence, for all t ≥ 0, ψ(F�N0�m
t
N−

0

π∨) ⊆ mt
I1
π∨.

Proof. Note that mI1 ×F�N0�×M is compact, as M is closed, hence so is the
image mI1ψ(F�N0�M) of the continuous map mI1 × F�N0� ×M → π∨, (a, b,m) �→
aψ(bm). As mN−

0
is generated as a right F�N−

0 �-module by the δy − 1 for y ∈ N−
0

and as ψ is continuous on π∨, it is thus sufficient to prove that, for y ∈ N−
0 ,

x ∈ N0 and m ∈ M , we have ψ(δx(δy − 1)m) ∈ mI1ψ(F�N0�M). As N−
0 ⊆ K1,

K1 is normalized by N0 and K1 = Np
0T0N

−
0 , we can write xy = xp

1t1y1x with
(x1, t1, y1) ∈ N0 × T0 ×N−

0 . Therefore

ψ(δx(δy − 1)m) = ψ(δxp
1
δt1δy1

δxm)− ψ(δxm)

= δx1t1y
p
1
ψ(δxm)− ψ(δxm) = (δx1t1y

p
1
− 1)ψ(δxm)

⊆ mI1ψ(F�N0�M).

For the second statement, inductively apply the first toM = m
t−1

N−
0

π∨, M = m
t−2

N−
0

π∨,

etc. �

When r < pf − (f − 1) = (p− 1)f + 1, we have 2s+ t ≥ r + 2s+ t− (p− 1)f
so that, using Lemma 3.15 and the fact that T0 normalizes N0, we obtain
(3.15)

ψ(mr
N0

ms
T0
mt

N−
0

π∨) ⊆ ms
T0
ψ(F�N0�m

t
N−

0

π∨) ⊆ m
2s+t
I1

π∨ ⊆ m
r+2s+t−(p−1)f
I1

π∨.
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We deduce from (3.11), (3.14) and (3.15) that, for all n ∈ Z, r ≥ 0, s ≥ 0, t ≥ 0
and k ≥ 0 such that r + 2s+ t ≥ pf , we have

ψ

(
1

(Y0 · · ·Yf−1)pk
m

r
N0

m
s
T0
m

t
N−

0
π∨
)

⊆ 1

(Y0 · · ·Yf−1)k
m

� r+2s+t
p �−f

I1
π∨

so that, for n ≥ pf by (3.12) we have

ψ

(
1

(Y0 · · ·Yf−1)pk
m

n
I1π

∨
)

⊆ 1

(Y0 · · ·Yf−1)k
m

�n
p �−f

I1
π∨ ⊆ Fkf+f−�n

p �((π
∨)S).

From Remark 3.3(ii), we know that, for n ∈ Z, Fn((π
∨)S) is the increasing union

over k ≥ max{0, n
pf } of the subspaces

1

(Y0 · · ·Yf−1)pk
m

−n+pkf
I1

π∨,

hence we deduce for all n ∈ Z that

ψ(Fn((π
∨)S)) ⊆

⋃
k≥max{0, n

pf }
Fkf+f−�−n+pkf

p �((π
∨)S) ⊆ Ff+�n

p �((π
∨)S).

This proves the continuity of ψ. �

We can therefore extend ψ to a continuous F-linear map ψ : DA(π) → DA(π)
such that

ψ(φ(a)m) = aψ(m) ∀ (a,m) ∈ A× π∨.

We fix {a0, . . . , aq−1} a system of representatives of the cosets of Np
0
∼= pOK

in N0
∼= OK , so that F�N0� =

⊕q−1
i=0 δai

F�Np
0 �. As φ(F�N0�) = F�Np

0 � and A =⊕q−1
i=0 δai

φ(A), we have a canonical isomorphism for any A-module M :

φ∗(M) ∼=
q−1⊕
i=0

(Fδai
⊗F M).

We define an F-linear map β : DA(π) → φ∗(DA(π)) = A⊗φ,A DA(π) by

(3.16)
DA(π) −→

⊕q−1
i=0 (Fδai

⊗F DA(π))

m �−→
∑q−1

i=0 δai
⊗φ ψ(δ−1

ai
m)

(we write x⊗φ y instead of just x⊗ y in order not to forget the map φ in the tensor
product).

Remark 3.16. The definition of the map β does not depend on the choice of
the system {ai}, namely, replacing ai with aib

p for some b ∈ N0, we have

δaibp ⊗φ ψ(δ−1
aibp

m) = δaibp ⊗φ ψ(φ(δb)
−1δ−1

ai
m) = δaibp ⊗φ δ−1

b ψ(δ−1
ai

m)

= δaibpδ
−1
bp ⊗φ ψ(δ−1

ai
m) = δai

⊗φ ψ(δ−1
ai

m).

Using Remark 3.16, we easily check that β is actually an A-linear map (note

that it is enough to check it for an element in δai
φ(A) using A =

⊕q−1
i=0 δai

φ(A), and
thus for δai

and for an element in φ(A)), hence β : DA(π) → φ∗(DA(π)) can be seen
as a “linearization” of ψ : DA(π) → DA(π). Moreover, letting O×

K act diagonally
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on A ⊗φ,A DA(π), the map β is then O×
K-equivariant. Indeed, for a ∈ O×

K and
m ∈ DA(π), we have

a · β(m) = a ·
(

q−1∑
i=0

δai
⊗φ ψ(δ−1

ai
m)

)
=

q−1∑
i=0

δa·ai
⊗φ a · ψ(δ−1

ai
m)

=

q−1∑
i=0

δa·ai
⊗φ ψ(a · δ−1

ai
m) =

q−1∑
i=0

δa·ai
⊗φ ψ(δ−1

a·ai
(a ·m))

= β(a ·m),

the last equality coming from Remark 3.16 and the fact that {a · a0, . . . , a · aq−1}
is another system of representatives of Np

0 in N0.
It is convenient to assume that the admissible smooth representation π has a

central character, in which case Z1 acts trivially on π and π∨ is a finitely gen-
erated F�I1/Z1�-module. We recall from [BHH+23, §5.3] that the graded ring
gr(F�I1/Z1�) of F�I1/Z1� is isomorphic to a tensor product of (noncommutative)
graded rings

(3.17)

f−1⊗
i=0

F[yi, zi, hi],

where variables with different indices commute, where [yi, zi] = hi, [hi, yi] =
[hi, zi] = 0, where yi, zi are homogeneous of degree −1, and hi is homogeneous
of degree −2. Note that the mI1/Z1

-adic topology on F�I1/Z1� induces the mN0
-

adic topology on F�N0� via the inclusion F�N0� ⊆ F�I1/Z1�. Therefore the map
gr(F�N0�) → gr(F�I1/Z1�) is injective and its image is F[y0, . . . , yf−1] in
gr(F�I1/Z1�).

Remark 3.17. The A-module DA(π) can also be defined as the microlocal-

ization of π∨ with respect to the multiplicative subset T
def
= {(y0 · · · yf−1)

k, k ∈
N} ⊆ gr(F�I1/Z1�). This shows that DA(π) can be promoted to a module over the
noncommutative ring which is the microlocalization of F�I1/Z1� with respect to T .

We now let C be the category of admissible smooth representations π of GL2(K)
over F with a central character and such that there exists a good filtration on the
F�I1/Z1�-module π∨ such that gr(DA(π)) is a finitely generated gr(A)-module, or
equivalently by Lemma 3.1 and Corollary 3.2 gr(π∨)[(y0 · · · yf−1)

−1] is finitely gen-
erated over gr(F�N0�)[(y0 · · · yf−1)

−1]. By [LvO96, Thm.I.5.7] this is also equiva-
lent to require that DA(π) is finitely generated over A and that its natural filtration
in (3.9) is good (equivalently gives the canonical topology). In particular, if this
holds for one good filtration on π∨, then this holds for all good filtrations. It easily
follows from the proof of Proposition 3.12 and the noetherianity of gr(A) (Corollary
3.2) that C is an abelian subcategory stable under subquotients and extensions in
the category of smooth representations of GL2(K) over F with a central character.

For π in C, the pair (DA(π), β) is an example of (ψ,O×
K)-module over A as in

Definition 3.10. We can in particular consider its étale part DA(π)
ét. The action of

O×
K on DA(π) preserves its nilpotent part DA(π)

0 and thus induces a continuous

action of O×
K on DA(π)

ét. In particular, DA(π)
ét is an étale (ψ,O×

K)-module over
A. Note that the canonical topology on the finitely generated A-module DA(π)

ét

is also the quotient topology of DA(π) � DA(π)
ét.
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Corollary 3.18. Let π in C. Then the A-modules DA(π) and DA(π)
ét are

finite projective over A. Moreover the map β ét : DA(π)
ét → φ∗DA(π)

ét is an
isomorphism.

Proof. This is a special case of Propositions 3.8 and 3.11. �
Remark 3.19. If π is 1-dimensional (a character of GL2(K)), then

DA(π) = DA(π)
ét = 0.

We give an important condition on an admissible smooth representation π (with
a central character) which ensures that π is in C. Let J be the following graded
ideal of gr(F�I1/Z1�):

(3.18) J
def
= (yizi, hi, 0 ≤ i ≤ f − 1).

From the definition of equivalent filtrations (see [LvO96, §I.3.2]), one easily sees
(using [LvO96, Lemma I.5.3]) that if gr(π∨) is annihilated by some power of J
for one good filtration on π, then it is so for all good filtrations (but note that the
power of J which annihilates gr(π∨) may depend on the fixed good filtration).

Proposition 3.20. Assume that gr(π∨) is annihilated by some power of J .
Then the A-module DA(π) is finite projective and the gr(A)-module gr(DA(π)) is
finitely generated.

Proof. As the hypothesis does not depend on the choice of the good filtra-
tion on π∨, we are free to work with the mI1/Z1

-adic topology on π∨. Let us
first prove that gr(DA(π)) is a finitely generated gr(A)-module. It follows from
the admissibility of π and from the hypothesis that gr(π∨) is a finitely generated
gr(F�I1/Z1�)/J

N -module for some N ≥ 1. Lemma 3.1 then implies that gr(DA(π))
is a finitely generated (gr(F�I1/Z1�)/J

N )[(y0 · · · yf−1)
−1]-module. It is therefore

sufficient to prove that (gr(F�I1/Z1�)/J
N )[(y0 · · · yf−1)

−1] is a finitely generated
gr(A)-module. Since gr(F�I1/Z1�) is noetherian, we are reduced by dévissage to
the case N = 1, where we have(

gr(F�I1/Z1�)/J
)
[(y0 · · · yf−1)

−1] ∼= (F[yi, zi, hi]/(yizi, hi))[(y0 · · · yf−1)
−1]

= F[y±1
i ] ∼= gr(A).

Finally, as DA(π) is a complete filtered A-module, it then follows from [LvO96,
Thm.I.5.7] that DA(π) is finitely generated over A and from Proposition 3.8 that
it is projective. �

It follows from Proposition 3.20 that the admissible smooth representations π
(with a central character) such that gr(π∨) is annihilated by some power of J for at
least one good filtration is a full subcategory of the category C. Moreover this full
subcategory is abelian and stable under subquotients and extensions in C. Namely,
for a short exact sequence 0 → π′ → π → π′′ → 0 in C, the filtrations induced on
(π′′)∨ and (π′)∨ by a good filtration of π∨ are good. For these filtrations we have
a short exact sequence 0 → gr((π′′)∨) → gr(π∨) → gr((π′)∨) → 0 which shows that
gr(π∨) is annihilated by a power of J if and only if gr((π′)∨) and gr((π′′)∨) are.

Remark 3.21. It is natural to consider the image D�
A(π) of π∨ in DA(π) =

A⊗̂F�N0�π
∨. Indeed, as the map π∨ → DA(π) is continuous and π∨ is compact,

it follows that D�
A(π) is a compact F�N0�-submodule of DA(π). However, the

F�N0�-module D�
A(π) is not finitely generated when π is an irreducible admissible
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supersingular representation and [K : Qp] > 1 (even if DA(π) is finitely generated
over A). Namely, if this were the case, this would give us the existence of a nontrivial
finitely generated F�N0�[(

p 0
0 1 )]-submodule of π that is admissible as an F�N0�-

module and this would contradict the results of [Sch15] and [Wu21]. Likewise, the
image of π∨ in the quotientDA(π)

ét ofDA(π) won’t be finitely generated over F�N0�
in general (see Remark 3.88(ii)). Finally, we conjecture in [BHH+22, Conj.1.4] that
for those π coming from cohomology we always have DA(π) ∼= DA(π)

ét.

Remark 3.22. Recall that the action of F�N0� on π∨ is defined by δa(f) =
f ◦a−1 for f ∈ π∨ and a ∈ N0. We could have defined it by the formula δa(f) = f ◦a
for f ∈ π∨ and a ∈ N0 and would have obtained isomorphic (ψ,O×

K)-modules
DA(π) and DA(π)

ét (for instance, this is the convention used in [Bre15, Lemme

2.6]). Namely the map f �→ γ−1 · f , with γ =

(
−1 0
0 1

)
induces an intertwining,

commuting with ψ and O×
K , between the two F�N0�-structures.

3.1.3. Multivariable (ϕ,O×
K)-modules. Using the results of §3.1.2, we pro-

mote the functor π �→ DA(π)
ét to an exact functor from C to a category of étale

multivariable (ϕ,O×
K)-modules (Theorem 3.25) and we compare DA(π)

ét with the
functor D∨

ξ (π) of §2.1.1 (Theorem 3.29).
Let R be a noetherian commutative ring of characteristic p endowed with an

injective ring endomorphism FR such that R is a finite free FR(R)-module (as at
the beginning of §3.1.2). A ϕ-module (D,ϕ) over R is an R-module D with an
FR-semilinear map ϕ : D → D. We say that a ϕ-module (D,ϕ) is étale if the
R-linear map F ∗

R(D) → D defined by a⊗ d �→ aϕ(d) is an isomorphism.

Definition 3.23. A (ϕ,O×
K)-module over A is a ϕ-module (D,ϕ) over A such

that D is a finitely generated A-module, the endomorphism ϕ is continuous (for the
canonical topology on D as at the beginning of §3.1.2) and D is endowed with a
continuous A-semilinear action of O×

K commuting with ϕ. We say that a (ϕ,O×
K)-

module over A is étale if the underlying ϕ-module over A is.

We note that, by Proposition 3.8, if (D,ϕ) is a (ϕ,O×
K)-module over A, then

D is a finite projective A-module.
If (D, β) is an étale (ψ,O×

K)-module over A as in Definition 3.10, by Proposition
3.11 we can define a φ-semilinear endomorphism ϕ of D such that Id⊗ϕ = β−1, so
that (D,ϕ) is an étale (ϕ,O×

K)-module over A. (Note that ϕ is continuous, as the
topology of D is defined by any good filtration and φ : A → A is continuous.)

We now go back to representations π of GL2(K), but we first need some more
notation. The trace map tr : N0

∼= OK → Zp induces a ring homomorphism
tr : F�N0� → F�Zp� ∼= F�X�, where we recall that X = ( 1 1

0 1 )− 1. Moreover, for Yi

as in (3.1), we have tr(Yi) ≡ −X mod X2 (see Lemma 3.38 and the last statement
in Lemma 3.40 below) and the universal property of the ring A shows that this map
extends to a continuous ring homomorphism tr : A → F((X)). We let

p
def
= Ker(tr : A → F((X))).

Then p is a closed maximal ideal of A. Note that

p ∩ F�N0� = Ker(tr : F�N0� → F�X�) = mN1
F�N0� = (Y0 − Y1, . . . , Y0 − Yf−1),
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where N1 ⊆ N0 is as in (2.3) (for the second isomorphism write N0
∼= N1 ⊕ Zpe,

where tr(e) = 1, noting that tr : OK → Zp is surjective, as K is unramified, and
for the third use the first statement of Lemma 3.40 below).

Remark 3.24. Let B be the completion of F�N0�S along the prime ideal gen-
erated by (Y0 − Y1, . . . , Y0 − Yf−1) (see the beginning of §3.1.1 for S). Expanding

Y n
i = (Y0−(Y0−Yi))

n if n ≥ 0, and writing Y n
i = (
∑+∞

m=0
(Y0−Yi)

m

Y m+1
0

)−n and expand-

ing everything if n < 0, one can see using Remark 3.3(iii) that the ring A embeds
into B. The endomorphism φ on A extends to B but only the action of Z×

p ⊆ O×
K

extends to B, as (Y0 − Y1, . . . , Y0 − Yf−1) is not preserved by all of O×
K . Then

from Corollary 3.18 and as B is a local ring, we see that DA(π)
ét ⊗A B is a finite

free étale (ϕ,Z×
p )-module over B, which is similar to the generalized (ϕ,Γ)-modules

defined in [SV11] (though loc.cit. only considers split algebraic groups over Qp).

Let π be in the category C. Using Corollary 3.18, we can define a φ-semilinear
endomorphism ϕ of DA(π)

ét such that Id⊗ϕ = (β ét)−1, so that DA(π)
ét is an étale

(ϕ,O×
K)-module over A. As p is a φ-stable ideal of A, we deduce that DA(π)

ét/p ∼=
DA(π)

ét ⊗A F((X)) is an étale (ϕ,Z×
p )-module over F((X)).

Theorem 3.25.

(i) The functor π �−→ DA(π)
ét is exact from the category C to the category

of étale (ϕ,O×
K)-modules over A.

(ii) The functor π �−→ DA(π)
ét ⊗A F((X)) is exact from the category C to the

category of étale (ϕ,Z×
p )-modules over F((X)).

Proof.

(i) is a consequence of Proposition 3.12, of the exactness of φ∗ and of the
exactness of direct limits, together with the description (see the beginning of §3.1.2)

DA(π)
ét ∼= lim−→

(φ∗)n(βét)

(φ∗)n(DA(π)
ét) ∼= lim−→

(φ∗)n(β)

(φ∗)n(DA(π)).

(ii) is a consequence of (i), of Corollary 3.18 and of the exactness of (−) ⊗A

F((X)) on short exact sequences of finite projective A-modules.

�

Remark 3.26. One can prove that if π ∈ C then the endomorphism ψ :
DA(π) → DA(π) (defined right after Lemma 3.15) is always surjective. (This follows
ultimately from the fact that the image of the natural map A⊗F�N0�π

∨ → DA(π) is
surjective since A is complete and Noetherian, and A⊗F�N0� π

∨ is endowed with a
surjective endomorphism that is compatible with ψ on DA(π).) In particular, this
implies that DA(π)

ét �= 0 as soon as DA(π) �= 0, since ψ cannot be nilpotent if it
is surjective on DA(π) and the latter is nonzero. Note that for the representations
π of particular interest for us here, we will actually have DA(π) = DA(π)

ét; see
Remark 3.88(ii).

We now compare the étale (ϕ,Z×
p )-module DA(π)

ét/p with D∨
ξ (π) (2.7).

Let ψ be the F-linear endomorphism of π∨/mN1
∼= (πN1)∨ defined by

(3.19) ψ(x)
def
=
∑

b∈N1/N
p
1

ψ(δb̃x̃) mod mN1
,
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where b̃ ∈ N1 is a lift of b, x̃ ∈ π∨ is a lift of x and ψ is as in (3.10) (it is easy
to check that the definition of ψ does not depend on the choice of these lifts). We
have ψ(S(Xp)m) = S(X)ψ(m) for all S(X) ∈ F�X� and m ∈ π∨/mN1

, and ψ is
the dual of the endomorphism F of πN1 in §2.1.1. We define an endomorphism ψ
of DA(π)/p (resp. DA(π)

ét/p) by the same formula replacing π∨ by DA(π) (resp.
DA(π)

ét) and mN1
by p, it is then clear that the following diagram commutes:

(3.20)

π∨/mN1
π∨/mN1

DA(π)/p DA(π)/p,

ψ

ψ

together with an analogous diagram with DA(π)/p � DA(π)
ét/p that we leave to

the reader.
Let β : DA(π)/p → φ∗(DA(π)/p) ∼= F�X� ⊗ϕ,F�X� (DA(π)/p) ∼= φ∗(DA(π))/p

be the F((X))-linear map defined by

β(m)
def
=

p−1∑
i=0

(1 +X)−i ⊗φ ψ((1 +X)im).

Lemma 3.27. The following diagram is commutative (where the horizontal maps
are the canonical surjections):

DA(π) DA(π)/p

φ∗(DA(π)) φ∗(DA(π)/p).

β β

Proof. We choose a system of representatives (g−ibj) 0≤i≤p−1

1≤j≤pf−1

of N0/N
p
0 such

that g
def
= ( 1 1

0 1 ) ∈ N0 and b1, . . . , bpf−1 are in N1. We then have for m ∈ DA(π)
that

β(m) =

p−1∑
i=0

pf−1∑
j=1

(
δ−1
gi δbj ⊗φ ψ(δ−1

bj
δgim)
)

≡
p−1∑
i=0

(
δ−1
gi ⊗φ

pf−1∑
j=1

ψ(δ−1
bj

(δgim))
)

mod pφ∗(DA(π))

≡
p−1∑
i=0

δ−1
gi ⊗φ ψ(δgim) mod pφ∗(DA(π)),

where the first equality follows from (3.16), the second from δbj−1 ∈ p ⊆ A (and the
commutativity of N0), and the third from the analog of (3.19) for DA(π)/p. Noting
that the image of δgi in F�X� is (1 +X)i, we obtain the desired compatibility. �

Lemma 3.28. Let M ⊆ πN1 be an F�X�-submodule that is admissible as an
F�X�-module. Then the surjective map π∨ � M∨ is continuous for the mI1-adic
topology on π∨ and the X-adic topology on M∨.

Proof. The map π∨ � M∨ is continuous with respect to the natural profinite
topologies arising from Pontryagin duality. As M is admissible as an F�X�-module,
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the natural topology on M∨ is the X-adic topology. It thus suffices to show that
the mI1-adic topology is at least as fine as the natural topology on π∨. Dually this
means that any finite-dimensional subspace of π is contained in π[mN

I1
] for some

sufficiently large integer N , which is true by smoothness. �

Recall that we defined in (2.7) a projective limitD∨
ξ (π) of étale (ϕ,Z

×
p )-modules

over F((X)) associated to π.

Theorem 3.29. We have an isomorphism of étale (ϕ,Z×
p )-modules over F((X)):

DA(π)
ét/p

∼−→ D∨
ξ (π).

In particular, D∨
ξ (π) is finite-dimensional over F((X)) and the functor π �−→ D∨

ξ (π)
is exact on C.

Proof. For the purpose of this proof it is convenient to use the action of F�N0�
on π∨ given by δa(f) = f ◦a for f ∈ π∨ and a ∈ N0. This does not change DA(π)

ét

up to isomorphism by Remark 3.22.
As a first step we construct the map. Let M ⊆ πN1 be a finitely gener-

ated F�X�[F ]-submodule that is admissible as an F�X�-module and Z×
p -stable.

By Lemma 3.28, the map π∨ � M∨ is continuous. It extends to a surjection of
F�N0�S-modules (π∨)S � M∨[X−1]. By definition of the tensor product filtra-
tion on (π∨)S , this surjection is continuous if M∨[X−1] is endowed with its natural
topology of finite-dimensional F((X))-vector space. AsM∨[X−1] is complete for this
topology, by completion we obtain a continuous surjection of topological A-modules
ζM : DA(π) � M∨[X−1]. Since N1 acts trivially on M , ζM factors through a sur-
jection of F((X))-vector spaces ζM : DA(π)/p � M∨[X−1]. By definition of ψ, we
obtain a commutative diagram (where F∨ is the F-linear dual of F : M → M that
we extend to M∨[X−1] using F∨(X−if) = X−iF (Xi(p−1)f))

DA(π)/p M∨[X−1]

DA(π)/p M∨[X−1].

ζM

ψ F∨

ζM

It then follows from Lemma 3.27 that, identifying φ∗(M∨) ∼= F�X� ⊗ϕ,F�X� M
∨

with (F�X� ⊗ϕ,F�X� M)∨ via (2.6), the following diagram is commutative:

(3.21)

DA(π) DA(π)/p M∨[X−1]

φ∗(DA(π)) φ∗(DA(π)/p) φ∗(M∨[X−1]),

β

ζM

β (Id⊗F )∨

Id⊗ζM

where (Id⊗F )∨ comes from F-linear dual of Id⊗F : F�X� ⊗ϕ,F�X� M → M . As

(Id⊗F )∨ is an isomorphism (see just after (2.6)), the map ζM : DA(π) � M∨[X−1]
factors through DA(π)

ét and the map ζM : DA(π)/p � M∨[X−1] factors through
DA(π)

ét/p. The map ζM : DA(π)
ét/p � M∨[X−1] clearly commutes with the

action of Z×
p and the commutative diagram (3.21) shows that it is a morphism

ϕ-modules. These maps are obviously compatible when M is varying among the
finitely generated F�X�[F ]-submodules of πN1 that are admissible as F�X�-modules
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and Z×
p -stable so that we obtain a map

ζ : DA(π)
ét/p −→ lim←−

M

M∨[X−1] = D∨
ξ (π).

We prove that the map ζ is surjective. Since DA(π)
ét/p is a finite-dimensional

F((X))-vector space, the dimension of the vector spaces M∨[X−1] when M is
varying is bounded. This implies that there exists some M such that D∨

ξ (π) =

M∨[X−1] and that the map ζ : DA(π)
ét/p → D∨

ξ (π) is surjective. In particular,

dimF((X)) D
∨
ξ (π) < +∞.

We prove that the map ζ is an isomorphism. Let D�(π)ét be the image
of π∨ in DA(π)

ét/p. This is a compact F�X�-module in the finite-dimensional
F((X))-vector space DA(π)

ét/p, hence a finite free F�X�-module. Since the maps
π∨ → DA(π)/p � DA(π)

ét/p commute with the action of Z×
p , D�(π)ét is pre-

served by Z×
p . The image of (π∨)S in DA(π)

ét/p coincides with D�(π)ét[X−1]. As

(π∨)S has a dense image in DA(π) by definition, D�(π)ét[X−1] is a dense F((X))-
vector subspace of DA(π)

ét/p and thus equal to DA(π)
ét/p by finiteness of the

dimension. The surjective map π∨ � D�(π)ét factors through π∨/mN1
∼= (πN1)∨

so that the topological F-linear dual (D�(π)ét)∨ of D�(π)ét is identified with an
F�X�-submodule of πN1 (endowed with the discrete topology) preserved by Z×

p . As

D�(π)ét is stable by ψ by (3.20), (D�(π)ét)∨ is actually an F�X�[F ]-submodule of

πN1 . Since β ét : DA(π)
ét ∼−→ φ∗(DA(π)

ét) is an isomorphism, it easily follows from
Lemma 3.27 that the map β induces a surjective map of finite-dimensional F((X))-

vector spaces β
ét

: DA(π)
ét/p � φ∗(DA(π)

ét/p). As these spaces have the same

dimension, β
ét
is actually an isomorphism, and in particular β

ét|D�(π)ét : D
�(π)ét →

F�X� ⊗ϕ,F�X� D
�(π)ét is an injection and becomes an isomorphism after inverting

X.
We claim that (D�(π)ét)∨ is finitely generated as an F�X�[F ]-module. Note that

(D�(π)ét)∨ is admissible as an F�X�-module since D�(π)ét is a finitely generated
F�X�-module. Hence, the claim follows from [Bre15, Lemma 5.2] using the last
statement of the previous paragraph.

