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Abstract : In this paper, we study the cohomology of the unitary unramified PEL Rapoport-Zink
space of signature (1,n — 1) at maximal level. Our method revolves around the spectral sequence
associated to the open cover by the analytical tubes of the closed Bruhat-Tits strata in the special
fiber, which were constructed by Vollaard and Wedhorn. The cohomology of these strata, which
are isomorphic to generalized Deligne-Lusztig varieties, has been computed in [Mul21]. This
spectral sequence allows us to prove the semisimplicity of the Frobenius action and the non-
admissibility of the cohomology in general. Via p-adic uniformization, we relate the cohomology
of the Rapoport-Zink space to the cohomology of the basic stratum of a Shimura variety with no
level at p. In the case n = 3 or 4, we give a complete description of the cohomology of the basic
stratum in terms of automorphic representations.
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Introduction: By defining moduli problems classifying deformations of p-divisible groups
with additional structures, Rapoport and Zink have constructed their eponymous spaces which
consist in a projective system (Mp,) of non-archimedean analytic spaces. The set of data
defining the moduli problem determines two p-adic groups G(Q,) and J which both act on the
tower. Its cohomology is therefore equipped with an action of G(Q,) x J x W where W is the
absolute Weyl group of a finite extension of Q,, called the local reflex field. This is expected
to give a geometric incarnation of the local Langlands correspondance. So far, relatively little
is known about the cohomology of Rapoport-Zink spaces in general. The Kottwitz conjecture
describes the G x J(Q,)-supercuspidal part of the cohomology but it is only known in a handful
of cases. It was first proved for the Lubin-Tate tower in [Boy99] and in [HTO01], from which the
Drinfeld case follows by duality. The case of basic unramified EL. Rapoport-Zink spaces has
been treated in [Far04] and [Shil2]. As for the PEL case, it was proved for basic unramified
unitary Rapoport-Zink spaces with signature (1,7 —1) with n odd in [Ngul9], and in [BMN21]
for an arbitrary signature with an odd number of variables. Beyond the Kottwitz conjecture,
one would like to understand the individual cohomology groups of the Rapoport-Zink spaces
entirely. This has been done in [Boy09] for the Lubin-Tate case (and, dually, for the Drinfeld
case as well) using a vanishing cycle approach. Boyer’s results were later used in [Dat07] to
recover the action of the monodrony and give an elegant form of geometric Jacquet-Langlands
correspondance. However, this method relied heavily on the particuliar geometry of the Lubin-
Tate tower, and we are faced with technical issues in other situations where we do not have a
satisfactory understanding of the geometry of the Rapoport-Zink spaces.

In this paper, we aim at pursuing the goal of describing the individual cohomology groups of
the Rapoport-Zink spaces in the basic PEL unramified unitary case with signature (1,n — 1).
Here, G(Q,) is an unramified group of unitary similitudes in n variables and J is an inner
form of G(Q,). In fact, J is isomorphic to G(Q,) when n is odd and J is the non quasi-split
inner form when n is even. Our approach is based on the geometric description of the reduced
special fiber M eq given in [Vol10] and [VW11]. In these papers, Vollaard and Wedhorn built
the Bruhat-Tits stratification { M} on M,eq which is interesting for two reasons:

— the closed strata M, are indexed by the vertices of the Bruhat-Tits building BT (J,Q,)
of J. The combinatorics of the stratification can be read on the building.
— each individual stratum M, is isomorphic to a generalized Deligne-Lusztig variety for a
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finite group of Lie type of the form GUyp,;(F,), arising in the maximal reductive quotient

of the maximal parahoric subgroup Jy := Fix;(A).

In [Mul21], by exploiting the Ekedahl-Oort stratification on a given stratum M, we computed
its cohomology in terms of representations of GUgg1(IF,) with a Frobenius action. We consider
the Rapoport-Zink space M®" := M, at maximal level, where Cy = G(Q,) is a hyperspecial
maximal open compact subgroup. Then M?®" is an analytic space of dimension n—1. It admits
an open cover by the analytical tubes Uy of the closed Bruhat-Tits strata M. This induces
a J x W-equivariant Cech spectral sequence computing the cohomology of M2 (see 4.1.4 for

the precise notations):

B @ HUn8C, B = HP(MUSC, Q).
vEl_at1
Using Berkovich’s comparison theorem, the cohomology of the tubes Uy can be identified, up
to a shift in indices and a suitable Tate twist, with the cohomology of the closed Bruhat-Tits
strata M. Let Frob € W be a lift of the geometric Frobenius and let 7 denote the action of the
element (p~! -id, Frob) € J x W on the cohomology. Then the action of 7 on the cohomology
of U, is identified with the Frobenius action on the cohomology of M. It follows in particular
that 7 acts in a semisimple manner on the cohomology of the Rapoport-Zink space M?".

Proposition (4.1.7). The spectral sequence degenerates on the second page Ey. For 0 < b <
2(n — 1), the induced filtration on HY(M™®C,, Qy) splits, ie. we have an isomorphism

H(M™®C, Q) ~ @ B
b<b/<2(n—1)
The action of W on HQ(M”@CP,@) s trivial on the inertia subgroup and the action of
the rational Frobenius element T is semisimple. The subspace Eg_bl’b, 15 1dentified with the

eigenspace of T associated to the eigenvalue (—p)v'.

Let m := |2=L]|. In order to study the J-action, we rewrite the terms E*® using compactl
2 Y 1 g pactly

induced representations (see 4.1.10 for the precise notations)
Bi* = @ e —Indj, (HAUs,, Q) @ QK ), ]) -
=0

The various Jy’s are maximal parahoric subgroups of J, and the representations H?(U, Ag,@) ®
QK (_92 .1] are trivial on the unipotent radical J; . In particular, they are representations of
the finite group of Lie type Jy := Jp/J; ~ G(Uzps1(Fp) x Up_op_1(F,)).

By exploiting this spectral sequence and the underlying combinatorics of the Bruhat-Tits build-
ing of J, we are able to compute the cohomology groups of M of highest degree 2(n — 1),
and when n = 3 or 4 the group of degree 2(n — 1) — 1 as well. We denote by J° the subgroup
of J generated by all the compact subgroups. It corresponds to all the unitary similitudes in J
whose multipliers are a unit. We note that J° is normal in J with quotient .J/J° ~ Z.
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Proposition (4.1.12). There is an isomorphism

H2=D(M™ Q) ~ ¢ — Ind7. 1

and the rational Frobenius T acts via multiplication by p*>™=1).

For \ a partition of 2m + 1, we denote by p, the associated irreducible unipotent representation
of GUgp41(F,) via the classification of [LS77] which we recall in 2.6. We also write p, for its
inflation to the maximal parahoric subgroup J,,,. In particular, if 2m + 1 is equal to (t+1 for
some integer t = 1, we write Ay := (¢t,t — 1,...,1) for the partition of 2m + 1 whose Young

diagram is a staircase. The unipotent representation pa, of GUg,41(F,) is cuspidal.

Theorem (4.3.4). Assume that n =3 or 4. We have

H2 n—1)- YM™ Q) ~c — IndJ1 PAys

with the rational Frobenius T acting via multiplication by —p*—D-1.

In general, the terms Ej * in the second page may be difficult to compute. However, the terms
corresponding to a = 0 and b € {2(n—1—m),2(n—1—m)+ 1} are not touched by any non-zero
differential in the alternating version of the Cech spectral sequence, making their computations
accessible. We note that 2(n — 1 —m) is equal to the middle degree when n is odd, and to one

plus the middle degree when n is even.

Proposition (4.1.11). We have an isomorphism of J-representations

Egﬁ(n*l*m) ~c— Indﬁm P(2m+1)-

If n = 3 then we also have an isomorphism
ES’Q("‘l‘m)“ ~c— Indjm P(2m,1)-
We note that the representation p(o,,41) is trivial. Using type theory, we may describe the
inertial supports of the irreducible subquotients of such compactly induced representations.
An inertial class is a pair [L, 7| where L is a Levi complement of J and 7 is a supercuspidal
representation of L, up to conjugation and twist by an unramified character. Any smooth
irreducible representation 7 of J determines a unique inertial class ¢(7). If s is an inertial class,
let Rep®(J) be the category of smooth representations of .J all of whose irreducible subquotients
7 satisfy £(m) = s. In particular, we allow non-admissible representations in Rep®(J). For & a
set of inertial classes, let RepG(J ) be the direct product of the categories Rep®(J) for s € &.
Let (V,{-,-}) be the n-dimensional Q,2-hermitian space whose group of unitary similitudes is
J, and let
V=mH®V"

be a Witt decomposition, where H denotes the hyperbolic plane and where V# is anisotropic.
Note that V?" has dimension 1 or 2 depending on whether n is odd or even respectively. For
0 < f < m, we define

Ly =G (U(fH® V™) x Uy (Q,)™ 7).

4
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Then Ly can be seen as a Levi complement in J, and L,, = J. In particular L is a minimal Levi
complement. Let 7y denote the trivial representation of Lg, and let 7y denote the representation
of Ly obtained by letting the GU;-components act trivially, and the GU(H @ V**)-component
acts through the compact induction of the inflation to a special maximal parahoric subgroup
of the unique cuspidal unipotent representation of GUs(F,). For f = 0,1, the irreducible
representation 7y of Ly is supercuspidal. For V' a smooth representation of J and x a continuous
character of the center Z(.J), we denote by V, the maximal quotient of V' on which the center
acts like y. Combining our previous proposition with an analysis of the inertial supports via

type theory, we obtain the following proposition.
Proposition (4.2.12). Let x be an unramified character of Z(.J).

— Assume that n = 3. The representation (Eg’Q(nflfm))X contains no non-zero admissible
subrepresentation, and it is not J-semisimple. Moreover, any irreducible subquotient has
inertial support [Lo,7o]. If n = 5, then the same statement holds for (E§’2(”‘1‘m)“)x

with the inertial support being Ly, ).
— Forn =1,2,3,4, let b = 0,2,3,5 respectively. Then m = 0 when 1,2 and m = 1 when
n = 3,4. Let x be an unramified character of Z(J). The twist Ty, of T by x is an

wrreducible supercuspidal representation of J, and we have

Tm ifn=1,3,4,
(B2, ~ !

x = .
Tmx @ X0Tmy U 1= 2.

Here, when n = 2 the subgroup Z(J).Jy has index 2 in N;(Jy) = J. In this situation, xo denotes
the unique non-trivial character of J which is trivial on Z(.J)Jy.

This proposition yields the following important corollary.

Corollary (4.2.12). Let x be an unramified character of Z(J). Ifn > 3 then H2" "™ (M @),
is not J-admissible. If n. =5 then the same holds for HZ" ™ (Man Q). .

Thus the cohomology of Rapoport-Zink spaces need not be admissible nor J-semisimple in
general. This seems to differ from the case of the Lubin-Tate tower.

Lastly, we introduce the unramified unitary PEL Shimura variety of signature (1,n — 1) with
no structure level at p. It is defined over a quadratic extension E of QQ in which the prime p
is inert. The corresponding Shimura datum gives rise to a reductive group G over QQ, whose
group of Q,-rational points is isomorphic to the group we denoted G(Q,), and such that G(R) ~
GU(1,n —1). The Shimura varieties are indexed by the open compact subgroups K? ¢ G (Afc)
which are small enough. Kottwitz constructed integral models at p of these Shimura varieties.
Their special fibers are stratified by the Newton strata, and the unique closed stratum is called
the basic stratum. We denote it Sg»(by). The p-adic uniformization theorem of [RZ96] is a
geometric identity between the Rapoport-Zink space M and the basic stratum Sg»(by). In
[Far04], Fargues constructed a Hochschild-Serre spectral sequence associated to this geometric
identity, computing the cohomology of the basic stratum.
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Let ¢ be an irreducible algebraic finite dimensional representation of G, and let L¢ be the
associated local system on the Shimura variety, restricted to the special fiber. It is a pure sheaf
of some weight w(¢§) € Z. Let I be the inner form of G such that I(A;) = J x G(A}) énd
I(R) ~ GU(0,n). We denote by A¢(I) the set of automorphic representations of I of type £ at
infinity, and counted with multiplicities. Fargues’ spectral sequence is given in the second page
by

Y= @ Exty (HO D (M™RC,, Q) (1 —n),I,) @I = H(S(by) ® F, L),

HEAg(I)

where S(bg) := lim Skr(bg) and F is an algebraic closure of F,. It is G (A%}) x W-equivariant.
When n = 3 or 4 this sequence degenerates on the second page, and our knowledge on the
cohomology of the Rapoport-Zink space M?®" allows us to compute every term. We obtain a
description of the cohomology of the basic stratum in terms of automorphic representations.

A smooth character of J is said to be unramified if it is trivial on all compact subgroups of
J. Let X" (J) denote the set of unramified characters of J. Let St s denote the Steinberg
representation of J. If Il € Ag( ), we define &, := wyy, (p~* - id)p~© € Q. where wi, is the
central character of II,,, and p~' - id lies in the center of J. For any isomorphism ¢ : Qp ~ C we
have [¢(dr,)| = 1. Eventually, if z € Q.”, we denote by Q[z] the 1-dimensional representation
of the Weil group W where the inertia acts trivially and Frob acts like multiplication by the

scalar .

Theorem (5.2.3). There are G(A}) x W -equivariant isomorphisms

H(S(bo) ® F, Le) ~ P 1P @ Qifom,p @],
HE.Ag(I)
I1,eX ()

HISb)©F. L)~ D WQ6nr@e @ IPQQ[—bup,
HMeAg(I) e Ag (1)
IxeXun(j), IxeXun(.g),
Hp=x-Sts p=x71

H2(S(bo) ® F,Le) ~ P IIP @ Qu[br, p™' 9]
MeAg(I)
I 40

Assume now that the Shimura variety is of Kottwitz-Harris-Taylor type, implying among other
things that the reflex field F splits over a prime number p’ different from p and ¢. The co-
homology of the whole Shimura variety has been computed in [Boyl0]. In particular, it does
not contain any multiplicity dependent on p such as v, implying that such multiplicities should
occur in other Newton strata as well. We may verify this directly in the case n = 3, where
there is only one other Newton stratum which is the p-ordinary locus of the Shimura variety.
We denote it Sg»(b;) and we also write S(b;) := lim Skr(by).

Proposition. There is a G(A?) x W -equivariant isomorphism

Hé(g(bl) ® F,ﬁ_g) ~ @ I’ ® @e[ w(g +4]
e A (I)
peX ™™ (J)

6
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There is a G(A}) x W -equivariant monomorphism

HAS(0) @ F, Le) = @ 1P @ Qe[6n,p" 7).
HEA&(I)
)l 40

There is a G(A}) x W-equivariant monomorphism

O Febny9le @ FeQl-ony"“""]—H(Sh)®F L).

HGA{(I) HGA{(I)
IxeXun(J), IxeXun(J),
Hp=x-Sts Hp=x-71

Notations: Throughout the paper, we fix an integer n > 1 and we write m := [”T’lj so that
n = 2m + 1 or 2(m + 1) according to whether n is odd or even. We also fix an odd prime
number p. If k is a perfect field of characteristic p, we denote by W (k) the ring of Witt vec-
tors and by W (k)q its fraction field, which is an unramified extension of QQ,. We denote by
oy : © — z¥ the Frobenius of Gal(k/F,), and we use the same notation for its (unique) lift to
Gal(W (k)o/Qp). If K'/k is a perfect field extension then (o) = ok, so we can remove the
subscript and write o unambiguously instead. If ¢ = p® is a power of p, we write F, for the
field with ¢ elements. In the special case where ¢ = p?, we also use the alternative notation
Zy = W(F,2) and Q2 = W(F,2)qg. We fix an algebraic closure F of F,. In various situations,
the symbol 1 will always represent the trivial representation of the group we are considering.

Acknowledgement: This paper is part of a PhD thesis under the supervision of Pascal Boyer
and Naoki Imai. I am grateful for their wise guidance throughout the research. I also wish to
adress special thanks to Jean-Loup Waldspurger for helpful discussions regarding the structure
of compactly induced representations.

1 The Bruhat-Tits stratification on the PEL unitary
Rapoport-Zink space of signature (1,n — 1)

1.1 The PEL unitary Rapoport-Zink space M of signature (1,n— 1)

1.1.1  In [VW11], the authors introduce the PEL unitary Rapoport-Zink space M of signature
(1,n — 1) as a moduli space, classifying the deformations of a given p-divisible group equipped
with additional structures. We briefly recall the construction. Let Nilp denote the category of
schemes over Z,> where p is locally nilpotent. For S € Nilp, a unitary p-divisible group of
signature (1,n — 1) over S is a triple (X, tx, Ax) where

— X is a p-divisible group over S.

— tx 1 Zy2 — End(X) is a Zje-action on X such that the induced action on its Lie alge-
bra satisfies the signature (1,7 — 1) condition: for every a € Z,, the characteristic
polynomial of ¢x(a) acting on Lie(X) is given by

(T — a)' (T — o(a)" " € Z,[T] = Og[T].

7
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— Ax : X = 'X is a Z-linear polarization where X denotes the Serre dual of X.

The Z,»-linearity of Ax is with respect to the Z,.-actions ¢x and the induced action t:x on the
dual. A specific example of unitary p-divisible group over F,2 is given in [VW11] 2.4 by means
of covariant Dieudonné theory. We denote it by (X, 1x, Ax) and call it the standard unitary
p-divisible group. The p-divisible group X is superspecial. The following set-valued functor
M defines a moduli problem classifying deformations of X by quasi-isogenies. More precisely,
for S € Nilp the set M(S) consists of all isomorphism classes of tuples (X,tx, Ay, px) such
that

— (X, \x, px) is a unitary p-divisible group of signature (1,n — 1) over S.

—px X xgS—-X XF Sis a Zy2-linear quasi-isogeny compatible with the polarizations,
in the sense that ‘px o Ax o0 px is a Q,-multiple of \x.

In the second condition, S denotes the special fiber of S. By [RZ96] Corollary 3.40, this moduli
problem is represented by a separated formal scheme M over Spf(Z,2), called a Rapoport-
Zink space. It is formally locally of finite type, and because the associated PEL datum is
unramified it is also formally smooth over Z,.. The reduced special fiber of M is the
reduced Fj2-scheme M,qq defined by the maximal ideal of definition. By loc. cit. Proposition
2.32, each irreducible component of M,.q is projective. The geometry of the special fiber has
been thoroughly described in [Vol10] and [VW11], and we recall some of their constructions.

1.1.2 Rational points of M over a perfect field extension k of F,2 can be understood in terms
of semi-linear algebra by means of Dieudonné theory. We denote by M(X) the Dieudonné
module of X, this is a free Z,2-module of rank 2n. We denote by N(X) := M(X) ® Q2 its
isocrystal. By construction, the Frobenius and the Verschiebung agree on N(X). In particular,
we have F? = p - id on the isocrystal. The Z,-action tx induces a Z/2Z-grading M(X) =
M(X)® M (X); as a sum of two free Z,2-modules of rank n. The same goes for the isocrystal
N(X) = N(X)o@® N (X); where N(X); = M(X); ® Q2 for i = 0,1. The polarization Ax induces
a perfect o-symplectic form on N (X) which stabilizes the lattice M (X) and for which F is self-
adjoint. Compatibility with ¢x implies that the pieces N(X); are totally isotropic for i = 0,1
and dual of each other. Moreover, the Frobenius F is then 1-homogeneous with respect to this
grading. As in [VW11] 2.6, it is possible to modify the symplectic pairing so that it restricts

to a non-degenerate Q,2-valued o-hermitian form {-,-} on N(X)j.

Notation. From now on, we will write V := N(X) and M := M (X),.

Then V is a Qp2-hermitian space of dimension n, and M is a given Z,-lattice, ie. a Z,-
submodule containing a basis of V. Given two lattices M; and M, the notation M, é My
means that M; < M, and the quotient module M,/M; has length d. The integer d is called the
index of M in My, and is denoted d = [My : M;]. We have 0 < d < n. Given a lattice M < 'V,
the dual lattice is denoted M Y. It consists of all the vectors v € V such that {v, M} < Z,.

8
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Then, by construction the lattice M satisfies
v 1 n—1 v
pMY cM < MY.

The existence of such a lattice M in V implies that the o-hermitian structure on V is isomorphic
to any one described by the following two matrices

Am
Toda := Asmi1,  Toven i=
Am
Here, Ay, denotes the k£ x k matrix with 1’s in the antidiagonal and 0 everywhere else.

Proposition ([Voll0] 1.15). There exists a basis of V such that {-,-} is represented by the

matrix Togq 15 1 is odd and by Tepen if n is even.

