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Abstract : In this paper, we study the cohomology of the ramified PEL unitary Rapoport-
Zink space of signature p1, n ´ 1q by using the Bruhat-Tits stratification on its special
fiber. As such, we apply the same method that we developped for the unramified case in
two previous papers. More precisely, we first investigate the cohomology of a given closed
Bruhat-Tits stratum. It is isomorphic to a generalized Deligne-Lusztig variety which is
in general not smooth, and is associated to a finite group of symplectic similitudes. We
determine the weights of the Frobenius and most of the unipotent representations occuring
in its cohomology. This computation involves the spectral sequence associated to a stratifi-
cation by classical Deligne-Lusztig varieties, which are parabolically induced from Coxeter
varieties of smaller symplectic groups. In particular, all the unipotent representations con-
tribute to only two cuspidal series. Then, we introduce the analytical tubes of the closed
Bruhat-Tits strata, which give an open cover of the generic fiber of the Rapoport-Zink space.
Using the associated Čech spectral sequence, we prove that certain cohomology groups of
the Rapoport-Zink space at hyperspecial level fail to be admissible if n is large enough.
Eventually, when n “ 2 in the split case, when n “ 3 and when n “ 4 in the non-split
case, we give a complete description of the cohomology of the supersingular locus of the
associated Shimura variety at hyperspecial level, in terms of automorphic representations.
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Introduction: Rapoport-Zink spaces are moduli spaces classifying the deformations of some

p-divisible group X equipped with additional structures, called a framing object. It is a formal

scheme M “ MX to which one can associate a projective system M8 “ pMKqK of analytic

spaces called the Rapoport-Zink tower. It is equipped with compatible actions of two p-adic

groups G “ GpQpq and J “ JpQpq, with J being an inner form of some Levi complement of G.

The cohomology of the tower M8 with coefficients in Q` for ` ­“ p is naturally a representation

of GˆJˆW where W is the Weil group of the underlying reflex field E, which is a p-adic local

field. These cohomology groups are believed to play a role in local Langlands correspondence.

So far, relatively little is known on the cohomology of M8 in general. It has been computed

entirely in the Lubin-Tate case in [Boy09], whose results have been used in [Dat07] to deduce

the case of the Drinfeld space and compute the action of the monodrony. Both the Lubin-Tate

and the Drinfeld cases correspond to Rapoport-Zink spaces of EL type, and their particular

geometry allowed for explicit computations. Aside from this, the Kottwitz conjecture describes

the part of the cohomology of M8 which is supercuspidal both for G and J . This has first been

proved in the Lubin-Tate case in [Boy99] and [HT01]. It has been generalized to all unramified

Rapoport-Zink spaces of EL type in [Far04] and [Shi12], and it has been proved more recently

in the case of the unramified PEL unitary Rapoport-Zink space with signature pr, n´ rq with

n odd in [Ngu19] and [BMN21].

One would like to obtain more information on the cohomology of general Rapoport-Zink spaces

outside of the supercuspidal part, but this may remain out of reach unless we have a good

understanding of the geometry of M. In [GHN19] and [GHN22], the authors determined the

complete list of all choices of the framing object X so that the resulting Rapoport-Zink space M
exhibits a Bruhat-Tits stratification on its reduced special fiber Mred. The resulting Bruhat-

Tits strata are naturally isomorphic to Deligne-Lusztig varieties which, in the most favorable

cases, are of Coxeter type. Classical Deligne-Lusztig theory is a field of mathematics giving

a classification of all the irreducible complex representations of finite groups of Lie type. In
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their foundational paper [DL76], the authors use the cohomology of Deligne-Lusztig varieties to

define new induction and restriction functors, allowing them to build all such representations.

The present paper is a contribution to a program aiming at making use of Deligne-Lusztig

theory in order to access new information on the cohomology of the Rapoport-Zink space. In

[Mul22b] and [Mul22a], we explored this idea with the unramified PEL unitary Rapoport-Zink

space of signature p1, n ´ 1q. Historically, this space is the first for which the name “Bruhat-

Tits stratification” was coined, and it has been studied in [Vol10] and [VW11]. In this case,

the closed Bruhat-Tits strata are projective and smooth, and their cohomology was entirely

computable. We used it to study the cohomology of the maximal level of the tower, ie. the

cohomology of the Berkovich generic fiber Man, as a representation of J ˆW . We proved that

some of these cohomology groups fail to be J-admissible for any n ě 3, and we used our results

to entirely compute the cohomology of the supersingular locus of the corresponding Shimura

variety when n “ 3 or 4. In the present paper, we now consider the ramified case for which the

Bruhat-Tits stratification was described in [RTW14]. We reach very similar results despite new

technical difficulties arising from the fact that the closed Bruhat-Tits strata are not smooth

anymore, so that our method fails to encapsulate a certain part of its cohomology. Let us

explain this in more details.

In the ramified case, the reflex field E is a quadratic ramified extension of Qp with p ą 2. When

n is odd there is only one choice of framing object X, but when n is even there are two choices

X` and X´. The group J is isomorphic to the group of unitary similitudes of a non-degenerate

E{Qp-hermitian space C of dimension n, which is closely related to the Dieudonné isocristal

of X. If n is even, the hermitian space C is split if X “ X` and non-split if X “ X´. The

group J is quasi-split if and only if n is odd or n is even with C split. In [RTW14], the authors

build the Bruhat-Tits stratification Mred “
Ů

Λ M˝
Λ where Λ runs over the set of vertex lattices

L in C and where M˝
Λ is isomorphic to the Coxeter variety associated to the finite group of

symplectic similitudes GSpp2θ,Fpq, where 0 ď tpΛq :“ 2θ ď n is the type of the vertex lattice

Λ. The set of vertex lattices L forms a polysimplicial complex which is closely related to the

Bruhat-Tits building of J , giving a good combinatorial description of the incidence relations

of the strata. Let MΛ :“ M˝
Λ denote the closure of a Bruhat-Tits stratum. Then MΛ is a

projective normal variety over Fp which is not smooth as soon as θ ě 2. It is isomorphic to

the projective closure Sθ of a generalized Deligne-Lusztig variety for GSpp2θ,Fpq, the kind of

which does not fall under the scope of classical Deligne-Lusztig theory. However, the variety

Sθ admits a stratification

Sθ “
θ
ğ

θ1“0

XIθ1
pwθ1q,

(notations of 1.1.5) such that the closure of a stratum XIθ1
pwθ1q is the union of all the smaller

strata XItpwtq for 0 ď t ď θ1. It turns out that each stratum XIθ1
pwθ1q is a classical Deligne-

Lusztig variety, which is parabolically induced from the Coxeter variety attached to the smaller

group of unitary similitudes GSpp2θ1,Fpq. In [Lus76], Lusztig has computed the cohomology of

the Coxeter varieties for all classical groups. Using the combinatorical description of irreducible
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unipotent representations of symplectic groups in terms of Lusztig’s notion of symbols, one

may compute through parabolic induction the cohomology of any stratum XIθ1
pwθ1q. The

stratification then induces a GSpp2θ,Fpq ˆ xF y-equivariant spectral sequence

Ea,b
1 “ Ha`b

c pXIapwaq,Q`q ùñ Ha`b
c pSθ,Q`q,

where F denotes the geometric Frobenius action. The study of the weights of the Frobenius on

the terms Ea,b
1 shows that the sequence degenerates on the second page, and it offers substantial

information on the cohomology of Sθ.

More precisely, Sθ has dimension θ, and for 0 ď k ď 2θ the weights of the Frobenius on the

cohomology group Hk
c pSθ,Q`q form a subset of tpi,´pj`1u for k ´ minpk, θq ď i ď k ´ rk{2s

and for k ´ minpk, θq ď j ď k ´ rk{2s ´ 1. Among other things, if i, j ą k ´ minpk, θq then

we determine the eigenspaces of the Frobenius Hk
c pSθ,Q`qpi and Hk

c pSθ,Q`q´pj`1 explicitely up

to at most four irreducible representations of GSpp2θ,Fpq. We refer to 1.4.2 and 1.4.3 for the

detailed results, and to 1.2.3 Theorem for the notations regarding unipotent representations in

terms of symbols, as it would be too long to fit this introduction.

In particular, we note that the cohomology of Sθ is entirely determined if θ ď 1 since S0 is a

point and S1 » P1. For θ ě 2 the variety Sθ has singularities and for θ ě 3 the action of the

Frobenius on the cohomology is not pure (for θ “ 2 the non-purity is undetermined). All irre-

ducible representations of GSpp2θ,Fpq occuring in an eigenspace of F for an eigenvalue of the

form pi belong to the unipotent principal series, whereas those corresponding to an eigenvalue

of the form ´pj`1 belong to the cuspidal series determined by the unique cuspidal unipotent

representation of GSpp4,Fpq.

We then introduce the analytical tube UΛ ĂMan of any closed Bruhat-Tits stratum MΛ. As

we work at hyperspecial level, the associated integral model of the Shimura variety is smooth

so that the nearby cycles are trivial. It allows us to identify the cohomology of UΛ and of MΛ.

Let Lmax denote the subset of vertex lattices Λ whose type tpΛq is maximal, ie. it is equal to

tmax “

$

’

’

&

’

’

%

n´ 1 if n is odd,

n if n is even and C is split,

n´ 2 if n is even and C is non-split.

We also write tmax “ 2θmax. Let tΛ0, . . . ,Λθmaxu be a maximal simplex in L such that tpΛθq “ 2θ

for all 0 ď θ ď θmax. Let Jθ denote the fixator in J of the vertex lattice Λθ. Then the Jθ’s

are maximal compact subgroups of J , and any maximal compact subgroup of J is conjugate to

one of the Jθ’s. The collection tUΛuΛPLmax forms an open cover of the generic fiber Man, from

which we deduce the existence of a pJ ˆW q-equivariant spectral sequence (with the notations

of 3.1.4 and 3.1.10)

Ea,b
1 “

θmax
à

θ“0

c´ IndJJθ

´

Hb
cpUΛθ ,Q`q bQ`rK

pθq
´a`1s

¯

ùñ Ha`b
c pMan,Q`q.

Since the non-zero terms Ea,b
1 are located in a finite range 0 ď b ď 2pn ´ 1q, this sequence

eventually degenerates. Using this sequence, we are able to compute the cohomology group of
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Man of highest degree, and when θmax “ 1, ie. n “ 2 with C split, n “ 3 or n “ 4 with C

non-split, using the combinatorics of the Bruhat-Tits building of J , we prove the vanishing of

the cohomology group of degree 2pn ´ 1q ´ 1. In the following statement, J˝ Ă J denotes the

subgroup consisting of all unitary similitudes whose multiplier is a unit in Zp. It is also the

subgroup of J generated by all its compact subgroups. We note that J{J˝ » Z.

Theorem (3.1.13 and 3.2.3). There is an isomorphism

H2pn´1q
c pMan,Q`q » c´ IndJJ˝ 1,

where 1 denotes the trivial representation, and where Frob acts like pn´1 ¨ id.

Assume that θmax “ 1, ie. n “ 2 with C split, n “ 3 or n “ 4 with C non-split. Then

H
2pn´1q´1
c pMan,Q`q “ 0.

In particular, when n “ 2 with C split, the Rapoport-Zink space Man has dimension 1 and its

cohomology is entirely computed. We sum in up in the following statement.

Corollary (3.2.3). Assume that n “ 2 with C split. Then H0
cpMan,Q`q » c´ IndJJ1 1 with τ

acting like id, H1
cpMan,Q`q “ 0 and H2

cpMan,Q`q » c´ IndJJ˝ 1 with τ acting like p ¨ id.

For general n, by looking carefully at the distribution of the Frobenius weights among the

different terms, we are able to determine two terms which are left unchanged in the deeper

pages of the sequence. It leads to the following statement, where τ :“ pπid,Frobq P JˆW with

π a uniformizer in E of trace zero and Frob the geometric Frobenius.

Theorem (3.1.8, 3.1.9 and 3.1.10). There is a J ˆW -equivariant monomorphism

c´ IndJJθmax
1 ãÑ H2pn´1´θmaxq

c pMan
q,

where on the left-hand side the inertia acts trivially and τ acts like multiplication by the scalar

pn´1´θmax.

Assume that n ě 5 or that n “ 4 with C split. There is a J ˆW -equivariant monomorphism

c´ IndJJθmax
ρθmax ãÑ H2pn´θmaxq

c pMan
q,

where on the left-hand side the inertia acts trivially and τ acts like multiplication by the scalar

´pn´θmax.

Here, 1 denotes the trivial representation and ρθmax is the inflation of a certain irreducible

unipotent representation of the finite reductive quotient Jθmax{J
`
θmax

defined in 3.1.9. Using

type theory, one may study the behaviour of such compactly induced representations to deduce

the following proposition. Here, if V is any smooth representation of J and χ is any smooth

character of the center ZpJq » Eˆ, we denote by Vχ the largest quotient of V on which ZpJq

acts through χ. For χ an unramified character of ZpJq, when θmax “ 0 (ie. n “ 1 or n “ 2

with C non-split), we define an irreducible supercuspidal representation σ0,χ of J in 3.1.11, and

when θmax “ 2 (ie. n “ 4 with C split, n “ 5 or n “ 6 with C non-split), we define another

irreducible supercuspidal representation σ2,χ of J in 3.1.12.
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Proposition (3.1.11 and 3.1.9). Let χ be an unramified character of ZpJq.

(1) If n “ 1 or n “ 2 with C non-split, all irreducible subquotients of V :“ c´ IndJJ0 1 are

supercuspidal, and we have Vχ » σ0,χ.

(2) If n ě 3 or if n “ 2 with C split, then no irreducible subquotient of V :“ c´ IndJJθmax
1 is

supercuspidal. In this case, Vχ does not contain any non-zero admissible subrepresentation

of J .

(3) If n “ 4 with C split, if n “ 5 or if n “ 6 with C non-split, all irreducible subquotients of

V :“ c´ IndJJ2 ρ2 are supercuspidal, and we have Vχ » σ2,χ.

(4) If n ě 7 or if n “ 6 with C split, then no irreducible subquotient of V :“ c´ IndJJθmax
ρθmax

is supercuspidal. In this case, Vχ does not contain any non-zero admissible subrepresen-

tation of J .

In particular, we obtain the following corollary.

Corollary. Let χ be any unramified character of ZpJq.

If n ě 3 or n “ 2 with C split then H
2pn´1´θmaxq
c pManqχ is not J-admissible.

If n ě 7 or n “ 6 with C split then H
2pn´θmaxq
c pManqχ is not J-admissible.

This non-admissibility result was already observed in the unramified case, but it does not hap-

pen in the Lubin-Tate nor the Drinfeld cases.

Lastly, we introduce the PEL unitary Shimura variety SKp of signature p1, n´ 1q at a ramified

place, which is a smooth quasi-projective scheme over OE. It is given by a Shimura datum

denoted pG, Xq. Let S
ss

:“ lim
ÐÝ

S
ss

Kp denote the supersingular locus in its special fiber. Via p-

adic uniformization, the geometry of the supersingular locus is closely related to the geometry

of Mred. At the level of cohomology, the following pGpAp
f q ˆW q-equivariant spectral sequence

has been constructed in [Far04]

F a,b
2 “

à

ΠPAξpIq
ExtaJ

`

H2pn´1q´b
c pMan,Q`qp1´ nq,Πp

˘

b Πp
ùñ Ha`b

c pS
ss
,Lξq,

where I is a certain inner form of G such that IApf “ GApf and IQp “ J , ξ is a finite dimensional

irreducible algebraic Q`-representation of G of weight wpξq P Z, Lξ is the associated local sys-

tem on the Shimura variety SKp , AξpIq is the space of all automorphic representations of IpAq
of type ξ at infinity, and H‚cpS

ss
,Lξq :“ lim

ÝÑKp H‚cpS
ss

Kp ,Lξq. The semisimple rank of J is θmax so

that F a,b
2 “ 0 as soon as a ě θmax`1. In particular, if θmax ď 1 then all the differentials are zero

so that the spectral sequence already degenerates on the second page. Using our knowledge on

the cohomology of the Rapoport-Zink space, one can compute all the non-zero terms F a,b
2 . We

deduce the following automorphic description of the cohomology of the supersingular locus.

Let XunpJq denote the set of unramified characters of J . Let StJ denote the Steinberg rep-

resentation of J . Let us fix a square root π` of p in Q`. If Π P AξpIq, we define δΠp :“
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ωΠppπ
´1 ¨ idqπ

´wpξq
` P Q`

ˆ
where ωΠp is the central character of Πp, and π´1 ¨ id lies in the center

of J . For any isomorphism ι : Q` » C we have |ιpδΠpq| “ 1. Eventually, if x P Q`
ˆ

, we denote

by Q`rxs the 1-dimensional representation of the Weil group W where the inertia acts trivially

and Frob acts like multiplication by the scalar x.

Theorem (4.2.3). There are GpAp
f q ˆW -equivariant isomorphisms

H0
cpS

ss
,Lξq »

à

ΠPAξpIq
ΠpPXunpJq

Πp
bQ`rδΠpπ

wpξq
` s,

H1
cpS

ss
,Lξq »

à

ΠPAξpIq
DχPXunpJq,
Πp“χ¨StJ

Πp
bQ`rδΠpπ

wpξq
` s,

H2
cpS

ss
,Lξq »

à

ΠPAξpIq
Π
J1
p ­“0

Πp
bQ`rδΠpπ

wpξq`2
` s.

This result is to be compared with the unramified case [Mul22a] Theorem 5.2.3. The cohomol-

ogy of the supersingular locus both in the unramified and ramified cases are very similar, except

that an additional term appears in H1
c in the unramified case, corresponding to automorphic

representations Π such that Πp is an unramified twist of a certain supercuspidal representation

of J . The reason comes from the cohomology of a Bruhat-Tits stratum of maximal orbit type,

where in the unramified case a cuspidal unipotent representation of the finite group of unitary

similitudes in three variables GUp3,Fpq occurs, however in the ramified case there is no such

cuspidal unipotent representation of the finite group of simplectic similitudes in two variables

GSpp2,Fpq.

Organisation of the paper: In the first section, we prove all the statements regarding the

cohomology of the closed Bruhat-Tits strata by using Deligne-Lusztig theory only. Contrary

to the introduction, we work over a general finite field Fq of characteristic p. However, only

the case q “ p will be relevant in the context of the Rapoport-Zink space. Also, we work with

the usual symplectic group Sp instead of the group of symplectic similitudes GSp, because the

associated Deligne-Lusztig varieties are the same in virtue of 1.1.2 and 1.2.1. We recall the

general definition of Deligne-Lusztig varieties, and we explain the combinatorics of symbols

applied to the classification of unipotent representations of finite symplectic groups. We then

translate Lusztig’s computation of the cohomology of the Coxeter varieties in [Lus76] in terms

of symbols, and we finally proceed to investigate the cohomology of a closed Bruhat-Tits stra-

tum.

