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ABSTRACT

Let p be an odd prime number. The classification of irreducible representations of GL2(Qp)
over F, is known thanks to the works of Barthel-Livné [BL95] and Breuil [Bre03a]. In the
present paper we illustrate an exhaustive description of such irreducible representations,
through the study of certain functions on the Bruhat-Tits tree of GL2(Q)). In partic-
ular, we are able to detect the socle filtration for the K Z-restriction of supersingular
representations, principal series and special series.

1. Introduction

Let p be a prime number, F' a non-Archimedean local field, OF its ring of integers and kr the
residue field, which will be assumed of characteristic p and cardinality ¢ = p/. The f-adic Local
Langlands correspondence (for ¢ # p) provides us with a well understood dictionary between suitable
representation of Gal(Qp /F), n dimensional over Qy, and suitable representations of GL,,(F') (two
independent proofs due to Harris and Taylor in [HTO01] and Henniart in [Hen00]). Moreover, via a
process of reduction of coefficients modulo ¢, Vignéras deduces a semi-simple mod ¢ Local Langlands
correspondence, as it results from her study in [Vig].

The theory, in the p-adic case, is far more complicated: for instance Grothendieck’s ¢-adic mon-
odromy theorem collapses, there are not reasonable analogues of the Haar measure, there are no
Whittacker models, etc... After a first conjectural approach pointed out by Breuil in [Bre04] and
[Bre03b], we dispose nowadays of a p-adic local Langlands correspondence in the 2-dimensional
case for F' = Q,, by the works of many mathematicians (Berger [Ber|, Berger-Breuil [BB], Colmez
[Col], Paskunas [Pasl], etc...). This correspondence is compatible with the reduction of coefficients
modulo p and enables us to establish a semi-simple mod p-Langlands correspondence for GL2(Q))
(again, such a process has been conjectured and proved in few cases by Breuil in [Bre03b] and in
generality by Berger in [Ber]).

A major problem for a conjectural mod p-Langlands correspondence is represented by the lack
of a complete classification for smooth irreducible admissible GL2(Q,) representations over F,. In
[BL94] and [BL95|, Barthel and Livné detect four families of such irreducible objects: besides a
detailed study of principal and special series (and characters), the authors discover another class
of smooth irreducible admissible representations, referred to as “supersingular”, non-isomorphic to
the previous ones. Recalling the notion of compact induction (see the end of the Introduction for
the precise definition), a supersingular representation 7 is characterised up to twist as a subquotient
of the cokernel of a canonical Hecke operator

T, € End(c—indGLz(ﬁF)FX(7£
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for a GL2(OFp)F™ representation o, parametrised by an f-tuple of integers r (such an f-tuple
depending on 7).

Their nature is still very mysterious. For instance, if F' # Q,, the aforementioned cokernels
are not even admissible and the works of Paskunas [Pas], Breuil-Paskunas [BP] and Hu [Hu] show
the existence of a huge number of supersingular representations relative to the number of Galois
representations (whose classification is indeed well known).

The case F' = Q, is far different. The cokernels of the Hecke operators, which depend here
on a single parameter r € {0,...,p — 1}, are irreducible and we deduce a complete description
of supersingular representations for GL2(Qp). The first proof of this phenomenon, due to Breuil,
appears in [Bre03al: the author is able to compute explicitly the space of Ij-invariants studying
the behaviour of certain functions, denoted as X and X!, on the Bruhat-Tits tree for GLa(Qp).
Here I; denotes the pro-p-Iwahori of GL2(Z,). Nowadays others ways to prove the irreducibility of
coker(T,) have been discovered: see for instance the papers of Ollivier ([Oll]), Emerton ([Eme08]),
Berger ([Berl]).

In the present paper we describe completely, through a wide generalisation of the techniques of
[Bre03a], the cokernel of the Hecke operators 7)., giving their GLa(Z),)-socle filtration. We stress
out that the techniques of this paper can be generalised to unramified extensions of Q,, giving the
Iwahori structure for the canonical Hecke operators in terms of euclidean structures (see [Mo2]). As
a byproduct, we give the GLa(Z,)-socle filtration for unramified principal series.

Using the notations of §2.2 for the characters x; and a and the formalism presented in the end
of this § concerning the socle filtration, the main result of the paper is the following:

THEOREM 1.1 (Propositions 6.6, 7.1, 8.1, 9.1). Let r € {0,...,p— 1}, p odd. Then the GL2(Z,)Q,
restriction of the supersingular representation coker(T}.) consists of two direct summands of infinite
length, whose socle filtration is described by

Sym'F.—SocFil(Ind "2 ?)ysa7+1) —SocFil (Ind§ 2 *) y#a™+2)—SocFil (Ind %) ysa7+3) —. |
and
Sym? =" F-—SocFil (Ind "> %)y 2a) —SocFil (nd %)y 2a2)—SocFil (ndF %)y sa?)— . .

respectively (and I denotes the Iwahori subgroup of GLg(Zy)).

With suitable restriction on the value of r, Theorem 1.1 shows that the socle filtration for
7(r,0, 1)’GL2(ZP)Q§ looks as follows:

Symrfi S Symp_3_rff, ® det™ ™ — Symr+2F§ ® detP™? — Symp_5_”Fz ® det™™2 — - -

D D D D

Symp_l_rfi ® det” —— Symr_QFf) ® det Symp+1_TF12, ® det™ ! —— Symr_4fi ® det? — - - -

If moreover we write uny for the unramified character of Q, sending the arithmetic Frobenius
to A € Fy, and wy for the cyclotomic character, we are able to prove:

THEOREM 1.2 (Propositions 6.6, 10.4). For p an odd prime number, let A\ € F;, ref0,....,p—1}
and assume (r, \) ¢ {(0,£1), (p — 1,%1)}. The socle filtration for the GLy(Z,)Q -restriction of the

P
GL2(Qj)-principal series Indg(%i?p)(un,\ ® wiuny) is described by

SocFil(Ind ")y 5)—SocFil (Ind > )y 5 a)—SocFil(Ind ¥ #) y 5a2) — .
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EXPLICIT DESCRIPTION OF IRREDUCIBLE GLj(Q,)-REPRESENTATIONS OVER F,,

The socle filtration for the GLa(Z,)Q,; restriction of the Steinberg representation for GL2(Qp) is

Sym?~'F,—SocFil(Indj " * a)—SocFil(Ind %) a?)—

The strategy of the proof of Theorems 1.1 and 1.2 has been inspired by Breuil’s notes [Bre]
and the keypoint relies on subtle and delicate manipulations on Witt vectors. Apart from these
elaborate computations, we can sum up the main ideas in the next paragraph.

Strategy of the proof!. Fix r € {0,...,p — 1} and consider the algebraic representation

o< Symrfi of GL2(F;), which will be seen as a representation of GL2(Z,)Q, in the usual way. For

n € N we consider the induction R, 41 = Indg;ég? fz) ity

of GL2(Z,) reducing to upper triangular matrices modulo p"*1. Thus the elements of R, ;1 are in a
GL?(QP)
GL2(Zp)Qp

o where Ky(p is the subgroup of elements

natural (equivariant) bijection with the functions f € c-ind
of radius n + 1 on the Bruhat-Tits tree of GL2(Q)):

o having support on the circle

ProproSITION 1.3 (Corollary 3.5). We have a GL2(Z,)Q, equivariant isomorphism

: GL2(Q;D) ~
c—1ndGL2(Zp)Q; o — EB R,
neN

GLZ(QP)

Therefore the canonical Hecke operator T' = T, acting on the compact induction c-ind «
GL2(Zp)Qp

induces a family of operators T on the representations R, (§3.2):

PROPOSITION 1.4 (Definitions 3.6, 3.7, Lemma 3.8). For alln > 1 we have an equivariant monomor-
phism T,/ and an equivariant epimorphism T} :

Tn+ 'Ry — Rt T, : R, & R,_1.
For n = 0 we have an equivariant monomorphism TO+ : Ro — R;.

In particular, R,, can be identified with a subrepresentation of R, ;1 via the monomorphism 7.
We will see (§4) that Propositions 1.3 and 1.4 let us deduce a natural equivariant filtration on
the restriction Coker(7')|qy, (z,)q; - More precisely,

PROPOSITION 1.5 (Propositions 3.9, 4.1). We have an equivariant isomorphism
Coker(T)|GL2(Zp)Q; S 7 D Tp—1—r

where m,, 7,1 are convenient, explicit, representations of GL2(Z,)Q,; . Moreover m, (resp. mp—1-r)

is endowed with a natural equivariant filtration {F’L’lg)}neN (resp. {Fily(lp_l_r)}neN), the graded
pieces being of the form

Fil") | JFilD = Ry, /Rop (resp. Fil'? ™) JFilP=1=") = Ry, 1/ Ran).

We would like to emphasize that the previous results can be generalised without much effort to
any finite extension of Q,, see [Mo2].

Thanks to Proposition 1.5 we can first reduce to the study of the inductions R, ;. Moreover,
the natural Ko(p™*!)-filtration on o induces a natural filtration {Filt(Rn+1)}te{07.__,r} on R,1, the
graded pieces being isomorphic to an induction of the form Indgo(pnﬂ)x for a suitable (explicit)
character x depending on ¢t and 7.

The inductions of the form Indggg : +)1) X, for 0 < m < n, are studied in §5 and §6. The keypoints
of such study can be summed up as follows.

Lin this paragraph, for the reader’s convenience, we decided to use lighter notations which differ slightly from the
notations used in the rest of the paper.
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1) For m < n we detect a family of functions Fj,, ;, € Indgggz Z)l) X, depending on parameters

Ly oy ln € {0,...,p—1}. Such functions are well behaved with respect to computations with
Witt vectors and to the induction functor.

2) The parameters [; appearing in 1) let us deduce a F,-linear filtration, and the compatibility
with the induction functor lets us show that such filtration is equivariant, with graded pieces
of lenght one (if m > 1) or two (if m = 0).

3) Thanks to the compatibility with Witt vectors we check that the extensions between the graded
pieces of the filtration in 2) are nonsplit.

Part 3) relies crucially on some explicit manipulations? on the ring of Witt vectors for F,: if
u, Aj € F,, then

n n

1+ PN =D PN+ Py o (A1) mod p™ ™!
j=0 §=0

where P_ ). ,(A\j—1) is a polynomial of degree p — 1 in \;_; and leading coefficient P_ ). ,(\j—2)

(and [-] denotes the usual Teichmiiller lift). Thus:

PROPOSITION 1.6 (Proposition 5.10). Let 1 < m < n be integers and x a smooth character of

Ko(p™*1). Then the socle filtration for Indgggz)l)x is described by

x—xa—yxa?—xa’—...
(see the end of this § for the definition of the character a).

We similarly deduce :

PROPOSITION 1.7 (Proposition 6.10). Let x be a smooth character of the group Ko(p"*1). The

representation Indgg(zlgffz) X has a natural equivariant filtration whose graded pieces are described

by

GL2(ZP)
Ko(p)

the extensions being non-split.

2(Zp) 2(Zp) 2

GL GL
Ind X—IndKO(p) Xa—IndKO(p) Xo —...

GLa2(Zp)
KO (p7l+1)
“glue” them together in order to obtain the socle filtration for the spaces R,+1 and, more generally,

for the spaces 7, and mp_1_,.

Once the socle filtration for the representations Ind x has been established we have to

The gluening for the graded pieces Fil'(R,11)/Fil* 1 (R, 1) is worked out in §7; the arguments
GL2(ZP)

are similar to those which led to the description of the socle filtration for Ind Ko(prth) X

The main result is
PROPOSITION 1.8 (Proposition 7.1). Let 0 < j <t < r and let Q < Fil/(R,.1) be a subrepresenta-
tion coming from the socle filtration for Fil (R,,11). Then
soc(Fil' Y (R,41)/Q) = soc(Fil' (R4 1)/Q).
In other words, the socle filtration of R, 1 is compatible with the filtration {Filt(Rn+1)}te{07.__7T}

on R,41.

We are finally concerned with the socle filtration for the spaces ., m,—1_,. As the reader will see
in §8 such filtration is obtained again, by glueing, from the socle filtration of the spaces R,11/Ry.

2the aforementioned “delicate manipulations on Witt vectors”.
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EXPLICIT DESCRIPTION OF IRREDUCIBLE GLj(Q,)-REPRESENTATIONS OVER F,,

The keypoint is a compatibility of the functions® E,, .1, with the Hecke operators T+: we are then
able to adapt in a natural way the arguments of §7 to obtain the main result.

ProposSITION 1.9 (Proposition 8.1, 9.1). The socle filtration for the space m, (resp. mp—i—r) Is
compatible with the filtration {Filg)}neN (resp. {Filgp_l_r)}neN) and Theorem 1.1 holds true.

Hereafter we give the plan of the article.

GL2(Qp) . ) ) ]
GL2(Zp)Qy’ their relations with the Bruhat

Tits tree for GL2(Q,) and the structure of the Hecke algebra for compact inductions. We summarise
the main properties of the parabolic induction for the finite case in §2.2, recalling in particular the
description of their socle filtration.

Section 3 is devoted to the description of the GL2(Z,)Q, -restriction of supersingular represen-
tations in terms of simpler objects, namely the representations R, (§3.1) and their amalgamated
sums (cf. §4) by means of convenient Hecke operators T on R,, (defined in §3.2). Such objects will
be endowed with filtrations in §4.