1.1.3 A Witt decomposition on V is a set {L;};c; of isotropic lines in V such that the

following conditions are satisfied:

— For every i € I, there is a unique ¢’ € I such that {L;, Ly} * 0.
— The sum of the L;’s is direct.

— The orthogonal in V of the direct sum of the L;’s is an anisotropic subspace of V.

Because each line L; is isotropic, in the first condition one necessarily has () = i and i # 7’
As a consequence, the cardinality of the index set [ is an even number #I = 2w(V). The
integer w = w(V) is called the Witt index of V and it does not depend on the choice of
a Witt decomposition. We write L*" for the orthogonal of the direct sum of the L;’s. The
dimension of L*" is n® := n — 2w, therefore it is also independent on the choice of the Witt
decomposition.

Given any Witt decomposition, one may always find vectors e; € L; such that {e;,e;} = ;.
Together with a choice of an orthogonal basis for L®", these vectors define a basis of V which
is said to be adapted to the Witt decomposition. For any i € I, the direct sum L; @ L; is
isometric to the hyperbolic plane H. Therefore, we obtain a decomposition

V =wH® L™.

We may always rearrange the index set so that I = {—w,...,—1,1,...,w} and for every i € I,
we have {L;, L_;} # 0. Thus, the i’ associated to i by the first condition is —i. Of course, this
process is not unique as it relies on a choice of an ordering for the lines {L;};c;. In this context,

we write Ly instead of L?".

1.1.4 We fix once and for all a basis e of V in which the hermitian form is represented by

the matrix Tyqq or Teven. In the case n = 2m + 1 is odd, we will denote it

an
e=(e_my...,e_1,€5" €e1,...,€n),
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and in the case n = 2(m + 1) is even we will denote it
an an
e=(eom,y...,e_1,ed el er,. .. em).

In this way, for every 1 < s < m the subspace generated by e_; and e, is isomorphic to
the hyperbolic plane H. Moreover, the vectors with a superscript -*" generate an anisotropic
subspace V?" of V. The choice of such a basis gives a Witt decomposition

V=mHeV*"

consisting of an orthogonal sum of m copies of H and of the anisotropic subspace V2". In
particular, the Witt index of V is m and we have n® =1 or 2 depending on whether n is odd

or even respectively.

1.1.5  Given a perfect field extension k of F2, we denote by Vy; the base change V®q , W (k)q-
The form may be extended to V by the formula

{v@x, Wy} =y’ {v,w} e W(k)g

for all v,w € V and x,y € W(k)g. The notions of index and duality for W (k)-lattices can be
extended as well. We have the following description of the rational points of the Rapoport-Zink
space.

Proposition ([Vol10] 1.10). Let k be a perfect field extension of F2. There is a natural bijection
between M(k) = Miea(k) and the set of lattices M in Vi such that for some integer i € Z, we
have

pHMY & MTE pMY.

1.1.6  There is a decomposition M = | |.., M, into formal connected subschemes which are
open and closed. The rational points of M; are those lattices M satisfying the relation above
with the given integer ¢. Similarly, we have a decomposition into open and closed connected
subschemes Meq = | |.c;, M rea- In particular, the lattice M defined in the previous paragraph
is an element of M(F,2). Not all integers ¢ can occur though, as a parity condition must be
satisfied by the following lemma.

Lemma ([Vol10] 1.7). The formal scheme M, is empty if ni is odd.

1.1.7 Let J = GU(V) be the group of unitary similitudes attached to V. It consists of all
linear transformations g which preserve the hermitian form up to a unit c¢(g) € Q) called the
multiplier. One may think of J as the group of Q,-rational point of a reductive algebraic
group. The space M is endowed with a natural action of J. At the level of points, the element
g acts by sending a lattice M to g(M).

By [Vol10] 1.16, the action of g € J induces, for every integer i, an isomorphism M; —
Miia(g) Where a(g) is the p-adic valuation of the multiplier ¢(g). This defines a continous

homomorphism
a:J -7

10
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where Z is given the discrete topology. According to 1.17 in loc. cit. the image of « is Z
if n is even, and it is 2Z if n is odd. The center Z(J) of J consists of all the multiple of the
identity. Therefore it can be identified with Q. If A € Q%, then c(A-id) = Ao(A) = Norm(A) €

X
D

a(Z(J)) = 2Z. Thus, the restriction of a to the center of J is surjective onto the image of «

where Norm is the norm map relative to the quadratic extension Q,2/Q,. In particular,

only when n is odd. When n is even, we define the following element
Im

go =

)
o3

Pl

where I, denotes the m x m identity matrix. Then gy € J and ¢(gg) = p so that a(gg) = 1.
Moreover g2 = p - id belongs to Z(.J).
Let ¢ and ¢’ be two integers such that ni and ni’ are even. Following [Vol10] Proposition 1.18,
we define a morphism ;s : M; — M, by sending, for any perfect field extension k/F,, a
point M € M, to

p e M if i =4 mod 2.

%’J'(M) = i1 o .
p 2 go-M ifi#47d mod 2.

This is well defined as the second case may only happen when n is even. We obtain the following
proposition.

Proposition ([Vol10] 1.18). The map 1; is an isomorphism between M; and M, . Moreover
they are compatible with each other in the sense that if i,7' and i" are three integers such that

ni,ni’ and ni" are even, then we have Yy i 0 ;i = ;.

The same statement also holds for the special fiber M, oq. In particular, we have M; + J if

and only if ni is even.

1.2 The Bruhat-Tits stratification of the special fiber M,

1.2.1  We now recall the construction of the Bruhat-Tits stratification on M,eq as in [VW11].
Let ¢ be an integer such that ni is even. We define

L;:={A c V alattice | p"™'AY < A < p'AV}.

If A € £;, we define its orbit type ¢(A) := [A : pAY]. We also call it the type of A. In
particular, the lattices in £; of type 1 are precisely the IFj2-rational points of M; ;cq. By sending
A to g(A), an element g € J defines a map £; — Lija(g)-

Proposition ([Voll0] Remark 2.3 and [VW11]| Remark 4.1). Let ¢ be an integer such that ni

18 even and let A € L;.

— The map L; — Liqg) induced by an element g € J is an inclusion preserving, type

preserving bijection.

11
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— We have 1 < t(A) < n. Furthermore t(A) is odd.

— The sets L;’s for various i’s are pairwise disjoint.

Moreover, two lattices A, N € | | ..., L; are in the same orbit under the action of J if and only

ift(A) = H(A').

Proof. The first three points are proved in [Vol10]. Thus, we only explain the last statement.

If A and A’ are in the same J-orbit, because the action of .J preserves the type we have

t(A) = t(N).

For the converse, assume that A and A’ have the same type. Let ¢ and ' be the integers such

that A € £; and A’ € L. According to 1.1.7, we can always find g € J such that a(g) =i — 7'
/

Hence, replacing A’ by g - A’ we may assume that ¢ = ¢/. Then the statement follows from
[VW11] Remark 4.1. O

We write £ := | | .o, £;. For any integer ¢ such that ni is even and any odd number ¢ between
1 and n, there exists a lattice A € £; of orbit type t. Indeed, by fixing a bijection £; — Lg it is
enough to find such a lattice for i = 0. Then, examples of lattices in Lg of any type are given
in 1.2.6 below.

1.2.2  Write t.¢ := 2m + 1, so that the orbit type t of any lattice in £ satisfies 1 <t < 0.

The following lemma will be useful later.

Lemma. Let i € Z such that ni is even, and let A € L. We have AY € L if and only if either
n is even, either n is odd and t(A) = tpax-

If this condition is satisfied and n is even, then N¥ € L_; 1 and t(AY) = n —t(A). If on the
contrary n is odd, then A¥ € L_; and t(AY) = t(A).

Proof. First we prove the converse. We have the following chain of inclusions

poih AV A ity
If n is even, then —n(i + 1) is also even and n — ¢(A) £ 0. Since (AY)Y = A, we deduce that
AY € L_; 1 with orbit type n — t(A). Assume now that n is odd and that t(A) = tp.x = n.
Then AV =p~*Ae L_;.
Let us now assume that AV € £ and that n is odd. Let ¢ € 2Z such that AY € £;. We have

n—t(AY t(A)

. n—t(A - . AV
AV < )pzA é( )pZHAV, AY < pil*lA t(c)

—i—i'—2 A Vv
D AY,

therefore —2 < i+7' < 0. Since i+4’ is even it is either —2 or 0. If it were —2, then we would have
t(A) = t(AY) = 0 which is absurd. Therefore i+i’ = 0, and we have n—t(A) = n—t(A¥) =0. O

1.2.3 With the help of £;, one may construct an abstract simplicial complex B;. For s = 0,
an s-simplex of B; is a subset S < L; of cardinality s+ 1 such that for some ordering Ay, ..., A,
of its elements, we have a chain of inclusions p"™'AY € Ag € A; < ... & A,. We must have

0 < s < m for such a simplex to exist.

12
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We introduce J = SU(V), the derived group of J. We consider the abstract simplicial complex
BT(j ,Q,) of the Bruhat-Tits building of J over Qp. A concrete description of this complex is
given in [Vol10], while proving the following theorem.

Theorem ([Vol10] 3.5). The abstract simplicial complex BT(.J,Q,) of the Bruhat- Tits building
of J is naturally identified with B; for any fized integer i such that ni is even. There is in
particular an identification of L; with the set of vertices of BT(j, Qp). The identification is
J -equivariant.

Apartments in the Bruhat-Tits building BT(j ,Q,) are in 1 to 1 correspondence with Witt
decompositions of V. Let L = {L;};c; be a Witt decomposition of V and let f = (f;)ier u B*™
be a basis of V adapted to the decomposition, where B*" is an orthogonal basis of L*. Under
the identification of BT(j ,Q,) with B;, the vertices inside the apartment associated to L
correspond to the lattices A € £; which are equal to the direct sum of A n L and of the
modules p"iZ, f; for some integers (7;);e;. The subset of £; consisting of all such lattices will
be denoted AF or, with an abuse of notations, Alf . We call such a set AF the apartment
associated to L in £;.

Remark. The set of vertices of the Bruhat-Tits building of J = GU(V) may then be identified
with the disjoint union £ of the £;’s. The subsets of lattices in a common apartment correspond
to the sets AY := | | ..., A¥ where L is some Witt decomposition of V. The set A" will be
called the apartment associated to L.

We recall a general result regarding Bruhat-Tits buildings.

Proposition. Let i be an integer such that ni is even. Any two lattices A and N in L; (resp.
L) lie inside a common apartment AL (resp. AY) for some Witt decomposition L.

Moreover, the action of the group J sends apartments to apartments. It acts transitively on the
set {AF};. The same is true for J acting on the set {A"}r.

1.2.4 Recall the basis e of V that we fixed in 1.4. We will denote by
ATy 71,8, T,y )

the Z,2-lattice generated by the vectors pie; for all j = +1,..., +m, by p®ef® and if n is even,
by p*tei™ too. Here, the r;’s are integers and s denotes either the integer s¢ if n is odd or the
pair of integers (s, s1) if n is even.

Proposition. Let i be an integer such that ni is even. Let (rj,s) be a family of integers as
above. The corresponding lattice N = A(r_p,, ..., 7_1,8,71,...,Tm) belongs to L; if and only if
the following conditions are satisfied

~ forall1 < j <m, we have r_; +r; € {i,i + 1},

- S0 = [%J;

— if n is even, then sy = |%].

13
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Moreover, when that is the case the type of A is given by
tA) =14+2#{1<j<m|r_; +r; =1}
Proof. The lattice A belongs to £; if and only if the following chain of inclusions holds:
PHIAY S A c piAY.

The dual lattice A is equal to the lattice A(—r,,, ..., =11, 8, —r_q1,..., —7_,), where s’ = —sg
when n is odd, and s’ = (—sg, —s; —1) when n is even. Thus, the inclusions above are equivalent

to the following inequalities:

z'—r,jérjéﬂ—l—r,j, i—80<80<i+1—50,

i—1—s1 <s<i—s; (if nis even).

This proves the desired condition on the integers r;’s and on s.

Let us now assume that A € £;. Tts orbit type is equal to the index [A, p"**AV]. This corresponds
to the number of times equality occurs with the left-hand side in all the inequalities above. Of
course, if the equality ¢ —r_; = r; occurs for some j, then it occurs also for —j. Moreover, if %
is even then the equality i — sg = sg occurs whereas ¢ — 1 — s; + s1. On the contrary if ¢ is odd,
then the equality i — 1 — s; = s; occurs whereas i — sy + sg. Thus in all cases, only one of sq
and s; contributes to the index. Putting things together, we deduce the desired formula. [

1.2.5 We deduce the following corollary.

Corollary. The apartment AS (resp. A°) consists of all the lattices of the form
A=Ar_pm, 71,871,y Tm)

which belong to L; (resp. to L).

Proof. According to the previous proposition, it is clear that all lattices which belong to £; and
are of the form A(r_,,,...,7_1,8,71,...,7y) are elements of A¢. We shall prove the converse.
Let A € A;. By definition, there exists integers (r;) such that

A=AnV*P (—B (P Zye_; B Lye;).

1<jsm

Write A’ = A n V2, This is a lattice in V2" which satisfies the chain of inclusions
pi+1A/v c A/ - pi[\l\/7

where the duals are taken with respect to the restriction of {-, -} to V®. Since V" is anisotropic,

there is only a single lattice satisfying the chain of inclusions above. If we write a := [%J and

b= [%J, it is given by p?Z,2ef" if n is odd, and by p*Z,2ef* @ prpze"i‘“ if n is even. Thus, it

must be equal to A’ and it concludes the proof. O

14
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1.2.6 We fix a maximal simplex in £y lying inside the apartment Aj. For 0 < 6 < m we
define
Ag:=A(0,...,0,0,0,...,0,1,...,1).
—_——— —_——— ——
m 0 m—0

Here, the 0 in the middle stands for (0,0) in case n is even. The lattice Ay belongs to Lo, its
orbit type is 26 + 1 and together they fit inside the following chain of inclusions

pAN) S Agc ... A,

Thus, they form an m-simplex in L.

1.2.7 Given a lattice A € L;, the authors of [VW11] define a subfunctor My of M, seq
classifying those p-divisible groups for which a certain quasi-isogeny, depending on A, is in fact
an actual isogeny. In Lemma 4.2, they prove that it is representable by a projective scheme
over I,
M, are called the closed Bruhat-Tits strata of M. Their rational points are described as

and that the natural morphism My < M, eq is a closed immersion. The schemes

follows.

Proposition ([VW11] Lemma 4.3). Let k be a perfect field extension of Fp2, and let M €
M, rea(k). Then we have the equivalence

M e MA(]{?) — M c Ak = A®Zp2 W(k))

The set of lattices satisfying the condition above was conjectured in [Vol10] to be the set of
points of a subscheme of M, ;cq, and it was proved in the special cases n = 2,3. In [VW11],
the general argument is given by the construction of M. The action of an element g € J on

Mieq induces an isomorphism My — M.

1.2.8 Let A € L, we denote by J, the fixator of A under the action of J. If A = Ay for
some 0 < § < m, we will write Jy instead. These are maximal parahoric subgroups of J.
In unramified unitary similitude groups, maximal parahoric subgroups and maximal compact
subgroups are the same. A general parahoric subgroup is an intersection Jy, N ... N Jx,
where {Aq,...,As} is an s-simplex in £; for some i. Any parahoric subgroup is compact and
open in J.

Let 7 be the integer such that A € £;. We define V) := A/p"™'AY and V} := p'AY/A. Since
pA cp-p'AY and p-p'AY < A, these are both F2-vector space of dimensions respectively ¢(A)
and n — t(A). Both spaces come together with a non-degenerate o-hermitian form (-,-)o and
(-,)1 with values in F,2, respectively induced by p~*{-,-} and by p~**'{-,-}. If k is a perfect
field extension of F,2 and if € € {0,1}, we may extend the pairings to (V{), = V§ Qr , k by
setting

vz, w®Y) =2y’ (v,w). €k

for all v,w € V§ and x,y € k. If U is a subspace of (V) we denote by U+ its orthogonal, that
is the subspace of all vectors z € (V) such that (z,U). = 0.
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Denote by J; the pro-unipotent radical of Jy and write Jp := Ju/J; . This is a finite group
of Lie type, called the maximal reductive quotient of J,. We have an identification Jj ~
G(U(VY) x U(V})), that is the group of pairs (go, g1) where for € € {0, 1} we have g. € GU(VY)
and c(go) = c(g1). Here, c(gc) € F, denotes the multiplier of g.

For 0 < 6 < m and € € {0, 1}, we will write Vj and Jy instead of Vi, and Jj,. A basis of V) is
given by the images of the 20 + 1 vectors e_g...,e_1,€3" ey,...,ep. As for V!, a basis is given
by the images of the n — 20 — 1 vectors p~te_p,,....,p te_y_1,€641,...,€mn when n is odd, and
in case n is even one must add the image of p~'e™ to the basis.

1.2.9 Let A € £; where ni is even. We write t(A) = 20 + 1. Let k be a perfect field extension
of Fj2. Let T' be any W (k)-lattice in V, such that

: 20'+1
p T TS T < A,

where 0 < " < 0. Then T must contain p"™'AY and [A;, : T] = 0 — . We may consider
T := T/p"*'A) the image of T in VA(O). Then T is an Fj2-subspace of dimension 6 + ¢’ + 1.
Moreover, one may check that pi+t1Tv = Ti, therefore the subspace T contains its orthogonal.
These observations lead to the following proposition.

Proposition ([Vol10] 2.7). The mapping T — T defines a bijection between the set of W (k)-

lattices T' in V3, such that p"™ 1T X Ay and the set

Uc (V)| dimU =0+60"+1 and U+ < U}.
A

In particular taking ¢ = 0, this set is in bijection with M (k).

Remark. Similarly, the set of W (k)-lattices T such that Ay, < T g p'TY for some 0 < ¢ <

m is in bijection with
(Uc (V)| dimU =n—60 —60 —1 and U* < U}.

The bijection is given by T — T where T := T/Ay < Vk(l). These sets can be seen as the
k-rational points of some flag variety for GU(VZEO)) and GU(V/ED), which are special instances
of Deligne-Lusztig varieties. This is accounted for in the next paragraph.

1.2.10 Let A € L. The action of J on the Rapoport-Zink space M restricts to an action of
the parahoric subgroup Jj on the closed Bruhat-Tits stratum M. This action factors through
the maximal reductive quotient Jp ~ G(U(V/{)) X U(VAI)) This action is trivial on the normal

subgroup {id} x U(V}}) < Jy, thus it factors again through the quotient which is isomorphic to
GU(VQ).

Theorem ([VW11]| Theorem 4.8). There is an isomorphism between My and a certain “gen-
eralized” parabolic Deligne-Lusztig variety for the finite group of Lie type GU(VY), compatible
with the actions. In particular, if t(A) = 20 + 1 then the scheme My is projective, smooth,
geometrically irreducible of dimension 6.
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We refer to [Mul21] Section 1 for the definition of Deligne-Lusztig varieties. In particular,
the adjective “generalized” is understood according to loc. cit. The Deligne-Lusztig variety
isomorphic to My is introduced in [VW11] 4.5, and it is denoted by Y, there.

1.2.11  We now explain how the different closed Bruhat-Tits strata behave together.

Theorem ([VW11] Theorem 5.1). Let i € Z such that ni is even. Consider A and A’ two
lattices in L;. The following statements hold.

(1) The inclusion A = N is equivalent to the scheme-theoretic inclusion My < My:. It also
implies t(A) < t(A) and there is equality if and only if A = A'.

(2) The three following assertions are equivalent.
W)AnANecl,. (i) An A contains a lattice of L;. (i) My n My + .

If these conditions are satisfied, then My N My = Mpn~ar, where we understand the left
hand side as the scheme theoretic intersection inside M, yeq.

(3) The three following assertions are equivalent

i) A+ A el (i) A + A" is contained in a lattice of L;.
(iii) My, My © M5 for some A in L;.

If these conditions are satisfied, then Mpynr is the smallest subscheme of the form My
containing both My and M.
(4) If k is a perfect field field extension of B2 then Mi(k) = Jyep, Ma(K).

In essence, the previous statements explain how the stratification given by the M, mimics the
combinatorics of the Bruhat-Tits building of .J, hence the name.

1.3 On the maximal parahoric subgroups of J

1.3.1 In this section we give a few results that will be useful later regarding the maximal
parahoric subgroups Jy. First, we study their conjugacy classes. It starts with the following

lemma.

