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Abstract : In this paper, we study the cohomology of the unitary unramified PEL Rapoport-Zink
space of signature p1, n´ 1q at maximal level. Our method revolves around the spectral sequence
associated to the open cover by the analytical tubes of the closed Bruhat-Tits strata in the special
fiber, which were constructed by Vollaard and Wedhorn. The cohomology of these strata, which
are isomorphic to generalized Deligne-Lusztig varieties, has been computed in [Mul21]. This
spectral sequence allows us to prove the semisimplicity of the Frobenius action and the non-
admissibility of the cohomology in general. Via p-adic uniformization, we relate the cohomology
of the Rapoport-Zink space to the cohomology of the basic stratum of a Shimura variety with no
level at p. In the case n “ 3 or 4, we give a complete description of the cohomology of the basic
stratum in terms of automorphic representations.
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Introduction: By defining moduli problems classifying deformations of p-divisible groups

with additional structures, Rapoport and Zink have constructed their eponymous spaces which

consist in a projective system pMKpq of non-archimedean analytic spaces. The set of data

defining the moduli problem determines two p-adic groups GpQpq and J which both act on the

tower. Its cohomology is therefore equipped with an action of GpQpq ˆ J ˆW where W is the

absolute Weyl group of a finite extension of Qp, called the local reflex field. This is expected

to give a geometric incarnation of the local Langlands correspondance. So far, relatively little

is known about the cohomology of Rapoport-Zink spaces in general. The Kottwitz conjecture

describes the GˆJpQpq-supercuspidal part of the cohomology but it is only known in a handful

of cases. It was first proved for the Lubin-Tate tower in [Boy99] and in [HT01], from which the

Drinfeld case follows by duality. The case of basic unramified EL Rapoport-Zink spaces has

been treated in [Far04] and [Shi12]. As for the PEL case, it was proved for basic unramified

unitary Rapoport-Zink spaces with signature p1, n´ 1q with n odd in [Ngu19], and in [BMN21]

for an arbitrary signature with an odd number of variables. Beyond the Kottwitz conjecture,

one would like to understand the individual cohomology groups of the Rapoport-Zink spaces

entirely. This has been done in [Boy09] for the Lubin-Tate case (and, dually, for the Drinfeld

case as well) using a vanishing cycle approach. Boyer’s results were later used in [Dat07] to

recover the action of the monodrony and give an elegant form of geometric Jacquet-Langlands

correspondance. However, this method relied heavily on the particuliar geometry of the Lubin-

Tate tower, and we are faced with technical issues in other situations where we do not have a

satisfactory understanding of the geometry of the Rapoport-Zink spaces.

In this paper, we aim at pursuing the goal of describing the individual cohomology groups of

the Rapoport-Zink spaces in the basic PEL unramified unitary case with signature p1, n ´ 1q.

Here, GpQpq is an unramified group of unitary similitudes in n variables and J is an inner

form of GpQpq. In fact, J is isomorphic to GpQpq when n is odd and J is the non quasi-split

inner form when n is even. Our approach is based on the geometric description of the reduced

special fiber Mred given in [Vol10] and [VW11]. In these papers, Vollaard and Wedhorn built

the Bruhat-Tits stratification tMΛu on Mred which is interesting for two reasons:

– the closed strata MΛ are indexed by the vertices of the Bruhat-Tits building BTpJ,Qpq

of J . The combinatorics of the stratification can be read on the building.

– each individual stratum MΛ is isomorphic to a generalized Deligne-Lusztig variety for a
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finite group of Lie type of the form GU2θ`1pFpq, arising in the maximal reductive quotient

of the maximal parahoric subgroup JΛ :“ FixJpΛq.

In [Mul21], by exploiting the Ekedahl-Oort stratification on a given stratum MΛ, we computed

its cohomology in terms of representations of GU2θ`1pFpq with a Frobenius action. We consider

the Rapoport-Zink space Man :“MC0 at maximal level, where C0 Ă GpQpq is a hyperspecial

maximal open compact subgroup. Then Man is an analytic space of dimension n´1. It admits

an open cover by the analytical tubes UΛ of the closed Bruhat-Tits strata MΛ. This induces

a J ˆW -equivariant Čech spectral sequence computing the cohomology of Man (see 4.1.4 for

the precise notations):

Ea,b
1 :

à

γPI´a`1

Hb
cpUΛpγqpbCp,Q`q ùñ Ha`b

c pMan
pbCp,Q`q.

Using Berkovich’s comparison theorem, the cohomology of the tubes UΛ can be identified, up

to a shift in indices and a suitable Tate twist, with the cohomology of the closed Bruhat-Tits

strata MΛ. Let Frob P W be a lift of the geometric Frobenius and let τ denote the action of the

element pp´1 ¨ id,Frobq P J ˆW on the cohomology. Then the action of τ on the cohomology

of UΛ is identified with the Frobenius action on the cohomology of MΛ. It follows in particular

that τ acts in a semisimple manner on the cohomology of the Rapoport-Zink space Man.

Proposition (4.1.7). The spectral sequence degenerates on the second page E2. For 0 ď b ď

2pn´ 1q, the induced filtration on Hb
cpMan

pbCp,Q`q splits, ie. we have an isomorphism

Hb
cpMan

pbCp,Q`q »
à

bďb1ď2pn´1q

Eb´b1,b1

2 .

The action of W on Hb
cpMan

pbCp,Q`q is trivial on the inertia subgroup and the action of

the rational Frobenius element τ is semisimple. The subspace Eb´b1,b1

2 is identified with the

eigenspace of τ associated to the eigenvalue p´pqb
1

.

Let m :“
X

n´1
2

\

. In order to study the J-action, we rewrite the terms Ea,b
1 using compactly

induced representations (see 4.1.10 for the precise notations)

Ea,b
1 »

m
à

θ“0

c´ IndJJθ

´

Hb
cpUΛθ ,Q`q bQ`rK

pθq
´a`1s

¯

.

The various Jθ’s are maximal parahoric subgroups of J , and the representations Hb
cpUΛθ ,Q`q b

Q`rK
pθq
´a`1s are trivial on the unipotent radical J`θ . In particular, they are representations of

the finite group of Lie type Jθ :“ Jθ{J
`
θ » GpU2θ`1pFpq ˆ Un´2θ´1pFpqq.

By exploiting this spectral sequence and the underlying combinatorics of the Bruhat-Tits build-

ing of J , we are able to compute the cohomology groups of Man of highest degree 2pn ´ 1q,

and when n “ 3 or 4 the group of degree 2pn´ 1q ´ 1 as well. We denote by J˝ the subgroup

of J generated by all the compact subgroups. It corresponds to all the unitary similitudes in J

whose multipliers are a unit. We note that J˝ is normal in J with quotient J{J˝ » Z.
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Proposition (4.1.12). There is an isomorphism

H2pn´1q
c pMan,Q`q » c´ IndJJ˝ 1,

and the rational Frobenius τ acts via multiplication by p2pn´1q.

For λ a partition of 2m`1, we denote by ρλ the associated irreducible unipotent representation

of GU2m`1pFpq via the classification of [LS77] which we recall in 2.6. We also write ρλ for its

inflation to the maximal parahoric subgroup Jm. In particular, if 2m ` 1 is equal to tpt`1q
2

for

some integer t ě 1, we write ∆t :“ pt, t ´ 1, . . . , 1q for the partition of 2m ` 1 whose Young

diagram is a staircase. The unipotent representation ρ∆t of GU2m`1pFpq is cuspidal.

Theorem (4.3.4). Assume that n “ 3 or 4. We have

H2pn´1q´1
c pMan,Q`q » c´ IndJJ1 ρ∆2 ,

with the rational Frobenius τ acting via multiplication by ´p2pn´1q´1.

In general, the terms Ea,b
2 in the second page may be difficult to compute. However, the terms

corresponding to a “ 0 and b P t2pn´1´mq, 2pn´1´mq`1u are not touched by any non-zero

differential in the alternating version of the Čech spectral sequence, making their computations

accessible. We note that 2pn´ 1´mq is equal to the middle degree when n is odd, and to one

plus the middle degree when n is even.

Proposition (4.1.11). We have an isomorphism of J-representations

E
0,2pn´1´mq
2 » c´ IndJJm ρp2m`1q.

If n ě 3 then we also have an isomorphism

E
0,2pn´1´mq`1
2 » c´ IndJJm ρp2m,1q.

We note that the representation ρp2m`1q is trivial. Using type theory, we may describe the

inertial supports of the irreducible subquotients of such compactly induced representations.

An inertial class is a pair rL, τ s where L is a Levi complement of J and τ is a supercuspidal

representation of L, up to conjugation and twist by an unramified character. Any smooth

irreducible representation π of J determines a unique inertial class `pπq. If s is an inertial class,

let Reps
pJq be the category of smooth representations of J all of whose irreducible subquotients

π satisfy `pπq “ s. In particular, we allow non-admissible representations in Reps
pJq. For S a

set of inertial classes, let RepS
pJq be the direct product of the categories Reps

pJq for s P S.

Let pV, t¨, ¨uq be the n-dimensional Qp2-hermitian space whose group of unitary similitudes is

J , and let

V “ mH ‘Van

be a Witt decomposition, where H denotes the hyperbolic plane and where Van is anisotropic.

Note that Van has dimension 1 or 2 depending on whether n is odd or even respectively. For

0 ď f ď m, we define

Lf :“ G
`

UpfH ‘Van
q ˆ U1pQpq

m´f
˘

.
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Then Lf can be seen as a Levi complement in J , and Lm “ J . In particular L0 is a minimal Levi

complement. Let τ0 denote the trivial representation of L0, and let τ1 denote the representation

of L1 obtained by letting the GU1-components act trivially, and the GUpH ‘Vanq-component

acts through the compact induction of the inflation to a special maximal parahoric subgroup

of the unique cuspidal unipotent representation of GU3pFpq. For f “ 0, 1, the irreducible

representation τf of Lf is supercuspidal. For V a smooth representation of J and χ a continuous

character of the center ZpJq, we denote by Vχ the maximal quotient of V on which the center

acts like χ. Combining our previous proposition with an analysis of the inertial supports via

type theory, we obtain the following proposition.

Proposition (4.2.12). Let χ be an unramified character of ZpJq.

– Assume that n ě 3. The representation pE
0,2pn´1´mq
2 qχ contains no non-zero admissible

subrepresentation, and it is not J-semisimple. Moreover, any irreducible subquotient has

inertial support rL0, τ0s. If n ě 5, then the same statement holds for pE
0,2pn´1´mq`1
2 qχ

with the inertial support being rL1, τ1s.

– For n “ 1, 2, 3, 4, let b “ 0, 2, 3, 5 respectively. Then m “ 0 when 1, 2 and m “ 1 when

n “ 3, 4. Let χ be an unramified character of ZpJq. The twist τm,χ of τm by χ is an

irreducible supercuspidal representation of J , and we have

pE0,b
2 qχ »

$

&

%

τm,χ if n “ 1, 3, 4,

τm,χ ‘ χ0τm,χ if n “ 2.

Here, when n “ 2 the subgroup ZpJqJ0 has index 2 in NJpJ0q “ J . In this situation, χ0 denotes

the unique non-trivial character of J which is trivial on ZpJqJ0.

This proposition yields the following important corollary.

Corollary (4.2.12). Let χ be an unramified character of ZpJq. If n ě 3 then H
2pn´1´mq
c pMan,Q`qχ

is not J-admissible. If n ě 5 then the same holds for H
2pn´1´mq`1
c pMan,Q`qχ.

Thus the cohomology of Rapoport-Zink spaces need not be admissible nor J-semisimple in

general. This seems to differ from the case of the Lubin-Tate tower.

Lastly, we introduce the unramified unitary PEL Shimura variety of signature p1, n ´ 1q with

no structure level at p. It is defined over a quadratic extension E of Q in which the prime p

is inert. The corresponding Shimura datum gives rise to a reductive group G over Q, whose

group of Qp-rational points is isomorphic to the group we denoted GpQpq, and such that GpRq »
GUp1, n´ 1q. The Shimura varieties are indexed by the open compact subgroups Kp Ă GpAp

f q

which are small enough. Kottwitz constructed integral models at p of these Shimura varieties.

Their special fibers are stratified by the Newton strata, and the unique closed stratum is called

the basic stratum. We denote it SKppb0q. The p-adic uniformization theorem of [RZ96] is a

geometric identity between the Rapoport-Zink space M and the basic stratum SKppb0q. In

[Far04], Fargues constructed a Hochschild-Serre spectral sequence associated to this geometric

identity, computing the cohomology of the basic stratum.
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Let ξ be an irreducible algebraic finite dimensional representation of G, and let Lξ be the

associated local system on the Shimura variety, restricted to the special fiber. It is a pure sheaf

of some weight wpξq P Z. Let I be the inner form of G such that IpAf q “ J ˆ GpAp
f q and

IpRq » GUp0, nq. We denote by AξpIq the set of automorphic representations of I of type qξ at

infinity, and counted with multiplicities. Fargues’ spectral sequence is given in the second page

by

F a,b
2 “

à

ΠPAξpIq
ExtaJ

`

H2pn´1q´b
c pMan

pbCp,Q`qp1´ nq,Πp

˘

b Πp
ùñ Ha`b

c pSpb0q b F,Lξq,

where Spb0q :“ lim
ÐÝKp SKppb0q and F is an algebraic closure of Fp. It is GpAp

f q ˆW -equivariant.

When n “ 3 or 4 this sequence degenerates on the second page, and our knowledge on the

cohomology of the Rapoport-Zink space Man allows us to compute every term. We obtain a

description of the cohomology of the basic stratum in terms of automorphic representations.

A smooth character of J is said to be unramified if it is trivial on all compact subgroups of

J . Let XunpJq denote the set of unramified characters of J . Let StJ denote the Steinberg

representation of J . If Π P AξpIq, we define δΠp :“ ωΠppp
´1 ¨ idqp´wpξq P Q`

ˆ
where ωΠp is the

central character of Πp, and p´1 ¨ id lies in the center of J . For any isomorphism ι : Q` » C we

have |ιpδΠpq| “ 1. Eventually, if x P Q`
ˆ

, we denote by Q`rxs the 1-dimensional representation

of the Weil group W where the inertia acts trivially and Frob acts like multiplication by the

scalar x.

Theorem (5.2.3). There are GpAp
f q ˆW -equivariant isomorphisms

H0
cpSpb0q b F,Lξq »

à

ΠPAξpIq
ΠpPXunpJq

Πp
bQ`rδΠpp

wpξq
s,

H1
cpSpb0q b F,Lξq »

à

ΠPAξpIq
DχPXunpJq,
Πp“χ¨StJ

Πp
bQ`rδΠpp

wpξq
s ‘

à

ΠPAξpIq
DχPXunpJq,

Πp“χ¨τ1

Πp
bQ`r´δΠpp

wpξq`1
s,

H2
cpSpb0q b F,Lξq »

à

ΠPAξpIq
Π
J1
p ­“0

Πp
bQ`rδΠpp

wpξq`2
s.

Assume now that the Shimura variety is of Kottwitz-Harris-Taylor type, implying among other

things that the reflex field E splits over a prime number p1 different from p and `. The co-

homology of the whole Shimura variety has been computed in [Boy10]. In particular, it does

not contain any multiplicity dependent on p such as ν, implying that such multiplicities should

occur in other Newton strata as well. We may verify this directly in the case n “ 3, where

there is only one other Newton stratum which is the µ-ordinary locus of the Shimura variety.

We denote it SKppb1q and we also write Spb1q :“ lim
ÐÝKp SKppb1q.

Proposition. There is a GpAp
f q ˆW -equivariant isomorphism

H4
cpSpb1q b F,Lξq »

à

ΠPAξpIq
ΠpPXunpJq

Πp
bQ`rδΠpp

wpξq`4
s.
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There is a GpAp
f q ˆW -equivariant monomorphism

H3
cpSpb1q b F,Lξq ãÑ

à

ΠPAξpIq
Π
J1
p ­“0

Πp
bQ`rδΠpp

wpξq`2
s.

There is a GpAp
f q ˆW -equivariant monomorphism

à

ΠPAξpIq
DχPXunpJq,
Πp“χ¨StJ

Πp
bQ`rδΠpp

wpξq
s ‘

à

ΠPAξpIq
DχPXunpJq,

Πp“χ¨τ1

Πp
bQ`r´δΠpp

wpξq`1
s ãÑ H2

cpSpb1q b F,Lξq.

Notations: Throughout the paper, we fix an integer n ě 1 and we write m :“ tn´1
2

u so that

n “ 2m ` 1 or 2pm ` 1q according to whether n is odd or even. We also fix an odd prime

number p. If k is a perfect field of characteristic p, we denote by W pkq the ring of Witt vec-

tors and by W pkqQ its fraction field, which is an unramified extension of Qp. We denote by

σk : x ÞÑ xp the Frobenius of Galpk{Fpq, and we use the same notation for its (unique) lift to

GalpW pkqQ{Qpq. If k1{k is a perfect field extension then pσk1q|k “ σk, so we can remove the

subscript and write σ unambiguously instead. If q “ pe is a power of p, we write Fq for the

field with q elements. In the special case where q “ p2, we also use the alternative notation

Zp2 “ W pFp2q and Qp2 “ W pFp2qQ. We fix an algebraic closure F of Fp. In various situations,

the symbol 1 will always represent the trivial representation of the group we are considering.

Acknowledgement: This paper is part of a PhD thesis under the supervision of Pascal Boyer

and Naoki Imai. I am grateful for their wise guidance throughout the research. I also wish to

adress special thanks to Jean-Loup Waldspurger for helpful discussions regarding the structure

of compactly induced representations.

1 The Bruhat-Tits stratification on the PEL unitary

Rapoport-Zink space of signature p1, n´ 1q

1.1 The PEL unitary Rapoport-Zink space M of signature p1, n´ 1q

1.1.1 In [VW11], the authors introduce the PEL unitary Rapoport-Zink space M of signature

p1, n´ 1q as a moduli space, classifying the deformations of a given p-divisible group equipped

with additional structures. We briefly recall the construction. Let Nilp denote the category of

schemes over Zp2 where p is locally nilpotent. For S P Nilp, a unitary p-divisible group of

signature p1, n´ 1q over S is a triple pX, ιX , λXq where

– X is a p-divisible group over S.

– ιX : Zp2 Ñ EndpXq is a Zp2-action on X such that the induced action on its Lie alge-

bra satisfies the signature p1, n ´ 1q condition: for every a P Zp2 , the characteristic

polynomial of ιXpaq acting on LiepXq is given by

pT ´ aq1pT ´ σpaqqn´1
P Zp2rT s Ă OSrT s.
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– λX : X
„
ÝÑ tX is a Zp2-linear polarization where tX denotes the Serre dual of X.

The Zp2-linearity of λX is with respect to the Zp2-actions ιX and the induced action ιtX on the

dual. A specific example of unitary p-divisible group over Fp2 is given in [VW11] 2.4 by means

of covariant Dieudonné theory. We denote it by pX, ιX, λXq and call it the standard unitary

p-divisible group. The p-divisible group X is superspecial. The following set-valued functor

M defines a moduli problem classifying deformations of X by quasi-isogenies. More precisely,

for S P Nilp the set MpSq consists of all isomorphism classes of tuples pX, ιX , λX , ρXq such

that

– pX,λX , ρXq is a unitary p-divisible group of signature p1, n´ 1q over S.

– ρX : X ˆS S Ñ XˆFp2 S is a Zp2-linear quasi-isogeny compatible with the polarizations,

in the sense that tρX ˝ λX ˝ ρX is a Qˆp -multiple of λX .

In the second condition, S denotes the special fiber of S. By [RZ96] Corollary 3.40, this moduli

problem is represented by a separated formal scheme M over SpfpZp2q, called a Rapoport-

Zink space. It is formally locally of finite type, and because the associated PEL datum is

unramified it is also formally smooth over Zp2 . The reduced special fiber of M is the

reduced Fp2-scheme Mred defined by the maximal ideal of definition. By loc. cit. Proposition

2.32, each irreducible component of Mred is projective. The geometry of the special fiber has

been thoroughly described in [Vol10] and [VW11], and we recall some of their constructions.

1.1.2 Rational points of M over a perfect field extension k of Fp2 can be understood in terms

of semi-linear algebra by means of Dieudonné theory. We denote by MpXq the Dieudonné

module of X, this is a free Zp2-module of rank 2n. We denote by NpXq :“ MpXq b Qp2 its

isocrystal. By construction, the Frobenius and the Verschiebung agree on NpXq. In particular,

we have F2 “ p ¨ id on the isocrystal. The Zp2-action ιX induces a Z{2Z-grading MpXq “
MpXq0 ‘MpXq1 as a sum of two free Zp2-modules of rank n. The same goes for the isocrystal

NpXq “ NpXq0‘NpXq1 where NpXqi “MpXqibQp2 for i “ 0, 1. The polarization λX induces

a perfect σ-symplectic form on NpXq which stabilizes the lattice MpXq and for which F is self-

adjoint. Compatibility with ιX implies that the pieces NpXqi are totally isotropic for i “ 0, 1

and dual of each other. Moreover, the Frobenius F is then 1-homogeneous with respect to this

grading. As in [VW11] 2.6, it is possible to modify the symplectic pairing so that it restricts

to a non-degenerate Qp2-valued σ-hermitian form t¨, ¨u on NpXq0.

Notation. From now on, we will write V :“ NpXq0 and M :“MpXq0.

Then V is a Qp2-hermitian space of dimension n, and M is a given Zp2-lattice, ie. a Zp2-
submodule containing a basis of V. Given two lattices M1 and M2, the notation M1

d
Ă M2

means that M1 ĂM2 and the quotient module M2{M1 has length d. The integer d is called the

index of M1 in M2, and is denoted d “ rM2 : M1s. We have 0 ď d ď n. Given a lattice M Ă V,

the dual lattice is denoted M_. It consists of all the vectors v P V such that tv,Mu Ă Zp2 .
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Then, by construction the lattice M satisfies

pM_ 1
Ă M

n´1
Ă M_.

The existence of such a lattice M in V implies that the σ-hermitian structure on V is isomorphic

to any one described by the following two matrices

Todd :“ A2m`1, Teven :“

¨

˚

˚

˚

˝

Am

1 0

0 p

Am

˛

‹

‹

‹

‚

.

Here, Ak denotes the k ˆ k matrix with 1’s in the antidiagonal and 0 everywhere else.

Proposition ([Vol10] 1.15). There exists a basis of V such that t¨, ¨u is represented by the

matrix Todd is n is odd and by Teven if n is even.

1.1.3 A Witt decomposition on V is a set tLiuiPI of isotropic lines in V such that the

following conditions are satisfied:

– For every i P I, there is a unique i1 P I such that tLi, Li1u ­“ 0.

– The sum of the Li’s is direct.

– The orthogonal in V of the direct sum of the Li’s is an anisotropic subspace of V.