We now give another proof of the claim using results of [Lyu97, §4]. In fact, we
even prove that (D�(π)ét)∨ is of finite length as an F�X�[F ]-module. As F is a finite
extension of Fp, the Fp�X�-module (D�(π)ét)∨ is artinian so that the Fp�X�[F ]-
module (D�(π)ét)∨ is a cofinite Fp�X�[F ]-module in the sense of [Lyu97, §4] (the
ring Fp�X�[F ] is isomorphic to the ring A{f} of loc. cit. where A = Fp�X�). It
follows from Theorem 4.7 in loc. cit. that (D�(π)ét)∨ has a filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mr = (D�(π)ét)∨

by Fp�X�[F ]-submodules such that Mi+1/Mi is a simple Fp�X�[F ]-module or a
nilpotent Fp�X�[F ]-module, i.e. such that some power of F is zero on Mi+1/Mi. Let

M⊥
i be the kernel of D�(π)ét → M∨

i for all i. As β
ét|D�(π)ét coincides with (Id⊗F )∨

(this is analogous to (3.21) using (2.6) with M = (D�(π)ét)∨), the map β
ét

induces
an isomorphism of Fp((X))⊗Fp�X� M

⊥
i onto Fp((X))⊗ϕ,Fp�X� M

⊥
i . In particular, if

Mi+1/Mi is nilpotent then F∨ induces a nilpotent endomorphism of M⊥
i /M⊥

i+1 so

that Fp((X))⊗Fp�X�M
⊥
i = Fp((X))⊗Fp�X�M

⊥
i+1 (as Fp((X))⊗ϕ,Fp�X�(M

⊥
i /M⊥

i+1) = 0

in this case) and henceM⊥
i /M⊥

i+1 is a torsion Fp�X�-module. AsD�(π)ét is a finitely
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generated Fp�X�-module, we conclude that when Mi+1/Mi is nilpotent the Fp�X�-
module M⊥

i /M⊥
i+1 is finite-dimensional over Fp, in particular it is an Fp�X�[F ]-

module of finite length. Since Mi+1/Mi is obviously of finite length when Mi+1/Mi

is irreducible, the claim follows.
The claim implies that (D�(π)ét)∨ is one of the modules M ⊆ πN1 in §2.1.1, in

particular

dimF((X)) D
∨
ξ (π) ≥ dimF((X))(D

�(π)ét[X−1]) = dimF((X))(DA(π)
ét/p).

This implies that the map ζ is an isomorphism (and that DA(π)
ét/p =

D�(π)ét[X−1]∼=D∨
ξ (π)). The very last statement follows from Theorem 3.25(ii). �

3.1.4. An upper bound for the ranks of DA(π)
ét and D∨

ξ (π). For π in

C we bound the dimension of D∨
ξ (π) in terms of gr(π∨). When gr(π∨) is killed by

some Jn, we give an interpretation of this bound as a certain multiplicity.
We keep all previous notation. We start with the following lemma.

Lemma 3.30. Let M be a finitely generated A-module endowed with a good
filtration. Then the generic rank of the A-module M and the generic rank of the
gr(A)-module gr(M) coincide.

Proof. We first note that if N is an A-module of generic rank 0, then N ⊗A

Frac(A) = 0 and N is a torsion module. This implies that gr(N) is a torsion module
and that its generic rank is 0.

Let d be the generic rank of M and f : A⊕d → M ⊗A Frac(A) be a morphism
of A-modules sending an A-basis of the left-hand side to a Frac(A)-basis of the
right-hand side. The kernel of f is then a torsion A-submodule of A⊕d and is zero
since A is a domain. Moreover there exists a ∈ A\{0} such that the image of af
is contained in M . As Frac(A) is a flat A-module, the generic rank is an additive
map on the abelian category of finitely generated A-modules. As af is injective
and A⊕d and M have identical generic ranks, this implies that the cokernel Q of
af has generic rank 0. We fix a good filtration on M : it induces good filtrations
on af(A⊕d) and on Q. For these filtrations we have a short exact sequence

0 −→ gr(af(A⊕d)) −→ gr(M) −→ gr(Q) −→ 0.

As Q has generic rank 0, so does gr(Q) so that it suffices to prove that gr(af(A⊕d))
has generic rank d. It follows from the second paragraph after [Bjö89, Def.4.2] that,
for a finitely generated A-module N , the generic rank of gr(N) does not depend on
the choice of good filtration. We can thus choose a good filtration af(A⊕d) ∼= A⊕d

which is filtered free with respect to the canonical basis of A⊕d, for which the result
is obvious. �

Let π be in the category C and choose a good filtration on the F�I1/Z1�-module
π∨. Since the finitely generatedA-moduleDA(π) doesn’t depend up to isomorphism
on the choice of this good filtration (see §3.1.2), it follows from Lemma 3.30 (applied
to M = DA(π)) and Lemma 3.1 (applied to M = π∨) that the generic rank of
gr(A)⊗gr(F�N0�) gr(π

∨) also doesn’t depend on this choice.

Proposition 3.31. Let π ∈ C. Then rkA(DA(π)
ét) = dimF((X)) D

∨
ξ (π) is

bounded by the generic rank of the gr(A)-module gr(A)⊗gr(F�N0�) gr(π
∨).

Proof. As DA(π)
ét is a quotient of DA(π), the result follows from Lemma

3.30, Lemma 3.1 and Theorem 3.29. �
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When gr(π∨) is moreover killed by the ideal Jn for some n ≥ 1 (here J is as
in (3.18) and recall this doesn’t depend on the good filtration), the generic rank of
gr(A)⊗gr(F�N0�) gr(π

∨) has a nice and useful interpretation that we give now.

We define R
def
= gr(F�I1/Z1�)/J . Recall using (3.17) that we have

(3.22) R ∼= F[yi, zi, 0 ≤ i ≤ f − 1]/(yizi, 0 ≤ i ≤ f − 1).

Therefore R has 2f minimal prime ideals which are the ideals (yi, zj , i ∈ J , j /∈ J )
with J a subset of {0, . . . , f − 1}. Let

p0
def
= (zj , 0 ≤ j ≤ f − 1)

be the minimal prime ideal corresponding to the choice of J = ∅.
If N is a finitely generated module over R and q is a minimal prime ideal of R,

we denote by mq(N) the length of Nq over Rq. More generally, if N is a finitely
generated gr(F�I1/Z1�)-module annihilated by Jn for some n ≥ 1, we define the
multiplicity of N at q to be

(3.23) mq(N) =
n−1∑
i=0

mq(J
iN/J i+1N).

Lemma 3.32. If 0 → N1 → N → N2 → 0 is a short exact sequence of finitely
generated gr(F�I1/Z1�)/J

n-modules, then mq(N) = mq(N1) +mq(N2).

Proof. This is checked by a standard dévissage. If n = 1, the statement is
obvious since gr(F�I1/Z1�)/J = R is commutative (and noetherian). Assume n ≥ 2
and by induction we assume that the result holds if N is annihilated by Jn−1.

Assume first that N1 and N2 are both annihilated by Jn−1 (but not necessarily

N). Then N2 is a quotient of N/Jn−1N . Let Ker
def
= Ker(N/Jn−1N � N2) be the

corresponding kernel. Then we have two short exact sequences

0 → Ker → N/Jn−1N → N2 → 0

(3.24) 0 → Jn−1N → N1 → Ker → 0.

By definition of mq(N) and the inductive hypothesis, we then obtain

mq(N) = mq(J
n−1N) +mq(N/Jn−1N) = mq(N1) +mq(N2).

Assume now that N2 is annihilated by Jn−1 (but not necessarily for N1). Then
the surjection N � N2 factors through the quotient N/Jn−1N of N . Again let

Ker
def
= Ker(N/Jn−1N � N2). Then mq(N/Jn−1N) = mq(Ker) +mq(N2) by the

inductive hypothesis. On the other hand, both Jn−1N and Ker are annihilated by
Jn−1, thus mq(·) is additive for the short exact sequence (3.24) by the discussion
in last paragraph. The result also holds in this case.

To finish the proof it suffices to decompose further N as 0 → Ker′ → N →
N2/J

n−1N2 → 0, with Ker′ sitting in the exact sequence 0 → N1 → Ker′ →
Jn−1N2 → 0, and apply the above discussion. �

If N is a finitely generated module over gr(F�I1/Z1�)/J
n for some n ≥ 1 recall

that the gr(A)-module gr(A)⊗gr(F�N0�) N is finitely generated by Proposition 3.20.

Lemma 3.33. Let N be a finitely generated module over gr(F�I1/Z1�)/J
n for

some n ≥ 1. Then the generic rank of the gr(A)-module gr(A)⊗gr(F�N0�)N is equal
to mp0

(N).
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Proof. By Corollary 3.2, gr(A) is flat over gr(F�N0�), so gr(A) ⊗gr(F�N0�) N

has a finite filtration with graded pieces given by gr(A)⊗gr(F�N0�) (J
iN/J i+1N) for

0 ≤ i ≤ n − 1. Since taking generic rank and taking mp0
(·) are both additive in

short exact sequences (by Lemma 3.32 for the latter), we are reduced to the case
where N is killed by J .

In that case we have

gr(A)⊗gr(F�N0�) N ∼= (gr(A)⊗gr(F�N0�) R)⊗R N.

Since the image of gr(F�N0�) in R is F[y0, . . . , yf−1], we have

gr(A)⊗gr(F�N0�) R ∼= R[(y0 · · · yf−1)
−1] ∼= gr(A).

Since the fraction field of R[(y0 · · · yf−1)
−1] is just Rp0

, we see that the generic rank

of the R[(y0 · · · yf−1)
−1]-module gr(A)⊗gr(F�N0�) N is equal to mp0

(N). �

We finally deduce from Proposition 3.31 and Lemma 3.33:

Corollary 3.34. Let π be an admissible smooth representation of GL2(K)
over F with a central character having at least one good filtration such that the
gr(F�I1/Z1�)-module gr(π∨) is killed by some power of J . Then we have

rkA(DA(π)
ét) = dimF((X)) D

∨
ξ (π) ≤ mp0

(gr(π∨)).

3.2. Tensor induction for GL2(Qpf )

We prove that VGL2(π) (as defined in (2.8)) contains some copies of a tensor
induction as in Example 2.8 for certain admissible smooth representations π of
GL2(K) over F (Theorem 3.35).

We recall that the definition of the functor VGL2
depends on the choice of a

cocharacter ξGL2 , which we have fixed to be ξGL2(x) = diag(x, 1), and depends on

a normalizing character δGL2 = ind
⊗Qp

K (ω) (cf. Example 2.3).

3.2.1. Lower bound for VGL2(π): statement. We state the main theo-
rem of this section on VGL2(π) for certain admissible smooth representations π of
GL2(K) over F (Theorem 3.35). After some simple reductions, this theorem will
be proved in §§3.2.2 to 3.2.4.

We keep all the previous notation and denote by IK the inertia subgroup of
Gal(Qp/K). We fix an embedding σ′

0 : Fp2f ↪→ F such that σ′
0|Fpf

= σ0 (see the

very beginning of §3), and denote by ωf , ω2f : IK → F× Serre’s corresponding
fundamental characters of level f and 2f .

We consider ρ : Gal(Qp/K) → GL2(F) of the following form up to twist :

(3.25) ρ|IK ∼=

⎧⎨⎩ω
∑f−1

j=0 (rj+1)pj

f ⊕ 1 if ρ is reducible,

ω
∑f−1

j=0 (rj+1)pj

2f ⊕ ω
∑f−1

j=0 (rj+1)pj+f

2f if ρ is irreducible,

where the integers ri satisfy the following (strong) genericity condition:

(3.26)
2f − 1 ≤ rj ≤ p− 2− 2f if j > 0 or ρ is reducible,

2f ≤ r0 ≤ p− 1− 2f if ρ is irreducible

(note that this implies in particular p ≥ 4f + 1). Let χ : Gal(Qp/K) → F× such

that (ρ⊗ χ)|IK is as in (3.25) and moreover det(ρ⊗ χ) = ω
∑

j(rj+1)pj

f .

Licensed to Chinese Academy of Sciences.  Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



106 3. THE CASE OF GL2(QPF )

We refer to [Paš04] and [BP12, §§9,13] (and the references therein) for the
background and definitions about diagrams.

We choose one diagram D(ρ⊗χ) = (D1 ↪→ D0) associated to ρ⊗χ in [Bre11,
§5], and we set

(3.27) D(ρ) = (D1(ρ) ↪→ D0(ρ))
def
=
(
D1 ⊗ (χ−1 ◦ det) ↪→ D0 ⊗ (χ−1 ◦ det)

)
,

where the actions of GL2(OK) and the center K× on D0(ρ) (resp. of I,
(
0 1
p 0

)
and

K× onD1(ρ)) are multiplied by χ−1◦det via local class field theory forK (note that
χ is trivial on K1 and I1 and recall that

(
0 1
p 0

)
normalizes I and I1). Recall that the

action of GL2(OK) on D0(ρ) factors through GL2(OK) � GL2(Fq). More precisely,
denoting by W (ρ) the set of Serre weights of ρ defined in [BDJ10, §3], D0(ρ) is
the (unique) maximal finite-dimensional representation of GL2(Fq) over F with
socle isomorphic to ⊕σ∈W (ρ)σ such that each σ ∈ W (ρ) occurs with multiplicity
1 in D0(ρ). (For instance, recall that the Serre weight (r0, r1, . . . , rf−1) with the

notation of (3.29) below is in W (ρ) if ρ is an extension of 1 by ω
∑f−1

j=0 (rj+1)pj

f .)

Finally K× acts on D0(ρ) by the character det(ρ)ω−1.
If π is an admissible smooth representation of GL2(K) over F, recall that

(πI1 ↪→ πK1) is naturally a diagram. We aim to prove the following theorem.

Theorem 3.35. Let π be an admissible smooth representation of GL2(K) over
F. Assume that there exists an integer r ≥ 1 such that one has an isomorphism of
diagrams

D(ρ)⊕r ∼−→ (πI1 ↪→ πK1).

Then one has an IQp
-equivariant injection

(
ind

⊗Qp

K (ρ)
)
|⊕r
IQp

↪→ VGL2(π)|IQp
. If we

assume moreover that the constants νi associated to D(ρ ⊗ χ) at the beginning of
[Bre11, §6] are as in [Bre11, Thm.6.4], then one has a Gal(Qp/Qp)-equivariant

injection
(
ind

⊗Qp

K (ρ)
)⊕r

↪→ VGL2
(π).

Let us first make some straightforward reductions. In order not to repeat ar-
guments, we assume from now on that the constants νi associated to D(ρ ⊗ χ) in
[Bre11, §6] are as in [Bre11, Thm.6.4] and we will prove the last statement of
Theorem 3.35 (the proof for the first one being the same up to some trivial mod-
ifications). It is enough to prove Theorem 3.35 for the GL2(K)-subrepresentation
of π generated by D0(ρ)

⊕r. Hence we can assume that π has a central character

which is χπ
def
= det(ρ)ω−1. Using Remark 2.4(ii) (for n = 2), it is also enough to

prove Theorem 3.35 for ρ⊗ χ as above and replacing π by π ⊗ χ ◦ det, i.e. we can

assume ρ|IK is as in (3.25) and det(ρ) = ω
∑

j(rj+1)pj

f .

In the sequel, for any F�X�[F ]-submodule M of πN1 which is stable under Z×
p ,

denote by M ⊗χ−1
π the same F�X�-module but where the action of F is multiplied

by χπ(p)
−1 and the action of x ∈ Z×

p is multiplied by χπ(x)
−1.

Lemma 3.36. With the notation in §2.1.1, in order to prove Theorem 3.35 it is
enough to prove that (π⊗χ−1

π )N1 contains a finite type F�X�[F ]-submodule M which
is admissible as an F�X�-module and stable under Z×

p such that V(M∨[1/X]) ∼=(
ind

⊗Qp

K (ρ)
)⊕r

.

Proof. As (π ⊗ χ−1
π )N1 = πN1 as F-vector subspaces of π, it is equivalent

to assume that πN1 contains a finite type F�X�[F ]-submodule M which is admis-
sible as an F�X�-module and stable under Z×

p such that V((M ⊗ χ−1
π )∨[1/X]) ∼=
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ind

⊗Qp

K (ρ)
)⊕r

. From the definition of VGL2
in (2.8), it is enough to prove

V∨(M∨[1/X]) ⊗ δGL2
∼=
(
ind

⊗Qp

K (ρ)
)⊕r

. From Example 2.3 and as in Remark
2.4(ii) (both for n = 2), we have

V∨(M∨[1/X])⊗ δGL2 = V
(
(M ⊗ χ−1

π )∨[1/X]
)∨ ⊗ (χπω)|Q×

p

=
((

ind
⊗Qp

K (ρ)
)⊕r)∨ ⊗ ind

⊗Qp

K

(
det(ρ)

)
(2.14)
=
(
ind

⊗Qp

K (ρ)
)⊕r

which finishes the proof. �
The sections that follow will be devoted to the proof that there exists a certain

finite type F�X�[F ]-submodule Mπ of πN1 which is admissible as an F�X�-module

and stable under Z×
p such that V((Mπ⊗χ−1

π )∨[1/X]) ∼=
(
ind

⊗Qp

K (ρ)
)⊕r

(see Propo-

sition 3.56). Note that the assumption det(ρ) = ω
∑

j(rj+1)pj

f implies χπ(p) = 1, so

that the operator F on Mπ ⊗ χ−1
π is the same as on Mπ, but the action of γ ∈ Z×

p

now comes from the action of
( 1 0
0 γ−1

)
on πN1 .

3.2.2. Preliminaries. We give some technical results on F�N0�, F�N0/N1�
and on certain modules over these rings coming from Serre weights.

We let H
def
=
( F×

q 0

0 F×
q

)∼= I/I1 ⊆ GL2(Fq) (this finite group H shouldn’t be

confused with the algebraic group H in §2.1.1 or in §2.1). Note that the trace
TrK/Qp

: OK → Zp is surjective (using that K is unramified) hence directly induces

an isomorphism N0/N1
∼→ Zp. Recall we defined the elements Yi for i ∈ {0, . . . , f −

1} in (3.1). We define analogously

Y
def
=
∑
a∈F×

p

a−1

(
1 ã
0 1

)
∈ F�Zp� = F�N0/N1�.

We write i for an element (i0, . . . , if−1) in Zf , Y i for Y i0
0 · · ·Y if−1

f−1 and set ‖i‖ def
=∑f−1

j=0 ij . We also write i ≤ i′ to mean ij ≤ i′j for all 0 ≤ j ≤ f − 1.

Lemma 3.37. We have the following isomorphisms and equalities:

(i) F�N0� = F�Y0, . . . , Yf−1� and

F[N0/N
p
0 ]

∼= F�Y0, . . . , Yf−1�/(Y
p
0 , . . . , Y

p
f−1);

(ii) Y p
i

(
p 0
0 1

)
=
(
p 0
0 1

)
Yi+1 and

(
λ̃ 0
0 μ̃

)
Yi = (λμ−1)p

i

Yi

(
λ̃ 0
0 μ̃

)
for λ, μ ∈ F×

q ;

(iii) F�N0/N1� = F�Y � and
(
λ̃ 0
0 μ̃

)
Y = (λμ−1)Y

(
λ̃ 0
0 μ̃

)
for λ, μ ∈ F×

p .

Proof. Note that F[N0/N
p
0 ]

∼= F
[(

1 Fq

0 1

)]
. The first equality in (i) and the ex-

plicit action of
(
λ̃ 0
0 μ̃

)
on Y i in (ii) are immediately obtained from [Mor17, Lemma

3.2] (after conjugating by the element
(
0 1
p 0

)
). The second equality in (i) follows

from the first by dimension reasons, as Y p
i = 0 in F[N0/N

p
0 ]. The action of

(
p 0
0 1

)
on Yi+1 in (ii) is a direct computation (see also [Mor17, Lemma 5.1]). Finally, (iii)
is a special case of (i) and (ii). �

Note that F�N0/N1� = F�X� = F�Y � with X =
(
1 1
0 1

)
−1 as in §2.1.1, but it is

more convenient in the computations to use the “H-eigenvariable” Y rather than
the variable X. To compare them the following lemma will be useful.
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108 3. THE CASE OF GL2(QPF )

Lemma 3.38. We have X ∈ −Y (1 + Y F�Y �) and Y ∈ −X(1 + XF�X�) in
F�N0/N1�.

Proof. Equivalently, we have to prove Y = −X in m/m2, where m is the max-
imal ideal of F�N0/N1�. We can work modulo mp, i.e. in F[N0/N1N

p
0 ]

∼= F
[(

1 Fp

0 1

)]
.

In that group ring we have

Y =
∑
a∈F×

p

a−1
(
1 a
0 1

)
=

p−1∑
a=1

a−1(1 +X)a ≡ −X

(where the last congruence is taken modulo the image of m2 in that group ring). �
For λ, μ ∈ F×

q we set

α
((

λ̃ 0
0 μ̃

)) def
= λμ−1 ∈ F×.

Remark 3.39. By Lemma 3.37(ii), if V is a representation of GL2(Fq) and

v ∈ V H=χ, then Y iv ∈ V H=χαi

, where αi def
= α

∑f−1
j=0 ijp

j

.

Lemma 3.40. Assume p > 2. The kernel of the map h : F�N0� � F�N0/N1�
is generated by the elements Yi − Yj (i �= j). Moreover, there exists f(Y ) ∈
F�N0/N1� ∼= F�Y � such that h(Yi) = Y + Y pf(Y ).

Proof. Note that TrK/Qp
(λ̃pi

) = TrK/Qp
(λ̃) for all λ ∈ F×

q and i ∈ Z, hence
Yi − Yj ∈ Ker(h). As F�N0�/(Yi − Yj , i �= j) and F�N0/N1� are both isomorphic
to power series rings in one variable, the quotient map F�N0�/(Yi − Yj , i �= j) �
F�N0/N1� has to be an isomorphism. To establish the final claim it suffices to prove
that the image of Y0 in F�Y �/(Y p) ∼= F[N0/N1N

p
0 ]

∼= F
[(

1 Fp

0 1

)]
is Y . We compute

(3.28)
∑
λ∈F×

q

λ−1
(
1 TrFq/Fp (λ)

0 1

)
=
∑
a∈Fp

( ∑
λ∈F×

q

TrFq/Fp (λ)=a

λ−1

)(
1 a
0 1

)
.

If a �= 0, the index λ runs over the distinct roots of Y pf−1

+Y pf−2

+ · · ·+Y −a = 0,
so the inside sum on the right hand side of (3.28) equals 1/a (from the last two

coefficients). If a = 0 the index λ runs over the distinct roots of Y pf−1−1 + · · · +
Y p−1 + 1 = 0, so the inside sum in (3.28) equals 0 as p > 2. Hence the right-hand
side of (3.28) is just Y . �

By Lemma 3.40, if V is a representation of GL2(Fq), then Yi = Y on V N1 .
For 0 ≤ i ≤ q − 1, we set

θi
def
=
∑
λ∈Fq

λi
(
1 λ
0 1

)
∈ F[N0/N

p
0 ]

∼= F
[(

1 Fq

0 1

)]
.

So Yi = θq−1−pi in F[N0/N
p
0 ]. In what follows we write p− 1 for the constant

f -tuple (p− 1, p− 1, . . . , p− 1) ∈ Zf .

Lemma 3.41. Suppose i ∈ {0, . . . , p− 1}f and let i
def
=
∑f−1

j=0 ijp
j.

(i) We have

θi = (−1)f−1

( f−1∏
j=0

ij !

)
Y p−1−i

in F[N0/N
p
0 ] for 0 ≤ i < q − 1.

Licensed to Chinese Academy of Sciences.  Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



3.2. TENSOR INDUCTION FOR GL2(QPF ) 109

(ii) For f0, . . . , fq−1 and φ as defined in [BP12, §2] we have

fi = (−1)f−1

( f−1∏
j=0

ij !

)
Y p−1−i

(
0 1
1 0

)
φ

for 0 ≤ i < q − 1.

Proof. Part (i) follows from [Mor, Lemma 0.2] after conjugation by
(
0 1
p 0

)
.

Indeed, in the notation of loc.cit. we take m = n = 1 (so that A1,1 is the group

algebra of
( 1 0
pOK/p2OK 1

)
): we see that θi corresponds (under conjugation) to Fi

if 0 ≤ i ≤ q − 1, and the constant κp−1−i equals (−1)f−1
(∏f−1

j=0 ij !
)−1

. Part (ii)

follows immediately from (i) and the definition of θi. �

As in [BP12] we write (s0, s1, . . . , sf−1)⊗ η for the Serre weight

(3.29) Syms0 F2 ⊗F (Sym
s1 F2)Fr ⊗ · · · ⊗F (Sym

sf−1 F2)Fr
f−1 ⊗F η ◦ det,

where the si are integers between 0 and p − 1, η is a character F×
q → F× and

GL2(Fq) acts on (Symsi F2)Fr
i

via σi : Fq ↪→ F. If χ = χ1 ⊗ χ2 is a character of

H =
( F×

q 0

0 F×
q

)
, we let χs def

= χ2 ⊗ χ1.

Lemma 3.42. Let σ
def
= (s0, . . . , sf−1)⊗η, s

def
= (s0, s1, . . . , sf−1)∈{0, . . . , p−1}f ,

and fix v ∈ σN0 , v �= 0. Let χσ denote the H-eigencharacter on σN0 .

(i) The F�N0/N1� = F�Y �-module σN1 is cyclic of dimension min{s0, . . . ,
sf−1}+ 1.

(ii) If 0 ≤ i ≤ s and i < p− 1 then σ contains a unique H-eigenvector,

which we call Y −iv, that is sent by Y i to v. The corresponding H-
eigencharacter is χσα

−i. Also, YjY
−iv = 0 if ij = 0.

(iii) If 0 ≤ i ≤ min{s0, . . . , sf−1} and i < p− 1, then σN1 contains a unique( F×
p 0

0 F×
p

)
-eigenvector Y −iv that is sent by Y i to v. The corresponding

eigencharacter is χσα
−i. We have Y −iv =

∑
i,‖i‖=i Y

−iv.

Proof.

(i) Note that σN1 is a torsion module over F�N0/N1� = F�Y � as σN1 is finite-
dimensional. To show cyclicity it suffices to note that σN0 = σN1 [X] is
1-dimensional. Then from [Mor17, Prop.3.3] applied with n = 1 we have an
isomorphism

(3.30)
F�Y0, . . . , Yf−1�/(Y

sj+1
j , 0 ≤ j ≤ f − 1)

∼−→ σ

g(Y ) �−→ g(Y )
(
0 1
1 0

)
v.

(Restrict equation (9) in [Mor17] to
(

1 0
pOK 1

)
and conjugate by

(
0 1
p 0

)
. Note that

σ is self-dual up to twist.) In particular, {Y k
(
0 1
1 0

)
v : 0 ≤ k ≤ s} is a basis of σ

consisting of H-eigenvectors.

Let m
def
= min{s0, . . . , sf−1}. We claim that the vectors

(3.31) vi
def
=
∑

0≤k≤s
‖k‖=‖s‖−i

Y k
(
0 1
1 0

)
v, 0 ≤ i ≤ m
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form a basis of σN1 . If i < m and ‖k‖ = ‖s‖ − i, then kj > 0 for all j. By using
also (3.30) we see that vi = Yjvi+1 for all j. Also, Yjv0 = 0 for all j. In particular,
Yj − Yj′ annihilates vi for all i, so vi ∈ σN1 by Lemma 3.40. Moreover, Xvi+1 = vi
(0 ≤ i < m) and Xv0 = 0. It remains to show that vm /∈ XσN1 . Choose j0 such
that sj0 = m. Then

∏
j 	=j0

Y
sj
j

(
0 1
1 0

)
v is the only term appearing in the sum (3.31)

for i = m that is not divisible by Yj0 . Hence vm /∈ Yj0σ, and thus vm /∈ XσN1 .

(ii) Let v′
def
= Y s

(
0 1
1 0

)
v, which is a scalar multiple of v. By (3.30),(

Y k
(
0 1
1 0

)
v
)
0≤k≤s

forms a basis of σ consisting of H-eigenvectors with eigencharac-

ters χs
σα

k = χσα
k−r. The eigencharacters are pairwise distinct, except if s = p− 1

where Y p−1
(
0 1
1 0

)
v and

(
0 1
1 0

)
v have the same eigencharacter. Hence, as i < p− 1,

the unique H-eigenvector in the preimage (Y i)−1(v′) is Y s−i
(
0 1
1 0

)
v. Note also that

YjY
s−i
(
0 1
1 0

)
v = 0 if ij = 0 by (3.30).

(iii) Using the notation in (ii), we have vi =
∑

‖i‖=i Y
−iv′ for 0 ≤ i ≤ m

and it is a
( F×

p 0

0 F×
p

)
-eigenvector with eigencharacter χσα

−i. These characters for

0 ≤ i ≤ m are pairwise distinct, except if s = p− 1, in which case v0 and vp−1 have
the same eigencharacter. As we assume i < p− 1 the claim follows.