Lemma. Let A, AN € L.

(i) The parahoric subgroup Jy acts transitively on the set of apartments containing A.
(ii) We have Jy = Jy if and only if there exists k € Z such that A = p* A or A = p*A’ V.

Proof. The first point is a general fact from the theory of Bruhat-Tits buildings.

For the second point, the converse is clear. Indeed, if x € Q;z then J,po = Jjx, and an element
g € J fixes a lattice A if and only if it fixes its dual AY.

Now, let A, A’ € £ such that Jy = Jx.. Up to replacing A’ by an appropriate lattice g - A’, it

is enough to treat the case A’ = Ay for some 0 < # < m. By 1.2.3 Proposition, we can find an
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apartment A" containing both Ay and A. By the first point, we can find g € Jy = J, which
sends A* to A°. Therefore g- A = A belongs to A°. According to 1.2.5, we may write

AN=Ar_pmy o 71,871,y )

for some integers (r;,s). Let ¢ be the integer such that A € £;. Then according to 1.2.4 we have

- Vi<j<m,r_;+r;e{ii+1}.
_ il
— S0 = [—J

— if n is even then s, = |3].

For 1 < j <0, let g; be the automorphism of V which exchanges e_; and e; while fixing all the
other vectors in the basis e. Then, from the definition of Ay we have g; € Jy. Therefore g; must
fix A too, which implies that r_; = r;. And for  +1 < j < m, let g; be the automorphism
sending e; to p~'e_; and e_; to pe; while fixing all the other vectors in the basis e. Then again
we have g; € Jy = J) which implies that r_; = r; — 1.

Assume first that ¢ = 2¢’ is even. Combining the previous observations, we have r; = ¢’ for all
I1<j<f@andr;=14+1foral §+1<j<m. Moreover we have sy =4’ and if n is even, we
have s; = #'. In other words, we have A = p Ay.

Assume now that i = 2¢’ + 1 is odd. This implies that n is even. Combining the previous
observations, we have r; = ¢ + 1 for all 1 < j < m. Moreover we have sy = 7 + 1 and if n is

. !
even, we have s; = ¢. In other words, we have A = p" T1A}. n

1.3.2 We may now describe the conjugacy classes of these maximal parahoric subgroups.

Corollary. Let A,\N € L.

(i) If n is odd, then t(A) = t(A\) if and only if the associated mazimal parahoric subgroups Jx

and Jyr are conjugate in J. FEach such subgroup is conjugate to Jy for a unique 0 < 6 < m.

(i1) If n is even, then t(A) € {t(N'),n—t(A")} if and only if the associated mazimal parahoric

subgroups Jy and Jp are conjugate in J. FEach such subgroup is conjugate to Jy for a
unique 0 < 0 < | /.

Thus, there are m + 1 conjugacy classes of maximal parahoric subgroups when n is odd, and

only |F| + 1 when n is even. If n is odd the subgroups .Jy are pairwise non conjugate, whereas

Jp is conjugate to J,,_y when n is even.

Remark. The special maximal compact subgroups are the conjugates of Jy and of .J,,,. When n
is odd, the conjugates of J,, are hyperspecial.

Proof. For the first point, assume that ¢t(A) = ¢(A’). By 1.2.1 Proposition, we can find g € J
such that g - A = A’. Therefore Jy = J,o = 9J), the two parahoric subgroups are conjugate.
For the converse, assume that Jy = 9J, for some g € J. Then Jy = Jga. By 1.3.1 there is
some k € Z such that A’ = p*g- A or (A’)Y = pFg- A. This implies that t(A) = ¢(A’). Indeed,
it is clear in the first case, and in the second case we have in particular (A’)¥ € L. Since n is
odd, by 1.2.2 we have t(A") = t((A’)Y), so that we are done.
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For the second point, if £(A") = ¢(A) then we reason the same way as above. If t(A’) = n—t(A)
then A’ and AV have the same type. By the first case, we know that Jy and Jyv = Jy are
conjugate. The converse goes the same way as above, except that the case (A')Y = pFg- A now
implies that ¢(A’) = n — ¢t(A) therefore we are done. O

1.3.3 As another corollary of 1.3.1 we may also describe the normalizers of the maximal
parahoric subgroups.

Corollary. Let A€ L. Ift(A) = n —t(A) then the normalizer of Jy in J is Nj(Jp) = Z(J)Jx.
Otherwise, n is even and there exists an element hg € J such that h% = p-id and N;(Jy) is the
subgroup generated by Jy and hg. In particular, Z(J)Jy is a subgroup of index 2 in Nyj(Jy).

Remark. The condition t(A) £ n — t(A) is automatically satisfied if n is odd. If n is even, it is
satisfied when ¢(A) £ m + 1, this is the case in particular when m is odd.

Proof. 1t is clear that Z(J)Jy < Nj(Jy). Conversely, let g € N;(Jy), so that we have Jy =
9Jp = Jyn. We apply 1.3.1 to deduce the existence of k € Z such that g - A = p*A (case 1) or
g- N =pFAY (case 2). If we are in case 1, then g € p*Jy = Z(J)Jy and we are done. If n is
even, the assumption that t(A) £ n —t(A) makes the case 2 impossible. If n is odd and we are
in case 2, then in particular A¥ € £. By 1.2.2, we must have A = p’A" for some even i € Z. In
particular, we are also in case 1. Therefore, no matter the parity of n, we are always in case 1.
Assume now that t(A) = n — ¢(A), in particular n and m are both even. We write m = 2m’ so
that ¢(A) = 2m/ +1 and we solve the case A = A, first. Recall the element g, that was defined
in 1.1.7. By direct computation, we see that go - A,y = pAY,. Therefore 9., = JpAr\;z’ = J
so that go € N;(J,v). Now let g be any element normalizing J,,, so that J,, = 9J,, = gA,
According to 1.3.1 there exists k € Z such that g- A,y = p* A,y or g- Ay = p"AY, = " Lgo- A
In the first case we have g € pFJ,» and in the second case we have g € p*~lgo.J,,. Because
g2 = p-id, the claim is proved with hy = go.

In the general case, we have t(A) = 2m’' + 1 = ¢(A,). By 1.2.1 there exists some g € J such
that A = g - A,,y. Then Nj(A) = 9N;(A,) so that the claim follows with hg := ggog™'. O

1.3.4 Let J° be the kernel of o : J — Z. In other words, J° is the subgroup of J consisting of
all g € J whose multiplier ¢(g) is a unit in Z;. We have an isomorphism J/J° ~ Z induced by
a when n is even, and by %a when n is odd. Note that J° contains all the compact subgroups
of J, in particular Jy, < J° for every A € L. Let K be the subgroup generated by all the J, for
A € £ having maximal orbit type t(A) = 2m + 1. We will prove the following result.

Proposition. We have K = J°.

The proof requires the following lemma.

Lemma. Let i € Z such that ni is even and let A € L; be a lattice of mazximal orbit type. Let
N N" e L; such that N n A and A" n A belong to L;. There exists g € Jp such that g- A = A
if and only if t(A") = t(A”) and t(N' n A) = t(A" n A).
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Proof. The forward direction is clear because the action of J preserves the types of the lattices.
We prove the converse. Since J acts transitively on £ while preserving types and inclusions, it
is enough to look at the case i = 0 and A = A, = A(0,...,0). Let 0 < 6_ <6, <m. We fix
a certain A’ € Ly such that t(A’) = 20, + 1 and (A" n A) = 20_ + 1, and we prove that any
A" € Ly satisfying the hypotheses of the lemma is in the J,,-orbit of A’. We define

A = A%, 19+70= 1m0 0,0m 0% —1%+%- 0%)

where the 0 in the middle stands for 0 when n is odd and the pair (0,0) when n is even. Then,

we have

A A= A0, 1% 0,0m% 0%)

so that A’ satisfies the required conditions. Let A” be as in the lemma. Let L be a Witt
decomposition of V such that the corresponding apartment A” contains both A and A”. Since
Jm acts transitively on the set of apartments containing A,,, we can find some g € J,,, such that
g- A" = A°. Up to replacing A” by g - A”, we may then assume that A” € A°. Therefore, there

exists integers r_,,, ..., m, s such that
"
AN =ANr_p, . 71,871,y T)-

Since A" € Ly, by 1.2.4 we have s = 0 and r; + 7_; € {0,1} forall 1 < j < Let us write
r_; = rj+€j where ¢; € {0, 1}. Since t(A”) = 20, +1, there are 6, indices 1 < j

such that €; = 0 if and only if j is one of the j;’s. Moreover, we have

j < m.
<Hh<...<js, <m

A" A=A (max(—7, + €n,0), ..., max(—r; + €,0),0, max(r1,0), ..., max(r,,0)).

This lattice is in Lo, thus for every 1 < j < m we have 0 < max(—r; + €;,0) + max(r;,0) < 1.
Hence, if j = ji for some k then ¢; = 0 and

max(—r; + €;,0) + max(r;,0) = max(—r;,0) + max(r;,0) = |r;|.
Thus, |r;| = 0 or 1. If j + ji for all k, then ¢; = 1 and

max(—r; + €;,0) + max(r;,0) = max(—r; + 1,0) + max(r;,0) = % + W

This sum is a positive integer between 0 and 1, therefore it is always 1. It means that |r;| +
|r; — 1| = 1 and as a consequence, 7; = 0 or 1.

Lastly, we have t(A” n A) = 20_ + 1 so there are exactly 6_ indices j for which the sum
max(—r; + €;,0) + max(r;,0) is zero. As we have just seen, this may only happen when j is
one of the ji’s. Thus, among the indices j = ji,..., jg,, there are exactly 6_ of them for which
(r_j,r;) = (0,0), and for the others we have (r_;,r;) = (1,—1) or (—1,1). If j is not one of the
Jr’s, we have (r_;,r;) = (0,1) or (1,0). In other words, the pairs of indices (r_;,;) are, up to
shifts and ordering, the same as the corresponding pairs of indices defining A’. By considering
appropriate permutation matrices, we may change a pair (r_;,r;) into (r;,7_;) and we may
change the order so that A” is sent to A’. This transformation defines an element of J which
stabilizes A = A(0,...,0). ]
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1.3.5 We may now prove the proposition.

Proof. Tt is clear that K < Ker(a), so we prove the reverse inclusion. Let ¢° € J°. We will
write ¢° as a product of elements in .J, each of which fixes some lattice of maximal orbit type in
the Bruhat-Tits building. We write A := A,, = A(0,...,0) and A® := ¢°- A. Since ¢° € J°, we
have A° € £,. We would like to send A° back to A by using elements of K only. Let L be some
Witt decomposition of V such that the corresponding apartment A* contains both A and A°.
We can find some g; € J, which sends A* to A°. We define ¢* := g;¢° and A' := ¢g' - A. Then

A' € Ly and it belongs to the apartment A°. Therefore, there exists integers r_,,,...,7m, s
such that

A = ATy 71, 8,71, T
Since A € £, and its orbit type is maximal, we have s = 0 and r_; = —r; for all 1 < j < m.
Let 1 < ji1 < ... < jo < m be the indices j for which r; is odd. We have 0 < a < m. For

1 < j < m we write r; = 27“;» + 1 if j is some of the j;.s and r; = 27’9 otherwise. We also write

r’; = —r’, so that we have r_; = 2r’ ; — 1 if j is some of the ji’s and r_; = 21" ; otherwise. We

define g, the endomorphism of V sending e_; to p?i ej for —m < j < m and j # 0, and which

acts like identity on V*. Then g5 is an element of J with multiplier equal to 1. Moreover, g-

stabilizes the lattice A(r",,,...,7"1,0,7,...,7..) € Ly whose orbit type is maximal, therefore

g2 € K. We define ¢ := go¢* and A% := g% - A € Ly. Concretely, the lattice A? still lies in the
apartment A¢ and its coefficients are obtained from those of A' by replacing each pair (r_j;,, 7, )
by (1,—1) and the other pairs (r_;, ;) by (0,0). Let us note that if a = 0 then we already have
A% = A.

Let us now assume that a > 0. The intersection of the lattices A and A has the following
shape.

A ~AA=A(Oorl,...,00r1 ,0,0™).
atimeslan&rm—a times 0

The coefficient takes the value 1 if and only if its index is one of the —j,’s. This is a lattice in
Ly of orbit type 2(m — a) + 1. We will use 1.3.4 Lemma in order to send A% to A while fixing
some lattice of maximal orbit type. In order to find this lattice, we need to leave the apartment
A°. Let ¢ € Z, such that 0(d) = —4. We define the following vectors

e; if 7 is not one of the + j;’s.
fi =1+ pe—j if j = —J.
p_lejk + 56*]7@ lf] = jk

We also define 2 = €2 for i € {0,1} (the case i = 1 only occurs if n is even). All together,
these vectors form a basis f of V. We write Ay for the Z,.-lattice generated by the basis f. One
may check that (f;, fj;) = d;,_; for every j and j'. It follows that A; € £y and it has maximal
orbit type. It turns out that both intersections A N Ay and A n Ay are equal to A> A, as we
prove in the following two points.

~ A% n Ay : The lattice A2 A contains all the vectors e; where j is not of the +j;’s. Tt also

contains the vectors pe_;, and p-(p~'e;, +de_;, ) = e, +ope_;, forall 1 < k < a. Therefore,
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it must contain the vectors e;,’s as well. This gives the inclusion A2 n A < A*> n A;. For

the converse, if z € A; then we may write

T = Z pi€; + Z )‘kpefjk + )‘;c(pilejk + 66*]'1@)

JFEIk k=1
S
= D mes+ ) (wp + Xide s, + Npley,
45 b=

with the scalars ij, A, and X, in Z,2. If moreover z € A? then in the last formula, we must
have A\gp + A0 € pZ,2. It follows that the scalars A} belong to pZ,> and thus € A% n A.

— A n Ay : By the same arguments as above, we prove that A> n A « A n A;. For the
converse, let z € Ay as above. If moreover € A then the scalars A}, are elements of pZ,..
It implies that \yp + A0 € pZ,2, whence x € A* N A.

Eventually we may apply 1.3.4 Lemma to the lattices Ay, A* and A. It gives the existence of
an element g3 € J which stabilizes A; and sends A? to A. We write ¢° := g3¢®. It follows that
g> - A = A, therefore g3 € Jy ¢ K. But ¢® = g392919° and each of the elements ¢;, g» and g3
also lies in K. Therefore ¢° € K as well. O

1.4 Counting the closed Bruhat-Tits strata

1.4.1 In this section we count the number of closed Bruhat-Tits strata which contain or
which are contained in another given one. Let d > 0 and consider V' a d-dimensional F,z-vector
space equipped with a non degenerate hermitian form. This structure is uniquely determined
up to isomorphism as we are working over a finite field. As in [VW11], for [g} <r <d, we
define

N(r,V):={U|U is an r-dimensional subspace of V such that U+ < U},
v(r,d) := #N(r,V),

where U+ denotes the orthogonal of U with respect to the hermitian form on V. As remarked
in [VW11], the set N(r, V') can be seen as the set of rational points of a certain flag variety for
the unitary group of V.

Proposition ([VW11] Corollary 5.7). Let A € L. Write t(A) =20 + 1 for some 0 < 0 < m.

— Let 0 be an integer such that 0 < ¢ < 0. The number of closed Bruhat-Tits strata of
dimension §' contained in My is v(0 + 0" + 1,20 + 1).
— Let ' be an integer such that 6 < 0" < m. The number of closed Bruhat-Tits strata of

dimension ' containing My isv(in —0 — 0" —1,n — 20 — 1).

These follows from 1.2.9 Proposition and Remark. Another way to formulate the proposition
is to say that v(0 + 60 + 1,20 + 1) (resp. v(n —0 — 0" — 1,n — 20 — 1)) is the number of vertices
of type 20’ + 1 in the Bruhat-Tits building of J which are neighbors of a given vertex of type
20 + 1 for @' < 0 (resp. ' = 0).
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1.4.2 In [VWI11], an explicit formula is given for v(d — 1,d). The next proposition gives a

formula to compute v(r,d) for general r and d.

Proposition. Let d > 0 and let [g] <r <d. We have

Hig—r) (pQr—d+j _ (_1)2r—d+j)

[T5= (% — 1)

Proof. Recall that for any integer k, we denote by A, the k£ x k matrix having 1 in the an-

v(r,d) =

tidiagonal and 0 everywhere else. We fix a basis (ey,...,eq) of V in which the hermitian form
is represented by the matrix A;. We denote by U, the subspace generated by the vectors
e1,...,e.. Then the orthogonal of Uy is generated by ey, ..., e4_,. Since r is an integer between
[%] and d, we have 0 < d — r < r and therefore Uy contains its orthogonal. Thus, U, defines
an element of N(r, V). The unitary group U(V) ~ Uy(F,) acts on the set N(r,V): an element
g € U(V) sends the subspace U to g(U). This action is transitive. Indeed, any U € N(r, V') can
be sent to Uy by using an equivalent of the Gram-Schmidt orthogonalization process over F

(note that p 4 2). The stabilizer of U, in Uy(FF,) is the standard parabolic subgroup

B =« #
Po={|0 M « |€UyF,)|BeGLs (Fyp), M e Uy _4F,)
0 0 F(B)

Here, F(B) = Ag_,(B®)~T A,;_, where B® is the matrix B with all coefficients raised to the
power p. Therefore, the set N(r, V') is in bijection with the quotient Uy(F,)/Fy. The order of
Uy(F,) is well known and given by the formula

#Uu(F,) =p 7 [ (¥ — (-1)%).

j=1
It remains to compute the order of Fy. We have a Levi decomposition Py = LgNy with
Lo n Ny = {1} where
(/B 0 0
Ly=<X10 M 0 € Uy(F,) | Be GLy—(Fp2), M € Uy,_4(F,) ¢,
(\0 O F(B)
( (1 X Z
N() =4 0 1 Y |e Ud(Fp) X € Md—r,Qr—d(]Fp?)7 Y e MQ’I’—d,d—'r‘(]Fp2)7 YRS Md—'r(]Fp2)
0 0 1

The order of Ly is given by

d—r 2r—d
H#Lo = #QLy_ (Fpe)#Usyg(F,) = pld-r@-r—n)s Bt [T =)@ - (1).
=1 j=1

As for Ny, we need some more conditions on the matrices X, Y and Z. By direct computations,
one checks that such a matrix belongs to Uy(F,) if and only if

Y = Ay g(XPHT A, Z+Ag (ZP)VT Ay, = XY € My, (Fp2).
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Thus, X is any matrix of size (d —r) x (2d —r) and Y is determined by X. Let us look at
the second equation. The matrix Ay_.(Z (p))TAd_T is the reflexion of Z®) with respect to the
antidiagonal. The equation implies that the coefficients below the antidiagonal of Z determine
those above the antidiagonal. Furthermore, if z is a coefficient in the antidiagonal then the
equation determines the value of Tr(z) = z + 2P, where Tr : Fj2 — [, is the trace relative to
the extension F,2/F,. The trace is surjective and its kernel has order p. Thus, there are only p

possibilities for each antidiagonal coefficient. Putting things together, the order of Ny is given

by

27<dfr)(gfrfl) L ad—r (d—7)(3r—d)

#NO _ p2(d—7’)(27’—d) p =p

where the three terms take account respectively of the choice of X, the choice of the coefficients

below the antidiagonal of Z and the choice of the coefficients in the antidiagonal of Z.
Hence the order of P, is given by

d—r 2r—d
d(d—1) ) ) )
#Po=#Lo#No=p > [ [ -1) [ (¥ - (-1)).
j=1 j=1
Upon taking the quotient v(r,d) = #U4(F,)/#Fo, the result follows. O

In particular with r = d — 1, we obtain

v(d—1,d) - (P! = (D"HE - (=)
pP—1

If d = 26 is even, it is equal to (p ! + 1)2?;3 p?, and if d = 26 + 1 is odd, it is equal to
(p? +1) Z?;é p?. This coincides with the formula given in [VW11] Example 5.6.

2 The cohomology of a closed Bruhat-Tits stratum

2.1 In [Mul21], we computed the cohomology groups H2 (M, ® F, Q) of the closed Bruhat-
Tits strata (recall that F denotes an algebraic closure of F,). The computation relies on
the Ekedahl-Oort stratification on M, which, in the language of Deligne-Lusztig varieties,
translates into a stratification by Coxeter varieties for unitary groups of smaller sizes. The
cohomology of Coxeter varieties is well known thanks to the work of Lusztig in [Lus76]. In
order to state our results, we recall the classification of unipotent representations of the finite

unitary group over Q.