In section 2, we introduce the Rapoport-Zink space and recall the results from [RTW14] where

the Bruhat-Tits stratification on the special fiber is built. We detail the combinatorics of vertex

lattices, and we give a formula for the number of strata contained in or containing a fixed given

stratum. Eventually, we also recall the p-adic uniformization of the supersingular locus of the

associated Shimura variety.

In section 3, we move the Bruhat-Tits stratification to the generic fiber Man by considering the
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analytical tubes UΛ, and we study the associated Čech spectral sequence. This section contains

all our results on the cohomology of the Rapoport-Zink space.

In the last section, we use the p-adic uniformization and our knowledge acquired so far on the

cohomology of the Rapoport-Zink space, in order to compute the cohomology of the supersin-

gular locus for small values of n.

Notations: Throughout the paper, we fix an integer n ě 1 and an odd prime number p. If k is

a perfect field of characteristic p, we denote by W pkq the ring of Witt vectors and by W pkqQ its

fraction field, which is an unramified extension of Qp. We denote by σk : x ÞÑ xp the Frobenius

of Autpk{Fpq, and we use the same notation for its lift to AutpW pkqQ{Qpq. If k1{k is a perfect

field extension then pσk1q|k “ σk, so we can remove the subscript and write σ unambiguously

instead. If q “ pe is a power of p, we write Fq for the field with q elements. We fix an algebraic

closure F of Fp.
We fix ε P Zˆp such that ´ε is not a square in Zp. We define E1 :“ Qpr

?
´ps and E2 :“ Qpr

?
εps.

Any quadratic ramified extension of Qp is isomorphic to either E1 or E2. We will denote by

E either E1 or E2 with uniformizer π equal to
?
´p or

?
εp respectively. In both cases π2 is a

uniformizer in Zp. We write OE for the ring of integers and κpEq “ Fp for the residue field.

Let ¨ P GalpE{Qpq be the non-trivial Galois involution, so that π “ ´π.

Acknowledgement: This paper is part of a PhD thesis under the supervision of Pascal Boyer

and Naoki Imai. I am grateful for their wise guidance throughout the research.

1 On the cohomology of a closed Bruhat-Tits stratum

1.1 The closed Deligne-Lusztig variety isomorphic to a closed Bruhat-
Tits stratum

1.1.1 Let q be a power of p and let G be a connected reductive group over F, together with a

split Fq-structure given by a geometric Frobenius morphism F . For H any F -stable subgroup

of G, we write H :“ HF for its group of Fq-rational points. Let pT,Bq be a pair consisting

of a maximal F -stable torus T contained in an F -stable Borel subgroup B. Let pW,Sq be

the associated Coxeter system, where W “ NGpTq{T. Since the Fq-structure on G is split,

the Frobenius F acts trivially on W. For I Ă S, let PI ,UI ,LI be respectively the standard

parabolic subgroup of type I, its unipotent radical and its unique Levi complement containing

T. Let WI be the subgroup of W generated by I.

For P any parabolic subgroup of G, the associated generalized parabolic Deligne-Lusztig

variety is

XP :“ tgP P G{P | g´1F pgq P PF pPqu.

We say that the variety is classical (as opposed to generalized) when in addition the parabolic

subgroup P contains an F -stable Levi complement. Note that P itself needs not be F -stable.

We may give an equivalent definition using the Coxeter system pW,Sq. For I Ă S, let IWI be

the set of elements w P W which are I-reduced-I. For w P IWI , the associated generalized
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parabolic Deligne-Lusztig variety is

XIpwq :“ tgPI P G{PI | g
´1F pgq P PIwF pPIqu.

The variety XIpwq is classical when w´1Iw “ I, and it is defined over Fq. The dimension is

given by dimXIpwq “ lpwq where lpwq denotes the length of w with respect to S.

1.1.2 Let G and G1 be two reductive connected group over F both equipped with an Fq-
structure. We denote by F and F 1 the respective Frobenius morphisms. Let f : G Ñ G1 be

an Fq-isotypy, that is a homomorphism defined over Fq whose kernel is contained in the center

of G and whose image contains the derived subgroup of G1. Then, according to [DM14] proof

of Proposition 11.3.8, we have G1 “ fpGqZpG1q0, where ZpG1q0 is the connected component of

unity of the center of G1. Thus intersecting with fpGq defines a bijection between parabolic

subgroups of G1 and those of fpGq. Let P be a parabolic subgroup of G and let P1 “

fpPqZpG1q0 be the corresponding parabolic of G1. Then the map gP ÞÑ fpgPq induces an

isomorphism f : XP
„
ÝÑ XP1 which is compatible with the actions of G and G1 via f . Therefore

G and G1 generate the same Deligne-Lusztig varieties.

1.1.3 Let θ ě 0 and let V be a 2θ-dimensional Fq-vector space equipped with a non-

degenerate symplectic form p¨, ¨q : V ˆ V Ñ Fq. Fix a basis pe1, . . . , e2θq in which p¨, ¨q is

described by the matrix
˜

0 Aθ

´Aθ 0

¸

,

where Aθ denotes the matrix having 1 on the anti-diagonal and 0 everywhere else. If k is a

perfect field extension of Fq, let Vk :“ V bFq k denote the scalar extension to k equipped with

its induced k-symplectic form p¨, ¨q. Let τ : Vk
„
ÝÑ Vk denote the map idb σ. If U Ă Vk, let UK

denote its orthogonal.

We consider the finite symplectic group SppV, p¨, ¨qq » Spp2θ,Fqq. It can be identified with

G “ GF where G is the symplectic group SppVF, p¨, ¨qq » Spp2θ,Fq and F is the Frobenius

raising the entries of a matrix to their q-th power. Let T Ă G be the maximal torus of diagonal

symplectic matrices and let B Ă G be the Borel subgroup of upper-triangular symplectic

matrices. The Weyl system of pT,Bq is identified with pWθ,Sq where Wθ is the finite Coxeter

group of type Bθ and S “ ts1, . . . , sθu is the set of simple reflexions. They satisfy the following

relations

sθsθ´1sθsθ´1 “ sθ´1sθsθ´1sθ, sisi´1si “ si´1sisi´1, @ 2 ď i ď θ ´ 1,

sisj “ sjsi, @ |i´ j| ě 2.

Concretely, the simple reflexion si acts on V by exchanging ei and ei`1 as well as e2θ´i and

e2θ´i`1 for 1 ď i ď θ ´ 1, whereas sθ exchanges eθ and eθ`1. The Frobenius F acts trivially on

Wθ.

1.1.4 We define the following subset of S

I :“ ts1, . . . , sθ´1u “ Sztsθu.
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We consider the generalized Deligne-Lusztig variety XIpsθq. Since sθsθ´1sθ R I, it is not a clas-

sical Deligne-Lusztig variety. Let Sθ :“ XIpsθq be its closure in G{PI . This normal projective

variety occurs as a closed Bruhat-Tits stratum in the special fiber of the ramified unitary PEL

Rapoport-Zink space of signature p1, n´1q, as established in [RTW14]. In loc. cit. the authors

describe the geometry of Sθ. We summarize their analysis.

Proposition ([RTW14] 5.3, 5.4). Let k be a perfect field extension of Fq. The k-rational points

of Sθ are given by

Sθpkq » tU Ă Vk |U
K
“ U and U

ď1
Ă U ` τpUqu,

where
ď1
Ă denotes an inclusion of subspaces with index at most 1. There is a decomposition

Sθ “ XIpidq \XIpsθq,

where XIpidq is closed and of dimension 0, and XIpsθq is open, dense of dimension θ. They

correspond respectively to points U having U “ τpUq and U Ĺ U ` τpUq.

If θ ě 2 then Sθ is singular at the points of XIpidq. When θ “ 1, we have S1 » P1.

1.1.5 For 0 ď θ1 ď θ, define

Iθ1 :“ ts1, . . . , sθ´θ1´1u,

and wθ1 :“ sθ`1´θ1 . . . sθ. In particular I0 “ I, Iθ´1 “ Iθ “ H, w0 “ id and w1 “ sθ.

Proposition ([RTW14] 5.5). There is a stratification into locally closed subvarieties

Sθ “
θ
ğ

θ1“0

XIθ1
pwθ1q.

The stratum XIθ1
pwθ1q corresponds to points U such that dimpU`τpUq` . . .`τ θ

1`1pUqq “ θ`θ1.

The closure in Sθ of a stratum XIθ1
pwθ1q is the union of all the strata XItpwtq for t ď θ1. The

stratum XIθ1
pwθ1q is of dimension θ1, and XIθpwθq is open, dense and irreducible. In particular

Sθ is irreducible.

Remark. This stratification plays the role of the Ekedahl-Oort stratification MΛ “
Ů

tMΛptq

of the closed Bruhat-Tits strata in the unramified case, see [VW11].

1.1.6 It turns out that the strata XIθ1
pwθ1q are related to Coxeter varieties for symplectic

groups of smaller sizes. For 0 ď θ1 ď θ, define

Kθ1 :“ ts1, . . . sθ´θ1´1, sθ´θ1`1, . . . , sθu “ Sztsθ´θ1u.

Note that K0 “ I0 “ I and Kθ “ S. We have Iθ1 Ă Kθ1 with equality if and only if θ1 “ 0.

Proposition. There is an Spp2θ,Fpq-equivariant isomorphism

XIθ1
pwθ1q » Spp2θ,Fqq{UKθ1 ˆLKθ1 X

LK
θ1

Iθ1
pwθ1q,

where X
LK

θ1

Iθ1
pwθ1q is a Deligne-Lusztig variety for LKθ1

. The zero-dimensional variety Spp2θ,Fqq{UKθ1
has a left action of Spp2θ,Fqq and a right action of LKθ1 .

Proof. It is similar to [Mul22b] Proposition 8.
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1.1.7 The Levi complement LKθ1
is isomorphic to GLpθ´ θ1qˆSpp2θ1q, and its Weyl group is

isomorphic to Sθ´θ1ˆWθ1 . Via this decomposition, the permutation wθ1 corresponds to idˆwθ1 .

The Deligne-Lusztig variety X
LK

θ1

Iθ1
pwθ1q decomposes as a product

X
LK

θ1

Iθ1
pwθ1q “ X

GLpθ´θ1q
Iθ1

pidq ˆX
Spp2θ1q
H pwθ1q.

The variety X
GLpθ´θ1q
Iθ1

pidq is just a single point, but X
Spp2θ1q
H pwθ1q is the Coxeter variety for the

symplectic group of size 2θ1. Indeed, wθ1 is a Coxeter element, ie. the product of all the simple

reflexions of the Weyl group of Spp2θ1q.

1.2 Unipotent representations of the finite symplectic group

1.2.1 Recall that a (complex) irreducible representation of a finite group of Lie type G “ GF

is said to be unipotent, if it occurs in the Deligne-Lusztig induction of the trivial representation

of some maximal rational torus. Equivalently, it is unipotent if it occurs in the cohomology

(with coefficient in Q` with ` ­“ p) of some Deligne-Lusztig variety of the form XB, with B a

Borel subgroup of G containing a maximal rational torus.

Let G,G1 and let f : G Ñ G1 be an Fq-isotypy as in 1.1.2. If B is such a Borel in G, then

B1 :“ fpBqZpG1q0 is such a Borel in B1, and f induces an isomorphism XB
„
ÝÑ XB1 compatible

with the actions. As a consequence, the map

ρ ÞÑ f ˝ ρ

defines a bijection between the sets of equivalence classes of unipotent representations of G1

and of G. We will use this observation later in the case G “ Spp2θq and G1 “ GSpp2θq, the

symplectic group and the group of symplectic similitudes, the morphism f being the inclusion.

1.2.2 In this section, we recall the classification of the unipotent representations of the finite

symplectic groups. The underlying combinatorics is described by Lusztig’s notion of symbols.

Our reference is [GM20] Section 4.4.

Definition. Let θ ě 1 and let d be an odd positive integer. The set of symbols of rank θ

and defect d is

Y1
d,θ :“

#

S “ pX, Y q

ˇ

ˇ

ˇ

ˇ

X “ px1, . . . , xr`dq

Y “ py1, . . . , yrq
with xi, yj P Zě0,

xi`1 ´ xi ě 1,

yj`1 ´ yj ě 1,
rkpSq “ θ

+

N

pshiftq,

where the shift operation is defined by shiftpX, Y q :“ pt0u\ pX ` 1q, t0u\ pY ` 1qq, and where

the rank of S is given by

rkpSq :“
ÿ

sPS

s´

Z

p#S ´ 1q2

4

^

.

Note that the formula defining the rank is invariant under the shift operation, therefore it is

well defined. By [Lus77], we have rkpSq ě
Y

d2

4

]

so in particular Y1
d,θ is empty for d big enough.

We write Y1
θ for the union of the Y1

d,θ with d odd, this is a finite set.

11



On the cohomology of the ramified PEL unitary RZ space of signature p1, n´ 1q

Example. In general, a symbol S “ pX, Y q will be written

S “

˜

x1 . . . xr . . . xr`d

y1 . . . yr

¸

.

We refer to X and Y as the first and second rows of S. The 6 elements of Y1
2 are given by

˜

2
¸

,

˜

0 1

2

¸

,

˜

0 2

1

¸

,

˜

1 2

0

¸

,

˜

0 1 2

1 2

¸

,

˜

0 1 2
¸

.

The last symbol has defect 3 whereas all the other symbols have defect 1.

1.2.3 The symbols can be used to classify the unipotent representations of the finite sym-

plectic group.

Theorem ([Lus77] Theorem 8.2). There is a natural bijection between Y1
θ and the set of equiv-

alence classes of unipotent representations of Spp2θ,Fqq.

If S P Y1
θ we write ρS for the associated unipotent representation of Spp2θ,Fqq. The classifica-

tion is done so that the symbols

˜

θ
¸

,

˜

0 . . . θ ´ 1 θ

1 . . . θ

¸

,

correspond respectively to the trivial and the Steinberg representations.

1.2.4 Let S “ pX, Y q be a symbol and let k ě 1. A k-hook h in S is an integer z ě k such

that z P X, z ´ k R X or z P Y, z ´ k R Y . A k-cohook c in S is an integer z ě k such that

z P X, z ´ k R Y or z P Y, z ´ k R X. The integer k is referred to as the length of the hook h

or the cohook c, it is denoted `phq or `pcq. The hook formula gives an expression of dimpρSq

in terms of hooks and cohooks.

Proposition ([GM20] Proposition 4.4.17). We have

dimpρSq “ qapSq
śθ

i“1 pq
2i ´ 1q

2b1pSq
ś

h pq
`phq ´ 1q

ś

c pq
`pcq ` 1q

,

where the products in the denominator run over all the hooks h and all the cohooks c in S, and

the numbers apSq and b1pSq are given by

apSq “
ÿ

ts,tuĂS

minps, tq ´
ÿ

iě1

ˆ

#S ´ 2i

2

˙

, b1pSq “

Z

#S ´ 1

2

^

´# pX X Y q .

1.2.5 For δ ě 0, we define the symbol

Sδ :“

˜

0 . . . 2δ
¸

P Y1
2δ`1,δpδ`1q.
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Definition. The core of a symbol S P Y1
d,θ is defined by corepSq :“ Sδ where d “ 2δ ` 1. We

say that S is cuspidal if S “ corepSq.

Remark. In general, we have rkpcorepSqq ď rkpSq with equality if and only if S is cuspidal.

The next theorem states that cuspidal unipotent representations correspond to cuspidal sym-

bols.

Theorem ([GM20] Theorem 4.4.28). The group Spp2θ,Fqq admits a cuspidal unipotent rep-

resentation if and only if θ “ δpδ ` 1q for some δ ě 0. When this is the case, the cuspidal

unipotent representation is unique and given by ρSδ .

1.2.6 The determination of the cuspidal unipotent representations leads to a description of

the unipotent Harish-Chandra series.

Definition. Let δ ě 0 such that θ “ δpδ ` 1q ` a for some a ě 0. We write

Lδ » GLp1,Fqqa ˆ Spp2δpδ ` 1q,Fqq

for the block-diagonal Levi complement in Spp2θ,Fqq, with one middle block of size 2δpδ ` 1q

and other blocks of size 1. We write ρδ :“ p1qa b ρSδ , which is a cuspidal representation of Lδ.

Proposition ([GM20] Proposition 4.4.29). Let S P Y1
θ,d. The cuspidal support of ρS is pLδ, ρδq

where d “ 2δ ` 1.

In particular, the defect of the symbol S of rank θ classifies the unipotent Harish-Chandra

series of Spp2θ,Fpq.

1.2.7 As it will be needed later, we explain how to compute a Harish-Chandra induction of

the form

RG
L 1 b ρS1 ,

where G “ Spp2θ,Fqq, L is a block-diagonal Levi complement of the form L » GLpa,Fqq ˆ
Spp2θ1,Fqq and S 1 P Y1

d,θ1 is a symbol.

Definition. Let S “ pX, Y q P Y1
d,θ and let h be a k-hook of S given by some integer z. Assume

that z P X and z ´ k R X (resp. z P Y and z ´ k R Y ). The leg length of h is given by the

number of integers s P X (resp. Y ) such that z ´ k ă s ă z.

Consider the symbol S 1 “ pX 1, Y 1q obtained by deleting z and replacing it with z ´ k in the

same row. We say that S 1 is obtained from S by removing a k-hook, or equivalently that S

is obtained from S 1 by adding a k-hook.

Theorem ([FS90] Statement 4.B’). Let S 1 “ pX 1, Y 1q P Y1
d,θ1. We have

RG
L 1 b ρS1 “

ÿ

S

ρS

where S runs over all the symbols in Y1
d,θ such that, for some a1, a2 ě 0 with a “ a1 ` a2, S

is obtained from S 1 by adding an a1-hook of leg length 0 to its first row and an a2-hook of leg

length 0 to its second row.

13
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This computation is a consequence of the Howlett-Lehrer comparison theorem [HL83] as well

as the Pieri rule for Coxeter groups of type B, see [GP00] 6.1.9. We will use it in concrete

examples in the following sections.

1.2.8 There is a similar rule to compute Harish-Chandra restrictions. Let 0 ď θ1 ď θ and

consider the embedding G1 ãÑ L ãÑ G where G1 “ Spp2θ1,Fqq, G “ Spp2θ,Fqq and L is the

block diagonal Levi complement GLpa,Fqq ˆ Spp2θ1,Fqq where a “ θ ´ θ1. We write ˚RG
G1 for

the composition of the Harish-Chandra restriction functor ˚RG
L with the usual restriction from

L to G1.