Sections 5, 6, 7 and 8 are devoted to the study, and the glueing, of the socle filtations on the
representations introduced in 4; in particular, in §8, such glueing are made by means of the Hecke
operator T

Finally, in §9, we make explicit how the right exactness of lim makes possible to deduce the socle

In §2 we recall the structure of compact inductions ind

e
filtration for supersingular representations from the results in §8. The final section §10 shows how
we can deduce easily the socle filtration for principal and special series using the techniques in §6.

We wish to outline that such an explicit nature for the description of supersingular GL2(Qj)-
representations (as well as principal and special series) let us describe in greatest detail the K
and I; invariant elements, where K; (resp. I) denotes the kernel (resp. the inverse image of upper
unipotent matrices) of the reduction mod p* morphism of elements of K (resp. of elements of K;_1).
Such a study has been pursued in [Mol].

We introduce now the main notations, convention and structure of the paper.

We fix a prime number p. We write Q) (resp. Zj) for the p-adic completion of Q (resp. Z) and
F, the field with p elements; F), is a fixed algebraic closure of F,,. For any A € F, (resp. « € Z,)
we write [A] (resp. Z) for the Teichmiiller lift (resp. for the reduction modulo p), defining [0] = 0.

def

We write G & GL2(Qp), K = GL3(Z,) the maximal compact subgroup, I the Iwahori subgroup
of K (i.e. the elements of K whose reduction modulo p is upper triangular) and I; for the pro-p-

iwahori (i.e. the elements of I whose reduction is unipotent). Moreover, let Z A (G) = Q, be the
center of G and B(Qy) (resp. B(F),)) the Borel subgroup of upper triangular matrices in GL2(Q))
(resp. GL2(F))).

For r € {0,...,p — 1} we denote by o, the algebraic representation SymTF; (endowed with the
natural action of GLy(F))). Explicitly, if we consider the identification Symrfi >~ F,[X,Y]" (where
F,[X,Y]" means the graded component of degree r for the natural grading on F,[X,Y]) then

or( [ Z Z } )XY E (aX 4 ¢Y) T (DX 4 dY)

Smore precisely, natural lifts inside 7, mp—1—, of the functions Fj,,

------ In

5
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b

d } € GLy(F,), i € {0,...,7}. We then endow o, with the action of K obtained

for any [ ch

p
0

representation. Such a representation is still denoted o, not to overload the notations.

by inflation K — GL2(F)) and, by imposing a trivial action of [ 2 }, we get a smooth KZ-

If H stands for the maximal torus of GLy(F,) and x : H — F; is a multiplicative character
we will write x* for the conjugate character defined by x*(h) &< ([ g (1) ] h [ (1) é ]) for h € H.
Characters of H will be seen as characters of B(F),) or, by inflation, as characters of any subgroup
of K which reduces to B(F,) modulo p, without any commentary.

By ¢ representatmn we always mean a smooth representation with central character with coeffi-
cients in F LI Vs a K- representation, for K a subgroup of K, and v € V, we write (K v)

to denote the sub-K representation of V' generated by v. For a K-representatlon V' we write
soci (V) (or soc(V), or soct(V) if K is clear from the context) to denote the maximal semisimple
sub-representation of V. Inductively, the subrepresentation soc’(V) of V' being defined, we define
soctt1(V) as the inverse image of soc!(V/soc!(V)) via the projection V' —» V/soc!(V'). We there-
fore obtain an increasing filtration {soc”(V)},en> which will be referred to as the socle filtration

for V; we will say that a subrepresentation W of V' “comes from the socle filtration” if we have

W = soc™(V) for some n € N+ (with the convention that soc®(V) = 0). The sequence of the graded
pieces of the socle filtration for V' will be shortly denoted by
SocFil(V) £ soc' (V)—soc! (V) /soc?(V)—. .. —soc™ T H(V) [soc™ (V) —. . .

We finally recall the Kroneker delta: if S is any set, and s, so € S we define
def{ 0 if s1#s2

1) = .
51,82 1 if s = so.

2. Preliminaries and definitions

The aim of this section is to recall some classical facts concerning compact inductions of p-adic
representations (§2.1 and §2.2), and to give some explicit computations in the ring of p-adic integers
» (82.3): such computations will play a key role in the rest of the article.

2.1 Compact induction of KZ-representations

For the details and proofs, the reader is invited to see [Ser77] or ([Bre03a], §2).

We write .7 for the tree of GL2(Qp). It is well known that we have an explicit G-equivariant
bijection (with respect to the natural left G-action defined on the two sets) between the vertices ¥’
of 7 and the right cosets of G/KZ. We define the following elements of G:

ad_cfl() wd_chl
10 p|” 10

and recall the Cartan decomposition
G=[][KZa"KZ;
neN

then, for all n € N, the classes in KZa "KZ/K Z correspond to the vertices of the tree at distance
n from the central vertex.



EXPLICIT DESCRIPTION OF IRREDUCIBLE GLj(Q,)-REPRESENTATIONS OVER F,,

We set Iy < {0} and for n € N we define the following subset of Z,:

n—1
L2 ply] forp, € F, ).
7=0

For n > 1 we have a set-theoretic map

Hn—l : In — In—l

z_:pj[uj] Hipj[uj]-

Moreover for n € N, u € I,, we put
0 def | P W
G = { 0 1 ]
1 et | 1 0
Inpu = pu ptL |
We have then the following family of representatives for G/K Z:
G= I o,.KZ]I I on.KZ (1)
neN, uel, neN, uel,
more precisely, we have
KzZo"KZ =[] ,KZ]] 1] 9h-1,K2
MGI’W Meln—l

for n € Nx. Heuristically, the 927 .8 correspond to the vertices at distance n from the central vertex,
located in the “positive part” of the tree, while the g}L_L .8 correspond to the vertices at distance
n from the central vertex, located in the “negative” part of the tree.

Let o be a smooth K Z-representation over Fy, V, the underlying F,-vector space. The induced
representation from o, noted by

Ind%za,
is defined as the Fp—vector space of functions f : G — V,, compactly supported modulo Z and
verifying the condition f(kg) = o(k) - f(g) for any kK € KZ, g € G, this space being endowed with

def

a left G-action defined by right translation of functions (i.e. (¢g- f)(t) = f(tg) for any g,t € G). It

turns out that Ind%’; 70 is again a smooth representation of G over F),. For g € G, v € V,;, we define
the element [g,v] € Ind% 4o as follows:

[9,0](t) £ o(tg)-v if te KZg™*
(g, 0](t) £ 0 if t¢ KZgt

Then we have the equalities g1 - [g2,v] = [g192,v] and [gk,v]| = [g,0(k) - v] for g1,92,9 € G and
Kk € KZ. Moreover:

PROPOSITION 2.1. Let &% an Fp—basis of V., and ¥ a system of representatives for the left cosets
of G/KZ. Then, the family

I E{[g,v], forg e 4, v e B}
is an F-basis for the induced representation Ind% ,o.
Proof: Omissis (cf. [BH06], Lemma 2.5 or [Bre|, Lemma 3.5). #
7
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If fe Ind%za, the .7 —support (or simply the support) of f is defined as the set of vertices
gK Z of the tree .7 such that f(g~!) # 0; this notion does not depend on the chosen representative
g of the vertex gKZ. We define for n € N the following subspace of Ind?( 50

def

W(n) = {f € nd¥% 0, thesupportof fiscontainedin K Za "KZ}.
We see (by Cartan decomposition) that the subspaces W(n) are K Z-stable, for all n € N, and
therefore
LEMMA 2.2. There exists a family {U, },en of natural K Z-equivariant epimorphisms
U, : Ind% ;0 — W(n)
inducing a natural K Z-equivariant isomorphism

md% o = @W(n)
neN

Proof: Obvious.f

Some Hecke Operators. The Hecke algebra for the induced representation from o is defined by

def

H = Endg(IDdKZU)

It is an F, algebra; moreover, there exists a canonical operator T' € H which induces an isomorphism
of F,-algebras

H = Fp[T]
(cf. [BL95], §3). If we specialise to the case 0 = o, for 0 < r < p — 1 we have the following explicit
description of the Hecke operator T

LEMMA 2.3. Forn € N, € I, and 0 < j < r we have:

([gn L X ]Yj]) Z [gnJrl,,qup"[un]? <_Mn)jXr] + [9271,[p]n,176j17’(:u'n—1X + Y)r]
HnEFp

T([QTIL,#’XP]'Y].]) - Z [9711+1,u+p"[un]’ (—pn)" Y] + [gg—l,[u]nq’éjao(X + pn—1Y)"].
,UmGFp

Forn=0,0<j <r we have

T(16, X 9Y7]) = 37 160 g (—H0 X7] + [, 65,1
mo€Fy

Tl XY = Y (91 s (1) Y] + (16, 650X ]
n1€F,

Proof: Cf. [Bre03al, §2.5 and lemme 3.1.14

We are going to fix the notations for supersingular representations of GL2(Q,): if 7 € {0,...,p—
1} we write

7(r,0,1) = coker(T : Ind% ;0 — Ind% 40,.).

2.2 Induction of B(F),)-representations

For details and proofs we invite the reader to see §1 and §2 in Breuil and Paskunas’s article [BP].
Let  be an F,-character of the Borel subgroup B(F,); it is by inflation a character of the

8



EXPLICIT DESCRIPTION OF IRREDUCIBLE GLj(Q,)-REPRESENTATIONS OVER F,,

Iwahori subgroup Ky(p) of K and we have a natural isomorphism

~ GLo(F,
Indﬁo(p)n — IndB(l?‘E,) )77.

For i € N we define the following F,-characters of the Borel subgroup B(F,):
Xi : B(Fp) = F,
a b i
[ 0 d ] = d

and
a:B(F,) = F,

ab -1
[0 d}»—>ad .

If e, is an F)-basis of 7, the element [1x,e,] is a K-generator of Indﬁ)(p)n. The structure of the

induced representations Indgo(p)n is completely known, and the following proposition collects the
main results which will be needed in the rest of the paper. We introduce the following notation:
for any x € Z, define [z] € {1,...,p — 1} (resp. |z] € {0,...,p—2}) by 2 = [z] modp — 1 (resp.
x = |x|modp —1).

PROPOSITION 2.4. Leti,j € {0,...,p—1}, x & xia/. Then the induction Indﬁo(p)x has length 2,
with components:

i) Sym”ﬁﬂfi ® det?, which is isomorphic to the K-subrepresentation generated by the element

> [ [ef] (1) ] [, exl;

uo€Fp
ii) SymP~1-li=271 Ff) ® det"™7.
Moreover
i') if x # x*® the short exact sequence
0— Symﬁfzﬂfi ® det! — Indﬁo(p)x — Sympflf[idﬂfi @ det’™ =0
is nonsplit;
it') if x = x*° (i.e.i—2j = Omod [p—1]) then Indgo(p)x is semisimple and Sym?~ '~ 7= F;@deti*j
(i.e. det’) is the K-subrepresentation of Indgo(p) X generated by

Z [ [:“10] (1) :| [1K’6X] + (_1)j[1K’6X]'

1o€Fy

Proof: It is a well known result about representations of GLy(F,) over F,. See also [BP],
Lemmas 2.2, 2.6, 2.7 §

REMARK 2.5. It is possible to detect an F,, basis of H-eigenvector for the irreducible fators of
the induction Indﬁo(p)x described in Proposition 2.4 (see [BP], Lemmas 2.6 and 2.7). Indeed, an

F,-basis of H-eigenvectors for the subrepresentation Sym”*mf?, ® det’ is given by the elements

Z b [ [Mlo] (1) ] 1, ey] for0<1<[i—2j]
po€Fy

> b Wl § e+ 0 e fort = fi- 21,
Ho€Fp

9



STEFANO MORRA

while the homomorphic image of the elements

1 . )
>, ué[ [“10] . } (k. for [i—2j]<I<p—1
ro€Fy
describes an Fp—basis of H-eigenvectors in the quotient Indﬁo(p)x/ Sym“_mfi ® det’ (which is

naturally isomorphic to Symp_l_ﬁ_Qj ]Fi ® det™).

The next lemma will play a crucial role in the sequel.
LEMMA 2.6. Let 0 <r <p—1, 0 <t < p— 2 be integers, and consider the natural projection
Indﬁo(p)xﬁat 5 Symp_l_LT_QtJFfp ® det" .
Iff e Indﬁo(p)x;?at is such that
la] 0 (i) 41
)=

for any a,d € F; then m(f) is of the following form (up to multiplication by a scalar multiple):

i) ifr—2t#0,1[p— 1] then «(f) =0;

ii) if r —2t = 1[p — 1] then w(f) = XP~2;
iii) if r — 2t = 0[p — 1] then 7(f) = XP~2Y. More precisely, the image of f via the isomorphism

Ind% det’ = det! ® Sym?~1F, @ det!
is (0, XP~2Y).

Proof: The H-eigencharacters of Symp_l_LT_QtJFZ ® det"t are
P~ 1 (r=2t)+r—t—j gr—t+j
for j € {0,...,p — 1 — |r — 2t]}, each of them corresponding respectively to the H-eigenvector

XP~1=lr=2t]=JyJ_ Therefore, the condition on 7(f) to be an H-eigencharacter gives

Gt—igr—tti — gr—t=1gt+1
for a suitable j € {0,...,p — 1 — [r —2t]} and for all a,d € F,; in other words
p1-lr-2t=j-1lp-1)

for some j € {0,...,p—1— |[r —2t|}. This is possible iff j =0 and r —2t =1[p— 1] or j =1 and
r—2t=0[p—1]. 4

2.3 Computations on Witt vectors

In this section we are going to describe the p-adic expansion of some elements in Z,. The explicit
description of Lemmas 2.7 and 2.8 is one of the key arguments to describe the socle filtration for
the K Z-restriction of supersingular representations. The main reference for this section is [Ser63],
Ch. II.