2.2 Let ¢ be a power of prime number p, and let G be a reductive connected group over
an algebraic closure F of F,. Assume that G is equipped with an F,-structure induced by a
Frobenius morphism F. Let G = G be the associated finite group of Lie type. Let (T, B) be
a pair consisting of an F-stable maximal torus T and an F-stable Borel subgroup B containing
T. Let W = W(T) denote the Weyl group of G. The Frobenius F' induces an action on W.
For w € W let w be a representative of w in the normalizer Ng(T) of T. By the Lang-Steinberg
theorem, one can find g € G such that 1w = g7'F(g). Then 9T := gTg~! is another F-stable
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maximal torus, and w € W is said to be the type of 9T with respect to T. Every F-stable
maximal torus arises in this manner. According to [DL76] Corollary 1.14, the G-conjugacy
class of 9T only depends on the F-conjugacy class of w in the Weyl group W. Here, two
elements w and w’ in W are said to be F-conjugates if there exists some element 7 € W such
that w = 7w F(7)~!. For every w € W, we fix T,, an F-stable maximal torus of type w with
respect to T. The Deligne-Lusztig induction of the trivial representation of T, is the virtual
representation of G defined by the formula

Ry = ) (~1)Hi(Xg(w) ® F,Q),

1=0

where Xg(w) is the Deligne-Lusztig variety for G given by
Xg(w) :={gBe G/B|g 'F(g) e BuB}.

According to [DL76] Theorem 1.6, the virtual representation R, only depends on the F-
conjugacy class of w in W. An irreducible representation of G is said to be unipotent if
it occurs in R,, for some w € W. The set of isomorphism classes of unipotent representations

of G is usually denoted (G, 1) following Lusztig’s notations.

Remark. Since the center Z(G) acts trivially on the variety X (w), any irreducible unipotent

representation of G has trivial central character.

2.3 Let G and G’ be two reductive connected group over F both equipped with an F,-
structure. We denote by F' and F” the respective Frobenius morphisms. Let f : G — G’ be an
[F,-isotypy, that is a homomorphism defined over F, whose kernel is contained in the center of G
and whose image contains the derived subgroup of G’. Then, according to [DM20] Proposition
11.3.8, we have an equality

E(G,1)={poflpe &G, 1)}

Thus, the irreducible unipotent representations of G and of G’ can be identified. We will use
this observation in the case G = Ug(F,) and G' = GUy(F,). The corresponding reductive
groups are G = GL; and G’ = GL;, x GL;. The Frobenius morphisms can be defined as

F(M) = wo(M'V) ™ i, F'(M, ¢) = (o (M) g, ),

Here, 1 is the k x k matrix with only 1’s in the antidiagonal and M@ is the matrix M whose
entries are all raised to the power gq. The isotypy f: G — G’ is defined by f(M) = (M,1). It
satisfies F'of = foF, it is injective and its image contains the derived subgroup SL, x {1} ¢ G'.
Hence, we obtain the following result.

Proposition. The irreducible unipotent representations of the finite groups of Lie type Ug(F,)
and GUy(F,) can be naturally identified.

2.4  Assume that the Coxeter graph of the reductive group G is a union of subgraphs of type
A,, (for various m). Let W be the set of isomorphism classes of irreducible representations
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of its Weyl group W. The action of the Frobenius F' on W induces an action on \\7\//', and we
consider the fixed point set W¥. The following theorem classifies the irreducible unipotent
representations of G.

Theorem ([LS77] Theorem 2.2). There is a bijection between WF and the set of isomorphism

classes of irreducible unipotent representations of G.

We recall how the bijection is constructed. According to loc. cit. if V € W there is a unique
automorphism F of V of finite order such that

R(V) := Z Trace(w o F'| V)R,

| | weW

is an irreducible representation of G. Then the map V +— R(V) is the desired bijection. In the
case of Ug(F,) or GU.(F,), the Weyl group W is identified with the symmetric group & and
we have an equality WF W. Moreover, the automorphism F is the multiplication by wy,
where wy is the element of maximal length in W. Thus, in both cases the irreducible unipotent
representations of G are classified by the irreducible representations of the Weyl group W ~ &,
which in turn are classified by partitions of k or equivalently by Young diagrams, as we briefly

recall in the next paragraph.

2.5 A partition of k is a tuple A = (A; = ... = \,) with » > 1 and each )\; is a positive
integer, such that \; + ... + A\, = k. The integer k is called the length of the partition, and
it is denoted by |A|. A Young diagram of size k is a top left justified collection of k boxes,
arranged in rows and columns. There is a correspondance between Young diagrams of size k
and partitions of k, by associating to a partition A = (A1,...,\,) the Young diagram having
r rows consisting successively of Aj,..., A, boxes. We will often identify a partition with its
Young diagram, and conversely. For example, the Young diagram associated to A\ = (32,22, 1)

is the following one.

To any partition A of k, one can naturally associate an irreducible character x, of the symmetric
group G;. An explicit construction is given, for instance, by the notion of Specht modules as
explained in [Jam84] 7.1. We will not recall their definition.

2.6  The irreducible unipotent representation of Uy (F,) (resp. GUy(F,)) associated to x» by
the bijection of 2.4 is denoted by pY (resp. p$Y). In virtue of 2.3, for every A\ we have p} =

Uof, where f : Ui(F,) — GU(F,) is the inclusion. Thus, it is harmless to identify p{ and p§Y
SO that from now on, we will omit the superscript. The partition (k) corresponds to the trivial

26



On the cohomology of the basic unramified PEL unitary RZ space of signature (1,n — 1)

representation and (1) to the Steinberg representation. The degree of the representations py is
given by expressions known as hook formula. Given a box [ ] in the Young diagram of A, its
hook length A([ ]) is 1 plus the number of boxes lying below it or on its right. For instance,
in the following figure the hook length of every box of the Young diagram of A\ = (3%,2% 1) has

been written inside it.

=N | Ot

=Wl

Proposition ([GP00] Propositions 4.3.5). Let A = (A; = ... = \,) be a partition of n. The

degree of the irreducible unipotent representation py is given by the following formula

koo .
deg(py) = qa()\) Hi:1 ¢ —(-1)
[T O = (—1)H0)

where a(X) = (1 — 1)\

2.7 We may describe the cuspidal support of the unipotent representations py. According
to [Lus77] 9.2 and 9.4 there exists an irreducible unipotent cuspidal character of Uy (F,) (or
GU(F,)) if and only if k is an integer of the form k = tH ) for some t > 0, and when that is
the case it is the one associated to the partition A; := (¢,t— 1 ., 1), whose Young diagram has
the distinctive shape of a reversed staircase. Here, as a convention Uy(F,) = GUg(F,) denotes
the trivial group. For example, here are the Young diagrams of A;, Ay and Aj. Of course, the

one of Ay the empty diagram.

We consider an integer ¢ > 0 such that £ decomposes as k = 2e + Hl) for some e = 0. Let G
denote U(F,) or GUg(F,), and consider L; the subgroup consisting of block-diagonal matrices
having one middle block of size w and all other blocks of size 1. This is a standard Levi
subgroup of G. For Ug(F,), it is isomorphic to GL;(F,2)¢ x U ) (F,) whereas in the case of

GU(F,) it is isomorphic to G (UI(IFQ)e X U (Fq)>. In both cases, L; admits a quotient

t+1

which is isomorphic to a group of the same type as G but of size . We write p; for the

inflation to L; of the unipotent cuspidal representation pa, of this quotlent. If X is a partition
of k, the cuspidal support of the representation p, is given by exactly one of the pair (L;, p;)

up to conjugacy, where t > 0 is an integer such that for some e > 0 we have k = 2e + @

(tH) must have the same parity. With these notations, the

Note that in particular & and
irreducible unipotent representatlons belonging to the principal series are those with cuspidal

support (Lo, po) if k is even and (Lq, p1) is k is odd.
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2.8 Given an irreducible unipotent representation p,, there is a combinatorical way to deter-
mine the Harish-Chandra series to which it belongs, as we recalled in [Mul21] Section 2. We
consider the Young diagram of A\. We call domino any pair of adjacent boxes in the diagram.
It may be either vertical or horizontal. We remove dominoes from the diagram of A so that
the resulting shape is again a Young diagram, until one can not proceed further. This process
results in the Young diagram of the partition A, for some ¢ > 0, and it is called the 2-core of \.
It does not depend on the successive choices for the dominoes. Then, the representation p) has
cuspidal support (L, p;) if and only if A has 2-core A,. For instance, the diagram \ = (32,22 1)
given in 2.5 has 2-core Ay, as it can be determined by the following steps. We put crosses inside
the successive dominoes that we remove from the diagram. Thus, the unipotent representation
px of Uy (F,) or GUyy(F,) has cuspidal support (L4, p1), so in particular it is a principal series

representation.
x | x x | x
X ——— f——— —— —— X ———
X X X
X

2.9 From now on, we take ¢ = p. We consider the f-adic cohomology with compact support
of a closed Bruhat-Tits stratum My ® F, where ¢ is a prime number different from p and
A € L has orbit type t(A) =20 + 1, 0 < 6 < m. Recall from 1.2.10 that the stratum M, is
equipped with an action of the finite group of Lie type GU(V}Y) ~ GUsgp,1(F,), and as such it
is isomorphic to a Deligne-Lusztig variety. Let F' be the Frobenius morphism of GUggy4(F,) as
defined in 2.3. Then F? induces a geometric Frobenius morphism My @ F — M ® T relative
to the F2-structure of My. Because it is a finite morphism, it induces a linear endomorphism
on the cohomology groups, and it is in fact an automorphism. In [Mul21], we computed these
cohomology groups in terms of a GUgp1(F,) x (F?)-representation.

Theorem. Let A € L and write t(A) = 20 + 1 for some 0 < 6 < m.

(1) The cohomology group HI(MA\®F, Qy) is zero unless 0 < j < 20. There is an isomorphism
H(Ma ®@F, Q) ~ B/ (My @ F, Q)" (6)

which is equivariant for the action of GUagy1(F,) x (F?).
(2) The Frobenius F? acts like multiplication by (—p)’ on HI(My @ F, Q).
(3) For 0 < j <6 we have

_ min(Go—j)
HZ] (MA ®F, Qf) = @ P(20+1-25,25)-
s=0
For 0 <j<6—1 we have

szJrl(MA RF, @) = @ P(20—25,25+1)-

s=0
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Thus, in the cohomology of M all the representations associated to a Young diagram with at

most 2 rows occur, and there is no other. Such a diagram has the following general shape.

Remarks. Let us make a few comments.

— Part (1) of the theorem follows from general theory of etale cohomology given that the
variety M is smooth and projective over [F,2. The identity is a consequence of Poincaré
duality. The notation (#) is a Tate twist, it modifies the action of F? by multiplying it
with p?°.

— The cohomology groups of index 0 and 26 are the trivial representation of GUgg 1 (F)).

— All irreducible representations in the cohomology groups of even index belong to the
unipotent principal series, whereas all the ones in the groups of odd index have cuspidal
support (Lg, p2).

— The cohomology group HZ(M,®F, Qy) contains no cuspidal representation of GUyg. 1 (F,)
unless @ = j = 0or § = j = 1. If § = 0 then H? is the trivial representation of
GU1(F,) =F 5, and if 6 = 1 then H! is the representation pa, of GU3(F,). Both of them
are cuspidal.

3 Shimura variety and p-adic uniformization of the basic
stratum

3.1 In this section, we introduce the PEL unitary Shimura variety with signature (1,7 — 1)
as in [VW11] 6.1 and 6.2, and we recall the p-adic uniformization theorem of its basic (or su-
persingular) locus. The Shimura variety can be defined as a moduli problem classifying abelian
varieties with additional structures, as follows. Let F be a quadratic imaginary extension of Q
in which p is inert. Let B/F be a simple central algebra of degree d > 1 which splits over p
and at infinity. Let * be a positive involution of the second kind on B, and let V be a non-zero
finitely generated left B-module equipped with a non-degenerate =-alternating form (-, -) taking
values in Q. Assume also that dimg(V) = nd. Let G be the connected reductive group over Q

whose points over a (Q-algebra R are given by
G(R) := {9 € GLggr(V® R) |3c € R* such that for all v,w e V® R, {gv, gw) = (v, w)}.

We denote by ¢ : G — G,, the multiplier character. The base change Gy is isomorphic to a
group of unitary similitudes GU(r, s) of a hermitian space with signature (r, s) where r +s = n.
We assume that » = 1 and s = n — 1. We consider a Shimura datum of the form (G, X'), where
X denotes the unique G(R)-conjugacy class of homorphisms h : C* — Gy such that for all
z € C* we have (h(z)-,-) = (-, h(Z)-), and such that the R-pairing (-, h(i)-) is positive definite.
Such a homomorphism % induces a decomposition VR C = V; @ V,. Concretely, V; (resp. V)
is the subspace where h(z) acts like z (resp. like Z). The reflex field associated to this PEL
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data, that is the field of definition of V; as a complex representation of B, is E unless n = 2 in
which case it is Q. Nonetheless, for simplicity we will consider the associated Shimura varieties

over E even in the case n = 2.

Remark. As remarked in [Voll0] Section 6, the group G satisfies the Hasse principle, ie.
ker'(Q,G) is a singleton. Therefore, the Shimura variety associated to the Shimura datum
(G, X) coincides with the moduli space of abelian varieties that we are going to define.

3.2 Let Ay denote the ring of finite adeles over Q and let K < G(Ay) be an open compact
subgroup. We define a functor Shx by associating to an E-scheme S the set of isomorphism
classes of tuples (A, A, ¢,77) where

— A is an abelian scheme over S.
~A:A>Aisa polarization.
t: B — End(A) ® Q is a morphism of algebras such that +(b*) = ¢(b)" where -7 denotes

the Rosati involution associated to A, and such that the Kottwitz determinant condition

is satisfied:
Vb e B, det(u(b)) = det(b]| Vy).

— 7 is a K-level structure, that is a K-orbit of isomorphisms of B®A s-modules H; (A4, Af) —
V ® Ay that is compatible with the other data.

The Kottwitz condition in the third point is independent on the choice of h € X. If K is
sufficiently small, this moduli problem is represented by a smooth quasi-projective scheme Shy
over . When the level K varies, the Shimura varieties form a projective system (Shg)g

equipped with an action of G(Ay) by Hecke correspondences.

3.3 We assume the existence of a Z)-order Op in B, stable under the involution *, such
that its p-adic completion is a maximal order in Bg,. We also assume that there is a Z,-lattice
I'in V® Q,, invariant under Op and self-dual for {-,-). We may fix isomorphisms E, ~ Q2
and Bg, ~ M4(Q,2) such that O ® Z,, is identified with My(Z,2).

As a consequence of the existence of I', the group G, is unramified. Let K, := Fix(I") be the
subgroup of G(Q,) consisting of all g such that g-I' = I'. It is a hyperspecial maximal compact
subgroup of G(Q,). We will consider levels of the form K = KyK? where K? is an open compact
subgroup of GG (AI}). Note that K is sufficiently small as soon as K? is sufficiently small. By the
work of Kottwitz in [Kot92], the Shimura varieties Shg,x» admit integral models over Og ()
which have the following moduli interpretation. We define a functor Sg» by associating to an

O, (p-scheme S the set of isomorphism classes of tuples (A4, A, ¢, ") where

— A is an abelian scheme over S.

~ XA Aisa polarization whose order is prime to p.

— 1 : Op — End(A)®Z) is a morphism of algebras such that ¢(b*) = ¢(b)! where - denotes
the Rosati involution associated to A, and such that the Kottwitz determinant condition
is satisfied:

Vb e Op, det(u(b)) = det(b| V).
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~

— 1P is a KP-level structure, that is a KP-orbit of isomorphisms of B®A§Z—modules H; (A, Afc) —
V& A]} that is compatible with the other data.

If K7 is sufficiently small, this moduli problem is also representable by a smooth quasi-projective
scheme over O ). When the level K? varies, these integral Shimura varieties form a projective
system (Sg»)g» equipped with an action of G (A?) by Hecke correspondences. We have a family
of isomorphisms

ShKOKp >~ SKp ®(9E’(p) FE

which are compatible as the level K? varies.

Notation. Unless explicitly mentioned, from now on the notation Sgr will refer to the smooth
quasi-projective Zy:-scheme Sg» Qo Zy2. Here, we implicitly use the identification of E,
with Q2.

Therefore, with this convention we have isomorphisms Shy, kr@rQp2 ~ Ske Rz, Qp2 compatible

as the level KP varies.

3.4 Let Sk»r := Sko» ®sz F,> denote the special fiber of the Shimura variety. It is a smooth
quasi-projective variety over [F,2. Its geometry can be described in terms of the Newton strati-
fication as follows. Recall the Shimura datum introduced in 3.1. To any homomorphism A € X,
we can associate the cocharacter
pn: C* — G = |_| Gr
Gal(C/R)

which is given by h : C* — Gg into the summand corresponding to the identity in Gal(C/R).
The conjugacy class p of py, is well-determined by X. The field of definition of p is by definition
the reflex field of the Shimura datum, that is £ when n 4 2 and QQ otherwise. We fix an
algebraic closure Q (resp. @,) containing E (resp. @Q,2). We also fix an embedding v :
Q— @p compatible with the identification E, ~ Q,2. We may then consider the local datum
(Ga,, u@) where pg- is the conjugacy class of cocharacters @X — G@ induced by p and

v. Let B(Gg,) denote the set of o-conjugacy classes in G(@p) where @p = W/(EQ is the
completion of the maximal unramified extension of Q,. As in [Kot97], we may associate the
Kottwitz set B(Gq,,pg;) = B(Gg,). It is a finite set equipped with a partial order. An
element b € B(Gyg,) is said to be yi5-—admissible when it belongs to B(Gg,, ug,). The set
B(Gy,) (resp. B(Gq,, pg;)) canonically classifies the isomorphism classes of isocrystals with a
G, -structure (resp. compatible L, G, -structures). B

Let Agpr denote the universal abelian scheme over Sg», and let Agr denote its reduction
modulo p. The associated p-divisible group Ag»[p*] is denoted by Xy». For any geometric
point z € Sgk», the p-divisible group (Xg»). is equipped with compatible 1, G,-structures
therefore it determines an element b, € B(Gq,, ug;). For b€ B(Gg,, i), the set

P P P P

Skr(b) := {x € Sg» | by = b}

is locally closed in Sg». It is the underlying topological space of a reduced subscheme which we
still denote by Sk»(b). They are called the Newton strata of the special fiber of the Shimura
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variety. For a fixed b, as the level K? varies the strata form a projective tower (Sg»(b))xr
equipped with an action of G (AT}) by Hecke correspondences.

3.5 In [BWO05], the combinatorics of the Newton stratification is described in the case of a
PEL unitary Shimura variety of signature (1,n —1). The set B(Gq,, ;) contains |5]| + 1
elements bg < b; < ... < b[%J and we have

15
g}(p = |_| g[{p (bz)
=0

The stratification is linear, that is the closure of a stratum Sg»(b;) is the union of all the strata
Sk (b;) for j < i. The stratum corresponding to b; has dimension m + i. The element bz is
p-ordinary, and the corresponding stratum Sk (bjz|) is called the y-ordinary locus. It is open
and dense in Sir. The unique basic element is by, and the corresponding stratum Sg»(bg) is
called the basic stratum. It coincides with the supersingular locus. It is a closed subscheme

of g[(p.

3.6 The geometry of the basic stratum can be described using the Rapoport-Zink space M
in a process called p-adic uniformization, see [RZ96] and [Far04]. Let x be a geometric point of
Skr(by). Since G satisfies the Hasse principle, according to [Far04] Proposition 3.1.8 the isogeny
class of the triple (A,, A, ¢), consisting of the abelian variety A, together with its additional
structures, does not depend on the choice of z. We define

I = Aut( Az, A\ 0).

It is a reductive group over Q. In fact, since we are considering the basic stratum, according to
loc. cit. the group I is the inner form of G such that I(As) = J x G(A}) and I(R) ~ GU(0, n),
that is the unique inner form of G(R) which is compact modulo center. In particular, one can
think of 7(Q) as a subgroup both of J and of G(A}). Let (§ &») b, denote the formal completion

of Sk» along the basic stratum.
Theorem ([RZ96] Theorem 6.24). There is an isomorphism of formal schemes over Spf(Z,2)
Oxcr - Q) (M x G(AD)/K?) = (Sko)py

which is compatible with the G(A?)—actz’on by Hecke correspondences as the level KP varies.