�

Lemma 3.43. Suppose V is a representation of GL2(Fq) generated by some
vector v ∈ V N0 that is an eigenvector for the action of H. If dimF V ≤ q, then the
map

F�Y0, . . . , Yf−1� −→ V

f(Y ) �→ f(Y )
(
0 1
1 0

)
v

is surjective and its kernel is generated by monomials. In particular, if Y i
(
0 1
1 0

)
v =

Y j
(
0 1
1 0

)
v �= 0, then i = j.

Proof. Let χ denote the eigencharacter of H on v. Then we have a GL2(Fq)-

equivariant surjection S : Ind
GL2(OK)
I (χ) � V sending φ to v, where φ is the unique

function supported on I which sends 1 to 1. Consider

i : F[Y0, . . . , Yf−1]/(Y
p
0 , . . . , Y

p
f−1) → Ind

GL2(OK)
I (χ)

sending f(Y ) to f(Y )
(
0 1
1 0

)
φ. By Lemma 3.41, fj ∈ Im(i) for all j (even if j = q−1),

so by [BP12, Lemma 2.5], Ind
GL2(OK)
I (χ) = Im(i)⊕ Fφ (as F-vector spaces) and i

is injective.
Suppose first χ �∼= χs. By [BP12, Lemma 2.7(i)] and as dimV ≤ q we

have fr ± φ ∈ Ker(S) for some r =
∑f−1

j=0 pjsj ∈ {0, . . . , q − 2} and some sign

± (both depending on χ), so S ◦ i is surjective. If Ker(S) is irreducible (as a
GL2(Fq)-representation), then by [BP12, Lemma 2.7], Ker(S) = 〈f∑

pjdj
, 0 ≤ dj ≤

sj (not all equal), fr ± φ〉F. Intersecting with Im(i) = 〈f∑
pjdj

, 0 ≤ dj ≤ p − 1〉F
we get

Ker(S) ∩ Im(i) =
〈
f∑

pjdj
, 0 ≤ dj ≤ sj (not all equal)

〉
F
.

By Lemma 3.41(ii), it follows in particular that Ker(S◦i) is generated by monomials.
If Ker(S) is reducible, the argument is analogous using [BP12, Lemma 2.7(ii)]. If
χ = χs, it is again almost identical, using [BP12, Lemma 2.6] instead. �
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Lemma 3.44. Suppose f > 1. In F[N0/N
p
0 ] we have∑

λ∈Fq ,TrFq/Fp (λ)=0

(
1 λ
0 1

)
= (−1)f−1

(
Y p−1 +

∑
‖i‖=(p−1)(f−1)

0≤ij≤p−1

Y i

)
.

Proof. First we have (using xp−1 = 1 if x ∈ F×
p ):∑

λ∈Fq,TrFq/Fp (λ) 	=0

(
1 λ
0 1

)
=
∑
λ∈Fq

(TrFq/Fp
(λ))p−1

(
1 λ
0 1

)
=
∑
λ∈Fq

(λ+ λp + · · ·+ λpf−1

)p−1
(
1 λ
0 1

)
=
∑
λ∈Fq

∑
i∈Zf

≥0

‖i‖=p−1

(p− 1)!∏
j ij !

λi0+i1p+···+if−1p
f−1(

1 λ
0 1

)

=
∑

i∈Zf
≥0

‖i‖=p−1

(p− 1)!∏
j ij !

(−1)f−1

(∏
j

ij !

)
Y p−1−i,

where the last equality follows from Lemma 3.41(i), noting that
∑f−1

j=0 ijp
j < q− 1

since f > 1. Letting i′
def
= p− 1− i we get (as (p− 1)! = −1 in Fp):∑

λ∈Fq,TrFq/Fp (λ) 	=0

(
1 λ
0 1

)
= (−1)f

∑
i′∈Zf

≥0

‖i′‖=(p−1)(f−1)

Y i′ .

On the other hand, Lemma 3.41(i) gives∑
λ∈Fq

(
1 λ
0 1

)
= (−1)f−1Y p−1.

The result follows. �

Proposition 3.45. Fix j0 ∈ {0, . . . , f − 1}. In

F�N0/N
p
1 � ∼= F�Y0, . . . , Yf−1�/

(
(Yi − Yj)

p, i �= j
)

we have ∑
n∈N1/N

p
1

n = (−1)f−1
∏
j 	=j0

(Yj − Yj0)
p−1

modulo terms of degree ≥ f(p− 1).

Proof. The statement being trivial if f = 1, we can assume f > 1. We
prove the first isomorphism. As Yi − Yj ∈ Ker

(
F�N0� → F�N0/N1�

)
by Lemma

3.40, we deduce that (Yi − Yj)
p ∈ Ker

(
F�N0� → F�N0/N

p
1 �
)
, and we thus have a

surjection F�Y0, . . . , Yf−1�/
(
(Yi − Yj)

p, i �= j
)

� F�N0/N
p
1 �. Since both terms are

free modules of rank p(f − 1) over a power series ring in one variable over F, the
surjection has to be an isomorphism.

Let A
def
= F�N1/N

p
1 �, B

def
= F�N0/N

p
1 � and B

def
= F�N0/N

p
0 �, they are complete

local commutative rings of respective maximal ideals denoted by mA, mB , mB .

Let Z
def
=
∑

n∈N1/N
p
1
n ∈ A. Note that mA is the augmentation ideal of A, hence

Licensed to Chinese Academy of Sciences.  Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



112 3. THE CASE OF GL2(QPF )

the mA-torsion A[mA] in A equals FZ. As N1/N
p
1
∼= (Z/pZ)f−1, we have an iso-

morphism A ∼= F[Z1, . . . , Zf−1]/(Z
p
1 , . . . , Z

p
f−1), so m

(p−1)(f−1)+1
A = 0 and hence

Z ∈ m
(p−1)(f−1)
A .

Let ı : A ↪→ B denote the inclusion and denote by grm(ı) the induced map
mm

A /mm+1
A → mm

B /mm+1
B for m ≥ 0. We claim that gr1(ı) is injective with image

generated by all Yj −Yj0 (j �= j0) in mB/m
2
B . If so, then gr(p−1)(f−1)(ı) has to send

the 1-dimensional F-vector space m
(p−1)(f−1)
A to a multiple of

∏
j 	=j0

(Yj − Yj0)
p−1

modulo m
(p−1)(f−1)+1
B . But

(
λ̃ 0
0 μ̃

)
Z = Z

(
λ̃ 0
0 μ̃

)
for λ, μ ∈ F×

p , and considering the

action of H, it follows from the sentence following Lemma 3.37 that we must have

ı(Z) = c
∏
j 	=j0

(Yj − Yj0)
p−1 + (element of m

f(p−1)
B )

for some c ∈ F (note that every element of B can be written uniquely as
∑

i ciY
i

with ij < p for all j �= j0 and that mB is generated by the Y i, i �= 0). By passing

to B and using Lemma 3.44, we deduce that we must have c = (−1)f−1.

It remains to prove the claim. As B ∼= B/(Y p
0 , . . . , Y

p
f−1), we have mB/m

2
B

∼→
mB/m

2
B

and it is equivalent to prove the claim with ı : A → B. We first note

that gr1(ı) is injective with 1-dimensional cokernel, because for any finite abelian
p-group U the cotangent space of SpecF[U ] at its closed point is identified with

F ⊗Z U . Consider the natural map s : B � C
def
= F[N0/N1N

p
0 ]

∼= F[Y ]/(Y p). As
gr1(s◦ ı) = 0 and s(Yi) = Y by Lemma 3.40, we deduce from loc.cit. that the image
of gr1(ı) is indeed spanned by all Yj − Yj0 (j �= j0). �

3.2.3. A computation for the operator F . We give a crucial computation
for the operator F on πN1 for π as at the end of §3.2.1. The main result of this
section is Proposition 3.46(ii).

We keep the notation of §3.2.2. For σ = (t0, . . . , tf−1) ⊗ η ∈ W (ρ), recall
we have tj ∈ {rj , rj + 1, p − 2 − rj , p − 3 − rj} if j > 0 or ρ is reducible and
t0 ∈ {r0 − 1, r0, p− 1− r0, p− 2− r0} if ρ is irreducible (see e.g. [Bre11, §2]). We
deduce from (3.26) that

(3.32) tj ∈ {2f − 1, . . . , p− 1− 2f} for all j.

We identify W (ρ) with the subsets of {0, 1, . . . , f − 1} as in [Bre11, §2] and let
Jσ ⊆ {0, . . . , f−1} be the subset associated to σ. We have tj ∈ {p−2−rj , p−3−rj}
for j ∈ Jσ if j > 0 or ρ is reducible, t0 ∈ {p− 2− r0, p− 1− r0} if 0 ∈ Jσ and ρ is
irreducible.

Let σ = (t0, . . . , tf−1)⊗ η ∈ W (ρ). Denote δ(σ)
def
= δred(σ) if ρ is reducible and

δ(σ)
def
= δirr(σ) if ρ is irreducible the Serre weights δred(σ), δirr(σ) defined in [Bre11,

§5]. We write δ(σ) = (s0, . . . , sf−1)⊗ η′. Let xσ ∈ σN0 \ {0} and let χσ : H → F×

denote the H-eigencharacter of xσ. We also identify the irreducible constituents of

Ind
GL2(OK)
I (χs

σ) with the subsets of {0, . . . , f − 1} as in [BP12, §2] (for instance

∅ corresponds to the socle σ of Ind
GL2(OK)
I (χs

σ)). For any J ⊆ {0, . . . , f − 1} let

Q(χs
σ, J) denote the unique quotient of Ind

GL2(OK)
I (χs

σ) with irreducible GL2(OK)-
socle parametrized by J (see [BP12, Thm.2.4(iv)]). We know that the Serre weight

δ(σ) occurs in Ind
GL2(OK)
I (χs

σ) (see the proof of [Bre11, Prop.5.1]) and we denote
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by Jmax(σ) ⊆ {0, . . . , f − 1} the associated subset. We thus have

socGL2(OK) Q(χs
σ, J

max(σ)) ∼= δ(σ)

(by definition of δ(σ), it is the only constituent of Q(χs
σ, J

max(σ)) that is in W (ρ)).
We also have from [BP12, §2] (with −1 = f − 1):

(3.33)
sj = p− 2− tj + 1Jmax(σ)(j − 1) if j ∈ Jmax(σ),

sj = tj − 1Jmax(σ)(j − 1) if j /∈ Jmax(σ).

(Above, we write 1Jmax(σ) for the indicator function of Jmax(σ).) Moreover, using
[BP12, Lemma 2.7] it is a combinatorial exercise (left to the reader) to prove

(3.34) Jmax(σ) = (Jσ ∪ Jδ(σ)) \ (Jσ ∩ Jδ(σ)).

We define

m
def
= |Jmax(σ)| ∈ {0, . . . , f}.

We have m = 0 if and only if δ(σ) ∼= σ, and this occurs precisely if ρ is reducible
and σ is an “ordinary” Serre weight of ρ, i.e. such that Jσ = ∅ or Jσ = {0, . . . , f−1}
(this follows, for example, from the proof of Lemma 3.47 below).

We consider a GL2(K)-representation π as at the end of §3.2.1, and fix an
embedding σ ↪→ socGL2(OK)(π) (recall there are r copies of σ inside socGL2(OK)(π)).

From the assumption on π, we know that
(
0 1
p 0

)
xσ generates Q(χs

σ, J
max(σ)) as a

GL2(OK)-subrepresentation of π|GL2(OK), in particular δ(σ) can also be seen in
socGL2(OK)(π) (its embedding being determined by that of σ up to a scalar).

Proposition 3.46.

(i) The vector

(3.35) xδ(σ)
def
=
∏

j∈Jmax(σ)

Y
sj
j

∏
j /∈Jmax(σ)

Y p−1
j

(
p 0
0 1

)
xσ

spans δ(σ)N0 as an F-vector space.
(ii) We have in πN1 that

Y
∑

j∈Jmax(σ) sjF (Y 1−mxσ) = (−1)f−1Y 1−mxδ(σ) if m > 0,

Y p−1F (xσ) = (−1)f−1xδ(σ) if m = 0.

Proof of Proposition 3.46(i). Suppose first m > 0. From [BP12, Lemma
2.7(ii)] and Lemma 3.41(ii) we see that δ(σ) has basis Y i

(
p 0
0 1

)
xσ, where 0 ≤ ij ≤ sj

if j ∈ Jmax(σ) and p− 1− sj ≤ ij ≤ p− 1 if j /∈ Jmax(σ). Hence the only vectors
in δ(σ) that are killed by all Yj are the multiples of xδ(σ). The statement follows
by an inspection of the H-action on this basis (which is formed by H-eigenvectors),
see Remark 3.39.

If m = 0, then δ(σ) is the socle of Ind
GL2(OK)
I (χs

σ). By [BP12, Lemma 2.7(i)],

f0 is the unique I-invariant element of δ(σ) ⊆ Ind
GL2(OK)
I (χs

σ). The statement
follows from Lemma 3.41(ii). �

In order to prove Proposition 3.46(ii), we first need several lemmas.

Lemma 3.47. We have |Jmax(σ)| = |Jmax(δ(σ))|.
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Proof. If ρ is reducible, identifying {0, . . . , f − 1} with Z/f we have Jδ(σ) =
Jσ − 1 as subsets of Z/f by [Bre11, §5], and the statement follows in that case

by (3.34). If ρ is irreducible, let J ′
σ

def
= Jσ

∐
(Jσ + f) ⊆ {0, . . . , 2f − 1} as in

[Bre11, §5], where Jσ is the complement of Jσ in {0, . . . , f − 1}. It follows from
(3.34) that |Jmax(σ)| = 1

2 |(J ′
σ ∪ J ′

δ(σ)) \ (J ′
σ ∩ J ′

δ(σ))|. Identifying {0, . . . , 2f − 1}
with Z/2f , we again have J ′

δ(σ) = J ′
σ − 1 as subsets of Z/(2f) by [Bre11, §5], and

the statement follows. �

The three lemmas that follow only apply tom > 0 and require the strong gener-
icity assumption. In these three lemmas, we identify without comment {0, . . . , f−1}
with Z/fZ (so −1 = f − 1, f = 0, etc.).

Lemma 3.48. Assume m > 0 and let i ∈ Zf
≥0 with ‖i‖ ≤ m− 1. Then we have

(3.36)
〈
GL2(OK)

(
p 0
0 1

)
Y −ixσ

〉/ ∑
0≤j<i

〈
GL2(OK)

(
p 0
0 1

)
Y −jxσ

〉
∼= Q

(
χs
σα

i, {j ∈ Jmax(σ) : ij+1 = 0}
)
.

Proof. Note first that tj ∈ {2ij + 1, . . . , p − 2} for all j by (3.32) and the

assumption on i, so that the vectors Y −ixσ and Y −jxσ are well-defined elements
of σ by Lemma 3.42(ii). We rewrite

〈GL2(OK)
(
p 0
0 1

)
Y −jxσ〉 = 〈GL2(OK)

(
0 1
p 0

)
Y −jxσ〉

and, using notation from [BHH+23, §§2.1,2.2], σ ∼= F (λ) where λ = (λ0, . . . , λf−1)
with λj = (λj,1, λj,2) ∈ {0, . . . , p− 1}2. We have λj,1 − λj,2 = tj for all j.

Let W ′ (resp. W ) be the I-subrepresentation of π generated by Y −ixσ (resp.(
0 1
p 0

)
Y −ixσ). We deduce from Lemma 3.42(ii) that W ′ = 〈N0Y

−ixσ〉 has F-basis
Y −jxσ for all 0 ≤ j ≤ i, and socI(W

′) = Fxσ. We moreover have W =
(
0 1
p 0

)
W ′

since I is normalized by
(
0 1
p 0

)
. In particular we see that W injects into the I-

representation Jχσ
of [BHH+23, Cor.6.1.4] and that W has Jordan–Hölder factors

χs
σα

j for 0 ≤ j ≤ i, each occurring with multiplicity 1. Let V
def
= Ind

GL2(OK)
I (W ).

Then V is the representation appearing in the first paragraph of the proof of
[BHH+23, Prop.6.2.2], with Bj taken to be 2ij + 1 for all j (and note the bounds
on λj,1−λj,2 which let us invoke loc.cit.). Hence, by [BHH+23, Prop.6.2.2] and its
proof in the case εj = −1 and Bj = 2ij+1 for all j, we get that V is multiplicity-free,

has Jordan–Hölder factors σa
def
= F (tλ(−

∑
ajηj)) for 0 ≤ a ≤ 2i+1 with the nota-

tion of [BHH+23, §2.4], and GL2(OK)-socle σ. Moreover, the unique subrepresen-
tation of V with cosocle σa has constituents σb for 0 ≤ b ≤ a. On the other hand,

Ind
GL2(OK)
I (W ) has a filtration with subquotients Ind

GL2(OK)
I (χs

σα
j) for 0 ≤ j ≤ i,

and by [BHH+23, Lemma 6.2.1(i)] the constituents of Ind
GL2(OK)
I (χs

σα
j) are the

Serre weights σa with 2j ≤ a ≤ 2j+1. By the proof of [BHH+23, Lemma 6.2.1(i)],

one easily checks that the constituent σa of Ind
GL2(OK)
I (χs

σα
j) corresponds to the

subset {� : a�+1 is odd} ⊆ {0, . . . , f − 1} in the parametrization of [BP12, §2]
(note that twisting χs

σ by αj corresponds to shifting by −2
∑

j�η� in the extension
graph).

By Frobenius reciprocity V
def
= 〈GL2(OK)

(
0 1
p 0

)
Y −ixσ〉 is the image of a nonzero

map Ind
GL2(OK)
I (W ) → π and any Serre weight in its GL2(OK)-socle has to be
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in W (ρ). By [BHH+23, Prop.2.4.2] if σa ∈ W (ρ), then 0 ≤ a ≤ 1, so σa

is a constituent of Ind
GL2(OK)
I (χs

σ) ⊆ V . Thus by the definition of δ(σ) and as

πK1/ socGL2(OK) π does not contain any Serre weight of W (ρ) it follows that V is
the unique quotient of V with GL2(OK)-socle δ(σ). By the previous paragraph and
the definition of Jmax(σ), we have δ(σ) ∼= σb, where bj = 1Jmax(σ)+1(j) for all j, and

V has constituents σa with 1Jmax(σ)+1(j) ≤ aj ≤ 2ij +1 for all j. By construction,

the left-hand side of (3.36) is a quotient of Ind
GL2(OK)
I (χs

σα
i). Moreover, by what

is before, it must have constituents σa with max(1Jmax(σ)+1(j), 2ij) ≤ aj ≤ 2ij + 1
for all j. It follows that its GL2(OK)-socle is irreducible and isomorphic to σc,

where cj
def
= max(1Jmax(σ)+1(j), 2ij) for all j. Since 2ij+1 is even and > 1 as soon

as ij+1 �= 0, we see that cj+1 is odd if and only if ij+1 = 0 and j ∈ Jmax(σ). Hence

the GL2(OK)-socle of this quotient of Ind
GL2(OK)
I (χs

σα
i) corresponds to the subset

{j ∈ Jmax(σ) : ij+1 = 0}, as required. �

Lemma 3.49. Assume m > 0 and let i ∈ Zf
≥0, � ∈ Jmax(σ) such that ‖i‖ ≤ m−1

and i�+1 = 0. Then

Y p−t�+2i�
�

(
p 0
0 1

)
Y −ixσ = 0.

Proof. Recall p − t� + 2i� ≥ 0 by (3.32), so that Y p−t�+2i�
�

(
p 0
0 1

)
Y −ixσ is

well-defined. Suppose on the contrary that Y p−t�+2i�
�

(
p 0
0 1

)
Y −ixσ �= 0 for some

� ∈ Jmax(σ) such that i�+1 = 0 and ‖i‖ ≤ m − 1. By Lemma 3.37(ii) and

Lemma 3.42(ii) this is an eigenvector for {
(
λ̃ 0
0 μ̃

)
: λ, μ ∈ F×

q } with eigencharacter

χσα
−iα(p−t�+2i�)p

�

. By Lemma 3.48 it suffices to show that the H-eigencharacter

χσα
−iα(p−t�+2i�)p

�

does not occur in

Vi′
def
= Q(χs

σα
i′ , Ji′)

for any i′ such that 0 ≤ i′ ≤ i, where Ji′
def
= {j ∈ Jmax(σ) : i′j+1 = 0}.

Using the notation λ = (λ0(x0), . . . , λf−1(xf−1)) and P(x0, . . . , xf−1)
of [BP12, Thm.2.4], the irreducible constituents of Vi′ are given by the Serre
weights (λ0(t0−2i′0), . . . , λf−1(tf−1−2i′f−1)) (up to twist) for those λ ∈ P(x0, . . . ,

xf−1) such that J(λ) ⊇ Ji′ . Recall that λj(x) = p − 2 − x + 1J(λ)(j − 1) if
j ∈ J(λ) and λj(x) = x − 1J(λ)(j − 1) if j /∈ J(λ). By [BP12, Lemma 2.5(i)] and

[BP12, Lemma 2.7], the H-eigencharacters that occur in Vi′ are χσα
−i′αk, where

k is such that there exists λ ∈ P(x0, . . . , xf−1) with J(λ) ⊇ Ji′ and

(3.37)
0 ≤ kj ≤ p− 2− (tj − 2i′j) + 1J(λ)(j − 1) if j ∈ J(λ),

p− 1− (tj − 2i′j − 1J(λ)(j − 1)) ≤ kj ≤ p− 1 if j /∈ J(λ).

(Note that Ji′ �= ∅ as � ∈ Ji′ , noting that � ∈ Jmax(σ) and 0 ≤ i′�+1 ≤ i�+1 = 0.)

Assume χσα
−iα(p−t�+2i�)p

�

= χσα
−i′αk for some λ and k as above. Then

−
f−1∑
j=0

ijp
j + (p− t� + 2i�)p

� ≡ −
f−1∑
j=0

i′jp
j +

f−1∑
j=0

kjp
j (mod q − 1)

or equivalently

(3.38) (p− t� + 2i�)p
� −

f−1∑
j=0

(ij − i′j)p
j ≡

f−1∑
j=0

kjp
j (mod q − 1).

Note that, since � ∈ Ji′ , we have in particular � ∈ J(λ).
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If i′j = ij for all j �= � (for example if i′ = i or if f = 1), then (3.38) gives

(p − t� + i� + i′�)p
� ≡
∑

j kjp
j , so k� = p − t� + i� + i′� as (using (3.32) for t� and

0 ≤ i′� ≤ i� ≤ m− 1 ≤ f − 1):

(3.39) p− t� + i� + i′� ∈ {2f + 1, . . . , p− 1}.

This contradicts (3.37) as � ∈ J(λ) and i′� ≤ i�. Therefore f > 1 and i′j < ij for some
j �= �. For m ∈ Z≥0, let [m] the unique element of {0, . . . , f −1} which is congruent

to m modulo f . In particular pm ≡ p[m] (mod q− 1). Let h ∈ {�+1, . . . , �+ f − 1}
be minimal such that i′[h] < i[h]. Then modulo q − 1:

f−1∑
j=0

(ij − i′j)p
j ≡

�+f∑
j=�+1

(i[j] − i′[j])p
[j] =

�+f∑
j=h

(i[j] − i′[j])p
[j]

and we deduce the following congruences modulo q − 1:

(p−t� + 2i�)p
� −

f−1∑
j=0

(ij − i′j)p
j

≡ (p− 1− t� + 2i�)p
� + p� −

�+f∑
j=h

(i[j] − i′[j])p
[j]

≡ (p− 1− t� + 2i�)p
� +

�+f−1∑
j=h+1

(p− 1)pj + ph+1 −
�+f∑
j=h

(i[j] − i′[j])p
[j]

≡ (p− 1− t� + 2i�)p
� +

�+f−1∑
j=h+1

(p− 1)p[j] + p[h]+1 −
�+f∑
j=h

(i[j] − i′[j])p
[j]

≡ (p−1−t�+i�+i′�)p
� +

�+f−1∑
j=h+1

(p−1−(i[j]−i′[j]))p
[j] + (p−(i[h]−i′[h]))p

[h].(3.40)

Note that all powers of p in (3.40) are distinct in {0, . . . , f−1} and all coefficients are
in {0, . . . , p−1}. Moreover these coefficients cannot all equal 0 as p−(i[h]−i′[h]) �= 0,

nor p− 1 by (3.39). Hence by (3.38) we get k� = p− 1− t� + i� + i′�. As � ∈ J(λ)
and i′� ≤ i�, we get from (3.37) that i� = i′� and �−1 ∈ J(λ). By (3.37) for j = �−1
and by (3.40), (3.38) we get

p− 1− (i�−1 − i′�−1) ≤ k�−1 ≤ p− 1− t�−1 + 2i′�−1

(note that by (3.40) the left-hand side is an equality as soon as � − 1 �≡ h mod f
which can only occur if f > 2). This implies t�−1 ≤ i�−1+i′�−1 ≤ 2(m−1) ≤ 2f−2,
which contradicts genericity (3.32). This finishes the proof. �

Lemma 3.50. Assume m > 0 and let k ∈ Zf
≥0.

(i) If Y k
(
p 0
0 1

)
Y 1−mxσ �= 0, then

‖k‖ ≤ (f − 1)(p− 1) + (m− 1) +
∑

j∈Jmax(σ)

sj .
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If moreover equality holds, then Y k
(
p 0
0 1

)
Y 1−mxσ = xδ(σ) (see (3.35))

and

kj ≡ sj (mod p) if j ∈ Jmax(σ),

kj ≡ −1 (mod p) if j /∈ Jmax(σ).

(ii) If ‖k‖ = (f −1)(p−1)+
∑

Jmax(σ) sj then Y k
(
p 0
0 1

)
Y 1−mxσ ∈ δ(σ), more

precisely:

Y k
(
p 0
0 1

)
Y 1−mxσ ∈

〈
Y −�xδ(σ), ‖�‖ = m− 1

〉
F
.

Proof. We prove the following statements inductively on ‖i‖ ≤ m − 1 for

i ∈ Zf
≥0:

(a) If Y k
(
p 0
0 1

)
Y −ixσ �= 0 then

‖k‖ ≤ (f − 1)(p− 1) + (m− 1) +
∑

j∈Jmax(σ)

sj − (m− 1− ‖i‖)p.

If moreover equality holds, then Y k
(
p 0
0 1

)
Y −ixσ = xδ(σ) and

kj = ij+1p+ sj if j ∈ Jmax(σ),

kj = ij+1p+ (p− 1) if j /∈ Jmax(σ).

(b) If ‖k‖ = (f − 1)(p− 1) +
∑

j∈Jmax(σ) sj − (m− 1− ‖i‖)p then

Y k
(
p 0
0 1

)
Y −ixσ = Y −�xδ(σ)

for some ‖�‖ = m− 1, or it is zero.

By Lemma 3.42(iii) we have

Y 1−mxσ =
∑

i∈Zf
≥0

‖i‖=m−1

Y −ixσ

and we see that (a) and (b) for ‖i‖ = m − 1 imply (i) and (ii) (note that in (a)

if Y k
(
p 0
0 1

)
Y −ixσ �= 0 and equality holds, then i is uniquely determined by k and

Jmax(σ)).