Theorem. Let S “ pX, Y q P Y1
d,θ. We have

˚RG
G1 ρS “

ÿ

S1

ρS1

where S 1 runs over all the symbols in Y1
d,θ1 such that, for some a1, a2 ě 0 with a “ a1 ` a2, S 1

is obtained from S by removing an a1-hook of leg length 0 to its first row and an a2-hook of leg

length 0 to its second row.

1.3 The cohomology of the Coxeter variety for the symplectic group

1.3.1 In this section we compute the cohomology of Coxeter varieties of finite symplectic

groups, in terms of the classification of the unipotent characters that we recalled in 1.2.3.

Notation. We write Xk :“ XHpcoxq for the Coxeter variety attached to the symplectic group

Spp2k,Fqq, and H‚cpX
kq instead of H‚cpX

k b F,Q`q where ` ­“ p.

We first recall known facts on the cohomology of Xk from Lusztig’s work.

Theorem ([Lus76]). The following statements hold.

(1) The variety Xk has dimension k and is affine. The cohomology group Hi
cpX

kq is zero

unless k ď i ď 2k.

(2) The Frobenius F acts in a semisimple manner on the cohomology of Xk.

(3) The groups H2k´1
c pXkq and H2k

c pX
kq are irreducible as Spp2k,Fqq-representations, and the

latter is the trivial representation. The Frobenius F acts with eigenvalues respectively qk´1

and qk.

(4) The group Hk`i
c pXkq for 0 ď i ď k ´ 2 is the direct sum of two eigenspaces of F , for the

eigenvalues qi and ´qi`1. Each eigenspace is an irreducible unipotent representation of

Spp2k,Fqq.

(5) The sum
À

iě0 Hi
cpX

kq is multiplicity-free as a representation of Spp2k,Fqq.
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In other words, there exists a uniquely determined family of pairwise distinct symbols Sk0 , . . . , S
k
k

and T k0 , . . . , T
k
k´2 in Y1

k such that

@0 ď i ď k ´ 2, Hk`i
c pXk

q » ρSki ‘ ρTki ,

@k ´ 1 ď i ď k, Hk`1
c pXk

q » ρSki .

The representation ρSki (resp. ρTki ) corresponds to the eigenspace of the Frobenius F on
À

iě0 Hi
cpX

kq attached to pi (resp. to ´pi`1). Moreover, we know that ρSkk is the trivial

representation, therefore

Skk “

˜

k
¸

.

Lusztig also gives a formula computing the dimension of the eigenspaces. Specializing to the

case of the symplectic group, it reduces to the following statement.

Proposition ([Lus76]). For 0 ď i ď k we have

degpρSki q “ qpk´iq
2
k´i
ź

s“1

qs`i ´ 1

qs ´ 1

k´i´1
ź

s“0

qs`i ` 1

qs ` 1
.

For 0 ď j ď k ´ 2 we have

degpρTkj q “ qpk´j´1q2 pq
k´1 ´ 1qpqk ´ 1q

2pq ` 1q

k´j´2
ź

s“1

qs`j ´ 1

qs ´ 1

k´j´1
ź

s“2

qs`j ` 1

qs ` 1
.

1.3.2 Our goal in this section is to determine the symbols Ski and T kj explicitly. This is done

in the following proposition.

Proposition. For 0 ď i ď k and 0 ď j ď k ´ 2, we have

Ski “

˜

0 . . . k ´ i´ 1 k

1 . . . k ´ i

¸

, T kj “

˜

0 . . . k ´ j ´ 3 k ´ j ´ 2 k ´ j ´ 1 k

1 . . . k ´ j ´ 2

¸

.

We note that the statement is coherent with the two dimension formulae that we provided

earlier. That is, the degree of ρSki (resp. of ρTkj ) computed with the hook formula 1.2.4, agrees

with the dimension of the eigenspace of pi (resp. of ´pj`1) in the cohomology of Xk as given

in the previous paragraph.

Proof. We use induction on k ě 0. Since we already know that Skk is the symbol corresponding

to the trivial representation, the proposition is proved for k “ 0. Thus we may assume k ě 1.

We consider the block diagonal Levi complement L » GLp1,Fqq ˆ Spp2pk ´ 1q,Fqq, and we

write ˚Rk
k´1 for the composition of the Harish-Chandra restriction from Spp2k,Fqq to L, with

the usual restriction from L to Spp2pk ´ 1q,Fqq. As in the proof of [Mul22b] Proposition 19,

for all 0 ď i ď k we have an Spp2pk ´ 1q,Fqq ˆ xF y-equivariant isomorphism

˚Rk
k´1

`

Hk`i
c pXk

q
˘

» Hk´1`i
c pXk´1

q ‘ Hk´1`pi´1q
c pXk´1

qp1q. (˚)
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Here, p1q denotes the Tate twist. This recursive formula is established by Lusztig in [Lus76]

Corollary 2.10. The right-hand side is known by induction hypothesis whereas the left-hand

side can be computed using 1.2.8 Theorem. We establish the proposition by comparing the

different eigenspaces of F on both sides.

If S P Y1
d,k is any symbol, the restriction ˚Rk

k´1 ρS is the sum of all the representations ρS1 where

S 1 is obtained from S by removing a 1-hook from any of its rows.

We distinguish different cases depending on the values of k and i.

– Case k “ 1. We only need to determine S1
0 . For i “ 0, the right-hand side of (˚) is ρS0

0

with eigenvalue 1. Thus, the symbol S1
0 P Y1

1 has defect 1 and admits only one 1-hook.

If we remove this hook we obtain S0
0 . Therefore, S1

0 must be one of the two following

symbols
˜

0 1

1

¸

,

˜

1
¸

.

By 1.3.1, we know that ρS1
0

has degree q, thus S1
0 must be equal to the former symbol.

From now, we assume k ě 2 and we determine Ski for 0 ď i ă k.

– Case k “ 2 and i “ 0. The eigenspace attached to 1 on the right-hand side of (˚) is

ρS1
0
. Thus, the symbol S2

0 P Y1
k has defect 1 and admits only one 1-hook. If we remove

this hook we obtain S1
0 . Therefore, S2

0 must be one of the two following symbols
˜

0 1 2

1 2

¸

,

˜

0 1

2

¸

.

By 1.3.1, we know that ρS2
0

has degree q4, thus S2
0 must be equal to the former symbol.

– Case k ą 2 and i “ 0. The eigenspace attached to 1 on the right-hand side of (˚) is

ρSk´1
0

. Thus, the symbol Sk0 P Y1
k has defect 1 and admits only one 1-hook. If we remove

this hook we obtain Sk´1
0 . The only such symbol is

Sk0 “

˜

0 . . . k ´ 1 k

1 . . . k

¸

.

– Case 1 ď i ď k´ 1. The eigenspace attached to pi on the right-hand side of (˚) is

ρSk´1
i
‘ ρSk´1

i´1
. Thus, the symbol Ski P Y1

k has defect 1 and admits only two 1-hooks. If we

remove one of these hooks we obtain either Sk´1
i or Sk´1

i´1 . The only such symbol is

Ski “

˜

0 . . . k ´ i´ 1 k

1 . . . k ´ i

¸

.

It remains to determine T kj for 0 ď j ď k ´ 2.

– Case k “ 2. The eigenspace attached to ´p on the right-hand side of (˚) is 0. Thus,

the symbol T 2
0 P Y1

2 has no hook at all, implying that it is cuspidal in the sense of 1.2.5.

Since Spp4,Fqq admits only 1 unipotent cuspidal representation, we deduce that

T 2
0 “

˜

0 1 2
¸

.
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– Case k “ 3. First when j “ 0, the eigenspace attached to ´p on the right-hand side of

(˚) is ρT 2
0
. Thus, the symbol T 3

0 P Y1
3 has defect 3 and admits only one 1-hook. If we

remove this hook we obtain T 2
0 . Therefore, T 3

0 must be one of the two following symbols
˜

0 1 2 3

1

¸

,

˜

0 1 3
¸

.

By 1.3.1, we know that ρT 3
0

has degree q4 pq
2´1qpq3´1q

2pq`1q
, thus T 3

0 must be equal to the former

symbol.

Then when j “ 1, the eigenspace attached to ´p2 on the right-hand side of (˚) is ρT 2
0
.

Thus, the symbol T 3
1 P Y1

3 has defect 3 and admits only one 1-hook. If we remove this

hook we obtain T 2
0 . Thus T 3

1 is also one of the two symbols above. We can deduce that it

is equal to the latter by comparing the dimensions or by using the fact that the symbols

T kj are pairwise distinct.

From now, we assume k ě 4 and we determine T kj for 0 ď j ď k ´ 2.

– Case k “ 4 and j “ 0. The eigenspace attached to ´p on the right-hand side of (˚) is

ρT 3
0
. Thus, the symbol T 4

0 P Y1
k has defect 3 and admits only one 1-hook. If we remove

this hook we obtain T 3
0 . Therefore, T 4

0 must be one of the two following symbols
˜

0 1 2 3 4

1 2

¸

,

˜

0 1 2 3

2

¸

.

By 1.3.1, we know that ρT 4
0

has degree q9 pq
3´1qpq4´1q

2pq`1q
, thus T 4

0 must be equal to the former

symbol.

– Case k ą 4 and j “ 0. The eigenspace attached to ´p on the right-hand side of (˚) is

ρTk´1
0

. Thus, the symbol T k0 P Y1
k has defect 3 and admits only one 1-hook. If we remove

this hook we obtain T k´1
0 . The only such symbol is

T k0 “

˜

0 . . . k ´ 3 k ´ 2 k ´ 1 k

1 . . . k ´ 2

¸

.

– Case k “ 4 and j “ k´ 2. The eigenspace attached to ´p3 on the right-hand side of

(˚) is ρT 3
1
. Thus, the symbol T 4

2 P Y1
k has defect 3 and admits only one 1-hook. If we

remove this hook we obtain T 3
1 . Therefore, T 4

2 must be one of the two following symbols
˜

0 1 4
¸

,

˜

0 2 3
¸

.

By 1.3.1, we know that ρT 4
2

has degree q pq
3´1qpq4´1q

2pq`1q
, thus T 4

2 must be equal to the former

symbol.

– Case k ą 4 and j “ k´ 2. The eigenspace attached to ´pk´1 on the right-hand side of

(˚) is ρTk´1
k´3

. Thus, the symbol T kk´2 P Y1
k has defect 3 and admits only one 1-hook. If we

remove this hook we obtain T k´1
k´3 . The only such symbol is

T kk´2 “

˜

0 1 k
¸

.
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– Case 1 ď j ď k´ 3. The eigenspace attached to ´pj`1 on the right-hand side of (˚) is

ρTk´1
j

‘ ρTk´1
j´1

. Thus, the symbol T kj P Y1
k has defect 3 and admits only two 1-hooks. If

we remove one of these hooks we obtain either T k´1
j or T k´1

j´1 . The only such symbol is

T kj “

˜

0 . . . k ´ j ´ 3 k ´ j ´ 2 k ´ j ´ 1 k

1 . . . k ´ j ´ 2

¸

.

1.4 On the cohomology of a closed Bruhat-Tits stratum

1.4.1 Recall from 1.1.4 the θ-dimensional normal projective variety Sθ :“ XIpsθq defined

over Fq. It is equipped with an action of the finite symplectic group Spp2θ,Fqq. We use the

stratification of 1.1.5 Proposition to study its cohomology over Q`. If λ is a scalar, we write

H‚cpSθqλ to denote the eigenspace of the Frobenius F associated to λ (we do not in principle

assume the eigenspace to be non zero). We give a series of statements before proving all of

them at once in the remaining of this section.

Proposition. The Frobenius F acts semi-simply on H‚cpSθq. Its eigenvalues form a subset of

tqi | 0 ď i ď θu Y t´qj`1
| 0 ď j ď θ ´ 2u.

1.4.2 In a first statement, we give our results regarding the eigenspaces attached to a scalar of

the form qi for some i. Recall from 1.2.6 the cuspidal supports pLδ, ρδq for the finite symplectic

group Spp2θ,Fqq.

Theorem. Let 0 ď i ď θ and θ1 P Z.

(1) The eigenspace Hθ1`i
c pSθqqi is zero when θ1 ă i or θ1 ą θ.

We now assume that 0 ď i ď θ1 ď θ.

(2) All the irreducible representations of Spp2θ,Fqq in the eigenspace Hθ1`i
c pSθqqi belong to the

unipotent principal series, ie. they have cuspidal support pL0, ρ0q.

(3) We have

H0
cpSθq “ H0

cpSθq1 » ρ˜θ
¸, H2θ

c pSθq “ H2θ
c pSθqqθ » ρ˜θ

¸.

(4) If i` 2 ď θ1 then

à

0ďdďθ´θ1´1

ρ˜0 . . . θ1 ´ i´ 2 θ1 ´ i´ 1 θ1 ` d
1 . . . θ1 ´ i´ 1 θ ´ i´ d

¸‘

à

1ďdď
minpi,θ´θ1´1q

ρ˜0 . . . θ1 ´ i´ 2 θ1 ´ i´ 1` d θ1

1 . . . θ1 ´ i´ 1 θ ´ i´ d

¸ ãÑ Hθ1`i
c pSθqqi .

The cokernel of this map consists of at most 4 irreducible representations of Spp2θ,Fqq.
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(5) When i “ θ1 ­“ θ, we have

ρ˜θ
¸ ãÑ H2i

c pSθqqi if 2i ă θ, ρ˜θ
¸ ‘ ρ˜θ ´ i i` 1

0

¸ ãÑ H2i
c pSθqqi if 2i ě θ.

(6) When θ1 “ θ we have

Hθ`i
c pSθqqi » 0 or ρ˜0 . . . θ ´ i´ 1 θ

1 . . . θ ´ i

¸.

(7) When θ1 “ 1 and i “ 0, we have

H1
cpS1q “ 0, H1

cpSθq “ H1
cpSθq1 » 0 or ρ˜0 1 θ

1 2

¸ when θ ě 2.

We note that when θ1 “ θ, the formula of p4q does not say anything about the eigenspace

Hθ`i
c pSθqqi since the sums are empty. However, by p6q we understand that this eigenspace is

either 0 either irreducible.

We note also that the theorem does not give any information in the case i ` 1 “ θ1, except

when θ1 “ 1 and i “ 0 which corresponds to p7q.

1.4.3 In a second statement, we give our results regarding the eigenspaces attached to a

scalar of the form ´qj`1 for some j.

Theorem. Let 0 ď j ď θ ´ 2 and θ1 P Z.

(1) The eigenspace Hθ1`j
c pSθq´qj`1 is zero when θ1 ă j ` 2 or θ1 ą θ.

We now assume that 2 ď j ` 2 ď θ1 ď θ.

(2) All the irreducible representations of Spp2θ,Fqq in the eigenspace Hθ1`j
c pSθq´qj`1 are unipo-

tent with cuspidal support pL1, ρ1q.

(3) We have

H2θ´2
c pSθq´qθ´1 » ρ˜0 1 θ

¸.

(4) If j ` 4 ď θ1 ď θ then
à

0ďdďθ´θ1´1

ρ˜0 . . . θ1 ´ i´ 4 θ1 ´ i´ 3 θ1 ´ j ´ 2 θ1 ´ j ´ 1 θ1 ` d
1 . . . θ1 ´ j ´ 3 θ ´ j ´ 2´ d

¸‘

à

1ďdď
minpi,θ´θ1´1q

ρ˜0 . . . θ1 ´ i´ 4 θ1 ´ i´ 3 θ1 ´ j ´ 2 θ1 ´ j ´ 1` d θ1

1 . . . θ1 ´ j ´ 3 θ ´ j ´ 2´ d

¸ ãÑ Hθ1`j
c pSθq´qj`1 .

The cokernel of this map consists of at most 4 irreducible representations of Spp2θ,Fqq.

(5) When j ` 2 “ θ1 ­“ θ, we have

ρ˜0 1 θ
¸ ãÑ H2pj`1q

c pSθq´qj`1 if 2pj ` 1q ă θ,

ρ˜0 1 θ
¸ ‘ ρ˜0 θ ´ i´ 1 i` 2

¸ ãÑ H2pj`1q
c pSθq´qj`1 if 2pj ` 1q ě θ.
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(6) When θ1 “ θ we have

Hθ`j
c pSθq´qj`1 » 0 or ρ˜0 . . . θ ´ j ´ 3 θ ´ j ´ 2 θ ´ j ´ 1 θ

1 . . . θ ´ j ´ 2

¸.

We note that when θ1 “ θ, the formula of p4q does not say anything about the eigenspace

Hθ`j
c pSθq´qj`1 since the sums are empty. However, by p6q we understand that this eigenspace

is either 0 either irreducible.

We note also that the theorem does not give any information in the case j ` 3 “ θ1.

Remark. A cuspidal representation occurs in the cohomology of Sθ only in the cases θ “ 0 and

θ “ 2. When θ “ 0 it corresponds to H0
cpS0q which is trivial. When θ “ 2 it corresponds to

H2
cpS2q´q as described by p3q in the theorem above.

1.4.4 The remaining of this section is dedicated to proving the theorems stated above. Recall

from 1.1.5 that we have a stratification Sθ “
Ůθ
θ1“0XIθ1

pwθ1q. It induces a spectral sequence on

the cohomology whose first page is given by

Ea,b
1 “ Ha`b

c pXIapwaqq ùñ Ha`b
c pSθq. (E)

Now, recall that the strata XIθ1
pwθ1q are related to Coxeter varieties for the finite symplectic

group Spp2θ1,Fqq. Using 1.1.7, the geometric isomorphism given in 1.1.6 Proposition induces

an isomorphism on the cohomology

H‚cpXIθ1
pwθ1qq » R

Spp2θ,Fqq
LK

θ1
1 b H‚cpX

Spp2θ1q
pwθ1qq, (˚˚)

where LKθ1 denotes the block-diagonal Levi complement isomorphic to GLpθ´θ1,FqqˆSpp2θ1,Fqq.
The variety XSpp2θ1qpwθ1q is nothing but the Coxeter variety that we denoted by Xk1 in 1.3.1,

and whose cohomology we have described. For 0 ď i ď θ1 and 0 ď j ď θ1 ´ 2, recall from 1.3.2

the symbols Sθ
1

i and T θ
1

j . We define

RS
i,θ1 :“ R

Spp2θ,Fqq
LK

θ1
1 b ρSθ1i

, RT
j,θ1 :“ R

Spp2θ,Fqq
LK

θ1
1 b ρT θ1j

.

Then by (˚˚), we have

Hθ1`i
c pXIθ1

pwθ1qq » RS
i,θ1 ‘ RT

i,θ1 @0 ď i ď θ1 ´ 2,

Hθ1`i
c pXIθ1

pwθ1qq » RS
i,θ1 @θ1 ´ 1 ď i ď θ1.

The cohomology groups of other degrees vanish. The representation RS
i,θ1 corresponds to the

eigenvalue qi of F , whereas RT
j,θ1 corresponds to ´qj`1.