This isomorphism is known as the p-adic uniformization of the basic stratum. The induced

map on the special fiber is an isomorphism

(©x0)s : H(Q)\ (Muea x G(AR)/K?) > S (by)

of schemes over Spec(FF,2). We denote by M (resp. (§Kp)f}f(‘)) the smooth analytic space over

Q,2 associated to the formal scheme M (resp. (§ K»)jb,) by the Berkovich functor as defined in
[Ber96]. Note that both formal schemes are special in the sense of loc. cit. so that we may
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use Berkovich’s constructions. These analytic spaces play the role of the generic fibers of the
formal schemes over Spf(Z,2). By [Far04] Théoreme 3.2.6, p-adic uniformization induces an
isomorphism

2, 0 I(Q)\ (M™ x G(AD)/K™) > (S )i

of analytic spaces over Q2. We denote by red the reduction map from the generic fiber to the
special fiber. It is an anticontinuous map of topological spaces, which means that the preimage
of an open subset is closed and the preimage of a closed subet is open. Then, the uniformization
on the generic and special fibers are compatible in the sense that the diagram

T(Q)\ (M™ x G(AD)/K?) —R (S, )

redl lred

(Q)\ (Mrea x G(AL)/KP) — 25715 5100 (b)
1s commutative.

3.7 The double coset space I(Q)\G(A%)/KP is finite, so that we may fix a system of repre-
sentatives ¢i,...,¢s € G(A‘?). For every 1 < k < s, we define T}, := I(Q) n g, KPg, ", which
we see as a discrete subgroup of J that is cocompact modulo the center. The left hand side of
the p-adic uniformization theorem is isomorphic to the disjoint union of the various quotients
of M (or M,eq or M?*) by the subgroups I';, = J. In particular for the special fiber, it is an
isomorphism
(@Kp)s . |_| Fk\Mred ; ng(bo).
k=1

Let ®%., be the composition M,eq — I't\Mieq — S_hgsp and let ®x» be the disjoint union of the
@k . The map ®g» is surjective onto Sk»(by). According to [VW11] Section 6.4, it is a local
isomorphism which can be used in order to transport the Bruhat-Tits stratification from M, eq
to Sk»(by). Recall the notations of 1.2.3.

Proposition ([VW11] Proof of Proposition 6.5). Let A € L. For any 1 < k < s, the restriction

of ®%., to My is an isomorphism onto its image.

We will denote by ng, Ak the scheme theoretic image of M, through ®*. A subscheme of the
form §Kp7 Ak is called a closed Bruhat-Tits stratum of the Shimura variety. Together, they
form the Bruhat-Tits stratification of the basic stratum, whose combinatorics is described by
the union of the complexes I';\L.
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4 The cohomology of the Rapoport-Zink space at max-
imal level

4.1 The spectral sequence associated to an open cover of M?*"

4.1.1 As in 3.6, we consider the generic fiber M®" of the Rapoport-Zink space as a smooth
Berkovich analytic space over Q2. Let red : M*" — M, be the reduction map. If Z is
a locally closed subset of M,eq, then the preimage red™'(Z) is called the analytical tube
over 7. It is an analytic domain in M?®" and it coincides with the generic fiber of the formal
completion of M,.q along Z. If i € Z such that ni is even, then the tube red ™' (M;) = M2" is
open and closed in M?®*" and we have

M = |_| M?n.
nie27Z
If A e L, we define
Up :=red H(M,)

the tube over M,. The action of J on M induces an action on the generic fiber M*"* such
that red is J-equivariant. By restriction it induces an action of Jy on U,. The analytic space
M?* and each of the open subspaces U, have dimension n — 1.

4.1.2 We fix a prime number ¢ + p. In [Ber93], Berkovich developped a theory of étale
cohomology for his analytic spaces. Using it we may define the cohomology of the Rapoport-
Zink space M® by the formula

H (M ® C,, Q) = lim H(U® C,, Qr)
U
= lim lim H} (U® C,, Z/("Z) @ Q;
U n

where U goes over all relatively compact open of M®". These cohomology groups are equipped
with commuting actions of J and of W, the Weyl group of Q,2. The J-action causes no problem
of interpretation, but the W-action needs explanations. Let 7 := o2 be the Frobenius relative
to F2. We fix a lift Frob € W of the geometric Frobenius 77! € Gal(F/F,2). The inertia
subgroup I < W acts on HY(M™® C,, Q,) via the coefficients C,, whereas Frob acts via the
Weil descent datum defined by Rapoport and Zink in [RZ96] 3.48, as we explain now.
Recall the standard unitary p-divisible group X introduced in 1.1.1. Let

Fx  XQF - 7"(X®F)
denote the Frobenius morphism relative to Fje. Let (M® Og,)" be the functor defined by
(M®Og,)7(S) := M(S)

for all O@p—scheme S where p is locally nilpotent. Here, S, denotes the scheme S but with
structure morphism the composition S — Spec(O@p) 5= Spec(O@p). The Weil descent datum is

34



On the cohomology of the basic unramified PEL unitary RZ space of signature (1,n — 1)

the isomorphism agy : M® Os, = (M O@p)T given by (X, ¢, A, p) € M(S) — (X, ¢, \, Fxop).
We may describe this in terms of k-rational points, where k is a perfect field extension of F. Since
we use covariant Dieudonné theory, the relative Frobenius Fx corresponds to the Verschiebung
V2 in the Dieudonné module. By construction of X, we have V2 = pr—!. Therefore, if
S = Spec(k) with k/F,2 perfect, then aryz sends a Dieudonné module M € M(k) to pr—(M).
Since Frob € W is a geometric Frobenius element, its action on the cohomology of M?®" is

induced by the inverse agy.

Remark. The Rapoport-Zink space is defined over Z,2 and this rational structure is induced by
the effective descent datum paﬁ%, with p = p-id seen as an element of the center of .J. It sends
a point M to 7(M). Consequently, in the following we will write 7 := (p~! -id, Frob) € J x W,
and we refer to it as the rational Frobenius. We note that p~! -id comes from contravariance of
cohomology with compact support: the action of g € J on the cohomology of M is induced

1

by the action of g~' on the space M?".

Notation. In order to shorten the notations, we will omit the coefficients C,. Thefore we write
H: (M Q) and similarly for subspaces of M?®".

4.1.3 The cohomology groups H®(M?" Q) are concentrated in degrees 0 to 2dim(M?") =
2(n —1). According to [Far04] Corollaire 4.4.7, these groups are smooth for the J-action and
continous for the [-action. In a similar way as for M®', we can also define the cohomology
groups H2 (M3, Q) for every i € Z such that ni is even. The action of an element g € .J induces

an isomorphism
g+ HE(ME™, Qp) = HE (M, ), Qo).

In particular, the action of Frob gives an isomorphism from the cohomology of M#" to that of

an,. Let (J x W)° be the subgroup of J x W consisting of all elements of the form (g, uFrob?)
with v € I and a(g) = —2j. In fact, we have (J x W)° = (J° x I)7% where J° < J is the
subgroup introduced in 1.3.4. Each group H:(M2* Q) is a (J x W)°-representation, and we

have an isomorphism
HS(M™ Q) ~ ¢ — Ind(JJXXV“fV)D H(ME™ Q).

In particular, when Hlj(/\/lan,@) is non-zero it is infinite dimensional. However, by loc. cit.

Proposition 4.4.13, these cohomology groups are always of finite type as J-modules.

4.1.4 In order to obtain information on the cohomology of M?" we study the spectral
sequence associated to the covering by the open subspaces Uy for A € £. The spaces Uy satisfy
the same incidence relations as the My, as described in 1.2.11 Theorem (1), (2) and (3). As a
consequence, the open covering of M by the {U,} is locally finite. For i € Z such that ni is
even and for 0 < 6 < m, we denote by 52@ the subset of £; whose elements are those lattices
of orbit type 26 + 1. We also write £ for the union of the L’EG). Then {Up}paerom) is an open
cover of M®". We may apply [Far04] Proposition 4.2.2 to deduce the existence of the following

Cech spectral sequence computing the cohomology of the Rapoport-Zink space, concentrated
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in degrees a <0 and 0 <b<2(n—1),

Eab @ Hb Qé) — Haer(Man’@e)

vel_at1

Here, for s > 1 the set I, is defined by

]Szz{vz(/\l. A VL <j<s, M e ™ and Uy ﬂUA]+®}
7j=1
Necessarily, if v = (A',...,A®) € I, then there exists a unique 7 such that ni is even and

N e El(-m) for all j. We then define

= ﬁ Aj € Ei,
j=1

so that U(y) = Up(). In particular, the open subspace U(y) depends only on the intersection
A(7) of the elements in the s-tuple .

For s > 2 and v = (A',...,A%) € I, define ; := (A!, ... AJ, ... A%) e I, for the (s—1)-tuple
obtained from ~ by removing the j-th term. Besides, for A, A’ € £; with A’ < A, we write ff{,, A
for the natural map H%(Ux/, Q;) — H%(Uys, Q;) induced by the inclusion Uy < Uy.

For a < —1, the differential Ef’b — Ef“’b is denoted by ¢” . It is the direct sum over all
v € I_441 of the maps

H(U(), Q) - @  HA(UG), Q)
oe{m,-Y—at+1}
—a+1

Cllans Z Vi HlfA (%)(U)‘

Here, the notation v; - (=1)*1f} ) \(, 1(v) means the vector (=1)7*'f  \  (v) considered
inside the summand H%(U(8), Q) corresponding to § = ;. We observe that we may have
A(v;) = A(yy) even th(ﬁgh v; # vy In Ech a case, the vectors fk(v),A(w)@) and fk(v),/\(vj/)(”)
are equal in HY(U(v;), Q,) = HY(U(v;/), Q,), but they contribute to two distinct summands in

the codomain, namely associated to 6 = v; and § = ;.

An element g € J acts on the set I, by sending v to g -7 := (gA',..., gA®). The action of g~*
induces an isomorphism
He(U(7), Qo) = He(U(g 7). Qo)

This defines a natural J-action on the terms EY ’b, with respect to which the spectral sequence
is equivariant.

Remark. The map pag, defines a Weil descent datum on M®F which is effective, and coincides
with the natural [Fj.-structure. Hence, the same holds for the analytical tube U, A® C,. The
descent datum pag, induces the action of 7 on the cohomology of Uy. If v € I_,4; then

p-v € I 4.1. It follows that each term EY s equipped with an action of W. The spectral
sequence FE is in fact J x W-equivariant.
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4.1.5 First we relate the cohomology of a tube U, to the cohomology of the corresponding
closed Bruhat-Tits stratum M,. We observe that H%(Uy, Q) is naturally a representation of
the subgroup (Jy x I)72 < J x W.

Proposition. Let A € £ and let 0 < b < 2(n —1). There is a (Jy x I)72-equivariant isomor-
phism
H'(My®F, Q) = H'(Uy, Q)

where, on the left-hand side, the inertia I acts trivially and T acts like the geometric Frobenius
F2.

In particular, the inertia acts trivially on the cohomology of Uy.

Proof. Recall the notations of 3.7 regarding the Bruhat-Tits stratification on the Shimura
variety Skr, where K? is any open compact subgroup of G (Aﬁi) that is small enough. Fix an
integer 1 < k < s and consider the closed Bruhat-Tits stratum Sg» &, that is the isomorphic
image of M, through CIDII“(,). Let Shk» o be the analytic tube of quA,k inside (ng)ﬁ,‘; By
compatibility of the p-adic uniformization, the tube Shgp s is the isomorphic image of Uy
through (®%.,)*, which is the composition M® — [\ M — (ng)f})‘; Thus, the following

diagram is commutative.

Un ———— Shgr Ak

redl lred

My ———— Sgrak

Berkovich’s comparison theorem gives the desired isomorphism. More precisely, let S x» denote
the formal completion of the Shimura variety Sk» along its special fiber. Since it is a smooth
formal scheme over Spf(Z,2), we may apply [Ber96] Corollary 3.7 to deduce the existence of a

natural isomorphism

H*(Skr ax @ F, Qp) = H(Shiw ax, Q).

This isomorphism is equivariant for the action of (Jy x I)7Z, with the rational Frobenius 7 on
the right-hand side corresponding to F'? on the left-hand side. O]

Remark. 1t is a priori not possible to use Berkovich’s result directly on the Rapoport-Zink space
because M is not a smooth formal scheme over Spf(Z2). In fact, it is not adic unless n = 1 or
2, see [Far04] Remarque 2.3.5. It is the reason why we have to introduce the Shimura variety
in the proof.

Corollary. Let A€ L and let 0 < b < 2(n—1). There is a (Jy x I)7%-equivariant isomorphism
HY(Ux, Q) = HZ? (M @ F, Q) (n — 1 —6)

where t(A) = 20 + 1.
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Proof. This is a consequence of algebraic and analytic Poincaré duality, respectively for U, and
for M. Indeed, we have

HE (U, Q) ~ H* 70U, Q)Y (n — 1)
~ M2 (M @TF, Q)Y (n — 1)
~ H2 (M @ F, Q) (n — 1 — ).

]

4.1.6 Let A € £ and write t(A) = 20 + 1. If X is a partition of 20 + 1, recall the unipotent
irreducible representation py of GU(VY) ~ GUgy,1(F,) that we introduced in 2.6. It can be
inflated to the maximal reductive quotient Jy ~ G(U(VY) x U(V})), and then to the maximal
parahoric subgroup Jy. With an abuse of notation, we still denote this inflated representation
by px. In virtue of 2.9, the isomorphism in the last paragraph translates into the following

result.

Proposition. Let A € L and write t(A) = 260 + 1. The following statements hold.

(1) The cohomology group H(Uy, Q) is zero unless 2(n — 1 —60) < b < 2(n —1).

(2) The action of Jp on the cohomology factors through an action of the finite group of Lie
type GU(VY). The rational Frobenius T acts like multiplication by (—p)® on H(Uy, Qy).

(3) For 0 <b <6 we have

min(j,0—3)

Hgbﬂ(nfli@)(U/\v@) @ P(20+1—25,25)-

For0<b<60—1 we have

o min(j,0—1—j)
H§b+1+2(n7179)(UA’ Q) = (—B P(26—25,25+1)
5=0

4.1.7 The description of the rational Frobenius action yields the following result.

Corollary. The spectral sequence degenerates on the second page Ey. For 0 < b < 2(n — 1),

the induced filtration on Hf;(/\/lan,@) splits, ie. we have an isomorphism

R T~ @D B

b<b'<2(n—1)

The action of W on HY(M® Q) is trivial on the inertia subgroup and the action of the rational

Frobenius element 1 is semisimple. The subspace Eg_bl’b/ 1s 1dentified with the eigenspace of T

associated to the eigenvalue (—p)".

Remark. In the previous statement, the terms E;’*b/’b/ may be zero.

Proof. The (a,b)-term in the first page of the spectral sequence is the direct sum of the co-
homology groups H?(U(7),Qy) for all v € I_,.1. On each of these cohomology groups, the
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rational Frobenius 7 acts like multiplication by (—p)’. This action is in particular independant
of v and of a. Thus, on the b-th row of the first page of the sequence, the Frobenius acts
everywhere as multiplication by (—p)®. Starting from the second page, the differentials in the
sequence connect two terms lying in different rows. Since the differentials are equivariant for
the 7-action, they must all be zero. Thus, the sequence degenerates on the second page. By
the machinery of spectral sequences, there is a filtration on H2(M®", Q,) whose graded factors
are given by the terms Eg_b/’b, of the second page. Only a finite number of these terms are
non-zero, and since they all lie on different rows, the Frobenius 7 acts like multiplication by a
different scalar on each graded factor of the filtration. It follows that the filtration splits, ie.
the abutment is the direct sum of the graded pieces of the filtration, as they correspond to the

eigenspaces of 7. Consequently, its action is semisimple. O

4.1.8 The spectral sequence EY * has non-zero terms extending indefinitely in the range a <
0. For instance, if A € £ then (A,...,A) € I_,41 so that E“* & 0 for all « < 0 and
2(n —1—m) < b < 2(n —1). To rectify this, we introduce the alternating Cech spectral
sequence. If v € F*” and v € I_,,1, we denote by v, € H4(U (), Qy) the component of v in the
summand of B’ indexed by 7. Besides, if v = (A,..., A=) e I_,.1 and if 0 € &_,,; then
we write o(y) := (AW .. Aty e [, .. For all a,b we define

ab | a,b
El,alt T {U € El

Vy €l 41,0 € G_gi1,Vo(y) = 580(0)V4}.

In particular, if v = (A!,...,A=%*!) with A/ = A" for some j # j/ then v e Ef’slt — v, =0.
The subspace Ei’glt c E™" is stable under the action of J x W, and the differential ¢* , : B** —
E{Y sends Ei’slt to Ef;ltb Thus, for all b we have a chain complex El';;’lt and the following

proposition is well-known.

Proposition ([Sta23] Lemma 01FM). The inclusion map E s ET s a homotopy equiva-

1,alt

. . . . b b
lence. In particular we have canonical isomorphisms Eqy. ~ E3” for all a,b.

The advantage of the alternating Cech spectral sequence is that it is concentrated in a finite
strip. Indeed, if v = (A',...,A™%") € I_,.1, let i € Z such that A(y) € £;. Then all the
A7’s belong to the set of lattices in £™ containing A(y). This set is finite of cardinality
vin—60—m—1,n—20 —1) where t(A(v)) = 20 + 1 according to 1.4.1. Thus, if —a + 1 is big
enough then all the v’s in I_,,; will have some repetition, so that Ei’:lt = 0.

Remark. The Lemma 01FM of [Sta23] is stated in the context of Cech cohomology of an abelian
presheaf F on a topological space X. However, the proof may be adapted to Cech homology
of precosheaves such as U — H%(U, Qy).

4.1.9 For a = 0, we have Ei’glt = E?’b by definition. Let us consider the cases b = 2(n—1—m)
and b = 2(n — 1 —m) + 1. For such b, it follows from 4.1.6 that H%(U, Q) = 0 if (A) < #pmax.
If a < —1, we have —a + 1 > 2 so that for all y = (A',... A=) e I_,,, if there exists j + j’
such that A/ £ A7) then t(A(7)) < tmax and HY(U(v),Q,) = 0. It follows that Ei’slt = 0 for
all @ < —1 and b as above. This observation, along with the previous paragraph, yields the

following proposition.
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0,2(n—1—m) ~ E?,2(n—1—m)

Proposition. We have E, . If moreover m = 1 (ie. n = 3), then we

have Eg An—lmm)+L E? 2(” L g well.

4.1.10 In order to study the action of J, we may rewrite EY b conveniently in terms of
compactly induced representations. To do this, let us introduce a few more notations. For
0 <60 <mands > 1, we define

= {ve L]i(A(y)) =20 + 1}.

The subset I < I, is stable under the action of J. We denote by N(Ay) the finite set
N(n—0—m—1,V}) as defined in paragraph 1.4.1. It corresponds to the set of lattices A € £,
of maximal orbit type t(A) = 2m + 1 containing Ay. For s > 1 we define

KO = {6=(A"...,A%)|V1 < j <s,A e N(Ap) and A(S) = Ag}.

Then K” is a finite subset of I” and it is stable under the action of Jo. lfvel S@, there exists
some g € J such that g- A(y) = Ag because both lattices share the same orbit type. Moreover,
the coset Jy - g is uniquely determined, and g -y is an element of K ) This mapping results in
a natural bijection between the orbit sets

IO = JA\KO.

s

The bijection sends the orbit J - « to the orbit Jy - (¢ - a) where g is chosen as above. The
inverse sends an orbit Jy - 5 to J - 5. We note that both orbit sets are finite.

We may now rearrange the terms in the spectral sequence.

Proposition. We have an isomorphism

Ef’b =~ @ @ IndFlX(5 Z(UA97@)|F1X(5)

=0 [a]eJa\Ki“iZH

~ @ c— Indi} (Hb(UA97 Q) ® QK fa+1])

0=0

where Qg[ —a+1] s the permutation representation associated to the action of Jy on the finite
set K (fg 41

Remark. For § € K% the group Fix(d) consists of the elements g € J such that g-6 = J. Any
such g satisfies gA(d) = A(d), and since A(0) = Ay we have Fix(0) < Jp. If § = (A',... A%)

then Fix(J) is the intersection of the maximal parahoric subgroups Ja1,. .., Jys. We note that
in general, Fix(d) is itself not a parahoric subgroup of .J since the lattices A', ..., A® need not
form a simplex in £, as they all share the same orbit type. If however A! = ... = A® then

Fix(d) = Jp1 is a conjugate of the maximal parahoric subgroup J,,.

Proof. First, by decomposing I_,,; as the disjoint union of the [(_3 41 for 0 < 0 < m, we may
write

B - @ HUA),T).