We first prove by induction on ‖i‖ ≤ m−1 for i ∈ Zf
≥0 that if ‖k‖ ≥ (f−1)(p−

1) +
∑

Jmax(σ) sj − (m− 1− ‖i‖)p and Y k
(
p 0
0 1

)
Y −ixσ �= 0, then Y k

(
p 0
0 1

)
Y −ixσ =

Y k′( p 0
0 1

)
xσ for k′ ∈ Zf

≥0 such that k′j = kj − ij+1p for all j. A examination of (a)

and (b) shows it will then be enough to prove them for i = 0 (replacing k by k′).
There is nothing to prove for i = 0, so we can assume i �= 0. If kj0 ≥ p for some

j0, then using Lemma 3.37(ii):

Y k
(
p 0
0 1

)
Y −ixσ = Y k−pεj0Y p

j0

(
p 0
0 1

)
Y −ixσ = Y k−pεj0

(
p 0
0 1

)
Y −(i−εj0+1)xσ,

where εj
def
= (0, . . . , 0, 1, 0, . . . , 0) with 1 in position j and 0 elsewhere (note that

Yj0+1Y
−ixσ = Y −(i−εj0+1)xσ is nonzero by assumption, and hence i− εj0+1 ∈ Zf

≥0

by the last statement in Lemma 3.42(ii)). As ‖i−εj0+1‖ = ‖i‖−1 and ‖k−pεj0‖ =
‖k‖ − p ≥ (f − 1)(p− 1) +

∑
Jmax(σ) sj − (m− 1− ‖i− εj0+1‖)p, we can apply the

induction hypothesis and a small computation shows that k′ is the right one, so we
are done in that case.
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We assume kj < p for all j and derive below a contradiction (so this case can’t
happen). Define

J
def
= {j ∈ Jmax(σ) : ij+1 = 0},

then by Lemma 3.49 (applied to � = j and using Yj
kj
(
p 0
0 1

)
Y −ixσ �= 0):

kj ≤ p− 1− tj + 2ij if j ∈ J ,

kj ≤ p− 1 if j /∈ J,

which implies ‖k‖ ≤ (f − |J |)(p − 1) +
∑

j∈J (p − 1 − tj + 2ij). From (3.33) we
deduce

‖k‖ ≤ (f − |J |)(p− 1) +
∑
j∈J

(sj + 2ij) + |J \ (Jmax(σ) + 1)|.

So to get a contradiction it is enough to show that

(f − |J |)(p− 1) +
∑
j∈J

(sj + 2ij) + |J \ (Jmax(σ) + 1)| < (f − 1)(p− 1)

+
∑

j∈Jmax(σ)

sj − (m− 1− ‖i‖)p,

or equivalently

pm+ |J \(Jmax(σ) + 1)|≤(p− 1)|J |+ p
∑
j 	∈J

ij + (p− 2)
∑
j∈J

ij +
∑

j∈Jmax(σ)\J
sj

=(p− 2)‖i‖+ (p− 1)|J |+
(
2
∑
j 	∈J

ij +
∑

j∈Jmax(σ)\J
sj

)
.(3.41)

Case 1: assume |Jmax(σ) \ J | > 0.
If j ∈ Jmax(σ)\J , then ij+1 > 0, so |Jmax(σ)\J | ≤ ‖i‖. As |Jmax(σ)\J | = m−|J |,
this means m ≤ ‖i‖+ |J |, hence (3.41) is implied by

(3.42) 2m+ |J \ (Jmax(σ) + 1)| ≤ |J |+
(
2
∑
j 	∈J

ij +
∑

j∈Jmax(σ)\J
sj

)
.

Using |J \ (Jmax(σ) + 1)| ≤ |J |, (3.42) is implied by

(3.43) 2m ≤
∑

j∈Jmax(σ)\J
sj .

Genericity (3.32) with (3.33) give sj ≥ 2f − 1 ≥ 2m − 1 for j ∈ Jmax(σ), hence
(3.43) holds if either sj ≥ 2m for at least one j ∈ Jmax(σ)\J or if |Jmax(σ)\J | ≥ 2
(using 2m − 2 ≥ 0 for the latter). Therefore, the only way inequality (3.42) may
fail is when Jmax(σ) \ J = {j0} (for some j0) and moreover J \ (Jmax(σ) + 1) = J
and ij = 0 for all j �∈ J . But then ij0+1 > 0 so we have j0 + 1 ∈ J ∩ (Jmax(σ) + 1),
which contradicts J ∩ (Jmax(σ) + 1) = ∅. Hence inequality (3.42) holds.
Case 2: assume Jmax(σ) = J .
Then using

|J\(Jmax(σ)+1)| ≤ |{0, . . . , f−1}\(Jmax(σ)+1)| = |{0, . . . , f−1}\Jmax(σ)| = f−m

and |J | = m, we see that (3.41) is implied by (p− 1)m+ f ≤ (p− 2)‖i‖+ (p− 1)m
which is true as ‖i‖ > 0 and f ≤ p− 2 by (3.26).

To prove (a) and (b), it therefore suffices to consider the case i = 0, which we
prove now.
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Recall
〈
GL2(OK)

(
0 1
p 0

)
xσ

〉 ∼= Q(χs
σ, J

max(σ)). By [BP12, Thm.2.4(iv)] the
constituents of this GL2(OK)-representation are the Serre weights (λ0(t0), . . . ,
λf−1(tf−1)) up to twist, where λ ∈ P(x0, . . . , xf−1), J(λ) ⊇ Jmax(σ) and λj(tj) =
p − 2 − tj + 1J(λ)(j − 1) if j ∈ J(λ) (we use the notation of [BP12, §2] as in the
proof of Lemma 3.49). By [BP12, Lemma 2.7, Lemma 2.6] and Lemma 3.41(ii),

Q(χs
σ, J

max(σ)) has F-basis Y k
(
p 0
0 1

)
xσ, where

(3.44)
0 ≤ kj ≤ λj(tj) if j ∈ J(λ),

p− 1− λj(tj) ≤ kj ≤ p− 1 if j �∈ J(λ)

for some λ ∈ P(x0, . . . , xf−1) with J(λ) ⊇ Jmax(σ). We see that (3.44) implies

‖k‖ ≤ (f − |J(λ)|)(p− 1) +
∑

j∈J(λ)

(p− 2− tj + 1J(λ)(j − 1))(3.45)

with equality if and only if kj = λj(tj) if j ∈ J(λ) and kj = p− 1 otherwise. More-

over, Y k
(
p 0
0 1

)
xσ ∈ δ(σ)\{0} if and only if (3.44) holds with J(λ) = Jmax(σ). Hence

if Y k
(
p 0
0 1

)
xσ �∈ δ(σ) we deduce that (3.44) holds for some λ ∈ P(x0, . . . , xf−1) with

J(λ) � Jmax(σ).
We claim that the right-hand side of (3.45) is smaller or equal than (f −

1)(p− 1) +m− 1 +
∑

Jmax(σ) sj − p(m− 1) if J(λ) = Jmax(σ) and strictly smaller

than (f − 1)(p − 1) +
∑

Jmax(σ) sj − p(m − 1) if J(λ) � Jmax(σ). Recalling that

sj = p − 2 − tj + 1Jmax(σ)(j − 1) for j ∈ Jmax(σ), the first case follows from
(f − |Jmax(σ)|)(p− 1) = (f − 1)(p− 1)+m− 1− p(m− 1). For the second case, as
(f − 1)(p− 1)− p(m− 1) = (f − |Jmax(σ)|)(p− 1)− (m− 1), it is enough to prove

(f − |J(λ)|)(p− 1) +
∑

j∈J(λ)

(p− 2− tj) + |J(λ) ∩ (J(λ) + 1)|

< (f−|Jmax(σ)|)(p− 1) +
∑

j∈Jmax(σ)

(p− 2− tj) + |Jmax(σ) ∩ (Jmax(σ) + 1)|

− (m− 1),

or equivalently (by an easy calculation):

(m− 1) + |J(λ) ∩ (J(λ) + 1)| − |Jmax(σ) ∩ (Jmax(σ) + 1)| <
∑

j∈J(λ)\Jmax(σ)

(tj + 1).

This is true, as m − 1 ≤ f − 1 (so the left-hand side is at most (f − 1) + f),
J(λ) \ Jmax(σ) �= ∅ and tj + 1 ≥ 2f for any j by genericity (3.32).

Therefore ‖k‖ ≤ (f−1)(p−1)+(m−1)+
∑

Jmax(σ) sj−p(m−1) if Y k
(
p 0
0 1

)
xσ �= 0

and Y k
(
p 0
0 1

)
xσ ∈ δ(σ) if ‖k‖ ≥ (f − 1)(p− 1) +

∑
Jmax(σ)

sj − p(m− 1).

We prove the remaining statements in (a) and (b) (for i = 0). If ‖k‖ ≥
(f − 1)(p− 1) +

∑
Jmax(σ)

sj − p(m− 1) and Y k
(
p 0
0 1

)
xσ �= 0, we know by above that

J(λ) = Jmax(σ). By (3.44) we then have kj ≤ sj if j ∈ Jmax(σ) and kj ≤ p − 1
if j /∈ Jmax(σ). By the definition of xδ(σ) in (3.35) and by Lemma 3.42(ii) (and

Remark 3.39) we deduce Y k
(
p 0
0 1

)
xσ = Y −�xδ(σ), where �j = sj − kj if j ∈ Jmax(σ)

and �j = p−1−kj if j /∈ Jmax(σ). This implies ‖�‖ = (f−m)(p−1)+
∑

Jmax(σ)

sj−‖k‖,

and in particular ‖�‖ = 0 if ‖k‖ = (f − 1)(p− 1)+ (m− 1)+
∑

Jmax(σ) sj − (m− 1)p
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and ‖�‖ = m− 1 if ‖k‖ = (f − 1)(p− 1) +
∑

Jmax(σ)

sj − p(m− 1). This finishes the

proof of (a) and (b). �

Now we can finally complete the proof of Proposition 3.46.

Proof of Proposition 3.46(ii). Suppose first that m > 0 and fix j0 ∈
Jmax(σ). By Lemma 3.40, Proposition 3.45 and the definition of F (see (ii) in
§2.1.1), we have

Y
∑

j∈Jmax(σ) sjF (Y 1−mxσ)

=

⎡⎣(−1)f−1
∏

j∈Jmax(σ)

Y
sj
j

∏
j 	=j0

(Yj − Yj0)
p−1 + f(Y )

⎤⎦( p 0
0 1

)
Y 1−mxσ

for some f(Y ) ∈ F�Y0, . . . , Yf−1� of mN0
-adic valuation (i.e. total degree)

≥
∑

Jmax(σ) sj + (p− 1)f . As p > f ≥ m we have (p− 1)f > (p− 1)(f − 1)+m− 1

and by Lemma 3.50(i) we get f(Y )
(
p 0
0 1

)
Y 1−mxσ = 0, hence

Y
∑

Jmax(σ) sjF (Y 1−mxσ) = (−1)f−1
∏

j∈Jmax(σ)

Y
sj
j

∏
j 	=j0

(Yj − Yj0)
p−1
(
p 0
0 1

)
Y 1−mxσ.

Moreover, the right-hand side is contained in 〈Y −�xδ(σ), ‖�‖ = m − 1〉F ⊆ δ(σ) by

Lemma 3.50(ii). As it is also N1-invariant, it is contained in FY 1−mxδ(σ) by Lemma
3.42(iii). It is therefore enough to show that

Y m−1+
∑

Jmax(σ) sjF (Y 1−mxσ) = (−1)f−1xδ(σ),

or again by Lemma 3.40, Proposition 3.45 and Lemma 3.50(i) that

Y m−1
j0

∏
j∈Jmax(σ)

Y
sj
j

∏
j 	=j0

(Yj − Yj0)
p−1
(
p 0
0 1

)
Y 1−mxσ = xδ(σ).

As
(
p−1
i

)
= (−1)i for 0 ≤ i ≤ p− 1, the left-hand side equals

(3.46) Y m−1
j0

∏
Jmax(σ)

Y
sj
j

∑
‖k′‖=(p−1)(f−1)
k′
j≤p−1 if j 	= j0

Y k′( p 0
0 1

)
Y 1−mxσ.

By Lemma 3.50(i), as k′j + sj can never be congruent to sj modulo p when k′j ∈
{1, . . . , p− 1}, only the terms with k′j = 0 for j ∈ Jmax(σ) \ {j0} and k′j = p− 1 for

j /∈ Jmax(σ) survive. As ‖k′‖ = (p− 1)(f − 1), we must have k′j0 = (p− 1)(m− 1),
and by Lemma 3.50(i) again it follows that (3.46) equals xδ(σ), as required.

Finally suppose m = 0. As Y p
j

(
p 0
0 1

)
xσ = 0 for all j, we get again by Lemma

3.40, Proposition 3.45 and (3.35):

Y p−1F (xσ) = (−1)f−1Y p−1
0

∏
j 	=0

(Yj − Y0)
p−1
(
p 0
0 1

)
xσ

= (−1)f−1

f−1∏
j=0

Y p−1
j

(
p 0
0 1

)
xσ = (−1)f−1xδ(σ). �
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3.2.4. Lower bound for VGL2
(π): proof. We prove Theorem 3.35.

We keep the notation of §§3.2.1, 3.2.2, 3.2.3. Fix σ ∈ W (ρ) and define σi ∈
W (ρ) inductively by σ1

def
= σ and σi

def
= δ(σi−1) for i > 1 (σi here shouldn’t be

confused with the embedding σi = σ0 ◦ ϕi). Let n ≥ 1 be the smallest integer such

that σn+1
∼= σ1 and write σi = (s

(i)
0 , . . . , s

(i)
f−1) ⊗ ηi. Recall that n = 1 if and only

if Jmax(σ) = ∅ if and only if ρ is reducible and σ corresponds to Jσ = ∅ or Jσ = S

(see the beginning of §3.2.3). We set m
def
= |Jmax(σi)| if n > 1 (this doesn’t depend

on i ∈ {1, . . . , n} by Lemma 3.47) and m
def
= 1 if n = 1, so that m ∈ {1, . . . , f}. For

i ∈ {1, . . . , n} we let χi denote the H-eigencharacter on σN0
i = σI1

i . We also define
for i ∈ {1, . . . , n}:

si
def
=
∑

j∈Jmax(σi)

s
(i+1)
j if n > 1,

s1
def
= p− 1 if n = 1.

The following lemma will be useful later.

Lemma 3.51. We have
∑n

i=1 si ≡ 0 (mod p− 1).

Proof. Let s(χi) ∈ {0, . . . , q − 1} such that χi+1 = χiα
−s(χi) and denote by

|s(χi)| ∈ {0, . . . , (p − 1)f} the sum of the digits of s(χi) in its p-expansion. Then
it follows from (3.53) below that we have

α
∑

j∈Jmax(σi)
s
(i+1)
j pj+

∑
j /∈Jmax(σi)

(p−1)pj

χi = χi+1

and so

(3.47) s(χi) =
∑

j∈Jmax(σi)

(p− 1− s
(i+1)
j )pj

which implies |s(χi)| = (p − 1)m − si. As χn+1 = χ1 = χ1α
−

∑n
i=1 s(χi), we have∑n

i=1 s(χi) ≡ 0 (mod q − 1), hence
∑n

i=1 |s(χi)| ≡ 0 (mod p − 1) and the result
follows. �

Recall π is as at the end of §3.2.1. In [Bre11, §4] there is defined an F-linear
isomorphism

(3.48) S : (socGL2(OK) π)
I1 ∼−→ (socGL2(OK) π)

I1 .

Fixing an embedding σ ↪→ socGL2(OK) π, for i ∈ {2, . . . , n} there are unique embed-
dings σi ↪→ socGL2(OK) π such that the morphism S cyclically permutes the lines

σI1
i . In particular there exists ν ∈ F× (which depends on σ but not on the fixed

embedding σ ↪→ socGL2(OK) π) such that Sn|
σ
I1
i

is the multiplication by ν for all

i ∈ {1, . . . , n}. We define μi ∈ F× for 1 ≤ i ≤ n by μ1
def
= ν if n = 1 and if n > 1:

μi
def
=

⎧⎨⎩
(∏

1≤i′≤n

∏
j∈Jmax(σi′ )

(p− 1− s
(i′+1)
j )!

)−1

ν if i = n,

1 otherwise.

We let Mσ be the F�X�[F ]-submodule of πN1 , or equivalently the F�Y �[F ]-

submodule, generated by Y 1−mσN0
i = Y 1−mσI1

i for 1 ≤ i ≤ n. Recall γ ∈ Z×
p acts

on Mσ ⊗ χ−1
π by the action of

( 1 0
0 γ−1

)
(see the end of §3.2.1).
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Proposition 3.52. The module Mσ⊗χ−1
π is admissible as an F�X�-module (see

§2.1.1), Z×
p -stable, and such that (Mσ⊗χ−1

π )∨ is free of rank n as an F�X�-module.

Moreover the étale (ϕ,Γ)-module (Mσ⊗χ−1
π )∨[1/X] admits a basis (e1, . . . , en) over

F�X�[1/X] such that for i ∈ {1, . . . , n} (with en+1
def
= e1):

ϕ(ei) = μ−1
i Xsiei+1,(3.49)

γ(ei) ∈ χi

((
1 0
0 γ

))
γm(1 +XF�X�)ei for all γ ∈ Z×

p ,(3.50)

where γ is the image of γ ∈ Z×
p in F. Moreover γ(ei) is uniquely determined by

(3.49) and (3.50).

To prepare for the proof, fix x1 ∈ σN0
1 \ {0} and define for 1 ≤ i ≤ n− 1:

xi+1
def
= (−1)f−1

∏
j∈Jmax(σi)

Y
s
(i+1)
j

j

∏
j /∈Jmax(σi)

Y p−1
j

(
p 0
0 1

)
xi ∈ σN0

i+1 \ {0}

and xn+1
def
= x1 (note that this formula is (3.35) multiplied by (−1)f−1).

Lemma 3.53. For i ∈ {1, . . . , n} we have

(3.51) S(xi) =
( ∏
j∈Jmax(σi)

(p− 1− s
(i+1)
j )!

)
μixi+1

and

(3.52) Y siF (Y 1−mxi) = μiY
1−mxi+1.

Proof. If i ∈ {1, . . . , n} we have

(3.53) (−1)f−1
∏

j∈Jmax(σi)

Y
s
(i+1)
j

j

∏
j /∈Jmax(σi)

Y p−1
j

(
p 0
0 1

)
xi

=
( ∏

j∈Jmax(σi)

(p− 1− s
(i+1)
j )!

)−1

θ ∑
Jmax(σi)

(p−1−s
(i+1)
j )pj

(
p 0
0 1

)
xi

=
( ∏

j∈Jmax(σi)

(p− 1− s
(i+1)
j )!

)−1

S(xi),

where the first equality follows from Lemma 3.41(i) and the second from the defini-
tion of the function S in [Bre11, §4]. From the definition of xi+1, we obtain (3.51)
for i < n. For i = n, using inductively

xi+1 =
( ∏

j∈Jmax(σi)

(p− 1− s
(i+1)
j )!

)−1

S(xi)

for i = n− 1, i = n− 2 till i = 1 we obtain (as S is F-linear):

S(xn) =
( ∏

j∈Jmax(σn−1)

(p− 1− s
(n)
j )!
)−1

S2(xn−1)

= · · ·

=
( ∏

1≤i≤n−1

∏
j∈Jmax(σi)

(p− 1− s
(i+1)
j )!

)−1

Sn(x1).

Since Sn(x1) = νx1 and from the definition of μn, we get (3.51) for i = n. The last
part follows from Proposition 3.46 combined with (3.53) and (3.51). �
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The following lemma is stated with the variable Y , but remains the same with
the variable X.

Lemma 3.54. Suppose M is a torsion F�Y �-module. Let Σ ⊆ M be a subset

spanning M as an F-vector space and set Σ̃
def
=
⋃

v∈Σ F×v. If

(i) Y Σ ⊆ Σ̃ ∪ {0};
(ii) FY v1 = FY v2 �= 0 =⇒ v1 = v2 for v1, v2 ∈ Σ;
(iii) Σ ∩M [Y ] is a finite set of F-linearly independent vectors,

then Σ is an F-basis of M and M is an admissible F�Y �-module. If moreover

Y Σ̃ = Σ̃ ∪ {0}, then M∨ is a finite free F�Y �-module of rank dimF M [Y ].

Proof. Write Σ ∩ M [Y ] = {v1, . . . , vd} (assuming Σ ∩ M [Y ] �= ∅ otherwise

M = 0 and there is nothing to prove). For � ∈ {1, . . . , d} let Σ�
def
= {v ∈ Σ :

Y jv ∈ F×v� for some j ≥ 0}. Then M�
def
= ⊕v∈Σ�

Fv is an F�Y �-module using (i). If
v, v′ ∈ Σ�, then using (ii) there is j ≥ 0 such that either Fv = FY jv′, or Fv′ = FY jv,
from which one easily deduces M�[Y ] = Fv�, in particular M� is admissible. Since

Σ spans M over F and Σ =
∐n

�=1 Σ�, the natural map f :
⊕d

�=1M� → M is
surjective, and thus M is also admissible. Since

⊕
� M�[Y ] =

⊕
� Fv� ↪→ M [Y ] (the

last injection following from (iii)), we deduce that Ker(f)[Y ] = 0, hence Ker(f) = 0
and f is an isomorphism. This proves the first part of the statement. It follows

from Y Σ̃ = Σ̃ ∪ {0} that the multiplication by Y is surjective on each M�, i.e.

we have exact sequences 0 → Fv� → M�
Y→ M� → 0. Dualizing, this gives 0 →

M∨
�

Y→ M∨
� → (Fv�)∨ → 0, which shows M∨

� is free of rank 1 over F�Y �. The last
statement follows. �

Recall that Mσ is the F�Y �[F ]-submodule of πN1 generated by Y 1−mxi for
1 ≤ i ≤ n. Let

Σ
def
=

{
Y jF k(Y 1−mxi) : 1 ≤ i ≤ n, k ≥ 0, 0 ≤ j < pk−1si if k ≥ 1

0 ≤ j < m if k = 0

}
.

We now check that Mσ and Σ satisfy all the assumptions in Lemma 3.54. Define
for � ∈ Z≥1:

Σ�
def
=
{
Y jF k(Y 1−mxi) ∈ Σ : k + i ≡ � (mod n)

}
and M�,σ

def
=
⊕

v∈Σ�
Fv. We have Σ =

∐n
�=1Σ�. Applying F k−1 to (3.52) for k ≥ 1

we get (recall that F ◦ Y = Y p ◦ F on πN1):

(3.54) Y pk−1siF k(Y 1−mxi) ∈ F×F k−1(Y 1−mxi+1),

hence Σ spans Mσ and condition (i) of Lemma 3.54 holds for Σ. Using (3.54) we

also see that the multiplication by Y induces an injection Σ� ↪→ Σ̃� ∪ {0} and that

Y Σ̃� = Σ̃� ∪ {0}, hence M�,σ is an F �Y �-submodule of Mσ and condition (ii) of

Lemma 3.54 holds for Σ� and Σ. Moreover, Y Σ̃ = Σ̃ ∪ {0}. Finally, Σ ∩Mσ[Y ] =
{x1, . . . , xn} (and Σ∩M�,σ[Y ] = x�). By Lemma 3.54 and its proof, we deduce that
Σ is an F-basis of Mσ, that Mσ =

⊕n
�=1 M�,σ and that each M∨

�,σ is free of rank 1

over F �Y �. In fact one can visualize the “Y -divisible line” Mi+1,σ as follows using
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(3.52):

Fxi+1
Y m−1

←− FY 1−mxi+1
Y si←− FF (Y 1−mxi)

Y psi−1

←− FF 2(Y 1−mxi−1)

Y p2si−2

←− FF 3(Y 1−mxi−2) ←− · · · ,

where Fxi+1 = Mi+1,σ[Y ] and the arrows mean “multiplication by the power of Y

just above”. In particular we see that if d(v)
def
= min{j ≥ 1 : Y jv = 0} for v ∈ Σ,

then v ∈ Σi+1 is contained in F (Σ̃) if and only if d(v) ≡ si +m (mod p).
Define a basis f1, . . . , fn of the free F �Y �-module M∨

σ by

fi(xi)
def
= 1 and fi(Σ \ {xi}) def

= 0, i ∈ {1, . . . , n}.

From what is above we then easily deduce the following formula, where F (f)(v)
def
=

f(F (v)) for f ∈ M∨
σ and v ∈ Mσ (and using conventions as in §2.1.1):

(3.55) F (Y �+(si+m−1)fi+1) =

{
μiY

m−1fi if � = 0,

0 if 1 ≤ � ≤ p− 1.

Lemma 3.55. The module Mσ ⊗ χ−1
π is Z×

p -stable, hence Z×
p acts on (Mσ ⊗

χ−1
π )∨. Moreover we have for γ ∈ Z×

p (recall γ(f)(v) = f
((

1 0
0 γ

)
v
)
for f ∈ (Mσ ⊗

χ−1
π )∨, v ∈ Mσ):

γ(fi) ∈ χi

((
1 0
0 γ

))
(1 + Y F�Y �)fi

for 1 ≤ i ≤ n.

Proof. As Mσ =
⊕n

i=1 F�Y �[F ]Y 1−mxi and Y 1−mxi is a Z×
p -eigenvector by

Lemma 3.42(iii) we deduce that Mσ, and hence Mσ ⊗ χ−1
π , are Z×

p -stable.
From γ◦X = ((1+X)γ−1)◦γ and Lemma 3.38 it is easy to deduce that γ◦Y =

fγ(Y ) ◦ γ for some fγ(Y ) ∈ γY + Y 2F�Y �, hence Z×
p preserves the decomposition

of F�Y �-modules Mσ ⊗ χ−1
π =

⊕n
i=1 Mi,σ ⊗ χ−1

π . In particular, γ(fi) annihilates

Mi′,σ ⊗ χ−1
π for all i′ �= i. Let Y −jxi for j ≥ 0 denote the unique element of Σ̃i

such that Y j(Y −jxi) = xi (this is compatible with our previous notation in Lemma
3.42(iii)). Then

γ(fi) =
∑
j≥0

(γ(fi)(Y
−jxi))Y

jfi ∈ χi

((
1 0
0 γ

))
(1 + Y F�Y �)fi. �

Proof of Proposition 3.52. We have already seen above that Mσ ⊗ χ−1
π is

admissible, Z×
p -stable, and that (Mσ ⊗ χ−1

π )∨ is free of rank n as an F�N0/N1�-
module. To find the basis (ei)i, first note from Lemma 3.38 and (3.55) that (using
F ◦ Y p = Y ◦ F on (Mσ ⊗ χ−1

π )∨):

F (Xsi+m−1fi+1) = F
(∑
j≥0

cjY
si+m−1+jfi+1

)
= μi

∑
j≥0

cjpY
m−1+jfi

∈ (−1)siμi(1 +XF�X�)Xm−1fi(3.56)

for some cj ∈ F with c0 = (−1)si+m−1. Similarly for � ∈ {1, . . . , p− 1}:

(3.57) F
(
Xsi+m−1+�fi+1

)
∈ F�X�Xmfi.
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It easily follows from (2.6) that

(3.58)

p−1∑
�=0

(1 +X)−�ϕ
(
F ((1 +X)�f)

)
= f

for all f ∈ (Mσ⊗χ−1
π )∨[1/X]. Let f

def
= Xsi+m−1fi+1, by (3.56) and (3.57) we have

for � ∈ {0, . . . , p− 1}:
F ((1 +X)�f) ∈ (−1)siμi(1 +XF�X�)Xm−1fi,

and so
ϕ
(
F ((1 +X)�f)

)
∈ (−1)siμi(1 +XpF�X�)ϕ(Xm−1fi).

Using
p−1∑
�=0

(1 +X)−� =
( X

1 +X

)p−1

≡ Xp−1 (mod Xp),

we see that (3.58) applied to f = Xsi+m−1fi+1 becomes

(−1)siμiX
p−1ϕ(Xm−1fi) ∈ (1 +XF�X�)Xsi+m−1fi+1

or equivalently in (Mσ ⊗ χ−1
π )∨[1/X]:

(3.59) ϕ(Xmfi) = (−1)siμ−1
i gi(X)Xsi+mfi+1

for some gi(X) ∈ 1 +XF�X�.