Lemma. Let 0 ď θ1 ď θ, 0 ď i ď θ1 and 0 ď j ď θ1 ´ 2.

– If i ă θ1, the representation RS
i,θ1 is the multiplicity-free sum of the unipotent representations

ρS where S P Y1
1,θ runs over the following 4 distinct families of symbols
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(S1)

˜

0 . . . θ1 ´ i´ 2 θ1 ´ i´ 1 θ1 ` d

1 . . . θ1 ´ i´ 1 θ ´ i´ d

¸

@0 ď d ď θ ´ θ1,

(S2)

˜

0 . . . θ1 ´ i´ 2 θ1 ´ i´ 1` d θ1

1 . . . θ1 ´ i´ 1 θ ´ i´ d

¸

@1 ď d ď minpi, θ ´ θ1q,

(S Exc 1)

˜

0 . . . θ1 ´ i´ 1 θ1 ´ i θ

1 . . . θ1 ´ i θ1 ´ i` 1

¸

if θ1 ­“ θ,

(S Exc 2)

˜

0 . . . θ1 ´ i´ 1 θ ´ i´ 1 θ1 ` 1

1 . . . θ1 ´ i θ1 ´ i` 1

¸

if θ1 ­“ θ, θ ´ 1 and θ ď θ1 ` i` 1.

– The representation RS
θ1,θ1 is the multiplicity-free sum of the unipotent representations ρS where

S P Y1
1,θ runs over the following 2 distinct families of symbols

(S1’)

˜

0 θ1 ` 1` d

θ ´ θ1 ´ d

¸

@0 ď d ď θ ´ θ1,

(S2’)

˜

d θ1 ` 1

θ ´ θ1 ´ d

¸

@1 ď d ď minpθ1, θ ´ θ1q.

– If j`2 ă θ1, the representation RT
j,θ1 is the multiplicity-free sum of the unipotent representations

ρT where T P Y1
3,θ runs over the following 4 distinct families of symbols

(T1)

˜

0 . . . θ1 ´ j ´ 4 θ1 ´ j ´ 3 θ1 ´ j ´ 2 θ1 ´ j ´ 1 θ1 ` d

1 . . . θ1 ´ j ´ 3 θ ´ j ´ 2´ d

¸

@0 ď d ď θ ´ θ1,

(T2)

˜

0 . . . θ1 ´ j ´ 4 θ1 ´ j ´ 3 θ1 ´ j ´ 2 θ1 ´ j ´ 1` d θ1

1 . . . θ1 ´ j ´ 3 θ ´ j ´ 2´ d

¸

@1 ď d ď

minpj, θ ´ θ1q,

(T Exc 1)

˜

0 . . . θ1 ´ j ´ 2 θ1 ´ j ´ 1 θ1 ´ j θ

1 . . . θ1 ´ j ´ 1

¸

if θ1 ­“ θ,

(T Exc 2)

˜

0 . . . θ1 ´ j ´ 2 θ1 ´ j ´ 1 θ ´ j ´ 1 θ1 ` 1

1 . . . θ1 ´ j ´ 1

¸

if θ1 ­“ θ, θ ´ 1

and θ ď θ1 ` j ` 1.

– The representation RT
θ1´2,θ1 is the multiplicity-free sum of the unipotent representations ρT where

T P Y1
3,θ runs over the following 2 distinct families of symbols

(T1’)

˜

0 1 2 θ1 ` 1` d

θ ´ θ1 ´ d

¸

@0 ď d ď θ ´ θ1,

(T2’)

˜

0 1 2` d θ1 ` 1

θ ´ θ1 ´ d

¸

@1 ď d ď minpθ1 ´ 2, θ ´ θ1q.
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This lemma results directly from the computational rule explained in 1.2.7. In concrete terms,

an induction of the form

R
Spp2θ,Fqq
LK

θ1
1 b ρS1

is the sum of all the representations ρS where S is obtained from S 1 by adding a hook of leg

length 0 to both rows, whose lengths sum to θ ´ θ1. We illustrate the arguments by looking at

a concrete example.

With θ “ 6, θ1 “ 3 and i “ 2 let us explain the computation of

RS
2,3 “ R

Spp12,Fqq
LK3

1 b ρS3
2
.

Recall that

S3
2 “

˜

0 3

1

¸

.

For 0 ď d ď θ´θ1 “ 3, we add a d-hook of leg length 0 to the first row of S3
2 , and a p3´dq-hook

of leg length 0 to its second row.

We may always add the hooks to the last entries of each row. By doing so we obtain the

representations corresponding to the family of symbols (S1):

˜

0 3

4

¸

,

˜

0 4

3

¸

,

˜

0 5

2

¸

,

˜

0 6

1

¸

.

When d ď minpθ ´ θ1, iq “ minp3, 2q “ 2, we may also add the first hook to the penultimate

entry of the first row. Note that since i ă θ1, the first row of Sθ
1

i has at least 2 entries. By

doing so, we obtain the representations corresponding to the family of symbols (S2):

˜

1 3

3

¸

,

˜

2 3

2

¸

.

Now, recall that symbols are equal up to shifts. Therefore, one may rewrite S3
2 as

S3
2 “ shiftpS3

2q “

˜

0 1 4

0 2

¸

.

Written this way, we notice that a 1-hook can be added to the first entry of the second row,

which is a 0. Then one must add to the first row a hook of length d “ θ´ θ1´ 1 “ 2. One may

always add it to the last entry, which results in the first “exceptional” representation (S Exc

1). Moreover if d ď i, which is the case here, one may also add this hook to the penultimate

entry of the first row, which leads to the second “exceptional” representation (S Exc 2):

˜

0 1 6

1 2

¸

,

˜

0 3 4

1 2

¸

.

The sum of the representations attached to all the 8 symbols written above is isomorphic to RS
2,3.
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We also explain in detail the special case i “ θ. Thus we compute

RS
θ,θ “ R

Spp2θ,Fqq
LK

θ1
1 b ρSθ1

θ1
.

Recall that

Sθ
1

θ1 “

˜

θ1
¸

corresponds to the trivial representation of Spp2θ1,Fqq. In order to compute this induction, we

shift the symbol Sθ
1

θ1 first:

Sθ
1

θ1 “

˜

0 θ1 ` 1

0

¸

.

For 0 ď d ď θ ´ θ1, we add a d-hook of leg length 0 to the first row and a pθ ´ θ1 ´ dq-hook

of leg length 0 to the second row. We may always add the hooks to the last entries of each

row. By doing so, we obtain the representations corresponding to the family of symbols pS11q.

Moreover when d ď minpθ1, θ ´ θ1q, we may also add the first hook to the 0 in the first row. It

leads to the representations corresponding to the family of symbols pS21q.

In particular, we notice that the symbol of pS11q with d “ θ ´ θ1 corresponds to the trivial

representation of Spp2θ,Fqq.

1.4.5 Now, we have an explicit description of the terms Ea,b
1 in the first page of the spectral

sequence (E). In the Figure 1, we draw the shape of the first page.

RS
θ,θ

RS
θ´1,θ´1 RS

θ´1,θ

RS
θ´2,θ´2 RS

θ´2,θ´1 RS
θ´2,θ ‘ RT

θ´2,θ

...
...

RS
2,2 . . . RS

2,θ´2 ‘ RT
2,θ´2 RS

2,θ´1 ‘ RT
2,θ´1 RS

2,θ ‘ RT
2,θ

RS
1,1 RS

1,2 . . . RS
1,θ´2 ‘ RT

1,θ´2 RS
1,θ´1 ‘ RT

1,θ´1 RS
1,θ ‘ RT

1,θ

RS
0,0 RS

0,1 RS
0,2 ‘ RT

0,2 . . . RS
0,θ´2 ‘ RT

0,θ´2 RS
0,θ´1 ‘ RT

0,θ´1 RS
0,θ ‘ RT

0,θ

Figure 1: The first page of the spectral sequence.

First, since the Frobenius F acts with the eigenvalue qi (resp. ´qj`1) on the representations

RS
i,θ1 (resp. RT

j,θ1), 1.4.1 Proposition as well as point p1q of 1.4.2 and 1.4.3 Theorems follow from

the triangular shape of the spectral sequence. Point p2q also follows from 1.4.4 Lemma.

Next, we notice that on the b-th row of the first page E1, the eigenvalues of F which occur are
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qb and ´qb`1. In particular, the eigenvalues on different rows are all distinct. It follows that all

the arrows in the deeper pages of the sequence are zero, therefore it degenerates on the second

page. Moreover, the filtration induced by the spectral sequence on the abutment splits, so that

Hk
c pSθq is isomorphic to the direct sum of the terms Ek´b,b

2 on the k-th diagonal of the second

page.

We prove point p3q of 1.4.2 and 1.4.3 Theorems. By the shape of the spectral sequence, we see

that

H2θ
c pSθq “ H2θ

c pSθqqθ » RS
θ,θ » ρ˜θ

¸, H2θ´2
c pSθq´qθ´1 » RT

θ´2,θ » ρ˜0 1 θ
¸.

Moreover, by the spectral sequence we know that H0
cpSθq is a subspace of RS

0,0, thus the Frobe-

nius F acts like the identity. Since Sθ is projective and irreducible, the cohomology group

H0
cpSθq “ H0pSθq is trivial.

We now prove point p4q of 1.4.2 and 1.4.3 Theorems. Let 2 ď i` 2 ď θ1 ď θ´ 1. By extracting

the eigenvalue qi in the spectral sequence, we have a chain

. . . RS
i,θ1´1 RS

i,θ1 RS
i,θ1`1 . . .u v

The quotient Kerpvq{Impuq is isomorphic to the eigenspace Hθ1`i
c pSθqqi .

The middle term RS
i,θ1 is the sum of the representations ρS where S runs over the families of

symbols (S1), (S2), (S Exc 1) and (S Exc 2) as in 1.4.4 Lemma. All these symbols are written

in their “reduced” form, meaning that they can not be written as the shift of another symbol.

Let us look at the length of the second row of these symbols. If S belongs to (S1) or (S2), then

the second row has length θ1 ´ i. If S belongs to (S Exc 1) or (S Exc 2), then the second row

has length θ1 ´ i` 1.

We may do a similar analysis for the left term (resp. the right term) by replacing θ1 with θ1´ 1

(resp. θ1`1). In the left term RS
i,θ1´1, all the representations corresponding to the families (S1)

and (S2) have second row of length θ1´ i´1. No such representation occurs in the middle term,

therefore they all automatically lie in the Kerpuq. Then, in the left term the representation

corresponding to (S Exc 1) occurs since θ1 ´ 1 ­“ θ. We observe that it is equivalent to the

representation ρS occuring in RS
i,θ1 with S in the family (S1) and d “ θ ´ θ1. Further, assume

that θ ď θ1` i so that the representation corresponding to (S Exc 2) occurs in RS
i,θ1´1. Then we

observe that it is equivalent to the representation ρS occuring in RS
i,θ1 with S in the family (S2)

and d “ θ ´ θ1 “ minpi, θ ´ θ1q. Hence, it follows that Impuq consists of at most 2 irreducible

subrepresentations of RS
i,θ1 , and they correspond to the symbols of (S1) and (S2) with d “ θ´θ1.

Next, all the subrepresentations ρS of RS
i,θ1 with S in (S1) or (S2) belong to Kerpvq, since no

component of RS
i,θ1`1 correspond to a symbol whose second row has length θ1 ´ i. Since θ1 ­“ θ,

the represensation corresponding to (S Exc 1) occurs in RS
i,θ1 . We observe that it is equivalent

to the representation ρS occuring in RS
i,θ1`1 with S in the family (S1) and d “ θ´θ1´1. Assume
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that θ1 ď θ´ 2 and θ ď θ1` i` 1, so that the representation corresponding to (S Exc 2) occurs

in RS
i,θ1 . Then we observe that it is equivalent to the representation ρS occuring in RS

i,θ1`1 with

S in the family (S2) and d “ θ´ θ1 ´ 1 “ minpi, θ´ θ1 ´ 1q. Therefore, it is not possible to tell

whether the components of RS
i,θ1 corresponding to (S Exc 1) and (S Exc 2) are in Kerpvq or not.

In all cases, we conclude that Kerpvq{Impuq contains at least all the representations correspond-

ing to the symbols S in (S1) and (S2) with d ă θ ´ θ1. With this description we miss up to

four irreducible representations, which correspond to (S1) and (S2) with d “ θ ´ θ1, (S Exc 1)

and (S Exc 2). This proves point (4) of 1.4.2 Theorem.

The point (4) of 1.4.3 Theorem is proved by identical arguments.

We now prove point p5q of 1.4.2 and 1.4.3 Theorems. We consider i “ θ1 ­“ θ. By extracting

the eigenvalue qi in the spectral sequence, we have a chain

RS
i,i RS

i,i`1 . . .u

The kernel Kerpuq is isomorphic to the eigenspace H2i
c pSθqqi . The left term RS

i,i is the sum of the

representations ρS1 where S 1 runs over the families of symbols (S1’) and (S2’). We observe that

the representation ρS1 with S 1 in (S1’) corresponding to some 0 ď d1 ď θ ´ i ´ 1 is equivalent

to the component ρS of RS
i,i`1 with S in (S1) corresponding to d “ d1. Similarly, we observe

that the representation ρS1 with S 1 in (S2’) corresponding to some 1 ď d1 ď minpi, θ ´ i´ 1q is

equivalent to the component ρS of RS
i,i`1 with S in (S2) corresponding to d “ d1.

Therefore, the representation ρS corresponding to S in (S1’) with d1 “ θ´ i belongs to Kerpuq.

This is no other than the trivial representation. Moreover, if minpi, θ ´ i ´ 1q ­“ minpi, θ ´ iq,

ie. if 2i ě θ, then the representation ρS corresponding to S in (S2’) with d1 “ θ´ i also belongs

to Kerpuq. This proves point (5) of 1.4.2 Theorem.

The point (5) of 1.4.3 Theorem is proved by identical arguments.

Points (6) of 1.4.2 and 1.4.3 Theorems follows easily from the shape of the spectral sequence.

Indeed, it suffices to notice that all the terms RS
i,θ and RT

j,θ in the rightmost column of the

sequence are irreducible. Thus, they may either vanish, either remain the same in the second

page.

Lastly we prove point (7) of 1.4.2. Assume first that θ “ 1. The 0-th row of the spectral

sequence is given by

ρ˜1
¸ ‘ ρ˜0 1

1

¸ ρ˜0 1
1

¸

u

We have H1
cpS1q » Cokerpuq. Since we already know that H0

cpS1q » Kerpuq is the trivial repre-

sentation of Spp2,Fqq, we see that u must be surjective. Therefore H1
cpS1q “ 0.

Remark. The vanishing of H1
cpS1q also follows directly from the fact that S1 » P1.
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Let us now assume θ ě 2. The first terms of the 0-th row of the spectral sequence are

RS
0,0 RS

0,1 RS
0,2 . . .u v

We have H1
cpSθq “ H1

cpSθq1 » Kerpvq{Impuq. The middle term RS
0,1 is the sum of all the

representations corresponding to the following symbols

˜

0 1 θ

1 2

¸

,

˜

0 1` d

θ ´ d

¸

, @0 ď d ď θ ´ 1.

On the other hand, the left term RS
0,0 is the sum of all the representations corresponding to the

following symbols

˜

0 1` d

θ ´ d

¸

, @0 ď d ď θ.

Since we already know that H0
cpSθq » Kerpuq is the trivial representation of Spp2θ,Fqq, we see

that Impuq contains all the components of RS
0,1 associated to a symbol whose second row has

length 1. Therefore, H1
cpSθq is either 0 either irreducible, depending on whether the remaining

component
˜

0 1 θ

1 2

¸

is in Kerpvq or not. This proves point (7) and concludes the proof of 1.4.2 and 1.4.3 Theorems.

2 The geometry of the ramified PEL unitary Rapoport-

Zink space of signature p1, n´ 1q

2.1 The Bruhat-Tits stratification

2.1.1 Recall that E “ Qprπs is a quadratic ramified extension of Qp with π “
?
´p (case E “

E1) or π “
?
εp (case E “ E2). If k is any perfect field over Fp, we define Ek :“ E bQp W pkqQ

with the embedding E ãÑ Ek, x ÞÑ xb1. We still write ¨ and σ for ¨ bid and idbσ respectively

on Ek. We define

E 1 :“

$

&

%

E if E “ E1,

EFp2 if E “ E2.

Eventually we write qE :“ EF, where F :“ Fp. In [RTW14], the authors introduce the ramified

PEL unitary Rapoport-Zink space M of signature p1, n´ 1q as a moduli space which classifies

the deformations of a given p-divisible group X equipped with additional structures, called the

framing object. The latter is defined over F and the Rapoport-Zink space M is defined

over O
qE. For our purpose, it will be convenient to define this space over OEk where k is the

smallest possible perfect extension of Fp. Therefore we start by defining the framing object
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over a finite field. Denote by Ak the Dieudonné ring over k, that is the p-adic completion of the

associative ring W pkqxF, V y with two indeterminates satisfying the relations FV “ V F “ p,

Fλ “ λσF and V λσ “ λV for all λ P W pkq. We denote by Dp¨q the covariant Dieudonné

module functor from the category of p-divisible groups over k, to the category of Ak-modules

that are free of finite rank over W pkq. A p-divisible group X over k is called superspecial if

DpXq bW pkqW pLq » A‘g1,1 bW pkqW pLq for some g ě 1 and some algebraically closed extension

L{k, where A1,1 :“ Ak{AkpF ´ V q seen as a quotient of left Ak-modules. In particular, if X

is superspecial then 2g “ heightpXq “ 2 dimpXq. Eventually, we define non-negative integers

m,m` and m´ via the formula

n “

$

&

%

2m` 1 if n is odd,

2m` “ 2pm´ ` 1q if n is even.

2.1.2 Assume first that E “ E1, in which case X can be defined over Fp. According to

[LO98] §1.2, there exists an elliptic curve E over Fp whose relative Frobenius F : E Ñ E
satisfies F2 ` rps “ 0. Its Dieudonné module is isomorphic to DpEq » AFp{AFppF ` V q. If L is

any extension of k containing Fp4 then DpEqbW pLq » A1,1bW pLq so that E is supersingular.

By [Tat66] Theorem 2, the endomorphism algebra End˝pEq is commutative and isomorphic

to QrFs. Thus we have an action of OE on the p-divisible group Erp8s via the choice of an

embedding

ιE : E
„
ÝÑ End˝pEq bQp “ End˝pErp8sq.