For A, i € F,, we define the following element of F:

LN
—P/\(M)dzezi)\pﬁﬂj.
=1 P

Note that Py(p) is a polynomial in pu, of degree p — 1 and whose leading coefficient is —\. We have
the

10
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LEMMA 2.7. Let A\, u € Fp,. Then
i) the following equality holds in Zy:
]+ [l = [\ + ] + p[Pa(p)] + PPt

where t) ,, € Z, is a suitable p-adic integer depending only on A, j;

i1) the following equality holds in F),
Py(pp = A) = =P\ (p).
Proof: Omissis.{

We can use Lemma 2.7 to deduce more general results.

LEMMA 2.8. Let A € F), Z;-lzopj[,u,j] € I,+1. Then the following equality holds in Z,/(p™™1):

A+ Zzﬂ w3l = [+ po] + plin + Palpo)] + -+ P ltn + Pro s (1))

where, forall j = 1,...,n—2, the Py _,,.(X)’s (resp. Py ,,(X), resp. Py\(X)) are suitable polynomials
in Fp[X], of degree p—1, depending only on A, ..., p; (resp. on A, pio, resp. on \), and whose leading
coefficient is — Py .., (1j) (resp. —Px(po), resp. —A).

Proof: It is an immediate induction using Lemma 2.7-7). §

LEMMA 2.9. Let A\ € Fp, z & P (P’[n;] and let k > 0. There exists a p-adic integer 2z’ =
> j-1P° 1] € Zy such that
Z'(1 + zp*[A]) mod p"*+1.
Furthermore, for j = k+3,...,n (resp j=k+2, resp. j < k+1) we have the following equality
in Fy:
g = 0+ g1y A+ papg g1 A+ Sia(pio1)
(resp. pigta = [y o + pimN if j =k + 2, vesp. pj = pj if j < k+ 1) where Sj_o(X) € Fp[X] is

a polynomial of degree p — 1, depending only on A, ..., uj—o2 and leading coefficient —sy ., =

M;_l — Hj-1-
Proof: Exercise on Witt vectors.

To conclude this section we recall two elementary results which will be used in the rest of the
paper:

LEMMA 2.10. i) For 0 < j < p— 1 we have the equality in F,:
Yo ==bp
neFy

i) Let V be an Fp—vector space and let vy, ...,vp—1 € V be any p-tuple of elements of V. The sub
F,-vector space of V generated by Z?;é W vj for p varying in F}, coincide with the F,-subvector
space of V generated by the elements vy, ..., vp_1.

Proof: The assertions are both elementary; the second comes from the fact that the Vander-

11
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monde matrix

1 T
1 1 1 1
1 2 22 or—1

[ 1 p=1 (p=1)7 ... (-1 ]

is invertible modulo p. §

3. Reinterpretation of the K Z-restriction of supersingular representations: the
KZ-representations R,

The goal of this section is to give a precise description of the K Z-restriction of supersingular
representations 7(r,0,1)|xz; the main result is then Proposition 3.9, whose formulation is due to
Breuil ([Bre], §4.2). To be more precise, the first step is to introduce, in §3.1, the K-representations
R, from which we get an alternative description of the compact induction Ind[G(ZJ (cf. Proposition
3.5). Subsequently, we endow the R,,’s with suitable Hecke operators 7T, ﬁf : R, = R,+1 which let us
define the amalgamated sums (4); Proposition 3.9 will then be a formal consequence.

3.1 Defining the K-representations R,
For all n € N we define the following subgroup of K:

Ko(p")d:ef{[ o 0

Ve d ] € K, wherec € Z,}

(in particular, Ko(p®) = K and Ky(p) is the Iwahori subgroup). For 0 < 7 < p—1and n € N
we define the following Ko (p™)-representation o)’ over F),: the associated F-vector space of o) is

Symrfi, while the left action of Ky(p™) is given by

d c

a b 4 y def
n L xYriyd
O',r(|: ]) XYy UT([p”b a

e d ]) XTIy

0

+ is isomorphic to o,. Finally, we define

b . . .
for any [ pzc d ] € Ko(p"), 0 < j < r; in particular, o

R Indllgo(pn)af.
If r is clear from the context, we will write simply R,, instead of R}

In order to establish the relation between the R™’s and the compact induction Ind% ,o, we need
the following elementary lemma:

LEmMA 3.1. Fix n € N. Right translation by a™w induces a bijection
K/Ko(p") > KZa "KZ/KZ.

Proof: Elementary, noticing that ([ I?n (1) } KZ [ pon (1) ]) NK = Ky(p"). ¢

For any n € Ns, u € I, and i/ € I,,_1 we see that
1 1 0
g?w = [ ’Lf 0 ] ow, g}L,L#,w = [ 1 ] a"w
from which we deduce the following corollaries.

12
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COROLLARY 3.2. Let n € N~. We have the following decomposition for K:
_ w1 1 0
k=104 o |0onID IT |, 3| 5e0m,
MEIn ll/elnfl
Proof: Immediate from the decomposition given in (1).

COROLLARY 3.3. Let 0 < r < p—1, n € Ns. The family

. 1 . 1 o .
R?dzf{[[lf 0]7Xr ’Yj]v[[pu' ?],XT 7Y )forp € In, ' € In-1,0 < j <1}

is an Fp—basis for the representations R,. Moreover, the element
[1KZ7 YT] € Rg
is a K-generator for the representation R}
Proof: Immediate from Proposition 2.1 and Corollary 3.2. 4

The following result is the key to establish the relation between the compact induction Ind% 5o,
and the R,’s.

PROPOSITION 3.4. Let 0 <r < p—1,n € N and let W(n) be the K Z subrepresentation ofInd%Zar
defined in §2.1. We have a K Z-equivariant isomorphism

¢, :W(n) >R,

such that for all 0 < j <r

Bullal e XY = (4 | Xy

®ullgh e XV =1 | [ 20YT)
ifn > 0 and
Oo([lg, X" IY)) = XTIy
ifn=0.

Proof: We fix an index n > 1 (the case n = 0 is immediately verified). Thanks to Proposition
2.1 it is clear that ®,, is an F)-linear isomorphism. Concerning the K Z-equivariance, we fix x € K,
[ € N and, for i € {0, 1}, g;ﬂm and p € I,,_;. Then leg;7i7“ = g;(fz(ﬁ) i
li € N while i(x) € {0,1} and p(k) € I,_i() depend only on x. If g;, (resp. gi(.)u()) is the
i(r)
n—i(k),u(k)

(K)/’ﬂpl1 for some k1 € K,

representative of K/Ky(p™) corresponding to gfb_i7 " (resp. g ) via the bijection of Lemma

3.1 we get:

{ KGipn = Gik),u(x) K2
/iplg:z—i,p, = gi(i{),u(n)ﬁlpll

. ; 0 1 ; . ;
for some ko € Ko(p") and since g,,_; , = i [ o0 ] w" (and similarly for g;(fz(ﬁ)w(ﬁ), Gi() (k)

we conclude

0 1 0 171 & i) men
2 4[] -

13
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We finally need the equality

to see that

(I’n(“pl ) [g;,wv]) = K+ Py ([gin, w - v])
and the proof is complete. f

We deduce immediately the main result of this section:

COROLLARY 3.5. Let r € {0,...,p — 1}. We have a KZ equivariant isomorphism

a ~
IndKZUT — @R?
neN

3.2 Hecke operators on the R,’s, description of 7(r,0,1)|xz

In this section we are going to define some Hecke operators T..", T';” on the representations R,,’s which
allow us to give a description of the K Z-restriction of a supersingular representation m(r,0,1)|xz
in terms of the Ry, 7,7, T,,. The main result will be Proposition 3.9.

We start from the definition of the Hecke operators on the R,’s.

DEFINITION 3.6. Let n € N~. We define the Fy,-linear morphism T, : R,, — Ry, +1 by the conditions

S U ED W KA NOMEY

Hn€Fp
1 0 i et 1 0 R
T e 3 [ VDE T (s gy 1]

forpel,, W el, 1and0<j<r.
We define the F,-linear morphism T, 0+ : Ry — Ry by the condition:

75 (e, X = S (| B T 00
pro€Fy

for0 < j <.

Identifying R,, with W (n) via the isomorphism described in Proposition 3.4 and using the results
of §2.1 we see that

T (l9.v]) = Tnsr(T([g,])) (2)

for all g € KZa "KZ, v € o, (ie. T, (|g,v] is described as the projection of T'([g,v]) on the
W(n + 1) component of the compact induction).
Similarly, we have

DEFINITION 3.7. Let n € N, n > 2. We define the Fp-ljnear morphism T, : R, — R,_1 by the
conditions:

o 4 g | e X )

1 0
pr' 1

1 0
[{ plln—2 1
14

} JXIyTI & ] L0 0(ttn—2X +Y)"]



EXPLICIT DESCRIPTION OF IRREDUCIBLE GLj(Q,)-REPRESENTATIONS OVER F,,

forpel, W €I, 1and 0<j <.
For n =1 we define T} : Ry — Ry by the conditions:

Tl Vel ]y s (kv
Ty (L, XY™ 7))

def r
— ]70Y .

for po € Fp, 0 < 5 <.

Again, identifying R,, with W (n) via the isomorphism described in Proposition 3.4 and using
the results of §2.1 we see

T, ([g,v]) = ¥n-1(T([g,v])) (3)

forallge KZa™"KZ,v € o, and n € N5 (i.e. T, ([g,v] is described as the projection of T'([g, v])
on the W(n — 1) component of the compact induction).

Thanks to the isomorphism of Proposition 3.4, we deduce the following properties of the Hecke
operators T+

LEMMA 3.8. The operators T's enjoy the following properties:
1) For all n € N+, the morphisms is T, , T, are K-equivariant; for n = 0, the morphism T(;r is
K -equivariant.
2) For all n > 0 the morphism T, is injective.

3) For all n > 1 the morphism T, is surjective.

Proof: i). We recall that the K Z-action on the tree preserves the distances from the central
vertex. The assertion is then clear from the K Z-equivariance of 7" and the equalities (2), (3).
i1) and 7i). We recall that the matrix

10 0 ... 0]
11 1 ... 1
1 2 22 or
_1 rorz .. 7“7"_

is invertible modulo p. This implies, for any fixed ¢ € {0, 1}, the following facts:

-) by support reasons the condition T, ([g; ., v]) = 0 forces v = 0 for any choice p € I,,_;

-) ifn > 1+iand p € I,_1; the Fp-subvector space of Ry, generated by T, ([9; piypn—1[un 1] Y1)
for p,—1 € F, coincide with the Fj,-subvector space of R,,_1 generated by [9: pi X r=JYJ] for
je{0,...,r}

This ends the proof.

From now onwards we will consider R,, as a K-subrepresentation of R, via the monomorphism
T.F, for any n € N, without any further comment.

We can use the Hecke operators TF in order to construct a sequence of amalgamated sums of

15
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the R,’s. We define Ry @, Rz as the amalgamated sum
Ty
Ry R,

-7y ipra

¥
Ry > Ro ®R, R

where the second projection pro is epi by base change. For any odd integer n € Ns we define
inductively the amalgamated sum Ry ®r, Ro ®r, - - ®r, Rnt1 as:

T

R,.C Rn+1 (4)
—prn—10Ty DPTn+1
v
Ry ®Rr, Ro ®Rry -+ ®R,_» Bp—1 >Ry DBpr, Ro PRy -+ ®r, Rnt1;

once again, the second projection pr,+1 is epi by base change.
For any even positive integer m € N we define the amalgamated sum Ry /Ry ®rg, - - - ®r,, Rm+1
in the evident similar way.

We are now ready to state the main result of this section

ProPOSITION 3.9. Let 0 <7 < p— 1. We have a KZ equivariant isomorphism
w(r, 0, )|z ~ lim (Ro ®g, -~ ©r, Rn1) @ m (R1/Ro ©r, - ORy, Bint1)-
nodd meven
Proof: We have the following commutative diagram, with K Z-equivariant arrows:

T|
(d$ ;0,) k7 — = (Ind% ;0,) w7

l ¢

l T+ 3 (T +Tw) l

@ R, "t @ Ry;
neN neN

as the restriction functor is exact, we deduce that the isomorphism of corollary 3.5 induces an iso-
morphism 7 (r,0,1)|kz = coker(Ty” + > (T + T,;)). We dispose of the evident inductive systems:

n=1
n n n+1
{ Y. T+ P R~ D Ri}
Jj=1,jodd j=1,7 odd i=0, i even neN, nodd
n n n+1
{T0++ >, TT+T7: D R~ D Ri}
j=1,jeven j=0, j even i=0, 7 odd neN, n even

so that, by the right exactness of the functor lim, the isomorphism of corollary 3.5 gives
H

n
m(r,0,1)|kz = lim <coker( > Tj++Tj‘)> ® lim <coker(TO++ > T].++Tj‘)>.

n,odd j=1,j0dd n,even j=1,5even

16
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It follows finally from the definitions of the amalgamated sum (and an immediate induction) that

(coker( > T} +T;)) = Ro@g, -+ &R, But1
j=1,jodd

(coker(Tg + > TF +1T5)) = Ri/Ro ©r, -+ ©R, Bnt

j=1,jeven

and the proof is complete. f

4. Defining the filtrations on the spaces R,, Ry ®g, --- ®r, Rn+1

In this section, we fix once for all an integer r € {0, ...,p—1}. Our aim is to to point out, in definition
4.3, a filtration on lim Ry ®p, -+ Dr, Rn+1 (resp. lim Ry/Ry @R, -+ Br, Rnt+1) which will let
— —
nodd neven

us describe explicitly the socle filtration for the K Z-restriction of the supersingular representation
w(r,0,1)|kz.