Let ei
def
= (−1)

∑i−1
j=1 sjhi(X)Xmfi for some hi(X) ∈ 1 +XF�X� and note that

the sign doesn’t change if i is replaced by i + n by Lemma 3.51. Then (3.49) is
equivalent to

hi(X
p)ϕ(Xmfi) = (−1)siμ−1

i hi+1(X)XsiXmfi+1,

or equivalently hi(X
p)gi(X) = hi+1(X) by (3.59). This system has the unique

solution

hi(X) =

∞∏
j=1

gi−j(X
pj−1

)

in 1+XF�X�, where the indices are considered modulo n. Then (3.50) follows from
Lemma 3.55. The final uniqueness assertion follows from γ ◦ ϕ = ϕ ◦ γ and is left
as an exercise (similar to [Bre11, Lemma 4.5]). �

Let O(π) (resp. O(ρ)) be a set of representatives for the orbits of δ on the set
of Serre weights in socGL2(OK) π counted with their multiplicity r (resp. on the set

W (ρ)). We define Mπ
def
=
⊕

σ∈O(π) Mσ (with Mσ as above). It follows from the

assumptions on π that we have

Mπ
∼=
⊕

σ∈O(ρ)

M⊕r
σ .

In particular (Mπ ⊗ χ−1
π )∨[1/X] is an étale (ϕ,Γ)-module over F((X)) of rank

r|W (ρ)| = r2f . From the description of Mσ[X], we also see that the natural
map Mπ → πN1 of torsion F �X�-modules is injective as the following composition
is injective:

Mπ[X] ∼= ⊕σI1 ↪→ πI1 ⊆ πN1 [X],

where the direct sum is over all Serre weights σ in socGL2(OK) π (counting their
multiplicity r).
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Proposition 3.56. We have an isomorphism of representations of
Gal(Qp/Qp) over F:

V((Mπ ⊗ χ−1
π )∨[1/X]) ∼=

(
ind

⊗Qp

K (ρ)
)⊕r

.

Proof. We are going to use a computation of [Bre11, §4]. Associated to the

diagram D
def
= D(ρ)⊕r of §3.2.1, there is defined in loc.cit. an étale (ϕ,Γ)-module

over F((X)) denoted thereM(D) and which is of the formM(D) = ⊕σ∈O(π)M(D)σ
1,

where M(D)σ is a rank n étale (ϕ,Γ)-module over F((X)) associated to the or-
bit of σ, i.e. to the cycle σ = σ1, . . . , σn as above (so in fact one has M(D) =
⊕σ∈O(ρ)M(D)⊕r

σ ).

Let N
def
= F((X))e be the rank 1 étale (ϕ,Γ)-module over F((X)) defined by

ϕ(e) = X−(p−1)
∑

j(rj+1)e,

γ(e) =

(
γX

(1 +X)γ − 1

)∑
j(rj+1)

e.

We have V(N) ∼= ω
∑

j(rj+1) = ind
⊗Qp

K (det ρ) (using ind
⊗Qp

K (ωf ) ∼= ω) by [Bre11,
Prop.3.5] and

V(M(D)) ∼=
(
ind

⊗Qp

K (ρ⊗ (det ρ)−1)
)⊕r ∼=

(
ind

⊗Qp

K (ρ)⊗ ind
⊗Qp

K (det ρ−1)
)⊕r

by [Bre11, Thm.6.4]. We therefore deduce

V(M(D)⊗F((X)) N) ∼=
(
ind

⊗Qp

K (ρ)
)⊕r

.

Therefore it suffices to show that M(D)σ ⊗F((X)) N ∼= M∨
σ [1/X] for each σ ∈ O(π),

or equivalently each σ ∈ O(ρ).

Let x∨
1 , . . . , x

∨
n ∈ (
⊕n

i=1 σ
I1
i )∨ be the dual basis of the F-basis (xi)i of

⊕n
i=1 σ

I1
i ,

it follows from its definition in [Bre11, §4] and from (3.47) that M(D)σ has basis
x∨
1 , . . . , x

∨
n as F((X))-module with

ϕ(x∨
i ) = Xsi+(p−1)(f−m)

( ∏
j∈Jmax(σi)

(p− 1− s
(i+1)
j )!

)
(x∨

i ◦ S|−1

⊕σ
I1
i

),

where S−1 is the inverse of the bijection S of (3.48) (which preserves
⊕n

i=1 σ
I1
i ).

By (3.51) we have

x∨
i ◦ S|−1

⊕σ
I1
i

=

( ∏
Jmax(σi)

(p− 1− s
(i+1)
j )!

)−1

μ−1
i x∨

i+1,

so we obtain
ϕ(x∨

i ) = μ−1
i Xsi+(p−1)(f−m)x∨

i+1.

Also we have for γ ∈ Z×
p (using the hypothesis on the central character of π):

x∨
i ◦
(
γ−1 0
0 1

)
= γ−

∑
j rj
(
x∨
i ◦
(
1 0
0 γ

))
= γ−

∑
j rjχi

((
1 0
0 γ

))
x∨
i ,

hence with the definition of γ(x∨
i ) given in [Bre11, Lemma 4.5]:

γ(x∨
i ) ∈ χi

((
1 0
0 γ

))
γ−

∑
j rj (1 +XF�X�)x∨

i .

1A more consistent notation with the ones of this article would have been M(D)∨ and
M(D)∨σ . . .
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We deduce that M(D)σ ⊗F((X)) N ∼=
⊕n

i=1 F�X�(x∨
i ⊗ e) with

ϕ(x∨
i ⊗ e) = μ−1

i Xsi−(p−1)(m+
∑

j rj)(x∨
i+1 ⊗ e),

γ(x∨
i ⊗ e) ∈ χi

((
1 0
0 γ

))
γ−

∑
j rj (1 +XF�X�)(x∨

i ⊗ e).

Now, let e′i
def
= Xm+

∑
j rj (x∨

i ⊗e) for all i. Then e′1, . . . , e
′
n is a basis ofM(D)σ⊗F((X))

N and we have for i ∈ {1, . . . , n} (with e′n+1
def
= e′1):

ϕ(e′i) = μ−1
i Xsie′i+1,

γ(e′i) ∈ χi

((
1 0
0 γ

))
γm(1 +XF�X�)e′i.

From Proposition 3.52 we see that M(D)σ ⊗F((X)) N ∼= M∨
σ [1/X]. �

By Lemma 3.36 this completes the proof of Theorem 3.35 when the constants νi
are as in [Bre11, Thm.6.4]. When they are arbitrary, the proof of Proposition 3.56

gives V((Mπ ⊗ χ−1
π )∨[1/X])|IQp

∼=
(
ind

⊗Qp

K (ρ)
)
|⊕r
IQp

using [Bre11, Cor.5.4], which

finishes the proof of Theorem 3.35.

3.3. On the structure of some representations of GL2(K)

We prove results on the structure of an admissible smooth representation π of
GL2(K) over F associated to a semisimple sufficiently generic representation ρ of
Gal(Qp/K) as in [BP12] when π satisfies a further multiplicity one assumption as
in [BHH+23] and a self-duality property. In particular we prove that such a π is
irreducible if and only if ρ is, and is semisimple when f = 2 (Corollary 3.92 and
Corollary 3.90).

We keep the notation at the beginning of §§3, 3.1, and set Λ
def
= F�I1/Z1�. We

recall that the graded ring gr(Λ) is isomorphic to ⊗f−1
i=0 F[yi, zi, hi] with hi lying in

the center (see (3.17)). We set

R
def
= gr(Λ)/(h0, . . . , hf−1),

which is commutative and isomorphic to F[yi, zi, 0 ≤ i ≤ f−1], and recall that R =
R/(yizi, 0 ≤ i ≤ f−1) = gr(Λ)/J (see (3.22)). Moreover the finite torusH naturally
acts on Λ by the conjugation on I1 (via its Teichmüller lift) and we see (using
(3.1)) that the induced action on gr(Λ) is trivial on hi and is the multiplication

by the character αi (resp. α
−1
i ) on yi (resp. zi), where αi

((
λ 0
0 μ

)) def
= σi(λμ

−1) for(
λ 0
0 μ

)
∈ H.

Notice that gr(Λ) is an Auslander regular ring (see [LvO96, Def.III.2.1.7],
[LvO96, Def.III.2.1.3]) by the first statement in [BHH+23, Thm.5.3.4] and so
is Λ itself by [LvO96, Thm.III.2.2.5]. This allows us to apply (many) results of
[LvO96, §III.2].

For any ring S and any S-module M , we set Ei
S(M)

def
= ExtiS(M,S) for i ≥ 0.

This is a right S-module. If S = Λ or S = gr(Λ), we can and will use the anti-
involution g �→ g−1 on I/Z1 to consider any right S-module (with compatible
H-action or not) as a left S-module.
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128 3. THE CASE OF GL2(QPF )

3.3.1. Combinatorial results. We define some explicit ideals a(λ) of R and
study some of their properties.

We fix a continuous representation ρ : Gal(Qp/K) → GL2(F) which is generic
in the sense of [BP12, §11] and let D0(ρ) be the representation of GL2(Fq) over
F defined in [BP12, §13] (see also §3.2.1 when ρ is semisimple). Recall from
[BP12, Cor.13.6] that D0(ρ)

I1 is multiplicity-free as a representation of H ∼= I/I1.
By [Bre14, §4], there is a bijection between the characters of H appearing in
D0(ρ)

I1 and a certain set of f -tuples, denoted by

PI D(x0, . . . , xf−1), resp. PRD(x0, . . . , xf−1), resp. PD(x0, . . . , xf−1),

if ρ is irreducible, resp. reducible split, resp. reducible nonsplit. We refer to
[Bre14, §4] for the precise definition of these sets and we simply write P for
the set associated to ρ. We write χλ for the character of H associated to λ ∈ P
(more precisely, in loc.cit. one rather associates a Serre weight σλ to λ, and χλ

is the action of H = I/I1 on the 1-dimensional subspace σI1
λ , different σλ giving

different χλ).
On the other hand, the set W (ρ) is in bijection with another set of f -tuples,

denoted by (see [BP12, §11])

I D(x0, . . . , xf−1), resp. RD(x0, . . . , xf−1), resp. D(x0, . . . , xf−1),

depending on ρ as above. We simply write D for the set associated to ρ. Since the
socle of D0(ρ) is ⊕σ∈W (ρ)σ, we may view D as a subset of P. For example, if ρ is
reducible split, then D is the subset of P consisting of λ such that

λj(xj) ∈ {xj , xj + 1, p− 2− xj , p− 3− xj},

while if ρ is nonsplit, then we require moreover that λj(xj) ∈ {xj + 1, p− 3 − xj}
implies j ∈ Jρ, where Jρ is a certain subset of {0, . . . , f − 1} uniquely determined
by the Fontaine–Laffaille module of ρ (cf. [Bre14, (17)]).

Definition 3.57. We associate to λ ∈ P an ideal a(λ) of R as follows.

• If ρ is irreducible, then a(λ) = (t0, . . . , tf−1), where

t0
def
=

⎧⎪⎨⎪⎩
z0 if λ0(x0) ∈ {x0 − 1, p− 2− x0}
y0 if λ0(x0) ∈ {x0 + 1, p− x0}
y0z0 if λ0(x0) ∈ {x0, p− 1− x0},

and if j �= 0

tj
def
=

⎧⎪⎨⎪⎩
zj if λj(xj) ∈ {xj , p− 3− xj}
yj if λj(xj) ∈ {xj + 2, p− 1− xj}
yjzj if λj(xj) ∈ {xj + 1, p− 2− xj}.

• If ρ is reducible nonsplit, then a(λ) = (t0, . . . , tf−1), where

tj
def
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
zj if λj(xj) ∈ {xj , p− 3− xj} and j ∈ Jρ

yj if λj(xj) ∈ {xj + 2, p− 1− xj} and j ∈ Jρ

yjzj if λj(xj) ∈ {xj , p− 1− xj} and j /∈ Jρ

yjzj if λj(xj) ∈ {xj + 1, p− 2− xj}.
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• If ρ is reducible split, then a(λ) = (t0, . . . , tf−1) is defined as in the
nonsplit case by letting Jρ = {0, . . . , f − 1}, namely

tj
def
=

⎧⎪⎨⎪⎩
zj if λj(xj) ∈ {xj , p− 3− xj}
yj if λj(xj) ∈ {xj + 2, p− 1− xj}
yjzj if λj(xj) ∈ {xj + 1, p− 2− xj}.

In particular, if ρ is reducible nonsplit and Jρ = ∅, then a(λ) = (y0z0, . . . ,

yf−1zf−1) for any λ ∈ P. Note that R/a(λ) is always a quotient of R.

Remark 3.58. Under the hypothesis that ρ is 2-generic, an equivalent form of
Definition 3.57 is as follows (compare the proof of Theorem 3.67). Given λ ∈ P,
tj = yj (resp. tj = zj) if and only if the character χλα

−1
j (resp. χλαj) occurs in

D0(ρ)
I1 (i.e. has the form χλ′ for some λ′ ∈ P), and tj = yjzj if and only if neither

of χλα
±1
j occurs in D0(ρ)

I1 .

Lemma 3.59. Let λ ∈ P.

(i) Assume ρ is semisimple. Then λ ∈ D if and only if yj /∈ a(λ) for any
j ∈ {0, . . . , f − 1}.

(ii) Assume ρ is reducible nonsplit and let ρss be the semisimplification of ρ.
Then there is a bijection between D(ρss) (defined as the set D associated
to ρss) and the set of λ ∈ P such that yj /∈ a(λ) for any j ∈ {0, . . . , f−1}.

Proof.

(i) It is clear by definition of D and a(λ).

(ii) Let λ ∈ P such that yj /∈ a(λ) for any j ∈ {0, . . . , f − 1}. By definition,
we have (for ρ reducible nonsplit)

λj(xj) ∈ {xj , xj + 1, p− 1− xj , p− 2− xj , p− 3− xj}

and from the definition of a(λ) if λj(xj) = p − 1 − xj then j /∈ Jρ (note that if
λj(xj) = p− 3− xj then it is automatic that j ∈ Jρ). We define an f -tuple μ by

μj(xj)
def
=

{
p− 3− xj if λj(xj) = p− 1− xj

λj(xj) otherwise.

It is then easy to see that μ is an element of D(ρss) and that any element of D(ρss)
arises (uniquely) in this way.

�

Corollary 3.60. The set {λ ∈ P : yj /∈ a(λ) ∀ j ∈ {0, . . . , f − 1}} has
cardinality 2f .

Proof. This is a direct consequence of Lemma 3.59 and of |W (ρss)| = 2f . �

Given λ ∈ P, write a(λ) = (t0, . . . , tf−1) as in Definition 3.57 and define

(3.60) A(λ)
def
= {j ∈ {0, . . . , f − 1} : tj = yjzj} ⊆ {0, . . . , f − 1}.

The following proposition will only be used in Corollary 3.71 below.

Proposition 3.61. We have
∑

λ∈P 2|A(λ)| = 4f .
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Proof. We will only give the proof in the case ρ is reducible (split or not),
the irreducible case can be treated similarly.

First assume that ρ is split. Given λ ∈ P, we define an element λ ∈ D as
follows:

λj(xj)
def
=

⎧⎪⎨⎪⎩
xj if λj(xj) ∈ {xj , xj + 2}
p− 3− xj if λj(xj) ∈ {p− 1− xj , p− 3− xj}
λj(xj) otherwise.

It is easy to see that λ ∈ D . By definition of P (see [Bre14, §4] and recall

P = PRD(x0, . . . , xf−1)), for each λ ∈ D , there are exactly 2|{0,...,f−1}\A(λ)|

elements λ in P giving rise to λ under the above rule. Moreover, it is direct from
the definitions that A(λ) = A(λ). Hence∑

λ∈P

2|A(λ)| =
∑
λ∈D

(2f−|A(λ)|2|A(λ)|) = 2f |D | = 2f2f = 4f .

Now assume that ρ is nonsplit. Let P be the subset of P considered in the
proof of Lemma 3.59(ii), namely λ ∈ P if and only if

λj(xj) ∈ {xj , xj + 1, p− 1− xj , p− 2− xj , p− 3− xj}

and λj(xj) = p − 1 − xj implies j /∈ Jρ. By the proof of loc.cit., we have |P | =
|D(ρss)| = 2f . Given λ ∈ P, we define an element λ ∈ P as follows:

λj(xj)
def
=

⎧⎪⎨⎪⎩
xj if λj(xj) ∈ {xj , xj + 2}
p− 3− xj if λj(xj) = p− 3− xj or (λj(xj)=p− 1− xj and j ∈ Jρ)

λj(xj) otherwise.

As in the split case it is easy to see that A(λ) = A(λ) and that given λ ∈ P, there

exist exactly 2|{0,...,f−1}\A(λ)| elements λ in P giving rise to λ. The result follows
as in the split case. �

Definition 3.62. Given λ ∈ P, we define another f -tuple λ∗ as follows:

λ∗
j (xj)

def
=

⎧⎪⎨⎪⎩
p− 3− λj(xj) if tj = zj

p+ 1− λj(xj) if tj = yj

p− 1− λj(xj) if tj = yjzj .

If λ ∈ D , we define its “length” �(λ) to be (see [BP12, §4]):

(3.61) �(λ)
def
= |{j ∈ {0, . . . , f − 1} : λj(xj) ∈ {p− 2− xj ± 1, xj ± 1}}|.

Lemma 3.63. Let λ ∈ P.

(i) We have λ∗ ∈ P and a(λ) = a(λ∗).
(ii) Assume that ρ is semisimple. Then λ ∈ D if and only if λ∗ ∈ D , and in

this case �(λ∗) = f − �(λ).

Proof.

(i) The first statement can be checked directly using the definition of P and
the second one is obvious from the definitions.
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(ii) The first statement follows from (i) and Lemma 3.59(i). By definition of
D (see [BP12, §11]), �(λ) can be computed as the cardinality of the following set:{

j ∈ {0, . . . , f − 1} : λj(xj) ∈ {p− 1− xj , p− 2− xj , p− 3− xj}
}
.

For example, when ρ is reducible split, we have (cf. the beginning of [BP12, §11])

λj(xj) ∈ {p− 2− xj , p− 3− xj} ⇐⇒ λj+1(xj+1) ∈ {p− 3− xj+1, xj+1 + 1}.

The second statement of (ii) follows from this and Definition 3.62.

�

Lemma 3.64. Let λ ∈ P, χλ the character of H associated to λ, (t0, . . . ,
tf−1) the ideal a(λ) in Definition 3.57 and ηλ be the character of H acting on∏f−1

j=0 tj. Then we have

χλχλ∗ = ηλ(η ◦ det),

where λ∗ is as in Definition 3.62 and η(a)
def
= χλ

((
a 0
0 a

))
for a ∈ F×

q (η does not
depend on λ ∈ P).

Proof. This is an easy computation, but we give some details. Note that
λj(xj) + λ∗

j (xj) = (p− 1) + 2εj , where εj equals 1, 0 or −1 if tj equals yj , yjzj or
zj respectively. Moreover, in the notation of [Bre14, §4], we have

e(λ) + e(λ∗) =
1

2

(
pf − 1 +

f−1∑
j=0

pj(xj − λj(xj) + xj − λ∗
j (xj))

)

=

f−1∑
j=0

pj(xj − εj).

The conclusion follows now from a simple computation, noting that for
(
a 0
0 b

)
∈ H

χλ

((
a 0
0 b

))
= σ0(a)

(∑f−1
j=0 pjλj(rj)

)
+e(λ)(r0,...,rf−1)σ0(b)

e(λ)(r0,...,rf−1)

(see [Bre14, §4]) and that H acts on yi (resp. zi) via αi (resp. α
−1
i ). �

Note thatH acts on I1/Z1 by conjugation and hence on Λ and gr(Λ), preserving
the filtration and the graded pieces on the former and the latter respectively. This
induces H-actions also on R, R, and R/a(λ) for any λ ∈ P. We say that a gr(Λ)-
module M has a compatible H-action if it has an H-action such that h(rm) =
h(r)h(m) for all h ∈ H, r ∈ gr(Λ), and m ∈ M . In this case Ei

gr(Λ)(M) is again a

gr(Λ)-module with compatible H-action for any i ≥ 0.

Lemma 3.65. If M is a gr(Λ)-module with compatible H-action that is annihi-
lated by (h0, . . . , hf−1), then we have isomorphisms of gr(Λ)-modules with compat-
ible H-action for i ≥ 0:

(3.62) Ei+f
gr(Λ)(M) ∼= Ei

R(M).

If moreover M is annihilated by J , then we have isomorphisms of gr(Λ)-modules
with compatible H-action for i ≥ 0:

(3.63) Ei+2f
gr(Λ)(M) ∼= Ei+f

R (M) ∼= Ei
R
(M).
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Proof. Since (h0, . . . , hf−1) is a regular sequence of central elements in gr(Λ)
and (y0z0, . . . , yf−1zf−1) is a regular sequence in R (which is commutative), the
isomorphisms (3.62) and (3.63) as gr(Λ)-modules are proved as in the proof of
[BHH+23, Lemma 5.1.3]. Moreover, H acts trivially on hj and yjzj (for 0 ≤
j ≤ f − 1), so the isomorphisms are also H-equivariant, from which the results
follow. �

We don’t use the following proposition in the sequel, but it is consistent with
Remark 3.72(i) and the essential self-duality assumption (iii) in §3.3.5 below (see
Proposition 3.84).

Proposition 3.66. For λ ∈ P there is an isomorphism of gr(Λ)-modules with
compatible H-action:

E2f
gr(Λ)

(
χ−1
λ ⊗R/a(λ)

) ∼= (χ−1
λ∗ ⊗R/a(λ)

)
⊗ η ◦ det .

Proof. Applying (3.63) with i = 0 and M = χ−1
λ ⊗ R/a(λ), we are left to

prove

HomR(χ
−1
λ ⊗R/a(λ), R) ∼=

(
χ−1
λ∗ ⊗R/a(λ)

)
⊗ η ◦ det .

Using Lemma 3.64, it suffices to construct an isomorphism of gr(Λ)-modules with
compatible H-action

(3.64) HomR(R/a(λ), R) ∼= η−1
λ ⊗R/a(λ),

where ηλ is the character of H acting on
∏f−1

j=0 tj if we write a(λ) = (t0, . . . , tf−1)

with tj ∈ {yj , zj , yjzj}. Put t′
def
=
∏f−1

j=0 (yjzj/tj). One easily checks that t′R =

R[a(λ)] and there is an isomorphism of R-modules

θ : η−1
λ ⊗R/a(λ)

∼−→ t′R,

where the first map sends 1 to t′. As H acts on t′ via η−1
λ , θ is also H-equivariant.

The isomorphism (3.64) is then obtained by sending r ∈ η−1
λ ⊗ R/a(λ) to φ ∈

HomR(R/a(λ), R) such that φ(1)
def
= θ(r). �

3.3.2. On the structure of gr(π∨). We give a partial result on the struc-
ture of gr(π∨) for certain admissible smooth representations π of GL2(K) over F
associated to ρ when gr(π∨) comes from the mI1/Z1

-adic filtration on π∨.
We let ρ be as in §3.3.1 (in particular ρ is not necessarily semisimple) and keep

the notation of loc.cit. As in §3.2.1 when ρ is semisimple, we consider D0(ρ) as a
representation of GL2(OK)K×, where GL2(OK) acts via its quotient GL2(Fq) and
the center K× acts by the character det(ρ)ω−1. We now write m for mI1/Z1

.
We consider an admissible smooth representation π of GL2(K) over F satisfying

the following two conditions:

(i) there is r≥1 such that πK1 ∼=D0(ρ)
⊕r as a representation of GL2(OK)K×

and π has central character det(ρ)ω−1.
(ii) for any λ ∈ P, we have an equality of multiplicities

[π[m3] : χλ] = [π[m] : χλ].

Note that (ii) implies that the gr(Λ)-module gr(π∨) (defined with the m-adic fil-
tration on π∨) is annihilated by the ideal J in (3.18) by the proof of [BHH+23,
Cor.5.3.5], and in particular is an R-module.
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Theorem 3.67. For π as above, there is a surjection of gr(Λ)-modules with
compatible H-action

(3.65)
( ⊕
λ∈P

χ−1
λ ⊗R/a(λ)

)⊕r � gr(π∨),

where a(λ) is as in Definition 3.57.

Proof. Consider the gr(Λ)-module with compatible H-action:

M
def
=
( ⊕
λ∈P

χ−1
λ ⊗R/a(λ)

)⊕r
.

Since there is a bijection λ �→ χλ between P and the characters of H on D0(ρ)
I1

(see §3.3.1), we can choose a basis of πI1 over F, say {vλ,k : λ ∈ P, 1 ≤ k ≤
r}, such that each vλ,k is an eigenvector for I of character χλ. We denote by
{eλ,k : λ ∈ P, 1 ≤ k ≤ r} the basis of gr0(π∨) over F which is the dual basis
of {vλ,k}, and note that {eλ,k} generates the gr(Λ)-module gr(π∨). To prove that
there exists a surjective morphism M � gr(π∨) it suffices to prove that, for any
λ ∈ P and any k ∈ {1, . . . , r}, the vector eλ,k is annihilated by the ideal a(λ) of
R = gr(Λ)/(h0, . . . , hf−1). Writing a(λ) = (t0, . . . , tf−1) as in Definition 3.57, we
already see that if tj = yjzj , then tj kills all the eλ,k since gr(π∨) is annihilated by
J .

Let j ∈ {0, . . . , f − 1} such that tj ∈ {yj , zj} and define χ′ def
= χλα

−1
j if tj = yj ,

χ′ def
= χλαj if tj = zj . By Definition 3.57 one checks that χ′ = χλ′ , where λ′ ∈ P is

defined by λ′
i(xi)

def
= λi(xi) if i �= j, and λ′

j(xj)
def
= λj(xj)+εj , where εj equals either

−2 or 2 when tj equals either yj or zj respectively. Note that χ′−1 is equal to the
character of I acting on tjeλ,k ∈ gr1(π∨). Thus, if tjeλ,k �= 0, then dually the χ′-
isotypic subspace of π[m2]/π[m] would be nonzero. But this contradicts condition
(ii) above. Hence eλ,k is annihilated by the whole ideal a(λ) and we are done. �

Corollary 3.68. Let π′ be a subrepresentation of π and P ′ ⊆ P be the
subset corresponding to the characters (without multiplicities) of H appearing in
π′I1 . Then gr(π′∨) (with the m-adic filtration on π′∨) is a quotient of

(⊕
λ∈P′ χ

−1
λ ⊗

R/a(λ)
)⊕r

.

Proof. We have a natural quotient map π∨ � π′∨ which induces a quotient
map gr(π∨) � gr(π′∨). It is enough to prove that the composition( ⊕

λ∈P′

χ−1
λ ⊗ R/a(λ)

)⊕r
↪→
( ⊕
λ∈P

χ−1
λ ⊗R/a(λ)

)⊕r � gr(π∨) � gr(π′∨)

is surjective (where the second map is the surjection of Theorem 3.67). The as-
sumption implies that it is surjective on gr0(−), and we conclude using that gr(π′∨)
is generated by gr0(π′∨) as a gr(Λ)-module. �

If N is a finitely generated R-module and q a minimal prime ideal of R, recall
that mq(N) ∈ Z≥0 denotes the multiplicity of N at q, see (3.23).

Theorem 3.69. We have dimF VGL2(π)=dimF((X)) D
∨
ξ (π)≤mp0

(gr(π∨))≤ 2fr,
where the minimal ideal p0 is as in §3.1.4.

Proof. This is a direct consequence of (2.8), of Corollary 3.34, of Theorem
3.67 and of Corollary 3.60, noting that, if yj ∈ a(λ) for some j ∈ {0, . . . , f − 1},
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then mp0
(R/a(λ)) = 0 (as yj /∈ p0), and if yj /∈ a(λ) ∀ j ∈ {0, . . . , f − 1}, then

mp0
(R/a(λ)) = 1 (as (R/a(λ))[(y0 · · · yf−1)

−1] ∼= F[y0, . . . , yf−1][(y0 · · · yf−1)
−1] ∼=

gr(A)). �

Combined with the results of §3.2, we can deduce the following important
corollary.

Corollary 3.70. Assume moreover that ρ is semisimple, satisfies the gener-
icity condition (3.26) and that condition (i) above can be enhanced into an isomor-
phism of diagrams (πI1 ↪→ πK1) ∼= D(ρ)⊕r, where D(ρ) is as in (3.27). Then we
have an isomorphism of representations of IQp

:

VGL2(π)|IQp
∼=
(
ind

⊗Qp

K (ρ)
)
|⊕r
IQp

.