Because each line Li is isotropic, in the first condition one necessarily has pi1q1 “ i and i ­“ i1.

As a consequence, the cardinality of the index set I is an even number #I “ 2wpVq. The

integer w “ wpVq is called the Witt index of V and it does not depend on the choice of

a Witt decomposition. We write Lan for the orthogonal of the direct sum of the Li’s. The

dimension of Lan is nan :“ n ´ 2w, therefore it is also independent on the choice of the Witt

decomposition.

Given any Witt decomposition, one may always find vectors ei P Li such that tei, eju “ δj,i1 .

Together with a choice of an orthogonal basis for Lan, these vectors define a basis of V which

is said to be adapted to the Witt decomposition. For any i P I, the direct sum Li ‘Li1 is

isometric to the hyperbolic plane H. Therefore, we obtain a decomposition

V “ wH‘ Lan.

We may always rearrange the index set so that I “ t´w, . . . ,´1, 1, . . . , wu and for every i P I,

we have tLi, L´iu ­“ 0. Thus, the i1 associated to i by the first condition is ´i. Of course, this

process is not unique as it relies on a choice of an ordering for the lines tLiuiPI . In this context,

we write L0 instead of Lan.

1.1.4 We fix once and for all a basis e of V in which the hermitian form is represented by

the matrix Todd or Teven. In the case n “ 2m` 1 is odd, we will denote it

e “ pe´m, . . . , e´1, e
an
0 , e1, . . . , emq,

9
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and in the case n “ 2pm` 1q is even we will denote it

e “ pe´m, . . . , e´1, e
an
0 , e

an
1 , e1, . . . , emq.

In this way, for every 1 ď s ď m the subspace generated by e´s and es is isomorphic to

the hyperbolic plane H. Moreover, the vectors with a superscript ¨an generate an anisotropic

subspace Van of V. The choice of such a basis gives a Witt decomposition

V “ mH‘Van

consisting of an orthogonal sum of m copies of H and of the anisotropic subspace Van. In

particular, the Witt index of V is m and we have nan “ 1 or 2 depending on whether n is odd

or even respectively.

1.1.5 Given a perfect field extension k of Fp2 , we denote by Vk the base change VbQp2W pkqQ.

The form may be extended to Vk by the formula

tv b x,w b yu :“ xyσtv, wu P W pkqQ

for all v, w P V and x, y P W pkqQ. The notions of index and duality for W pkq-lattices can be

extended as well. We have the following description of the rational points of the Rapoport-Zink

space.

Proposition ([Vol10] 1.10). Let k be a perfect field extension of Fp2. There is a natural bijection

between Mpkq “Mredpkq and the set of lattices M in Vk such that for some integer i P Z, we

have

pi`1M_ 1
ĂM

n´1
Ă piM_.

1.1.6 There is a decomposition M “
Ů

iPZMi into formal connected subschemes which are

open and closed. The rational points of Mi are those lattices M satisfying the relation above

with the given integer i. Similarly, we have a decomposition into open and closed connected

subschemes Mred “
Ů

iPZMi,red. In particular, the lattice M defined in the previous paragraph

is an element of M0pFp2q. Not all integers i can occur though, as a parity condition must be

satisfied by the following lemma.

Lemma ([Vol10] 1.7). The formal scheme Mi is empty if ni is odd.

1.1.7 Let J “ GUpVq be the group of unitary similitudes attached to V. It consists of all

linear transformations g which preserve the hermitian form up to a unit cpgq P Qˆp , called the

multiplier. One may think of J as the group of Qp-rational point of a reductive algebraic

group. The space M is endowed with a natural action of J . At the level of points, the element

g acts by sending a lattice M to gpMq.

By [Vol10] 1.16, the action of g P J induces, for every integer i, an isomorphism Mi
„
ÝÑ

Mi`αpgq where αpgq is the p-adic valuation of the multiplier cpgq. This defines a continous

homomorphism

α : J Ñ Z

10
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where Z is given the discrete topology. According to 1.17 in loc. cit. the image of α is Z
if n is even, and it is 2Z if n is odd. The center ZpJq of J consists of all the multiple of the

identity. Therefore it can be identified with Qˆp2 . If λ P Qˆp2 , then cpλ ¨ idq “ λσpλq “ Normpλq P

Qˆp , where Norm is the norm map relative to the quadratic extension Qp2{Qp. In particular,

αpZpJqq “ 2Z. Thus, the restriction of α to the center of J is surjective onto the image of α

only when n is odd. When n is even, we define the following element

g0 :“

¨

˚

˚

˚

˝

Im

0 p

1 0

pIm

˛

‹

‹

‹

‚

where Im denotes the m ˆm identity matrix. Then g0 P J and cpg0q “ p so that αpg0q “ 1.

Moreover g2
0 “ p ¨ id belongs to ZpJq.

Let i and i1 be two integers such that ni and ni1 are even. Following [Vol10] Proposition 1.18,

we define a morphism ψi,i1 : Mi Ñ Mi1 by sending, for any perfect field extension k{Fp2 , a

point M PMi to

ψi,i1pMq “

$

&

%

p
i1´i
2 ¨M if i ” i1 mod 2.

p
i1´i´1

2 g0 ¨M if i ı i1 mod 2.

This is well defined as the second case may only happen when n is even. We obtain the following

proposition.

Proposition ([Vol10] 1.18). The map ψi,i1 is an isomorphism between Mi and Mi1. Moreover

they are compatible with each other in the sense that if i, i1 and i2 are three integers such that

ni, ni1 and ni2 are even, then we have ψi1,i2 ˝ ψi,i1 “ ψi,i2.

The same statement also holds for the special fiber Mred. In particular, we have Mi ­“ H if

and only if ni is even.

1.2 The Bruhat-Tits stratification of the special fiber Mred

1.2.1 We now recall the construction of the Bruhat-Tits stratification on Mred as in [VW11].

Let i be an integer such that ni is even. We define

Li :“ tΛ Ă V a lattice | pi`1Λ_ Ĺ Λ Ă piΛ_u.

If Λ P Li, we define its orbit type tpΛq :“ rΛ : pi`1Λ_s. We also call it the type of Λ. In

particular, the lattices in Li of type 1 are precisely the Fp2-rational points of Mi,red. By sending

Λ to gpΛq, an element g P J defines a map Li Ñ Li`αpgq.

Proposition ([Vol10] Remark 2.3 and [VW11] Remark 4.1). Let i be an integer such that ni

is even and let Λ P Li.

– The map Li Ñ Li`αpgq induced by an element g P J is an inclusion preserving, type

preserving bijection.

11



On the cohomology of the basic unramified PEL unitary RZ space of signature p1, n´ 1q

– We have 1 ď tpΛq ď n. Furthermore tpΛq is odd.

– The sets Li’s for various i’s are pairwise disjoint.

Moreover, two lattices Λ,Λ1 P
Ů

niP2Z Li are in the same orbit under the action of J if and only

if tpΛq “ tpΛ1q.

Proof. The first three points are proved in [Vol10]. Thus, we only explain the last statement.

If Λ and Λ1 are in the same J-orbit, because the action of J preserves the type we have

tpΛq “ tpΛ1q.

For the converse, assume that Λ and Λ1 have the same type. Let i and i1 be the integers such

that Λ P Li and Λ1 P Li1 . According to 1.1.7, we can always find g P J such that αpgq “ i´ i1.

Hence, replacing Λ1 by g ¨ Λ1 we may assume that i “ i1. Then the statement follows from

[VW11] Remark 4.1.

We write L :“
Ů

niP2Z Li. For any integer i such that ni is even and any odd number t between

1 and n, there exists a lattice Λ P Li of orbit type t. Indeed, by fixing a bijection Li
„
ÝÑ L0 it is

enough to find such a lattice for i “ 0. Then, examples of lattices in L0 of any type are given

in 1.2.6 below.

1.2.2 Write tmax :“ 2m` 1, so that the orbit type t of any lattice in L satisfies 1 ď t ď tmax.

The following lemma will be useful later.

Lemma. Let i P Z such that ni is even, and let Λ P L. We have Λ_ P L if and only if either

n is even, either n is odd and tpΛq “ tmax.

If this condition is satisfied and n is even, then Λ_ P L´i´1 and tpΛ_q “ n ´ tpΛq. If on the

contrary n is odd, then Λ_ P L´i and tpΛ_q “ tpΛq.

Proof. First we prove the converse. We have the following chain of inclusions

p´iΛ
n´tpΛq
Ă Λ_

tpΛq
Ă p´i´1Λ.

If n is even, then ´npi ` 1q is also even and n ´ tpΛq ­“ 0. Since pΛ_q_ “ Λ, we deduce that

Λ_ P L´i´1 with orbit type n ´ tpΛq. Assume now that n is odd and that tpΛq “ tmax “ n.

Then Λ_ “ p´iΛ P L´i.
Let us now assume that Λ_ P L and that n is odd. Let i1 P 2Z such that Λ_ P Li1 . We have

Λ_
n´tpΛ_q
Ă pi

1

Λ
n´tpΛq
Ă pi

1`iΛ_, Λ_
tpΛq
Ă p´i´1Λ

tpΛ_q
Ă p´i´i

1´2Λ_,

therefore ´2 ď i`i1 ď 0. Since i`i1 is even it is either ´2 or 0. If it were ´2, then we would have

tpΛq “ tpΛ_q “ 0 which is absurd. Therefore i`i1 “ 0, and we have n´tpΛq “ n´tpΛ_q “ 0.

1.2.3 With the help of Li, one may construct an abstract simplicial complex Bi. For s ě 0,

an s-simplex of Bi is a subset S Ă Li of cardinality s`1 such that for some ordering Λ0, . . . ,Λs

of its elements, we have a chain of inclusions pi`1Λ_s Ĺ Λ0 Ĺ Λ1 Ĺ . . . Ĺ Λs. We must have

0 ď s ď m for such a simplex to exist.

12
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We introduce J̃ “ SUpVq, the derived group of J . We consider the abstract simplicial complex

BTpJ̃ ,Qpq of the Bruhat-Tits building of J̃ over Qp. A concrete description of this complex is

given in [Vol10], while proving the following theorem.

Theorem ([Vol10] 3.5). The abstract simplicial complex BTpJ̃ ,Qpq of the Bruhat-Tits building

of J̃ is naturally identified with Bi for any fixed integer i such that ni is even. There is in

particular an identification of Li with the set of vertices of BTpJ̃ ,Qpq. The identification is

J̃-equivariant.

Apartments in the Bruhat-Tits building BTpJ̃ ,Qpq are in 1 to 1 correspondence with Witt

decompositions of V. Let L “ tLjuiPI be a Witt decomposition of V and let f “ pfiqiPI \B
an

be a basis of V adapted to the decomposition, where Ban is an orthogonal basis of Lan. Under

the identification of BTpJ̃ ,Qpq with Bi, the vertices inside the apartment associated to L

correspond to the lattices Λ P Li which are equal to the direct sum of Λ X Lan and of the

modules priZp2fi for some integers priqiPI . The subset of Li consisting of all such lattices will

be denoted AL
i or, with an abuse of notations, Af

i . We call such a set AL
i the apartment

associated to L in Li.

Remark. The set of vertices of the Bruhat-Tits building of J “ GUpVq may then be identified

with the disjoint union L of the Li’s. The subsets of lattices in a common apartment correspond

to the sets AL :“
Ů

niP2ZAL
i where L is some Witt decomposition of V. The set AL will be

called the apartment associated to L.

We recall a general result regarding Bruhat-Tits buildings.

Proposition. Let i be an integer such that ni is even. Any two lattices Λ and Λ1 in Li (resp.

L) lie inside a common apartment AL
i (resp. AL) for some Witt decomposition L.

Moreover, the action of the group J̃ sends apartments to apartments. It acts transitively on the

set tAL
i uL. The same is true for J acting on the set tALuL.

1.2.4 Recall the basis e of V that we fixed in 1.4. We will denote by

Λpr´m, . . . , r´1, s, r1, . . . , rmq

the Zp2-lattice generated by the vectors prjej for all j “ ˘1, . . . ,˘m, by ps0ean
0 and if n is even,

by ps1ean
1 too. Here, the rj’s are integers and s denotes either the integer s0 if n is odd or the

pair of integers ps0, s1q if n is even.

Proposition. Let i be an integer such that ni is even. Let prj, sq be a family of integers as

above. The corresponding lattice Λ “ Λpr´m, . . . , r´1, s, r1, . . . , rmq belongs to Li if and only if

the following conditions are satisfied

– for all 1 ď j ď m, we have r´j ` rj P ti, i` 1u,

– s0 “ t i`1
2

u,

– if n is even, then s1 “ t i
2
u.

13
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Moreover, when that is the case the type of Λ is given by

tpΛq “ 1` 2#t1 ď j ď m | r´j ` rj “ iu.

Proof. The lattice Λ belongs to Li if and only if the following chain of inclusions holds:

pi`1Λ_ Ĺ Λ Ă piΛ_.

The dual lattice Λ_ is equal to the lattice Λp´rm, . . . ,´r1, s
1,´r´1, . . . ,´r´mq, where s1 “ ´s0

when n is odd, and s1 “ p´s0,´s1´1q when n is even. Thus, the inclusions above are equivalent

to the following inequalities:

i´ r´j ď rj ď i` 1´ r´j, i´ s0 ď s0 ď i` 1´ s0,

i´ 1´ s1 ď s1 ď i´ s1 (if n is even).

This proves the desired condition on the integers rj’s and on s.

Let us now assume that Λ P Li. Its orbit type is equal to the index rΛ, pi`1Λ_s. This corresponds

to the number of times equality occurs with the left-hand side in all the inequalities above. Of

course, if the equality i´ r´j “ rj occurs for some j, then it occurs also for ´j. Moreover, if i

is even then the equality i´ s0 “ s0 occurs whereas i´ 1´ s1 ­“ s1. On the contrary if i is odd,

then the equality i ´ 1 ´ s1 “ s1 occurs whereas i ´ s0 ­“ s0. Thus in all cases, only one of s0

and s1 contributes to the index. Putting things together, we deduce the desired formula.

1.2.5 We deduce the following corollary.

Corollary. The apartment Aei (resp. Ae) consists of all the lattices of the form

Λ “ Λpr´m, . . . , r´1, s, r1, . . . , rmq

which belong to Li (resp. to L).

Proof. According to the previous proposition, it is clear that all lattices which belong to Li and

are of the form Λpr´m, . . . , r´1, s, r1, . . . , rmq are elements of Ae
i . We shall prove the converse.

Let Λ P Ae
i . By definition, there exists integers prjq such that

Λ “ ΛXVan
‘

à

1ďjďm

ppr´jZp2e´j ‘ prjZp2ejq .

Write Λ1 “ ΛXVan. This is a lattice in Van which satisfies the chain of inclusions

pi`1Λ1 _ Ă Λ1 Ă piΛ1 _,

where the duals are taken with respect to the restriction of t¨, ¨u to Van. Since Van is anisotropic,

there is only a single lattice satisfying the chain of inclusions above. If we write a :“ t i`1
2

u and

b :“ t i
2
u, it is given by paZp2ean

0 if n is odd, and by paZp2ean
0 ‘ pbZp2ean

1 if n is even. Thus, it

must be equal to Λ1 and it concludes the proof.

14
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1.2.6 We fix a maximal simplex in L0 lying inside the apartment Ae
0. For 0 ď θ ď m we

define

Λθ :“ Λp0, . . . , 0
loomoon

m

, 0, 0, . . . , 0
loomoon

θ

, 1, . . . , 1
loomoon

m´θ

q.

Here, the 0 in the middle stands for p0, 0q in case n is even. The lattice Λθ belongs to L0, its

orbit type is 2θ ` 1 and together they fit inside the following chain of inclusions

pΛ_0 Ĺ Λ0 Ă . . . Ă Λm.

Thus, they form an m-simplex in L0.

1.2.7 Given a lattice Λ P Li, the authors of [VW11] define a subfunctor MΛ of Mi,red

classifying those p-divisible groups for which a certain quasi-isogeny, depending on Λ, is in fact

an actual isogeny. In Lemma 4.2, they prove that it is representable by a projective scheme

over Fp2 , and that the natural morphism MΛ ãÑ Mi,red is a closed immersion. The schemes

MΛ are called the closed Bruhat-Tits strata of M. Their rational points are described as

follows.

Proposition ([VW11] Lemma 4.3). Let k be a perfect field extension of Fp2, and let M P

Mi,redpkq. Then we have the equivalence

M PMΛpkq ðñ M Ă Λk :“ ΛbZp2 W pkq.

The set of lattices satisfying the condition above was conjectured in [Vol10] to be the set of

points of a subscheme of Mi,red, and it was proved in the special cases n “ 2, 3. In [VW11],

the general argument is given by the construction of MΛ. The action of an element g P J on

Mred induces an isomorphism MΛ
„
ÝÑMg¨Λ.

1.2.8 Let Λ P L, we denote by JΛ the fixator of Λ under the action of J . If Λ “ Λθ for

some 0 ď θ ď m, we will write Jθ instead. These are maximal parahoric subgroups of J .

In unramified unitary similitude groups, maximal parahoric subgroups and maximal compact

subgroups are the same. A general parahoric subgroup is an intersection JΛ1 X . . . X JΛs

where tΛ1, . . . ,Λsu is an s-simplex in Li for some i. Any parahoric subgroup is compact and

open in J .

Let i be the integer such that Λ P Li. We define V 0
Λ :“ Λ{pi`1Λ_ and V 1

Λ :“ piΛ_{Λ. Since

pΛ Ă p ¨ piΛ_ and p ¨ piΛ_ Ă Λ, these are both Fp2-vector space of dimensions respectively tpΛq

and n ´ tpΛq. Both spaces come together with a non-degenerate σ-hermitian form p¨, ¨q0 and

p¨, ¨q1 with values in Fp2 , respectively induced by p´it¨, ¨u and by p´i`1t¨, ¨u. If k is a perfect

field extension of Fp2 and if ε P t0, 1u, we may extend the pairings to pV ε
Λqk “ V ε

Λ bFp2 k by

setting

pv b x,w b yqε :“ xyσpv, wqε P k

for all v, w P V ε
Λ and x, y P k. If U is a subspace of pV ε

Λqk we denote by UK its orthogonal, that

is the subspace of all vectors x P pV ε
Λqk such that px, Uqε “ 0.
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Denote by J`Λ the pro-unipotent radical of JΛ and write JΛ :“ JΛ{J
`
Λ . This is a finite group

of Lie type, called the maximal reductive quotient of JΛ. We have an identification JΛ »

GpUpV 0
Λ q ˆUpV 1

Λ qq, that is the group of pairs pg0, g1q where for ε P t0, 1u we have gε P GUpV ε
Λq

and cpg0q “ cpg1q. Here, cpgεq P Fˆp denotes the multiplier of gε.

For 0 ď θ ď m and ε P t0, 1u, we will write V ε
θ and Jθ instead of V ε

Λθ
and JΛθ . A basis of V 0

θ is

given by the images of the 2θ` 1 vectors e´θ . . . , e´1, e
an
0 , e1, . . . , eθ. As for V 1

θ , a basis is given

by the images of the n´ 2θ ´ 1 vectors p´1e´m, . . . , p
´1e´θ´1, eθ`1, . . . , em when n is odd, and

in case n is even one must add the image of p´1ean
1 to the basis.

1.2.9 Let Λ P Li where ni is even. We write tpΛq “ 2θ` 1. Let k be a perfect field extension

of Fp2 . Let T be any W pkq-lattice in Vk such that

pi`1T_
2θ1`1
Ă T Ă Λk

where 0 ď θ1 ď θ. Then T must contain pi`1Λ_k and rΛk : T s “ θ ´ θ1. We may consider

T :“ T {pi`1Λ_k the image of T in V
p0q

Λ . Then T is an Fp2-subspace of dimension θ ` θ1 ` 1.

Moreover, one may check that pi`1T_ “ T
K

, therefore the subspace T contains its orthogonal.

These observations lead to the following proposition.

Proposition ([Vol10] 2.7). The mapping T ÞÑ T defines a bijection between the set of W pkq-

lattices T in Vk such that pi`1T_
2θ1`1
Ă T Ă Λk and the set

tU Ă pV 0
Λ qk | dimU “ θ ` θ1 ` 1 and UK Ă Uu.

In particular taking θ1 “ 0, this set is in bijection with MΛpkq.

Remark. Similarly, the set of W pkq-lattices T such that Λk Ă T
n´2θ1´1
Ă piT_ for some θ ď θ1 ď

m is in bijection with

tU Ă pV 1
Λ qk | dimU “ n´ θ1 ´ θ ´ 1 and UK Ă Uu.

The bijection is given by T ÞÑ T
K

where T :“ T {Λk Ă V
p1q
k . These sets can be seen as the

k-rational points of some flag variety for GUpV
p0q

Λ q and GUpV
p1q

Λ q, which are special instances

of Deligne-Lusztig varieties. This is accounted for in the next paragraph.

1.2.10 Let Λ P L. The action of J on the Rapoport-Zink space M restricts to an action of

the parahoric subgroup JΛ on the closed Bruhat-Tits stratum MΛ. This action factors through

the maximal reductive quotient JΛ » GpUpV 0
Λ q ˆ UpV 1

Λ qq. This action is trivial on the normal

subgroup tiduˆUpV 1
Λ q Ă JΛ, thus it factors again through the quotient which is isomorphic to

GUpV 0
Λ q.

Theorem ([VW11] Theorem 4.8). There is an isomorphism between MΛ and a certain “gen-

eralized” parabolic Deligne-Lusztig variety for the finite group of Lie type GUpV 0
Λ q, compatible

with the actions. In particular, if tpΛq “ 2θ ` 1 then the scheme MΛ is projective, smooth,

geometrically irreducible of dimension θ.
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We refer to [Mul21] Section 1 for the definition of Deligne-Lusztig varieties. In particular,

the adjective “generalized” is understood according to loc. cit. The Deligne-Lusztig variety

isomorphic to MΛ is introduced in [VW11] 4.5, and it is denoted by YΛ there.

1.2.11 We now explain how the different closed Bruhat-Tits strata behave together.

Theorem ([VW11] Theorem 5.1). Let i P Z such that ni is even. Consider Λ and Λ1 two

lattices in Li. The following statements hold.

(1) The inclusion Λ Ă Λ1 is equivalent to the scheme-theoretic inclusion MΛ ĂMΛ1. It also

implies tpΛq ď tpΛ1q and there is equality if and only if Λ “ Λ1.

(2) The three following assertions are equivalent.

piq ΛX Λ1 P Li. piiq ΛX Λ1 contains a lattice of Li. piiiqMΛ XMΛ1 ­“ H.

If these conditions are satisfied, then MΛXMΛ1 “MΛXΛ1, where we understand the left

hand side as the scheme theoretic intersection inside Mi,red.

(3) The three following assertions are equivalent

piq Λ` Λ1 P Li. piiq Λ` Λ1 is contained in a lattice of Li.
piiiqMΛ,MΛ1 ĂM

rΛ for some rΛ in Li.