PROPOSITION 4.1. For any odd integer n € N~ we have a natural commutative diagram

T
0 Rn Rn+1 Rn+1/Rn —=0

f—proror } [

0— Ro®R, - ®Rr,_, Bn-1—= Ry @R, - - ®R,, Rn41 — Rp41/Rp, — 0

n

with exact lines. We have an analogous result concerning the family
{R1/Ro ®R, - ®R, Rn+1fncan{0}-
Proof: The proof is by induction. We dispose of the commutative diagram:

T

Rn( Rn+1

l—prnloTn_ éprn-%l
'
Ry ®R, --* ®R,_ 5 Bn—1- > Ro ®R, ©R, Rn+1

where the morphism —pr,,_107 " is epi by the inductive hypothesis; it follows then from the universal
property of the amalgamated sum that the morphism pr, 11 is epi too. Moreover, since the forgetful
functor For : Repy — Vectfp is right exact we deduce, by the injectivity of 7.7 and base change in
the category Vectfp, that the morphism Ry @R, - @R, _, Bn-1 = Ro ®R, - - - ®R,, Rn+1 is injective
too.

n

From the universal property of the amalgamated sum we get the natural commutative diagram:
0 Rn Rn+1 Rn+1/Rn —0

| Vo

Ry ®R, -+ ®R,_, Bn-1“~— Ry ®R, -+ PR, Rnt1 > Rpnt1/Rn

\V'//

0

where the first line is exact. The exactness of the second line is then an immediate diagram chase.

From the proof of Proposition 4.1 we see that we have actually a much stronger result: if
0<j<n-—2isoddand Q41 is any quotient of R; ;1 we can still define the amalgamated sums

17
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Qj+1 DPR;1o " DR, Ry 41 as in 4; then

COROLLARY 4.2. Let 0 < j < mn — 2 be odd, Q11 be a quotient of Rj;1. We have a natural
commutative diagram:

yie

0 Rn RnJrl RnJrl/Rn —0

i |

0—> Qj+1 DR " DR, o Bn1 — Qj1 BR,» - OR, Bnt1 — Rypy1/Ry —= 0

with exact lines (and with the obvious convention Q1 ©g; Rji1 & Qj+1)
We have an analogous result concerning the family

{R1/Ro ®R, - ®R, Runt1}ncon{0}-

For each n € N we look at a natural filtration on R,,4;. The definition is the following:

DEFINITION 4.3. Let n € N, 0 < t < r. We define Filt(RnH) as the K-subrepresentation of R,11

def

generated by [1x, X"tY"]. For t = —1, we define Fil "} (R,,11) £ 0.
We note that

LEMMA 4.4. Let n € N. The family

{Fil'"(Rp1) 1=y
defines a separated and exhaustive decreasing filtration on Ry, 1. Moreover, for each t € {0,...,r},
the family

Pyt = {[[ b ] XY, [[ p;, ’ ] XY, € Iy, pl € 0, 00 S t}

is an F,, basis for Fil'(R,11); in particular Fil'(R,1) has dimension (p + 1)p"(t + 1) over F,.

Proof: It is immediate from corollary 3.3 and the definition of the ¢”*1’s. 4

By Frobenius reciprocity, we have an explicit description of the graded pieces of the filtration
defined in 4.3:

LEMMA 4.5. Let n € N, and fix —1 <t < r. Then, we have a K-equivariant isomorphism:
Fil' (R 1) /FiI ! (Rng1) = Indje, niny xpa',
where the characters X2, a, defined in §2.2, are seen as characters on Ko(p™*1) by inflation Ko(p™*1) —

B(F,).

Proof: As the image of the element [1x, X" ~'Y?] is a K-generator of the graded piece Fil'(R,,41)/Fil' 1 (R, 11),
and Ko(p™*!) acts on it by the character x3a’ we deduce by Frobenius reciprocity a K-equivariant
epimorphism:

Indg iy xpa’ = Fil'(Rpg1) /Fil' ™ (Rog1).
As the two spaces have the same Fp—dimension7 the latter is indeed an isomorphism. f

We then see that the first step to understand the nature of 7(r,0,1)|xz consists in the study of
the induced representations Imdﬁ0 (pn+1)xiat for n € N, 0 < ¢t < r; such a study will be the object

of the following two sections (§5, §6).
18
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5. Study of an Induction-I

In this section, we will fix two integers 1 < m < n+ 1 and n a character of B(F,) (which will be
considered as a continuous character of Ko(p"*!) by inflation), and we will fix a basis {e,} for .
The object of this section is then (cf. Proposition 5.10) to describe explicitly the socle filtration for

Ko(p™

and the proof will be essentially an induction on the length n+ 1 —m (§5.1, §5.2).
For 1 < m < n+ 1 define a subset I, 11/, of Z,:

L1 /T S P [uy), 1y € By}

Jj=m

We have the following elementary lemmas.

LEMMA 5.1. For 1 < m < n+ 1 we have the decomposition
10
m n+1y __ n+1
RV TES R | B )
2€lnt1/Im
In particular, the family

of 1 0
jm,n—ﬁ-l d:f {[|: 1 :| 5677]7 MRS ITH-l/Im}

(™) IndKO ®»™)

. = . K, : _
is an F-basis for Inng(an)n and dimg_ ( Ko(pn+1)77) = pnti-m,

Proof: Immediate from corollary 3.3. {

LEMMA 5.2. Let 1 < m < n+ 1 be integers and n a character of B(F)). Then we have a Ky(p™)-
equivariant canonical isomorphism:

Ko(p™ ~ Ko(p™
Indyer(r iy = (Ind il (7 1) @1

where 1 is seen (by inflation) as a character of Ko(p"™!) and Ko(p™) in the left hand side and in
the right hand side respectively.

Proof: The assignment, for = € I,41/In,

12V ent s 1] aloe

r 1 z 1

0} € K; for all x €

defines an F,-isomorphism which is actually Ko(p™)-equivariant, as [ 1

Ini1/Ip.

In particular, by Lemma 5.2, we can assume n = 1.

5.1 The case m =n

We establish here the first step concerning the inductive description of the socle filtration for
Indgzgz Z)l)l; fix once for all an Fy-basis {e} for the underlying vector space of the trivial char-
acter 1. We introduce the objects:

DEFINITION 5.3. Let n € Ns and 0 <[, < p— 1. Then:
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i) we define the following element of Indgogpn)ﬂ)l
TL def O .
B, Z T [ 1 ] el
un€Fp
we define formally F(q), F( n) def =0;

1) we define the following quotient of Ind E n)ﬂ)l'

(nnt1) def v 1 Ko(p") (n) (n)
QU E i 1 (.
we define formally Q ) &g
For any 0 < I,,, 1], < p—1 we will often commit the abuse to use the same notation for Fl(nn) and
n,n+1)

its image in the quotient Ql . The meaning will be clear according to the context.

Ko(p™) 1

The next computation is the main tool to describe the socle filtration for Ind Ko(prry L+

LEMMA 5.4. Let g € Ko(p"t1), A € F, and 0 < I, < p — 1. Then we have the equalities in
mdfo®") 1
Ko(pntt)™

i) g-F" =a(g)F";
. L0 n) e (I (n)
ZZ) |: pn[)\] 1 :| F1ln Z] =0 ( )( )\)Jﬂn_]

a b
anrlc d

1 0] 1 0 a b
g P 1] | p® [,Una_la] 1 i
where o/, ¢/, d' € Z, and a’ = a[p], d' = d[p]. Thus,

(n) _ In L0 = Nl p(n)
an - ;‘ M [[ pn[,una_ld} 1 :| ?e] - (ad ) Fln ’
Hn P

Proof: i). If g = [ ], then we can write

Since [A] + [pn] = [A + ppn] modulo p, we deduce

[p”l[A] HFl(nn)— ZM%[[pn[ﬂiJrM ?],e].

,Ufner
The result follows. {

As a consequence, we get the corollaries:

COROLLARY 5.5. For any 0 < I, < p — 1, the sub-Ky(p") representation of Ql(n’nH) generated by

Fl(nn) is isomorphic to al".

Proof: For any g € Ky(p") we can write g = [ L0 ] x with suitable elements A € F),

Pl 1
k € Ko(p"t!) (Lemma 5.1). The result comes from Lemma 5.4 and the definition of an n+l) A
COROLLARY 5.6. For any 0 < I, < p — 1 we have Ky(p")-equivariant exact sequence

0 —s <Fl(nn)> = Ql(:,nJrl an n+1) 0
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which is nonsplit if l,, < p — 2. Moreover,

dimg; Q") =p 1,

+1 .
Proof: The exact sequence is clear. Furthermore, if ¢ : an" ) S <Fl(nn)) is any Ko(p")-
equivariant morphism, we see that

S = e | g ) ] ol e = dllipmec) 3

u
pn€Fy n] uner

Thus, there cannot be any K(p™) equivariant sections for (Fl(:)) — Qg:’nﬂ) if0<1l, <p—2. The
assertion concerning the dimension is immediate by induction.f

COROLLARY 5.7. Let 0 < I, < p— 1. Then the socle of Ql(:’nﬂ) is given by:

soc(Q"™ V) = (™).

Proof: We have Q(n ) o (F (n) 1), as the two spaces are 1-dimensional. By a decreasing induc-

tion, assume SOC(QZ(: f;r 1)) (F, l( J)rl> for I,, < p — 2 and consider the exact sequence

0 — <F(n)> _ an ;n+1) N an ,n+1) 0.

If 7 is an irreducible K((p")-subrepresentation of an "+ guch that 7N (FIE;L)> = 0, we deduce that

Fl(:J)rl + ClFlE:L) € 7 for a suitable ¢; € Fp. From the equality

1 0 n n n
[ TR 4 = F e AR s

in Ql(:’nﬂ) (where A € F)), we find Fl(nn) € 7, contradiction. f

5.2 The general case
Fix two integers 1 < m < n+1. In this section we establish the inductive step which lets us describe

(™)

the socle filtration for the representation Indgg (o +1)1. We recall the following result:

PROPOSITION 5.8. Let 1 <m < n+ 1. For any m < j <n+ 1 we have a canonical isomorphism:

p)
7

Indy 2070, 15 Indy 20 Ind ) 1.

Ko(p?) = Kol(p

For any two (n+ 1 —m)-tuples (jm, .-, n); (Imy---s1n) € {0,...,p—1}*"™F! we define induc-

tively
Gy« 50n) =< (Imy -y 1n)
if either (Jmt1s--+y0n) < (nt1y---50n) OF (Gmtts--sdn) = (bmtis---5ln) and jp < L. We can
therefore introduce the objects:
DEFINITION 5.9. Let (I, ...,1,) € {0,...,p — 1}""™*L be an (n + 1 — m)-tuples. Then:
o(P™)

i) we define inductively the following element of ImdgO (" +1)1:

m n e 1 O m n
Fl(m)**}?’l(n)d:f Zu{n’?[ m 1:|UKO(pm)’Fl(m-Il)*'“*Fl(n)]
S L

where we adopt the convention Fl(:il Kook Fl(n") d:CfFO(m) * Fl(;rf;_lgl Kook Fl(nn) ifly,=p—1.
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i) We define the following quotient of Indgogﬁl)l:

Q) i g 1/< " x o (i, ) < (s> 1)),

lm: 7l’VL

m n+1 def Q m,n+1)

where we adopt the convention Ql ey 0 lm+1+1 o

iflyy,=p—1.
We give here the statement of the main result.

PROPOSITION 5.10. Let 1 < m < n + 1 be integers, and (L, ...,l,) € {0,...,p — 1}l 4
(n —m + 1)-tuple. Then

m n+1) ( )

i) The Ko( ™) subrepresentamon of Ql generated by F,

Kook Fl(nn) is isomorphic to *

1) we have a K (pm)—equivariant exact sequence:

m m,n+1) m,n+1)
0= (F s s ) 5 Q) = QU =0 (5)
which is nonsplit if (I, ..., 1) # (p—1,...,p— 1). Moreover
m,n+1) Ko( (m+1,n+1)
QO lm+17 7 - I d 0 m+1 le+17 .y n

and

dimfp(Q(m n-l—l)) n m+1 an m— ]ln s

lm7 7ln
iii) The socle of Ql(rT’nJgi) is given by

moy- 7lTL

As we said, the proof is an induction on the length n + 1 — m, the case m = n being proved
in the previous section; in what follows, we will therefore assume Proposition 5.10 for any length [
with [ <n 4+ 1 —m. We first need the following tools.