Eventually we have a canonical principal polarization λE : E „
ÝÑ E_. Next, as in [RTW14] we

define X`2 :“ Erp8s ˆ Erp8s with diagonal OE-action and polarization induced by the 2 ˆ 2

matrix having 1’s on the anti-diagonal and 0’s on the diagonal. In the same manner, define X´2
but with polarization induced by a 2 ˆ 2 diagonal matrix having coefficients u1, u2 P Zˆp such

that ´u1u2 is not a norm of E. The framing object X is given by any of the three following

cases

pX`2 qm ˆ Erp8s when n is odd,

pX`2 qm
`

when n is even (split case),

pX`2 qm
´

ˆ X´2 when n is even (non-split case),

with diagonal OE-action ιX and polarization λX.

Assume now that E “ E2. Since there is no supersingular elliptic curve over Fp whose endomor-

phism algebra at p contains E, the framing object X may only be defined over Fp2 in this case.

There exists an elliptic curve E 1 over Fp2 whose Dieudonné module is isomorphic to A1,1. The

endomorphism algebra End˝pEq is a central simple algebra over Q of degree 4 which ramifies

only at p and infinity. At p, it is a quaternion algebra over Qp generated by elements i, j such

that i2 “ ´ε, j2 “ p and ij “ ´ji. By fixing an embedding of E, we obtain an OE-action on

E 1rp8s and we equip it with its natural polarization. We may then proceed with defining X`2 ,

X´2 and X exactly as in the previous paragraph, except that we use E 1 instead of E .

27



On the cohomology of the ramified PEL unitary RZ space of signature p1, n´ 1q

2.1.3 Let Nilp denote the category of OE1-schemes where π is locally nilpotent. For S P Nilp,

a unitary p-divisible group of signature p1, n´ 1q over S is a triple pX, ιX , λXq where

– X is a p-divisible group over S.

– ιX : OE Ñ EndpXq is a OE-action on X such that the induced action on its Lie algebra

satisfies the Kottwitz and the Pappas conditions:

@a P OE, charpιpaq |LiepXqq “ pT ´ aq1pT ´ aqn´1,

@n ě 3,
n
ľ

pιpπq ´ π |LiepXqq “ 0 and
2
ľ

pιpπq ` π |LiepXqq “ 0.

– λX : X
„
ÝÑ tX is a principal polarization, where tX denotes the Serre dual of X. We

assume that the associated Rosati involution induces ¨ on OE.

Note that charpιpaq |LiepXqq is a polynomial with coefficients in OS. The Kottwitz condition

compares it with a polynomial with coefficients in OE Ă OE1 via the structure morphism

S Ñ OE1 . For instance, the framing object pX, ιX, λXq defined in the previous paragraph is an

exemple of unitary p-divisible group of signature p1, n´ 1q over κpE 1q.

The following set-valued functor M defines a moduli problem classifying deformations of X by

quasi-isogenies. More precisely, for S P Nilp the set MpSq consists of all isomorphism classes

of tuples pX, ιX , λX , ρXq such that

– pX, ιX , λXq is a unitary p-divisible group of signature p1, n´ 1q over S,

– ρX : XˆSS Ñ XˆκpE1qS is an OE-linear quasi-isogeny compatible with the polarizations,

in the sense that tρX ˝ λX ˝ ρX is a Qˆp -multiple of λX .

In the second condition, S denotes the special fiber of S. By [RZ96] Corollary 3.40, this moduli

problem is represented by a separated formal scheme M over SpfpOE1q called a Rapoport-

Zink space. It is formally locally of finite type and flat over OE1 . Let Mred denote the reduced

special fiber of M, which is a scheme locally of finite type over SpecpκpE 1qq.

Remark. In [RZ96], Corollary 3.40 is stated under the assumption that the residue field κpE 1q

contains Fps , where s ą 0 is an exponent appearing in a decency condition for the isocristal

of X. In general, we say that an isocristal N with Frobenius F is decent if it is generated by

elements n P N such that F sn “ prn for some integers r ě 0 and s ą 0 (loc. cit. Definition

2.13). By construction, the isocristal of X is decent. If E “ E2, then we have F 2 “ pid on

DpXqQ, so that s “ 2 and κpE 1q contains Fp2 . However, if E “ E1 then F 2 “ ´pid on DpXq,
so that a decency equation is given by F 4 “ p2id. In this case s “ 4 and κpE 1q “ Fp does not

contain Fp4 .
Nonetheless, to our understanding, the condition that κpE 1q contains Fps can be relaxed. It

seems to be used only in loc. cit. Lemma 3.37 in order to scale a bilinear form by a suitable

unit so that it corresponds to a polarization of isocristals. In our case, since the isocristal DpXq
already comes from a polarized p-divisible group, this lemma does not seems necessary.
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2.1.4 We have a decomposition

M “
ğ

iPZ

Mi

into a disjoint union of open and closed formal connected subschemes, where the points of Mi

correspond to those tuples pX, ιX , λX , ρXq such that tρX ˝ λX ˝ ρX “ cλX with c P Qˆp having

p-adic valuation i.

2.1.5 Dieudonné theory can be used to describe the rational points of M over a perfect field

extension k of κpE 1q. Let N :“ DpXqQ denote the Dieudonné isocristal of X. The OE-action

ιX induces an E 1-vector space structure on N of dimension n. The polarization λX induces a

W pκpE 1qqQ-bilinear skew-symmetric form x¨, ¨y on N such that

@x, y P N, xFx, yy “ xx,Vyy,

@a P E, xa ¨, ¨y “ x¨, a ¨y,

where F and V denote respectively the Frobenius and the Verschiebung on N . Let τ :“ ηπV´1 :

N
„
ÝÑ N where η P W pκpE 1qqQ is 1 if E “ E1 and a square root of ´ε´1 if E “ E2. Notice that

we have pηπq2 “ ´p in both cases. Let C :“ N τ be the subset of vectors in N which are fixed

by τ . It is naturally an E-vector space of dimension n and the natural map C bE E
1 „ÝÑ N is

an isomorphism under which τ corresponds to idb σ. If x, y P C then

xx, yy “ xτpxq, τpyqy “ xηπV´1x, ηπV´1yy “ ´p´1
pπηq2xx, yyσ “ xx, yyσ.

Therefore the restriction of x¨, ¨y to C takes value in Qp. We define an E-hermitian form p¨, ¨q

on C by the formula

@x, y P C, px, yq :“ xπx, yy ` xx, yyπ P E.

Let k be any perfect field extension of Fp. We extend p¨, ¨q to an Ek-hermitian form on Ck :“

C bE Ek by the formula

@x, y P C, @a, b P Ek, pxb a, y b bq :“ abpx, yq.

We still denote by τ the map id b σ on Ck. For M an OEk-lattice in Ck, we define its dual

lattice M 7 :“ tx P Ck | px,Mq P OEku.

2.1.6 Let k be a perfect extension of κpE 1q. The k-rational points of M are classified by the

following proposition.

Proposition ([RTW14] Proposition 2.4). There is a bijection

Mipkq »
!

M Ă Ck an OEk-lattice |M “ piM 7, πτpMq ĂM Ă π´1τpMq,M
ď1
Ă M ` τpMq

)

.

The notation
ď1
Ă denotes an inclusion of OEk-lattices with index at most 1.
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2.1.7 Recall the integers m,m` and m´ that we defined depending on the parity of n. For

k ě 0, let Ak denote the kˆ k matrix with 1 on the antidiagonal and 0 everywhere else. We fix

some scalars u1, u2 P Zˆp such that ´u1u2 R NormE{QppE
ˆq. We then define the three matrices

Todd :“ A2m`1, T`even :“ A2m` , T´even :“

¨

˚

˚

˚

˝

Am´

u1 0

0 u2

Am´

˛

‹

‹

‹

‚

.

By construction, C has a basis in which p¨, ¨q is given by Todd, T
`
even or T´even when n is odd, when

n is even and X “ pX`2 qm
`

(split case) or when n is even and X “ pX`2 qm
´

ˆ X´2 (non-split

case) respectively. We denote such a basis by e “ pe´j, e
an
0 , ejq1ďjďm when n is odd, and if n is

even by e “ pe´j, ejq1ďjďm` in the split case and by e “ pe´j, e
an
0 , e

an
1 , ejq1ďjďm´ in the non-split

case.

Remark. The integers m,m` and m´ correspond to the Witt index of C in each of the three

cases.

2.1.8 Let J “ AutpXq be the group of automorphisms of X compatible with the additional

structures. By [RTW14] Lemma 2.3, we have an isomorphism J » GUpC, p¨, ¨qq. As a reductive

group over Qp, J is quasi-split if and only if n is odd or n is even and C is split. Let

c : J ÞÑ Qˆp

denote the multiplier character. For instance, πkid P J has multiplier π2k P Qˆp . We define a

surjective morphism α : J ÞÑ Z by αpgq :“ vppcpgqq where vp is the p-adic valuation. We denote

by J˝ the kernel of α. Then J˝ is the subgroup generated by all compact subgroups of J .

The group J acts on M via

g ¨ pX, ιX , λX , ρXq :“ pX, ιX , λX , g ˝ ρXq.

An element g P J induces an isomorphism g : Mi
„
ÝÑMi`αpgq.

2.1.9 For i P Z we define

Li :“
 

Λ Ă C an OE-lattice | piΛ7 Ă Λ Ă π´1piΛ7
(

.

We also write L for the (disjoint) union of the Li’s. Elements of L are called vertex lattices. If

Λ is a vertex lattice, its orbit type tpΛq is the lattice index rΛ : piΛ7s. According to [RTW14],

tpΛq is an even integer between 0 and n.

The group J acts on L via g ¨Λ :“ gpΛq. An element g P J defines a type preserving, inclusion

preserving bijection g : Li
„
ÝÑ Li`αpgq. With arguments similar to those used in the unramified

case in [Vol10], one may prove the following proposition.

Proposition. Two vertex lattices Λ,Λ1 P L are in the same J-orbit if and only if tpΛq “ tpΛ1q.
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2.1.10 Recall the basis e of C that we fixed in 2.1.7. For a family of integers prj, sq where

– 1 ď j ď m and s P Z if n is odd,

– 1 ď j ď m` and s “ H if n is even and C is split,

– 1 ď j ď m´ and s P Z2 if n is even and C is non-split,

we denote by

Λpr´j ; s ; rjq

the OE-lattice generated by the vectors pr˘je˘j, and by ps0ean
0 and ps1ean

1 when it makes sense.

Proposition. A lattice Λ “ Λpr´j ; s ; rjq is a vertex lattice if and only if for some i P Z,

r´j ` rj P t2i´ 1, 2iu for all j, and s is respectively given by i,H or pi, iq depending on whether

n is odd or even with C split or not. When Λ is a vertex lattice, its orbit type is given by

tpΛq “ 2#tj | r´j ` rj “ 2i´ 1u.

This is proved in the same way as [Mul22a] 1.2.4 Proposition. In particular, when n is even

and C is non-split there is no vertex lattice of orbit type n. Let tmax denote the maximal type

of a vertex lattice. We have

tmax “

$

’

’

&

’

’

%

n´ 1 if n is odd,

n if n is even and C is split,

n´ 2 if n is even and C is non-split.

We also write tmax “ 2θmax, so that θmax “ m,m` or m´ depending on whether n is odd, n is

even with C split or n is even with C non-split respectively.

2.1.11 The set L of vertex lattices can be given the structure of a polysimplicial complex,

by declaring that an s-simplex in L is a subset tΛ0, . . . ,Λsu Ă Li for some i P Z such that, up

to reordering, we have

Λ0 Ă Λ1 Ă . . . Ă Λs.

Depending on whether n is odd or even with C split or not, for an s-simplex to exist we must

have s between 0 and θmax. We fix a specific maximal simplex in each case.

If n is odd, for 0 ď θ ď θmax we define

Λθ :“ Λp0θmax ; 0 ; 0θmax´θ,´1θq.

If n is even and C is split, for 0 ď θ ď θmax we define

Λθ :“ Λp0θmax ; 0θmax´θ,´1θq.

If n is even and C is non-split, for 0 ď θ ď θmax we define

Λθ :“ Λp0θmax ; 0, 0 ; 0θmax´θ,´1θq.

In each case we have Λθ P L0 and Λθ Ă Λθ`1. Moreover the orbit type of Λθ is 2θ.
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2.1.12 For Λ P L, let JΛ denote the fixator of Λ in J . Let J`Λ be its pro-unipotent radical,

and write JΛ :“ JΛ{J
`
Λ for the finite reductive quotient. It is a finite group of Lie type over

Fp.
We define also the quotients

V 0
Λ :“ Λ{piΛ7, V 1

Λ :“ π´1piΛ7{Λ.

They are both OE{πOE » Fp-vector spaces of dimension respectively tpΛq and n´ tpΛq. Both

spaces inherit a perfect Fp-bilinear form, which we denote by the same notation t¨, ¨u, induced

respectively by πp´ip¨, ¨q and by p1´ip¨, ¨q. Then t¨, ¨u is symplectic on V 0
Λ whereas it is symmetric

on V 1
Λ . If k is a perfect field extension of Fp, we denote by V 0

Λ,k and V 1
Λ,k the scalar extensions

to k, equipped with their perfect k-bilinear forms t¨, ¨u, and we denote by τ the map idb σ on

both spaces. If U is a subspace, we denote by UK its orthogonal.

We denote by GSpp¨q and GOp¨q the associated groups of symplectic or orthogonal similitudes.

Then we have a natural isomorphism

JΛ » GpSppV 0
Λ q ˆOpV 1

Λ qq,

where the right-hand side is the subgroup of GSppV 0
Λ q ˆGOpV 1

Λ q with both factors sharing the

same multiplier in Fˆp . Let J ˝
Λ be the connected component of unity and let J˝Λ be its preimage

in JΛ. We recall some known facts about parahoric subgroups of J , see for instance [LS20]

section 2 for a complete summary.

Proposition. Let Λ P L.

– The fixator JΛ is a maximal compact subgroup of J . All maximal compact subgroups arise

this way.

– The subgroup J˝Λ is a parahoric subgroup of J . It is a maximal parahoric subgroup unless

n is even, C is split and tpΛq “ n ´ 2. All maximal parahoric subgroups of J arise this

way.

– The parahoric subgroup J˝Λ consists of all the elements g P JΛ such that the induced

orthogonal similitude on V 1
Λ has determinant 1.

– If tpΛq ­“ n then J˝Λ has index 2 in JΛ. If tpΛq “ n then J˝Λ “ JΛ.

We note that the condition tpΛq “ n can only occur when n is even and C is split. Besides,

in this case any vertex lattice Λ P Li of orbit type n´ 2 is contained in precisely two different

vertex lattices Λ1,Λ2 P Li of orbit type n (see 2.2). Then the parahoric subgroup J˝Λ is the

intersection of the two maximal parahoric subgroups J˝Λ1
“ JΛ1 and J˝Λ2

“ JΛ2 .

Notation. If Λ is one of the Λθ’s, we write Jθ, V
0
θ and V 1

θ instead of JΛθ , V
0

Λθ
and V 1

Λθ
respec-

tively.

2.1.13 In this paragraph, we compute the normalizer of the maximal compact subgroups JΛ

and their attached parahoric subgroup J˝Λ.

Lemma. Let Λ,Λ1 P L. The following statements are equivalent.
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(1) JΛ “ JΛ1,

(2) J˝Λ “ J˝Λ1,

(3) Λ1 “ πkΛ for some k P Z.

Proof. The implications p3q ùñ p1q, p2q are clear. Given two vertex lattices, there exists a

Witt decomposition of C in which both lattices split. Thus, for the converse implications it is

enough to treat the case Λ “ Λθ where tpΛq “ 2θ, and Λ1 is a vertex lattice of the form

Λ1 “ Λpr´j; s; rjq P Li,

for some i P Z. By 2.1.10 Proposition we have rj ` r´j P t2i ´ 1, 2iu for all j, and s “ i,H

or pi, iq depending on whether n is odd or even with C split or not respectively. A basis of

the vector space V 1
θ is given by the images of the vectors e´j, ej for 1 ď j ď θmax ´ θ and the

vectors ean
0 , e

an
1 when they exist. We now assume that we have Jθ “ JΛ1 or J˝θ “ J˝Λ1 . In both

cases we have J˝θ Ă JΛ1 , and it is all we need to prove that Λ1 “ πiΛθ.

First, let us assume that n is odd or that n is even and C is non-split. Thus, the vector ean
0

exists. For 1 ď j ď θ, consider g P GLpCq swapping e´j and ej, sending ean
0 to ´ean

0 and fixing

all the other vectors in the basis e. Then g is a unitary similitude of multiplier equal to 1, and

we have g ¨Λθ “ Λθ. Moreover g induces an orthogonal isometry on V 1
θ of determinant 1. Thus

g P J˝θ Ă JΛ1 . It follows that r´j “ rj, hence rj “ 2i. On the other hand, for θ ` 1 ď j ď θmax,

consider g P GLpCq sending ej to πe´j and e´j to ´π´1ej while fixing all the other vectors of

e. Then g defines an element of J of multiplier equal to 1, which fixes Λθ and induces identity

on V 1
θ . Thus g P J˝θ Ă JΛ1 . We deduce that r´j “ rj ` 1, so that rj “ i´ 1. In other words, we

have Λ1 “ πiΛθ.

Let us now assume that n is even and C is split. Consider g P GLpCq which is defined by

e´j ÞÑ ´ej, ej ÞÑ e´j for 1 ď j ď θ, and by ej ÞÑ πe´j, e´j ÞÑ π´1ej for θ ` 1 ď j ď θmax. Then

g is a unitary similitudes of multiplier equal to ´1, which fixes Λθ and induces an orthogonal

similitude of determinant 1 on V 1
θ . Thus, g P J˝Λ Ă JΛ1 . We deduce that r´j “ rj for all

1 ď j ď θ and that r´j “ rj ` 1 for all θ` 1 ď j ď θmax. Thus we have Λ1 “ πiΛθ as above.

Proposition. Let Λ P L be a vertex lattice. We have NJpJΛq “ NJpJ
˝
Λq “ ZpJqJθ.

Proof. It is clear that ZpJqJΛ is contained in both NJpJΛq and NJpJ
˝
Λq. Moreover, if g belongs to

NJpJΛq (resp. to NJpJ
˝
Λq), then we have Jg¨Λ “ JΛ (resp. J˝g¨Λ “ J˝Λ). By the previous Lemma,

we deduce that g ¨ Λ “ πkΛ for some k P Z. Thus π´kg P JΛ, hence g P πkJΛ Ă ZpJqJΛ.

2.1.14 In [RTW14] section 6, the authors attach to any vertex lattice Λ P Li a closed projec-

tive subscheme MΛ ãÑ Mi,red, which is called a closed Bruhat-Tits stratum. Its rational

points are described by the following proposition.

Proposition ([RTW14] Corollary 6.3). Let k be a perfect field extension of κpE 1q and let Λ P Li.
We have a natural bijection

MΛpkq » tM PMipkq |M Ă Λk :“ ΛbOE OEku .
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By mapping M P MΛpkq to its image M :“ M{piΛ7k in V 0
Λ,k, one obtains a bijection between

MΛpkq and the set

tU Ă V 0
Λ,k |U

K
“ U and U

ď1
Ă U ` τpUqu.