If these conditions are satisfied, then MΛ`Λ1 is the smallest subscheme of the form M
rΛ

containing both MΛ and MΛ1.

(4) If k is a perfect field field extension of Fp2 then Mipkq “
Ť

ΛPLi MΛpkq.

In essence, the previous statements explain how the stratification given by the MΛ mimics the

combinatorics of the Bruhat-Tits building of J̃ , hence the name.

1.3 On the maximal parahoric subgroups of J

1.3.1 In this section we give a few results that will be useful later regarding the maximal

parahoric subgroups JΛ. First, we study their conjugacy classes. It starts with the following

lemma.

Lemma. Let Λ,Λ1 P L.

(i) The parahoric subgroup JΛ acts transitively on the set of apartments containing Λ.

(ii) We have JΛ “ JΛ1 if and only if there exists k P Z such that Λ “ pkΛ1 or Λ “ pkΛ1 _.

Proof. The first point is a general fact from the theory of Bruhat-Tits buildings.

For the second point, the converse is clear. Indeed, if x P Qˆp2 then JxΛ “ JΛ, and an element

g P J fixes a lattice Λ if and only if it fixes its dual Λ_.

Now, let Λ,Λ1 P L such that JΛ “ JΛ1 . Up to replacing Λ1 by an appropriate lattice g ¨ Λ1, it

is enough to treat the case Λ1 “ Λθ for some 0 ď θ ď m. By 1.2.3 Proposition, we can find an
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apartment AL containing both Λθ and Λ. By the first point, we can find g P Jθ “ JΛ which

sends AL to Ae. Therefore g ¨ Λ “ Λ belongs to Ae. According to 1.2.5, we may write

Λ “ Λpr´m, . . . , r´1, s, r1, . . . , rmq

for some integers prj, sq. Let i be the integer such that Λ P Li. Then according to 1.2.4 we have

– @1 ď j ď m, r´j ` rj P ti, i` 1u.

– s0 “ t i`1
2

u.

– if n is even then s1 “ t i
2
u.

For 1 ď j ď θ, let gj be the automorphism of V which exchanges e´j and ej while fixing all the

other vectors in the basis e. Then, from the definition of Λθ we have gj P Jθ. Therefore gj must

fix Λ too, which implies that r´j “ rj. And for θ ` 1 ď j ď m, let gj be the automorphism

sending ej to p´1e´j and e´j to pej while fixing all the other vectors in the basis e. Then again

we have gj P Jθ “ JΛ which implies that r´j “ rj ´ 1.

Assume first that i “ 2i1 is even. Combining the previous observations, we have rj “ i1 for all

1 ď j ď θ and rj “ i1 ` 1 for all θ ` 1 ď j ď m. Moreover we have s0 “ i1 and if n is even, we

have s1 “ i1. In other words, we have Λ “ pi
1

Λθ.

Assume now that i “ 2i1 ` 1 is odd. This implies that n is even. Combining the previous

observations, we have rj “ i1 ` 1 for all 1 ď j ď m. Moreover we have s0 “ i1 ` 1 and if n is

even, we have s1 “ i1. In other words, we have Λ “ pi
1`1Λ_θ .

1.3.2 We may now describe the conjugacy classes of these maximal parahoric subgroups.

Corollary. Let Λ,Λ1 P L.

(i) If n is odd, then tpΛq “ tpΛ1q if and only if the associated maximal parahoric subgroups JΛ

and JΛ1 are conjugate in J . Each such subgroup is conjugate to Jθ for a unique 0 ď θ ď m.

(ii) If n is even, then tpΛq P ttpΛ1q, n´ tpΛ1qu if and only if the associated maximal parahoric

subgroups JΛ and JΛ1 are conjugate in J . Each such subgroup is conjugate to Jθ for a

unique 0 ď θ ď tm
2

u.

Thus, there are m ` 1 conjugacy classes of maximal parahoric subgroups when n is odd, and

only tm
2

u` 1 when n is even. If n is odd the subgroups Jθ are pairwise non conjugate, whereas

Jθ is conjugate to Jm´θ when n is even.

Remark. The special maximal compact subgroups are the conjugates of J0 and of Jm. When n

is odd, the conjugates of Jm are hyperspecial.

Proof. For the first point, assume that tpΛq “ tpΛ1q. By 1.2.1 Proposition, we can find g P J

such that g ¨ Λ “ Λ1. Therefore JΛ1 “ Jg¨Λ “
gJΛ, the two parahoric subgroups are conjugate.

For the converse, assume that JΛ1 “
gJΛ for some g P J . Then JΛ1 “ Jg¨Λ. By 1.3.1 there is

some k P Z such that Λ1 “ pkg ¨ Λ or pΛ1q_ “ pkg ¨ Λ. This implies that tpΛq “ tpΛ1q. Indeed,

it is clear in the first case, and in the second case we have in particular pΛ1q_ P L. Since n is

odd, by 1.2.2 we have tpΛ1q “ tppΛ1q_q, so that we are done.
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For the second point, if tpΛ1q “ tpΛq then we reason the same way as above. If tpΛ1q “ n´ tpΛq

then Λ1 and Λ_ have the same type. By the first case, we know that JΛ1 and JΛ_ “ JΛ are

conjugate. The converse goes the same way as above, except that the case pΛ1q_ “ pkg ¨Λ now

implies that tpΛ1q “ n´ tpΛq therefore we are done.

1.3.3 As another corollary of 1.3.1 we may also describe the normalizers of the maximal

parahoric subgroups.

Corollary. Let Λ P L. If tpΛq ­“ n´ tpΛq then the normalizer of JΛ in J is NJpJΛq “ ZpJqJΛ.

Otherwise, n is even and there exists an element h0 P J such that h2
0 “ p ¨ id and NJpJλq is the

subgroup generated by JΛ and h0. In particular, ZpJqJΛ is a subgroup of index 2 in NJpJΛq.

Remark. The condition tpΛq ­“ n´ tpΛq is automatically satisfied if n is odd. If n is even, it is

satisfied when tpΛq ­“ m` 1, this is the case in particular when m is odd.

Proof. It is clear that ZpJqJΛ Ă NJpJΛq. Conversely, let g P NJpJΛq, so that we have JΛ “

gJΛ “ Jg¨Λ. We apply 1.3.1 to deduce the existence of k P Z such that g ¨ Λ “ pkΛ (case 1) or

g ¨ Λ “ pkΛ_ (case 2). If we are in case 1, then g P pkJΛ Ă ZpJqJΛ and we are done. If n is

even, the assumption that tpΛq ­“ n´ tpΛq makes the case 2 impossible. If n is odd and we are

in case 2, then in particular Λ_ P L. By 1.2.2, we must have Λ “ piΛ_ for some even i P Z. In

particular, we are also in case 1. Therefore, no matter the parity of n, we are always in case 1.

Assume now that tpΛq “ n´ tpΛq, in particular n and m are both even. We write m “ 2m1 so

that tpΛq “ 2m1`1 and we solve the case Λ “ Λm1 first. Recall the element g0 that was defined

in 1.1.7. By direct computation, we see that g0 ¨ Λm1 “ pΛ_m1 . Therefore g0Jm1 “ JpΛ_
m1
“ Jm1

so that g0 P NJpJm1q. Now let g be any element normalizing Jm, so that Jm1 “
gJm1 “ Jg¨Λm1 .

According to 1.3.1 there exists k P Z such that g ¨Λm1 “ pkΛm1 or g ¨Λm1 “ pkΛ_m1 “ pk´1g0 ¨Λm1 .

In the first case we have g P pkJm1 and in the second case we have g P pk´1g0Jm1 . Because

g2
0 “ p ¨ id, the claim is proved with h0 “ g0.

In the general case, we have tpΛq “ 2m1 ` 1 “ tpΛm1q. By 1.2.1 there exists some g P J such

that Λ “ g ¨ Λm1 . Then NJpΛq “
gNJpΛm1q so that the claim follows with h0 :“ gg0g

´1.

1.3.4 Let J˝ be the kernel of α : J Ñ Z. In other words, J˝ is the subgroup of J consisting of

all g P J whose multiplier cpgq is a unit in Zˆp . We have an isomorphism J{J˝ » Z induced by

α when n is even, and by 1
2
α when n is odd. Note that J˝ contains all the compact subgroups

of J , in particular JΛ Ă J˝ for every Λ P L. Let K be the subgroup generated by all the JΛ for

Λ P L having maximal orbit type tpΛq “ 2m` 1. We will prove the following result.

Proposition. We have K “ J˝.

The proof requires the following lemma.

Lemma. Let i P Z such that ni is even and let Λ P Li be a lattice of maximal orbit type. Let

Λ1,Λ2 P Li such that Λ1 X Λ and Λ2 X Λ belong to Li. There exists g P JΛ such that g ¨ Λ1 “ Λ2

if and only if tpΛ1q “ tpΛ2q and tpΛ1 X Λq “ tpΛ2 X Λq.
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Proof. The forward direction is clear because the action of J preserves the types of the lattices.

We prove the converse. Since J acts transitively on L while preserving types and inclusions, it

is enough to look at the case i “ 0 and Λ “ Λm “ Λp0, . . . , 0q. Let 0 ď θ´ ď θ` ď m. We fix

a certain Λ1 P L0 such that tpΛ1q “ 2θ` ` 1 and tpΛ1 X Λq “ 2θ´ ` 1, and we prove that any

Λ2 P L0 satisfying the hypotheses of the lemma is in the Jm-orbit of Λ1. We define

Λ1 “ Λp0θ´ , 1θ`´θ´ , 1m´θ` , 0, 0m´θ` ,´1θ`´θ´ , 0θ´q

where the 0 in the middle stands for 0 when n is odd and the pair p0, 0q when n is even. Then,

we have

Λ1 X Λ “ Λp0θ´ , 1m´θ´ , 0, 0m´θ´ , 0θ´q

so that Λ1 satisfies the required conditions. Let Λ2 be as in the lemma. Let L be a Witt

decomposition of V such that the corresponding apartment AL contains both Λ and Λ2. Since

Jm acts transitively on the set of apartments containing Λm, we can find some g P Jm such that

g ¨AL “ Ae. Up to replacing Λ2 by g ¨Λ2, we may then assume that Λ2 P Ae. Therefore, there

exists integers r´m, . . . , rm, s such that

Λ2 “ Λpr´m, . . . , r´1, s, r1, . . . , rmq.

Since Λ2 P L0, by 1.2.4 we have s “ 0 and rj ` r´j P t0, 1u for all 1 ď j ď m. Let us write

r´j “ rj`εj where εj P t0, 1u. Since tpΛ2q “ 2θ``1, there are θ` indices 1 ď j1 ď . . . ď jθ` ď m

such that εj “ 0 if and only if j is one of the jk’s. Moreover, we have

Λ2 X Λ “ Λ pmaxp´rm ` εm, 0q, . . . ,maxp´r1 ` ε1, 0q, 0,maxpr1, 0q, . . . ,maxprm, 0qq .

This lattice is in L0, thus for every 1 ď j ď m we have 0 ď maxp´rj ` εj, 0q `maxprj, 0q ď 1.

Hence, if j “ jk for some k then εj “ 0 and

maxp´rj ` εj, 0q `maxprj, 0q “ maxp´rj, 0q `maxprj, 0q “ |rj|.

Thus, |rj| “ 0 or 1. If j ­“ jk for all k, then εj “ 1 and

maxp´rj ` εj, 0q `maxprj, 0q “ maxp´rj ` 1, 0q `maxprj, 0q “
1

2
`
|rj| ` |rj ´ 1|

2
.

This sum is a positive integer between 0 and 1, therefore it is always 1. It means that |rj| `

|rj ´ 1| “ 1 and as a consequence, rj “ 0 or 1.

Lastly, we have tpΛ2 X Λq “ 2θ´ ` 1 so there are exactly θ´ indices j for which the sum

maxp´rj ` εj, 0q ` maxprj, 0q is zero. As we have just seen, this may only happen when j is

one of the jk’s. Thus, among the indices j “ j1, . . . , jθ` , there are exactly θ´ of them for which

pr´j, rjq “ p0, 0q, and for the others we have pr´j, rjq “ p1,´1q or p´1, 1q. If j is not one of the

jk’s, we have pr´j, rjq “ p0, 1q or p1, 0q. In other words, the pairs of indices pr´j, rjq are, up to

shifts and ordering, the same as the corresponding pairs of indices defining Λ1. By considering

appropriate permutation matrices, we may change a pair pr´j, rjq into prj, r´jq and we may

change the order so that Λ2 is sent to Λ1. This transformation defines an element of J which

stabilizes Λ “ Λp0, . . . , 0q.
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1.3.5 We may now prove the proposition.

Proof. It is clear that K Ă Kerpαq, so we prove the reverse inclusion. Let g0 P J˝. We will

write g0 as a product of elements in J , each of which fixes some lattice of maximal orbit type in

the Bruhat-Tits building. We write Λ :“ Λm “ Λp0, . . . , 0q and Λ0 :“ g0 ¨ Λ. Since g0 P J˝, we

have Λ0 P L0. We would like to send Λ0 back to Λ by using elements of K only. Let L be some

Witt decomposition of V such that the corresponding apartment AL contains both Λ and Λ0.

We can find some g1 P JΛ which sends AL to Ae. We define g1 :“ g1g
0 and Λ1 :“ g1 ¨ Λ. Then

Λ1 P L0 and it belongs to the apartment Ae. Therefore, there exists integers r´m, . . . , rm, s

such that

Λ1
“ Λpr´m, . . . , r´1, s, r1, . . . , rmq.

Since Λ1 P L0 and its orbit type is maximal, we have s “ 0 and r´j “ ´rj for all 1 ď j ď m.

Let 1 ď j1 ă . . . ă ja ď m be the indices j for which rj is odd. We have 0 ď a ď m. For

1 ď j ď m we write rj “ 2r1j ` 1 if j is some of the j1ks and rj “ 2r1j otherwise. We also write

r1´j “ ´r
1
j, so that we have r´j “ 2r1´j´ 1 if j is some of the jk’s and r´j “ 2r1´j otherwise. We

define g2 the endomorphism of V sending e´j to p2r1jej for ´m ď j ď m and j ­“ 0, and which

acts like identity on Van. Then g2 is an element of J with multiplier equal to 1. Moreover, g2

stabilizes the lattice Λpr1´m, . . . , r
1
´1, 0, r

1
1, . . . , r

1
mq P L0 whose orbit type is maximal, therefore

g2 P K. We define g2 :“ g2g
1 and Λ2 :“ g2 ¨ Λ P L0. Concretely, the lattice Λ2 still lies in the

apartment Ae and its coefficients are obtained from those of Λ1 by replacing each pair pr´jk , rjkq

by p1,´1q and the other pairs pr´j, rjq by p0, 0q. Let us note that if a “ 0 then we already have

Λ2 “ Λ.

Let us now assume that a ą 0. The intersection of the lattices Λ2 and Λ has the following

shape.

Λ2
X Λ “ Λp 0 or 1, . . . , 0 or 1

looooooooomooooooooon

a times 1 and m´a times 0

, 0, 0mq.

The coefficient takes the value 1 if and only if its index is one of the ´jk’s. This is a lattice in

L0 of orbit type 2pm ´ aq ` 1. We will use 1.3.4 Lemma in order to send Λ2 to Λ while fixing

some lattice of maximal orbit type. In order to find this lattice, we need to leave the apartment

Ae. Let δ P Zˆp2 such that σpδq “ ´δ. We define the following vectors

fj “

$

’

&

’

%

ej if j is not one of the ˘ jk’s.

pe´jk if j “ ´jk.

p´1ejk ` δe´jk if j “ jk.

We also define f an
i “ ean

i for i P t0, 1u (the case i “ 1 only occurs if n is even). All together,

these vectors form a basis f of V. We write Λf for the Zp2-lattice generated by the basis f . One

may check that xfj, fj1y “ δj1,´j for every j and j1. It follows that Λf P L0 and it has maximal

orbit type. It turns out that both intersections Λ2 XΛf and ΛXΛf are equal to Λ2 XΛ, as we

prove in the following two points.

– Λ2 X Λf : The lattice Λ2XΛf contains all the vectors ej where j is not of the ˘jk’s. It also

contains the vectors pe´jk and p¨pp´1ejk`δe´jkq “ ejk`δpe´jk for all 1 ď k ď a. Therefore,
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it must contain the vectors ejk ’s as well. This gives the inclusion Λ2 X Λ Ă Λ2 X Λf . For

the converse, if x P Λf then we may write

x “
ÿ

j ­“˘jk

µjej `
s
ÿ

k“1

λkpe´jk ` λ
1
kpp

´1ejk ` δe´jkq

“
ÿ

j ­“˘jk

µjej `
s
ÿ

k“1

pλkp` λ
1
kδqe´jk ` λ

1
kp
´1ejk

with the scalars µj, λk and λ1k in Zp2 . If moreover x P Λ2 then in the last formula, we must

have λkp` λ
1
kδ P pZp2 . It follows that the scalars λ1k belong to pZp2 and thus x P Λ2 XΛ.

– ΛX Λf : By the same arguments as above, we prove that Λ2 X Λ Ă Λ X Λf . For the

converse, let x P Λf as above. If moreover x P Λ then the scalars λ1k are elements of pZp2 .
It implies that λkp` λ

1
kδ P pZp2 , whence x P Λ2 X Λ.

Eventually we may apply 1.3.4 Lemma to the lattices Λf ,Λ
2 and Λ. It gives the existence of

an element g3 P J which stabilizes Λf and sends Λ2 to Λ. We write g3 :“ g3g
2. It follows that

g3 ¨ Λ “ Λ, therefore g3 P JΛ Ă K. But g3 “ g3g2g1g
0 and each of the elements g1, g2 and g3

also lies in K. Therefore g0 P K as well.

1.4 Counting the closed Bruhat-Tits strata

1.4.1 In this section we count the number of closed Bruhat-Tits strata which contain or

which are contained in another given one. Let d ě 0 and consider V a d-dimensional Fp2-vector

space equipped with a non degenerate hermitian form. This structure is uniquely determined

up to isomorphism as we are working over a finite field. As in [VW11], for
P

d
2

T

ď r ď d, we

define

Npr, V q :“ tU |U is an r-dimensional subspace of V such that UK Ă Uu,

νpr, dq :“ #Npr, V q,

where UK denotes the orthogonal of U with respect to the hermitian form on V . As remarked

in [VW11], the set Npr, V q can be seen as the set of rational points of a certain flag variety for

the unitary group of V .

Proposition ([VW11] Corollary 5.7). Let Λ P L. Write tpΛq “ 2θ ` 1 for some 0 ď θ ď m.

– Let θ1 be an integer such that 0 ď θ1 ď θ. The number of closed Bruhat-Tits strata of

dimension θ1 contained in MΛ is νpθ ` θ1 ` 1, 2θ ` 1q.

– Let θ1 be an integer such that θ ď θ1 ď m. The number of closed Bruhat-Tits strata of

dimension θ1 containing MΛ is νpn´ θ ´ θ1 ´ 1, n´ 2θ ´ 1q.

These follows from 1.2.9 Proposition and Remark. Another way to formulate the proposition

is to say that νpθ` θ1 ` 1, 2θ` 1q (resp. νpn´ θ´ θ1 ´ 1, n´ 2θ´ 1q) is the number of vertices

of type 2θ1 ` 1 in the Bruhat-Tits building of J̃ which are neighbors of a given vertex of type

2θ ` 1 for θ1 ď θ (resp. θ1 ě θ).
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1.4.2 In [VW11], an explicit formula is given for νpd ´ 1, dq. The next proposition gives a

formula to compute νpr, dq for general r and d.

Proposition. Let d ě 0 and let
P

d
2

T

ď r ď d. We have

νpr, dq “

ś2pd´rq
j“1

`

p2r´d`j ´ p´1q2r´d`j
˘

śd´r
j“1 pp

2j ´ 1q

Proof. Recall that for any integer k, we denote by Ak the k ˆ k matrix having 1 in the an-

tidiagonal and 0 everywhere else. We fix a basis pe1, . . . , edq of V in which the hermitian form

is represented by the matrix Ad. We denote by U0 the subspace generated by the vectors

e1, . . . , er. Then the orthogonal of U0 is generated by e1, . . . , ed´r. Since r is an integer between
P

d
2

T

and d, we have 0 ď d ´ r ď r and therefore U0 contains its orthogonal. Thus, U0 defines

an element of Npr, V q. The unitary group UpV q » UdpFpq acts on the set Npr, V q: an element

g P UpV q sends the subspace U to gpUq. This action is transitive. Indeed, any U P Npr, V q can

be sent to U0 by using an equivalent of the Gram-Schmidt orthogonalization process over Fp2
(note that p ­“ 2q. The stabilizer of U0 in UdpFpq is the standard parabolic subgroup

P0 :“

$

’

&

’

%

¨

˚

˝

B ˚ ˚

0 M ˚

0 0 F pBq

˛

‹

‚

P UdpFpq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B P GLd´rpFp2q,M P U2r´dpFpq

,

/

.

/

-

.

Here, F pBq “ Ad´rpB
ppqq´TAd´r where Bppq is the matrix B with all coefficients raised to the

power p. Therefore, the set Npr, V q is in bijection with the quotient UdpFpq{P0. The order of

UdpFpq is well known and given by the formula

#UdpFpq “ p
dpd´1q

2

d
ź

j“1

`

pj ´ p´1qj
˘

.

It remains to compute the order of P0. We have a Levi decomposition P0 “ L0N0 with

L0 XN0 “ t1u where

L0 :“

$

’

&

’

%

¨

˚

˝

B 0 0

0 M 0

0 0 F pBq

˛

‹

‚

P UdpFpq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

B P GLd´rpFp2q,M P U2r´dpFpq

,

/

.

/

-

,

N0 :“

$

’

&

’

%

¨

˚

˝

1 X Z

0 1 Y

0 0 1

˛

‹

‚

P UdpFpq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X P Md´r,2r´dpFp2q, Y P M2r´d,d´rpFp2q, Z P Md´rpFp2q

,

/

.

/

-

.

The order of L0 is given by

#L0 “ #GLd´rpFp2q#U2r´dpFpq “ ppd´rqpd´r´1q` p2r´dqp2r´d´1q
2

d´r
ź

j“1

`

p2j
´ 1

˘

2r´d
ź

j“1

`

pj ´ p´1qj
˘

.