LEMMA 5.11. Let (I, ..., 1) € {0,...,p—1}""™F! be an (n—m+1)-tuple. The following diagrams
are commutative with exact lines

i)

-1
0*)<E(ZL)*'”*F}(:,1 )>®al"*>Q(mn ®al"*>le+1

|

0 (s B QY Qi > 0;
i)
Ko(p™ —+1 K +1,n+1 Ko(p™ +1,n+1
0 ——=Indy P70 R ek B s a0 QY e dg 00T QD
K m
00— Q™™ g ghnit @ ... g gl QY ————~Tnd Kggm)ﬂ Qi

4as remarked by the referee, the notation with the tensor product may be confusing as it can be interpreted as a

character of (n + 1 — m) copies of Ko(p™). As stressed in the statement of Proposition 5.10, the tensor product
a'™ @ --- ® a'™ we mean here is the classical tensor product of Ko(p™)-representation, see for instance [Alp], IT §5.
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Proof: The proof will be an induction on the (n+1—m)-tuple (I, ...,1l,) € {0,...,p—1}"+1=m,
i) From corollary 5.6 and the exactness of the induction functor we dispose of the following exact
sequence for any 0 <[, <p—1:

0 — Indgggz;n)) <Fvl(n)> N IndKo p )Q(n n+1) —1In dKo an n+1) 50

and (Fl(:)) =~ gln. We assume, inductively, to have the commutative diagram with exact lines:

0 — Indjo7 )1 @ ol —— Indio Q™Y —— Indj QY ——0
- o m,n Ko n,n
’ le ' & alr Ql(rm Tl) - IndKO(p Ql +1 —0.

We can invoke Proposition 5.10 for Indgggg :))1 ® aln deducing the diagram:

0 0

(F s K D) @ Q™ @ ab

my-. 7

l

(F™ 5ok Fl(n N~ le;nﬂ)

ol

K 1)
0 Indjeo ) Q1
0 0
and we are left to use the snake lemma to conclude the induction (notice that if (lp,...,lh—1) =
(p—1,...,p—1) we just deduce the isomorphism Indgggz:))Ql(nf;rl) = Qoin 1,10+li+1)

i1). It is similar to 7). The details are left to the reader. §
LEMMA 5.12. Fix two integers 1 < m < n+1, let (I, ... ,1,) € {0,...,p—1}""™*! be an (n—m+1)-
tuple and assume (I, ...,l,) < (p—1,...,p —1). Moreover, let A € F), and t = Zjeij[tj] €Z
be a p-adic integer.

Then, the action of [ PN —ll-pm‘Ht (1) } on Fl( le EEZ_L:D -+ I inside Ql(::’n—;i) is described

by

1 0 (m) (n)

— ™ e EM 4 (1 + 1) (=1 AR e B

where j € {m,...,n} is minimal with respect to the property that l; + 1 # 0mod p.
Proof: The case m = n is an immediate computation, and it is left to the reader. In order to
establish the general step, we need to distinguish two cases:

Situation A). Assume [, < p — 2. It follows from Proposition 5.10 applied to Ind® Ko E " H))l that

{ i +11 z, (1) ] acts trivially on Fl(:Z:l) SRR F(n in leﬂjjnl), and we deduce the following
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1n+1
equalities in Ind m+1 leJr ),

m+1a'~~7ln :
1 Z Mm+1 0 1 F(m-f'l) ... % F(”)] _
[)\] +pm+1t 1 = /’Lm] 1 ’ lnL+1 In
m&tp
1 0
Im41 (m+1) (n)
- 2 [ ]“vﬂml woox BT =
v TN+ ] 1 +
Im+1
. j m—+1 n
7=0
We conclude using the projection IndKOEp ::L Ql(zbj'llnzll Ql:j’ ”Jgi .

Situation B). Assume [, = p — 1; therefore Fz( ll -k Fl(n) = Fém) * F(mi_)l -k F(n)
Lemma 2.7 and the inductive hypothesm applied to F; (m+1) ceex Fl(:) € Ql:fll ) Yot us deduce
the following equalities inside Ind om +1 QlZle;l'?;_nl).

1 0 L0 (m+1) () _
[ PRI+ ] 2 [ P ] 1 } b Fipi o B =
Mmer
_ 1 0 (m-+1) (n)
B Z [pm[ﬂm—f-)\] 1][17Flm+1+1*'”*Fln]+
HmEFp
— 1 0 (m+1) (n)
+(l; +1)(=1)™ ze:F (P () + to) [ DA+ ] 1 [1,Flm+1+1 ok Fp Y
Hm p
= FM) sk B (1 + 1)1 (B« B s B
-0 (m+1) (n)
+ ?(7)\)P—st(m) x ) - k) )
s=1
where j € {m +1,...,n} is minimal with respect to the property that [; < p — 1. The conclusion

comes using the projection IndKO pmll leﬂ n+1) le 7L+1). 4

m—+1,-- 7 my- 7

We are now able to deduce easily Proposition 5.10.
Proof of Proposition 5.10:
i) From Lemma 5.11-¢) we have an isomorphism <FZE:L") SRRRE Fl(nr:l)> ®aln 5 <FZE:L) koeok Fl(nn)>

and we have <Fl(:) Kook Fl(:;ll)) >~ glm @ ... ® al»-1 by the inductive hypothesis.
(m,n+1)

lmysln

1) As in corollary 5.6, we see that for any Ky(p™)-equivariant morphism ¢ : @ —

<Fl(;n) Kook Flin)> we have

O(FL o x ) = (<0p10) - (=Bpm10,)9[Licy o €])
so that there cannot be any splitting for <Fl(£n) *o *Fl(:)> — Ql(::nﬂ) if (byyvoyln) < (p—1,...,p—
1). The identity

lelF (len-‘rl) n m+1 an m— Jln ]

mose 7ln

is now an immediate induction.
i7i) The case (ly,...,ln) = (p —1,...,p — 1) is trivial. We will prove the general case by a
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descending induction on the (n + 1 — m)-tuple (I, ...,l,). Consider the exact sequence

0—>(Fl(m) *F N = Q(m”H) Ql::ffl’ —0

and let 7 < Ql(;nnﬁ) be an irreducible subrepresentation such that 7N <Fl(:) SRREE Fl(n")> = 0. The

inductive hypothesis SOC(Ql(mflel%ln) = <F}(7;n+)1 - Fl(nn)> lets us conclude that
T=(F") x -*ﬂm+cﬁwww~*Fw>%dm4®“u”

m,n+1)

oln

for a suitable ¢; € F But by Lemma 5.12 we have the equalities in Qz

1 0 m . - )
|:pm[)\] 1:|(F1l(m—i)_1**F}EL)+01‘F}E,L)**‘F}1)):

= (B e x B B s BY) 4

A + 1)(—1)j’m“ﬂ(f) TRRRE

(where j € {m,...,n} is defined as in Lemma 5.12) from which FZE:L) *ooee ok Fl(n") e Tif A # 0,
contradiction. f.

6. Study of an Induction -II

Throughout this section we consider integers r,t with 0 <r < p—-1,0<t<p—2andn € N..
Our aim is to describe the socle filtration of the induction

Indﬁo (pr1) X a!

using the results of section §5; the main result is then Proposition 6.6.
We start by fixing the following elements of Indgo(pnﬂ) xiat

DEFINITION 6.1. Let (Iy,...,1,) € {0,...,p — 1}" be an n-tuple, and let t' = S_" | I;. We define

_ 1 .
,U«OEFp L 4
_ ifT—Q(t—l—tl)?éO[p—l];
T R

3 [Mlo] : e, F e ox B o (m 1) [, B s E)
,U«OEFp L 4
ifr—2(t+t)=0[p—1]

(

[1K7Fl(11) % ... % Fl(nn)]
ifr—2(t+t')#£0[p—1];

F(O) * F(l) ek F(") d:Cf
Lok fn (o] 1 (1) (n)
s [ e B e B
po€Fy
ifr—2(t+t)=0[p—1].

If (jiy.-vydn)s (41s---sd0) €40,...,p — 1} are two n-tuples and i,i’ € {0,1} we define
(i)jlu"'vjn) = (/Ll)‘]iaa.];l,)
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iff either (j1,...,79n) < (1, Jh) or (G, jn) = (J1,---,75) and @ < ¢’. Finally

DEFINITION 6.2. Let (I1,...,1,) € {0,...,p—1}" be an n-tuple, i € {0,1} and let t' < > iy lj. We
define the quotient Q(O n+1 fInd Koy n+1)Xra as

0O,n+1 e 0 n
QEh,UL Cndf e/ > (K EY e F)
(Jo 15w rdn ) = (811 eesln)

where
(k- FO . FM)
(3:d15ee50n ) = (85150500

denotes the sub-K-representation of Indllg0 (1) xial generated by the elements Fj(o) * .. .Fj(:) for
(jajl? cee 7.771) < (ialla o 7ln)-

As usual, we adopt the convention

(0,n+1) def (0,n+1)
QZ+1 RPN QO 141,00,
if ¢ = 1. We remark that in the previous definitions we do not keep track of the integers r,t: we
adopted this choice in order not to overload the notations. We believe the values of r, ¢ will be clear
from the context (cf. §7, §8).
The study of the socle filtration starts from the following elementary lemma:

LEMMA 6.3. If (I1,...,l,) € {0,...,p — 1} is an n-tuple, we have the following commutative
diagrams with exact rows:
i)

0= (K- B« B oo YY) = Indg o () 5w YY) = (K- FO s« B v F) 0

n

0 1 E0 s ED By G e —
i)
0 Indg, ) (F, v *"'*F}(nn)> ; éolfﬂl)n Qooz?if, Al =0
0 1 n 0,n+1 (0,n+1)
0—(K-F"« F{V s« B) — Qi) —=aqpithy) , —o.
Proof: It is an induction on the n-tuple (I, ...,[,). By Proposition 5.10 and the exactness of
the induction functor we have the exact sequence
0= Indf o (FV s B) o dl QY 5 mdk QY -0

and we dispose of the exact sequence (cf. Lemma 2.4)

l1

05 (K- O 5 ED s B Sl (FD e ow ) o (K F® w ED w o E) S0
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The conclusion comes applying the snake lemma to the diagram

0 0

|

1 n
(K- R+ FDwox B mdE (R e B

(K - FO(O) * Fl(ll) Kook Fl(nn)>(—> Indﬁo(p)Q(l’”H)

=" O <—
p—
=]
o,
==

Q(1 n+1) Q(o n+1 4

assuming inductively that Ind Ko(p) 0,l1,..

We deduce the following two corollaries:

COROLLARY 6.4. Let (Iy,...,1l,) €{0,...,p— 1}" be an n-tuple. Then:

0n+) ()*Fl(ll)*

i) The K-subrepresentation of Q) 0. . generated by F| * Fl(nn) is isomorphic to

(K - Féo) * Fl(ll) Kk Fl(:)) = S‘YmLPQ(tHI)JFIQ) ® det!tt’
N ER g )
1 n

If, moreover, r — 2(t + ') = 0[p — 1], then the K-subrepresentation of Qéolizﬂ) generated by

F1(O) N Fl(11) Kook Fl(nn) is isomorphic to
(K- FO 4 BV woo BYY 5 Syme T F2 @ et
Fl(O) % F(l) K oe. ok F‘lszn) — Xp_l.

0n+) ()*Fl(ll)*

1) The K-subrepresentation of Ql . generated by F' * Fl(nn) is isomorphic to

(K - Fl( ) Fl(ll) Ko Fl(:)> ~ SympflferZ(z‘%t’)jFi ® det™—(+t)
FO s B s B iy xptobr=200)
1 n

Proof: As <Fl(11) koK Fl( )> Xsat” the statement is an immediate consequence of Lemma
6.3 and Proposition 2.4. §

COROLLARY 6.5. Let (I1,...,1,) €{0,...,p — 1}" be an n-tuple. Then:
i) If (l,...,l,) #(p—1,...,p— 1) the exact sequences:

0—><K'F(§)*Fl(1)*' >_>le?,+, ng:+,z)n—>0;
0_><K'F1(O)*Fl(11)*”'*Fln )= QU =g L =0

are non split.
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i) If (I1,...,l,) = (p—1,...,p— 1) the exact sequence

0= (K RO+ FD s M) Pt Pl o

is nonsplit iff r — 2t = 0[p — 1].

ii1) The dimension of the quotients Q for i€{0,1} is:

dimg (Qooz?,ﬂz)n) p+1p" —(p+ 1)(ij_llj)
=1

dimg (Q) ) =@+ 1p" — (p+ DO Py — (Ir —2(t +1)] +1).

J=1

Proof: i) and ii). As the action of K; on (K - Fi(o) * Fl(ll) Kook Fl(nn)> is trivial (for i € {0,1}),
we deduce as in Proposition 5.10-7i) that

SR B s BT =0

7

for any K-equivariant morphism Q H) — (K - F( ) F(ll) - x F( )> and for any (n + 1)-tuple

i,01,.
(t,01,...,1,) € {0,1} x {0,...,p— 1}" such that (ll,...,l ) < ( - 1 ..,p — 1). The assertion i7)
is then immediate from Proposition 2.4.
The proof on iii) is finally an obvious induction.

6.2 Study of the socle filtration

The present section is devoted to the proof of the following result:

PROPOSITION 6.6. Assume p is odd; let (l1,...,1l,) € {0,...,p — 1} be an n-tuple, and let t' =
>, li. Then

i) the socle of Q(O n+ll is described by
SOC(Q(O n+1) ) = (KFl(D) * Fl(ll) ek Fl(n"))
i1) the socle of Q(O nHln is described by

(K-Féo)*Fl(ll) *---*Fl(:)ﬁfr—Q(t—l—t’) = 0[p — 1];

(0,n+1) )_

Soc( Oy i

(- FO s« FD wx F™Yy @ () FO w ED s F)
ifr—2(t+t)=0[p-—1].