The action of J on M restricts to an action of JΛ on MΛ. This action factors through the

finite reductive quotient JΛ, and the GOpV 1
Λ q-component acts trivially. Therefore we obtain

an action of GSppV 0
Λ q » GSpp2θ,Fpq where tpΛq “ 2θ on MΛ. The main theorem of loc. cit.

is the construction of a natural isomorphism between the closed Bruhat-Tits stratum MΛ and

the closed Deligne-Lusztig variety Sθ that we introduced in 1.1.4.

Theorem ([RTW14] Proposition 6.7). Let Λ P L and write tpΛq “ 2θ for its orbit type. There

is a natural isomorphism

MΛ
„
ÝÑ Sθ bFp κpE

1
q

which is GSpp2θ,Fpq-equivariant.

In particular, the variety MΛ is always defined over Fp. We note also that the GSpp2θ,Fpq-
action on Sθ is induced from 1.1.2. Identifying the unipotent representations of Spp2θ,Fpq and

of GSpp2θ,Fpq as in 1.2.1, the theorems 1.4.2 and 1.4.3 give us a certain knowledge of the

cohomology of the closed Bruhat-Tits stratum MΛ.

2.1.15 The closed subschemes MΛ form the Bruhat-Tits stratification of the reduced

special fiber Mred, whose incidence relations mimic the combinatorics of vertex lattices.

Theorem ([RTW14] Theorem 6.10). Let i P Z and Λ,Λ1 P Li.

(1) The inclusion Λ Ă Λ1 is equivalent to the scheme-theoretic inclusion MΛ Ă MΛ1. It

implies tpΛq ď tpΛ1q with equality if and only if Λ “ Λ1.

(2) The three following assertions are equivalent.

piq ΛX Λ1 P Li. piiq ΛX Λ1 contains a lattice of Li. piiiqMΛ XMΛ1 ­“ H.

If these conditions are satisfied, then MΛ XMΛ1 “MΛXΛ1 scheme-theoretically.

(3) If k is a perfect field field extension of κpE 1q then Mipkq “
Ť

ΛPLi MΛpkq.

It follows in particular that Mred has pure dimension θmax.

2.2 Counting the Bruhat-Tits strata

In this short section we give a formula for the number of closed Bruhat-Tits strata of a certain

dimension, which are included in or which contain a fixed stratum. Let d ě 0 and let V be a

d-dimensional Fp-vector space equipped with a non-degenerate symmetric or symplectic form

t¨, ¨u : V ˆ V Ñ Fp. Define the integer δ by

d “

$

’

’

&

’

’

%

2δ if t¨, ¨u is symplectic, or if it is symmetric, d is even and V is split,

2pδ ` 1q if t¨, ¨u is symmetric, d is even and V is not split,

2δ ` 1 if t¨, ¨u is symmetric, d is odd.
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Thus δ corresponds to the Witt index of V . For 0 ď r ď δ we define

Npr, V q :“ tU Ă V | dimU “ r and U Ă UKu.

Let i P Z and let Λ P Li be a vertex lattice. Write tpΛq “ 2θ so that 0 ď θ ď θmax.

Proposition. (1) The set of vertex lattices Λ1 P Li of orbit type tpΛ1q “ 2θ1 such that Λ1 Ă Λ

is in bijection with Npθ ´ θ1, V 0
Λ q.

(2) The set of vertex lattices Λ1 P Li of orbit type tpΛ1q “ 2θ1 such that Λ Ă Λ1 is in bijection

with Npθ1 ´ θ, V 1
Λ q.

The bijection is established by mapping Λ1 to the image of pipΛ1q7 in V 0
Λ in case (1), and to its

own image in V 1
Λ in case (2). The following statement gives the cardinality of Npr, V q.

Proposition. Let δ be the Witt index of V and let 0 ď r ď δ.

– If t¨, ¨u is symplectic, or if it is symmetric and d is odd, then

#Npr, V q “
r
ź

i“1

p2pi`δ´rq ´ 1

pi ´ 1
.

– If t¨, ¨u is symmetric, d is even and V is not split then

#Npr, V q “
pδ`1 ` 1

pδ`1´r ` 1

r
ź

i“1

p2pi`δ´rq ´ 1

pi ´ 1
.

– If t¨, ¨u is symmetric, d is even and V is split then

#Npr, V q “
pδ´r ` 1

pδ ` 1

r
ź

i“1

p2pi`δ´rq ´ 1

pi ´ 1
.

The proof of this proposition is very similar to [Mul22a] 1.4.2 Proposition, therefore we omit

it.

Remark. Assume that n is even and that C is split. Let Λ P Li with orbit type n´2 “ 2pθmax´1q.

The set of vertices Λ1 P Li of maximal orbit type n “ 2θmax which contain Λ is in bijection with

Np1, V 1
Λ q. The space V 1

Λ has dimension 2 with a symmetric form and is split. According to the

formula above, the number of such lattices Λ1 is

p1´1 ` 1

p1 ` 1

1
ź

i“1

p2i ´ 1

pi ´ 1
“ 2.

We recover the fact stated in [RTW14] proof of Proposition 3.4 that in the even split case,

vertex lattices of orbit type n´ 2 correspond in fact to an edge in the Bruhat-Tits building of

J .
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2.3 Shimura variety and p-adic uniformization of the basic stratum

2.3.1 In this section, we introduce the integral model of a Shimura variety whose super-

singular locus is uniformized by the Rapoport-Zink space M. We follow the construction of

[RTW14] Section 7. Let E be an imaginary quadratic field in which p ą 2 ramifies, and let

¨ denote the non-trivial element of GalpE{Qq. Let V be an n-dimensional hermitian E-vector

space of signature p1, n´ 1q at infinity. Let G denote the group of unitary similitudes of V as

a reductive group over Q.

First, we give the moduli description of the canonical model of the Shimura variety associated

to the data above. Let K Ă GpAf q be an open compact subgroup. For a locally noetherian

E-scheme S, let ShKpSq denote the set of isomorphism classes of tuples pA, λ, ι, ηq where

– A is an abelian scheme over S.

– λ : AÑ pA is a polarization.

– ι : EÑ EndpAqbQ is a E-action on A such that ιpxq “ ιpxq: where ¨: denotes the Rosati

involution associated to λ, and such that the Kottwitz determinant condition is satisfied:

@x P E, detpT ´ ιpxq |LiepAqq “ pT ´ xq1pT ´ xqn´1
P ErT s.

– η is a K-level structure, that is a K-orbit of isomorphisms of EbAf -modules H1pA,Af q
„
ÝÑ

Vb Af that is compatible with the other data.

According to [KR14] Proposition 4.3, when K is small enough the functor ShK is represented

by a smooth quasi-projective scheme over E. As the level K varies, the Shimura varieties sit

together in a projective system pShKqK on which GpAf q acts by Hecke correspondences.

2.3.2 In order to define integral models for these Shimura varieties, let us assume that there

exists a self-dual OE-lattice Γ in V. Let K Ă GpAf q denote the stabilizer of Γ. Let Kp Ă

K X GpAp
f q be an open compact subgroup. For an OE,ppq-scheme S, let SKppSq denote the set

of isomorphism classes of tuples pA, λ, ι, ηpq where

– A is an abelian scheme over S.

– λ : AÑ pA is a polarization of order prime to p.

– ι : OE Ñ EndpAq bZppq is an OE-action on A such that ιpxq “ ιpxq: where ¨: denotes the

Rosati involution associated to λ, and such that the Kottwitz determinant condition is

satisfied:

@x P OE, detpT ´ ιpxq |LiepAqq “ pT ´ xq1pT ´ xqn´1
P OErT s.

– ηp is aKp-level structure, that is aKp-orbit of isomorphisms of EbAp
f -modules H1pA,Ap

f q
„
ÝÑ

Vb Ap
f that is compatible with the other data.
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By [RTW14] Section 7, when Kp is small enough the functor SKp is represented by a smooth

quasi-projective OE,ppq-scheme. As the level Kp varies, these integral models form a projective

system on which GpAp
f q acts by Hecke correspondences. We have natural isomorphisms

ShKpKp » SKp bOE,ppq E,

which are compatible as Kp varies, where Kp is the stabilizer of Γb Zp in VQp .

Remark. From now on, the notation SKp will be used to denote the OEp-scheme obtained by

base change.

2.3.3 Let SKp denote the special fiber of the Shimura variety over the residue field κpEpq.
Let S

ss

Kp denote the supersingular locus, it is a closed projective subscheme of SKp . Let pSss
Kp

denote the formal completion of SKp along the supersingular locus. Eventually, let pSss,an
Kp denote

the Berkovich generic fiber of the formal scheme pSss
Kp , a smooth analytic space over Ep.

From now on, we write E :“ Ep and κpEpq “ κpEq “ Fp. Let pA0, λ0, ι0, η0q be the κpE 1q-

rational point of S
ss

Kp given by the product of elliptic curves used to define the framing object X
as in 2.1.2. In particular the p-divisible group A0rp8s is identified with X and we may consider

the associated Rapoport-Zink space M over SpfpOE1q. As observed in [RTW14] Remark 7.1,

when n is even the discriminants of the hermitian spaces C and VbE are different, so that one

space is split precisely when the other is non-split. Let I denote the group of quasi-isogenies of

A0 which respect all additional structures. Since A0 is in the basic stratum, I can be seen as

an inner-form of G such that IApf » GApf and IQp » J . One may therefore think of IpQq as a

subgroup both of GpAp
f q and of J at the same time. The p-adic uniformization theorem gives

a geometric link between the Rapoport-Zink space and the supersingular locus of the Shimura

variety.

Theorem ([RTW14]). There is an isomorphism of formal schemes over SpfpOE1q

ΘKp : IpQqz
`

MˆGpAp
f q{K

p
˘ „
ÝÑ pSss

Kp bOE OE1

which is compatible with the GpAp
f q-action as the level Kp varies.

As in [Mul22a] 3.6, one also obtains uniformization isomorphisms pΘKpqs and Θan
Kp for the

special and the generic fibers respectively.

2.3.4 Let g1, . . . , gs P GpAp
f q be a system of representatives for the double coset space

IpQqzGpAp
f q{K

p, and let Γk :“ IpQq X gkK
pg´1
k for 1 ď k ď s. These are subgroups of J

which are discrete and cocompact modulo the center. The uniformization theorem for the

special fiber may be written as

pΘKpqs :
s
ğ

k“1

ΓkzMred
„
ÝÑ S

ss

Kp bFp κpE
1
q.

Let Φk
Kp be the composition Mred Ñ ΓkzMred Ñ S

ss

Kp , and let ΦKp be the union of the Φk
Kp . By

the same arguments as [VW11] Section 6.4, the surjection ΦKp is a local isomorphism. Moreover
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the restriction of Φk
Kp to any closed Bruhat-Tits stratum MΛ ĂMred is an isomorphism onto

its image. We will denote this scheme-theoretic image by SKp,Λ,k. For varying Λ and k, these

subschemes constitute the closed strata of the Bruhat-Tits stratification of the supersingular

locus of the Shimura variety.

3 On the cohomology of the Rapoport-Zink space

3.1 The spectral sequence associated to the Bruhat-Tits open cover
of Man

3.1.1 Let Man denote the Berkovich generic fiber of the Rapoport-Zink space. It is a smooth

analytic space over E 1 of dimension n ´ 1. Let red : Man ÑMred denote the reduction map.

Write Man
i :“ red´1

pMred,iq so that

Man
“
ğ

iPZ

Man
i ,

each Man
i being connected. For a vertex lattice Λ P Li, let

UΛ :“ red´1
pMΛq ĂMan

i

denote the analytical tube of the closed Bruhat-Tits stratum indexed by Λ. Since the map red

is anticontinuous, it is an open subspace of the generic fiber. The group J acts on Man and the

map red is J-equivariant. The action restricts to an action of the maximal compact subgroup

JΛ on UΛ.

3.1.2 We fix a prime number ` ­“ p and we consider the cohomology groups

H‚cpMan,Q`q :“ lim
ÝÑ
U

lim
ÐÝ
k

H‚cpU pbCp,Z{`kZq bQ`,

where U runs over all relatively compact open subspaces of Man. These cohomology groups

are representations of J ˆ W where W is the absolute Weil group of E. The W -action on

the cohomology group is defined in the following specific way. The inertia I Ă W acts on

the coefficients Cp, whereas the action of the Frobenius is given by Rapoport and Zink’s

descent datum on M pbO
qE. As we recalled in [Mul22a] 4.1.2, this descent datum is an

isomorphism αRZ : M pbO
qE

„
ÝÑ σ˚pM pbO

qEq, where σ P Galp qE{Eq » GalpF{Fpq is the arith-

metic Frobenius. The right-hand side can be identified with the Rapoport-Zink space for

pX b Fqppq. This isomorphism is induced by the relative Frobenius FX : X b F Ñ pX b Fqppq,
via pX, ι, λ, ρq ÞÑ pX, ι, λ,FX ˝ ρq. We fix a lift Frob P W of the geometric Frobenius. Then the

action of Frob on H‚cpManq is induced by α´1
RZ.

Via covariant Dieudonné theory, the relative Frobenius FX corresponds to the Verschiebung

morphism V on CF “ C bE qE. If k is any perfect extension of κp qEq, the Verschiebung sends

a k-rational point M P Mpkq to VM “ ησ
´1
πτ´1pMq “ πτ´1pMq (since η is a scalar unit).

Hence, the descent datum αRZ sends a k-point M to πτ´1pMq.
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Remark. The descent datum αRZ is not effective. The rational structure of M over OE1 is

induced by πα´1
RZ if E “ E1, and by pπα´1

RZq
2 if E “ E2. It maps a k-point M to τpMq in the

first case, and to τ 2pMq in the second case.

In any case, we will denote by τ the action on the cohomology induced by πα´1
RZ, and we refer

to it as the rational Frobenius. We have τ “ pπ´1 ¨ id,Frobq P J ˆW , the π´1 coming from

contravariance of cohomology with compact support.

3.1.3 One also defines in a similar way the cohomology of the connected components Man
i .

Any element g P J induces an isomorphism

g : H‚cpMan
i ,Q`q

„
ÝÑ H‚cpMan

i`αpgq,Q`q.

Besides, Frob induces an isomorphism between the cohomology of Man
i and that of Man

i`1. Let

pJ ˆW q˝ be the subgroup of elements pg, uFrobjq where u P I and αpgq “ ´j. In fact we have

pJˆW q˝ “ pJ˝ˆIqτZ. Then each cohomology group H‚cpMan
i ,Q`q is a pJˆW q˝-representation

and we have

H‚cpMan,Q`q » c´ IndJˆW
pJˆW q˝ H‚cpMan

i ,Q`q.

3.1.4 We write Lmax
i for the subset of Li consisting only of lattices of orbit type tmax, and we

write Lmax for the disjoint union of the Lmax
i . The collection tUΛuΛPLmax forms a locally finite

open cover of Man. By [Far04] Proposition 4.2.2, we obtain a spectral sequence concentrated

in degrees a ď 0 and 0 ď b ď 2pn´ 1q,

Ea,b
1 “

à

γPI´a`1

Hb
cpUpγq,Q`q ùñ Ha`b

c pMan,Q`q.

Here for s ě 1 the index set is given by

Is :“

#

γ “ pΛ1, . . . ,Λs
q

ˇ

ˇ

ˇ

ˇ

ˇ

@1 ď j ď s,Λj
P Lmax and Upγq :“

s
č

j“1

UΛj ­“ H

+

.

We note that if γ “ pΛ1, . . . ,Λsq P Is then there exists i P Z such that Λj P Lmax
i for all j, and

Upγq “ UΛpγq where Λpγq :“
Şs
j“1 Λj P Li.

For Λ,Λ1 P Li with Λ1 Ă Λ, let f bΛ1,Λ : Hb
cpUΛ1 ,Q`q Ñ Hb

cpUΛ,Q`q denote the natural map

induced by the inclusion of the open subspace UΛ1 Ă UΛ. For γ “ pΛ1, . . . ,Λsq P Is, let

γj :“ pΛ1, . . . ,xΛj, . . . ,Λsq P Is´1 denote tuple obtained by removing the j-th component from

γ. For a ď ´1, the differential ϕb´a : Ea,b
1 Ñ Ea`1,b

1 is the direct sum over all γ P I´a`1 of the

maps

Hb
cpUpγq,Q`q Ñ

à

δPtγ1,...γ´a`1u

Hb
cpUpδq,Q`q

v ÞÑ
´a`1
ÿ

j“1

γj ¨ p´1qj`1f bΛpγq,Λpγjqpvq.

The notation γj ¨ p´1qj`1f bΛpγq,Λpγjqpvq means that we consider the vector p´1qj`1f bΛpγq,Λpγjqpvq

inside the summand Hb
cpUpδq,Q`q corresponding to δ “ γj.
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There is a natural action of J on Is, and g´1 P J induces an isomorphism between the coho-

mology of Upγq and that of Upg ¨ γq. This induces a J-action on Ea,b
1 for which the spectral

sequence is equivariant.

Remark. The descent datum πα´1
RZ, mapping a k-point M to τpMq, induces the Fp-rational

structure on MΛ b F. It induces an action of τ on the cohomology of UΛ. Since for any γ P Is

we have π ¨ γ P Is, each term Ea,b
1 carries a W -representation. The spectral sequence is then

J ˆW -equivariant.

3.1.5 For Λ P L, the cohomology groups H‚cpUΛ,Q`q are representations of the subgroup

pJΛ ˆ Iq ¨ τZ Ă pJ ˆW q˝. They are related to the cohomology of the special fiber MΛ by the

following proposition.

Proposition. Let Λ P L. There is a natural pJΛ ˆ Iq ¨ τ
Z-equivariant isomorphism

Hb
cpUΛ,Q`q

„
ÝÑ H2pn´1q´b

c pMΛ,Q`q
_
pn´ 1q,

where on the right-hand side the inertia I acts trivially and the rational Frobenius τ acts like

the Frobenius F .

Proof. By the same arguments as in [Mul22a] 4.1.5 Proposition, we have an isomorphism

Hb
pUΛ,Q`q

„
ÝÑ Hb

pMΛ,Q`q.

This requires the fact that the integral model of the Shimura variety SKp with hyperspecial

level at p is smooth, so that the nearby cycles sheaf is trivial. Since MΛ is projective, the

right-hand side coincide with the cohomology with compact support. On the other hand, we

apply Poincaré duality on the left-hand side to obtain

Hb
cpUΛ,Q`q » H2pn´1q´b

pUΛ,Q`q
_
pn´ 1q » H2pn´1q´b

c pMΛ,Q`q
_
pn´ 1q.