In particular we have dimF VGL2
(π) = dimF((X)) D

∨
ξ (π) = mp0

(π∨) = 2fr. If more-

over the constants νi associated to D(ρ ⊗ χ) (χ as in §3.2.1) at the beginning of
[Bre11, §6] are as in [Bre11, Thm.6.4], then we have an isomorphism of repre-
sentations of Gal(Qp/Qp):

VGL2(π)
∼=
(
ind

⊗Qp

K (ρ)
)⊕r

.

Proof. It follows from Theorem 3.35 and Theorem 3.69 as

dimF

(
ind

⊗Qp

K (ρ)
)⊕r
= 2fr. �

It is also worth mentioning the following corollary of Theorem 3.67.

Corollary 3.71. We have
∑

q
mq(gr(π

∨)) ≤ 4fr, where the sum is taken over

all minimal prime ideals q of R.

Proof. By an easy computation, we have
∑

q
mq(R/a(λ)) = 2|A(λ)| (see (3.60)

for A(λ)). Thus the result follows from Proposition 3.61 and Theorem 3.67. �

Remark 3.72.

(i) It seems possible to us that the surjection in Theorem 3.67 could actually
be an isomorphism, at least for π coming from the global theory as in §3.4.1 below.
Note that such an isomorphism implies in particular Ei

gr(Λ)(gr(π
∨)) �= 0 if and only

if i = 2f (i.e. the gr(Λ)-module gr(π∨) is Cohen–Macaulay of grade 2f), which

in turns implies Ei
Λ(π

∨) �= 0 if and only if i = 2f (use [Ven02, Cor.6.3] and the
similar result with gr(Λ) instead of Λ, the first statement in [Ven02, Thm.3.21(ii)]
and [LvO96, Thm.I.7.2.11(1)]). Note moreover that by [HW22, Prop.A.8] we
know that π∨ is Cohen–Macaulay for π coming from the global theory in the so-
called minimal case (see §3.4.4), but we don’t know this for gr(π∨) without extra
assumptions (e.g. that the surjection of Theorem 3.67 is an isomorphism).

(ii) It is worth recalling here the following implications that we have seen.
Consider the following conditions on an admissible smooth representation π of
GL2(K) over F with a central character:
(a) [π[m3] : χ] = [π[m] : χ] for every character χ : I → F× appearing in π[m];
(b) gr(π∨) is killed by J , where gr(π∨) is computed with the m-adic filtration on

π∨;
(c) gr(π∨) is killed by some power of J , where gr(π∨) is computed with any good

filtration on the Λ-module π∨;
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(d) π is in the category C of §3.1.2.
Then we have (a) ⇒ (b) ⇒ (c) ⇒ (d). We suspect that every implication is strict.
(At least when K = Qp we can show that (c) does not imply (b).)

3.3.3. Examples. We completely compute the gr(F�I/Z1�)-module gr(V ∨)
for certain irreducible admissible smooth representations V of GL2(K) over F (with
V ∨ endowed with the m-adic filtration). We assume p ≥ 5 in this section.

We keep the previous notation. If V is a smooth representation of I1/Z1 over
F, we write gr(V ∨) for the graded module associated to the m-adic filtration on
V ∨.

Lemma 3.73. Let V be a smooth representation of I1/Z1 over F such that V |N0

is admissible as a representation of N0 and such that the natural map grmN0
(V ∨) →

gr(V ∨) (induced by the inclusions mn
N0

V ∨ ⊆ mnV ∨ for n ≥ 0) is surjective. Then
this map is an isomorphism.

Proof. Since V |∨N0
is a finite type F�N0�-module by assumption, it is a com-

plete filtered F�N0�-module for the mN0
-adic filtration. As all the maps

mn
N0

V ∨/mn+1
N0

V ∨ → mnV ∨/mn+1V ∨ are surjective, any element in v ∈ mnV ∨ can
be written v = v0 + w, where v0 ∈

∑
m≥n m

m
N0

V ∨ = mn
N0

V ∨ (as V |∨N0
is complete)

and w ∈ ∩m≥nm
mV ∨ = 0 (as the m-adic filtration is separated since V is smooth).

Thus the inclusion mn
N0

V ∨ ⊆ mnV ∨ is an equality for n ≥ 0, and we are done. �

The following two lemmas are motivated by [Paš10, Prop.7.1, Prop.7.2]. We
consider the finite group H as subgroup of I via the Teichmüller lift.

Lemma 3.74. Let V be an admissible smooth representation of I/Z1 over F.
Assume that V |HN0

is isomorphic to an injective envelope of some character χ in the
category of smooth representations of HN0 over F (so in particular dimF V

N0 = 1).
Then Ext1I/Z1

(χα−1
j , V ) = 0 for any 0 ≤ j ≤ f − 1.

Proof. Consider an extension class in Ext1I/Z1
(χα−1

j , V ) represented by 0 →
V → V ′ → χα−1

j → 0. By assumption on V , this extension splits when restricted

to HN0, hence we may find v′ ∈ V ′\V on which HN0 acts via χα−1
j (in particular

v′ ∈ V ′N0). Notice that (g − 1)v′ ∈ V for any g ∈ I1. Let v ∈ V N0 be a nonzero
vector so that V N0 = Fv by assumption.

First take g ∈
( 1+pOK 0

0 1+pOK

)
. It is easy to see that (g − 1)v′ is again fixed

by N0 and H acts on it via χα−1
j . But, by assumption V N0 is 1-dimensional on

which H acts via χ, thus we must have (g − 1)v′ = 0. We deduce that v′ is fixed
by I1 ∩B(OK).

We claim that v′ is fixed by N−
1

def
=
(

1 0
pOK 1

)
. This will imply that v′ is fixed by

I1 by the Iwahori decomposition, and consequently V ′ splits as an I-representation.

Let k ≥ 1 be the smallest integer such that v′ is fixed by N−
k

def
=
( 1 0
pkOK 1

)
; such

an integer always exists, as V is a smooth representation of I. Suppose k ≥ 2 and
take g ∈ N−

k−1. Using the matrix identity (see [Paš10, Eq.(14)])(
1 b
0 1

)(
1 0
c 1

)
=
( 1 0
c(1+bc)−1 1

)( 1+bc b
0 (1+bc)−1

)
and the fact that v′ is fixed by

( 1+pOK OK

pkOK 1+pOK

)
, one checks that (g − 1)v′ ∈ V N0 .

Consequently, Fv ⊕ Fv′ gives rise to an extension in Ext1
HN−

k−1

(χα−1
j , χ) which
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is nonsplit by the choice of k. But, as in [Paš10, Lemma 5.6], one shows that
Ext1

HN−
k−1

(χ′, χ) �= 0 if and only if χ′ = χαi for some 0 ≤ i ≤ f − 1. Indeed, after

conjugating by
(
pk−2 0
0 1

)
, we are reduced to the case k = 2, in which case the result

is proved by determining the H-action on Hom(N−
1 ,F) as in [Paš10, Lemma 5.3]

(see the proof of [BP12, Prop.5.1] for the computation). This finishes the proof as
χα−1

j �= χαi for any 0 ≤ i, j ≤ f − 1 (as p ≥ 5). �

Lemma 3.75. Let V be an admissible smooth representation of I/Z1 over F.
Assume that V |HN0

is isomorphic to an injective envelope of some character χ in the
category of smooth representations of HN0 over F (so in particular dimF V

N0 = 1).
Then we have an isomorphism of gr(F�I/Z1�)-modules:

gr(V ∨) ∼= χ−1 ⊗R/(z0, . . . , zf−1).

Proof. By assumption, V [m] = V [mN0
] is one-dimensional and isomorphic to

χ, hence we may view gr(V ∨) as a cyclic module over gr(Λ) generated by eχ ∈
gr0(V ∨) = V [m]∨, where H acts on eχ by χ−1. Let a ⊆ gr(Λ) be the annihilator of
eχ.

We first prove that zj ∈ a for 0 ≤ j ≤ f − 1. Since H acts on zj via α−1
j (see

just above §3.3.1), to prove zjeχ = 0 in gr1(V ∨) it is equivalent to prove that

HomH(χαj , V [m2]/V [m]) = 0 ∀ j ∈ {0, . . . , f − 1}.
If not, then V would admit a subrepresentation isomorphic to Eχ,χαj

(for some j),
where Eχ,χαj

denotes the unique I/Z1-representation which is a nonsplit extension
of χαj by χ. But by [BHH+23, Lemma 6.1.1(ii)] (after conjugating by the element(
0 1
p 0

)
), N0 acts trivially on Eχ,χαj

, which implies dimF V [mN0
] ≥ 2, a contradiction

to the assumption on V .
Using [BHH+23, Lemma 6.1.1(ii)], we then deduce an embedding

(3.66) V [m2]/V [m] ↪→ ⊕f−1
j=0χα

−1
j .

On the other hand, since HomI(χα
−1
j , V ) = 0, we deduce from Lemma 3.74 that

HomI(χα
−1
j , V [m2]/V [m]) = HomI(χα

−1
j , V/V [m])

∼−→ Ext1I/Z1
(χα−1

j , χ)

which have dimension 1 over F by [BHH+23, Lemma 6.1.1(ii)] again. Combining
this with (3.66), we obtain

(3.67) 0 → χ → V [m2] → ⊕f−1
j=0χα

−1
j → 0.

and that V [m2] = V [m2
N0

].

Next, we prove that Ext1I/Z1
(χ,Eχ,χα−1

j
) has dimension 1 over F for any 0 ≤

j ≤ f−1. A straightforward dévissage using Ext1I/Z1
(χ, χ) = 0 and dimF Ext

1
I/Z1

(χ,

χα−1
j ) = 1 (see [BHH+23, Lemma 6.1.1(ii)]) yields dimF Ext

1
I/Z1

(χ,Eχ,χα−1
j
) ≤ 1.

So it suffices to explicitly construct a nonzero element in this space, as follows. Let

Ej def
= Fv0 ⊕ Fv1 ⊕ Fv2 equipped with the action of I/Z1 determined by:

• H acts on v0, v1, v2 by χ, χα−1
j , χ respectively;

• if g =
( 1+pa b

pc 1+pd

)
∈ I1, then

gv0 = v0, gv1 = v1 + σj(b)v0,

gv2 = v2 + σj(c)v1 +
1

2

(
σj(a)− σj(d) + σj(bc)

)
v0.
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One easily checks that Ej is well defined and yields the desired nonsplit extension

class in Ext1I/Z1
(χ,Eχ,χα−1

j
). Moreover one also checks that EN0

j = Fv0 ⊕ Fv2.

We prove that hj ∈ a for 0 ≤ j ≤ f − 1. Since Ext1I/Z1
(χ, χ) = 0, the sequence

(3.67) induces an embedding

Ext1I/Z1
(χ, V [m2]) ↪→ Ext1I/Z1

(χ,⊕f−1
j=0χα

−1
j ).

Note that the right-hand side has dimension f over F. Since Ej/χ is nonzero in

Ext1I/Z1
(χ, χα−1

j ) for 0 ≤ j ≤ f − 1, we easily see that the above embedding is

actually an isomorphism and that Ext1I/Z1
(χ, V [m2]) is spanned by the Ej ’s. By the

last statement of the previous paragraph, if an extension E ∈ Ext1I/Z1
(χ, V [m2]) is

nonzero then dimF EN0 ≥ 2. Since dimF V
N0 = 1 by assumption, we see that there

exists no embedding E ↪→ V . From (3.67) we then easily deduce

HomH(χ, V [m3]/V [m2]) = 0.

Since H acts trivially on hj and hjeχ ∈ gr2(V ∨) ∼= (V [m3]/V [m2])∨, we thus must
have hjeχ = 0, i.e. hj ∈ a for 0 ≤ j ≤ f − 1. This proves the claim.

We deduce a surjection gr(Λ)/(zj , hj , 0 ≤ j ≤ f − 1) � gr(V ∨). As the
left-hand side is F[y0, . . . , yf−1] ∼= gr(F�N0�) and (V |N0

)∨ ∼= F�N0� from the as-
sumption, we obtain a surjection grmN0

(V ∨) � gr(V ∨). By Lemma 3.73 this

surjection is an isomorphism (and hence a = (zj , hj , 0 ≤ j ≤ f − 1)). This finishes
the proof. �

If χ = χ1 ⊗ χ2 is a character of H or of T (K), recall χs = χ2 ⊗ χ1.

Proposition 3.76. Let V be an irreducible smooth F-representation of GL2(K)
with a central character.

(i) If V ∼= ψ ◦ det for some smooth character ψ : K× → F×, then gr(V ∨) ∼=
(ψ ⊗ ψ)−1 ⊗ F, where ψ ⊗ ψ is viewed as a character of H.

(ii) If V ∼= Ind
GL2(K)
B(K) χ for some smooth character χ : T (K) → F×, then

gr(V ∨) ∼=
(
(χs|H)−1 ⊗R/(z0, . . . , zf−1)

)
⊕
(
(χ|H)−1 ⊗R/(y0, . . . , yf−1)

)
.

(iii) If V ∼= (Ind
GL2(K)
B(K) 1)/1 is the special series, then gr(V ∨)∼=R/(yizj , 0 ≤

i, j ≤ f − 1).
(iv) Assume K = Qp. If V is supersingular, i.e. isomorphic to

(c-Ind
GL2(Qp)

GL2(Zp)Q
×
p
σ)/T for some Serre weight σ (recall that c-Ind here

means compact induction and that EndGL2(Qp)(c-Ind
GL2(Qp)

GL2(Zp)Q
×
p
σ)∼=F[T ]),

then

gr(V ∨) ∼=
(
χ−1
σ ⊗R/(y0z0)

)
⊕
(
(χs

σ)
−1 ⊗R/(y0z0)

)
,

where χσ is the action of H on σI1 .

Proof.

(i) It is trivial.

(ii) The restriction of V to I admits a decomposition

(3.68) V |I ∼= IndII∩B(K) χ⊕ IndII∩B−(K) χ
s,
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(cf. the proof of [Paš10, Prop.11.1]). By loc.cit., when restricted to HN0,

IndII∩B−(K)χ
s is an injective envelope of χs in the category of smooth represen-

tations of HN0 over F, hence

gr((IndII∩B−(K) χ
s)∨) ∼= (χs|H)−1 ⊗R/(z0, . . . , zf−1)

by Lemma 3.75. One handles the other direct summand by taking conjugation by
the element

(
0 1
p 0

)
.

(iii) By assumption we have a short exact sequence 0 → 1 → Ind
GL2(K)
B(K) 1 →

V → 0. Write W = (Ind
GL2(K)
B(K) 1)|I and decompose W = W1 ⊕ W2 as in (3.68).

The image of 1 ↪→ W is equal to the subspace of constant functions, hence the
composition 1 ↪→ W � Wi is nonzero for i ∈ {1, 2}. Consequently, the dual
morphism gr(W∨

i ) → gr(1∨) is also nonzero, and using (ii) (applied to W ) we
obtain an exact sequence of gr(F�I/Z1�)-modules

(3.69) 0 → R/(yizj , 0 ≤ i, j ≤ f − 1) → gr(W∨
1 )⊕ gr(W∨

2 ) → gr(1∨) → 0.

Denote by F the induced filtration on V ∨ from the m-adic filtration on W∨. By
(3.69) we have an isomorphism grF (V

∨) ∼= R/(yizj , 0 ≤ i, j ≤ f − 1). To finish
the proof, it suffices to prove that F coincides with the m-adic filtration on V ∨,
or equivalently the inclusion mnV ∨ ⊆ mnW∨ ∩ V ∨ (for n ≥ 0) is an equality. As
in the proof of Lemma 3.73 it suffices to prove that the induced graded morphism
grm(V

∨) → grF (V
∨) is surjective. But, grF (V

∨) is generated by gr0F (V
∨), so it

suffices to show that gr0m(V
∨) → gr0F (V

∨) is surjective, which follows from (3.69)
and the exact sequence

gr0m(V
∨) → gr0m(W

∨) → gr0m(1
∨) → 0

induced by 0 → 1I1 → W I1 → V I1 (this sequence is actually right exact but we
don’t need this fact).

(iv) The proof is analogous to (iii), using [Paš10, Thm.1.2] together with
[Paš10, Prop.4.7].

�

By the classification of irreducible admissible smooth representations of
GL2(Qp) over F, we deduce from Proposition 3.76 and the results of §3.1.2:

Corollary 3.77. Let V be an admissible smooth representation of
GL2(Qp) over F which has a central character and is of finite length. Then there is
an integer n ≥ 0 such that gr(V ∨) is annihilated by Jn. In particular V is in the
category C of §3.1.2.

Finally, we give the first example of an explicit DA(π) for arbitrary f ≥ 1.

Proposition 3.78. Suppose π = Ind
GL2(K)
B(K) χ is a principal series for some

smooth character χ = χ1 ⊗ χ2. Then π lies in category C and DA(π) = DA(π)
ét

is étale and free of rank 1. More precisely, let κ ∈ π∨ be the element sending

f ∈ Ind
GL2(K)
B(K) χ to f(

(
1

1

)
) ∈ F. Then the image of κ in DA(π) is a basis of
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DA(π), and we have

ϕ(κ) = χ2(p)
−1κ,(3.70)

a(κ) = χ2(a)
−1κ ∀ a ∈ O×

K .(3.71)

Proof. Note that π ∈ C by Proposition 3.76(ii). The torus T (K) (hence also
H) acts on κ by the character (χs)−1; in particular, we get (3.71). On graded pieces
the map π∨ → DA(π) becomes the map gr(π∨) → gr(π∨)[(y0 · · · yf−1)

−1] (Lemma
3.1). As κ does not annihilate πI1 , it induces a nonzero element of gr0(π∨) = (πI1)∨,
which is in fact a gr(A)-basis of gr(π∨)[(y0 · · · yf−1)

−1] by Proposition 3.76(ii). (If
χ = χs the argument still works because κ annihilates the first direct summand in
the Mackey decomposition (3.68).) By the proof of [LvO96, Thm.I.5.7] it follows
that DA(π) = Aκ. As DA(π) is a projective A-module and gr(DA(π)) �= 0, it
follows that DA(π) is free of rank 1 with basis κ.

It remains to show (3.70). First, from the definitions we see that ψ(κ) = χ2(p)κ.
This implies that the (ψ,O×

K)-moduleDA(π) is étale and so by the previous sentence

it becomes an étale (ϕ,O×
K)-module, cf. (3.16). Say ϕ(κ) = aκ for some a ∈ A×.

As the actions of ϕ and O×
K commute, equation (3.71) and Corollary 3.9 imply that

a ∈ F×. We deduce (3.70). �

3.3.4. Characteristic cycles. We define the characteristic cycle of a finitely
generated filtered Λ-module M such that gr(M) is annihilated by a power of J and
prove an important property (Theorem 3.83).

Recall from §3.1.4 that the minimal prime ideals of R = R/(yjzj , 0 ≤ j ≤ f−1)
are the (yi, zj , i ∈ J , j /∈ J ) with J a subset of {0, . . . , f − 1}.

Definition 3.79. Let N be a finitely generated module over gr(Λ) which is
annihilated by some power of J . We define the characteristic cycle of N , denoted
by Z(N)2 as follows:

Z(N)
def
=
∑
q

mq(N)q ∈ ⊕qZ≥0q,

where q runs over all minimal prime ideals of R.

Lemma 3.80. Let n ≥ 0. If 0 → N1 → N → N2 → 0 is a short exact sequence
of finitely generated gr(Λ)/Jn-modules, then Z(N) = Z(N1) + Z(N2) in ⊕qZ≥0q.

Proof. It is a direct consequence of Lemma 3.32. �

LetM be a finitely generated Λ-module which is equipped with a good filtration

F
def
= {FnM : n ∈ Z} (in the sense of [LvO96, §I.5]) such that grF (M) is annihilated

by some power of J . Recall that this condition doesn’t depend on the choice of the
good filtration F (see just before Proposition 3.20) and that grF (M) is also finitely
generated over gr(Λ) ([LvO96, Lemma I.5.4]).

Lemma 3.81. If F, F ′ are two such good filtrations on M , then

Z(grF (M)) = Z(grF ′(M)).

2A more standard notation is Zf (N), where f indicates the dimension of the cycles.
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Proof. The proof is (almost) the same as in [Bjö89, §4]. We recall it for
the convenience of the reader. Since F and F ′ are equivalent by [LvO96, Lemma
I.5.3], we may find c ∈ Z≥0 such that

Fn−cM ⊆ F ′
nM ⊆ Fn+cM, ∀ n ∈ Z.

For i ∈ {−c,−c+ 1, . . . , c} define a sequence of filtrations F (i) = {F (i)
n M : n ∈ Z}

on M by

F (i)
n M

def
= Fn+iM ∩ F ′

nM.

It is clear that F (−c) = F [−c] and F (c) = F ′, where F [−c] denotes the shifted

filtration F [−c]n
def
= Fn−c, n ∈ Z. Hence it suffices to show that each F (i) is a good

filtration on M such that

(3.72) Z(grF (i)(M)) = Z(grF (i+1)(M)).

Put for −c ≤ i ≤ c:

Ti
def
=
⊕
n∈Z

(Fn+iM ∩ F ′
nM)/(Fn+iM ∩ F ′

n−1M),

Si
def
=
⊕
n∈Z

(Fn+i+1M ∩ F ′
nM)/(Fn+iM ∩ F ′

nM).

Since Ti is a gr(Λ)-submodule of grF ′(M) and Si is a gr(Λ)-submodule of grF (M)[i+
1], both Ti and Si are finitely generated gr(Λ)-modules and are annihilated by some
power of J . Moreover, one checks that there are short exact sequences of gr(Λ)-
modules (annihilated by some power of J):

0 → Ti → grF (i+1)(M) → Si → 0,

0 → Si[−1] → grF (i)(M) → Ti → 0.

Hence, grF (i)(M) is also finitely generated over gr(Λ) and annihilated by a power of
J . Consequently, F (i) is a good filtration on M by [LvO96, Thm.I.5.7] and (3.72)
follows from Lemma 3.80. �

Thanks to Lemma 3.81, we can define mq(M) to be mq(grF (M)) and Z(M)

to be Z(grF (M)) for any minimal prime ideal q of R and any good filtration F on
M .

Lemma 3.82. Let M be as above and let 0 → M1 → M → M2 → 0 be an exact
sequence of Λ-modules. Then we have in ⊕qZ≥0q:

Z(M) = Z(M1) + Z(M2).

Proof. We may equip M1 (resp. M2) with the induced filtration (resp. quo-
tient filtration) from the one of M , which are automatically good by [LvO96,
Cor.I.5.5(1)] and [LvO96, Rem.I.5.2(2)]. Moreover the sequence 0 → gr(M1) →
gr(M) → gr(M2) → 0 is again exact. In particular, both gr(M1) and gr(M2) are
finitely generated gr(Λ)-modules annihilated by some power of J , and the result
follows from Lemma 3.80. �

If M is a finitely generated Λ-module, recall from [LvO96, Def.III.2.1.1] that
the grade of M is by definition the smallest integer jΛ(M) ≥ 0 such that

E
jΛ(M)
Λ (M) �= 0 (with jΛ(M)

def
= +∞ if Ej

Λ(M) = 0 for all j ≥ 0). For a good
filtration F on M , we define similarly the grade jgr(Λ)(grF (M)) of the gr(Λ)-
module grF (M). By [LvO96, Thm.III.2.5.2] we have jgr(Λ)(grF (M)) = jΛ(M)
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(note that Λ is a left and right Zariski ring by [LvO96, Prop.II.2.2.1]), in particu-
lar jgr(Λ)(grF (M)) doesn’t depend on the good filtration F .

Recall that the Krull dimension dimR(N) of a finitely generated module N
over R (which is commutative) is the Krull dimension of R/AnnR(N). For such a
module N , by the argument in the proof of [BHH+23, Lemma 5.1.3] applied to
A = gr(Λ), I = (h0, . . . , hf−1) and with N instead of grm M there, we have

(3.73) jgr(Λ)(N) = dim(I1/Z1)− dimR(N).

Now, for M as above, assume that grF (M) is annihilated by a power of J . Then
applying (3.73) to the R-modules N = J i grF (M)/J i+1 grF (M) for i ≥ 0 and by
an obvious dévissage using [LvO96, Lemma III.2.1.2(1)], we deduce

(3.74) jΛ(M) ≥ dim(I1/Z1)− dim(R) = 3f − f = 2f.

Moreover, by the same dévissage using [LvO96, Cor.III.2.1.6] (note that all as-
sumptions are satisfied since gr(Λ) is Auslander regular) and (3.73), we deduce that
if jΛ(M) = jgr(Λ)(grF (M)) > 2f , then we have dimR(J

i grF (M)/J i+1 grF (M)) < f

for all i, hence Z(J i grF (M)/J i+1 grF (M)) = 0 for all i ≥ 0 and Z(M) = 0 (see
(3.23)).

Theorem 3.83. Let M be a finitely generated Λ-module such that gr(M) is
annihilated by a power of J for one (equivalently every) good filtration on M . Then

Z(E2f
Λ (M)) is well-defined and we have

Z(M) = Z(E2f
Λ (M)).

Proof. If jΛ(M) > 2f , then the result is trivial since both terms are 0 by the
sentence just before the proposition. So from (3.74) we may assume jΛ(M) = 2f
in the rest of the proof.

Choose a good filtration F of M so that Z(M) = Z(grF (M)). We first show

that the gr(Λ)-module E2f
gr(Λ)(grF (M)) is also annihilated by some power of J .

Indeed, grF (M) has a finite filtration whose graded pieces are annihilated by J ,

hence by dévissage it suffices to show that E2f
gr(Λ)(N) is annihilated by J if N is a

finitely generated R-module. As in the proof of Proposition 3.66 it is equivalent to

prove the same property for Ef
R(N), which is obvious as R is commutative.

As a consequence, by the first statement in Proposition 3.84 below the graded

module associated to the filtration on E2f
Λ (M) in loc.cit. is again finitely generated

over gr(Λ) and annihilated by some power of J . Hence Z(E2f
Λ (M)) can be defined.

By Proposition 3.84 the cokernel of the injection gr(E2f
Λ (M)) ↪→ E2f

gr(Λ)(grF (M))

has grade > 2f , hence its associated characteristic cycle is 0, as explained above.
From Lemma 3.80 we deduce an equality of cycles

Z
(
gr(E2f

Λ (M))
)
= Z
(
E2f
gr(Λ)(grF (M))

)
.

Hence, we are left to show that

Z(grF (M)) = Z
(
E2f
gr(Λ)(grF (M))

)
.

As gr(Λ) is an Auslander regular ring, any subquotient N of grF (M) has grade

≥ 2f (by [LvO96, Prop.III.2.1.6]) and is such that Ej
gr(Λ)(N) has grade ≥ j for

any j ≥ 0, so that Ej
gr(Λ)(N) and all its subquotients have zero cycle if j < 2f or

if j > 2f (by Lemma 3.80 and the discussion before the proposition for the latter).
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Hence, for n large enough so that Jn annihilates grF (M), we deduce using again
Lemma 3.80:

Z
(
E2f
gr(Λ)(grF (M))

)
=

n−1∑
i=0

Z
(
E2f
gr(Λ)(J

i grF (M)/J i+1 grF (M))
)
.

By the definition of Z and of mq(N), see (3.23), it thus suffices to show

Z(N) = Z(E2f
gr(Λ)(N))

for any finitely generated R-module N . Using Lemma 3.65 it suffices to show

Z(N) = Z(HomR(N,R)),

which is equivalent to show that for any minimal prime ideal q of R,

lgRq
(Nq) = lgRq

(HomR(N,R)q).

Using the isomorphism HomR(N,R)q ∼= HomRq
(Nq, Rq) and noting that Rq is a

field (being artinian, and reduced as R is), the result is clear. �

The first part of the following general result was used in the proof of Theorem
3.83. Recall that a finitely generated gr(Λ)-module of grade j is Cohen–Macaulay
if all its Ei

gr(Λ) are 0 when i �= j.