The proof is a descending induction on the n-tuple (Ii,...,[,), the statement being clear if
(li,....ln)=(@—-1,...,p—1).
We prove the result for a fixed n-tuple (I1,...,l,), assuming it true for Q

(0,n+1)
Ql 1yl )

(0,n+1)
0y t1 ol (resp. for
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Study of soc(Q(O’nH) L)

L4, ln We dispose of the following commutative diagram with exact lines (cf.
Lemma 6.3):
! (0,n+1) (0,n+1)
0— Ind%o(?) <Fl(1 : Kook Fl(n > Qo ZIH_ QO l?—:_l —(
iim"l imz
0— (K- A"« B s B ——= Q) —— Qi) ——0
We define the elements of QOOZI"'HZ)”
def (ko] 1 (1) (n)
Tr = Z |: 1 O:|[1K,F}1+1**Fvlnn]

po€F,

L PR
def

y &y (_1)t+t’+1 2

the behaviour of the elements z, 2’ in Q (©, nHl)n is the object of the next

LEMMA 6.7. We have the following equalities in Q (©, nﬂl for p odd °:
i) if a,d € F then

[ [g] [2] ] o = gttt gt ) o

i1) Let j € {1,...,n} be minimal with respect to the property that l; <

<p—2andlet A € Fp.
Then
= ‘ ol 17 )
[o 1 }xzx—k(lj%—l)(—l)ﬂ 3 —P—/\(HO)[ Lo g, FD s ooe B,
po€Fyp
1 ‘ )
{ 0 [?] ]x/:$/+(lj+1)(_1)35p,3(1 —51,j)A[1K,Fl<11> **Fz( .

Proof: i) Follows easily from the definition of the elements z, 2’ and the equalities
[a] O z 1] [ 2[ed™] 1 [d 0
0 [d] 10| 1 0 0 [a]
[a] 0O 1 0] 1 0 [a] 0O
0 [d] z 1| | zla ] 1 0 [d]
i1) The first equality is immediately deduced from Lemma 5.12 and the relation:

801 2] Lo ¢

for A\, uo € F), and h € Z,, a suitable p-adic integer.
The second equality is more delicate. From Lemma 2.9 we deduce

[(1) [i] } [p[m]+~1-+p”[un] H B {p[ui]+~1-+p”[%] ?]A

Sthis is required only for the equality concerning z’ in i1)

for 2 € Zy, a,d € F}

29



STEFANO MORRA

where A € Ko(p"*!) is upper unipotent modulo p and, for i > 3 we have
Wi = s 4 N+ A+ Si—o(pio1)

where S;_» € F,[X] is a polynomial of degree p — 1 and leading coefficient —s;_o &t My — Hie1,
while, for i € {1,2} we have

fro = py + piph A, p1 = ph.
If j € {1,...,n} is as in the statement we can write
Fl(llll * ‘-*F(n) :Fél) *--~*F0(j_1) *F(_j) *"-*F(n).
with the obvious convention if j = 1) and a direct computation in In a’ gives:
h the ob if j = 1) and a di Indy () xiat g
aer | 1 [A] (1) (n)
1 0 ] Z [ 1 0 ] 1+1 1 0
,U«ler |: p[l"bl] ]‘ 1 1€Fp pj [/’L]—l] “jer pj[/’[/‘]]
1 0
l
S| gy 00
S B
If j < n we can now use the recursive property of the s;_1’s for i = j,...,n — 1 and project v
successively via the epimorphisms
K Ko( +1 Ko( (j+1,,n+1
Inngg?m)Xﬁat — Ind% 0 Q(”” ) ... > Ind O(pm QZHL_T?J”).
Ko(p) (j+1,n+1)

We see that v is sent to the following element v of Ind

(JH+1nt1) def s ¢y,
ljt1yeenln = Xr@ )

Ko(pi+)) Qi1 (with the convention that

if 5 = n, we just have v = v and Q

=3 | 1]

1 eF,
Z [pjl[lﬂg_l] ?] Z (4 + s5-1)5! [ pj[luﬂ (1)} Z uﬁf [pj+1[lﬂj+ﬂ (1)}

wj—1€Fp 1 €Fp pi+1€Fp
1 0
!
S| ey 1|1
et p"[4n]

This lets us deduce the statement if j = 1, while, if j > 2 we map v in Ind

epimorphism Ind ngj)ﬂ) l(j:rllnj;l) Ind pj)ng D o get:

EPJ))QZ(J]%LI:) via the

(1) (n) L0
Fl+1 .*Fln”—l—(lj-Fl)Z [p[,u,] 1:|
n1€F, 1
1 0 ] l; 1 0
S e g L S i 1]
Mjfler pj [/’L]—l] /—Ljer p][/"LJ]
1 0
!
S| ey 1|
S B T
We use again the recursive property of the s;_ 1’s for i = 2,...,7 and the chain of epimorphisms
Ko(p) jn+1 Ko( (-1 n+1) (1,n+1)
Indib () Q") — Indid )@ - Q"
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1) .
Jr)IS

to see that the image of v in Q(l " i

B s s B (1 4+ 1) (17083 5 x B

This let us conclude the proof. §
We can now prove the main result of this paragraph (i.e. the proof of i) of Proposition 6.6)

LEMMA 6.8. Assume p is odd. Let (I1,...,l,) € {0,...,p — 1}" be an n-tuple and assume that the
statement of Proposition 6.6-ii) holds true for the n-tuple (I1 +1,...,1,).

Then
(0,n+1 0 1
soc(Q ) )y = (K- BV« FV s B,
Proof: Assume false. Let 7 be an irreducible K-subrepresentation of Q OnHl)n such that 7 N
1 (0,n+1) (0,n+1 .
(K - F( ) F( ) F(n)> = 0. Therefore the natural projection Q1 l? Q01n+1) ;, induces
an isomorphism of 7 onto an irreducible summand of 500(Qoolni11) I ). Assummg that Proposition
6.6-17) holds true for the n-tuple (I +1,...,1,) we can distinguish the situations:
A) the subrepresentation 7 maps isomorphically into the K-subrepresentation of Qoolﬁrll) gen-

erated by (the image of) x

B) We have r —2(t+t + 1) = 0[p — 1] and the subrepresentation 7 maps isomorphically into the

K-subrepresentation of Qool:lill) generated by (the image of) y

Study of case A. Let f € Ind?o(p)Fl(ll) koo ox Fl(nn) be such that pra(x + f) € 7. The induced

isomorphism 7 = (K - x) and the behaviour of x in soC(QéOlTill?.. 1,) let us deduce the necessary
conditions:

1) for all a,d € FJ,
[ [a] O ] (@ +f) - ar—(t+t/+1)dt+t’+l(x+f) € ker(pra);

2) forall A e F,

[ 0 ] (f +2) = (f +) € kex(pra).

Condition 1) and Lemma 6.7-i) give [ [8} d ] f—a" =T gL £ ker pry so that, by Lemma,

2.6, we deduce

0if r —2(t+t) £ 0[p—1]

[é [Hprm—prl(ﬁ: > Mﬂ (1)}[1’1,[(11)*.__*}71(:)]

ifr—2(t+t)=0[p—1]

for some c¢1 € F,. Thus, condition 2) and Lemma 6.7-74) let us conclude that

—1 7 1 n
VDY Mo[ [ulo] O][Lﬂﬁ”*"'*ﬂi)H

1 n
+¢100 r—2(14-4) A Z { [,ulo] ] [1, Fl(ll) PR Fl(n )] € ker pry
po€Fy
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for any A € F),, and by Lemma 2.10-ii) we can deduce in particular

Z bt { [’ulo] (1) ] [1,Fl(11) * ook Fl(nn)] € kerpr; forr —2(t+t) £0,
mo€Fy

1 n
Z“O[[Mld 0][1714}(11)*...*1?1(71)}61{@}77“1 for r — 2(t +t') = 0.
HoEFp

Thanks to Remark 2.5 we see that both conditions are absurd, for the case r — 2(t +t') Z 0[p — 1]
and r — 2(t +t') = 0 [p — 1] respectively. #

Study of case B. Let f € IndK (») l(ll) R Fl(:) be such that pra(y + f) € 7. The induced

isomorphism 7 = (K - y) and the behaviour of y in soc(Q(Ool’?ill?“ ;,) let us deduce the necessary

conditions:

1) for all a,d € F}/,

0 /
0D = @ ) € e
2) forall A eF,
1 A
o Vw0 e e,
We deduce from condition 1) and Lemma 6.7-i) that prq(f) is an H-eigenvector for (K - F} x Fl(ll) *
. Fl(:)) with associated eigencharacter a”~ (' D t+t'+1 Thus, by Lemma 2.10, we have
Oifr —2(t+¢) £ 0[p— 1]ie.p#3
1Al
= 1 1 n
[0 1 ]prl(f) al ¥ [[Mlo] O][lﬂg)*“'*l’zi)]
MOGFP
ifr—2(t+¢)=0[p—1]ic.p=3.

for some c¢; € F,. The conclusion follows again from Lemma 6.7-i7), similarly to case A). f
The proof of Lemma 6.8 is therefore complete. f

Study of SO(:(QOOZZhLl ). We have the following commutative diagram with exact lines (cf. Lemma
6.3):

0= (K - F9 « Fl(ll) .k Fl@) »Indﬁo(p)(Fl(ll) ek Fl(n")> — (K- F « Fl(ll) ke ek Fl(n”)) —~0
|

(0,n+1 (0,n+1
0~ (K- B« s x ) Qi Qi 0.

LEMMA 6.9. Assume p is odd. Let (li,...,l,) € {0,...,p — 1}" be an n-tuple and assume that the
statement of Proposition 6.6-i) holds true for the representation Qlo nHl)n

Then

(0,n+1) 1
soc( 01? )= soc(IndﬁD(p)Qﬁ(1 Dk x F}in)>)
Proof: Assume false. Let 7 be an irreducible K-subrepresentation of Q © nHZ) and assume

N Indﬁo(p)@(ll) .k Fl(n”)> —0.
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In particular, the natural projection Q © n+ll) ngllnﬂ) induces an isomorphism 7 = 5OC(Q10lln+ll) ).
Assuming Proposition 6.6-7) for the representation Q © nHl) we deduce that it exists f € (K - Féo) *

Fl(ll) Kook Fl(nn)> such that
FHFO«FY v FMer

is a K-generator of 7, contradiction. f

End of the proof of Proposition 6.6. The statement of Proposition 6.6 is trivially true for the
n-tuple (I1,...,0,) =(p—1,...,p— 1), since

0,n+1 ~U 1 n ~
i poy = Ind o (B3 ) = Indff o xie?

The general case follows then from a descending induction, using Lemmas 6.8 and 6.9.

A weaker result. We can state a similar, although weaker, result concerning the structure of
Indgo(pnﬂ) xial. Indeed, by exactness of the functor Indgo(p) and Proposition 5.10 we have a natu-

ral equivariant filtration on Indlfg0 (pn+1)x;ﬁat, whose graded pieces are isomorphic to finite inductions

of characters, depending explicitely on y2a’ and on the graded piece. The fact that the exten-
sions between the graded pieces are non split can be deduced with the same techniques used for
Proposition 6.6 and we get

PROPOSITION 6.10. Let r € {0,...,p — 1}, t € {0,...,p — 2} and n € N. The representation

In dGL(2 (ffz) Xial has a natural equivariant filtration whose graded pieces are described by

GL2(Zp) , st 2(Zp) s t+1 GL2(Zp) s _t+2 GLa(Zp) , s ,t—1 GL2(Zp) s .t
Ind . (2)” —IndK(p)p Salt —Ind (2)" Sait?— . —In dKO(Qp)pX'r —Ind . é)pxra

the extensions being non-split. Moreover, the number of finite parabolic inductions is p™.

Proof. Left to the reader. O

7. Socle filtration for the spaces R,

In this section we will use the results of §6 to give an exhaustive description of the socle filtration
for the R,’s, for any n € N. The precise statement is the following:

PROPOSITION 7.1. Assume p odd; let 1 <r <p—1,n € Ns and 1 <t < r be integers. Then
soc(Fil' 1 (Rp11)) = soc(Fil (Rpi1)).
More generally, we have

soc(Fil' Y (R,11)/Q) = soc(Fil' (R,,4+1)/Q)

for any subrepresentation Q of Fil/(R,11), 0 < j < t — 1 coming from the socle filtration of
Fil/ (R, 11).

The rest of the paragraph is devoted to its proof, which is very similar to the proof of Propo-
sition 6.6. For a notational convenience, we will prove the result concerning the representations
Fil' Y (R, 41), Fil'(R,+1). In order to obtain the general result we just have repeat the same ar-
guments replacing Fil'* "1 (R, ;1) and Fil’(R,41) by Fil' " }(R,41)/Q and Fil'(R,11)/Q respectively
(and other similar formal adjustments which will be clear to the reader).
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We fix integers 0 <7 <p—1,n € N, 1 <t <, and we define the elements of Fil’(R,,1):
4t [ to] ] Z [ n[l ] (1] } 1, X"V € Fil'(Rpy1);
no€F, un€Fp P lHn
R [ ] ) Z [ n[l ] (1] } (15, X"V € Fil'(Rya1);
u1€Fy pn€Fp ptin

y o+ (1)
Moreover, we consider the map
ot 0,n41)
pr: Fill Y (Ruy1) — Indﬁo( 1) X7 0 al=t - Q(()ypnt o1 5 IndKO( )Xra al=t

where the first arrow is the natural projection given by the reduction modulo Fil*"2(R,, ;1) and the
second arrow is more precisely described by the commutative diagram (cf. also Lemma 5.11)

K s qt—1 (0,n+1)
IndKo(p"“)XT QOp 1,..,

0,...,0,p—1

I

IndK( )Xf‘ t 1

0,2) ~ s
Qé,p—)l = Indllgo(p)XT a'~t.
We finally set
Priot : Filt_l(RnH) il IndKO( )X;f at=1 5 SymP 1~ Lr—2(t— 1)JF ® det”—(t=1)

where 7 is the natural projection defined in Lemma 2.6. We start from the following computational
lemma.