Remark. The cohomology groups H‚cpMΛq decompose as a sum of irreducible unipotent rep-

resentations of GSpp2θ,Fpq, inflated to JΛ. The smallest field of definition of unipotent rep-

resentations of classical groups is Q by [Lus02], therefore they are autodual. Thus, we have

a GSpp2θ,Fpq-equivariant isomorphism H‚cpMΛq
_ » H‚cpMΛq, but it is not equivariant for the

action of the Frobenius F .

The situation is less favorable than in the unramified case since the Frobenius action on the

cohomology of MΛ, and consequently of UΛ as well, is not pure (at least when tpΛq ě 6).

Therefore, [Mul22a] 4.1.7 Corollary does not seem to hold in general, ie. one may not deduce

from the previous proposition that the spectral sequence degenerates on the second page, splits

and that τ acts semi-simply on the abutment. However, the spectral sequence does eventually

degenerate in deeper pages since the non-zero terms Ea,b
1 are concentrated in a finite range for

b. In particular, the inertia acts trivially on H‚cpManq.
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3.1.6 The non-zero Ea,b
1 terms extend indefinitely in the range a ď 0, since the index set

I´a`1 allows for tuples of the form γ “ pΛ, . . . ,Λq for Λ P Lmax for instance. As in [Mul22a]

4.1.8, we may introduce the alternating version of the Čech spectral sequence in order to fix

this issue. If v P Ea,b
1 , let vγ P Hb

cpUpγq,Q`q denote the component of v in the summand of Ea,b
1

indexed by γ. For all a, b we define

Ea,b
1,alt :“ tv P Ea,b

1 | @γ P I´a`1, @σ P S´a`1, vσpγq “ sgnpσqvγu,

where σpγq denotes the tuple obtained after permuting the components of γ via the permutation

σ.

The subspace Ea,b
1,alt Ă Ea,b

1 is stable under the action of J ˆW , and is compatible with the

differentials ϕb´a. As stated in [Mul22a] 4.1.8 Proposition, we have a natural isomorphism

Ea,b
2,alt » Ea,b

2 .

By definition we have E0,b
1,alt “ E0,b

1 . Moreover, as explained in [Mul22a] 4.1.9, we have the

following statement. It holds because if Λ,Λ1 P Lmax
i are two distinct vertex lattices such that

ΛX Λ1 P Li, then tpΛX Λ1q ă tmax.

Proposition. We have E
0,2pn´1´θmaxq

2 » E
0,2pn´1´θmaxq

1 . If moreover θmax ě 1 (ie. n ě 2 with

C split or n ě 3), then we have E
0,2pn´1´θmaxq`1
2 » E

0,2pn´1´θmaxq`1
1 as well.

3.1.7 Similarily, let us assume θmax ě 2, ie. n “ 4 with C split or n ě 5. Consider the case

b “ 2pn ´ θmaxq. If γ “ pΛ1, . . . ,Λ´a`1q P I´a`1 with a ď ´1, and if there exists Λj ­“ Λj1 ,

then tpΛpγqq ă 2θmax. Thus, according to 3.1.5 Proposition and 1.4.3 Theorem, there is no

eigenvalue of the form ´pj`1 occuring in H
2pn´θmaxq
c pUpγq,Q`q. It follows that the image of the

differential ϕ
2pn´θmaxq

1 : E
´1,2pn´θmaxq

1,alt Ñ E
0,2pn´θmaxq

1,alt intersects trivially with the eigenspace of

E
0,2pn´θmaxq

1,alt attached to ´pn´θmax . This observation gives the following Proposition.

Proposition. We have an isomorphism pE
0,2pn´θmaxq

2 q´pn´θmax » pE
0,2pn´θmaxq

1 q´pn´θmax between

the two eigenspaces of τ associated to the eigenvalue ´pn´θmax.

3.1.8 Let us focus on the term E
0,2pn´1´θmaxq

1 . It is the direct sum of all the cohomology

groups H
2pn´1´θmaxq
c pUΛ,Q`q » H2θmax

c pMΛ,Q`q
_pn ´ 1q for Λ P Lmax. By 1.4.2 Theorem, we

have H
2pn´1´θmaxq
c pUΛ,Q`q » 1 and the rational Frobenius τ acts like multiplication by pn´1´θmax .

The same eigenvalue occurs in all the non-zero terms of the row b “ 2pn ´ 1 ´ θmaxq, but

nowhere else. Indeed, let us consider another non-zero term Ea,b
1 in the spectral sequence with

b ą 2pn´1´θmaxq. There must be some vertex lattice Λ “ Λpγq P L with γ “ pΛ1, . . . ,Λ´a`1q P

I´a`1 such that Hb
cpUΛ,Q`q is not zero. If all the Λj’s are equal, then tpΛq “ 2θmax and the

eigenvalue pn´1´θmax does not occur in Ea,b
1 since, according to 1.4.2 Theorem, the eigenvalue

pθmax only occurs in the cohomology group of MΛ of highest degree. If there exists Λj ­“ Λj1 ,

then tpΛq “ 2θ with θ ă θmax and by 3.1.5 Proposition, we have that 0 ď 2pn´1q´b ď 2θ. The

possible Frobenius eigenvalues on H
2pn´1q´b
c pMΛq have the form ´pj`1 for some j ě 0 and pi

for some 0 ď i ď n´1´ b` rb{2s according to 1.4.2 Theorem. After taking dual and Tate twist

by n´ 1, it follows that the possible Frobenius eigenvalues on Hb
c pUΛq have the form ´pj`1 for

some j and pi for some b´ rb{2s ď i ď n´1. Since b ě 2pn´1´θq we have b´ rb{2s ě n´1´θ.
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In particular, we conclude that i ą n´1´θmax so that the eigenvalue pn´1´θmax does not appear

in Ea,b
1 , and so neither in Ea,b

k in the deeper pages.

To sum up, we have observed that the eigenvalue pn´1´θmax of τ only appears in the row b “

2pn´ 1´ θmaxq. The Frobenius equivariance of the spectral sequence forces all the differentials

connected to this term in the deeper pages Ek for k ě 2 to be zero. Combining this with 3.1.6

Proposition, we conclude that for all k ě 1, we have E
0,2pn´1´θmaxq

k » E
0,2pn´1´θmaxq

1 . Since this

term is the last non zero term of its diagonal, it contributes to a subspace of H
2pn´1´θmaxq
c pManq.

Thus, we have obtained the following statement.

Theorem. There is a J ˆW -equivariant monomorphism

E
0,2pn´1´θmaxq

1 ãÑ H2pn´1´θmaxq
c pMan

q.

3.1.9 We may repeat the exact same arguments by looking this time at the smallest eigenvalue

of the form ´pj`1 in the spectral sequence. Assume that n “ 4 with C split or that n ě 5, so

that θmax ě 2. We observe that the eigenvalue ´pn´θmax only appears in the row b “ 2pn´θmaxq

of the spectral sequence. Combining this with 3.1.7 Proposition, and since the term E
0,2pn´θmaxq

1

is the last non zero of its diagonal, we obtain the following statement.

Theorem. Assume that n “ 4 with C split or that n ě 5. There is a J ˆ W -equivariant

monomorphism

pE
0,2pn´θmaxq

1 q´pn´θmax ãÑ H2pn´θmaxq
c pMan

q´pn´θmax .

3.1.10 In order to analyze the J-action on Ea,b
1 , we rewrite the direct sum by making com-

pactly induced representations appear. For s ě 1 we define

Ipθqs :“ tγ P Is | tpΛpγqq “ 2θu.

We denote by NpΛθq the set Npθmax ´ θ, V 1
θ q that we defined in 2.2. It corresponds to the set

of lattices Λ P L0 of orbit type tmax containing Λθ. We then define

Kpθq
s :“ tγ P Ipθqs |Λpγq “ Λθu.

The action of J on I
pθq
s restricts to an action of Jθ on the finite set K

pθq
s . If γ P I

pθq
s then there

exists some g P J such that g ¨Λpγq “ Λθ. Therefore g ¨γ P K
pθq
s , and the coset Jθ ¨ g is uniquely

determined. This induces a bijection of orbit sets

JzIpθqs
„
ÝÑ JθzK

pθq
s .

The terms of the spectral sequence can be rewritten in the following way.

Proposition. We have an isomorphism

Ea,b
1 »

θmax
à

θ“0

à

rγsPJθzK
pθq
´a`1

c´ IndJFixpγq Hb
cpUΛθ ,Q`q|Fixpγq

»

θmax
à

θ“0

c´ IndJJθ

´

Hb
cpUΛθ ,Q`q bQ`rK

pθq
´a`1s

¯

,

where Q`rK
pθq
´a`1s is the permutation representation associated to the action of Jθ on the finite

set K
pθq
´a`1.
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The proof is strictly identic to [Mul22a] 4.1.10 Proposition. In particular, when a “ 0 we have

E0,b
1 » c´ IndJJθmax

Hb
cpUΛθmax

,Q`q.

In order to alleviate the notations, for any integer θ ě 2 we will write

ρθ :“ ρ˜0 1 θ
¸.

Combining with the results of the two previous paragraphs, we have the following statement.

Corollary. We have

E
0,2pn´1´θmaxq

1 » c´ IndJJθmax
1 ãÑ H2pn´1´θmaxq

c pMan
q.

Assume that n “ 4 with C split or that n ě 5. We have

pE
0,2pn´θmaxq

1 q´pn´θmax » c´ IndJJθmax
ρθmax ãÑ H2pn´θmaxq

c pMan
q´pn´θmax .

3.1.11 In [Mul22a] 4.2, we made a summary of a general analysis of compactly induced

representation in regards to type theory, using results of [BK98], [Bus90] and [Mor99]. It allows

us to describe the irreducible subquotients of the representation c´ IndJJθmax
1. For n “ 1 and

for n “ 2 with C non-split, we have θmax “ 0 and the trivial representation 1 is cuspidal for the

maximal reductive quotient J0 » GpSpp0,Fpq ˆOpV 1
0 qq. Here, we note that V 1

0 has dimension

n, and if n “ 2 with C non-split then GOpV 1
0 q » GO´

p2,Fpq is the non-split finite orthogonal

group in two variables. Let χ be an unramified character of ZpJq » Eˆ. We then define

σ0,χ :“ c´ IndJNJ pJ0q 1b χ,

where, as in 2.1.13 Proposition, NJpJ0q “ ZpJqJ0 is the normalizer of J0 in J . Accord-

ing to 2.1.12 Proposition, the parahoric subgroup J˝0 Ă J0 is maximal. Besides, we have

NJpJ0q “ NJpJ
˝
0 q. Thus, according to [Mor99] 4.1 Proposition, σ0,χ is an irreducible supercus-

pidal representation of J . If n ě 3 or if n “ 2 with C split, then the trivial representation is

not cuspidal for Jθmax .

Eventually, if V is any smooth representation of J and if χ is any smooth character of

ZpJq » Eˆ, we denote by Vχ the largest quotient of V on which ZpJq acts through χ.

Proposition. Let χ be an unramified character of Eˆ.

(1) If n “ 1 or n “ 2 with C non-split, all irreducible subquotients of V :“ c´ IndJJ0 1 are

supercuspidal, and we have Vχ » σ0,χ.

(2) If n ě 3 or if n “ 2 with C split, then no irreducible subquotient of V :“ c´ IndJJθmax
1 is

supercuspidal. In this case, Vχ does not contain any non-zero admissible subrepresentation

of J .

Combining this proposition with 3.1.10 Corollary, we deduce the following statement.

Corollary. If n ě 3 or n “ 2 with C split, and if χ is any unramified character of Eˆ, then

H
2pn´1´θmaxq
c pManqχ is not J-admissible.
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3.1.12 We repeat the same argument to analyze the irreducible subquotients of c´ IndJJθmax
ρθmax .

If n “ 4 with C split, if n “ 5 or if n “ 6 with C non-split, we have θmax “ 2 and ρ2 is a

cuspidal representation of J2 » GpSpp4,Fpq ˆOpV 1
2 qq (we note that V 1

2 has dimension n´ 4).

Let χ be an unramified character of ZpJq » Eˆ. We define

σ2,χ :“ c´ IndJNJ pJ2q ρ2 b χ,

where NJpJ2q “ NJpJ
˝
2 q “ ZpJqJ2. Then σ2,χ is an irreducible supercuspidal representation of

J . If n ě 7 or if n “ 6 with C split, then ρθmax is not a cuspidal representation of Jθmax . We

deduce the following consequences.

Proposition. Let χ be an unramified character of Eˆ.

(1) If n “ 4 with C split, if n “ 5 or if n “ 6 with C non-split, all irreducible subquotients of

V :“ c´ IndJJ2 ρ2 are supercuspidal, and we have Vχ » σ2,χ.

(2) If n ě 7 or if n “ 6 with C split, then no irreducible subquotient of V :“ c´ IndJJθmax
ρθmax

is supercuspidal. In this case, Vχ does not contain any non-zero admissible subrepresen-

tation of J .

Combining this proposition with 3.1.10 Corollary, we deduce the following statement.

Corollary. If n ě 7 or n “ 6 with C split, and if χ is any unramified character of Eˆ, then

H
2pn´θmaxq
c pManqχ is not J-admissible.

3.1.13 We finish this section with the following observation regarding the cohomology group

(with compact support) of highest degree.

Proposition. There is an isomorphism

H2pn´1q
c pMan,Q`q » c´ IndJJ˝ 1,

where 1 denotes the trivial representation, and where Frob acts like pn´1 ¨ id.

The proof is identic to [Mul22a] 4.1.12 Proposition.

3.2 The spectral sequence for small values of n

3.2.1 If θmax “ 0, ie. if n “ 1 or n “ 2 and C is non-split, then C is anisotropic and Li
is a singleton. There is only one non-zero term in the alternate version E1,alt of the spectral

sequence, equal to c´ IndJJ˝ 1, and it computes the cohomology group H
2pn´1q
c pManq as we

already checked in 3.1.13. Thus, there is not much to say in this case.
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3.2.2 We assume now that θmax “ 1, ie. n “ 2 and C is split, n “ 3 or n “ 4 and C is

non-split. In this case, the orbit type 2θ of any vertex lattice is 0 or 2, so that θ “ 0 or 1.

Recall from 3.1.10 that NpΛ0q denotes the set of vertex lattices Λ P L0 of orbit type tmax “ 2

containing Λ0. According to 2.2 Proposition, we have

#NpΛ0q “

$

’

’

&

’

’

%

2 if n “ 2 and C is split,

p` 1 if n “ 3,

p2 ` 1 if n “ 4 and C is non-split.

We may precisely locate the non-zero terms in the alternate version of the spectral sequence.

Ea,b
1,alt ­“ 0 ðñ

$

’

’

&

’

’

%

pa, bq P tp0, 0q; p0, 2q; p´1, 2qu if n “ 2 and C is split,

pa, bq P tp0, 2q; p´k, 4q | 0 ď k ď pu if n “ 3,

pa, bq P tp0, 4q; p´k, 6q | 0 ď k ď p2u if n “ 4 and C is non-split.

In Figure 2 and 3, we draw the first page of the alternate version of the Čech spectral sequence

respectively when n “ 2 and C is split, and when n “ 3. In brackets we have written the

scalar by which τ acts on each term. The spectral sequence in the case n “ 4 with C non-split

is similar to Figure 3, except that two more 0 rows must be added at the bottom, and all

eigenvalues of τ are multiplied by p. In order to alleviate the notations, we write ϕs for the

differentials in the top row. Given the shape of these sequences and taking into account the

Frobenius weights of each term, we observe that they degenerate on the second page.

E´1,2
1,alt rps c´ IndJJ11rps

0

c´ IndJJ1 1r1s

ϕ1

Figure 2: The first page E1,alt when n “ 2 and C is split.

3.2.3 When θmax “ 1, the simplicial complex L0 is actually a tree. In this case, we have the

following proposition.

Proposition. Let b “ 2, 4 or 6 respectively if n “ 2 with C split, n “ 3 or n “ 4 with C

non-split. We have E´1,b
2 “ 0.

The proof is strictly identic to [Mul22a] 4.3.2 Proposition, so that we omit it.

In particular, we obtain the following statement.

Theorem. Let b “ 1, 3 or 5 respectively if n “ 2 with C split, n “ 3 or n “ 4 with C non-split.

We have Hb
cpMan,Q`q “ 0.
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. . . E´3,2
1,alt rp

2s E´2,2
1,alt rp

2s E´1,2
1,alt rp

2s c´ IndJJ11rp
2s

0

c´ IndJJ1 1rps

0

0

ϕ4 ϕ3 ϕ2 ϕ1

Figure 3: The first page E1,alt when n “ 3.

We observe that in the case n “ 2 with C split, the cohomology of Man is now entirely

understood. Namely, Man has dimension 1, and we have H0
cpMan,Q`q » c´ IndJJ1 1 with τ

acting like id, H1
cpMan,Q`q “ 0 and H2

cpMan,Q`q » c´ IndJJ˝ 1 with τ acting like p ¨ id.

4 The cohomology of the basic stratum of the Shimura

variety for small values of n

4.1 The Hochschild-Serre spectral sequence induced by p-adic uni-
formization

4.1.1 Related to the p-adic uniformization theorem in 2.3.3, Fargues has built in [Far04] a

spectral sequence relating the cohomology of Man to that of pSss,an
Kp . Even though the construc-

tion of loc. cit. is done in the context of unramified Rapoport-Zink spaces, it works in greater

generality as mentioned in the last paragraph of 4.5.2.1.

Recall the notations of section 2.3. Let ξ : G Ñ Wξ be a finite-dimensional irreducible alge-

braic representation of G over Q`. In [Mul22a] 5.1.1, we recalled the classification of all such

representations ξ following [HT01] III.2. Let V0 denote the dual of V b Q` on which G acts.

There exists uniquely defined integers tpξq,mpξq ě 0 and an idempotent εpξq P EndpVbmpξq0 q

such that

Wξ » ctpξq b εpξqpVbmpξq0 q,

where c denotes the similitude factor. The weight of ξ is defined by

wpξq :“ mpξq ´ 2tpξq.

One can associate to ξ a local system Lξ on the tower pSKpqKp of Shimura varieties. Let AKp be

the universal abelian scheme over SKp . We write πmKp : Am
Kp Ñ SKp for the structure morphism

of the m-fold product of AKp with itself over SKp . Then

Lξ » εpξqεmpξq

´

Rmpξq
pπ

mpξq
Kp q˚Q`ptpξqq

¯

,
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where εmpξq is some idempotent. We denote by Lξ its restriction to the special fiber SKp .

4.1.2 Let Aξ be the space of automorphic forms of I of type ξ at infinity. Explicitly,

it is given by

Aξ “ tf : IpAf q Ñ Wξ | f is IpAf q-smooth by right translations and @γ P IpQq, fpγ ¨q “ ξpγqfp¨qu .

We denote by Lan
ξ the analytification of Lξ.