0=0 )

V€]7a+1
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For each orbit X € J\I Eei +1, we fix a representative dx which lies in K (_92 +1- We may write

B @ ORUMT =B @ @ ¢ HU6).T)

0=0 xe 1@, 7€X 0=0 xe 1) | 9e]/Fix(6x)

The rightmost sum can be identified with a compact induction from Fix(dx) to J. Identifying
the orbit sets J\](_Q(ZJr1 = JQ\K(_9(2+17 we have

Ef’b >~ (—B C—D ¢ — Indéix(d) Hg(UAm@)IFix(é)'

0=0 [s1c s\ k) |

By transitivity of compact induction, we have
€= Indg‘ix(é) Hg<UA9;@)|Fix(5) =Cc- Indi; - Indé?x(a) HZ(UAw@)IFiX(J)-

Since H? (UA07@)|F1X(5) is the restriction of a representation of Jp to Fix(d), applying com-
pact induction from Fix(J) to Jy results in tensoring with the permutation representation of
Jo/Fix(0). Thus

Ef’b ~ C—B c— Indﬁg (H’;(UAg,@) ® @[Je/FiX((S)])

0 [5lese\ K,

0=
~@ec—Ind), MU Qe @ Ql/Fix©)] |,

0 [6]eJo\K %), |

0

where on the second line we used additivity of compact induction. Now, Jy/Fix(9) is identified
with the Jp-orbit Jy - 9 of  in K@H, so that

D Qll/Fix(®)] ~Q [ | o0l =~TQE),,],

[6eo\K ), [61e\K ),

which concludes the proof. O]

4.1.11 By 1.2.9, we may identify N(Ag) with the set
N(Ag) :={Uc V)| dimU =m —60 and U c U*}.

Thus, for s > 1, K7 is naturally identified with

Fie) ~ {32 (U, ..., U

V1 < j<s,U’ e N(Ag) and ﬂUj = {O}}

j=1
The action of Jy on K" corresponds to the natural action of GU(V,}) on ?ge), which fac-
tors through an action of the finite projective unitary group PU(V}!) := U(V})/Z(U(V}})) ~
GU(V})/Z(GU(V})). Thus, the representation Qg K?

ws1] Of Jp is the inflation, via the maximal

reductive quotient as in 1.2.8, of the representation @[F(_ei +1] of the finite projective unitary
group PU(V}}).
When 6 = m or when s = 1, we trivially have the following proposition.

41



On the cohomology of the basic unramified PEL unitary RZ space of signature (1,n — 1)

Proposition. For s > 1, we have @g[ ™ =1.
For0 <6 <m-—1, wehave@g[ b ]20.

Proof. I § = (AY,...,A®) € K™ then A(§) = A,, has maximal orbit type tmax = 2m + 1. For
any 1 < j < s we have A,, © A7, therefore A' = ... = A* = A,,,. Thus K™ is a singleton and
SO Qg[K§ ] is trivial. Besides, if § < m then K¢ ) is clearly empty. ]

Recall 4.1.9 Proposition. We obtain the following corollary.
Corollary. We have
EY? ~ ¢ —Ind] H(Ua,., Q).

In particular, we have

c— Indﬁm Pims1) ifb=2(n—1-m),

Eg’b ~
c— Indfm pemyy  ifm=1andb=2(n—1-m)+1.

Remark. The representation p(a;,41) = 1 is the trivial representation of .J,.

4.1.12 Let us now consider the top row of the spectral sequence, corresponding to b = 2(n—1).
For A’ = A, recall the map fifﬁ\_l) : Hz("_l)(UA/,@) — Hg(”_l)(UA,@). By Poincaré duality, it
is the dual map of the restriction morphism H(Uy, Q) — H°(Uys, Q). Since U, is connected

for every A € £, we have H*(Uy, Q) ~ Q; and the restriction maps for A’ = A are all identity.

Thus, EY 271 g the Qp-vector space generated by I_,.1, and the differential ¢*" Y is given

by

—a+1

7€[a+1'_)2 j+1

Using this description, we may compute the highest cohomology group HZ" (/\/l‘ern Q) ex-
plicitely.

Proposition. There is an isomorphism

H2"=D(M*™ Q) ~ ¢ — Ind7. 1

and the rational Frobenius T acts via multiplication by p*>™=1).

Proof. The statement on the Frobenius action is already known by 4.1.7 Corollary. Besides, we
have H2""D (M Q) ~ B9V = Coker(o2™ V). The differential ¢ is described by

(A,A) — 0, VA e £
(A, N) — (A) — (A), VA, A e £ such that Uy n Uy + &.

Let i € Z such that ni is even, and let A, A’ € Egm). Since the Bruhat-Tits building BT(JN, Q) ~
L; is connected, there exists a sequence A = A° ... A% = A’ of lattices in £; such that for all
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0<j<d-1,{AN A"} is an edge in £;. Assume that d > 0 is minimal satisfying this
property. Since t(A) = t(A') = tmax, the integer d is even and we may assume that t(A7) is
equal to t,.c when j is even, and equal to 1 when j is odd. In particular, for all 0 < j < g -1
we have A% A%+2 ¢ Ez(m) and Upz; N Upzj+2 + . Consider the vector

N\&

2 AQ] A2j+2 GE 1,2(n— 1)

Then we compute ¢-"" " (w) = (A") — (A). Thus, Coker(©>™ ") consists of one copy of Qy
for each z’ € 7 such that ni is even. Considering the action of J as well, it readily follows that
Coker(p; (n= Naeo Ind7. 1. O

Remark. The cohomology group Hi(”*“(Man, @) can also be computed in another way which

does not require the spectral sequence. Indeed, we have an isomorphism
H2"=D (M Q) ~ ¢ — IndJ. H2 DM Q).
By definition, we have

HED (M, Q) = lig H2 (U8B C,, Q).
U

where U runs over the relatively compact open subspaces of Mj". Since U is smooth, Poincaré
duality gives

HX=D(URC,, Q) ~ H(UKC,, Q)"
And since M§" is connected, we can insure that all the U’s involved are connected as well.
Therefore HY(U® Cp,@) ~ Qy, and all the transition maps in the direct limit are identity. It
follows that HZ" ™ (Man Q) is trivial.

4.2 Compactly induced representations and type theory

4.2.1 Let Rep(J) denote the category of smooth Q-representations of G. Let y be a con-
tinuous character of the center Z(J) ~ Q, and let V' € Rep(J). We define the maximal
quotient of V on which the center acts like x as follows. Let us consider the set

Q= {W | W is a subrepresentation of V' and Z(J) acts like x on V/W}.

The set €2 is stable under arbitrary intersection, so that W, := ﬂWGQ W e Q. The maximal
quotient is defined by

Vi =V /W..
It satisfies the following universal property.

Proposition. Let x be a continuous character of Z(J) and let V,V' € Rep(J). Assume that
Z(J) acts like x on V'. Then any morphism V- — V' factors through V.

Proof. Let f : V — V'’ be a morphism of J-representations. Since V/Ker(f) ~ Im(f) < V",
the center Z(J) acts like x on the quotient V /Ker(f). Therefore Ker(f) € Q. It follows that
Ker(f) contains W, and as a consequence, f factors through V. n
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4.2.2  As representations of J, the terms EY b of the spectral sequence 4.1.4 consist of repre-
sentations of the form

c— Indi} o,

where p is the inflation to Jy of a representation of the finite group of Lie type Jy. We
note that such a compactly induced representation does not contain any smooth irreducible
subrepresentation of J. Indeed, the center Z(.J) ~ (@;2 does not fix any finite dimensional
subspace. In order to rectify this, it is customary to fix a continuous character y of Z(.J)
which agrees with the central character of p on Z(J) n Jp ~ Z;Q, and to describe the space
(c— Indjﬁ p)y instead.

Lemma. We have (¢ — Ind7, p), ~ ¢ — Indé(J)Jg X®p.

Proof. By Frobenius reciprocity, the identity map on ¢ — Ind”zf( 7)., X ® p gives a morphism
X®p — (C — Ind%( 7)Jp X ® '0>|z D)o of Z(J)Jg-representations. Restricting further to Jy, we
obtain a morphism p — (C — Indé( D) X ® p)l o By Frobenius reciprocity, this corresponds
to a morphism c — Indiﬂ p— Cc— Indé( 7o X ® p of J-representations. Because Z(.J) acts via
the character x on the target space, this morphism factors through a map (c — Indi} P)x

c— Indé( 77, X®p. In order to prove that this is an isomorphism, we build its inverse. The quo-
tient morphism ¢ — Indi} p— (c— Indj}g p)y corresponds, via Frobenius reciprocity, to a mor-
phism p — (¢ — Indje p)y|J, of Jo-representations. Because Z(.J) acts via the character y on the
target space, this arrow may be extended to a morphism y®p — (¢ — Indfe P)x1z(7)Js Of Z(J)Jo-
representations. By Frobenius reciprocity, this corresponds to a morphism ¢ — Ind%( D)y X®p —
(c— Indﬁa p)y, and this is our desired inverse. ]

4.2.3 We recall a general theorem from [Bus90| describing certain compactly induced repre-
sentations. In this paragraph only, let G be any p-adic group, and let L be an open subgroup
of G which contains the center Z(G) and which is compact modulo Z(G).

Theorem ([Bus90] Theorem 2 (supp)). Let (o,V') be an irreducible smooth representation of
L. There is a canonical decomposition

¢c—IndS o~V @V,

where Vi 1s the sum of all supercuspidal subrepresentations of ¢ — Indf o, and where V con-
tains no mon-zero admissible subrepresentation. Moreover, Vy is a finite sum of irreducible

supercuspidal subrepresentations of G.

The spaces Vj or V,, could be zero. Note also that since G is p-adic, any irreducible represen-
tation is admissible. So in particular, V., does not contain any irreducible subrepresentation.
However, it may have many irreducible quotients and subquotients. Thus, the space V, is
in general not G-semisimple. Hence, the structure of the compactly induced representation
c— Indg o heavily depends on the supercuspidal supports of its irreducible subquotients.

We go back to our previous notations. Let 0 < 6 < m, let p be a smooth irreducible repre-
sentation of Jy and let x be a character of Z(.J) agreeing with the central character of p on
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Z(J) n Jy. Since the group Z(J)Jy contains the center and is compact modulo the center, we

have a canonical decomposition
J ~
(c— IndJ9 p)x ~ Vpx.0 D Voxo0-

In order to describe the spaces V,, o and V,, o, we determine the supercuspidal supports of
the irreducible subquotients of ¢ — Indj9 p through type theory, with the assumption that p is
inflated from Jy. For our purpose, it will be enough to analyze only the case 8 = m. In this
case, dim V! is equal to 0 or 1 so that GU(V,}) = {1} or IF}> has no proper parabolic subgroup.
In particular, if p is a cuspidal representation of GU(V,?), then its inflation to the reductive

quotient
Tn =~ G(U(Vy) x U(V,,))

is also cuspidal.

4.2.4 In the following paragraphs, we recall a few general facts from type theory. For more
details, we refer to [BK98] and [Mor99]. Let G' be the group of F-rational points of a reductive
connected group G over a p-adic field F'. A parabolic subgroup P (resp. Levi complement L)
of GG is defined as the group of F-rational points of an F-rational parabolic subgroup P < G
(resp. an F-rational Levi complement L ¢ G). Every parabolic subgroup P admits a Levi
decomposition P = LU where U is the unipotent radical of P. We denote by Xp(G) the set
of F-rational Q-characters of G, and by X"*(G) the set of unramified characters of G,
ie. the continuous characters of G which are trivial on all compact subgroups. We consider
pairs (L,7) where L is a Levi complement of G and 7 is a supercuspidal representation of
L. Two pairs (L,7) and (L', 7") are said to be inertially equivalent if for some g € G and
X € X" (G) we have L' = L9 and 7" ~ 79 ® x where 79 is the representation of L9 defined
by 79(1) := 7(g'lg). This is an equivalence relation, and we denote by [L,T]g or [L, 7] the
inertial equivalence class of (L, 7) in G. The set of all inertial equivalence classes is denoted
IC(G). If P is a parabolic subgroup of G, we write 1% for the normalised parabolic induction
functor. Any smooth irreducible representation 7 of G is isomorphic to a subquotient of some
parabolically induced representation (%(7) where P = LU for some Levi complement L and
T is a supercuspidal representation of L. We denote by ¢(m) € IC(G) the inertial equivalence
class [L, 7]. This is uniquely determined by 7 and it is called the inertial support of .

4.2.5 Let s € IC(G). We denote by Rep®’(G) the full subcategory of Rep(G) whose objects
are the smooth representations of GG all of whose irreducible subquotients have inertial support
s. This definition corresponds to the one given in [BD84] 2.8. If & = IC(G), we write Rep®(G)
for the direct product of the categories Rep®(G) where s runs over &. We recall the main results

from loc. cit.

Theorem ([BD84] 2.8 and 2.10). The category Rep(G) decomposes as the direct product of the
subcategories Rep®(G) where s runs over IC(G). Moreover, if & < 1C(G) then the category

Rep®(G) is stable under direct sums and subquotients.
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Type theory was then introduced in [BK98] in order to describe the categories Rep®(G) which
are called the Bernstein blocks.

4.2.6 Let G be a subset of IC(G). A S-type in G is a pair (K, p) where K is an open
compact subgroup of GG and p is a smooth irreducible representation of K, such that for every

smooth irreducible representation m of G we have
Tk contains p <= ((m) € 6.

When & is a singleton {s}, we call it an s-type instead.

Remark. By Frobenius reciprocity, the condition that m g contains p is equivalent to 7 being
isomorphic to an irreducible quotient of ¢ — Indg p. In fact, we can say a little bit more. Let K
be an open compact subgroup of G and let p be an irreducible smooth representation of K. Let
Rep,(G) denote the full subcategory of Rep(G) whose objects are those representations which
are generated by their p-isotypic component. If (K, p) is an S-type, then [BK98] Theorem 4.3
establishes the equality of categories Rep,(G) = Rep®(G). By definition of compact induction,
the representation ¢ — Indg p is generated by its p-isotypic vectors. Therefore any irreducible

subquotient of ¢ — IndIG< p has inertial support in &.

4.2.7 An important class of types are those of depth zero, and they are the only ones we
shall encounter. First, we recall the following result. If K is a parahoric subgroup of G, we

denote by K its maximal reductive quotient. It is a finite group of Lie type over the residue
field of F.

Proposition ([Mor99] 4.1). Let K be a mazimal parahoric subgroup of G and let p be an
wrreducible cuspidal representation of IC. We see p as a representation of K by inflation. Let
7 be an irreducible smooth representation of G and assume that m contains p. Then m is
supercuspidal and there exists an irreducible smooth representation p of the normalizer Ng(K)

such that pjx contains p and ™ ~ ¢ — Ind%G(K)ﬁ,

Such representations 7 are called depth-0 supercupidal representations of G. More gener-
ally, a smooth irreducible representation 7 of GG is said to be of depth-0 if it contains a non-zero
vector that is fixed by the pro-unipotent radical of some parahoric subgroup of G. A depth-0
type in G is a pair (K, p) where K is a parahoric subgroup of G and p is an irreducible cuspidal
representation of K, inflated to K. The name is justified by the following theorem.

Theorem ([Mor99] 4.8). Let (K, p) be a depth-0 type. Then there exists a (unique) finite set
S < IC(G) such that (K, p) is an &-type of G.

In loc. cit. it is also proved that any depth-0 supercuspidal representation of G contains a
unique conjugacy class of depth-0 types. Let K be a parahoric subgroup of G. Using the
Bruhat-Tits building of GG, one may canonically associate a Levi complement L of G such that
K := L n K is a maximal parahoric subgroup of L, whose maximal reductive quotient Ky,
is naturally identified with IC. This is precisely described in [Mor99] 2.1. Moreover, we have
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L = G if and only if K is a maximal parahoric subgroup of G. Now, let (K, p) be a depth-0
type of G and denote by & the finite subset of IC(G) such that it is an &-type of G. Since p
is a cuspidal representation of K ~ ICp, we may inflate it to K. Then, the pair (K, p) is a
depth-0 type of L. We say that (K, p) is a G-cover of (K, p). By the previous theorem, there
is a finite set &, < IC(L) such that (Kp,p) is an &p-type of L. Then the proof of Theorem
4.8 in [Mor99] shows that we have the relation

S ={[M,7]¢|[M, 7], eS.}.

In this set, M is some Levi complement of L, therefore it may also be seen as a Levi complement
in G. Thus, an inertial equivalence class [M, 7], in L gives rise to a class [M,7]¢ in G.
Since K, is maximal in L, in virtue of the proposition above any element of &, has the form
[L, 7], for some supercuspidal representation 7 of L. In particular, every smooth irreducible
representation of G containing the type (K, p) has a conjugate of L as cuspidal support. We
deduce the following corollary.

Corollary. Let (K, p) be a depth-0 type in G and assume that K is not a mazimal parahoric
subgroup. Then no smooth irreducible representation m of G containing the type (K, p) is

supercuspidal.

4.2.8 Thus, up to replacing G with a Levi complement, the study of any depth-0 type (K, p)
can be reduced to the case where K is a maximal parahoric subgroup. Let us assume that it
is the case, and let & be the associated finite subset of IC(G). While & is in general not a
singleton, it becomes one once we modify the pair (K, p) a little bit. Let K be the maximal
open compact subgroup of Ng(K). We have K < K but in general this inclusion may be strict.
Let p be a smooth irreducible representation of Ng(K) such that pjx contains p. Let p be
any irreducible component of the restriction P Eventually, let m := ¢ — Indg (k) P be the
associated depth-0 supercuspidal representation of G.

Theorem ([Mor99] Variant 4.7). The pair (K, p) is a [G,7]-type.

The conclusion does not depend on the choice of p as an irreducible component of ﬁl 7 Any
one of them affords a type for the same singleton s = [G, 7].

4.2.9 Let us now consider a parahoric subgroup K along with an irreducible representation
p of its maximal reductive quotient = K/K™, where K" is the pro-unipotent radical of
K. Assume that p is not cuspidal. Thus, there exists a proper parabolic subgroup P < K
with Levi complement £, and a cuspidal irreducible representation 7 of L, such that p is
an irreducible component of the Harish-Chandra induction /5 7. The preimage of P via the
quotient map K — K is a parahoric subgroup K’ < K, whose maximal reductive quotient
K’ := K'/K'" is naturally identified with £. We have K™ < K'* < K’ and the intermediate
quotient K'*/K™ is identified with the unipotent radical V' of P ~ K'/K™*. Consider p as an
irreducible representation of K inflated from K. The invariants p® form a representation of

K’ which coincides with the inflation of the Harish-Chandra restriction of p (as a representation
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of K) to L. Thus, pX"" contains the inflation of 7 to a representation of K’. In other words,
we have a K’-equivariant map

T — P|K’

By Frobenius reciprocity, it gives a map
¢ —Indk, 7 — p,

which is surjective by irreducibility of p. Applying the functor ¢ — Ind$ : Rep(K) — Rep(G),
which is exact, and using transitivity of compact induction, we deduce the existence of a natural
surjection

¢ —Ind%, 7 — ¢ — Ind%; p.

Now, (K’,7) is a depth-0 type in G. Let & < IC(G) be the subset such that (K’,7) is an
S-type, and let L be the (proper) Levi complement of G associated to K’ as in the previous
paragraph. By 4.2.6 Remark, it follows that any irreducible subquotient of ¢ — Ind% p has
inertial support in &. Since all elements of & are of the form [L, 7| for some supercuspidal
representation m of L, we reach the following conclusion.

Proposition. Let K be a parahoric subgroup of G and let p be a non cuspidal irreducible rep-
resentation of its maximal reductive quotient K. Then no irreducible subquotient of ¢ — IndIG( p

18 supercuspidal.

4.2.10 We go back to the context of the unitary similitude group J. We may now determine
the inertial support of any irreducible subquotient of a representation of the form ¢ — Indfm p
with p inflated from a unipotent representation of GU(V?). In particular, all the terms £’
are of this form according to 4.1.11 Corollary. More precisely, let A be a partition of 2m + 1
and let A; be its 2-core (see 2.8). Thus 2m + 1 = @ + 2e for some e > 0. The integer @
is odd, so it can be written as 2f 4+ 1 for some f > 0, and we have m = f + e. Using the basis
of V2 fixed in 1.2.8, we identify GU(V)Y) with the matrix group GUgy,;1(F,). The cuspidal
support of py is (L, py) according to 2.8. Let P, be the standard parabolic subgroup with Levi
complement L,. By direct computation, one may check that the preimage of P, in J,, is the
parahoric subgroup Jy, ., := Jf 0 Jpi ... 0 Jp. Let Ly be the Levi complement of J that
is associated to the parahoric subgroup Jy._,,. Using the basis of V fixed in 1.1.4, let V/ be
the subspace of V generated by V* and by the vectors e1y,...,exs. It is equipped with the
restriction of the hermitian form of V. Then L; ~ G(U(VY) x U1(Q,)°).