LEMMA 7.2. We have the following equalities in Fil*(R,11) for p odd %:
i) For all a,d € F}),

[ af 0 ]x = a"td'e

0 [d]
[a] 0O I bt
{ 0 [d r=ad "2
it) For all A € F,, then [ (1) [i\] } x —x and { (1) [i\] } a' — 2’ are in Fil' Y (R, 1) and

pT([ (:; [i‘] :|x —x) = t(—l)n,u;‘ |: [Lio] (1) :| (—P—/\,(MO))[lK,XT_(t_l)Yt_l]

1 [ . o
pr([ 0 [1] ]x’—x’)—t(—l) Aop.3[1r, X (t=1)yt 1]

(where P_»(po) has been defined in §2.3)

Sthe requirement p odd is used for the equality concerning z’ in 1)
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Proof: i) It is analogous to the proof of Proposition 6.6-7).
i1) From Lemma 2.8 we deduce

I
ERE
-y [P\Jr/ﬁo] 1}
1 0
.LLOEFp
»3 [ n ! 0 ] (1, X7 (P () X +Y)'] =
o L i Pas (n1)] 1 "
_ A+ po] 1
=x+1 Z [ 1 0
Ho€Fp
> [ " 1 O]PA~~~un1(un)[1er(“)Yt1]+q
un€Fp p [Mn+P>‘7"'7“n72(un—1)] 1 e

for a suitable ¢ € Fil'"?(R,,1) and where the elements P,...p;—1 (pg) for j € {1,...,n} (vesp. Pr(io))

are defined in Lemma 2.8. We are now left to map the element [ (1) [/1\] ] x—x € Fill' Y (R,,1) in

Indﬁo (pn+1)xﬁ a~! to get

>3 [ A+ ol 1}

Ho€Fp

1 0
. E n_1)P 2)[1 er(tfl)thl

|:pn[NR+PA,...,un2] 1 ] (v 1> /\,m,un—1(u )[ ’ ]
,U«ner

and the result follows using the chain of epimorphisms

-1 _, Q(O ,n+1) N (0,n+1)

K s
Indje, ()Xot 0p-1 0p—1,..p—1

and the recursive property of the polynomials P,\ 1 (X) € Fy[X] for j € {1,...,n}.
Similarly, from Lemma 2.9 we deduce the following equality in Fil*(R,1):

1)

=a'+t ) [ p[;ln] (1) ] D [ pn[lﬂn] (1) ] (=2 ) [L XY

Hn GFP

for some ¢’ € Fil'"2(R,,41). We map the element [ (1) [i\} } o' —2' € Fil'"Y(R,41) in Indg (1) X8 al~!

to get

DN NP I Sl I TR [C e

i€l un€Fyp

and the result follows using the chain of epimorphisms

X gt~ 1 (0,n+1) (0,n+1)
IndKo( n+1)X - QO, L0p—1 77 T Yo p—1,..p—1

and the recursive property of the s; for i € {1,...,n} (here we need p > 3). 4

End of the proof of Proposition 7.1. Let now 7 be an irreducible K-subrepresentation of
Fil'(R,+1), and assume 7 N Filt_l(RnH) = 0. Therefore the natural projection Fil'(R,i1) —»
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Indﬁo(pnﬂ)xﬁat induces an isomorphism of 7 onto an irreducible factor of soc(Indgo(pn +1)Xﬁat)-
s
0,n+1
soc(IndﬁO(an)xfnat) = soc( (()7_71_70 )) = soc(Indﬁo(p) (z'))
by Proposition 6.6, we distinguish two situations:
A) the subrepresentation 7 maps isomorphically into the K-subrepresentation of Indﬁ0 (pr+1) xiat
generated by (the image of) x.

B) We have r — 2t = 0[p — 1] and the subrepresentation 7 maps isomorphically into the K-
subrepresentation of Indgo(pnﬂ) xial generated by (the image of) y.

Study of case A. Let f € Fil'"}(R,,,1) be such that z + f € 7. From the induced isomorphism

7 = (K - x) and the behaviour of x in soc(Ind%O(pn+1)X$at) we deduce the following necessary
conditions:

1) for all a,d € F,; we have

] (x+f)—ad'd(x+f)=0

inside Fil'(R,41);
2) for all A € F), we have

1 [\
o V]ern-@rn=o
inside Fil’(Ry,11).
Condition 1) and Lemma 7.2-i) imply in particular that pry.(f) is an H-eigenvector of
201 |2 r(t—1) ~ _ r2(t—1) |52 _
SymP—1-Lr—20 1)JFp ® det™ (1) =~ Indﬁo(p)xﬁat 1/SymL 2(t=1)] F,® det!~!

of associated eigencharacter a"~'d’. It follows then from Lemma 2.6 that

Oifr —2(t—1)#Z0[p—1]

[ (1) [i‘] }p?”tot(f) — priot(f) = e [ [,U10] (1) ] [1’er(t71)yt71]
Ho€Fy
ifr—2(t—1)=0[p—1]

for a suitable ¢; € F,. We conclude from condition 2) and Lemma 7.2-ii)

p—1
t(—1)" ' (IJJ) (_)\)p—j Z Mé [ o] 1 :| [1,XT_(t_1)Yt_1] +

j=1 p po€F 1 0
1 r—(t— _
+6O,r72(t71)cl>\ Z [ [N10] 0 :| [LX (t=1)yt 1] -0
Ho€F

inside Symp_l_LT_Q(t_l)JFIQ) ®det” =1 and this is clearly impossible: by Lemma 2.10-4i) we would
get in particular

Z e { [Nlo] (1) ] 1, XDyt =0 forr—2(t—1)20
ro€Fp

Ho€Fp
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which gives an absurd for r —2(t —1) Z0[p—1] and r —2(t — 1) = 0 [p — 1] respectively (cf. Remark
2.5). 4

Study of case B. Let f € Fil'"!(R,y1) be such that y + f € 7. From the induced isomor-
phism 7 = (Ky) and the behaviour of y in soc(Imdg0 (pn+1) xiat) we deduce the following necessary
conditions:

1) for all a,d € F,; we have

[a] 0 r—t gt
g e - p—o

inside Fil*(R,11);
2) for all A € F}, we have

1 |
o V]ern-wen=o
inside Fil’ (R, 1).
We deduce from condition 1) and Lemma 7.2 that pr(f) is an H-eigenvector of
Symp_l_tr_%t_mfi ® det” (1) = Indﬁo(p)X;fat_l/SymV_w_l)JF; @ dett™!

of associated eigencharacter a”"~*d' and therefore, by Lemma 2.6

Oifr —2(t—1) £ 0[p— 1] (i.e.p # 3)

[ (1) [i\] ]prtot(f) el =9 ¢ v [ [Mlo] é ] [1, X7~ yt-1]
ifr—2(t—1) = 0[p— 1] (Le.p = 3)

for a suitable ¢; € F,. The conclusion follows from Lemma 7.2, similarly to the previous case. §

The proof of Proposition 7.1 is therefore complete.

8. Socle filtration for the spaces Ry ®g, --- @R, Rnt1

We are finally ready to describe the socle filtration for the K-representations

lim (Ro ®R, -+ DR, Rnt1), lim (R1/Ro ®R, -+ DRy Rint1)-
neven m odd

The main statement is the following:

PROPOSITION 8.1. Assume p is odd; let n € N~ (resp. m € N ) be an odd (resp. even) integer,
0<r<p-—2. Then:
i)
soc(Ro ®R, -+ ®R,_, Rn—1) = soc(Ro ®r, - -- ®r, Rny1)
(resp. SOC(Rl/RD DRy, " DR,y Rm—l) = SOC(Rl/Ro ©Rr, ' DR, Rm—i—l))

def

“ R1/Ry).

i1) More generally, if 0 < j < n— 1 is even (resp. 1 < j/ < m — 1 is odd) and Q is a K-
subrepresentation of Rj/R;_1 (resp. Rj//Rj_1) coming from the socle filtration of R;/R;_

where we formally define Ry ®r_, Ro & Ry (resp. R1/Ro ®r, R:
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(resp. Rj:/Rj_1), then

soc((R;/Q) ®R,,y *** PR,_y Bn-1) =s0c((R;/Q) ®R,,, -+ OR, Rn+1)
(vesp. soc((Rj//Q) Br,,, * BRyy Bmn—1) =s0c((Rj/Q) B, ORy Bimt1))

where we formally define (R;j/Q)®r, _, Rn1 = (R;/Q) ifj = n—1 (resp. (Rj'/Q) @Ry Rm—1
if j/ =m—1).
The rest of the paragraph is devoted to its proof, starting with the following lemmas.

LEMMA 8.2. Let n > 2 be an integer and 0 < r < p—1. The composite map Ty o---oT, : R,, - Ry
induces an isomorphism:

T, o---oTy 1
R, Ry /Fil""*(Ry)

R

Ry /Fil"" Y (R,,) 2 Indjg, (ny Xr

N

0’ Y
Q((:)’p,ri)l’.”’pfl = Indgo(p)xr

Moreover, if r # 0,p — 1 the composite map T} o---oT, : R, — Ry induces an isomorphism:

Ty 00Ty
R, Ry

i

R, /Fil'™ (Ry) 2 Indjg, ny

i

(0,n)
Qlp 1, p1 = Sym'F

Proof: First of all, notice that for any m > 1 we have a factorisation:

o
Ry, =

Ry /FiI"Y(R,,)

Rm—l

Thus, by the very definition of the operators T;’s and Lemma 2.10-7) we deduce
R, /FiI' Y(R,) - Ry /Fil""Y(Ry)

n [ 1 .
L FD w e E o (hpan) (0mn) 3 [ B0 v
o€k =

(where we put

n)y de 10 .
[l’Fl(ll)**Fl(n)] def Z Mlll|: :| Z U . 1 :| [1,Y"]).

HlEFp ,Uzner -

The previous epimorphism factors then through

r— ~ 0,n
Ro/Fil " (R,) = Indk, e — QO
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and such a factorisation is indeed an isomorphism as the spaces QO o 1 p—1 and Ry/ Fil'~1(Ry)
have the same dimension.
Moreover, if 7 # 0,p — 1, we see that

and therefore the morphism

T,
R, /Fil""Y(R,) - Ry /Fil' "' (Ry) = Ry

factors through

r— ~ 0,n
R, /FiU N (Ry) & Indk e — QO o

again such a factorisation is an isomorphism by dimensional reasons. f

LEMMA 8.3. Let n > 1 (resp. n = 0), and 0 < 7 < p — 2. Then the natural map Fil’(R,1) =
Indﬁo(pnﬂ) X, induces an isomorphism

Fil(Rp1)/ B = QG700
(Fil°(R1)/Ro = Sym? '~ JF2  resp.)

Proof: Assume n > 1. For any (n — 1)-tuple (I1,...,l,—1) € {0,...,p —1}""! and any j €
{0,...,r} we have

w8 Lo 1], S [ 105

pn—1€F,
<1vz[m;$]. i [p ?]Zuﬂw@]ﬂuxw

1 €F, pn—1€Fy

We thus conclude that the natural map

Indjg, iy X = FI'(Rps1)/ Ry,
factors through IndK (prny X = Q(O ngi t1- Such a factorisation is indeed an isomorphism by di-
mensional reasons. The case n = 0 is similar and left to the reader. f

We are now ready to prove Proposition 8.1 and the strategy will be analogous to the one used in
the proof of Proposition 7.1. Once again, we will give a detailed proof for statement ). Statement
i) is obtained exactly in the same way, with formal adjustments which will be clear to the reader
(e.g. replace Ro @R, - - ®r, Rnt1 with (R;/Q) ®r,,, -+ ®R, Rnt1, adjustment of the source of the
morphism 7,1 below according to @, etc...).

Let us fix integers n > 3, n odd, 0 < r < p— 2; the case n =1 or m > 2, m even will be treated
exactly in the same manner and will be left to the reader. We recall the commutative diagram with
exact lines (cf. Proposition 4.1):

0 R, L Roi1 Rus1/Rn —> 0
-
Rn_ 1 PTn+1
$prn— 1

0— Ro®R, " ®R,_, Bn-1— Ry DR, - ®R,, Rn41 — Rp+1/Ry, — 0.
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We write m,_1 for the natural epimorphism

Tnt1: Ryt — Rt /PN (Ryy) — QY 1 5 Ry/FiI Y (Ry)
where the last isomorphism is the one described in Lemma 8.2. As we did in §7 we define the
following elements in Ry1:

T [[ulo] (1)] 3 [p"—l[lunl] H Zﬂfl[pn[lm] ‘1)][1K,Xr]

no€F, pn—1€Fy pun€Fyp
) def 1 0 1 0 } 1 [ 1 0 ] ,
T = E E _ 15, X
[P[/ﬂ] 1 } [P" Upn—1] 1 2 P a1 L, X7]
n1€F, pn—1€F pn€Fy

y &4 (1)
A direct computation gives the key result:
LEMMA 8.4. Assume p is odd 7; let a,d € F;, A € Fp. Then:
i) we have the following equalities in Ry41:

[ [g’] 0] ]:r =a ' e

[ [a] 0 ]x’ — oty

B

} x' — 2’ are in R,, and we have:

moro | ) Jem = e 00 T | B0 )
Ho€Fp

Tn—10 (—Tn_)([ (1) 1 } ' —a') = (r+ 1)(=1)" " (=N)dps[lk, Y]
(where P_»(po) has been defined in §2.3).