Proposition 3.84. Let M be a finitely generated Λ-module of grade j0 with a
good filtration. Then there exists a good filtration on Ej0

Λ (M) such that gr(Ej0
Λ (M))

is a submodule of Ej0
gr(Λ)(gr(M)) and the corresponding cokernel has grade (over

gr(Λ)) ≥ j0 + 1. If gr(M) is moreover Cohen–Macaulay, then

gr(Ej0
Λ (M))

∼→ Ej0
gr(Λ)(gr(M)).

Proof. See [Bjö89, Prop.3.1] and the remark following it. We explain the
proof following the presentation of [LvO96, §III.2.2].

As in [LvO96, §III.2.2], we may construct a filtered free resolution of M

· · · → Lj → Lj−1 → · · · → L0 → M → 0

and taking E0
Λ(−) = HomΛ(−,Λ) obtain a filtered complex of finitely generated

Λ-modules

(3.75) 0 → E0
Λ(L0) → E0

Λ(L1) → · · · ,

where each E0
Λ(Lj) is endowed with a good filtration as in loc.cit.. Taking the as-

sociated graded complex of (3.75), we obtain a complex of gr(Λ)-modules (denoted
G(∗) in loc.cit.):

0 → gr(E0
Λ(L0)) → gr(E0

Λ(L1)) → · · ·
and by [LvO96, Lemma III.2.2.2(2)] we have isomorphisms E0

gr(Λ)(gr(Lj)) ∼=
gr(E0

Λ(Lj)) for j ≥ 0. Next, as in [LvO96, §III.1] we may associate a spectral
sequence {Er

j : r ≥ 0, j ≥ 0} to the filtered complex (3.75) and define a good fil-

tration on Ej
Λ(M) for j ≥ 0 with the following properties (for convenience we have

shifted the numbering):

(a) E0
j = gr(E0

Λ(Lj)) and E1
j = Ej

gr(Λ)(gr(M)) for any j;
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(b) for any fixed r ≥ 1, there is a complex

0 → Er
0 → · · · → Er

j → Er
j+1 → · · ·

whose homology gives Er+1
j ;

(c) for r large enough (depending on j), E∞
j = Er

j
∼= gr(Ej

Λ(M)).

Since jΛ(M) = j0 by assumption, we also have jgr(Λ)(gr(M)) = j0 by [LvO96,

Thm.III.2.5.2] and so E1
j = 0 for j < j0. By (b), this implies short exact sequences

0 → Er+1
j0

→ Er
j0 → Er

j0+1, ∀ r ≥ 1.

In particular, by taking r large enough, gr(Ej0
Λ (M)) = E∞

j0
is a submodule of E1

j0
.

Moreover, since Er
j0+1 has grade ≥ j0 + 1 for all r and so do its subquotients, the

cokernel of E∞
j0

↪→ E1
j0

also has grade ≥ j0 + 1.

If moreover gr(M) is Cohen–Macaulay, then E1
j = 0 except for j = j0, hence

E∞
j0

= E1
j0

which implies the last claim. �

3.3.5. On the length of π in the semisimple case. For ρ as in §3.3.1
assumed moreover semisimple and strongly generic, and π as in §3.3.2 with moreover
r = 1 and satisfying one more hypothesis, we prove that π is generated over GL2(K)
by its GL2(OK)-socle, is irreducible if ρ is, and is semisimple of length 3 if ρ is
reducible split and f = 2.

We keep the notation in §3.3.2 and we assume moreover that ρ is semisimple
and satisfies the strong genericity condition (3.26) (we will use the results of §3.2).
We fix an admissible smooth representation π of GL2(K) over F satisfying the
conditions (i), (ii) in loc.cit. with r = 1 in (i), i.e. πK1 ∼= D0(ρ). Recall this
implies that gr(π∨) is annihilated by J , where gr(π∨) is computed with the m-adic
filtration. We assume moreover:

(iii) π∨ is essentially self-dual of grade 2f , i.e. there is a GL2(K)-equivariant
isomorphism of Λ-modules

(3.76) E2f
Λ (π∨) ∼= π∨ ⊗ (det(ρ)ω−1)

(recall det(ρ)ω−1 is the central character of π). Here Ej
Λ(π

∨) is endowed
with the action of GL2(K) (compatible with the Λ-module structure)
defined in [Koh17, Prop.3.2].

(Note that, compared with [HW22, Def.A.7], in the definition of essentially self-
dual we do not assume that π∨ is Cohen–Macaulay. However, by [LvO96,
Prop.III.4.2.8(1)] π∨ is pure in the sense of [LvO96, Def.III.4.2.7].)

Remark 3.85. Conditions (i) to (iii), with r = 1 in (i), will be satisfied for
π coming from the global theory in the minimal case (see §3.4.4). The reason to
impose the extra assumption r = 1 in (i) is that although for general r we have an
equality of diagrams

(πI1 ↪→ πK1) = (D0(ρ)
I1 ↪→ D0(ρ))

⊕r

for the representations π coming from cohomology (see Theorem 3.93 below), we

do not know if this implies that π has the form π′⊕r
for some representation π′ of

GL2(K).
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Given σ ∈ W (ρ), we define the length of σ as follows: if λ ∈ D corresponds to

σ (see §3.3.1), then �(σ)
def
= �(λ), see (3.61). For 0 ≤ � ≤ f , let

W�(ρ)
def
= {σ ∈ W (ρ), �(σ) = �}

and define τ�(ρ)
def
= ⊕σ∈W�(ρ)σ. We call W�(ρ), or by abuse of notation τ�(ρ), an

orbit in W (ρ). Note that this is different from an orbit of δ in W (ρ) as defined in
§3.2.4 (see §3.2.3 for δ), i.e. in general τ�(ρ) contains several orbits of δ.

Lemma 3.86. If π′ is a nonzero subrepresentation of π, then socGL2(OK)(π
′) is

a direct sum of orbits in W (ρ).

Proof. It is clear that (π′I1 ↪→ π′K1) is a subdiagram of (πI1 ↪→ πK1).
The result follows from this using [BP12, Thm.15.4] together with the proof of
[BP12, Thm.19.10]. Actually, when ρ is irreducible, we even have socGL2(OK)(π

′) =
socGL2(OK)(π) by (the proof of) [BP12, Thm.19.10]. �

We use without comment the notation and definitions in §3.1.4 and denote by
lg(τ ) the length of a finite-dimensional representation τ of GL2(OK) over F.

Proposition 3.87. Let π′ be a subquotient of π.

(i) We have dimF((X)) D
∨
ξ (π

′) = mp0
(π′∨).

(ii) Assume that π′ is a subrepresentation of π. Then

dimF((X)) D
∨
ξ (π

′) = mp0
(π′∨) = lg(socGL2(OK)(π

′)).

In particular, if π′ �= 0, then D∨
ξ (π

′) �= 0.

(iii) Assume that π′ is a nonzero quotient of π. Then D∨
ξ (π

′) �= 0.

Proof.

(i) First, for any subquotient π′ of π, we equip the Λ-module π′∨ with a good
filtration F by choosing two submodules π∨

1 ⊆ π∨
2 of π∨ (with filtrations induced

from the m-adic one on π∨) such that π′∨ ∼= π∨
2 /π

∨
1 and taking the induced filtra-

tion.3 Then grF (π
′∨) is again an R-module, and dimF((X)) D

∨
ξ (π

′) ≤ mp0
(π′∨) by

Corollary 3.34. Since dimF((X)) D
∨
ξ (π) = mp0

(π∨) by Corollary 3.70, since D∨
ξ (−)

is an exact functor by Theorem 3.25 and since Z(−), and in particular mp0
(−), are

additive by Lemma 3.82, the result follows.
(ii) By assumption π′ is a subrepresentation of π. Using that socGL2(OK)(π

′)
is a union of orbits of δ, or equivalently of S as in (3.48), by Lemma 3.86, it follows
from Proposition 3.52 that

dimF((X)) D
∨
ξ (π

′) ≥ lg(socGL2(OK)(π
′)).

On the other hand, by Lemma 3.59(i) and Corollary 3.68, we have
mp0

(π′∨) ≤ lg(socGL2(OK)(π
′)) (see the proof of Theorem 3.69). Hence all the

three quantities are equal by (i).
(iii) Let π′′ be the kernel of the quotient map π � π′ so that we have an exact

sequence of Λ-modules:

0 → π′∨ → π∨ → π′′∨ → 0.

3The filtrations on π∨
2 and π∨

1 might not be the m-adic ones, and the resulting filtration on

π′∨ might depend on the choice of π∨
1 and π∨

2 .
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Since π∨ is essentially self-dual of grade 2f by assumption, π′∨ also has grade 2f by
[LvO96, Prop.III.4.2.8(1)] and [LvO96, Prop.III.4.2.9]. Taking Ei

Λ(−), we obtain
a long exact sequence of Λ-modules

(3.77) 0 → E2f
Λ (π′′∨) → E2f

Λ (π∨) → E2f
Λ (π′∨) → E2f+1

Λ (π′′∨)

which gives rise by Pontryagin duality to an exact sequence of admissible smooth
representations of GL2(K) with central character (see [Koh17, Cor.1.8]). Define
π̃ to be the admissible smooth representation of GL2(K) such that

(3.78) π̃∨ ⊗ (det(ρ)ω−1) ∼= Im
(
E2f
Λ (π∨) → E2f

Λ (π′∨)
)
.

Since π∨ is essentially self-dual by assumption (see (3.76)), π̃∨ is a quotient of π∨

and dually π̃ is a subrepresentation of π. Since E2f+1
Λ (π′′∨) has grade ≥ 2f + 1 as

Λ is Auslander regular, we have by (3.77) and the discussion before Theorem 3.83:

Z(E2f
Λ (π′∨)) = Z(π̃∨ ⊗ (det(ρ)ω−1)),

hence Z(π′∨) = Z(π̃∨) by Theorem 3.83 which implies in particular by (i):

(3.79) dimF((X)) D
∨
ξ (π

′) = dimF((X)) D
∨
ξ (π̃).

Since jΛ(π
′∨) = 2f , Z(π′∨) is nonzero (using e.g. (3.73)), hence π̃ is nonzero, thus

D∨
ξ (π̃) �= 0 by (ii), and finally D∨

ξ (π
′) �= 0 by (3.79).

�

Remark 3.88.

(i) The construction of π̃ in the proof of Proposition 3.87(iii) does not use the
assumption that ρ is semisimple. Moreover, items (i) and (ii) of Proposition 3.87
do not require the essential self-duality of π∨ (equation (3.76) above).

(ii) It follows from Proposition 3.87(ii), from Corollary 3.34, from Lemma 3.33,
from Lemma 3.30 and from (3.9) that for π′ ⊆ π as in Proposition 3.87(ii) we have

(3.80) rkA(DA(π
′)ét) = dimF((X)) D

∨
ξ (π

′) = mp0
(gr(π′∨)) = rkA(DA(π

′)).

By Corollary 3.18, both DA(π
′) and DA(π

′)ét are finite projective A-modules and
it follows from (3.80) that the surjection of A-modules DA(π

′) � DA(π
′)ét is here

an isomorphism.

Theorem 3.89. As a GL2(K)-representation, π is generated by its
GL2(OK)-socle.

Proof. Let τ
def
= socGL2(OK)(π), let π′ def

= 〈GL2(K).τ 〉 be the subrepresenta-

tion of π generated by τ and let π′′ def
= π/π′. Since D∨

ξ (−) is exact by Theorem
3.29, we have

dimF((X)) D
∨
ξ (π) = dimF((X)) D

∨
ξ (π

′) + dimF((X)) D
∨
ξ (π

′′).

However, since π and π′ have the same GL2(OK)-socle, we have

dimF((X)) D
∨
ξ (π) = dimF((X)) D

∨
ξ (π

′)

by Proposition 3.87(ii), thus D∨
ξ (π

′′) = 0. If π′′ is nonzero this contradicts Propo-

sition 3.87(iii). �

Corollary 3.90. Assume that ρ is irreducible. Then π is irreducible and is a
supersingular representation.
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Proof. This follows from Theorem 3.89 and [BP12, Thm.19.10(i)]. �

Remark 3.91.

(i) A result analogous to Theorem 3.89 when ρ is not semisimple is proved in
[HW22, Thm.1.6].

(ii) While we believe that Proposition 3.87 and Theorem 3.89 should be true
without assuming r = 1, we don’t know how to prove a generalization of Corollary
3.90 (i.e. π is semisimple and has length r in general), as mentioned in Remark
3.85.

Corollary 3.92. Assume that ρ is reducible split. Then π has the form

(3.81) π = π0 ⊕ πf ⊕ π′,

where

• π0 and πf are irreducible principal series such that E2f
Λ (π∨

i )
∼= π∨

f−i ⊗
(det(ρ)ω−1), i ∈ {0, f};

• π′ is generated by its GL2(OK)-socle and π′∨ is essentially self-dual (as
in (3.76)). Moreover, π′ is irreducible and supersingular when f = 2.

Proof. By the definition of W (ρ) (see [BP12, §11]), there exists a unique
Serre weight σ0 ∈ W (ρ) such that �(σ0) = 0. Let χσ0

be the character of I acting

on σI1
0 . It is easy to check that

JH
(
Ind

GL2(OK)
I χσ0

)
∩W (ρ) = {σ0}.

Let π0
def
= 〈GL2(K).σ0〉, a subrepresentation of π. We claim that π0 is an irreducible

principal series. Indeed, by [HW22, Lemma 5.14] and its proof, the morphism
(induced from σ0 ↪→ π by Frobenius reciprocity)

c-Ind
GL2(K)
GL2(OK)K× σ0 → π

(where c-Ind means compact induction) factors through c-Ind
GL2(K)
GL2(OK)K× σ0/(T −

μ0) for some μ0 ∈ F× (as socGL2(OK)(π) is multiplicity-free). Note that the generic-

ity of ρ implies that dimF σ0 ≥ 2, hence the representation c-Ind
GL2(K)
GL2(OK)K× σ0/(T−

μ0) is irreducible and isomorphic to some principal series by [BL94, Thm.30].
This proves the claim. Moreover, the GL2(OK)-socle of π0 is exactly σ0, and if

π0
∼= Ind

GL2(K)
B(K) χ0 for some smooth character χ0 : T (K) → F× then χs

0|H = χσ0
.

Similarly, there exists a unique Serre weight σf ∈ W (ρ) such that �(σf ) = f . It
satisfies again

JH
(
Ind

GL2(OK)
I χσf

)
∩W (ρ) = {σf}

and by the same argument as above the subrepresentation πf
def
= 〈GL2(K).σf 〉 of

π is an irreducible principal series with GL2(OK)-socle equal to σf , and if πf
∼=

Ind
GL2(K)
B(K) χf then χs

f |H = χσf
. The map π0 ⊕ πf → π is injective since it is

injective on the GL2(OK)-socles.

Letting π′ def
= π/(π0 ⊕ πf ), we have an exact sequence of Λ-modules:

0 → π′∨ → π∨ → π∨
0 ⊕ π∨

f → 0.
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As Λ is Auslander regular and π∨ is of grade 2f , it follows from [LvO96,

Cor.III.2.1.6] that π′∨ is of grade ≥ 2f , hence E2f−1
Λ (π′∨) = 0 and there is an

exact sequence of (finitely generated) Λ-modules

0 → E2f
Λ (π∨

0 )⊕ E2f
Λ (π∨

f ) → E2f
Λ (π∨) → E2f

Λ (π′∨).

Since π∨ is essentially self-dual by assumption (see (3.76)) and since E2f
Λ (π∨

0 )
∨ and

E2f
Λ (π∨

f )
∨ are also irreducible principal series by [Koh17, Prop.5.4], we see that π

admits a quotient isomorphic to π′
0⊕π′

f , where π
′
i (for i ∈ {0, f}) is the (irreducible)

principal series such that

(3.82) π′∨
i ⊗ (det(ρ)ω−1) = E2f

Λ (π∨
f−i).

Explicitly, if π′
i
∼= Ind

GL2(K)
B(K) χ′

i for some smooth characters χ′
i : T (K) → F×, and

if we let αB
def
= ω ⊗ ω−1 : T (K) → F× and η

def
= det(ρ)ω−1 (for short), then by

[HW22, Lemma 10.7] (which is based on [Koh17, Prop.5.4]):

(3.83) χ′
f = χ−1

0 αB(η ⊗ η), χ′
0 = χ−1

f αB(η ⊗ η).

Let us compute the GL2(OK)-socle of π′
f (the case of π′

0 is similar). Since η is equal

to the central character of π0, we have χ−1
0 (η ⊗ η) = χs

0, so that (3.83) becomes
χ′
f = χs

0αB . Since χs
0|H = χσ0

as seen in the first paragraph, we deduce

(3.84) (χ′
f )

s|H = χs
σ0
α−1
B = χσf

,

where the last equality holds by an easy check using the definition of σ0 and σf

(see [BP12, §11]). In particular, our genericity assumption on ρ implies that
χ′
f �= χ′s

f when restricted to T (OK). Using [BL94, Thm.34(2)], this implies that

the GL2(OK)-socle of π′
f is irreducible and actually isomorphic to σf by (3.84).

Similarly, the GL2(OK)-socle of π′
0 is isomorphic to σ0.

We claim that the composite morphism

π0 ⊕ πf ↪→ π � π′
0 ⊕ π′

f

is an isomorphism. Since π is generated by its GL2(OK)-socle, namely
⊕

σ∈W (ρ) σ,

the composite morphism

ι0 :
⊕

σ∈W (ρ)

σ ↪→ π � π′
0

is nonzero. Since the image is contained in socGL2(OK)(π
′
0), which is equal to σ0 as

seen in the last paragraph, ι0 is nonzero when restricted to σ0. But, by construction
we have 〈GL2(K).σ0〉 = π0 inside π, hence the composite morphism π0 ↪→ π � π′

0

is nonzero, hence an isomorphism as both π0 and π′
0 are irreducible. In the same

way the composite morphism πf ↪→ π � π′
f is also an isomorphism. This proves

the claim, from which the decomposition (3.81) immediately follows. From (3.82)

we also deduce the isomorphism E2f
Λ (π∨

i )
∼= π∨

f−i ⊗ η for i ∈ {0, f}.
We now finish the proof. First, π′ is generated by its GL2(OK)-socle by Theo-

rem 3.89. Explicitly, we have

socGL2(OK)(π
′) =

⊕
σ∈W (ρ)

0<�(σ)<f

σ.
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In particular, if f = 2, then π′ is irreducible and is a supersingular representation
by [BP12, Thm.19.10(ii)]. Finally we prove that π′∨ is essentially self-dual (as in
(3.76)). In fact, using (3.81) and noting that

(E2f
Λ (π∨))∨ ⊗ η ∼= π0 ⊕ πf ⊕ (E2f

Λ (π′∨))∨ ⊗ η,

it suffices to prove that the composite morphism

π′ ↪→ π
∼−→ (E2f

Λ (π∨))∨ ⊗ η � (E2f
Λ (π′∨))∨ ⊗ η

is an isomorphism. Since both the source and the target have the same GL2(OK)-
socle, the morphism is injective because it is when restricted to the GL2(OK)-

socle of π′ and is surjective because (E2f
Λ (π′∨))∨ ⊗ η is generated by its GL2(OK)-

socle. �

3.4. Local-global compatibility results for GL2(Qpf )

We prove special cases of Conjecture 2.9 and Conjecture 2.1 when F+
v = Qpf

and n = 2. We assume E = W (F)[1/p] (thus OE = W (F) and �E = p).

3.4.1. Global setting and results. We refine the global setting of §§2.1, 2.5
when n = 2 in order to apply the results of [BHH+23] and we state the first main
global result.

We come back to the setting of §2.1 when n = 2 and we assume p > 7. We
make the following extra assumptions on the field F and the unitary group H:

(i) F/F+ is unramified at all finite places;
(ii) p is unramified in F+;
(iii) H is defined over OF+ and H ×OF+ F+ is quasi-split at all finite places

of F+.

Condition (i) (together with the fact that any p-adic place of F+ splits in F ) implies
[F+ : Q] is even (see [GK14, §3.1]). By [GK14, §3.1.1] such groups H always exist.
We denote by R�

rw̃
the universal framed deformation ring of rw̃ over W (F) (w̃ is

any finite place of F ). We set K
def
= F+

v and f
def
= [K : Qp].

We let r : Gal(F/F ) → GL2(F) as in §2.1.3 and make the following extra
assumptions on r (recall that Sp is the set of places of F+ dividing p):

(iv) r|Gal(F/F ( p√1)) is adequate ([Tho17, Def.2.20]);

(v) rw̃ is unramified if w̃|F+ is inert in F ;
(vi) R�

rw̃
is formally smooth over W (F) if rw̃ is ramified and w̃|F+ /∈ Sp;

(vii) rw̃ is generic in the sense of [BP12, Def.11.7] if w̃|F+ ∈ Sp\{v};
(viii) rṽ is, up to twist, of one of the following forms for ṽ|F+ = v:

• rṽ|IK ∼=
(
ω
(r0+1)+···+pf−1(rf−1+1)
f 0

0 1

)
3 ≤ ri ≤ p− 6,

• rṽ|IK ∼=
(
ω
(r0+1)+···+pf−1(rf−1+1)
2f 0

0 ω
pf (same)
2f

)
4 ≤ r0 ≤ p − 5, 3 ≤

ri ≤ p− 6 for i > 0.

Note that conditions (iv) to (viii) only depend on w̃|F+ and ṽ|F+ using condition (i)
in §2.1.3 (the genericity conditions in (viii) are satisfied in [DL21, §3.3] and don’t
depend on the choices of σ0, σ

′
0). We denote by Sr the finite set of finite places of

F+ such that w̃|F+ ∈ Sr if and only if rw̃ is ramified. Thus Sp ⊆ Sr and by (ii)
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any place in Sr splits in F+. We fix a finite place v1 of F+ which is not in Sr and
satisfies the assumptions in [EGS15, §6.6], and we choose ṽ1|v1 in F .

We choose S a finite set of finite places of F+ that split in F containing Sr but
not v1, and a compact open subgroup U =

∏
w Uw ⊆ H(A∞

F+) such that

(ix) Uw ⊆ H(OF+
w
) if w splits in F ;

(x) Uw is maximal hyperspecial in H(F+
w ) if w is inert in F ;

(xi) Uw = H(OF+
w
) if w /∈ S ∪ {v1} and w splits in F or if w ∈ Sp;

(xii) ιṽ1(Uv1) is contained in the upper-triangular unipotent matrices mod ṽ1.

We also define V
def
= Up

∏
w∈Sp

Vw, where U
p def
=
∏

w/∈Sp
Uw and Vw is a pro-p normal

subgroup of Uw if w ∈ Sp (hence V is normal in U). We set Σ
def
= S ∪ {v1} and

assume S(V,F)[mΣ] �= 0 (see §2.1.2). Note that S(V,F)[mΣ] doesn’t depend on S
as above by the proof of [BDJ10, Lemma 4.6(a)]. For each place w ∈ Sp we choose
a place w̃|w in F . For w ∈ Sp recall from §3.2.1 that W (rw̃(1)) is the set of Serre

weights associated to rw̃(1)
def
= rw̃ ⊗ ω defined as in [BDJ10, §3]. Then it follows

from [GLS14, Thm.A] and [BLGG13, Def.2.9] that we have

(3.85) HomU

(
⊗w∈Sp

σw̃, S(V,F)[m
Σ]
)
�= 0 ⇐⇒ σw̃ ∈ W (rw̃(1)) ∀ w ∈ Sp,

where we consider ⊗w∈Sp
σw̃ as a representation of U via U �U/V

∼→
∏

w∈Sp
Uw/Vw

and the isomorphisms ιw̃. Note that the left-hand side of (3.85) is also isomorphic
to HomU (⊗w∈Sp

σw̃, S(U
p,F)[mΣ]), where S(Up,F)[mΣ] is defined as in §2.1.2, re-

placing Uv by Up.
We freely use the previous local notation (I1 is the pro-p Iwahori subgroup in

GL2(OK) = GL2(OFṽ
) etc.) and set ρ

def
= rṽ(1).

Theorem 3.93. Choose Serre weights σw̃ ∈ W (rw̃(1)) for w ∈ Sp\{v} and set

π
def
= HomUv (⊗w∈Sp\{v}σw̃, S(V

v,F)[mΣ]).

Then there exist an integer r ≥ 1 only depending on v, Uv, V v, ⊗w∈Sp\{v}σw̃ and r
and a diagram D(ρ) = (D1(ρ) ↪→ D0(ρ)) as in §3.2.1 only depending on ρ = rṽ(1)
(and satisfying the assumptions in loc.cit. on the constants νi) such that there is an
isomorphism of diagrams

D(ρ)⊕r ∼= (πI1 ↪→ πK1).

The case r = 1 of Theorem 3.93 is known and due to Dotto and Le ([DL21,
Thm.1.3]). We generalize below their proof to the case r ≥ 1 using the results in
[BHH+23, §8.2]. Moreover the diagram D(ρ) in Theorem 3.93 is in fact the same
as the diagram D(πglob(ρ)) of [DL21, Thm.1.3].

3.4.2. Review of patching functors. We recall the patching functors of
[EGS15, §6.6] and some results of [BHH+23, §8.2].

We keep the notation of §3.4.1. We choose Serre weights σw̃ ∈ W (rw̃(1)) for
w ∈ Sp\{v} and set

σv def
=
⊗

w∈Sp\{v}
σw̃.

For each w ∈ Sp\{v} we fix a tame inertial type τw̃ at the place w̃ such that,
denoting by σ(τw̃) the irreducible smooth representation of GL2(OFw̃

) over E asso-

ciated by Henniart to τw̃ in the appendix to [BM02], JH(σ(τw̃)) contains exactly

one Serre weight in W (rw̃(1)) (where (−) means the mod p semisimplification).
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The existence of such τw̃ follows from [EGS15, Prop.3.5.1], and the fact σ(τw̃) can
be realized over E = W (F)[1/p] follows from [EGS15, Lemma 3.1.1]. For each
w ∈ Sp\{v} we also fix a GL2(OFw̃

)-invariant W (F)-lattice σ0(τw̃) in σ(τw̃).
We define

σ0,v def
=
⊗

w∈Sp\{v}
σ0(τw̃),

and for any continuous representation σṽ of GL2(OFṽ
) on a finite type W (F)-

module, we consider σ0,v ⊗W (F) σṽ as a representation of U via U �
∏

w∈Sp
Uw

and the isomorphisms ιw̃. We define S(Up,W (F))mΣ exactly as in §2.1.2 replac-
ing F by W (F) and Uv by Up. Then, as in [EGS15, §§6.2,6.6], by “patching”

HomU (σ
0,v⊗W (F)σṽ, S(U

p,W (F))mΣ)∗ for various U (where (−)∗
def
= HomW (F)((−),

E/W (F)) as in loc.cit.), we obtain a patching functor

M∞ : σṽ �−→ M∞(σ0,v ⊗W (F) σṽ)

which is an exact functor from the category of continuous representations σṽ of
GL2(OFṽ

) on finite type W (F)-modules to the category of finite type R∞-modules
(though this patching functor depends on σ0,v, we just writeM∞(σṽ) in the sequel).
The local ring R∞ is (see [GK14, §4.3] or [DL21, §6.2]):

R∞
def
= Rloc�X1, . . . , Xq−[F+:Q]�,

where q is an integer ≥ [F+ : Q] and

Rloc def
=
(
⊗̂w∈S\Sp

R�
rw̃(1)

)
⊗̂W (F)

(
⊗̂w∈Sp\{v}R

�,(1,0),τw̃
rw̃(1)

)
⊗̂W (F)R

�
rv(1)

.

Recall R
�,(1,0),τw̃
rw̃(1) is the reduced p-torsion free quotient of R�

rw̃(1) parametrizing

framed potentially Barsotti–Tate deformations with inertial type τw̃ (by local-global
compatibility and the inertial Langlands correspondence, for w ∈ Sp\{v} the action

of R�
rw̃(1) on M∞(σ0,v ⊗W (F) σv) factors through this quotient, see [EGS15, §6.6]).

As in [BHH+23, §8.1] (see the discussion before [BHH+23, Rem.8.1.3] but note
that we do not need to fix the determinant here) we have isomorphisms R�

rw̃(1)
∼=

W (F)�X1, X2, X3, X4� for w ∈ S\Sp, and, by genericity of rv,

R�
rv(1)

∼= W (F)�X1, . . . , X4+4[Fṽ:Qp]�.