As for N0, we need some more conditions on the matrices X, Y and Z. By direct computations,

one checks that such a matrix belongs to UdpFpq if and only if

Y “ ´A2r´dpX
ppq
q
TAd´r, Z ` Ad´rpZ

ppq
q
TAd´r “ XY P Md´rpFp2q.
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Thus, X is any matrix of size pd ´ rq ˆ p2d ´ rq and Y is determined by X. Let us look at

the second equation. The matrix Ad´rpZ
ppqqTAd´r is the reflexion of Zppq with respect to the

antidiagonal. The equation implies that the coefficients below the antidiagonal of Z determine

those above the antidiagonal. Furthermore, if z is a coefficient in the antidiagonal then the

equation determines the value of Trpzq “ z ` zp, where Tr : Fp2 Ñ Fp is the trace relative to

the extension Fp2{Fp. The trace is surjective and its kernel has order p. Thus, there are only p

possibilities for each antidiagonal coefficient. Putting things together, the order of N0 is given

by

#N0 “ p2pd´rqp2r´dq
¨ p2 pd´rqpd´r´1q

2 ¨ pd´r “ ppd´rqp3r´dq

where the three terms take account respectively of the choice of X, the choice of the coefficients

below the antidiagonal of Z and the choice of the coefficients in the antidiagonal of Z.

Hence the order of P0 is given by

#P0 “ #L0#N0 “ p
dpd´1q

2

d´r
ź

j“1

`

p2j
´ 1

˘

2r´d
ź

j“1

`

pj ´ p´1qj
˘

.

Upon taking the quotient νpr, dq “ #UdpFpq{#P0, the result follows.

In particular with r “ d´ 1, we obtain

νpd´ 1, dq “
ppd´1 ´ p´1qd´1qppd ´ p´1qdq

p2 ´ 1
.

If d “ 2δ is even, it is equal to ppd´1 ` 1q
řδ´1
j“0 p

2j, and if d “ 2δ ` 1 is odd, it is equal to

ppd ` 1q
řδ´1
j“0 p

2j. This coincides with the formula given in [VW11] Example 5.6.

2 The cohomology of a closed Bruhat-Tits stratum

2.1 In [Mul21], we computed the cohomology groups H‚cpMΛ b F,Q`q of the closed Bruhat-

Tits strata (recall that F denotes an algebraic closure of Fp). The computation relies on

the Ekedahl-Oort stratification on MΛ which, in the language of Deligne-Lusztig varieties,

translates into a stratification by Coxeter varieties for unitary groups of smaller sizes. The

cohomology of Coxeter varieties is well known thanks to the work of Lusztig in [Lus76]. In

order to state our results, we recall the classification of unipotent representations of the finite

unitary group over Q`.

2.2 Let q be a power of prime number p, and let G be a reductive connected group over

an algebraic closure F of Fp. Assume that G is equipped with an Fq-structure induced by a

Frobenius morphism F . Let G “ GF be the associated finite group of Lie type. Let pT,Bq be

a pair consisting of an F -stable maximal torus T and an F -stable Borel subgroup B containing

T. Let W “ WpTq denote the Weyl group of G. The Frobenius F induces an action on W.

For w P W, let 9w be a representative of w in the normalizer NGpTq of T. By the Lang-Steinberg

theorem, one can find g P G such that 9w “ g´1F pgq. Then gT :“ gTg´1 is another F -stable
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maximal torus, and w P W is said to be the type of gT with respect to T. Every F -stable

maximal torus arises in this manner. According to [DL76] Corollary 1.14, the G-conjugacy

class of gT only depends on the F -conjugacy class of w in the Weyl group W. Here, two

elements w and w1 in W are said to be F -conjugates if there exists some element τ P W such

that w “ τw1F pτq´1. For every w P W, we fix Tw an F -stable maximal torus of type w with

respect to T. The Deligne-Lusztig induction of the trivial representation of Tw is the virtual

representation of G defined by the formula

Rw :“
ÿ

iě0

p´1qiHi
cpXHpwq b F,Q`q,

where XHpwq is the Deligne-Lusztig variety for G given by

XHpwq :“ tgB P G{B | g´1F pgq P BwBu.

According to [DL76] Theorem 1.6, the virtual representation Rw only depends on the F -

conjugacy class of w in W. An irreducible representation of G is said to be unipotent if

it occurs in Rw for some w P W. The set of isomorphism classes of unipotent representations

of G is usually denoted EpG, 1q following Lusztig’s notations.

Remark. Since the center ZpGq acts trivially on the variety XHpwq, any irreducible unipotent

representation of G has trivial central character.

2.3 Let G and G1 be two reductive connected group over F both equipped with an Fq-
structure. We denote by F and F 1 the respective Frobenius morphisms. Let f : G Ñ G1 be an

Fq-isotypy, that is a homomorphism defined over Fq whose kernel is contained in the center of G

and whose image contains the derived subgroup of G1. Then, according to [DM20] Proposition

11.3.8, we have an equality

EpG, 1q “ tρ ˝ f | ρ P EpG1, 1qu.

Thus, the irreducible unipotent representations of G and of G1 can be identified. We will use

this observation in the case G “ UkpFqq and G1 “ GUkpFqq. The corresponding reductive

groups are G “ GLk and G1 “ GLk ˆGL1. The Frobenius morphisms can be defined as

F pMq “ 9w0pM
pqq
q
´T 9w0, F 1pM, cq “ pcq 9w0pM

pqq
q
´T 9w0, c

q
q.

Here, 9w0 is the kˆ k matrix with only 1’s in the antidiagonal and M pqq is the matrix M whose

entries are all raised to the power q. The isotypy f : G Ñ G1 is defined by fpMq “ pM, 1q. It

satisfies F 1˝f “ f ˝F , it is injective and its image contains the derived subgroup SLnˆt1u Ă G1.

Hence, we obtain the following result.

Proposition. The irreducible unipotent representations of the finite groups of Lie type UkpFqq
and GUkpFqq can be naturally identified.

2.4 Assume that the Coxeter graph of the reductive group G is a union of subgraphs of type

Am (for various m). Let |W be the set of isomorphism classes of irreducible representations
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of its Weyl group W. The action of the Frobenius F on W induces an action on |W, and we

consider the fixed point set |WF . The following theorem classifies the irreducible unipotent

representations of G.

Theorem ([LS77] Theorem 2.2). There is a bijection between |WF and the set of isomorphism

classes of irreducible unipotent representations of G.

We recall how the bijection is constructed. According to loc. cit. if V P |WF there is a unique

automorphism rF of V of finite order such that

RpV q :“
1

|W|

ÿ

wPW

Tracepw ˝ rF |V qRw

is an irreducible representation of G. Then the map V ÞÑ RpV q is the desired bijection. In the

case of UkpFqq or GUkpFqq, the Weyl group W is identified with the symmetric group Sk and

we have an equality |WF “ |W. Moreover, the automorphism rF is the multiplication by w0,

where w0 is the element of maximal length in W. Thus, in both cases the irreducible unipotent

representations of G are classified by the irreducible representations of the Weyl group W » Sk,

which in turn are classified by partitions of k or equivalently by Young diagrams, as we briefly

recall in the next paragraph.

2.5 A partition of k is a tuple λ “ pλ1 ě . . . ě λrq with r ě 1 and each λi is a positive

integer, such that λ1 ` . . . ` λr “ k. The integer k is called the length of the partition, and

it is denoted by |λ|. A Young diagram of size k is a top left justified collection of k boxes,

arranged in rows and columns. There is a correspondance between Young diagrams of size k

and partitions of k, by associating to a partition λ “ pλ1, . . . , λrq the Young diagram having

r rows consisting successively of λ1, . . . , λr boxes. We will often identify a partition with its

Young diagram, and conversely. For example, the Young diagram associated to λ “ p32, 22, 1q

is the following one.

To any partition λ of k, one can naturally associate an irreducible character χλ of the symmetric

group Sk. An explicit construction is given, for instance, by the notion of Specht modules as

explained in [Jam84] 7.1. We will not recall their definition.

2.6 The irreducible unipotent representation of UkpFqq (resp. GUkpFqq) associated to χλ by

the bijection of 2.4 is denoted by ρU
λ (resp. ρGU

λ ). In virtue of 2.3, for every λ we have ρU
λ “

ρGU
λ ˝f , where f : UkpFqq Ñ GUkpFqq is the inclusion. Thus, it is harmless to identify ρU

λ and ρGU
λ

so that from now on, we will omit the superscript. The partition pkq corresponds to the trivial
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representation and p1kq to the Steinberg representation. The degree of the representations ρλ is

given by expressions known as hook formula. Given a box l in the Young diagram of λ, its

hook length hplq is 1 plus the number of boxes lying below it or on its right. For instance,

in the following figure the hook length of every box of the Young diagram of λ “ p32, 22, 1q has

been written inside it.

7 5 2

6 4 1

4 2

3 1

1

Proposition ([GP00] Propositions 4.3.5). Let λ “ pλ1 ě . . . ě λrq be a partition of n. The

degree of the irreducible unipotent representation ρλ is given by the following formula

degpρλq “ qapλq
śk

i“1 q
i ´ p´1qi

ś

lPλ q
hplq ´ p´1qhplq

where apλq “
řr
i“1pi´ 1qλi.

2.7 We may describe the cuspidal support of the unipotent representations ρλ. According

to [Lus77] 9.2 and 9.4 there exists an irreducible unipotent cuspidal character of UkpFqq (or

GUkpFqq) if and only if k is an integer of the form k “ tpt`1q
2

for some t ě 0, and when that is

the case it is the one associated to the partition ∆t :“ pt, t´1, . . . , 1q, whose Young diagram has

the distinctive shape of a reversed staircase. Here, as a convention U0pFqq “ GU0pFqq denotes

the trivial group. For example, here are the Young diagrams of ∆1,∆2 and ∆3. Of course, the

one of ∆0 the empty diagram.

We consider an integer t ě 0 such that k decomposes as k “ 2e` tpt`1q
2

for some e ě 0. Let G

denote UkpFqq or GUkpFqq, and consider Lt the subgroup consisting of block-diagonal matrices

having one middle block of size tpt`1q
2

and all other blocks of size 1. This is a standard Levi

subgroup of G. For UkpFqq, it is isomorphic to GL1pFq2qe ˆ U tpt`1q
2
pFqq whereas in the case of

GUkpFqq it is isomorphic to G
´

U1pFqqe ˆ U tpt`1q
2
pFqq

¯

. In both cases, Lt admits a quotient

which is isomorphic to a group of the same type as G but of size tpt`1q
2

. We write ρt for the

inflation to Lt of the unipotent cuspidal representation ρ∆t of this quotient. If λ is a partition

of k, the cuspidal support of the representation ρλ is given by exactly one of the pair pLt, ρtq

up to conjugacy, where t ě 0 is an integer such that for some e ě 0 we have k “ 2e ` tpt`1q
2

.

Note that in particular k and tpt`1q
2

must have the same parity. With these notations, the

irreducible unipotent representations belonging to the principal series are those with cuspidal

support pL0, ρ0q if k is even and pL1, ρ1q is k is odd.
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2.8 Given an irreducible unipotent representation ρλ, there is a combinatorical way to deter-

mine the Harish-Chandra series to which it belongs, as we recalled in [Mul21] Section 2. We

consider the Young diagram of λ. We call domino any pair of adjacent boxes in the diagram.

It may be either vertical or horizontal. We remove dominoes from the diagram of λ so that

the resulting shape is again a Young diagram, until one can not proceed further. This process

results in the Young diagram of the partition ∆t for some t ě 0, and it is called the 2-core of λ.

It does not depend on the successive choices for the dominoes. Then, the representation ρλ has

cuspidal support pLt, ρtq if and only if λ has 2-core ∆t. For instance, the diagram λ “ p32, 22, 1q

given in 2.5 has 2-core ∆1, as it can be determined by the following steps. We put crosses inside

the successive dominoes that we remove from the diagram. Thus, the unipotent representation

ρλ of U11pFqq or GU11pFqq has cuspidal support pL1, ρ1q, so in particular it is a principal series

representation.

ˆ

ˆ

ùñ

ˆ ˆ

ùñ

ˆ

ˆ

ùñ

ˆ ˆ

ùñ ˆ

ˆ

ùñ

2.9 From now on, we take q “ p. We consider the `-adic cohomology with compact support

of a closed Bruhat-Tits stratum MΛ b F, where ` is a prime number different from p and

Λ P L has orbit type tpΛq “ 2θ ` 1, 0 ď θ ď m. Recall from 1.2.10 that the stratum MΛ is

equipped with an action of the finite group of Lie type GUpV 0
Λ q » GU2θ`1pFpq, and as such it

is isomorphic to a Deligne-Lusztig variety. Let F be the Frobenius morphism of GU2θ`1pFpq as

defined in 2.3. Then F 2 induces a geometric Frobenius morphism MΛ b FÑMΛ b F relative

to the Fp2-structure of MΛ. Because it is a finite morphism, it induces a linear endomorphism

on the cohomology groups, and it is in fact an automorphism. In [Mul21], we computed these

cohomology groups in terms of a GU2θ`1pFpq ˆ xF 2y-representation.

Theorem. Let Λ P L and write tpΛq “ 2θ ` 1 for some 0 ď θ ď m.

(1) The cohomology group Hj
cpMΛbF,Q`q is zero unless 0 ď j ď 2θ. There is an isomorphism

Hj
cpMΛ b F,Q`q » H2θ´j

c pMΛ b F,Q`q
_
pθq

which is equivariant for the action of GU2θ`1pFpq ˆ xF 2y.

(2) The Frobenius F 2 acts like multiplication by p´pqj on Hj
cpMΛ b F,Q`q.

(3) For 0 ď j ď θ we have

H2j
c pMΛ b F,Q`q “

minpj,θ´jq
à

s“0

ρp2θ`1´2s,2sq.

For 0 ď j ď θ ´ 1 we have

H2j`1
c pMΛ b F,Q`q “

minpj,θ´1´jq
à

s“0

ρp2θ´2s,2s`1q.
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Thus, in the cohomology of MΛ all the representations associated to a Young diagram with at

most 2 rows occur, and there is no other. Such a diagram has the following general shape.

. . .

. . .

Remarks. Let us make a few comments.

– Part p1q of the theorem follows from general theory of etale cohomology given that the

variety MΛ is smooth and projective over Fp2 . The identity is a consequence of Poincaré

duality. The notation pθq is a Tate twist, it modifies the action of F 2 by multiplying it

with p2θ.

– The cohomology groups of index 0 and 2θ are the trivial representation of GU2θ`1pFpq.
– All irreducible representations in the cohomology groups of even index belong to the

unipotent principal series, whereas all the ones in the groups of odd index have cuspidal

support pL2, ρ2q.

– The cohomology group Hj
cpMΛbF,Q`q contains no cuspidal representation of GU2θ`1pFpq

unless θ “ j “ 0 or θ “ j “ 1. If θ “ 0 then H0
c is the trivial representation of

GU1pFpq “ Fˆp2 , and if θ “ 1 then H1
c is the representation ρ∆2 of GU3pFpq. Both of them

are cuspidal.

3 Shimura variety and p-adic uniformization of the basic

stratum

3.1 In this section, we introduce the PEL unitary Shimura variety with signature p1, n ´ 1q

as in [VW11] 6.1 and 6.2, and we recall the p-adic uniformization theorem of its basic (or su-

persingular) locus. The Shimura variety can be defined as a moduli problem classifying abelian

varieties with additional structures, as follows. Let E be a quadratic imaginary extension of Q
in which p is inert. Let B{F be a simple central algebra of degree d ě 1 which splits over p

and at infinity. Let ˚ be a positive involution of the second kind on B, and let V be a non-zero

finitely generated left B-module equipped with a non-degenerate ˚-alternating form x¨, ¨y taking

values in Q. Assume also that dimEpVq “ nd. Let G be the connected reductive group over Q
whose points over a Q-algebra R are given by

GpRq :“ tg P GLEbRpVbRq | Dc P Rˆ such that for all v, w P VbR, xgv, gwy “ cxv, wyu.

We denote by c : G Ñ Gm the multiplier character. The base change GR is isomorphic to a

group of unitary similitudes GUpr, sq of a hermitian space with signature pr, sq where r`s “ n.

We assume that r “ 1 and s “ n´ 1. We consider a Shimura datum of the form pG,Xq, where

X denotes the unique GpRq-conjugacy class of homorphisms h : Cˆ Ñ GR such that for all

z P Cˆ we have xhpzq¨, ¨y “ x¨, hpzq¨y, and such that the R-pairing x¨, hpiq¨y is positive definite.

Such a homomorphism h induces a decomposition VbC “ V1‘V2. Concretely, V1 (resp. V2)

is the subspace where hpzq acts like z (resp. like z). The reflex field associated to this PEL

29



On the cohomology of the basic unramified PEL unitary RZ space of signature p1, n´ 1q

data, that is the field of definition of V1 as a complex representation of B, is E unless n “ 2 in

which case it is Q. Nonetheless, for simplicity we will consider the associated Shimura varieties

over E even in the case n “ 2.

Remark. As remarked in [Vol10] Section 6, the group G satisfies the Hasse principle, ie.

ker1
pQ, Gq is a singleton. Therefore, the Shimura variety associated to the Shimura datum

pG,Xq coincides with the moduli space of abelian varieties that we are going to define.

3.2 Let Af denote the ring of finite adèles over Q and let K Ă GpAf q be an open compact

subgroup. We define a functor ShK by associating to an E-scheme S the set of isomorphism

classes of tuples pA, λ, ι, ηq where

– A is an abelian scheme over S.

– λ : AÑ pA is a polarization.

– ι : B Ñ EndpAq b Q is a morphism of algebras such that ιpb˚q “ ιpbq: where ¨: denotes

the Rosati involution associated to λ, and such that the Kottwitz determinant condition

is satisfied:

@b P B, detpιpbqq “ detpb |V1q.

– η is a K-level structure, that is a K-orbit of isomorphisms of BbAf -modules H1pA,Af q
„
ÝÑ

Vb Af that is compatible with the other data.

The Kottwitz condition in the third point is independent on the choice of h P X. If K is

sufficiently small, this moduli problem is represented by a smooth quasi-projective scheme ShK

over E. When the level K varies, the Shimura varieties form a projective system pShKqK

equipped with an action of GpAf q by Hecke correspondences.

3.3 We assume the existence of a Zppq-order OB in B, stable under the involution ˚, such

that its p-adic completion is a maximal order in BQp . We also assume that there is a Zp-lattice

Γ in V b Qp, invariant under OB and self-dual for x¨, ¨y. We may fix isomorphisms Ep » Qp2

and BQp » MdpQp2q such that OB b Zp is identified with MdpZp2q.
As a consequence of the existence of Γ, the group GQp is unramified. Let K0 :“ FixpΓq be the

subgroup of GpQpq consisting of all g such that g ¨Γ “ Γ. It is a hyperspecial maximal compact

subgroup of GpQpq. We will consider levels of the form K “ K0K
p where Kp is an open compact

subgroup of GpAp
f q. Note that K is sufficiently small as soon as Kp is sufficiently small. By the

work of Kottwitz in [Kot92], the Shimura varieties ShK0Kp admit integral models over OE,ppq

which have the following moduli interpretation. We define a functor SKp by associating to an

OE,ppq-scheme S the set of isomorphism classes of tuples pA, λ, ι, ηpq where

– A is an abelian scheme over S.

– λ : AÑ pA is a polarization whose order is prime to p.

– ι : OB Ñ EndpAqbZppq is a morphism of algebras such that ιpb˚q “ ιpbq: where ¨: denotes

the Rosati involution associated to λ, and such that the Kottwitz determinant condition

is satisfied:

@b P OB, detpιpbqq “ detpb |V1q.
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– ηp is aKp-level structure, that is aKp-orbit of isomorphisms ofBbAp
f -modules H1pA,Ap

f q
„
ÝÑ

Vb Ap
f that is compatible with the other data.

If Kp is sufficiently small, this moduli problem is also representable by a smooth quasi-projective

scheme over OE,ppq. When the level Kp varies, these integral Shimura varieties form a projective

system pSKpqKp equipped with an action of GpAp
f q by Hecke correspondences. We have a family

of isomorphisms

ShK0Kp » SKp bOE,ppq E

which are compatible as the level Kp varies.

Notation. Unless explicitly mentioned, from now on the notation SKp will refer to the smooth

quasi-projective Zp2-scheme SKp bOE,ppq Zp2 . Here, we implicitly use the identification of Ep

with Qp2 .

Therefore, with this convention we have isomorphisms ShK0KpbEQp2 » SKpbZp2Qp2 compatible

as the level Kp varies.

3.4 Let SKp :“ SKp bZp2 Fp2 denote the special fiber of the Shimura variety. It is a smooth

quasi-projective variety over Fp2 . Its geometry can be described in terms of the Newton strati-

fication as follows. Recall the Shimura datum introduced in 3.1. To any homomorphism h P X,

we can associate the cocharacter

µh : Cˆ Ñ GC “
ğ

GalpC{Rq

GR

which is given by h : Cˆ Ñ GR into the summand corresponding to the identity in GalpC{Rq.
The conjugacy class µ of µh is well-determined by X. The field of definition of µ is by definition

the reflex field of the Shimura datum, that is E when n ­“ 2 and Q otherwise. We fix an

algebraic closure Q (resp. Qp) containing E (resp. Qp2). We also fix an embedding ν :

Q ãÑ Qp compatible with the identification Ep » Qp2 . We may then consider the local datum

pGQp , µQpq where µQp is the conjugacy class of cocharacters Qp
ˆ
Ñ GQp induced by µ and

ν. Let BpGQpq denote the set of σ-conjugacy classes in GpqQpq where qQp :“ {W pFqQ is the

completion of the maximal unramified extension of Qp. As in [Kot97], we may associate the

Kottwitz set BpGQp , µQpq Ă BpGQpq. It is a finite set equipped with a partial order. An

element b P BpGQpq is said to be µQp´admissible when it belongs to BpGQp , µQpq. The set

BpGQpq (resp. BpGQp , µQpq) canonically classifies the isomorphism classes of isocrystals with a

GQp-structure (resp. compatible µQp , GQp-structures).

Let AKp denote the universal abelian scheme over SKp , and let AKp denote its reduction

modulo p. The associated p-divisible group AKprp8s is denoted by XKp . For any geometric

point x P SKp , the p-divisible group pXKpqx is equipped with compatible µQp , GQp-structures

therefore it determines an element bx P BpGQp , µQpq. For b P BpGQp , µQpq, the set

SKppbq :“ tx P SKp | bx “ bu

is locally closed in SKp . It is the underlying topological space of a reduced subscheme which we

still denote by SKppbq. They are called the Newton strata of the special fiber of the Shimura
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variety. For a fixed b, as the level Kp varies the strata form a projective tower pSKppbqqKp

equipped with an action of GpAp
f q by Hecke correspondences.

3.5 In [BW05], the combinatorics of the Newton stratification is described in the case of a

PEL unitary Shimura variety of signature p1, n ´ 1q. The set BpGQp , µQpq contains tn
2
u ` 1

elements b0 ă b1 ă . . . ă btn
2

u and we have

SKp “

tn
2

u
ğ

i“0

SKppbiq.