Proof: i) It is analogous to the proof of Lemma 7.2-7).

I . 1 (A - 1 0
i7). First of all, we study the action of { 0 1 } on z inside Ry,41. As [ Pz, 1 ] acts
trivially on [1, X"] € R, +1 we deduce from Lemma 2.8:
PV
o V)
_% r+1 > o+ A 1
N j 1 0
J=0 po€Fy

1 0 j
Z [ pnil[/ﬁnfl + P/\,...,,un—:i (,Uan)] 1 ] (_P/\V“’unﬁ (unil)) ‘

(- 1 0 .
Zﬂg U 1)[17”[#] 1}[1K7X]
Mner n

“such a requirement is needed for the equality concerning z’ in 1)
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and therefore

(1] [/1\] ]x—x:T,j(v)

where v € R,, is defined as

r+1 r
v <T+ 1>(_1)r+(j1) 3 [uoleA] é }

=N jo€F, -

1 0

J=lyr—(i-1)
Mn71+PA,...,un_3(Nn72)] 1 g, X77Y ]

> Pl |

n—l[
pn—1€Fy

p
We are now left to study the image of —7, (v) € R,,—1 via the epimorphism m,_1: a direct computa-
tion using the recursive property of the Witt polynomials Py . ,(X) € Fp[X] (for j € {2,...,n})
together with Lemma 2.10-7) yields finally the result.

The behaviour of the element 2’ € R, 11 can be described in a similar way, using now Lemma
2.9 and the recursive property of the s . ,’sfor j € {2,...,n}. The details are left to the reader.

f

End of the proof of Proposition 8.1. Fix an irreducible K-subrepresentation 7 of Ry®r, - -®r,,
R, 41 such that TNRo@R, - - -®R,_, Rn—1 = 0; therefore the natural projection Ry®rg, - - -®Br,, Rn+1 —
R, +1/R,, induces an isomorphism of 7 onto an irreducible factor of soc(R,+1/Ry). Thanks to
Proposition 7.1, Lemma 8.3 and Proposition 6.6 we distinguish two situations:

A) the subrepresentation 7 maps isomorphically into the K-subrepresentation of R,11/R,, gener-
ated by (the image of) x.

B) We have r = p—3 and the subrepresentation 7 maps isomorphically into the K-subrepresentation
of Ry+1/R,, generated by (the image of) y.

Study of case A. Let f € R, be such that pr,1(x+T,(f)) € 7. From the induced isomorphism
75 (K - z) and the behaviour of z in R,,y1/R, we deduce the following necessary conditions:

1) for all a,d € Fj; we have

0 [d]
2) for all A € F}, we have

| @ T - R e T € o)

0 B e min - @ ) € o),

From condition 1) and Lemma 8.4-i7) we see that m,,_jo(—T; )(f) is an H-eigenvector of Ry /Fil" "1 (R;) =
Indgo(p) xia” of associated eigencharacter a=1d"™!. We then deduce from Lemma 2.6 that

- if r # 0 the image of m,—1 o (=T, )(f) through the epimorphism

Indﬁ0 ) xoa” 5 Symrff,

RV .
18 [0 1 ]-mv&man‘c7

- if r =0, then

[é[ﬁ}MAo&nxn—MAoenxﬁquzj[%]3ML4
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inside I]ndﬁ0 (p)l, for a suitable ¢; € Fp.

It follows then from condition 2) and Lemma 8.4 that for any A € F, the element

p=1 (p , .
Q(—A)p‘J > Hi [ [/”10] (1) } [1,Y7] +
=1 P =S
+ooran Y [ “;0] é ] [1,Y"] € Ry /Fil" 1 (Ry)
mo€Fy

maps to zero via
Indgo(p)xiar lr» Sym[ﬂfi
Thus, Lemma 2.10-i7) implies in particular that

Z ,ugfl [ [’L;O] é } [1,Y"] € ker(m) forr#0

no€F,
S o [ “;0] (1) } [1,Y7"] € ker(n) for r =0
po€Fy

giving an absurd for r # 0 and r = 0 respectively (cf. Remark 2.5). 4
Study of case B. Let f € R, be such that pr,,1(y+T,F(f)) € 7. From the induced isomorphism

7 5 (K - y)(= det™) and the behaviour of y in Ryy1/R, we deduce the following necessary
conditions:

1) for all a,d € F,; we have

[ f [21 ] (y+ T, (1) = (ad) ™ (y + T,/ () € ker(prota)

2) for all A € F), we have

1 A
[ 0 [1] ] W+ T, () — (+ T, (f) € ker(prnt1).-
We then argue as in the previous case to get an absurd. The details are left to the reader. §

This acheives the proof of Proposition 8.1 for n > 3, n odd, and we leave it to the reader to
check (by the explicit description of T} ) that the same procedure applies also for n = 1. It is then
obvious that the same proof applies to the case m € N- even and, with formal adjustments, to part
i1) of Proposition 8.1 (as remarked after the proof of Lemma 8.3).

9. Conclusion

We are now ready to describe the socle filtration for the K Z-restriction of supersingular representa-

tions of GL2(Q)): it will be a formal consequence of the explicit computations given in paragraphs
6, 7, 8.

PROPOSITION 9.1. Assume p is odd; let r be an integer, with 0 < r < p — 2. The socle filtration for
lim (Ro @R, - - @R, Rny1) is described by

—

nodd

Roy—SocFil(Ry/Ry)—...—SocFil(Rp+1/Rp)—- ..
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while the socle filtration for h_II}l (Ri/Ro ®R, - - ®R,, Rm+1) is described by

meven

SocFil(R1/Ro)—SocFil(R3/Rs)—...—SocFil(Ry41/Rm)—- - .

Proof: The proof is by induction; we will treat the case n odd (the other is analogous). Fix
an odd integer n € N>; and let ) be a quotient coming from the socle filtration of R,,_1/R;—2.
Assume (by inductive hypothesis) we dispose of an inductive system

{Q @Rn Rn-l—l e @Rm Rm+1}m>n—2,m0dd

(with the convention Q ®r, , Rn_1 = Q) and where the amalgamated sums are defined through

the Hecke operators Tji for 7 > n as in §3.2, as well as natural exact sequences:
0= Q®R,  ®R, 5 Bn—1 = Q DR, -+ ®R,, Bint1 = Rint1/Ri — 0

for m > n, m odd. If we set
7 ¥ s0c(Q)
we formally verify that for 7 # Q
Q)T ®q (Q @R, - ®R,, Rm+1) = coker(tr = Q @R, -+ PR, Rm+1)
for any m > n, m odd, while, if 7 = Q,
Ryi1/Rn ®ror, Rns1 (T @R, - BR,, Rm+1) = coker(t — Q @R, - ®r,, Rm+1)
for any m > n, m odd. We therefore get an inductive system:
{Q/T ®R, - PRy RBnt1}mzn—2,modd
and natural exact sequences
0—Q/T®R, - ®R,, o Bm-1—> Q/TBR, - BR,, Rm+1 = Rm+y1/Rm — 0

for m > n, m odd (where we write R4 instead of Q/7 @ g, Rn+1 in the case 7 = Q). As lim is
_>

right exact, we deduce that

coker(T — hgl (Q®R, - ®r, Rnt1)) = hgl (Q/T ®R, - DR, Rm+1)
m>=n, modd m>=n, modd

and the statement is now clear from Proposition 8.1 4

The socle filtration for 7(r,0,1)|xz, with 0 < r < p — 1 and p odd is then immediate from
Proposition 3.9 and from the isomorphism 7(0,0,1) = 7(p — 1,0, 1).

We give now the idea of the socle filtration for lim (Ry ®rg, --- ®r, Rn+1):
H
n,odd

SOCFﬂ( h_r}n (Ro ©Rr, - Br, Rn+1)) =
n,odd
= Ro—SocFil(Ra/R1)—SocFil(Ry/R3)—. ..
which gives, developing the socle filtration of the quotients R, 11/Ry,
Ro—SocFil(Fil°(Ry/R1))—SocFil(Fil' (Ry) /Fil°(Ry))—SocFil(Fil?(Ry) /Fil' (Ry))—. . .
and, using Proposition 7.1,
Ro—SocFil(Indj, () xsa" ") —SocFil(Ind () xia"*)—SocFil(Indjg, ) x5a’ ) —. ..
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To be even more explicit, if we suppose 1 < r < p — 6 the beginning of the socle filtration for
lim (Ro @R, - - ®r, Rn+1) looks as follows:

—
n,odd

SymTF;—Symp *34?2 ® det”l—Sym’”HFi ® detP”2—Sym? *5*’”329 @ det"2— . ..

10. The principal series and the Steinberg

In this section we want to describe the socle filtration for the K-restriction of principal series and
the Steinberg representation for GL2(Q)). The techniques are very close to those of §6 and therefore

will be mainly left to the reader. If A € F; and r € {0,...,p— 1} we recall the parabolic induction
Ind%(uny ® w'uny-1). (6)

If V), is the underlying vector space associated to the B-representation uny®w"uny-1, the induction
(6) is the Fp-vector space of locally constant functions f : G — V), such that f(bg) =b- f(g) for
any b € B, g € G} the left G-action defined by right translation of functions gives (6) a structure of
smooth G-representation.

We recall also that, for (\,7) ¢ {(0,%1), (p — 1,%1)}, the representations (6) are irreducible
(referred to as principal series), otherwise they fit into a short exact sequence

0—1—Ind%1 — St —0

and the quotient St is referred to as the “Steinberg” representation.
We turn our attention to the K-restriction of the inductions given by (6).
LEMMA 10.1. For any \ € F; and r € {0,...,p — 1} we have a K-equivariant isomorphism
(Ind(uny ® " uny-1))|x = Indnpx;
where x;, which is a character of B(F)), is seen as a smooth character of B N K by inflation.

Proof: It is an immediate consequence of Mackey theorem and the Iwasawa decomposition
G =KB.f

We have a natural homeomorphism

K/KNB Py
(coming from the natural left action of K on [1: 0] € Plzp) and the decomposition of corollary 3.2
let us deduce an open disjoint covering of Plzp with balls of radius (%)” (for the normalised norm

on Zy: |p| o ;1)) The following result is then clear

LEMMA 10.2. Let n € N, r € {0,...,p—2}; we fix a basis {e} of the underlying vector space of x5.
We have K-equivariant monomorphisms

Ln+1 ln+1,n+2
Indjg, ey Xs = IdFpxs, IdfS ey Xy = Ind pnea) X3

characterzed by
i) tns1([1,€]) is the unique function f € Ind% zx3 such that Supp(f) = Ko(p™t') and f(1) = ¢;

i)

tnrinpa((Le) = Y [ pn+1[1 (1) } [1,€]

Hn+1
Hn+1EFp ]
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Proof: It is a standard verification that the conditions in i) and i) define K-equivariant mor-
phisms ¢p41, tnt1n+2. Such morphisms are then injective by support reasons. §

From the monomorphisms defined in Lemma 10.2 we deduce then a natural monomorphism:
h_H)l (Indgo(anrl)Xi) — Indfn ;- (7)
neN

As K is compact and all functions f € Ind% 5x? are locally constant, we conclude that (7) is
actually an isomorphism. Moreover:

LEMMA 10.3. Let n € N, r € {0,...,p — 2}. Then

0,n+2
coker(tpt1nt2) = Q((),_.n.,o,l)-

Proof: From the definitions of Q (0 n+

Q[()Ofg?. The result follows, as the two spaces have the same dimension.

and tn+1,n+2 We deduce a natural epimorphism coker (Ly+41 n+2) —

We dispose now of K-equivariant exact sequences, where n € N:
0,n+2
0— Indﬁo(pnﬂ) — IndK (pn+2)X7» — Q( " ) — 0.

Thanks to the explicit description of soc( © _”01)) we deduce, with arguments which are very
similar to those of Proposition 8.1, the following result

ProposITION 10.4. Let n € N, r € {0,...,p — 2}. Then
soc(IndﬁO(an)xi) = soc(Indllgo(an)Xf,).

More generally, if Q < Indgo(pnﬂ) X, is a K-subrepresentation coming from the socle filtration of

Indﬁo(pnﬂ) X;, we have
SOC(Indgo(an)Xi/Q) = SOC(Indgo(an)Xi/5n+1,n+2(Q))-

Proof: It suffices to use the same arguments of the proof of Proposition 8.1, and similar explicit
computations. The details are left to the reader. §

Once again, we can use Proposition 10.4 to describe the behaviour of the socle filtration for
Ind§m sX,. The graded pieces of such a filtration look as follows:

SocFil(Ind& - px%) = SocFll(IndKO(p)Xr) SocFil(Q(()(,)i2 )— SocFll(Q(()? ?%)—

and, developing the socle filtration of Q ©, ”’521)’

SocFll(IndKO( )Xre)— SocFil(IndﬁO(p) $a%)—SocFil(Ind% Ko(p)X xiad)—
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