By [EGS15, Thm.7.2.1(2)] (and [GK14, Rk.5.2.2]) we have

R
�,(1,0),τw̃
rw̃(1)

∼= W (F)�X1, . . . , X4+[Fw̃:Qp]�,

so that we finally get
(3.86)

R∞ ∼= R�
rv(1)

�X1, . . . , X4(|S|−1)+q−[F+
v :Qp]

� ∼= W (F)�X1, . . . , X4|S|+q+3[F+
v :Qp]

�.

Moreover, if σṽ is free of finite type over W (F), then M∞(σṽ) is free of finite type
over a subring S∞ of R∞, where S∞ ∼= W (F)�x1, . . . , x4|S|+q�. Finally, denoting
by m∞ the maximal ideal of R∞, we have
(3.87)

M∞(σṽ)/m∞ ∼= HomU

(
(⊗w∈Sp\vσw̃)⊗F σṽ, S(U

p,F)[mΣ]
)∨ ∼= HomUv

(σṽ, π)
∨,

where π is as in Theorem 3.93.
Since everything is now at the place ṽ, we drop the index ṽ. If τ is a tame

inertial type, we set R
(1,0),τ
∞

def
= R∞ ⊗R�

ρ
R

�,(1,0),τ
ρ . If σ ∈ W (ρ), we denote by Pσ
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the projective F[GL2(Fq)]-envelope of σ and by P̃σ the projective W (F)[GL2(Fq)]-
module lifting Pσ. We recall that the scheme theoretic support of an R∞-module
M is R∞/AnnR∞(M). The following theorem then follows by exactly the same
proof as for [BHH+23, Prop.8.2.3] and [BHH+23, Prop.8.2.6].

Theorem 3.94. There exists an integer r ≥ 1 such that

(i) for any σ ∈ W (ρ) the module M∞(σ) is free of rank r over its scheme-
theoretic support which is a domain;

(ii) for any σ ∈ W (ρ) the modules M∞(P̃σ) and M∞(Pσ) are free of rank r
over their respective scheme-theoretic support;

(iii) for any tame inertial type τ such that JH(σ(τ )) ∩ W (ρ) �= ∅ and any
GL2(OK)-invariant W (F)-lattice σ0(τ ) in σ(τ ) with irreducible cosocle,
the module M∞(σ0(τ )) is free of rank r over its scheme-theoretic support,

which is the domain R
(1,0),τ
∞ .

Corollary 3.95. Let π as in Theorem 3.93 and r as in Theorem 3.94. We
have an isomorphism of GL2(OK)K×-representations D0(ρ)

⊕r ∼= πK1 .

Proof. The action of the centerK× being by definition the same on both sides,
we can focus on the action of GL2(OK). It follows from Theorem 3.94(i) and (ii) and
from (3.87) that the surjection Pσ � σ induces an isomorphism of r-dimensional

F-vector spaces HomGL2(OK)(σ, π
K1)

∼→ HomGL2(OK)(Pσ, π
K1). In particular the

multiplicity of each σ ∈ W (ρ) in πK1 is r. It follows from M∞(D0,σ(ρ)/σ) = 0
(recallD0(ρ) = ⊕σ∈W (ρ)D0,σ(ρ)) and from (3.87) that the injection σ ↪→ D0,σ(ρ) in-

duces an isomorphism HomGL2(OK)(D0,σ(ρ), π
K1)

∼→
HomGL2(OK)(σ, π

K1). This gives an inclusion D0(ρ)
⊕r ↪→ πK1 . If this inclusion

is strict, then by maximality of D0(ρ)
⊕r (an obvious generalization of [BP12,

Prop.13.1]) this implies there exists σ ∈ W (ρ) which appears in πK1/D0(ρ)
⊕r, and

hence has multiplicity > r in πK1 , which is a contradiction. �
Remark 3.96. In the proof of Theorem 3.94, and hence also in Corollary 3.95,

one only needs the slightly weaker bounds 1 ≤ ri ≤ p − 4 (and 2 ≤ r0 ≤ p − 3
if rṽ is irreducible) in the genericity conditions (viii) on rṽ (or equivalently ρ)
in §3.4.1 (these bounds are used in [LMS22, §4] which is used in the proof of
[BHH+23, Prop.8.2.6]).

3.4.3. Direct sums of diagrams. We prove Theorem 3.93 using the method
of [DL21, §4].

We keep the notation in §§3.4.1, 3.4.2. Everything in this section being at the
place ṽ, we drop it from the notation. Recall we identify the set of embeddings
Fq ↪→ F with {0, . . . , f − 1} via σ0 ◦ ϕi �→ i. We denote by P the set of subsets of
{0, . . . , f − 1} and by Jc ∈ P the complement of a subset J ∈ P.

We start by fixing a tame inertial type τ such that JH(σ(τ )) ∩ W (ρ) �= ∅
and a GL2(OK)-invariant W (F)-lattice θ0 in σ(τ ) with irreducible cosocle. With
the notation of [EGS15, §5.1] there is I ∈ P such that this cosocle is σI(τ ) and
θ0 = σo

I (τ ). As in [EGS15, p.77] we can reindex the irreducible constituents of
θ0/p by elements J ′ in P as follows:

σJ′
def
= σ(J′∪Ic)\(J′∩Ic)(τ ),

so that (by [EGS15, Thm.5.1.1]) the j-th layer of the cosocle filtration of θ0/p
consists of the σJ′ for |J ′| = f − j, 0 ≤ j ≤ f . By the beginning of the proof
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of [EGS15, Thm.10.1.1] (see loc.cit. p.77), there is J ′
min ⊆ J ′

max in P such that

JH(θ0/p) ∩W (ρ) = {σJ′ : J ′
min ⊆ J ′ ⊆ J ′

max}. By [EGS15, Thm.7.2.1] we have

R(1,0),τ
∞

∼=
(
W (F)�(X ′

j, Y
′
j )j∈J′

max\J′
min

�/(X ′
jY

′
j − p)j∈J′

max\J′
min

)
�U1, . . . , Ud�

for some integer d ≥ 0. Up to renumbering the variables we can assume that the

irreducible component of R
(1,0),τ
∞ /p corresponding to σJ′ , J ′

min ⊆ J ′ ⊆ J ′
max, in

[EGS15, p.77] (which is the support of M∞(σJ′) by Theorem 3.94(i)) is given by
the ideal ((X ′

j)j∈J′\J′
min

, (Y ′
j )j∈J′

max\J′).

We first fix J ∈ P such that |J | = f − 1, so that Jc = {j} for some j ∈
{0, . . . , f − 1}. We let θ be the unique (up to homothety) GL2(OK)-invariant
W (F)-lattice in σ(τ ) with irreducible cosocle σJ ([EGS15, Lemma 4.1.1]). Up to
multiplication by an element in W (F)×, there is a unique GL2(OK)-equivariant
saturated inclusion ι : θ ↪→ θ0, i.e. such that the induced morphism ι : θ/p → θ0/p
is nonzero. Recall that by Theorem 3.94(iii) both M∞(θ) and M∞(θ0) are free of

rank r over R
(1,0),τ
∞ .

Lemma 3.97. The image of M∞(ι) : M∞(θ) ↪→ M∞(θ0) is xM∞(θ0), where
x = p if j ∈ J ′

min, x = X ′
j if j ∈ J ′

max\J ′
min and x = 1 if j /∈ J ′

max.

Proof. It follows from [EGS15, Thm.5.2.4(4)] (up to a reindexation as above)
that p(θ0/ι(θ)) = 0 and that the irreducible constituents of θ0/ι(θ) are the σJ′ for
J ′ containing j. In particular θ0/ι(θ) is of the form σJ for a capped interval J as in
[EGS15, p.81] (namely J = {J ′ : j ∈ J ′}). By the proof of [BHH+23, Prop.8.2.3]
the module M∞(θ0/ι(θ)) = M∞(σJ ) is free of rank r over its schematic support,

which is the unique reduced quotient of R
(1,0),τ
∞ /p with irreducible components

corresponding to the σJ′ such that j ∈ J ′ and J ′
min ⊆ J ′ ⊆ J ′

max. If j /∈ J ′
max, there

are no such J ′, so this quotient is 0 (i.e. M∞(θ0/ι(θ)) = 0). If j ∈ J ′
max\J ′

min, then

this quotient is clearly (R
(1,0),τ
∞ /p)/(X ′

j) = R
(1,0),τ
∞ /(X ′

j). Finally, if j ∈ J ′
min, all

irreducible components remain, i.e. this quotient is R
(1,0),τ
∞ /p. The lemma follows

by exactness of M∞. �

We now consider an arbitrary J ∈ P and let θ be the unique invariant W (F)-
lattice in σ(τ ) with irreducible cosocle σJ . If Jc �= ∅ we set Jc = {j1, . . . , jh} and

Ji
def
= J � {j1, . . . , jh−i} for i ∈ {0, . . . , h} (so J0 = {0, . . . , f − 1} and Jh = J).

As above we then denote by θi for i ∈ {0, . . . , h} the unique (up to homothety)
invariant W (F)-lattice in σ(τ ) with irreducible cosocle σJi

and ιi : θi ↪→ θi−1 the
corresponding saturated inclusion for i ∈ {1, . . . , h} (so θ0 is the same as before
and θh = θ). The composition

ι1 ◦ · · · ◦ ιi : θi
ιi
↪→ θi−1

ιi−1

↪→ · · · θ1
ι1
↪→ θ0

is still saturated since one can check using [EGS15, Thm.5.1.1] that the cosocle
σJh

of θh/p remains in the image of θi/p → θi−1/p for all i ∈ {h, h − 1, . . . , 1}
(indeed, by loc. cit. the Serre weights σJi

− σJi−1
in θ0/p form a nonsplit extension

as Ji ⊆ Ji−1 and |Ji−1\Ji| = 1). In particular ι
def
= ι1 ◦ · · · ◦ ιh is the unique (up to

scalar) saturated inclusion θ ↪→ θ0.

Proposition 3.98. There is x ∈ R
(1,0),τ
∞ such that the image of M∞(ι) :

M∞(θ) ↪→ M∞(θ0) is xM∞(θ0). Moreover the principal ideal xR
(1,0),τ
∞ only depends

on (the semisimplification of) θ0/ι(θ).
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Proof. The statement being trivial if Jc = ∅ (equivalently if θ = θ0) we
can assume Jc �= ∅. For i ∈ {1, . . . , h} we can apply Lemma 3.97 to ιi : θi ↪→
θi−1 instead of ι : θ ↪→ θ0. Hence there is xi ∈ R

(1,0),τ
∞ such that the image of

M∞(ιi) is xiM∞(θi−1). The image of M∞(ι) is thus (
∏h

i=1 xi)M∞(θ0), i.e. we

can take x =
∏h

i=1 xi. It follows that M∞(θ0/ι(θ)) ∼= (R
(1,0),τ
∞ /(x))⊕r. Hence the

irreducible components of R
(1,0),τ
∞ /(x) are the ones corresponding to the σJ′ such

that J ′
min ⊆ J ′ ⊆ J ′

max and σJ′ appears in θ0/ι(θ), and their multiplicities are the
multiplicities of the σJ′ in θ0/ι(θ). The second assertion then follows by the same
argument as at the end of the proof of [DL21, Prop.4.17] (it also follows from an
explicit computation of x via Lemma 3.97). �

Till the end of this section, we now extensively use notation and results from
[DL21, §4] to which we refer the reader for more details.

Recall that D0(ρ) = ⊕σ∈W (ρ)D0,σ(ρ). If χ : I → F× is a character appearing in

D0(ρ)
I1 and Fvχ ⊆ D0(ρ) is the corresponding eigenspace (which is 1-dimensional),

we define as in [DL21, Def.4.1] Rχ as the character of I on

(socGL2(OK)〈FGL2(OK)vχ〉)I1 ,

which is also 1-dimensional as it is σI1 for the unique σ ∈ W (ρ) such that χ appears
in D0,σ(ρ)

I1 . As in [BP12, p.8] we denote by χs the character of I on
(
0 1
p 0

)
vχ ∈

D0(ρ)
I1 and by σ(χ) the Serre weight which is the cosocle of Ind

GL2(OK)
I χ.

We define as in [DL21, Prop.4.14] an isomorphism

hχ : M∞(σ(Rχs))/m∞
∼−→ M∞(σ(Rχ))/m∞

(the “one-dimensional by Theorem 4.6” in the proof of loc.cit. can just be replaced
by “of the same dimension by Theorem 3.94”; also note that hχ is an isomorphism,
as it is dual to the isomorphism gχ in loc.cit.).

Proposition 3.99. Let k ≥ 1 and χ0, . . . , χk−1 arbitrary characters of I which
occur on πI1 (equivalently on D0(ρ)

I1) such that Rχs
i = Rχi+1 for i ∈ {0, . . . , k−2}

and Rχs
k−1 = Rχ0. Then the isomorphism

hχ1
◦ hχ2

◦ · · · ◦ hχk−1
◦ hχ0

: M∞(σ(Rχs
0))/m∞

∼−→ M∞(σ(Rχs
0))/m∞

is the multiplication by a scalar in F× which depends neither on r nor on M∞. In
particular this scalar is the same as in [DL21, (34)].

Proof. We just indicate the steps in the proofs of [DL21, §§4.4, 4.5], where
the assumption r = 1 is used, and how one can extend the argument there to r ≥ 1.
We use without comment the notation of loc.cit.
• The definition of the isomorphism h̃χ : M∞(θRχs

)
∼→ M∞(θRχ) in [DL21, (28)]

holds because one only needs to know that M∞(θRχs

) and M∞(θRχ) are free of the
same finite rank over R∞(τ ).

• By Proposition 3.98 there exists Ũp(χ) ∈R∞(τ ) such that M∞(ι)(M∞(θRχ)) =

Ũp(χ)M∞(θRχs

), where ι : θRχ ↪→ θRχs

is as in the unlabelled commutative di-
agram below [DL21, (27)]. Since R∞(τ ) is a domain by [EGS15, Thm.7.2.1(2)]
and M∞(θRχ), M∞(θRχs

) are free of rank r over R∞(τ ) by Theorem 3.94(iii),

there is a unique R∞(τ )-linear isomorphism ι̃χ : M∞(θRχ)
∼→ M∞(θRχs

) such that

M∞(ι) = ι̃χ◦Ũp(χ), where Ũp(χ) here means multiplication by Ũp(χ) on M∞(θRχ).
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Then we have a commutative diagram analogous to [DL21, (29)] replacing the mul-

tiplication by Ũp(χ) in the diagonal map by the map h̃χ◦ ι̃χ◦Ũp(χ) = Ũp(χ)(h̃χ◦ ι̃χ).
• By the commutativity of the right-hand side of (the analog of) [DL21, (28)] and
by the isomorphism M∞(Q(χs)Rχ) ∼= M∞(θ(χs)Rχ)/p, we deduce that the map

hχ ◦ ιQ : M∞(Q(χs)Rχ) −→ M∞(Q(χs)Rχ)

is the multiplication by the image of p−e(χ)Up(χ) in R∞(τ (χs))/p. As the image of

hχ ◦ ιQ is Ũp(χ)M∞(Q(χs)Rχ) by the commutativity of the left-hand side of (the

analog of) [DL21, (28)] and the definition of Ũp(χ), we deduce that

Ũp(χ)(R∞(τ (χs))/p) = (p−e(χ)Up(χ))(R∞(τ (χs))/p).

In particular, multiplying Ũp(χ) by a unit in R∞(τ ) we can assume that Ũp(χ) and

p−e(χ)Up(χ) have the same image in the quotient R∞(τ (χs))/p of R∞(τ ). As a
consequence the analogue of [DL21, Prop.4.17] holds.
• Since by definition p−e(χ)Up(χ) ∈ R∞(τ (χs))\pR∞(τ (χs)), we have

(3.88) AnnR∞(τ(χs))/p

(
p−e(χ)Up(χ)

)
⊆ m∞(R∞(τ (χs))/p).

As Ũp(χ) �→ p−e(χ)Up(χ) ∈ R∞(τ (χs))/p (previous point), we deduce Ũp(χ)(h̃χ ◦
ι̃χ − Id) �→ 0 in EndR∞(τ(χs))/p(M∞(Q(χs)Rχ)) by the analog of [DL21, (28)]. As

M∞(Q(χs)Rχ) ∼= M∞(θ(χs)Rχ)/p is free of rank r over R∞(τ (χs))/p (by Theorem

3.94(iii)), (3.88) implies the image of h̃χ ◦ ι̃χ − Id in

EndR∞(τ(χs))/p(M∞(Q(χs)Rχ))

lands in m∞ EndR∞(τ(χs))/p(M∞(Q(χs)Rχ)). Since Ker(R∞(τ ) � R∞(τ (χs))/p) ⊆
m∞R∞(τ ), we also have

(3.89) h̃χ ◦ ι̃χ − Id ∈ m∞ EndR∞(τ)(M∞(θRχ)).

• The big unlabelled diagram before [DL21, (33)] still holds but the diagonal

maps are not simply multiplication by some Ũp(χi). For instance in the case
k = 3 (the general case being similar) one has to replace the left diagonal maps

in loc.cit. by successively (from top to bottom) Ũp(χ0)((ι̃χ2
◦ ι̃χ1

)−1 ◦ (h̃χ0
◦

ι̃χ0
) ◦ ι̃χ2

◦ ι̃χ1
), Ũp(χ2)(ι̃

−1
χ1

◦ (h̃χ2
◦ ι̃χ2

) ◦ ι̃χ1
), and Ũp(χ1)(h̃χ1

◦ ι̃χ1
). By (3.89)

and the R∞(τ )-linearity of the isomorphisms ι̃χi
, all these diagonal maps are in

Ũp(χi)(Id+m∞ EndR∞(τ)(M∞(θRχs
0))), and their composition is thus in

(3.90)
( k−1∏

i=0

Ũp(χi)
)
(Id+m∞ EndR∞(τ)(M∞(θRχs

0))).

• For ν ≥ 1 defined as above [DL21, (33)], we have from the definition of the ι̃χi
:

(3.91)
( k−1∏

i=0

Ũp(χi)
)
(ι̃χ0

◦ ι̃χk−1
◦ · · · ◦ ι̃χ1

) = pν Id

which implies p−ν(
∏k−1

i=0 Ũp(χi)) ∈ R∞(τ )× since the ι̃χi
are isomorphisms. By the

commutativity in the (analog of) the big unlabelled diagram before [DL21, (33)]
(see the previous point) together with (3.90) and (3.91) we finally obtain

h̃χ1
◦ · · · ◦ h̃χk−1

◦ h̃χ0
∈
(
p−ν

k−1∏
i=0

Ũp(χi)
)
(Id+m∞ EndR∞(τ)(M∞(θRχs

0)))
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which is our analog of [DL21, (33)]. Then [DL21, (34)] follows by the same
argument. The rest of the proof in [DL21, §5] is unchanged. �

We can now prove Theorem 3.93.

Proof of Theorem 3.93. We let D(ρ) = (D1(ρ) ↪→ D0(ρ)) be the diagram
denoted by D(πglob(ρ)) in [DL21], which only depends on ρ. LetD(π) = (D1(π) ↪→
D0(π))

def
= (πI1 ↪→ πK1) be the diagram defined by π. We will show that D(ρ)⊕r ∼=

D(π) as diagrams.
Define first R : πI1 → (socGL2(OK) π)

I1 as in [DL21, Def.4.1], i.e. Rv = Si(χ)v

with Si(χ) as in [DL21, Rem.4.2] if v ∈ πI1 is an I-eigenvector with eigencharacter
χ. Note that the eigencharacter of Rv is Rχ.

Starting from D(ρ) we define a groupoid G with objects xξ, where ξ is any
character of I such that (socGL2(OK) D0(ρ))

I1 [ξ] �= 0, and morphisms freely gener-

ated by gχ : xRχ
∼−→ xRχs , where χ is any character of I such that D1(ρ)[χ] �= 0,

as in [DL21, Def.4.3].
The diagram D(π) defines an r-dimensional representation of G, sending xξ to

the vector space (socGL2(OK) D0(π))
I1 [ξ] and gχ to the linear map

gπχ : (socGL2(OK) D0(π))
I1 [Rχ]

∼−→ (socGL2(OK) D0(π))
I1 [Rχs]

as in [DL21, §4]. Similarly, we have an r-dimensional representation of G defined
by the diagram D(ρ)⊕r; we denote the linear maps by gρχ.

To check that the two r-dimensional representations of G are isomorphic it
suffices to check that for each object x the restrictions of the two representations
to the automorphism group Gx are isomorphic (see [DL21, Prop.4.5]), which is the
case by Proposition 3.99, remembering that gπχ is the dual of hχ by (the analog of)
[DL21, Prop.4.14].

Therefore there exists an isomorphism

λ : (socGL2(OK) D0(π))
I1 ∼−→ (socGL2(OK) D0(ρ)

⊕r)I1

of I-representations such that λ◦gπχ = gρχ ◦λ on (socGL2(OK) D0(π))
I1 [Rχ] for all χ.

As πK1 ∼= D0(ρ)
⊕r as K-representations we can extend λ uniquely to an isomor-

phism λ : D0(π)
∼−→ D0(ρ)

⊕r of K-representations (extending to the GL2(OK)-
socle first). As in the proof of [DL21, Prop.4.4] we deduce that λ restricts to an

isomorphism λ : D1(π)
∼−→ D1(ρ)

⊕r commuting with
(
0 1
p 0

)
and I, which completes

the proof. �

3.4.4. Local-global compatibility results. We collect our previous results
to deduce (together with the results of [HW22]) special cases of Conjecture 2.9
and Conjecture 2.1 when n = 2 and K is unramified.

We keep all the previous notation. We also keep the assumptions (i) to (xii) of
§3.4.1 (in particular rṽ is semisimple), except that we replace the bounds on the ri
in (viii) by the stronger bounds (which are those of [BHH+23, §1]):

12 ≤ rj ≤ p− 15 if j > 0 or ρ is reducible;

13 ≤ r0 ≤ p− 14 if ρ is irreducible.

Recall that we choose Serre weights σw̃ ∈ W (rw̃(1)) for w ∈ Sp\{v} and con-
sider π = HomUv (⊗w∈Sp\{v}σw̃, S(V

v,F)[mΣ]) (see Theorem 3.93).

Licensed to Chinese Academy of Sciences.  Prepared on Thu Dec 18 04:19:45 EST 2025for download from IP 124.16.148.4.



156 3. THE CASE OF GL2(QPF )

Theorem 3.100. We have [π[m3
I1/Z1

] : χ] = [π[mI1/Z1
] : χ] for all smooth

characters χ : I → F× appearing in π[mI1/Z1
].

Proof. The statement of [BHH+23, Thm.8.3.11] applies verbatim with the
same proof to π as above using Theorem 3.94 and (3.87). Combining this with
Corollary 3.95, we see that π satisfies all the assumptions of [BHH+23, Thm.1.4],
whence the result by [BHH+23, Thm.1.5]. �

Remark 3.101. A similar argument as in (ii) of the proof of [BHH+23,
Thm.8.4.1] (which uses [GN22, App.A]) shows that we also have dimGL2(K)(π) =
f , where dimGL2(K)(π) is the Gelfand–Kirillov dimension of π as defined
in [BHH+23, §5.1].

The following theorem is one of the main results of this paper.

Theorem 3.102. Keep all the previous assumptions and assume that the ri in
rṽ satisfy the following stronger bounds:

(3.92)

{
max{12, 2f − 1} ≤ rj ≤ p−max{15, 2f + 2} if j > 0 or ρ is reducible;

max{13, 2f} ≤ r0 ≤ p−max{14, 2f + 1} if ρ is irreducible.

Let σv def
= ⊗w∈Sp\{v}σw̃, where the σw̃ are Serre weights in W (rw̃(1)) for w ∈

Sp\{v}. Then Conjecture 2.9 holds for HomUv (σv, S(V v,F)[mΣ]).

Proof. This follows from Corollary 3.70 applied to π = HomUv (σv,
S(V v,F)[mΣ]), which satisfies all the assumptions there by Theorem 3.93 and The-
orem 3.100, and by Remark 2.4(ii). �

We now give some evidence for Conjecture 2.1, still assuming (3.92). As we
also need r = 1, and to make things as simple as possible, we replace assumptions
(v) and (vii) in §3.4.1 by

r is unramified at all finite places outside Sp

and we then take S
def
= Sp (hence Σ = Sp ∪ {v1}). We also replace assumption (xii)

in §3.4.1 by

ιṽ1(Uv1) is equal to the upper-triangular unipotent matrices
mod ṽ1.

We take V v = Up
∏

w∈Sp\{v} Vw with ιw̃(Vw) = 1 + pM2(OFw̃
) ⊆ GL2(OFw̃

) =

ιw̃(Uw). We let Tṽ1 be the Hecke operator acting on S(V v,F) by the double coset

ι−1
ṽ1

[
ιṽ1(Uv1)

(
�ṽ1

1

)
ιṽ1(Uv1)

]
,

where �ṽ1 is a uniformizer in OFṽ1
. Increasing F if necessary, we fix a choice of

eigenvalues αṽ1 ∈ F of ρ(Frobṽ1) (the image of a geometric Frobenius at ṽ1) and
consider the ideal

m
S def
= (mΣ, Tṽ1 − αṽ1) ⊆ T Σ[Tṽ1 ],

where αṽ1 is any element in W (F) lifting αṽ1 (see §2.1.2 for T Σ). Then, replacing
mΣ by mS everywhere in §§3.4.1, 3.4.2, 3.4.3, by a multiplicity 1 result analogous
to the one in [BD14, Prop.3.5.1] (see for instance the argument in the proof of
[Enn, Lemma 3.1.4]) all the previous global results hold with r being 1.
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Proposition 3.103. Choose Serre weights σw̃ ∈ W (rw̃(1)) for w ∈ Sp\{v}
and let

π
def
= HomUv (⊗w∈Sp\{v}σw̃, S(V

v,F)[mS ]).

The representation π satisfies all the assumptions of §3.3.5 (with ρ = rṽ(1)).

Proof. The only missing assumption is the essential self-duality (3.76). But it
holds by the same proof as for the definite case of [HW22, Thm.8.2] using Remark
3.101. �

From the results of §3.3.5, we thus deduce the following theorems.

Theorem 3.104. The GL2(Fṽ)-representation π is generated by its
GL2(OFṽ

)-socle, in particular is of finite type.

Theorem 3.105.

(i) Assume that rṽ is irreducible. Then π is irreducible and is a supersingular
representation.

(ii) Assume that rṽ is reducible (split) and write ρ = rṽ(1) =

(
χ1 0
0 χ2

)
.

Then one has

π = Ind
GL2(Fṽ)
B−(Fṽ)

(χ1ω
−1 ⊗ χ2)⊕ π′ ⊕ Ind

GL2(Fṽ)
B−(Fṽ)

(χ2ω
−1 ⊗ χ1),

where π′ is generated by its GL2(OFṽ
)-socle and π′∨ is essentially self-

dual, i.e. satisfies (3.76). Moreover, when f = 2, π′ is irreducible and
supersingular (and hence π is semisimple).

Proof. Everything is in Corollary 3.90 and Corollary 3.92, except the precise
form of the irreducible principal series π0, πf in loc.cit., but this easily follows from
(3.83) and Theorem 3.93 (which is [DL21, §5] since r = 1). �

Combining Theorem 3.105 with Theorem 3.102, we obtain:

Corollary 3.106. Keep the same assumptions as just before Proposition 3.103.
If rṽ is irreducible or if f = 2, then π is compatible with ρ (Definition 2.81). In par-
ticular in these cases Conjecture 2.1 holds for HomUv (σv,
S(V v,F)[mS ]).

Remark 3.107. When rṽ is reducible nonsplit, a similar proof as
for [HW22, Thm.1.6] (with the hypothesis of loc.cit. on rṽ) implies that π is
generated over GL2(Fṽ) by πK1 . When moreover f = 2, a similar proof as for

[HW22, Thm.1.7] implies that π is at least compatible with P̃ρ = Pρ = B (Defini-
tion 2.70).
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