The stratification is linear, that is the closure of a stratum SKppbiq is the union of all the strata

SKppbjq for j ď i. The stratum corresponding to bi has dimension m ` i. The element btn
2

u is

µ-ordinary, and the corresponding stratum SKppbtn
2

uq is called the µ-ordinary locus. It is open

and dense in SKp . The unique basic element is b0, and the corresponding stratum SKppb0q is

called the basic stratum. It coincides with the supersingular locus. It is a closed subscheme

of SKp .

3.6 The geometry of the basic stratum can be described using the Rapoport-Zink space M
in a process called p-adic uniformization, see [RZ96] and [Far04]. Let x be a geometric point of

SKppb0q. Since G satisfies the Hasse principle, according to [Far04] Proposition 3.1.8 the isogeny

class of the triple pAx, λ, ιq, consisting of the abelian variety Ax together with its additional

structures, does not depend on the choice of x. We define

I :“ AutpAx, λ, ιq.

It is a reductive group over Q. In fact, since we are considering the basic stratum, according to

loc. cit. the group I is the inner form of G such that IpAf q “ J ˆGpAp
f q and IpRq » GUp0, nq,

that is the unique inner form of GpRq which is compact modulo center. In particular, one can

think of IpQq as a subgroup both of J and of GpAp
f q. Let ppSKpq|b0 denote the formal completion

of SKp along the basic stratum.

Theorem ([RZ96] Theorem 6.24). There is an isomorphism of formal schemes over SpfpZp2q

ΘKp : IpQqz
`

MˆGpAp
f q{K

p
˘ „
ÝÑ ppSKpq|b0

which is compatible with the GpAp
f q-action by Hecke correspondences as the level Kp varies.

This isomorphism is known as the p-adic uniformization of the basic stratum. The induced

map on the special fiber is an isomorphism

pΘKpqs : IpQqz
`

Mred ˆGpAp
f q{K

p
˘ „
ÝÑ SKppb0q

of schemes over SpecpFp2q. We denote by Man (resp. ppSKpqan
|b0

) the smooth analytic space over

Qp2 associated to the formal scheme M (resp. ppSKpq|b0) by the Berkovich functor as defined in

[Ber96]. Note that both formal schemes are special in the sense of loc. cit. so that we may
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use Berkovich’s constructions. These analytic spaces play the role of the generic fibers of the

formal schemes over SpfpZp2q. By [Far04] Théorème 3.2.6, p-adic uniformization induces an

isomorphism

Θan
Kp : IpQqz

`

Man
ˆGpAp

f q{K
p
˘ „
ÝÑ ppSKpq

an
|b0

of analytic spaces over Qp2 . We denote by red the reduction map from the generic fiber to the

special fiber. It is an anticontinuous map of topological spaces, which means that the preimage

of an open subset is closed and the preimage of a closed subet is open. Then, the uniformization

on the generic and special fibers are compatible in the sense that the diagram

IpQqz
`

Man ˆGpAp
f q{K

p
˘

ppSKpqan
|b0

IpQqz
`

Mred ˆGpAp
f q{K

p
˘

SKppb0q

Θan
Kp

red red

pΘKp qs

is commutative.

3.7 The double coset space IpQqzGpAp
f q{K

p is finite, so that we may fix a system of repre-

sentatives g1, . . . , gs P GpAp
f q. For every 1 ď k ď s, we define Γk :“ IpQq X gkK

pg´1
k , which

we see as a discrete subgroup of J that is cocompact modulo the center. The left hand side of

the p-adic uniformization theorem is isomorphic to the disjoint union of the various quotients

of M (or Mred or Man) by the subgroups Γk Ă J . In particular for the special fiber, it is an

isomorphism

pΘKpqs :
s
ğ

k“1

ΓkzMred
„
ÝÑ SKppb0q.

Let Φk
Kp be the composition Mred Ñ ΓkzMred Ñ Sh

ss

Cp and let ΦKp be the disjoint union of the

Φk
Kp . The map ΦKp is surjective onto SKppb0q. According to [VW11] Section 6.4, it is a local

isomorphism which can be used in order to transport the Bruhat-Tits stratification from Mred

to SKppb0q. Recall the notations of 1.2.3.

Proposition ([VW11] Proof of Proposition 6.5). Let Λ P L. For any 1 ď k ď s, the restriction

of Φk
Kp to MΛ is an isomorphism onto its image.

We will denote by SKp,Λ,k the scheme theoretic image of MΛ through Φk. A subscheme of the

form SKp,Λ,k is called a closed Bruhat-Tits stratum of the Shimura variety. Together, they

form the Bruhat-Tits stratification of the basic stratum, whose combinatorics is described by

the union of the complexes ΓkzL.
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4 The cohomology of the Rapoport-Zink space at max-

imal level

4.1 The spectral sequence associated to an open cover of Man

4.1.1 As in 3.6, we consider the generic fiber Man of the Rapoport-Zink space as a smooth

Berkovich analytic space over Qp2 . Let red : Man Ñ Mred be the reduction map. If Z is

a locally closed subset of Mred, then the preimage red´1
pZq is called the analytical tube

over Z. It is an analytic domain in Man and it coincides with the generic fiber of the formal

completion of Mred along Z. If i P Z such that ni is even, then the tube red´1
pMiq “Man

i is

open and closed in Man and we have

Man
“

ğ

niP2Z

Man
i .

If Λ P L, we define

UΛ :“ red´1
pMΛq

the tube over MΛ. The action of J on M induces an action on the generic fiber Man such

that red is J-equivariant. By restriction it induces an action of JΛ on UΛ. The analytic space

Man and each of the open subspaces UΛ have dimension n´ 1.

4.1.2 We fix a prime number ` ­“ p. In [Ber93], Berkovich developped a theory of étale

cohomology for his analytic spaces. Using it we may define the cohomology of the Rapoport-

Zink space Man by the formula

H‚cpMan
pbCp,Q`q :“ lim

ÝÑ
U

H‚cpU pbCp,Q`q

“ lim
ÝÑ
U

lim
ÐÝ
n

H‚cpU pbCp,Z{`nZq bQ`

where U goes over all relatively compact open of Man. These cohomology groups are equipped

with commuting actions of J and of W , the Weyl group of Qp2 . The J-action causes no problem

of interpretation, but the W -action needs explanations. Let τ :“ σ2 be the Frobenius relative

to Fp2 . We fix a lift Frob P W of the geometric Frobenius τ´1 P GalpF{Fp2q. The inertia

subgroup I Ă W acts on H‚cpMan
pbCp,Q`q via the coefficients Cp, whereas Frob acts via the

Weil descent datum defined by Rapoport and Zink in [RZ96] 3.48, as we explain now.

Recall the standard unitary p-divisible group X introduced in 1.1.1. Let

FX : Xb FÑ τ˚pXb Fq

denote the Frobenius morphism relative to Fp2 . Let pMpbO
qQpq

τ be the functor defined by

pMpbO
qQpq

τ
pSq :“MpSτ q

for all O
qQp-scheme S where p is locally nilpotent. Here, Sτ denotes the scheme S but with

structure morphism the composition S Ñ SpecpO
qQpq

τ
ÝÑ SpecpO

qQpq. The Weil descent datum is
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the isomorphism αRZ : MpbO
qQp

„
ÝÑ pMpbO

qQpq
τ given by pX, ι, λ, ρq PMpSq ÞÑ pX, ι, λ,FX˝ρq.

We may describe this in terms of k-rational points, where k is a perfect field extension of F. Since

we use covariant Dieudonné theory, the relative Frobenius FX corresponds to the Verschiebung

V2 in the Dieudonné module. By construction of X, we have V2 “ pτ´1. Therefore, if

S “ Specpkq with k{Fp2 perfect, then αRZ sends a Dieudonné module M PMpkq to pτ´1pMq.

Since Frob P W is a geometric Frobenius element, its action on the cohomology of Man is

induced by the inverse α´1
RZ.

Remark. The Rapoport-Zink space is defined over Zp2 and this rational structure is induced by

the effective descent datum pα´1
RZ, with p “ p ¨ id seen as an element of the center of J . It sends

a point M to τpMq. Consequently, in the following we will write τ :“ pp´1 ¨ id,Frobq P J ˆW ,

and we refer to it as the rational Frobenius. We note that p´1 ¨ id comes from contravariance of

cohomology with compact support: the action of g P J on the cohomology of Man is induced

by the action of g´1 on the space Man.

Notation. In order to shorten the notations, we will omit the coefficients Cp. Thefore we write

H‚cpMan,Q`q and similarly for subspaces of Man.

4.1.3 The cohomology groups H‚cpMan,Q`q are concentrated in degrees 0 to 2 dimpManq “

2pn ´ 1q. According to [Far04] Corollaire 4.4.7, these groups are smooth for the J-action and

continous for the I-action. In a similar way as for Man, we can also define the cohomology

groups H‚cpMan
i ,Q`q for every i P Z such that ni is even. The action of an element g P J induces

an isomorphism

g : H‚cpMan
i ,Q`q

„
ÝÑ H‚cpMan

i`αpgq,Q`q.

In particular, the action of Frob gives an isomorphism from the cohomology of Man
i to that of

Man
i`2. Let pJˆW q˝ be the subgroup of JˆW consisting of all elements of the form pg, uFrobjq

with u P I and αpgq “ ´2j. In fact, we have pJ ˆW q˝ “ pJ˝ ˆ IqτZ where J˝ Ă J is the

subgroup introduced in 1.3.4. Each group H‚cpMan
i ,Q`q is a pJ ˆW q˝-representation, and we

have an isomorphism

H‚cpMan,Q`q » c´ IndJˆW
pJˆW q˝ H‚cpMan

0 ,Q`q.

In particular, when Hk
c pMan,Q`q is non-zero it is infinite dimensional. However, by loc. cit.

Proposition 4.4.13, these cohomology groups are always of finite type as J-modules.

4.1.4 In order to obtain information on the cohomology of Man, we study the spectral

sequence associated to the covering by the open subspaces UΛ for Λ P L. The spaces UΛ satisfy

the same incidence relations as the MΛ, as described in 1.2.11 Theorem (1), (2) and (3). As a

consequence, the open covering of Man by the tUΛu is locally finite. For i P Z such that ni is

even and for 0 ď θ ď m, we denote by Lpθqi the subset of Li whose elements are those lattices

of orbit type 2θ ` 1. We also write Lpθq for the union of the Lpθqi . Then tUΛuΛPLpmq is an open

cover of Man. We may apply [Far04] Proposition 4.2.2 to deduce the existence of the following

Čech spectral sequence computing the cohomology of the Rapoport-Zink space, concentrated
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in degrees a ď 0 and 0 ď b ď 2pn´ 1q,

Ea,b
1 :

à

γPI´a`1

Hb
cpUpγq,Q`q ùñ Ha`b

c pMan,Q`q.

Here, for s ě 1 the set Is is defined by

Is :“

#

γ “ pΛ1, . . . ,Λs
q

ˇ

ˇ

ˇ

ˇ

ˇ

@1 ď j ď s,Λj
P Lpmq and Upγq :“

s
č

j“1

UΛj ­“ H

+

.

Necessarily, if γ “ pΛ1, . . . ,Λsq P Is then there exists a unique i such that ni is even and

Λj P Lpmqi for all j. We then define

Λpγq :“
s
č

j“1

Λj
P Li,

so that Upγq “ UΛpγq. In particular, the open subspace Upγq depends only on the intersection

Λpγq of the elements in the s-tuple γ.

For s ě 2 and γ “ pΛ1, . . . ,Λsq P Is, define γj :“ pΛ1, . . . ,xΛj, . . . ,Λsq P Is´1 for the ps´1q-tuple

obtained from γ by removing the j-th term. Besides, for Λ,Λ1 P Li with Λ1 Ă Λ, we write f bΛ1,Λ
for the natural map Hb

cpUΛ1 ,Q`q Ñ Hb
cpUΛ,Q`q induced by the inclusion UΛ1 Ă UΛ.

For a ď ´1, the differential Ea,b
1 Ñ Ea`1,b

1 is denoted by ϕb´a. It is the direct sum over all

γ P I´a`1 of the maps

Hb
cpUpγq,Q`q Ñ

à

δPtγ1,...γ´a`1u

Hb
cpUpδq,Q`q

v ÞÑ
´a`1
ÿ

j“1

γj ¨ p´1qj`1f bΛpγq,Λpγjqpvq.

Here, the notation γj ¨ p´1qj`1f bΛpγq,Λpγjqpvq means the vector p´1qj`1f bΛpγq,Λpγjqpvq considered

inside the summand Hb
cpUpδq,Q`q corresponding to δ “ γj. We observe that we may have

Λpγjq “ Λpγj1q even though γj ­“ γj1 . In such a case, the vectors f bΛpγq,Λpγjqpvq and f bΛpγq,Λpγj1 qpvq

are equal in Hb
cpUpγjq,Q`q “ Hb

cpUpγj1q,Q`q, but they contribute to two distinct summands in

the codomain, namely associated to δ “ γj and δ “ γj1 .

An element g P J acts on the set Is by sending γ to g ¨ γ :“ pgΛ1, . . . , gΛsq. The action of g´1

induces an isomorphism

Hb
cpUpγq,Q`q

„
ÝÑ Hb

cpUpg ¨ γq,Q`q.

This defines a natural J-action on the terms Ea,b
1 , with respect to which the spectral sequence

is equivariant.

Remark. The map pα´1
RZ defines a Weil descent datum on MΛbF which is effective, and coincides

with the natural Fp2-structure. Hence, the same holds for the analytical tube UΛpbCp. The

descent datum pα´1
RZ induces the action of τ on the cohomology of UΛ. If γ P I´a`1 then

p ¨ γ P I´a`1. It follows that each term Ea,b
1 is equipped with an action of W . The spectral

sequence E is in fact J ˆW -equivariant.
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4.1.5 First we relate the cohomology of a tube UΛ to the cohomology of the corresponding

closed Bruhat-Tits stratum MΛ. We observe that H‚cpUΛ,Q`q is naturally a representation of

the subgroup pJΛ ˆ Iqτ
Z Ă J ˆW .

Proposition. Let Λ P L and let 0 ď b ď 2pn ´ 1q. There is a pJΛ ˆ IqτZ-equivariant isomor-

phism

Hb
pMΛ b F,Q`q

„
ÝÑ Hb

pUΛ,Q`q

where, on the left-hand side, the inertia I acts trivially and τ acts like the geometric Frobenius

F 2.

In particular, the inertia acts trivially on the cohomology of UΛ.

Proof. Recall the notations of 3.7 regarding the Bruhat-Tits stratification on the Shimura

variety SKp , where Kp is any open compact subgroup of GpAp
f q that is small enough. Fix an

integer 1 ď k ď s and consider the closed Bruhat-Tits stratum SKp,Λ,k, that is the isomorphic

image of MΛ through Φk
Kp . Let ShKp,Λ,k be the analytic tube of SKp,Λ,k inside ppSKpqan

|b0
. By

compatibility of the p-adic uniformization, the tube ShKp,Λ,k is the isomorphic image of UΛ

through pΦk
Kpq

an, which is the composition Man Ñ ΓkzMan Ñ ppSKpqan
|b0

. Thus, the following

diagram is commutative.

UΛ ShKp,Λ,k

MΛ SKp,Λ,k

„

red red

„

Berkovich’s comparison theorem gives the desired isomorphism. More precisely, let pSKp denote

the formal completion of the Shimura variety SKp along its special fiber. Since it is a smooth

formal scheme over SpfpZp2q, we may apply [Ber96] Corollary 3.7 to deduce the existence of a

natural isomorphism

Hb
pSKp,Λ,k b F,Q`q

„
ÝÑ Hb

pShKp,Λ,k,Q`q.

This isomorphism is equivariant for the action of pJΛ ˆ Iqτ
Z, with the rational Frobenius τ on

the right-hand side corresponding to F 2 on the left-hand side.

Remark. It is a priori not possible to use Berkovich’s result directly on the Rapoport-Zink space

because M is not a smooth formal scheme over SpfpZ2
pq. In fact, it is not adic unless n “ 1 or

2, see [Far04] Remarque 2.3.5. It is the reason why we have to introduce the Shimura variety

in the proof.

Corollary. Let Λ P L and let 0 ď b ď 2pn´1q. There is a pJΛˆ Iqτ
Z-equivariant isomorphism

Hb
cpUΛ,Q`q

„
ÝÑ Hb´2pn´1´θq

c pMΛ b F,Q`qpn´ 1´ θq

where tpΛq “ 2θ ` 1.
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Proof. This is a consequence of algebraic and analytic Poincaré duality, respectively for UΛ and

for MΛ. Indeed, we have

Hb
cpUΛ,Q`q » H2pn´1q´b

pUΛ,Q`q
_
pn´ 1q

» H2pn´1q´b
pMΛ b F,Q`q

_
pn´ 1q

» Hb´2pn´1´θq
c pMΛ b F,Q`qpn´ 1´ θq.

4.1.6 Let Λ P L and write tpΛq “ 2θ ` 1. If λ is a partition of 2θ ` 1, recall the unipotent

irreducible representation ρλ of GUpV 0
Λ q » GU2θ`1pFpq that we introduced in 2.6. It can be

inflated to the maximal reductive quotient JΛ » GpUpV 0
Λ q ˆUpV 1

Λ qq, and then to the maximal

parahoric subgroup JΛ. With an abuse of notation, we still denote this inflated representation

by ρλ. In virtue of 2.9, the isomorphism in the last paragraph translates into the following

result.

Proposition. Let Λ P L and write tpΛq “ 2θ ` 1. The following statements hold.

(1) The cohomology group Hb
cpUΛ,Q`q is zero unless 2pn´ 1´ θq ď b ď 2pn´ 1q.

(2) The action of JΛ on the cohomology factors through an action of the finite group of Lie

type GUpV 0
Λ q. The rational Frobenius τ acts like multiplication by p´pqb on Hb

cpUΛ,Q`q.

(3) For 0 ď b ď θ we have

H2b`2pn´1´θq
c pUΛ,Q`q “

minpj,θ´jq
à

s“0

ρp2θ`1´2s,2sq.

For 0 ď b ď θ ´ 1 we have

H2b`1`2pn´1´θq
c pUΛ,Q`q “

minpj,θ´1´jq
à

s“0

ρp2δ´2s,2s`1q.

4.1.7 The description of the rational Frobenius action yields the following result.

Corollary. The spectral sequence degenerates on the second page E2. For 0 ď b ď 2pn ´ 1q,

the induced filtration on Hb
cpMan,Q`q splits, ie. we have an isomorphism

Hb
cpMan,Q`q »

à

bďb1ď2pn´1q

Eb´b1,b1

2 .

The action of W on Hb
cpMan,Q`q is trivial on the inertia subgroup and the action of the rational

Frobenius element τ is semisimple. The subspace Eb´b1,b1

2 is identified with the eigenspace of τ

associated to the eigenvalue p´pqb
1

.

Remark. In the previous statement, the terms Eb´b1,b1

2 may be zero.

Proof. The pa, bq-term in the first page of the spectral sequence is the direct sum of the co-

homology groups Hb
c pUpγq,Q`q for all γ P I´a`1. On each of these cohomology groups, the
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rational Frobenius τ acts like multiplication by p´pqb. This action is in particular independant

of γ and of a. Thus, on the b-th row of the first page of the sequence, the Frobenius acts

everywhere as multiplication by p´pqb. Starting from the second page, the differentials in the

sequence connect two terms lying in different rows. Since the differentials are equivariant for

the τ -action, they must all be zero. Thus, the sequence degenerates on the second page. By

the machinery of spectral sequences, there is a filtration on Hb
cpMan,Q`q whose graded factors

are given by the terms Eb´b1,b1

2 of the second page. Only a finite number of these terms are

non-zero, and since they all lie on different rows, the Frobenius τ acts like multiplication by a

different scalar on each graded factor of the filtration. It follows that the filtration splits, ie.

the abutment is the direct sum of the graded pieces of the filtration, as they correspond to the

eigenspaces of τ . Consequently, its action is semisimple.

4.1.8 The spectral sequence Ea,b
1 has non-zero terms extending indefinitely in the range a ď

0. For instance, if Λ P Lpmq then pΛ, . . . ,Λq P I´a`1 so that Ea,b
1 ­“ 0 for all a ď 0 and

2pn ´ 1 ´ mq ď b ď 2pn ´ 1q. To rectify this, we introduce the alternating Čech spectral

sequence. If v P Ea,b
1 and γ P I´a`1, we denote by vγ P Hb

cpUpγq,Q`q the component of v in the

summand of Ea,b
1 indexed by γ. Besides, if γ “ pΛ1, . . . ,Λ´a`1q P I´a`1 and if σ P S´a`1 then

we write σpγq :“ pΛσp1q, . . . ,Λσp´a`1qq P I´a`1. For all a, b we define

Ea,b
1,alt :“ tv P Ea,b

1 | @γ P I´a`1, @σ P S´a`1, vσpγq “ sgnpσqvγu.

In particular, if γ “ pΛ1, . . . ,Λ´a`1q with Λj “ Λj1 for some j ­“ j1 then v P Ea,b
1,alt ùñ vγ “ 0.

The subspace Ea,b
1,alt Ă Ea,b

1 is stable under the action of JˆW , and the differential ϕb´a : Ea,b
1 Ñ

Ea`1,b
1 sends Ea,b

1,alt to Ea`1,b
1,alt . Thus, for all b we have a chain complex E‚,b1,alt and the following

proposition is well-known.

Proposition ([Sta23] Lemma 01FM). The inclusion map E‚,b1,alt ãÑ E‚,b1 is a homotopy equiva-

lence. In particular we have canonical isomorphisms Ea,b
2,alt » Ea,b

2 for all a, b.

The advantage of the alternating Čech spectral sequence is that it is concentrated in a finite

strip. Indeed, if γ “ pΛ1, . . . ,Λ´a`1q P I´a`1, let i P Z such that Λpγq P Li. Then all the

Λj’s belong to the set of lattices in Lpmqi containing Λpγq. This set is finite of cardinality

νpn´ θ ´m´ 1, n´ 2θ ´ 1q where tpΛpγqq “ 2θ ` 1 according to 1.4.1. Thus, if ´a` 1 is big

enough then all the γ’s in I´a`1 will have some repetition, so that Ea,b
1,alt “ 0.

Remark. The Lemma 01FM of [Sta23] is stated in the context of Čech cohomology of an abelian

presheaf F on a topological space X. However, the proof may be adapted to Čech homology

of precosheaves such as U ÞÑ Hb
cpU,Q`q.

4.1.9 For a “ 0, we have E0,b
1,alt “ E0,b

1 by definition. Let us consider the cases b “ 2pn´1´mq

and b “ 2pn´ 1´mq ` 1. For such b, it follows from 4.1.6 that Hb
cpUΛ,Q`q “ 0 if tpΛq ă tmax.

If a ď ´1, we have ´a` 1 ě 2 so that for all γ “ pΛ1, . . . ,Λ´a`1q P I´a`1, if there exists j ­“ j1

such that Λj ­“ Λj1 , then tpΛpγqq ă tmax and Hb
cpUpγq,Q`q “ 0. It follows that Ea,b

1,alt “ 0 for

all a ď ´1 and b as above. This observation, along with the previous paragraph, yields the

following proposition.