The group Ly n Jf__,, is a maximal parahoric subgroup of L¢, and p; can be inflated to it. In
particular, the pair (Lf N Jf, . pt) is a level-0 type in Ly. Since we work with unitary groups

over an unramified quadratic extension, Ly N J¢ ., is also a maximal compact subgroup of L.

-----

In particular, (Ly 0 Jy, . m,p:) is a type for a singleton of the form [Ly, 74]r,. Then 7/ has the

form
Ly ~

Tf = C — IIldNLf (LjﬁJf m) pt,

where p; is some smooth irreducible representation of N, ; (Ly N Jy, ) containing p; upon
restriction. It follows that if we inflate p, to Jy__ ., then (Js. ., pi) is a [Ly, 7f]-type in J.
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Moreover the compactly induced representation ¢ — Ind§m px is a quotient of ¢ — Indﬁf Pt

.....

In particular, we reach the following conclusion.

tt+1)
5— = 2f +1 for some

> 0. Any irreducible subquotient of ¢ —Ind?, px has inertial support [Ls, 7]
JIm ol

Proposition. Let A\ be a partition of 2m + 1 with 2-core A;. Write

In particular, if f < m then none of these irreducible subquotients are supercuspidal.

4.2.11 Let us keep the notations of the previous paragraph. Since unipotent representations
of finite groups of Lie type have trivial central characters, if y is an unramified character of
Z(J) then xz(j)n., coincides with the central character of py inflated to J,,. As in 4.2.3, we
have

(C - Indim p)\)x =~ ‘/p/\,x,o @ ‘/pAaXvOO'

If f < m, then no irreducible supercuspidal representation can occur. Thus V,, , o = 0.

On the other hand, assume now that f = m so that Ly = J and p, is equal to the cuspidal
representation pa,,. As seen in 1.3.3, we have N;(.J,,,) = Z(J)J,, unless n = 2 (thus m = 0) in
which case Jy = J° and Z(J)Jy is of index 2 in N;(Jy) = J. A representative of the non-trivial
coset is given by gg as defined in 1.1.7. If n # 2, define

Tmx -= C— Ind%(J)J,,L X & pa-
Then 7,,, is an irreducible supercuspidal representation of J, and we have
(C - Indfm pA)X ~c— Ind%(J)Jm X®@ Py = Ty

Thus V), .o = 0 and V), \o = Ty, in this case.

When n = 2, p\ = pa, = 1 is the trivial representation of J; = J°. Let xo : J — @X be
the unique non-trivial character of J which is trivial on Z(.J)Jy. Then (¢ — Ind, 1)x is the
sum of an unramified character 7y, of J whose central character is x, and of the character
XoTo,y- Both characters are supercuspidal, and they are the only unramified characters of J

with central character y.

4.2.12  According to 4.1.6 and 4.1.11, the terms E" are a sum of representations of the form
c— Indjm P,

with A a partition of 2m + 1 having 2-core A, if b is even, and A; if b is odd. Moreover, by
4.1.11 we have

ES’Q(”_l‘m) ~c— Indjm 1, Eg’Q(n_l_m)H =c= Indjm P(2m.1)-

In particular, summing up the discussion of the previous paragraph, we have reached the
following statement.

Proposition. Let x be an unramified character of Z(J).
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— Assume that n = 3. The representation (ES’Q(H_l_m))X contains no non-zero admissible
subrepresentation, and it is not J-semisimple. Moreover, any irreducible subquotient has
inertial support [Lo,To|. If n = 5, then the same statement holds for (E§’2(”‘1‘m)“)x
with the inertial support being [ Ly, ).

— Forn =1,2,3,4, let b = 0,2,3,5 respectively. Then m = 0 when 1,2 and m = 1 when
n = 3,4. Let x be an unramified character of Z(.J). The representation T, is irreducible

supercuspidal, and we have

Tm ifn=1,3,4,
(Egb)x = * /
Tmx @ X0Tmy U 1 =2.

In particular, we deduce the following important corollary.

Corollary. Let x be an unramified character of Z(J). If n = 3 then H2 ) (M Q) is
not J-admissible. If n =5 then the same holds for Hz(n_l_m)ﬂ(./\/lan,@)x.

4.3 The case n = 3,4

4.3.1 Let us focus on the case m = 1, that is n = 3 or 4. Recall that N(Ay) denotes the set
of lattices A € Ly with type t(A) = tnax = 3 containing Ag. It has cardinality v(1,2) = p+ 1
when n = 3 and v(2,3) = p® + 1 when n = 4. In particular, we may locate the non zero terms

Ei’;’h of the alternating Cech spectral sequence as follows.

(a7b> € {(072)3 (073); (_k>4) ‘ 0<
<a7b) € {(074); (075); (*]@6) | 0<

Ea,b

1,alt

+0 <

In Figure 1 below, we draw the shape of the first page Fj o for n = 3. The case of n = 4 is

similar, except that two more 0 rows should be added at the bottom. To alleviate the notations,
2(n—1)

—a

we write ¢_, for the differential ¢

4.3.2 Let i € Z such that ni is even. For A, A’ € £;, recall that the distance d(A,A’) is the
smallest integer d > 0 such that there exists a sequence A = A?, ..., A? = A’ of lattices of L,
with {A7, A7*!} being an edge for all 0 < j < d — 1. When m = 1, any lattice A € £; has type
1 or 3, and two lattices forming an edge can not have the same type. Therefore, the value of
t(A7) alternates between 1 and 3. In particular, if ¢(A) = ¢(A’) then d(A, A’) is even. According
to [Vol10] Proposition 3.7, the simplicial complex £; is in fact a tree. We will use this to prove

the following proposition.

Proposition. Let b =4 when n = 3, and b =6 when n = 4. We have E;l’b = 0.

By 4.1.8 Proposition, we may use the alternating Cech spectral sequence to show that F, Lb
Ker(p1)/Im(p;) vanishes. As we have observed in 4.1.12, the term E’ is the Q-vector

space generated by the set I_,,;, and E*’ s the subspace consisting of all the vectors

1,alt
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3,4 <P —2,4 —-1,4 P1 J
. El ,alt El ,alt El ,alt C— Ind

¢ Ind:;l PA;

c— Indj1 1

0

Figure 1: The first page E} o1 of the alternating Cech spectral sequence when n = 3.

V=2 cr ., M7 such that for all 0 € &_,41 we have A\,(,) = sgn(co)\,. Here the \,’s are
scalars which are almost all zero. To prove the proposition, let us look at the differential 5.

It acts on the basis vectors in the following way.

(A, A, A)
(A, A AN) o (A D), VA, A e LW such that Uy n Uy + &,
(N, A, N)
(A, N A) — (A A) + (A A) — (A,A), VA, A e LY such that Uy n Uy + &,
(A, N A7) — (AN + (N, A" — (A A7), VAN, A" e LY such that Uy n Uy 0 Upr + &.

We note that for a collection of lattices A',... A% e .cﬁ”, the condition Upi ...\ Ups + F is
equivalent to d(AJ,AJ") =2forall 1 <j+ 5 <s
Towards a contradiction, we assume that Im(ps) & Ker(gp1). Let v € Ker(y1)\Im(pz). Since

—1b6 -
ve B, it decomposes under the form

Z _7_/7])

where 7 > 1, the v;’s are of the form (A,A’) with A &+ A" and Uy n Uy + &, the scalars A;’s
are non zero and 7 € G is the transposition. We may assume that r is minimal among all the
vectors in the complement Ker(y1)\Im(ps). In particular, there exists a single ¢ € Z such that
ni is even, and for all j the lattices in «; belong to ,cf.”. We may further assume i = 0 without
loss of generality.

We say that an element vy € I occurs in v if v = «; or 7(v;) for some j. Similarly, we say that

a lattice A e C(()l) occurs in v if it is a constituent of some ~;.
Lemma. Let v = (AN, A) € Iy be an element occuring in v. Then there exists A" € Eél) such

that (A", A) € Iy occurs in v and d(N',\") = 4.

Proof. Let us write (A7, A) € I5,1 < j < s for the various elements occuring in v whose first
component is A. Up to reordering the 7;’s and swapping them with 7(v;) if necessary, we may

o1
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assume that (A7, A) = v; for all 1 < j < s, and that A* = A’. The coordinate of ¢;(v) along
the basis vector (A) is equal to 2377, A;. Since ¢1(v) = 0, the sum of the \;’s from 1 to s is
zero. In particular, we have s > 2.

For all 2 < j < s, we have 2 < d(A’, A7) < 4 by the triangular inequality. Towards a contra-
diction, assume that d(A’, A7) = 2 for all 2 < j < s. In particular, §; := (A7, A, A) € I; for all
2 < j < s. Consider the vector

%Zngn Yo (0 )eEfslf
j=2 o€y

Then we compute
pa(w) = =M (N, A) — (A, A)) Z — (A, A)) + X 0 ((WV, ) — (A, A7),
: j:2

In particular, we get

v+ pa(w Z A 7))+ 2 A (A, A) = (A, A7) € Ker(pi)\Im(s),
Jj=s+1 7j=2
which contradicts the minimality of r. O

4.3.3 To conclude the proof of the proposition, let us pick A = A e E(()l) which occurs in
v, say in a pair (A’,A) € I,. Write A! := A’. By induction, we build a sequence (A¥)zq of
lattices in E(()l) such that for all k, the pair (A**1 A*) occurs in v and we have d(A°, A*) = 2k.
It follows that the A*’s are pairwise distinct, and it leads to a contradiction since only a finite
number of such lattices can occur in v.

Let us assume that A% ..., A* are already built for some k£ > 1. By the Lemma applied to A¥,
there exists AF*1 e £{" such that the pair (A**1, AF) occurs in v and d(AF~!, A*+1) = 4. By

the triangular inequality, we have
d(A°, AR = |d(A%, AF) — (A%, AP = 2k — 2 = 2(k — 1).

Thus d(A% A1) = 2(k — 1), 2k or 2(k + 1). We prove that it must be equal to the latter.

Assume d(A°) A¥*1) = 2(k — 1). There exists a path A = LO, ... L?*=) = A¥*1 We obtain a

cycle

Ak—l Ak—l A Akz

A° n
/ \
AO Ak
\ .

A — A —

~

2 — L2(k—1) _ Ak+1 _ Ak A Ak+1

Since Ly is a tree, this cycle must be trivial, ie. the lower and upper paths, which are of
the same length, are the same. In particular, we have A¥~! = A**! which is absurd since

D2



On the cohomology of the basic unramified PEL unitary RZ space of signature (1,n — 1)

d(Ak_l,A]H'l) = 4.

Assume d(A°, A**1) = 2k. There exists a path A® = L, ..., L* = AL, We obtain a cycle

A AL — AV — o — AR AAR A
AO / AkmAk+1
/
\ Ll L2 E—— L2k—1 L2k _ Ak+1

Since Ly is a tree, this cycle must be trivial, ie. the lower and upper paths, which are of the same

length, are the same. In particular, we have A* = A¥*1 which is absurd since d(A*, A¥*1) = 2.

Thus, we have d(A° A*™1) = 2(k + 1) so that A*™! meets all the requirements. It concludes the
proof.

4.3.4 In particular, we obtain the following statement.

Theorem. Assume thatn =3 or4. Letb=3 ifn =3, and letb =15 if n = 4. We have
Ho(M™ Q) ~ ¢ — Indﬁ1 DA,

with the rational Frobenius T acting like multiplication by —p®.

5 The cohomology of the basic stratum of the Shimura
variety for n = 3,4

5.1 The Hochschild-Serre spectral sequence induced by p-adic uni-
formization

5.1.1 In this section, we still assume that n is any integer > 1. We recover the notations
of Part 3 regarding Shimura varieties. As we have seen in 3.6, p-adic uniformization is a
geometric identity relating the Rapoport-Zink space M with the basic stratum Sg»(by). In
[Far04], Fargues constructed a Hochschild-Serre spectral sequence using the uniformization
theorem on the generic fibers, which we introduce in the following paragraphs.

Recall the PEL datum introduced in 3.1. Let £ : G — W be a finite-dimensional irreducible
algebraic Q-representation of G. Such representations have been classified in [HTO01] IIL.2.
We look at V@ = V® Qy as a representation of G, whose dual is denoted by V,. Using
the alternating form {-,-), we have an isomorphism V, ~ Vg, ® ¢!, where c is the multiplier

character of G.

Proposition ([HTO01] II1.2). There exists unique integers t(§),m(§) = 0 and an idempotent
e(§) € End(V(]@m(E)) such that
We ~ O @e(€) (V5™
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The weight w(§) is defined by

w(§) :==m(§) — 2t(§).
To any & as above, we can associate a local system £, which is defined on the tower (Sk»)x»
of Shimura varieties. We still write L, for its restriction to the generic fiber Shg xr g Z,2
and we denote by ﬁ_g its restriction to the special fiber Sg». Let Agr be the universal abelian
scheme over Sg». We write 73, © Ay — Sk» for the structure morphism of the m-fold product
of Ag» with itself over Sg». If m = 0 it is just the identity on Sg». According to [HTO01] III.2,

we have an isomorphism

Le = e§)eme) (R™O(ris)Qlt(€))

where €,,¢) is some idempotent. In particular, if £ is the trivial representation of G' then

Le = Q.

5.1.2 We fix an irreducible algebraic representation £ : G — W; as above. We associate the
space A¢ of automorphic forms of I of type ¢ at infinity. Explicitly, it is given by

A ={f : I(Ay) > We| f is I(Ay)-smooth by right translations and Vy € I(Q), f(v-) = £(v)f(-)} .

We denote by L£§" the analytification of L¢ to Shig e, as well as for its restriction to any open

subspace.

Notation. We write H'((ng)fg;, L") for the cohomology of (/S\Kp)ﬁfé ®C,, with coefficients in
L.
3

Theorem ([Far04] 4.5.12). There is a W -equivariant spectral sequence
FyP(KP) « Bxtg (HZ D70 (M™, Q) (1 — n), AF") = Ha+b((§KP>|b07£ ).

These spectral sequences are compatible as the open compact subgroup KP varies in G(A?).

The W-action on FS"*(KP) is inherited from the cohomology group H2"~ b= P(M™ Q) (1 —n).
By the compatibility with A, we may take the limit lim _ for all terms and obtain a G(A?) xW-
equivariant spectral sequence. Since m is the semisimple rank of .J, the terms Fy ’b(K P) are zero
for a > m according to [Far04] Lemme 4.4.12. Therefore, the non-zero terms Fy ¥ are located
in the finite strip delimited by 0 < a <m and 0 < b < 2(n —1).

Let us look at the abutment of the sequence. Since the formal completion ng of Sk»r along
its special fiber is a smooth formal scheme, Berkovich’s comparison theorem ([Ber96] Corollary

3.7) gives an isomorphism
HE(Sker (bo) ® F, Le) = H**(Speo(bo) ® F, L) = H*P((Sxen )i, L)

The first equality follows from Sg»(by) being a proper variety. Since this variety has dimension
m, the cohomology H*((Sk» ), £¢") is concentrated in degrees 0 to 2m.
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5.1.3 Let A(I) denote the set of all automorphic representations of I counted with multi-
plicities. We write E for the dual of €. We also define

Ag(I) = {IT e A(I) | T, = &}.
According to [Far04] 4.6, we have an identification

@ M, ® Jr)~

HE.Ag(I)

It yields, for every a and b, an isomorphism

Fy'(K?) ~ @ Exty (XM, Q)(1 —n),IL,) @ (1),

HGA{ (I)

Taking the limit over K”, we deduce that

Fy? o= ling Fp(KP) = @ Bty (HZ7D 7M™, Q)(1 =), 11,) @11
Kp e A¢ (1)

The spectral sequence defined by the terms F** computes H**(S bos L&) 1= lim. H“b((gm)ﬁf;, L),
It is isomorphic to HI**(S(bo) ® F, L¢) = lim . HI**(Skn (bo) ® F, Le).

5.1.4 Recall from 4.1.7 that we have a decomposition

Hlé(/\/lan’@) ~ @ ngb’,b/’

b<t/<2(n—1)

and Eg_b/’bl corresponds to the eigenspace of 7 associated to the eigenvalue (—p)°. Accordingly,

we have a decomposition

B @ @ By (BT o)1) e

2(n—1)—b< TleAe(I)
b'<2(n—1)

For II € A¢(I), we denote by wyy the central character. We define

om, = wi, (p~ ' -id)p ™ e Q.

Let ¢+ be any isomorphism Q; ~ C, and write | - |, := [¢(-)|. Since I is a group of unitary
similitudes of an F/Q-hermitian space, its center is E* - id. The element p~! -id € Z(J) can
be seen as the image of p~! - id € Z(I(Q)). We have wy(p~' -id) = 1. Moreover, for any finite
place ¢ # p, the element p~! - id lies inside the maximal compact subgroup of Z(1(Q,)), so
|wrr, (p~'id)|, = 1. Besides Iy, = ¢, so we have

jw, (p" - id)], = |we(p~" - id)[7 = fwelp™! - id)], = [p“O, = p*©.

The last equality comes from the isomorphism W ~ ¢"® ®¢(¢ )(V?m(g)), see 5.1.1. In particular
|6m1,|, = 1 for any isomorphism ¢.
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Proposition. The W-action on Extf'}(Eg(n_l)_b_b/’b’(l —n),11,) is trivial on the inertia I, and

the Frobenius element Frob acts like multiplication by (—1)~Y 6y p= ¥ +2(n=DFw(©),

Proof. Let us write X := Eg(n_l)_b_b,’b/(l —n). By convention, the action of Frob on a space
Ext%(X,I1I,) is induced by functoriality of Ext applied to Frob™" : X — X. Let us consider a

projective resolution of X in the category of smooth representations of J

u u uQ

Uu,
‘s P — P ——> P, y X > 0.

Since Frob™' commutes with the action of .J, we can choose a lift F = (F;);so of Frob™! to a

morphism of chain complexes.

u3 u2 ul

U

> Py > Py » Py —— X > 0
l}— 2 l}— 1 l}' 0 lFrob -1

u3\P2 uz\Pl ul\PO UO\X \O

After applying Hom,(-,II,) and forgetting about the first term, we obtain a morphism F* of

chain complexes.

0 —— Hom, (P, II,) —— Hom,(P;,1I,) —— Hom, (P, I1,)) —— ...

b b b

0 —— Hom,(F,1I,) —— Hom,(P;,1I,) —— Hom,; (P, I1,) —— ...
Here F} f(v) := f(Fi(v)). It induces morphisms on the cohomology
‘F;* : EthI<X7 HP) - Eth](Xa Hp)a

which do not depend on the choice of the lift F. Recall that Frob is the composition of 7 and
p-id € J. Since 7 is multiplication by the scalar (—1)¥p? 2
Fi = (=1)"Yp ¥ +2n=D(p=1.4d) for all 4.

Consider an element of Ext’,(X,II,) represented by a morphism f : P, — II,. For any v € P,

"=1) on X, we may choose the lift

we have

Frf) = f(Fiw) = (=) "p 20D f((p7h-id) o) = (1) p 0 oy, (7 - 1d) f(0).

It follows that Frob acts on Ext’; (X, II,) via multiplication by the scalar (—1)~Y §y p=¥ +2(n=D+w(©),
[

5.1.5 In general, the Hochschild-Serre spectral sequence has many differentials between non-
zero terms. However, focusing on the diagonal defined by a + b = 0, it is possible to compute
HO(S(by) ® F, L¢). Recall that X" (.J) denotes the set of unramified characters of .J. If z € Q;
is any non-zero scalar, we denote by Q[z] the 1-dimensional representation of W where the
inertia [ acts trivially and the geometric Frobenius Frob acts like z - id.
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Proposition. We have an isomorphism of G(A?) x W -representations

HIS(b) @ F,Le) ~ P P @ Qfdn,p” ).
HE.A&(I)
T,e X ()

Proof. The only non-zero term Fy » on the diagonal defined by a + b = 0 is F20 0. Since there is
no non-zero arrow pointing at nor coming from this term, it is untouched in all the successive

pages of the sequence. Therefore we have an isomorphism
Fy" ~ H)(S(bo) ® F, L¢).
Using 4.1.12; we also have isomorphisms

F*~ @ Hom, (H2=D(M™ Q)1 - n),IL,) @ II”

HEAE(I)

~ @ Homy ((c —IndJ 1)(1 —n),IL,) ®II”
HE.AE(I)

~ (—D Hom jo (1(1 — n),Hp|Jo) ®IIP.