Notation. We write H‚ppSss,an
Kp ,Lan

ξ q for the cohomology of pSss,an
Kp pbCp with coefficients in Lan

ξ .

Theorem ([Far04] 4.5.12). There is a W -equivariant spectral sequence

F a,b
2 pKp

q : ExtaJ
`

H2pn´1q´b
c pMan,Q`qp1´ nq,AKp

ξ

˘

ùñ Ha`b
ppSss,an
Kp ,Lan

ξ q.

These spectral sequences are compatible as the open compact subgroup Kp varies in GpAp
f q.

We may take the limit lim
ÝÑKp for all terms and obtain a GpAp

f qˆW -equivariant spectral sequence.

According to [Far04] Lemme 4.4.12, we have F a,b
2 “ 0 when a ą θmax since θmax is also the

semisimple rank of J . Since the Shimura variety SKp is smooth, the comparison theorem

[Ber96] Corollary 3.7 of Berkovich gives an isomorphism

Ha`b
c pS

ss

Kp ,Lξq “ Ha`b
pS

ss

Kp ,Lξq
„
ÝÑ Ha`b

ppSss,an
Kp ,Lan

ξ q,

where first equality follows from the supersingular locus being a proper variety. Since dimS
ss

Kp “

θmax by [RTW14] Theorem 7.2, the cohomology H‚ppSss,an
Kp ,Lan

ξ q is concentrated in degrees 0 to

2θmax.

4.1.3 Let ApIq denote the set of all automorphic representations of I counted with multi-

plicities, and let qξ be the contragredient of ξ. We also define

AξpIq :“ tΠ P ApIq |Π8 “ qξu.

According to [Far04] 4.6, we have an identification

AKp
ξ »

à

ΠPAξpIq
Πp b pΠ

p
q
Kp .

We deduce that

F a,b
2 :“ lim

ÝÑ
Kp

F a,b
2 pKp

q »
à

ΠPAξpIq
ExtaJ

`

H2pn´1q´b
c pMan,Q`qp1´ nq,Πp

˘

b Πp.

The spectral sequence defined by the terms F a,b
2 computes the cohomology of S

ss
:“ lim
ÝÑKp S

ss

Kp .
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4.1.4 Let us focus on the Frobenius action on the Ext groups occuring in the spectral se-

quence. To this effect, we need the following lemma. For Π P AξpIq, let ωΠ denote the central

character. For any isomorphism ι : Q` » C, we define | ¨ |ι :“ |ιp¨q|.

Lemma. We have |ωΠppπ
´1 ¨ idq|ι “ pwpξq{2.

Proof. We have

|ωΠppπ
´1
¨ idq|2ι “ |ωΠppp

´1
¨ idq|ι.

Indeed, π2 is equal to p up to a unit in Zˆp . The value of the central character ωΠp at this unit

has complex modulus 1 under any isomorphism ι : Q` » C. Since I is the group of unitary

similitudes of some E{Q-hermitian space, its center is isomorphic to Eˆ ¨ id. In particular, the

element p´1 ¨ id in ZpJq can be seen as the image of p´1 ¨ id in ZpIpQqq. We have ωΠpp
´1 ¨ idq “ 1,

and at every finite place q different from p we have |ωΠqpp
´1 ¨ idq|ι “ 1, since p´1 ¨ id lies in the

maximal compact subgroup of ZpIpQqqq. Eventually, the fact that Π8 “ qξ implies that

|ωΠppp
´1
¨ idq|ι “ |ωqξpp

´1
¨ idq|´1

ι “ |ωξpp
´1
¨ idq|ι “ pwpξq,

the last equality being a consequence of Wξ » ctpξq b εpξqpVbmpξq0 q (see 4.1.1).

Let us fix a square root π` of p in Q`. We define

δΠp :“ ωΠppπ
´1
¨ idqπ

´wpξq
` .

The lemma implies that |δΠp |ι “ 1 for any isomorphism ι : Q` » C.

By convention, the action of Frob on a space ExtaJ-smpH
2pn´1q´b
c pMan,Q`qp1´nq,Πpq is given by

functoriality of Ext applied to Frob´1 acting on the cohomology of Man. Recall that the action

of Frob on the cohomology is the composition of τ and of π ¨ id P J . Let P‚ be a projective

resolution of H
2pn´1q´b
c pMan,Q`qp1 ´ nq in the category of smooth representations of J . Let

T : P‚ Ñ P‚ be a lift of τ´1 as a morphism of chain complexes. For a ě 0, the action of Frob on

an element of ExtaJ-smpH
2pn´1q´b
c pMan,Q`qp1 ´ nq,Πpq represented by a function f : Pa Ñ Πp,

is given by

Frob˚fpvq “ fppπ´1
¨ idqTavq “ ωΠppπ

´1
¨ idqfpTavq “ δΠpπ

wpξq
` fpTavq.

In particular, if τ acts like x ¨ id on the cohomology of Man for some x P Q`
ˆ

, then Frob acts

by multiplication by δΠpπ
wpξq
` x´1pn´1 on the corresponding Ext groups.

4.1.5 If x P Q`
ˆ

, let Q`rxs denote the 1-dimensional representation of W where the inertia

acts trivially and Frob acts like multiplication by the scalar x. Let XunpJq denote the set of

unramified characters of J . Looking at the diagonal a ` b “ 0 in the spectral sequence, we

obtain the following result.

Proposition. There is a pGpAp
f q ˆW q-equivariant isomorphism

H0
cpS

ss
,Lξq »

à

ΠPAξpIq
ΠpPXunpJq

Πp
bQ`rδΠpπ

wpξq
` s.
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The proof is identic to [Mul22a] 5.1.5 Proposition. It follows from the following facts. First,

F 0,0
2 is the only non-zero term on the diagonal a` b “ 0 and all differentials connected to F 0,0

k

are zero for k ě 2. Then, by 3.1.13 we have H
2pn´1q
c pManq » c´ IndJJ˝ 1 with τ acting by

multiplication by pn´1. Eventually, since J˝ is normal in J , J{J˝ » Z and J˝ is generated by

all the compact open subgroups of J , any smooth irreducible representation of J having some

non-zero J˝-fixed vectors is actually an unramified character of J .

4.2 The cohomology when n “ 2 with C split, when n “ 3 and when
n “ 4 with C non-split

4.2.1 From now on we assume that θmax “ 1 so that n “ 2 with C split, n “ 3 or n “ 4 with

C non-split. We will use our knowledge of the spectral sequence given by Ea,b
1 as detailed in

section 3.2 in order to compute all the terms F a,b
2 , and as a consequence we obtain a description

of the cohomology of the supersingular locus of the Shimura variety. All the arguments used

here are exactly the same as in [Mul22a] Section 5.2.

Since θmax “ 1, we have F a,b
2 “ 0 for all a ě 2. As a consequence, all differentials in the second

and deeper pages of the sequence are zero, so that it already degenerates on the second page.

Moreover, the supersingular locus S
ss

has dimension one, thus F 0,b
2 “ 0 for b ě 3 and F 1,b

2 “ 0

for b ě 2.

In Figure 4, we draw the second page F2 and we write between brackets the complex modulus

of the possible eigenvalues of Frob on each term. as computed in 4.1.4.

Remark. The fact that F 0,1
2 “ F 1,1

2 “ 0 follows from 3.2.3 Theorem.

F 0,2
2 rp1`wpξq{2, pwpξq{2s 0

0 0

F 0,0
2 rpwpξq{2s F 1,0

2 rpwpξq{2s

Figure 4: The second page F2 with the complex modulus of possible eigenvalues of Frob on
each term.

Proposition. The eigenspaces of Frob on F 0,2
2 attached to any eigenvalue of complex modulus

pwpξq{2 are zero.

Proof. By the machinery of spectral sequences, we have a GpAp
f qˆW -equivariant isomorphism

H2
cpS

ss

Kp ,Lξq » F 0,2
2 . We prove that no eigenvalue of Frob on this H2

c cohomology group has

complex modulus pwpξq{2, and the result readily follows.

Let Kp Ă GpAp
f q be small enough. Recall from 2.3.4 the definition of the Bruhat-Tits strata

SKp,Λ,k inside the supersingular locus S
ss

Kp . Each stratum SKp,Λ,k is isomorphic to MΛ. For

Λ P Li, define

M˝
Λ :“MΛz

ď

Λ1ĹΛ

MΛ1 ,
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where Λ1 runs over all vertex lattices of Li strictly contained in Λ. By [RTW14] Theorem 6.10,

each M˝
Λ is open dense in MΛ. Via the isomorphism MΛ

„
ÝÑ Sθ where tpΛq “ 2θ, we have

M˝
Λ

„
ÝÑ XIθpwθq with the notations of 1.1.5. In particular, M˝

Λ is isomorphic to the Coxeter

variety for Spp2θ,Fpq. Let S
˝

Kp,Λ,k Ă SKp,Λ,k be the scheme theoric image of M˝
Λ in the k-th

copy of Mred via the p-adic uniformization pΘKpqs of 2.3.4. We have a stratification

S
ss

Kp “ S
ss

Kpr0s \ S
ss

Kpr1s,

where for i “ 0, 1 the stratum S
ss

Kpris is the finite disjoint union of the S
˝

Kp,Λ,k for various k

and Λ of orbit type tpΛq “ 2i. The stratum S
ss

Kpr0s is closed of dimension 0, and the stratum

S
ss

Kpr1s is open dense of dimension 1. Therefore, we have an isomorphism between the highest

degree cohomology groups

H2
cpS

ss

Kp ,Lξq » H2
cpS

ss

Kpr1s,Lξq.

Since S
ss

Kpr1s “
Ů

tpΛq“2,k S
˝

Kp,Λ,k and each S
˝

Kp,Λ,k is open and closed in S
ss

Kpr1s, we have

H2
cpS

ss

Kpr1s,Lξq »
à

tpΛq“2,k

H2
cpS

˝

Kp,Λ,k,Lξq »
à

tpΛq“2,k

H2
cpSKp,Λ,k,Lξq,

where the last isomorphism follows from the stratification

SKp,Λ,k “ S
˝

Kp,Λ,k \
ğ

Λ1ĹΛ

S
˝

Kp,Λ1,k,

with the first term being open dense of dimension 1 and the second term being closed of

dimension 0. Since Lξ » εpξqεmpξq

´

Rmpξqpπ
mpξq
Kp q˚Q`ptpξqq

¯

, the local system Lξ is pure of weight

wpξq. Moreover the variety SKp,Λ,k is projective and smooth for θ “ 1 (it is actually isomorphic

to P1 by 1.1.4 Proposition). Hence, all eigenvalues of the Frobenius on H2
c pSKp,Λ,k,Lξq, and

therefore on H2
cpS

ss

Kp ,Lξq as well, must have complex modulus p1`tpξq{2.

4.2.2 In this paragraph, we compute the term

F 1,0
2 »

à

ΠPAξpIq
Ext1

J

`

H2pn´1q
c pMan,Q`qp1´ nq,Πp

˘

b Πp

»
à

ΠPAξpIq
Ext1

J

`

c´ IndJJ˝ 1p1´ nq,Πp

˘

b Πp.

Let StJ denote the Steinberg representation of J , and recall that XunpJq denotes the set of

unramified characters of J .

Proposition. Let π be an irreducible smooth representation of J . Then

Ext1
Jpc´ IndJJ˝ 1, πq “

$

&

%

Q` if Dχ P XunpJq, π » χ ¨ StJ ,

0 otherwise.

The proof follows the same lines as [Mul22a] 5.2.2 Proposition. We abbreviate the similar

arguments, but we focus on the main difference caused by the ramified case. Let J1 :“ UpCq Ă

J˝ Ă J denote the unitary group of the E{Qp-hermitian space C. For the following lemma

only, n can be any positive integer.
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Lemma. If n is odd then ZpJ˝qJ1 “ J˝. If n is even then ZpJ˝qJ1 has index 2 in J˝.

Proof. The subgroup ZpJ˝qJ1 consists of all g P J˝ such that the multiplier cpgq is a norm, ie.

belongs to the subgroup NormE{QppOˆ
Eq Ă Zˆp of index 2 (since E{Qp is a ramified quadratic

extension). Let g P J and let M be the matrix of g in the basis e. Let Ω denote the matrix

Todd, T
`
even or T´even depending on whether n is odd or even with C split or not, as defined in

2.1.7. We have the relation

MΩM
T
“ cpgqΩ,

where M “ pMijqi,j. Taking the determinant, we have detpMqdetpMq “ cpgqn. Thus, cpgqn is

a norm, and if n is odd it follows that cpgq is a norm too.

Assume now that n is even and let ε P Zˆp be a unit which is not a norm. It is enough to exhibit

an element g0 P J
˝ such that cpg0q “ ε. We distinguish three cases.

– Case C split: we can take g0 given by e´j ÞÑ εe´j and ej ÞÑ ej for all 1 ď j ď θmax.

– Case C non-split and p “ 1 mod 4: then ´1 is a square in Zˆp , so in particular it is

a norm. Recall that Ω “ T´even is defined with two scalars u1, u2 P Zˆp such that ´u1u2 is

not a norm. It follows that u1u
´1
2 ε is a norm. Let us write u1u

´1
2 ε “ λλ for some λ P Oˆ

E ,

and define g0 by

@1 ď j ď θmax, e´j ÞÑ εe´j, ej ÞÑ ej,

ean
0 ÞÑ λean

1 , ean
1 ÞÑ

ε

λ
ean

0 .

Then one may check that g0 P J
˝ with cpg0q “ ε.

– Case C non-split and p “ 3 mod 4: since ´1 is not a norm, we may assume that

u1 “ u2 “ 1. Let ε P OE{πOE “ Fp denote the π-adic residue of ε. The polynomial

fpX, Y q “ X2`Y 2´ ε has a root in F2
p, thus by a multivariate version of Hensel’s lemma,

there exists α, β P Zˆp such that α2 ` β2 “ ε. We define g0 by

@1 ď j ď θmax, e´j ÞÑ εe´j, ej ÞÑ ej,

ean
0 ÞÑ αean

0 ` βean
1 , ean

1 ÞÑ βean
0 ´ αean

1 .

Then one may check that g0 P J
˝ with cpg0q “ ε.

From now, we assume again that θmax “ 1, so that n “ 2 with C split, n “ 3 or n “ 4 with

C non-split. In the unramified case [Mul22a] 5.2.2, we have ZpJ˝qJ1 “ J˝, thus the proof of

the Proposition when n is odd works as verbatim. Let us assume that n is even. Let π be an

irreducible smooth representation of J . As explained in loc. cit. we have

Ext1
Jpc´ IndJJ˝ 1, πq » Ext1

J1p1, π|J1q
J˝{J1

.

In particular, Ext1
Jpc´ IndJJ˝ 1, πq “ 0 if the central character of π is not unramified. If σ is a

smooth irreducible representation of J1, then

Ext1
J1p1, σq “

$

&

%

Q` if σ “ StJ1 ,

0 otherwise.
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Here StJ1 denotes the Steinberg representation of J1. Since J “ ZpJqJ˝, we observe that

ZpJqJ1 also has index 2 in J . Since the Steinberg representation StJ1 is isomorphic to its

conjuguates by elements of J , and since pStJq|J1 “ StJ1 , any smooth irreducible representation

π of J which contains StJ1 is of the form π » χ ¨ StJ for some character χ of J which is triv-

ial on J1. Let χ0 be the unique non-trivial character of J which is trivial on ZpJqJ1. Then

the smooth irreducible representations π of J with unramified central character and whose

restriction to J1 is isomorphic to StJ1 are precisely the representations χ ¨ St and χχ0 ¨ StJ , for

χ P XunpJq. Consider the action of J˝{J1 on the 1-dimensional vector spaces Ext1
J1p1, pStJq|J1q

and Ext1
J1p1, pχ0 ¨StJq|J1q. The action is trivial on ZpJ˝q, so that it factors through an action of

J˝{ZpJ˝qJ1 » Z{2Z. The non trivial element of J˝{ZpJ˝qJ1 must act like id on one space, and

like ´id on the other. Taking the invariants, it follows that exactly one of Ext1
Jpc´ IndJJ˝ 1, StJq

and Ext1
Jpc´ IndJJ˝ 1, χ0 ¨StJq is Q`, the other is 0. Consider P0 a minimal parabolic subgroup of

J and δP0 the associated modulus character. Let ιJP0
denote the normalized parabolic induction

functor. By definition, ιJP0
δ
´1{2
P0

defines a non-trivial extension of StJ by the trivial represen-

tation. Since ZpJqJ˝ “ J , its restriction to J˝ defines a non-trivial extension of pStJq|J˝ by

the trivial representation, ie. a non-zero element of Ext1
J˝p1, pStJq|J˝q » Ext1

Jpc´ IndJJ˝ 1, StJq.

Thus, it is this Ext group which is non zero, and it completes the proof of the Proposition in

the case n even.

4.2.3 As a summary of the analysis detailed in the previous paragraph, we may state our

main result. We use the same notations as 4.1.5.

Theorem. There are GpAp
f q ˆW -equivariant isomorphisms

H0
cpS

ss
,Lξq »

à

ΠPAξpIq
ΠpPXunpJq

Πp
bQ`rδΠpπ

wpξq
` s,

H1
cpS

ss
,Lξq »

à

ΠPAξpIq
DχPXunpJq,
Πp“χ¨StJ

Πp
bQ`rδΠpπ

wpξq
` s,

H2
cpS

ss
,Lξq »

à

ΠPAξpIq
Π
J1
p ­“0

Πp
bQ`rδΠpπ

wpξq`2
` s.

We note that the statement regarding H0
c has already been proved in 4.1.5, and the statement

regarding H1
c follows directly from 4.2.1 Figure 4 and 4.2.2 Proposition. Thus, it only remains

to justify the formula for H2
c . We have

H2
cpS

ss
,Lξq » F 0,2

2 »
à

ΠPAξpIq
HomJ

´

E0,b
2 p1´ nq,Πp

¯

b Πp,

where b “ 0 if n “ 2 with C split, b “ 2 if n “ 3 and b “ 4 if n “ 4 with C non-split. In all

cases we have E0,b
2 » c´ IndJJ1 1. Using Frobenius reciprocity we have

F 0,2
2 »

à

ΠPAξpIq
HomJpc´ IndJJ1 1p1´ nq,Πpq b Πp

»
à

ΠPAξpIq
HomJ1p1p1´ nq, pΠpq|J1q b Πp.
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Since J1 is a special maximal compact subgroup of J , we have dimpπJ1q “ 1 for all smooth

irreducible representations of J such that πJ1 ­“ 0. Therefore, we have

H2
cpS

ss
,Lξq »

à

ΠPAξpIq
Π
J1
p ­“0

Πp
bQ`rδΠpπ

wpξq`2
` s

as claimed, using 4.1.4 for the action of Frob.
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