39



On the cohomology of the basic unramified PEL unitary RZ space of signature p1, n´ 1q

Proposition. We have E
0,2pn´1´mq
2 » E

0,2pn´1´mq
1 . If moreover m ě 1 (ie. n ě 3), then we

have E
0,2pn´1´mq`1
2 » E

0,2pn´1´mq`1
1 as well.

4.1.10 In order to study the action of J , we may rewrite Ea,b
1 conveniently in terms of

compactly induced representations. To do this, let us introduce a few more notations. For

0 ď θ ď m and s ě 1, we define

Ipθqs :“ tγ P Is | tpΛpγqq “ 2θ ` 1u.

The subset I
pθq
s Ă Is is stable under the action of J . We denote by NpΛθq the finite set

Npn´ θ´m´ 1, V 1
θ q as defined in paragraph 1.4.1. It corresponds to the set of lattices Λ P L0

of maximal orbit type tpΛq “ 2m` 1 containing Λθ. For s ě 1 we define

Kpθq
s :“ tδ “ pΛ1, . . . ,Λs

q | @1 ď j ď s,Λj
P NpΛθq and Λpδq “ Λθu.

Then K
pθq
s is a finite subset of I

pθq
s and it is stable under the action of Jθ. If γ P I

pθq
s , there exists

some g P J such that g ¨Λpγq “ Λθ because both lattices share the same orbit type. Moreover,

the coset Jθ ¨ g is uniquely determined, and g ¨ γ is an element of K
pθq
s . This mapping results in

a natural bijection between the orbit sets

JzIpθqs
„
ÝÑ JθzK

pθq
s .

The bijection sends the orbit J ¨ α to the orbit Jθ ¨ pg ¨ αq where g is chosen as above. The

inverse sends an orbit Jθ ¨ β to J ¨ β. We note that both orbit sets are finite.

We may now rearrange the terms in the spectral sequence.

Proposition. We have an isomorphism

Ea,b
1 »

m
à

θ“0

à

rδsPJθzK
pθq
´a`1

c´ IndJFixpδq Hb
cpUΛθ ,Q`q|Fixpδq

»

m
à

θ“0

c´ IndJJθ

´

Hb
cpUΛθ ,Q`q bQ`rK

pθq
´a`1s

¯

,

where Q`rK
pθq
´a`1s is the permutation representation associated to the action of Jθ on the finite

set K
pθq
´a`1.

Remark. For δ P K
pθq
s , the group Fixpδq consists of the elements g P J such that g ¨ δ “ δ. Any

such g satisfies gΛpδq “ Λpδq, and since Λpδq “ Λθ we have Fixpδq Ă Jθ. If δ “ pΛ1, . . . ,Λsq

then Fixpδq is the intersection of the maximal parahoric subgroups JΛ1 , . . . , JΛs . We note that

in general, Fixpδq is itself not a parahoric subgroup of J since the lattices Λ1, . . . ,Λs need not

form a simplex in L, as they all share the same orbit type. If however Λ1 “ . . . “ Λs then

Fixpδq “ JΛ1 is a conjugate of the maximal parahoric subgroup Jm.

Proof. First, by decomposing I´a`1 as the disjoint union of the I
pθq
´a`1 for 0 ď θ ď m, we may

write

Ea,b
1 “

m
à

θ“0

à

γPI
pθq
´a`1

Hb
cpUpγq,Q`q.
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For each orbit X P JzI
pθq
´a`1, we fix a representative δX which lies in K

pθq
´a`1. We may write

Ea,b
1 “

m
à

θ“0

à

XPJzI
pθq
´a`1

à

γPX

Hb
cpUpγq,Q`q “

m
à

θ“0

à

XPJzI
pθq
´a`1

à

gPJ{FixpδXq

g ¨ Hb
cpUpδXq,Q`q.

The rightmost sum can be identified with a compact induction from FixpδXq to J . Identifying

the orbit sets JzI
pθq
´a`1

„
ÝÑ JθzK

pθq
´a`1, we have

Ea,b
1 »

m
à

θ“0

à

rδsPJθzK
pθq
´a`1

c´ IndJFixpδq Hb
cpUΛθ ,Q`q|Fixpδq.

By transitivity of compact induction, we have

c´ IndJFixpδq Hb
cpUΛθ ,Q`q|Fixpδq “ c´ IndJJθ c´ IndJθFixpδq Hb

cpUΛθ ,Q`q|Fixpδq.

Since Hb
c pUΛθ ,Q`q|Fixpδq is the restriction of a representation of Jθ to Fixpδq, applying com-

pact induction from Fixpδq to Jθ results in tensoring with the permutation representation of

Jθ{Fixpδq. Thus

Ea,b
1 »

m
à

θ“0

à

rδsPJθzK
pθq
´a`1

c´ IndJJθ
`

Hb
cpUΛθ ,Q`q bQ`rJθ{Fixpδqs

˘

»

m
à

θ“0

c´ IndJJθ

¨

˝Hb
cpUΛθ ,Q`q b

à

rδsPJθzK
pθq
´a`1

Q`rJθ{Fixpδqs

˛

‚,

where on the second line we used additivity of compact induction. Now, Jθ{Fixpδq is identified

with the Jθ-orbit Jθ ¨ δ of δ in K
pθq
´a`1, so that

à

rδsPJθzK
pθq
´a`1

Q`rJθ{Fixpδqs » Q`r
ğ

rδsPJθzK
pθq
´a`1

Jθ ¨ δs » Q`rK
pθq
´a`1s,

which concludes the proof.

4.1.11 By 1.2.9, we may identify NpΛθq with the set

NpΛθq :“ tU Ă V 1
θ | dimU “ m´ θ and U Ă UKu.

Thus, for s ě 1, K
pθq
s is naturally identified with

K
pθq

s »

#

δ “ pU1, . . . , U s
q

ˇ

ˇ

ˇ

ˇ

ˇ

@1 ď j ď s, U j
P NpΛθq and

s
č

j“1

U j
“ t0u

+

.

The action of Jθ on K
pθq
s corresponds to the natural action of GUpV 1

θ q on K
pθq

s , which fac-

tors through an action of the finite projective unitary group PUpV 1
θ q :“ UpV 1

θ q{ZpUpV
1
θ qq »

GUpV 1
θ q{ZpGUpV 1

θ qq. Thus, the representation Q`rK
pθq
´a`1s of Jθ is the inflation, via the maximal

reductive quotient as in 1.2.8, of the representation Q`rK
pθq

´a`1s of the finite projective unitary

group PUpV 1
θ q.

When θ “ m or when s “ 1, we trivially have the following proposition.
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Proposition. For s ě 1, we have Q`rK
pmq
s s “ 1.

For 0 ď θ ď m´ 1, we have Q`rK
pθq
1 s “ 0.

Proof. If δ “ pΛ1, . . . ,Λsq P K
pmq
s then Λpδq “ Λm has maximal orbit type tmax “ 2m` 1. For

any 1 ď j ď s we have Λm Ă Λj, therefore Λ1 “ . . . “ Λs “ Λm. Thus K
pmq
s is a singleton and

so Q`rK
pmq
s s is trivial. Besides, if θ ă m then K

pθq
s is clearly empty.

Recall 4.1.9 Proposition. We obtain the following corollary.

Corollary. We have

E0,b
1 » c´ IndJJm Hb

cpUΛm ,Q`q.

In particular, we have

E0,b
2 »

$

&

%

c´ IndJJm ρp2m`1q if b “ 2pn´ 1´mq,

c´ IndJJm ρp2m,1q if m ě 1 and b “ 2pn´ 1´mq ` 1.

Remark. The representation ρp2m`1q “ 1 is the trivial representation of Jm.

4.1.12 Let us now consider the top row of the spectral sequence, corresponding to b “ 2pn´1q.

For Λ1 Ă Λ, recall the map f
2pn´1q
Λ1,Λ : H

2pn´1q
c pUΛ1 ,Q`q Ñ H

2pn´1q
c pUΛ,Q`q. By Poincaré duality, it

is the dual map of the restriction morphism H0pUΛ,Q`q Ñ H0pUΛ1 ,Q`q. Since UΛ is connected

for every Λ P L, we have H0pUΛ,Q`q » Q` and the restriction maps for Λ1 Ă Λ are all identity.

Thus, E
a,2pn´1q
1 is the Q`-vector space generated by I´a`1, and the differential ϕ

2pn´1q
´a is given

by

γ P I´a`1 ÞÑ

´a`1
ÿ

j“1

p´1qj`1γj.

Using this description, we may compute the highest cohomology group H
2pn´1q
c pMan,Q`q ex-

plicitely.

Proposition. There is an isomorphism

H2pn´1q
c pMan,Q`q » c´ IndJJ˝ 1,

and the rational Frobenius τ acts via multiplication by p2pn´1q.

Proof. The statement on the Frobenius action is already known by 4.1.7 Corollary. Besides, we

have H
2pn´1q
c pMan,Q`q » E

0,2pn´1q
2 “ Cokerpϕ

2pn´1q
1 q. The differential ϕ

2pn´1q
1 is described by

pΛ,Λq ÞÑ 0, @Λ P Lpmq,
pΛ,Λ1q ÞÑ pΛ1q ´ pΛq, @Λ,Λ1 P Lpmq such that UΛ X UΛ1 ­“ H.

Let i P Z such that ni is even, and let Λ,Λ1 P Lpmqi . Since the Bruhat-Tits building BTp rJ,Qpq »

Li is connected, there exists a sequence Λ “ Λ0, . . . ,Λd “ Λ1 of lattices in Li such that for all
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0 ď j ď d ´ 1, tΛj,Λj`1u is an edge in Li. Assume that d ě 0 is minimal satisfying this

property. Since tpΛq “ tpΛ1q “ tmax, the integer d is even and we may assume that tpΛjq is

equal to tmax when j is even, and equal to 1 when j is odd. In particular, for all 0 ď j ď d
2
´ 1

we have Λ2j,Λ2j`2 P Lpmqi and UΛ2j X UΛ2j`2 ­“ H. Consider the vector

w :“

d
2
´1
ÿ

j“0

pΛ2j,Λ2j`2
q P E

´1,2pn´1q
1 .

Then we compute ϕ
2pn´1q
1 pwq “ pΛ1q ´ pΛq. Thus, Cokerpϕ

2pn´1q
1 q consists of one copy of Q`

for each i P Z such that ni is even. Considering the action of J as well, it readily follows that

Cokerpϕ
2pn´1q
1 q » c´ IndJJ˝ 1.

Remark. The cohomology group H
2pn´1q
c pMan,Q`q can also be computed in another way which

does not require the spectral sequence. Indeed, we have an isomorphism

H2pn´1q
c pMan,Q`q » c´ IndJJ˝ H2pn´1q

c pMan
0 ,Q`q.

By definition, we have

H2pn´1q
c pMan

0 ,Q`q “ lim
ÝÑ
U

H2pn´1q
c pU pbCp,Q`q,

where U runs over the relatively compact open subspaces of Man
0 . Since U is smooth, Poincaré

duality gives

H2pn´1q
c pU pbCp,Q`q » H0

pU pbCp,Q`q
_.

And since Man
0 is connected, we can insure that all the U ’s involved are connected as well.

Therefore H0pU pbCp,Q`q » Q`, and all the transition maps in the direct limit are identity. It

follows that H
2pn´1q
c pMan

0 ,Q`q is trivial.

4.2 Compactly induced representations and type theory

4.2.1 Let ReppJq denote the category of smooth Q`-representations of G. Let χ be a con-

tinuous character of the center ZpJq » Qˆp2 and let V P ReppJq. We define the maximal

quotient of V on which the center acts like χ as follows. Let us consider the set

Ω :“ tW |W is a subrepresentation of V and ZpJq acts like χ on V {W u.

The set Ω is stable under arbitrary intersection, so that W˝ :“
Ş

WPΩW P Ω. The maximal

quotient is defined by

Vχ :“ V {W˝.

It satisfies the following universal property.

Proposition. Let χ be a continuous character of ZpJq and let V, V 1 P ReppJq. Assume that

ZpJq acts like χ on V 1. Then any morphism V Ñ V 1 factors through Vχ.

Proof. Let f : V Ñ V 1 be a morphism of J-representations. Since V {Kerpfq » Impfq Ă V 1,

the center ZpJq acts like χ on the quotient V {Kerpfq. Therefore Kerpfq P Ω. It follows that

Kerpfq contains W˝ and as a consequence, f factors through Vχ.
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4.2.2 As representations of J , the terms Ea,b
1 of the spectral sequence 4.1.4 consist of repre-

sentations of the form

c´ IndJJθ ρ,

where ρ is the inflation to Jθ of a representation of the finite group of Lie type Jθ. We

note that such a compactly induced representation does not contain any smooth irreducible

subrepresentation of J . Indeed, the center ZpJq » Qˆp2 does not fix any finite dimensional

subspace. In order to rectify this, it is customary to fix a continuous character χ of ZpJq

which agrees with the central character of ρ on ZpJq X Jθ » Zˆp2 , and to describe the space

pc´ IndJJθ ρqχ instead.

Lemma. We have pc´ IndJJθ ρqχ » c´ IndJZpJqJθ χb ρ.

Proof. By Frobenius reciprocity, the identity map on c´ IndJZpJqJθ χ b ρ gives a morphism

χ b ρ Ñ
`

c´ IndJZpJqJθ χb ρ
˘

|ZpJqJθ
of ZpJqJθ-representations. Restricting further to Jθ, we

obtain a morphism ρ Ñ
`

c´ IndJZpJqJθ χb ρ
˘

|Jθ
. By Frobenius reciprocity, this corresponds

to a morphism c´ IndJJθ ρ Ñ c´ IndJZpJqJθ χ b ρ of J-representations. Because ZpJq acts via

the character χ on the target space, this morphism factors through a map pc´ IndJJθ ρqχ Ñ

c´ IndJZpJqJθ χbρ. In order to prove that this is an isomorphism, we build its inverse. The quo-

tient morphism c´ IndJJθ ρ Ñ pc´ IndJJθ ρqχ corresponds, via Frobenius reciprocity, to a mor-

phism ρÑ pc´ IndJJθ ρqχ |Jθ of Jθ-representations. Because ZpJq acts via the character χ on the

target space, this arrow may be extended to a morphism χbρÑ pc´ IndJJθ ρqχ |ZpJqJθ of ZpJqJθ-

representations. By Frobenius reciprocity, this corresponds to a morphism c´ IndJZpJqJθ χbρÑ

pc´ IndJJθ ρqχ, and this is our desired inverse.

4.2.3 We recall a general theorem from [Bus90] describing certain compactly induced repre-

sentations. In this paragraph only, let G be any p-adic group, and let L be an open subgroup

of G which contains the center ZpGq and which is compact modulo ZpGq.

Theorem ([Bus90] Theorem 2 (supp)). Let pσ, V q be an irreducible smooth representation of

L. There is a canonical decomposition

c´ IndGL σ » V0 ‘ V8,

where V0 is the sum of all supercuspidal subrepresentations of c´ IndGL σ, and where V8 con-

tains no non-zero admissible subrepresentation. Moreover, V0 is a finite sum of irreducible

supercuspidal subrepresentations of G.

The spaces V0 or V8 could be zero. Note also that since G is p-adic, any irreducible represen-

tation is admissible. So in particular, V8 does not contain any irreducible subrepresentation.

However, it may have many irreducible quotients and subquotients. Thus, the space V8 is

in general not G-semisimple. Hence, the structure of the compactly induced representation

c´ IndGL σ heavily depends on the supercuspidal supports of its irreducible subquotients.

We go back to our previous notations. Let 0 ď θ ď m, let ρ be a smooth irreducible repre-

sentation of Jθ and let χ be a character of ZpJq agreeing with the central character of ρ on
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ZpJq X Jθ. Since the group ZpJqJθ contains the center and is compact modulo the center, we

have a canonical decomposition

pc´ IndJJθ ρqχ » Vρ,χ,0 ‘ Vρ,χ,8.

In order to describe the spaces Vρ,χ,0 and Vρ,χ,8, we determine the supercuspidal supports of

the irreducible subquotients of c´ IndJJθ ρ through type theory, with the assumption that ρ is

inflated from Jθ. For our purpose, it will be enough to analyze only the case θ “ m. In this

case, dimV 1
m is equal to 0 or 1 so that GUpV 1

mq “ t1u or Fˆp2 has no proper parabolic subgroup.

In particular, if ρ is a cuspidal representation of GUpV 0
mq, then its inflation to the reductive

quotient

Jm » GpUpV 0
mq ˆ UpV 1

mqq

is also cuspidal.

4.2.4 In the following paragraphs, we recall a few general facts from type theory. For more

details, we refer to [BK98] and [Mor99]. Let G be the group of F -rational points of a reductive

connected group G over a p-adic field F . A parabolic subgroup P (resp. Levi complement L)

of G is defined as the group of F -rational points of an F -rational parabolic subgroup P Ă G

(resp. an F -rational Levi complement L Ă G). Every parabolic subgroup P admits a Levi

decomposition P “ LU where U is the unipotent radical of P . We denote by XF pGq the set

of F -rational Q`-characters of G, and by XunpGq the set of unramified characters of G,

ie. the continuous characters of G which are trivial on all compact subgroups. We consider

pairs pL, τq where L is a Levi complement of G and τ is a supercuspidal representation of

L. Two pairs pL, τq and pL1, τ 1q are said to be inertially equivalent if for some g P G and

χ P XunpGq we have L1 “ Lg and τ 1 » τ g b χ where τ g is the representation of Lg defined

by τ gplq :“ τpg´1lgq. This is an equivalence relation, and we denote by rL, τ sG or rL, τ s the

inertial equivalence class of pL, τq in G. The set of all inertial equivalence classes is denoted

ICpGq. If P is a parabolic subgroup of G, we write ιGP for the normalised parabolic induction

functor. Any smooth irreducible representation π of G is isomorphic to a subquotient of some

parabolically induced representation ιGP pτq where P “ LU for some Levi complement L and

τ is a supercuspidal representation of L. We denote by `pπq P ICpGq the inertial equivalence

class rL, τ s. This is uniquely determined by π and it is called the inertial support of π.

4.2.5 Let s P ICpGq. We denote by Reps
pGq the full subcategory of ReppGq whose objects

are the smooth representations of G all of whose irreducible subquotients have inertial support

s. This definition corresponds to the one given in [BD84] 2.8. If S Ă ICpGq, we write RepS
pGq

for the direct product of the categories Reps
pGq where s runs over S. We recall the main results

from loc. cit.

Theorem ([BD84] 2.8 and 2.10). The category ReppGq decomposes as the direct product of the

subcategories Reps
pGq where s runs over ICpGq. Moreover, if S Ă ICpGq then the category

RepS
pGq is stable under direct sums and subquotients.
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Type theory was then introduced in [BK98] in order to describe the categories Reps
pGq which

are called the Bernstein blocks.

4.2.6 Let S be a subset of ICpGq. A S-type in G is a pair pK, ρq where K is an open

compact subgroup of G and ρ is a smooth irreducible representation of K, such that for every

smooth irreducible representation π of G we have

π|K contains ρ ðñ `pπq P S.

When S is a singleton tsu, we call it an s-type instead.

Remark. By Frobenius reciprocity, the condition that π|K contains ρ is equivalent to π being

isomorphic to an irreducible quotient of c´ IndGK ρ. In fact, we can say a little bit more. Let K

be an open compact subgroup of G and let ρ be an irreducible smooth representation of K. Let

RepρpGq denote the full subcategory of ReppGq whose objects are those representations which

are generated by their ρ-isotypic component. If pK, ρq is an S-type, then [BK98] Theorem 4.3

establishes the equality of categories RepρpGq “ RepS
pGq. By definition of compact induction,

the representation c´ IndGK ρ is generated by its ρ-isotypic vectors. Therefore any irreducible

subquotient of c´ IndGK ρ has inertial support in S.

4.2.7 An important class of types are those of depth zero, and they are the only ones we

shall encounter. First, we recall the following result. If K is a parahoric subgroup of G, we

denote by K its maximal reductive quotient. It is a finite group of Lie type over the residue

field of F .

Proposition ([Mor99] 4.1). Let K be a maximal parahoric subgroup of G and let ρ be an

irreducible cuspidal representation of K. We see ρ as a representation of K by inflation. Let

π be an irreducible smooth representation of G and assume that π|K contains ρ. Then π is

supercuspidal and there exists an irreducible smooth representation ρ̃ of the normalizer NGpKq

such that ρ̃|K contains ρ and π » c´ IndGNGpKqρ̃.

Such representations π are called depth-0 supercupidal representations of G. More gener-

ally, a smooth irreducible representation π of G is said to be of depth-0 if it contains a non-zero

vector that is fixed by the pro-unipotent radical of some parahoric subgroup of G. A depth-0

type in G is a pair pK, ρq where K is a parahoric subgroup of G and ρ is an irreducible cuspidal

representation of K, inflated to K. The name is justified by the following theorem.

Theorem ([Mor99] 4.8). Let pK, ρq be a depth-0 type. Then there exists a (unique) finite set

S Ă ICpGq such that pK, ρq is an S-type of G.

In loc. cit. it is also proved that any depth-0 supercuspidal representation of G contains a

unique conjugacy class of depth-0 types. Let K be a parahoric subgroup of G. Using the

Bruhat-Tits building of G, one may canonically associate a Levi complement L of G such that

KL :“ L X K is a maximal parahoric subgroup of L, whose maximal reductive quotient KL

is naturally identified with K. This is precisely described in [Mor99] 2.1. Moreover, we have
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L “ G if and only if K is a maximal parahoric subgroup of G. Now, let pK, ρq be a depth-0

type of G and denote by S the finite subset of ICpGq such that it is an S-type of G. Since ρ

is a cuspidal representation of K » KL, we may inflate it to KL. Then, the pair pKL, ρq is a

depth-0 type of L. We say that pK, ρq is a G-cover of pKL, ρq. By the previous theorem, there

is a finite set SL Ă ICpLq such that pKL, ρq is an SL-type of L. Then the proof of Theorem

4.8 in [Mor99] shows that we have the relation

S “
 

rM, τ sG
ˇ

ˇ rM, τ sL P SL

(

.

In this set, M is some Levi complement of L, therefore it may also be seen as a Levi complement

in G. Thus, an inertial equivalence class rM, τ sL in L gives rise to a class rM, τ sG in G.

Since KL is maximal in L, in virtue of the proposition above any element of SL has the form

rL, πsL for some supercuspidal representation π of L. In particular, every smooth irreducible

representation of G containing the type pK, ρq has a conjugate of L as cuspidal support. We

deduce the following corollary.

Corollary. Let pK, ρq be a depth-0 type in G and assume that K is not a maximal parahoric

subgroup. Then no smooth irreducible representation π of G containing the type pK, ρq is

supercuspidal.