Thus, only the automorphic representations Il € A¢(/) with HZO + 0 contribute to the sum.
Consider such a II. The irreducible representation II, is generated by a J°-invariant vector.
Since J° is normal in J, the whole representation II, is trivial on J°. Thus, it is an irreducible
representation of J/J° ~ 7Z. Therefore, it is one-dimensional. Since J° is generated by all
compact subgroups of J, it follows that HZO + 0 < II, € X" (J). When it is satisfied, the
W-representation Vj] := Hom . (1(1 — n),II,) has dimension one and the Frobenius action was
described in 5.1.4. ]

5.2 The case n = 3,4

5.2.1 In this section, we assume that m = 1, ie. n = 3 or 4. We recover the notations of
4.3.1. We use our knowledge so far on the cohomology of the Rapoport-Zink space to entirely
compute the cohomology of the basic locus of the Shimura variety via p-adic uniformization.

Let £ be an irreducible finite dimensional algebraic representation of G as in 5.1.1. When
n = 3 or 4, the semisimple rank of J is m = 1, therefore the terms F;’b are zero for a > 1.
In particular, the spectral sequence degenerates on the second page. Since it computes the
cohomology of the basic locus S(by) which is 1-dimensional, we also have Fj Y =0 for b > 3,
and F21 P~ 0forb=2 In Figure 2, we draw the second page F5» and we write between brackets
the complex modulus of the possible eigenvalues of Frob on each term under any isomorphism

t: Q; ~ C, as computed in 5.1.4.

Remark. The fact that no eigenvalue of complex modulus p*¢) appears in on 1 nor in F21 -1
follows from 4.3.2 Proposition, where we proved that E; """ = 0 for b = 4 (resp. 6) when n = 3
(resp. 4).
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Fy 2 [prO+2, pr)] 0
By [pr @+ Ey ! [pr©+]
Fy [pr©)] Fy°[p @]

Figure 2: The second page Fy with the complex modulus of possible eigenvalues of Frob on
each term.

Proposition. We have F21’1 = 0 and the eigenspaces of Frob on FQO’2 attached to any eigenvalue

of complex modulus p*© are zero.

Proof. By the machinery of spectral sequences, there is a G (A?) x W-subspace of H2(S(by) ®
F,L_g) isomorphic to F21 1 and the quotient by this subspace is isomorphic to F20 2. We prove
that all eigenvalues of Frob on H2(S(b)® F, L¢) have complex modulus p*(©*2. The proposition
then readily follows.

We need the Ekedahl-Oort stratification on the basic stratum of the Shimura variety. Let
KP c G(A?) be small enough. In [VW11] 3.3 and 6.3, the authors define the Ekedahl-Oort
stratification on Meq and on Sg»(by) respectively, and they are compatible via the p-adic
uniformization isomorphism. For n = 3 or 4, the stratification on the basic stratum take the

following form
ng(b()) = g[{p [1] [ g[{p [3]

The stratum Sg»[1] is closed and 0-dimensional, whereas the other stratum Sg»[3] is open,
dense and 1-dimensional. In particular, we have a Frobenius equivariant isomorphism between

the cohomology groups of highest degree
H2(Skr(bo) ® F, Le) ~ Hi(Swr[3] ® T, L)

According the [VW11] 5.3, the closed Bruhat-Tits strata M and §Kp7 Ak also admit an Ekedahl-
Oort stratification of a similar form, and we have a decomposition

Sko[3] = | |Skral3]

into a finite disjoint union of open and closed subvarieties. As a consequence, we have the

following Frobenius equivariant isomorphisms

H(Skr[3] ® F, Le) ~ D HZ(Skrap[3] @ F, Le) ~ D HL(Skoar ®@ F, Le)
Ak Ak

where the last isomorphism between cohomology groups of highest degree follows from the
stratification on the closed Bruhat-Tits strata ng,A,k. Now, recall from 5.1.1 that the local
system L¢ is given by

Le > e(&)eme) (R™O (M), Tult(€)) )
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It implies that E_g is pure of weight w(¢). Since the variety Sks sy is smooth and projective,
it follows that all eigenvalues of Frob on the cohomology group H? (ng, Ak ® ]F,C_g) must have
complex modulus p®©+2 under any isomorphism ¢ : Q; ~ C. The result follows by taking the
limit over KP. ]

5.2.2 In this paragraph, let us compute the term

O~ @ Exth (HOD(M™,Q)(1 - n),1,) @117

HEAg(I)
~ @ Ext}(c—Ind}1(1—n),1L,) @I
HE.Ag(I)
Let St; denote the Steinberg representation of .J, and recall that X" (J) denotes the set of
unramified characters of J.

Proposition. Let m be an irreducible smooth representation of J. Then

Ext}(c — Ind). 1, 7) = Qe ifFxe X0(,m x-St
0  otherwise.

In order to prove this proposition, we need a few general facts about restriction of smooth

representations to normal subgroups. Let G be a locally profinite group and let H be a closed

normal subgroup. If (o, W) is a representation of H, for g € G we define the representation

(09, W) by 09 : h — o(g~'hg). The representation o is irreducible if and only if o9 is for any

(or for all) g € G.

Lemma. Assume that Z(G)H has finite index in G.

(1) Let m be a smooth irreducible admissible representation of G. There exists a smooth

irreducible representation o of H, an integer r = 1 and ¢y, ..., 9, € G such that
Ty ~0"®...Qo7.

Moreover r < [Z(G)H : G|, and for any g € G there exists some 1 < i < r such that
09 ~ g9,
(2) Assume furthermore that G/H is abelian. Let w1 and my be two smooth admissible irre-
ducible representations of G. The three following statements are equivalent.
— ()i = (72
— There exists a smooth character x of G which is trivial on H such that my ~ x - 7.
— Hompy (71, m5) #+ 0.
(3) Assume that G/H is abelian and that |[Z(G)H : G| = 2. Let go € G\Z(G)H and let
m be a smooth admissible irreducible representation of G. If there exists an irreducible

representation o of H such that my ~ o ® 0%, then o % o%.

Proof. For (1) and (2), we refer to [Ren09] VI.3.2 Proposition. The result there is stated in
the context of a p-adic group G with normal subgroup H = °G such that G/°G ~ Z¢ for some
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d = 0, but the same arguments work as verbatim in the generality of the lemma. Admissibility
of the representations involved is assumed only in order to apply Schur’s lemma, insuring for
instance the existence of central characters of smooth irreducible representations. In particular,
if G/K is at most countable for any open compact subgroup K of GG, then it is not necessary
to assume admissibility.

Let us prove (3). Assume towards a contradiction that my ~ o @ 0% and that o ~ ¢%. We
build a smooth admissible irreducible representation II of G such that IIjz = o, which results
in a contradiction in regards to (2) since Homy (II, 7) + 0 but Il # 7. Let x be the central
character of m. Then x|z()~m coincides with the central character of o.

Let W denote the underlying vector space of 0. By hypothesis, there exists a linear automor-
phism f: W — W such that for every he H and we W,

f(o(go " hgo) - w) = a(h) o f(w).

Let us write g2 = 29hg for some zy € Z(G) and hg € H. We define ¢ := f2 o0 a(ho)~*. Then for
all he H and w € W, we have

p(o(h)-w) = f2(a(hy'h) - w) = f*(o(hg hho)o(hy') - w)
= f*(o(g5%hgs)o(hg) - w)
(h)o f2(o(ho)™" - w)
(h) o p(w).

o

~—~

o
o
o
Thus ¢ : 0 — o. By Schur’s lemma we have ¢ = X - id for some A € Q,. Up to replacing f by

(x(20)A")Y2f, we may assume that ¢ = x(2) - id, ie. f2 = x(z0)o(ho).
We build a G-representation IT on W which extends o. Let g € G and define

x(2)o(h) if g=2he Z(G)H,

I(a) =
(9) x(2)foa(h) if g=gozhe goZ(G)H.

Then one may check that II is a well defined group morphism G — GL(W). The fact that it is
smooth irreducible and admissible follows from II|; ~ o by construction, and it concludes the

proof. n

Remark. Under the hypotheses of (3), as long as ¢ is a smooth irreducible admissible repre-
sentation of H such that 0% ~ o and whose central character x|z@)~# can be extended to a
character of Z(G), then one may build II as in the proof of the lemma.

We may now move on to the proof of the proposition.

Proof. By Frobenius reciprocity we have
Ext}(c —Ind%. 1,7) ~ Ext} (1, T|5e)-

By functoriality of Ext, we have Ext}. (1, myo) = 0if the central character of 7 is not unramified.
Thus, let us now assume that it is unramified. According to 1.3.4, we have J/J° ~ Z, and
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Z(J)J° = J when n is odd, and is of index 2 in J when n is even. Thus, 70 is irreducible
when 7 is odd, and can either be irreducible, either decompose as ¢ @ 0% for some irreducible
representation o of J° such that 0% % ¢ when n is even. Here, gy may be defined as in 1.1.7.
Thus, we are reduced to computing Ext’.(1,0) for any irreducible representation o of .J°
with trivial central character. Let J' = U(V) denote the unitary group of V (recall that
J = GU(V) is the group of unitary similitudes). Then J! is a normal subgroup both of J° and
of J. Moreover, J°/J! is isomorphic to the image of the multiplier cje + J° — Z,, in particular
it is compact. Thus, we have

Extl.(1,0) ~ Ext}i (1, UlJl)JO/Jl.

Since ¢ has trivial central character, the J°-action on Ext)i(1,0,1) is actually trivial on
Z(J°)J'. But this group is equal to the whole of J°. Indeed, let g € J°. Since Q,2/Q, is
unramified, there exists some A € Z, such that Norm()) = ¢(g). Thus c(A"lg) = 1so that g is
the product of A-id € Z(J°) and of an element of J'. Hence, J° acts trivially on Ext}: (1, 051).
Since J! is an algebraic group, we may use Theorem 2 of [NP20], a generalization of a duality

theorem of Schneider and Stiihler, to finish the computation. Namely, we have
EXt}Il(l, 0'|]1) >~ HOHIJI (O"Jl, D(l))v,

where D denotes the Aubert-Zelevinsky involution in J'. We note that D(1) = St is the
Steinberg representation of J*.

Let us justify that the restriction of St; to J' is equal to St;i. The Steinberg representation
Sty (resp. Stji) can be characterized as the unique irreducible representation p of J (resp. of
JY) such that Ext3(1, p) # 0 (resp. Ext’:(1,p) % 0). The gap between the degrees of the Ext
groups for J and for J! is explained by the non-compactness of the center of J. Since St; has
trivial central character, by [NP20] Proposition 3.4 we have

Ext’(1,St,) ~ Ext},(1,St,) @ Ext3, (1, St,),

where the Ext groups on the right-hand side are taken in the category of smooth representations
of J on which the center acts trivially. Equivalently, this is the category of smooth representa-
tions of J/Z(J). Consider the normal subgroup Z(J)J'/Z(J) ~ J'/Z(J) n J' = J'/Z(J'), with
quotient isomorphic to J/Z(J)J', which is trivial if n is odd and Z/27Z is n is even. Thus, we
have

Ext5,(1,5t;) ~ Ext}/Z(J)(l,StJ)
~ Ext g (1, (Sty) )40
~ Ext 4 (1, (Sty) ) /407
~ Ext’ (1, (StJ)Ul)J/Z(J)Jl,

the last line following from the same Proposition 3.4 as above, but applied to J'. In [Far04]
Lemme 4.4.12, it is explained that Extf]l (71, m2) vanishes for any smooth representations 7y, 7o
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of J' as soon as i is greater than the semisimple rank of J, that is 1 in our case. Hence,
Extil(l, Sty) = 0 and we have

Ext?(1,St) ~ Ext}(1,St,) ~ Exthi (1, (St ) )47

In particular, the right-hand side is non zero, which proves that (St;) ;1 contains St;i. If n is
odd so that Z(.J)J' = J, it follows that (St;);,» = St,i. If n is even, in virtue of point (3) of
the lemma, it remains to justify that for any g € J we have St’, ~ St ;1. This follows from the
following computation

Ext}: (1,5t%,) = Ext}i (19, St 1) = Ext}: (1, St,1) + 0.

Let us go back to the irreducible representation 7 of J with unramified central character.
Summing up the previous paragraphs, we have that ;1 contains St i if and only if 7 ~ x - St;
for some character x of J that is trivial on J' (and thus trivial on Z(J°)J! = J° by the
unramifiedness of the central character), and

@ ifﬂul ZStJl,

Ext}(c —IndJ. 1,7) ~ Hom j1 (01,8t 1) ~
0  otherwise.

[]

5.2.3 We may now compute the cohomology of the basic stratum. Recall the supercuspidal
representation 77 of the Levi complement M; < J that we defined in ??. When n = 3 or 4, we
actually have M; = J and

—~~—

T =c¢C¢— Indl{h(]l) PA,

is a supercuspidal representation of J, where N ;(J;) = Z(J)J; (see 1.3.3) and pp, is the inflation
of pa, to Ny(J1) = Z(J)J; (see 1.3.3) obtained by letting the center act trivially. We use the

same notations as in 5.1.5.

Theorem. There are G(AY}) x W-equivariant isomorphisms

HIS(bo) @ F,Le) ~ P 1P @ Qufon,p" ],

HE.Ag(I)
e X1 (J)
H}: (g(bo) ® F, ﬁ_g) ~ @ 1’ ® @[5prw(§)] D (_B 1 ® @[_5prw(§)+l]7
IeA¢ (1) e A (1)
3X€Xlln(J)’ 3X€Xlln(J)’
Hp=x-Sts IIp=x71
HX(S(ho) @ F. L) ~ @B 1P @ Qu[on,p* 9.
e A (1)
)L 40

Proof. The statement regarding H2(S(by) ® F, L¢) was already proved in 5.1.5.
Let us prove the statement regarding H2(S(by) ® T, L¢) first. By 5.2.1, we have

H2(S(by) ® F, Le) =~ FY2 =~ (P HomJ< (1—n),Hp>®Hp,

HE.Ag I)
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where b = 2 if n = 3 and b = 4 if n = 4. The term Eg’b is isomorphic to ¢ — Ind§1 1. Therefore,

by Frobenius reciprocity we have
Hom (Eg’b(l —n), Hp) ~ Homy, (1(1 —n),1I,).

Hence, only the automorphic representations I € A¢(I) with Hgl #+ 0 contribute to F20 2 Such
a representation I, is said to be J;-spherical. Since J; is a special maximal compact subgroup
of J, according to [Min11] 2.1, we have dim(7”/1) = 1 for every smooth irreducible .J;-spherical
representation 7 of J. The result follows using 5.1.4 to describe the eigenvalues of Frob.

We now prove the statement regarding H.(S(by) ® F, L¢). By the Hochschild-Serre spectral
sequence, there exists a G (A?) x W-subspace V' of this cohomology group such that

V'~ F? and HY(S(by) ® F, Le)/V' ~ Fy.
We have

B~ @ Ext) (HD(M™, Q)1 - n).1L,) @ I
HEA{([)
~ @ Ext}(c—Ind} 1(1—n),1L,) @I
HEA&(I)

~ P 1PRQ[on,p ],
HE.A&(I)
IxeX (),
p=x-Sty
according to 5.2.2, and with the eigenvalues of Frob being given by 5.1.4.
On the other hand, we have

F¢'~ @ Hom, (Eg’z("‘”‘lu —n), Hp> 117,

HE.Ag (I)

By 5.1.4, Frob acts on a summand of FQO’1 by the scalar —6pr“’(§)+1.

Since Frobyy» has no
eigenvalue of complex modulus p*©+! the quotient actually splits so that F20 1 is naturally a
subspace of H(S(by) ® F, L¢). It remains to compute it.

We have

B s e Tnd, g,

with 7 acting like multiplication by —p* when n = 3 and by —p® when n = 4, and A, = (2,1)

is the partition of 2m + 1 = 3 defined in 2.7. Hence, we have an isomorphism

Fy'~ @ Homy (c—Indy pa,(1 —n),IL,) @I
HE.A&(I)
~ @ Hom , (pAz(l — n>7Hp|J1) ® IIP.
HEAE(I)

It follows that only the automorphic representations II € A¢ (/) whose p-component II, contains
the supercuspidal representation pa, when restricted to Ji, contribute to the sum. According
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to 4.2.7, such II, are precisely those of the form y - 7 for some x € X" (.J). By the Mackey

formula we have

Hom; (c — Indi pas, X - 11) ~ Homy, (pas, m1s,)
=~ HomJ1 (pAza (C - Indl{l‘](‘h) /’E)Lfl)

= @ HomJlthJ(Jl)(pAZ’h/pX;)7
hEJl\J/NJ(J1)

where in the last formula we omitted to write the restrictions to J; n"N;(J;). We used the fact
that x|, is trivial. Since pa, is just the inflation of pa, from J; to N;(J;) = Z(J)J; obtained
by letting Z(J) act trivially, we have a bijection

Hom j, -in, () (Pas, " Pag) = Homy (1 ynin () (Pags'PAG)-

Now, N,(J;) contains the center, is compact modulo the center, and 7y = ¢ — Indl‘{IJ(Jl) PA, 18
supercuspidal. It follows that an element h € J intertwines pa, if and only if h € N;(J;) (see
for instance [BHO6] 11.4 Theorem along with Remarks 1 and 2). Therefore, only the trivial
double coset contributes to the sum and we have

Homy (¢ — IndJ, pa,, X - 71) ~ Homy, (pa,, pa,) ~ Qo

To sum up, we have

0,1 - w
'~ @ IPQQ[—6n,p @M.
HEA{(I)
IxeXxun(J),
p=x71

It concludes the proof.

5.3 On the cohomology of the ordinary locus when n = 3

5.3.1 In this section, we assume that the Shimura variety is of Kottwitz-Harris-Taylor type.
According to [HT01] 1.7, it amounts to assuming that the algebra B from 3.1 is a division
algebra satisfying a few additional conditions. In particular, B, is either split either a division
algebra for every place v of @, and there must be at least one prime number p’ (different from
p) which splits in F and such that B splits over p’. In this situation, the Shimura variety is
compact.

According to 3.5, when n = 3 there is a single Newton stratum other than the basic one. It
is the p-ordinary locus Sk»(b;), and it is an open dense subscheme of the special fiber of the
Shimura variety. Moreover, since the Shimura variety is compact, the ordinary locus is also an
affine scheme according to [GN17] and [KW18]. By using the spectral sequence associated to
the stratification

g]{p = g}(p (bo) [ ng (bl),

we may deduce information on the cohomology of the ordinary locus. The spectral sequence is
given by
G H(Skr(be) ® F, Q) = H™*(Spr ® F, Q).
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In figure 3, we draw the first page of this sequence.

HZ(Sk»(b1) ® F, Q)
H2(So (bo) ® F, Q) —— H3(Spn(b1) ® F, Q)
H (Sgo (bo) ® F, Q) — H2(Sier(b) ® F, Q)

HS (ng (b)) ® T, @)

Figure 3: The first page G;.

5.3.2 Let v be a place of E above p’. The cohomology of the Shimura variety She,xr ®p F,
has been entirely computed in [Boy10]. Note that as G (A’;)—representations, the cohomology of
She, kr @k E, is isomorphic to the cohomology of Sheoyxr» ®g Qp2, which in turn is isomorphic
to the cohomology of the special fiber Sg» using nearby cycles. In particular, we understand
perfectly the abutment of the spectral sequence G‘f’b. Since Sk» is smooth and projective, its
cohomology admits a symmetry with respect to the middle degree 2. Moreover, by the results
of loc. cit. the groups of degree 1 and 3 are zero. It follows that ¢ is surjective and v is

injective. Combining with our computations, we deduce the following proposition.

Proposition. There is a G(AI}) x W -equivariant isomorphism

HSG)®F, L)~ @D  1"®Qefon,p" ™).
HE.A{ (I)
I,eX 1 (J)

There is a G(AZ;) x W -equivariant monomorphism

HXS(h) ® F. L) > @ TP @Qu[on,p* @+
L +0

There is a G(A}) x W -equivariant monomorphism

P TPoQmnr?le @ I’QQ[-6np"9""] — HX(S(b)® F,Le).

IeAs(I) HeAg(I)
IxeXun(.)), IxeXn(J),
p=x-Sty Mp=x-11
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