4.2.8 Thus, up to replacing G with a Levi complement, the study of any depth-0 type pK, ρq

can be reduced to the case where K is a maximal parahoric subgroup. Let us assume that it

is the case, and let S be the associated finite subset of ICpGq. While S is in general not a

singleton, it becomes one once we modify the pair pK, ρq a little bit. Let pK be the maximal

open compact subgroup of NGpKq. We have K Ă pK but in general this inclusion may be strict.

Let ρ̃ be a smooth irreducible representation of NGpKq such that ρ̃|K contains ρ. Let pρ be

any irreducible component of the restriction ρ̃
| pK . Eventually, let π :“ c´ IndGNGpKq ρ̃ be the

associated depth-0 supercuspidal representation of G.

Theorem ([Mor99] Variant 4.7). The pair p pK, pρq is a rG, πs-type.

The conclusion does not depend on the choice of pρ as an irreducible component of ρ̃
| pK . Any

one of them affords a type for the same singleton s “ rG, πs.

4.2.9 Let us now consider a parahoric subgroup K along with an irreducible representation

ρ of its maximal reductive quotient K “ K{K`, where K` is the pro-unipotent radical of

K. Assume that ρ is not cuspidal. Thus, there exists a proper parabolic subgroup P Ă K
with Levi complement L, and a cuspidal irreducible representation τ of L, such that ρ is

an irreducible component of the Harish-Chandra induction ιKP τ . The preimage of P via the

quotient map K � K is a parahoric subgroup K 1 Ĺ K, whose maximal reductive quotient

K1 :“ K 1{K 1` is naturally identified with L. We have K` Ă K 1` Ă K 1 and the intermediate

quotient K 1`{K` is identified with the unipotent radical N of P » K 1{K`. Consider ρ as an

irreducible representation of K inflated from K. The invariants ρK
1`

form a representation of

K 1 which coincides with the inflation of the Harish-Chandra restriction of ρ (as a representation
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of K) to L. Thus, ρK
1`

contains the inflation of τ to a representation of K 1. In other words,

we have a K 1-equivariant map

τ Ñ ρ|K1 .

By Frobenius reciprocity, it gives a map

c´ IndKK1 τ Ñ ρ,

which is surjective by irreducibility of ρ. Applying the functor c´ IndGK : ReppKq Ñ ReppGq,

which is exact, and using transitivity of compact induction, we deduce the existence of a natural

surjection

c´ IndGK1 τ � c´ IndGK ρ.

Now, pK 1, τq is a depth-0 type in G. Let S Ă ICpGq be the subset such that pK 1, τq is an

S-type, and let L be the (proper) Levi complement of G associated to K 1 as in the previous

paragraph. By 4.2.6 Remark, it follows that any irreducible subquotient of c´ IndGK ρ has

inertial support in S. Since all elements of S are of the form rL, πs for some supercuspidal

representation π of L, we reach the following conclusion.

Proposition. Let K be a parahoric subgroup of G and let ρ be a non cuspidal irreducible rep-

resentation of its maximal reductive quotient K. Then no irreducible subquotient of c´ IndGK ρ

is supercuspidal.

4.2.10 We go back to the context of the unitary similitude group J . We may now determine

the inertial support of any irreducible subquotient of a representation of the form c´ IndJJm ρ

with ρ inflated from a unipotent representation of GUpV 0
mq. In particular, all the terms E0,b

1

are of this form according to 4.1.11 Corollary. More precisely, let λ be a partition of 2m ` 1

and let ∆t be its 2-core (see 2.8). Thus 2m` 1 “ tpt`1q
2
` 2e for some e ě 0. The integer tpt`1q

2

is odd, so it can be written as 2f ` 1 for some f ě 0, and we have m “ f ` e. Using the basis

of V 0
m fixed in 1.2.8, we identify GUpV 0

mq with the matrix group GU2m`1pFpq. The cuspidal

support of ρλ is pLt, ρtq according to 2.8. Let Pt be the standard parabolic subgroup with Levi

complement Lt. By direct computation, one may check that the preimage of Pt in Jm is the

parahoric subgroup Jf,...,m :“ Jf X Jf`1 X . . . X Jm. Let Lf be the Levi complement of J that

is associated to the parahoric subgroup Jf,...,m. Using the basis of V fixed in 1.1.4, let Vf be

the subspace of V generated by Van and by the vectors e˘1, . . . , e˘f . It is equipped with the

restriction of the hermitian form of V. Then Lf » GpUpVf q ˆ U1pQpq
eq.

The group Lf X Jf,...,m is a maximal parahoric subgroup of Lf , and ρt can be inflated to it. In

particular, the pair pLf X Jf,...,m, ρtq is a level-0 type in Lf . Since we work with unitary groups

over an unramified quadratic extension, Lf XJf,...,m is also a maximal compact subgroup of Lf .

In particular, pLf X Jf,...,m, ρtq is a type for a singleton of the form rLf , τf sLf . Then τf has the

form

τf “ c´ Ind
Lf
NLf pLfXJf,...,mq

rρt,

where rρt is some smooth irreducible representation of NLf pLf X Jf,...,mq containing ρt upon

restriction. It follows that if we inflate ρt to Jf,...,m then pJf,...,m, ρtq is a rLf , τf s-type in J .
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Moreover the compactly induced representation c´ IndJJm ρλ is a quotient of c´ IndJJf,...,m ρt.

In particular, we reach the following conclusion.

Proposition. Let λ be a partition of 2m ` 1 with 2-core ∆t. Write tpt`1q
2

“ 2f ` 1 for some

f ě 0. Any irreducible subquotient of c´ IndJJm ρλ has inertial support rLf , τf s.

In particular, if f ă m then none of these irreducible subquotients are supercuspidal.

4.2.11 Let us keep the notations of the previous paragraph. Since unipotent representations

of finite groups of Lie type have trivial central characters, if χ is an unramified character of

ZpJq then χZpJqXJm coincides with the central character of ρλ inflated to Jm. As in 4.2.3, we

have
`

c´ IndJJm ρλ
˘

χ
» Vρλ,χ,0 ‘ Vρλ,χ,8.

If f ă m, then no irreducible supercuspidal representation can occur. Thus Vρλ,χ,0 “ 0.

On the other hand, assume now that f “ m so that Lf “ J and ρλ is equal to the cuspidal

representation ρ∆m . As seen in 1.3.3, we have NJpJmq “ ZpJqJm unless n “ 2 (thus m “ 0) in

which case J0 “ J˝ and ZpJqJ0 is of index 2 in NJpJ0q “ J . A representative of the non-trivial

coset is given by g0 as defined in 1.1.7. If n ­“ 2, define

τm,χ :“ c´ IndJZpJqJm χb ρλ.

Then τm,χ is an irreducible supercuspidal representation of J , and we have

`

c´ IndJJm ρλ
˘

χ
» c´ IndJZpJqJm χb ρλ “ τm,χ.

Thus Vρλ,χ,8 “ 0 and Vρλ,χ8 “ τm,χ in this case.

When n “ 2, ρλ “ ρ∆0 “ 1 is the trivial representation of J0 “ J˝. Let χ0 : J Ñ Q`
ˆ

be

the unique non-trivial character of J which is trivial on ZpJqJ0. Then
`

c´ IndJJ0 1
˘

χ
is the

sum of an unramified character τ0,χ of J whose central character is χ, and of the character

χ0τ0,χ. Both characters are supercuspidal, and they are the only unramified characters of J

with central character χ.

4.2.12 According to 4.1.6 and 4.1.11, the terms E0,b
1 are a sum of representations of the form

c´ IndJJm ρλ,

with λ a partition of 2m ` 1 having 2-core ∆0 if b is even, and ∆1 if b is odd. Moreover, by

4.1.11 we have

E
0,2pn´1´mq
2 » c´ IndJJm 1, E

0,2pn´1´mq`1
2 » c´ IndJJm ρp2m,1q.

In particular, summing up the discussion of the previous paragraph, we have reached the

following statement.

Proposition. Let χ be an unramified character of ZpJq.
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– Assume that n ě 3. The representation pE
0,2pn´1´mq
2 qχ contains no non-zero admissible

subrepresentation, and it is not J-semisimple. Moreover, any irreducible subquotient has

inertial support rL0, τ0s. If n ě 5, then the same statement holds for pE
0,2pn´1´mq`1
2 qχ

with the inertial support being rL1, τ1s.

– For n “ 1, 2, 3, 4, let b “ 0, 2, 3, 5 respectively. Then m “ 0 when 1, 2 and m “ 1 when

n “ 3, 4. Let χ be an unramified character of ZpJq. The representation τm,χ is irreducible

supercuspidal, and we have

pE0,b
2 qχ »

$

&

%

τm,χ if n “ 1, 3, 4,

τm,χ ‘ χ0τm,χ if n “ 2.

In particular, we deduce the following important corollary.

Corollary. Let χ be an unramified character of ZpJq. If n ě 3 then H
2pn´1´mq
c pMan,Q`qχ is

not J-admissible. If n ě 5 then the same holds for H
2pn´1´mq`1
c pMan,Q`qχ.

4.3 The case n “ 3, 4

4.3.1 Let us focus on the case m “ 1, that is n “ 3 or 4. Recall that NpΛ0q denotes the set

of lattices Λ P L0 with type tpΛq “ tmax “ 3 containing Λ0. It has cardinality νp1, 2q “ p ` 1

when n “ 3 and νp2, 3q “ p3 ` 1 when n “ 4. In particular, we may locate the non zero terms

Ea,b
1,alt of the alternating Čech spectral sequence as follows.

Ea,b
1,alt ­“ 0 ðñ

$

&

%

pa, bq P tp0, 2q; p0, 3q; p´k, 4q | 0 ď k ď pu if n “ 3,

pa, bq P tp0, 4q; p0, 5q; p´k, 6q | 0 ď k ď p3u if n “ 4.

In Figure 1 below, we draw the shape of the first page E1,alt for n “ 3. The case of n “ 4 is

similar, except that two more 0 rows should be added at the bottom. To alleviate the notations,

we write ϕ´a for the differential ϕ
2pn´1q
´a .

4.3.2 Let i P Z such that ni is even. For Λ,Λ1 P Li, recall that the distance dpΛ,Λ1q is the

smallest integer d ě 0 such that there exists a sequence Λ “ Λ0, . . . ,Λd “ Λ1 of lattices of Li
with tΛj,Λj`1u being an edge for all 0 ď j ď d´ 1. When m “ 1, any lattice Λ P Li has type

1 or 3, and two lattices forming an edge can not have the same type. Therefore, the value of

tpΛjq alternates between 1 and 3. In particular, if tpΛq “ tpΛ1q then dpΛ,Λ1q is even. According

to [Vol10] Proposition 3.7, the simplicial complex Li is in fact a tree. We will use this to prove

the following proposition.

Proposition. Let b “ 4 when n “ 3, and b “ 6 when n “ 4. We have E´1,b
2 “ 0.

By 4.1.8 Proposition, we may use the alternating Čech spectral sequence to show that E´1,b
2 “

Kerpϕ1q{Impϕ2q vanishes. As we have observed in 4.1.12, the term Ea,b
1 is the Q`-vector

space generated by the set I´a`1, and Ea,b
1,alt is the subspace consisting of all the vectors
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. . . E´3,4
1,alt E´2,4

1,alt E´1,4
1,alt c´ IndJJ11

c´ IndJJ1 ρ∆2

c´ IndJJ1 1

0

0

ϕ4 ϕ3 ϕ2 ϕ1

Figure 1: The first page E1,alt of the alternating Čech spectral sequence when n “ 3.

v “
ř

γPI´a`1
λγγ such that for all σ P S´a`1 we have λσpγq “ sgnpσqλγ. Here the λγ’s are

scalars which are almost all zero. To prove the proposition, let us look at the differential ϕ2.

It acts on the basis vectors in the following way.

pΛ,Λ,Λq

pΛ,Λ,Λ1q

pΛ1,Λ,Λq

,

/

.

/

-

ÞÑ pΛ,Λq, @Λ,Λ1 P Lp1q such that UΛ X UΛ1 ­“ H,

pΛ,Λ1,Λq ÞÑ pΛ1,Λq ` pΛ,Λ1q ´ pΛ,Λq, @Λ,Λ1 P Lp1q such that UΛ X UΛ1 ­“ H,

pΛ,Λ1,Λ2q ÞÑ pΛ,Λ1q ` pΛ1,Λ2q ´ pΛ,Λ2q, @Λ,Λ1,Λ2 P Lp1q such that UΛ X UΛ1 X UΛ2 ­“ H.

We note that for a collection of lattices Λ1, . . . ,Λs P Lp1qi , the condition UΛ1 X . . .XUΛs ­“ H is

equivalent to dpΛj,Λj1q “ 2 for all 1 ď j ­“ j1 ď s.

Towards a contradiction, we assume that Impϕ2q Ĺ Kerpϕ1q. Let v P Kerpϕ1qzImpϕ2q. Since

v P E´1,b
1,alt , it decomposes under the form

v “
r
ÿ

j“1

λjpγj ´ τpγjqq,

where r ě 1, the γj’s are of the form pΛ,Λ1q with Λ ­“ Λ1 and UΛ X UΛ1 ­“ H, the scalars λj’s

are non zero and τ P S2 is the transposition. We may assume that r is minimal among all the

vectors in the complement Kerpϕ1qzImpϕ2q. In particular, there exists a single i P Z such that

ni is even, and for all j the lattices in γj belong to Lp1qi . We may further assume i “ 0 without

loss of generality.

We say that an element γ P I2 occurs in v if γ “ γj or τpγjq for some j. Similarly, we say that

a lattice Λ P Lp1q0 occurs in v if it is a constituent of some γj.

Lemma. Let γ “ pΛ1,Λq P I2 be an element occuring in v. Then there exists Λ2 P Lp1q0 such

that pΛ2,Λq P I2 occurs in v and dpΛ1,Λ2q “ 4.

Proof. Let us write pΛj,Λq P I2, 1 ď j ď s for the various elements occuring in v whose first

component is Λ. Up to reordering the γj’s and swapping them with τpγjq if necessary, we may
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assume that pΛj,Λq “ γj for all 1 ď j ď s, and that Λ1 “ Λ1. The coordinate of ϕ1pvq along

the basis vector pΛq is equal to 2
řs
j“1 λj. Since ϕ1pvq “ 0, the sum of the λj’s from 1 to s is

zero. In particular, we have s ě 2.

For all 2 ď j ď s, we have 2 ď dpΛ1,Λjq ď 4 by the triangular inequality. Towards a contra-

diction, assume that dpΛ1,Λjq “ 2 for all 2 ď j ď s. In particular, δj :“ pΛj,Λ1,Λq P I3 for all

2 ď j ď s. Consider the vector

w :“
1

3

s
ÿ

j“2

ÿ

σPS6

sgnpσqλjσpδjq P E
´2,b
1,alt .

Then we compute

ϕ2pwq “ ´λ1ppΛ
1,Λq ´ pΛ,Λ1qq ´

s
ÿ

j“2

λjppΛ
j,Λq ´ pΛ,Λj

qq `

s
ÿ

j“2

λjppΛ
j,Λ1q ´ pΛ1,Λj

qq.

In particular, we get

v ` ϕ2pwq “
r
ÿ

j“s`1

λjpγj ´ τpγjqq `
s
ÿ

j“2

λjppΛ
j,Λ1q ´ pΛ1,Λj

qq P Kerpϕ1qzImpϕ2q,

which contradicts the minimality of r.

4.3.3 To conclude the proof of the proposition, let us pick Λ “ Λ0 P Lp1q0 which occurs in

v, say in a pair pΛ1,Λq P I2. Write Λ1 :“ Λ1. By induction, we build a sequence pΛkqkě0 of

lattices in Lp1q0 such that for all k, the pair pΛk`1,Λkq occurs in v and we have dpΛ0,Λkq “ 2k.

It follows that the Λk’s are pairwise distinct, and it leads to a contradiction since only a finite

number of such lattices can occur in v.

Let us assume that Λ0, . . . ,Λk are already built for some k ě 1. By the Lemma applied to Λk,

there exists Λk`1 P Lp1q0 such that the pair pΛk`1,Λkq occurs in v and dpΛk´1,Λk`1q “ 4. By

the triangular inequality, we have

dpΛ0,Λk`1
q ě |dpΛ0,Λk

q ´ dpΛk,Λk`1
q| “ 2k ´ 2 “ 2pk ´ 1q.

Thus dpΛ0,Λk`1q “ 2pk ´ 1q, 2k or 2pk ` 1q. We prove that it must be equal to the latter.

Assume dpΛ0,Λk`1q “ 2pk ´ 1q. There exists a path Λ0 “ L0, . . . , L2pk´1q “ Λk`1. We obtain a

cycle

Λ0 X Λ1 Λ1 . . . Λk´1 Λk´1 X Λk

Λ0 Λk

L1 L2 . . . L2pk´1q “ Λk`1 Λk X Λk`1

Since L0 is a tree, this cycle must be trivial, ie. the lower and upper paths, which are of

the same length, are the same. In particular, we have Λk´1 “ Λk`1, which is absurd since
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dpΛk´1,Λk`1q “ 4.

Assume dpΛ0,Λk`1q “ 2k. There exists a path Λ0 “ L0, . . . , L
2k “ Λk`1. We obtain a cycle

Λ0 X Λ1 Λ1 . . . Λk´1 X Λk Λk

Λ0 Λk X Λk`1

L1 L2 . . . L2k´1 L2k “ Λk`1

Since L0 is a tree, this cycle must be trivial, ie. the lower and upper paths, which are of the same

length, are the same. In particular, we have Λk “ Λk`1, which is absurd since dpΛk,Λk`1q “ 2.

Thus, we have dpΛ0,Λk`1q “ 2pk`1q so that Λk`1 meets all the requirements. It concludes the

proof.

4.3.4 In particular, we obtain the following statement.

Theorem. Assume that n “ 3 or 4. Let b “ 3 if n “ 3, and let b “ 5 if n “ 4. We have

Hb
cpMan,Q`q » c´ IndJJ1 ρ∆2 ,

with the rational Frobenius τ acting like multiplication by ´pb.

5 The cohomology of the basic stratum of the Shimura

variety for n “ 3, 4

5.1 The Hochschild-Serre spectral sequence induced by p-adic uni-
formization

5.1.1 In this section, we still assume that n is any integer ě 1. We recover the notations

of Part 3 regarding Shimura varieties. As we have seen in 3.6, p-adic uniformization is a

geometric identity relating the Rapoport-Zink space M with the basic stratum SKppb0q. In

[Far04], Fargues constructed a Hochschild-Serre spectral sequence using the uniformization

theorem on the generic fibers, which we introduce in the following paragraphs.

Recall the PEL datum introduced in 3.1. Let ξ : G Ñ Wξ be a finite-dimensional irreducible

algebraic Q`-representation of G. Such representations have been classified in [HT01] III.2.

We look at VQ` :“ V b Q` as a representation of G, whose dual is denoted by V0. Using

the alternating form x¨, ¨y, we have an isomorphism V0 » VQ` b c´1, where c is the multiplier

character of G.

Proposition ([HT01] III.2). There exists unique integers tpξq,mpξq ě 0 and an idempotent

εpξq P EndpVbmpξq0 q such that

Wξ » ctpξq b εpξqpVbmpξq0 q.
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The weight wpξq is defined by

wpξq :“ mpξq ´ 2tpξq.

To any ξ as above, we can associate a local system Lξ which is defined on the tower pSKpqKp

of Shimura varieties. We still write Lξ for its restriction to the generic fiber ShK0Kp bE Zp2 ,
and we denote by Lξ its restriction to the special fiber SKp . Let AKp be the universal abelian

scheme over SKp . We write πmKp : Am
Kp Ñ SKp for the structure morphism of the m-fold product

of AKp with itself over SKp . If m “ 0 it is just the identity on SKp . According to [HT01] III.2,

we have an isomorphism

Lξ » εpξqεmpξq

´

Rmpξq
pπ

mpξq
Kp q˚Q`ptpξqq

¯

,

where εmpξq is some idempotent. In particular, if ξ is the trivial representation of G then

Lξ “ Q`.

5.1.2 We fix an irreducible algebraic representation ξ : G Ñ Wξ as above. We associate the

space Aξ of automorphic forms of I of type ξ at infinity. Explicitly, it is given by

Aξ “ tf : IpAf q Ñ Wξ | f is IpAf q-smooth by right translations and @γ P IpQq, fpγ ¨q “ ξpγqfp¨qu .

We denote by Lan
ξ the analytification of Lξ to Shan

K0Kp , as well as for its restriction to any open

subspace.

Notation. We write H‚pppSKpqan
|b0
,Lan

ξ q for the cohomology of ppSKpqan
|b0

pbCp with coefficients in

Lan
ξ .

Theorem ([Far04] 4.5.12). There is a W -equivariant spectral sequence

F a,b
2 pKp

q : ExtaJ
`

H2pn´1q´b
c pMan,Q`qp1´ nq,AKp

ξ

˘

ùñ Ha`b
pppSKpq

an
|b0
,Lan

ξ q.

These spectral sequences are compatible as the open compact subgroup Kp varies in GpAp
f q.

The W -action on F a,b
2 pKpq is inherited from the cohomology group H

2pn´1q´b
c pMan,Q`qp1´ nq.

By the compatibility withKp, we may take the limit lim
ÝÑKp for all terms and obtain aGpAp

f qˆW -

equivariant spectral sequence. Since m is the semisimple rank of J , the terms F a,b
2 pKpq are zero

for a ą m according to [Far04] Lemme 4.4.12. Therefore, the non-zero terms F a,b
2 are located

in the finite strip delimited by 0 ď a ď m and 0 ď b ď 2pn´ 1q.

Let us look at the abutment of the sequence. Since the formal completion pSKp of SKp along

its special fiber is a smooth formal scheme, Berkovich’s comparison theorem ([Ber96] Corollary

3.7) gives an isomorphism

Ha`b
c pSKppb0q b F,Lξq “ Ha`b

pSKppb0q b F,Lξq
„
ÝÑ Ha`b

pppSKpq
an
|b0
,Lan

ξ q.

The first equality follows from SKppb0q being a proper variety. Since this variety has dimension

m, the cohomology H‚pppSKpqan
|b0
,Lan

ξ q is concentrated in degrees 0 to 2m.
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5.1.3 Let ApIq denote the set of all automorphic representations of I counted with multi-

plicities. We write qξ for the dual of ξ. We also define

AξpIq :“ tΠ P ApIq |Π8 “ qξu.

According to [Far04] 4.6, we have an identification

AKp
ξ »

à

ΠPAξpIq
Πp b pΠ

p
q
Kp .

It yields, for every a and b, an isomorphism

F a,b
2 pKp

q »
à

ΠPAξpIq
ExtaJ

`

H2pn´1q´b
c pMan,Q`qp1´ nq,Πp

˘

b pΠp
q
Kp .

Taking the limit over Kp, we deduce that

F a,b
2 :“ lim

ÝÑ
Kp

F a,b
2 pKp

q »
à

ΠPAξpIq
ExtaJ

`

H2pn´1q´b
c pMan,Q`qp1´ nq,Πp

˘

b Πp.

The spectral sequence defined by the terms F a,b
2 computes Ha`bppS an

|b0
,Lan

ξ q :“ lim
ÝÑKp Ha`bpppSKpqan

|b0
,Lan

ξ q.

It is isomorphic to Ha`b
c pSpb0q b F,Lξq :“ lim

ÝÑKp Ha`b
c pSKppb0q b F,Lξq.

5.1.4 Recall from 4.1.7 that we have a decomposition

Hb
cpMan,Q`q »

à

bďb1ď2pn´1q

Eb´b1,b1

2 ,

and Eb´b1,b1

2 corresponds to the eigenspace of τ associated to the eigenvalue p´pqb. Accordingly,

we have a decomposition

F a,b
2 »

à

2pn´1q´bď
b1ď 2pn´1q

à

ΠPAξpIq
ExtaJ

´

E
2pn´1q´b´b1,b1

2 p1´ nq,Πp

¯

b Πp.

For Π P AξpIq, we denote by ωΠ the central character. We define

δΠp :“ ωΠppp
´1
¨ idqp´wpξq P Q`

ˆ
.

Let ι be any isomorphism Q` » C, and write | ¨ |ι :“ |ιp¨q|. Since I is a group of unitary

similitudes of an E{Q-hermitian space, its center is Eˆ ¨ id. The element p´1 ¨ id P ZpJq can

be seen as the image of p´1 ¨ id P ZpIpQqq. We have ωΠpp
´1 ¨ idq “ 1. Moreover, for any finite

place q ­“ p, the element p´1 ¨ id lies inside the maximal compact subgroup of ZpIpQqqq, so

|ωΠqpp
´1idq|ι “ 1. Besides Π8 “ qξ, so we have

|ωΠppp
´1
¨ idq|ι “ |ωqξpp

´1
¨ idq|´1

ι “ |ωξpp
´1
¨ idq|ι “ |p

wpξq
|ι “ pwpξq.

The last equality comes from the isomorphism Wξ » ctpξqbεpξqpVbmpξq0 q, see 5.1.1. In particular

|δΠp |ι “ 1 for any isomorphism ι.
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Proposition. The W -action on ExtaJpE
2pn´1q´b´b1,b1

2 p1´ nq,Πpq is trivial on the inertia I, and

the Frobenius element Frob acts like multiplication by p´1q´b
1

δΠpp
´b1`2pn´1q`wpξq.

Proof. Let us write X :“ E
2pn´1q´b´b1,b1

2 p1 ´ nq. By convention, the action of Frob on a space

ExtaJpX,Πpq is induced by functoriality of Ext applied to Frob´1 : X Ñ X. Let us consider a

projective resolution of X in the category of smooth representations of J

. . . P2 P1 P0 X 0.
u3 u2 u1 u0

Since Frob´1 commutes with the action of J , we can choose a lift F “ pFiqiě0 of Frob´1 to a

morphism of chain complexes.

. . . P2 P1 P0 X 0

. . . P2 P1 P0 X 0

u3 u2

F2

u1

F1

u0

F0 Frob´1

u3 u2 u1 u0

After applying HomJp¨,Πpq and forgetting about the first term, we obtain a morphism F˚ of

chain complexes.

0 HomJpP0,Πpq HomJpP1,Πpq HomJpP2,Πpq . . .

0 HomJpP0,Πpq HomJpP1,Πpq HomJpP2,Πpq . . .

F˚0 F˚1 F˚2

Here F˚
i fpvq :“ fpFipvqq. It induces morphisms on the cohomology

F˚
i : ExtiJpX,Πpq Ñ ExtiJpX,Πpq,

which do not depend on the choice of the lift F . Recall that Frob is the composition of τ and

p ¨ id P J . Since τ is multiplication by the scalar p´1qb
1

pb
1´2pn´1q on X, we may choose the lift

Fi :“ p´1q´b
1

p´b
1`2pn´1qpp´1 ¨ idq for all i.

Consider an element of ExtiJpX,Πpq represented by a morphism f : Pi Ñ Πp. For any v P Pi

we have

F˚
i fpvq “ fpFipvqq “ p´1q´b

1

p´b
1`2pn´1qfppp´1

¨ idq ¨ vq “ p´1q´b
1

p´b
1`2pn´1qωΠppp

´1
¨ idqfpvq.

It follows that Frob acts on ExtiJpX,Πpq via multiplication by the scalar p´1q´b
1

δΠpp
´b1`2pn´1q`wpξq.

5.1.5 In general, the Hochschild-Serre spectral sequence has many differentials between non-

zero terms. However, focusing on the diagonal defined by a ` b “ 0, it is possible to compute

H0
cpSpb0qb F,Lξq. Recall that XunpJq denotes the set of unramified characters of J . If x P Q`

ˆ

is any non-zero scalar, we denote by Q`rxs the 1-dimensional representation of W where the

inertia I acts trivially and the geometric Frobenius Frob acts like x ¨ id.
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Proposition. We have an isomorphism of GpAp
f q ˆW -representations

H0
cpSpb0q b F,Lξq »

à

ΠPAξpIq
ΠpPXunpJq

Πp
bQ`rδΠpp

wpξq
s.

Proof. The only non-zero term F a,b
2 on the diagonal defined by a` b “ 0 is F 0,0

2 . Since there is

no non-zero arrow pointing at nor coming from this term, it is untouched in all the successive

pages of the sequence. Therefore we have an isomorphism

F 0,0
2 » H0

cpSpb0q b F,Lξq.

Using 4.1.12, we also have isomorphisms

F 0,0
2 »

à

ΠPAξpIq
HomJ

`

H2pn´1q
c pMan,Q`qp1´ nq,Πp

˘

b Πp

»
à

ΠPAξpIq
HomJ

`

pc´ IndJJ˝ 1qp1´ nq,Πp

˘

b Πp

»
à

ΠPAξpIq
HomJ˝

`

1p1´ nq,Πp|J˝
˘

b Πp.

Thus, only the automorphic representations Π P AξpIq with ΠJ˝

p ­“ 0 contribute to the sum.

Consider such a Π. The irreducible representation Πp is generated by a J˝-invariant vector.

Since J˝ is normal in J , the whole representation Πp is trivial on J˝. Thus, it is an irreducible

representation of J{J˝ » Z. Therefore, it is one-dimensional. Since J˝ is generated by all

compact subgroups of J , it follows that ΠJ˝

p ­“ 0 ðñ Πp P X
unpJq. When it is satisfied, the

W -representation V 0
Π :“ HomJ˝ p1p1´ nq,Πpq has dimension one and the Frobenius action was

described in 5.1.4.

5.2 The case n “ 3, 4

5.2.1 In this section, we assume that m “ 1, ie. n “ 3 or 4. We recover the notations of

4.3.1. We use our knowledge so far on the cohomology of the Rapoport-Zink space to entirely

compute the cohomology of the basic locus of the Shimura variety via p-adic uniformization.

Let ξ be an irreducible finite dimensional algebraic representation of G as in 5.1.1. When

n “ 3 or 4, the semisimple rank of J is m “ 1, therefore the terms F a,b
2 are zero for a ą 1.

In particular, the spectral sequence degenerates on the second page. Since it computes the

cohomology of the basic locus Spb0q which is 1-dimensional, we also have F 0,b
2 “ 0 for b ě 3,

and F 1,b
2 “ 0 for b ě 2. In Figure 2, we draw the second page F2 and we write between brackets

the complex modulus of the possible eigenvalues of Frob on each term under any isomorphism

ι : Q` » C, as computed in 5.1.4.

Remark. The fact that no eigenvalue of complex modulus pwpξq appears in F 0,1
2 nor in F 1,1

2

follows from 4.3.2 Proposition, where we proved that E´1,b
2 “ 0 for b “ 4 (resp. 6) when n “ 3

(resp. 4).
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F 0,2
2 rpwpξq`2, pwpξqs 0

F 0,1
2 rpwpξq`1s F 1,1

2 rpwpξq`1s

F 0,0
2 rpwpξqs F 1,0

2 rpwpξqs

Figure 2: The second page F2 with the complex modulus of possible eigenvalues of Frob on
each term.

Proposition. We have F 1,1
2 “ 0 and the eigenspaces of Frob on F 0,2

2 attached to any eigenvalue

of complex modulus pwpξq are zero.

Proof. By the machinery of spectral sequences, there is a GpAp
f q ˆW -subspace of H2

cpSpb0q b

F,Lξq isomorphic to F 1,1
2 , and the quotient by this subspace is isomorphic to F 0,2

2 . We prove

that all eigenvalues of Frob on H2
cpSpb0qb F,Lξq have complex modulus pwpξq`2. The proposition

then readily follows.

We need the Ekedahl-Oort stratification on the basic stratum of the Shimura variety. Let

Kp Ă GpAp
f q be small enough. In [VW11] 3.3 and 6.3, the authors define the Ekedahl-Oort

stratification on Mred and on SKppb0q respectively, and they are compatible via the p-adic

uniformization isomorphism. For n “ 3 or 4, the stratification on the basic stratum take the

following form

SKppb0q “ SKpr1s \ SKpr3s.

The stratum SKpr1s is closed and 0-dimensional, whereas the other stratum SKpr3s is open,

dense and 1-dimensional. In particular, we have a Frobenius equivariant isomorphism between

the cohomology groups of highest degree

H2
cpSKppb0q b F,Lξq » H2

cpSKpr3s b F,Lξq.

According the [VW11] 5.3, the closed Bruhat-Tits strata MΛ and SKp,Λ,k also admit an Ekedahl-

Oort stratification of a similar form, and we have a decomposition

SKpr3s “
ğ

Λ,k

SKp,Λ,kr3s

into a finite disjoint union of open and closed subvarieties. As a consequence, we have the

following Frobenius equivariant isomorphisms

H2
cpSKpr3s b F,Lξq »

à

Λ,k

H2
cpSKp,Λ,kr3s b F,Lξq »

à

Λ,k

H2
cpSKp,Λ,k b F,Lξq

where the last isomorphism between cohomology groups of highest degree follows from the

stratification on the closed Bruhat-Tits strata SKp,Λ,k. Now, recall from 5.1.1 that the local

system Lξ is given by

Lξ » εpξqεmpξq

´

Rmpξq
pπ

mpξq
Kp q˚Q`ptpξqq

¯

.

58



On the cohomology of the basic unramified PEL unitary RZ space of signature p1, n´ 1q

It implies that Lξ is pure of weight wpξq. Since the variety SKp,Λ,k is smooth and projective,

it follows that all eigenvalues of Frob on the cohomology group H2
cpSKp,Λ,k b F,Lξq must have

complex modulus pwpξq`2 under any isomorphism ι : Q` » C. The result follows by taking the

limit over Kp.

5.2.2 In this paragraph, let us compute the term

F 1,0
2 »

à

ΠPAξpIq
Ext1

J

`

H2pn´1q
c pMan,Q`qp1´ nq,Πp

˘

b Πp

»
à

ΠPAξpIq
Ext1

J

`

c´ IndJJ˝ 1p1´ nq,Πp

˘

b Πp.

Let StJ denote the Steinberg representation of J , and recall that XunpJq denotes the set of

unramified characters of J .

Proposition. Let π be an irreducible smooth representation of J . Then

Ext1
Jpc´ IndJJ˝ 1, πq “

$

&

%

Q` if Dχ P XunpJq, π » χ ¨ StJ ,

0 otherwise.

In order to prove this proposition, we need a few general facts about restriction of smooth

representations to normal subgroups. Let G be a locally profinite group and let H be a closed

normal subgroup. If pσ,W q is a representation of H, for g P G we define the representation

pσg,W q by σg : h ÞÑ σpg´1hgq. The representation σ is irreducible if and only if σg is for any

(or for all) g P G.

Lemma. Assume that ZpGqH has finite index in G.

(1) Let π be a smooth irreducible admissible representation of G. There exists a smooth

irreducible representation σ of H, an integer r ě 1 and g1, . . . , gr P G such that

π|H » σg1 ‘ . . .‘ σgr .

Moreover r ď rZpGqH : Gs, and for any g P G there exists some 1 ď i ď r such that

σg » σgi.

(2) Assume furthermore that G{H is abelian. Let π1 and π2 be two smooth admissible irre-

ducible representations of G. The three following statements are equivalent.

– pπ1q|H » pπ2q|H .

– There exists a smooth character χ of G which is trivial on H such that π2 » χ ¨ π1.

– HomHpπ1, π2q ­“ 0.

(3) Assume that G{H is abelian and that rZpGqH : Gs “ 2. Let g0 P GzZpGqH and let

π be a smooth admissible irreducible representation of G. If there exists an irreducible

representation σ of H such that π|H » σ ‘ σg0, then σ fi σg0.

Proof. For (1) and (2), we refer to [Ren09] VI.3.2 Proposition. The result there is stated in

the context of a p-adic group G with normal subgroup H “ 0G such that G{0G » Zd for some
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d ě 0, but the same arguments work as verbatim in the generality of the lemma. Admissibility

of the representations involved is assumed only in order to apply Schur’s lemma, insuring for

instance the existence of central characters of smooth irreducible representations. In particular,

if G{K is at most countable for any open compact subgroup K of G, then it is not necessary

to assume admissibility.

Let us prove (3). Assume towards a contradiction that π|H » σ ‘ σg0 and that σ » σg0 . We

build a smooth admissible irreducible representation Π of G such that Π|H “ σ, which results

in a contradiction in regards to (2) since HomHpΠ, πq ­“ 0 but Π|H fi π|H . Let χ be the central

character of π. Then χ|ZpGqXH coincides with the central character of σ.

Let W denote the underlying vector space of σ. By hypothesis, there exists a linear automor-

phism f : W Ñ W such that for every h P H and w P W ,

fpσpg´1
0 hg0q ¨ wq “ σphq ˝ fpwq.

Let us write g2
0 “ z0h0 for some z0 P ZpGq and h0 P H. We define ϕ :“ f 2 ˝ σph0q

´1. Then for

all h P H and w P W , we have

ϕpσphq ¨ wq “ f 2
pσph´1

0 hq ¨ wq “ f 2
pσph´1

0 hh0qσph
´1
0 q ¨ wq

“ f 2
pσpg´2

0 hg2
0qσph

´1
0 q ¨ wq

“ σphq ˝ f 2
pσph0q

´1
¨ wq

“ σphq ˝ ϕpwq.

Thus ϕ : σ
„
ÝÑ σ. By Schur’s lemma we have ϕ “ λ ¨ id for some λ P Q`. Up to replacing f by

pχpz0qλ
´1q1{2f , we may assume that ϕ “ χpz0q ¨ id, ie. f 2 “ χpz0qσph0q.

We build a G-representation Π on W which extends σ. Let g P G and define

Πpgq “

$

&

%

χpzqσphq if g “ zh P ZpGqH,

χpzqf ˝ σphq if g “ g0zh P g0ZpGqH.

Then one may check that Π is a well defined group morphism GÑ GLpW q. The fact that it is

smooth irreducible and admissible follows from Π|H » σ by construction, and it concludes the

proof.

Remark. Under the hypotheses of (3), as long as σ is a smooth irreducible admissible repre-

sentation of H such that σg0 » σ and whose central character χ|ZpGqXH can be extended to a

character of ZpGq, then one may build Π as in the proof of the lemma.

We may now move on to the proof of the proposition.

Proof. By Frobenius reciprocity we have

Ext1
Jpc´ IndJJ˝ 1, πq » Ext1

J˝p1, π|J˝q.

By functoriality of Ext, we have Ext1
J˝p1, π|J˝q “ 0 if the central character of π is not unramified.

Thus, let us now assume that it is unramified. According to 1.3.4, we have J{J˝ » Z, and
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ZpJqJ˝ “ J when n is odd, and is of index 2 in J when n is even. Thus, π|J˝ is irreducible

when n is odd, and can either be irreducible, either decompose as σ ‘ σg0 for some irreducible

representation σ of J˝ such that σg0 fi σ when n is even. Here, g0 may be defined as in 1.1.7.

Thus, we are reduced to computing Ext1
J˝p1, σq for any irreducible representation σ of J˝

with trivial central character. Let J1 “ UpVq denote the unitary group of V (recall that

J “ GUpVq is the group of unitary similitudes). Then J1 is a normal subgroup both of J˝ and

of J . Moreover, J˝{J1 is isomorphic to the image of the multiplier c|J˝ : J˝ Ñ Zˆp , in particular

it is compact. Thus, we have

Ext1
J˝p1, σq » Ext1

J1p1, σ|J1q
J˝{J1

.

Since σ has trivial central character, the J˝-action on Ext1
J1p1, σ|J1q is actually trivial on

ZpJ˝qJ1. But this group is equal to the whole of J˝. Indeed, let g P J˝. Since Qp2{Qp is

unramified, there exists some λ P Zˆp2 such that Normpλq “ cpgq. Thus cpλ´1gq “ 1 so that g is

the product of λ ¨ id P ZpJ˝q and of an element of J1. Hence, J˝ acts trivially on Ext1
J1p1, σ|J1q.

Since J1 is an algebraic group, we may use Theorem 2 of [NP20], a generalization of a duality

theorem of Schneider and Stühler, to finish the computation. Namely, we have

Ext1
J1p1, σ|J1q » HomJ1pσ|J1 , Dp1qq_,

where D denotes the Aubert-Zelevinsky involution in J1. We note that Dp1q “ StJ1 is the

Steinberg representation of J1.

Let us justify that the restriction of StJ to J1 is equal to StJ1 . The Steinberg representation

StJ (resp. StJ1) can be characterized as the unique irreducible representation ρ of J (resp. of

J1) such that Ext2
Jp1, ρq ­“ 0 (resp. Ext1

J1p1, ρq ­“ 0). The gap between the degrees of the Ext

groups for J and for J1 is explained by the non-compactness of the center of J . Since StJ has

trivial central character, by [NP20] Proposition 3.4 we have

Ext2
Jp1, StJq » Ext1

J,1p1, StJq ‘ Ext2
J,1p1, StJq,

where the Ext groups on the right-hand side are taken in the category of smooth representations

of J on which the center acts trivially. Equivalently, this is the category of smooth representa-

tions of J{ZpJq. Consider the normal subgroup ZpJqJ1{ZpJq » J1{ZpJqXJ1 “ J1{ZpJ1q, with

quotient isomorphic to J{ZpJqJ1, which is trivial if n is odd and Z{2Z is n is even. Thus, we

have

Ext‚J,1p1, StJq » Ext‚J{ZpJqp1, StJq

» Ext‚J1{ZpJ1qp1, pStJq|J1q
J{ZpJqJ1

» Ext‚J1,1p1, pStJq|J1q
J{ZpJqJ1

» Ext‚J1p1, pStJq|J1q
J{ZpJqJ1

,

the last line following from the same Proposition 3.4 as above, but applied to J1. In [Far04]

Lemme 4.4.12, it is explained that ExtiJ1pπ1, π2q vanishes for any smooth representations π1, π2
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of J1 as soon as i is greater than the semisimple rank of J , that is 1 in our case. Hence,

Ext2
J,1p1, StJq “ 0 and we have

Ext2
Jp1, StJq » Ext1

J,1p1, StJq » Ext1
J1p1, pStJq|J1q

J{ZpJqJ1

.

In particular, the right-hand side is non zero, which proves that pStJq|J1 contains StJ1 . If n is

odd so that ZpJqJ1 “ J , it follows that pStJq|J1 “ StJ1 . If n is even, in virtue of point (3) of

the lemma, it remains to justify that for any g P J we have StgJ1 » StJ1 . This follows from the

following computation

Ext1
J1p1, StgJ1q “ Ext1

J1p1g
´1

, StJ1q “ Ext1
J1p1, StJ1q ­“ 0.

Let us go back to the irreducible representation π of J with unramified central character.

Summing up the previous paragraphs, we have that π|J1 contains StJ1 if and only if π » χ ¨ StJ

for some character χ of J that is trivial on J1 (and thus trivial on ZpJ˝qJ1 “ J˝ by the

unramifiedness of the central character), and

Ext1
Jpc´ IndJJ˝ 1, πq » HomJ1pσ|J1 , StJ1q

_
»

$

&

%

Q` if π|J1 » StJ1 ,

0 otherwise.

5.2.3 We may now compute the cohomology of the basic stratum. Recall the supercuspidal

representation τ1 of the Levi complement M1 Ă J that we defined in ??. When n “ 3 or 4, we

actually have M1 “ J and

τ1 “ c´ IndJNJ pJ1qĄρ∆2

is a supercuspidal representation of J , where NJpJ1q “ ZpJqJ1 (see 1.3.3) and Ąρ∆2 is the inflation

of ρ∆2 to NJpJ1q “ ZpJqJ1 (see 1.3.3) obtained by letting the center act trivially. We use the

same notations as in 5.1.5.

Theorem. There are GpAp
f q ˆW -equivariant isomorphisms

H0
cpSpb0q b F,Lξq »

à

ΠPAξpIq
ΠpPXunpJq

Πp
bQ`rδΠpp

wpξq
s,

H1
cpSpb0q b F,Lξq »

à

ΠPAξpIq
DχPXunpJq,
Πp“χ¨StJ

Πp
bQ`rδΠpp

wpξq
s ‘

à

ΠPAξpIq
DχPXunpJq,

Πp“χ¨τ1

Πp
bQ`r´δΠpp

wpξq`1
s,

H2
cpSpb0q b F,Lξq »

à

ΠPAξpIq
Π
J1
p ­“0

Πp
bQ`rδΠpp

wpξq`2
s.

Proof. The statement regarding H0
cpSpb0q b F,Lξq was already proved in 5.1.5.

Let us prove the statement regarding H2
cpSpb0q b F,Lξq first. By 5.2.1, we have

H2
cpSpb0q b F,Lξq » F 0,2

2 »
à

ΠPAξpIq
HomJ

´

E0,b
2 p1´ nq,Πp

¯

b Πp,

62



On the cohomology of the basic unramified PEL unitary RZ space of signature p1, n´ 1q

where b “ 2 if n “ 3 and b “ 4 if n “ 4. The term E0,b
2 is isomorphic to c´ IndJJ1 1. Therefore,

by Frobenius reciprocity we have

HomJ

´

E0,b
2 p1´ nq,Πp

¯

» HomJ1 p1p1´ nq,Πpq .

Hence, only the automorphic representations Π P AξpIq with ΠJ1
p ­“ 0 contribute to F 0,2

2 . Such

a representation Πp is said to be J1-spherical. Since J1 is a special maximal compact subgroup

of J , according to [Mın11] 2.1, we have dimpπJ1q “ 1 for every smooth irreducible J1-spherical

representation π of J . The result follows using 5.1.4 to describe the eigenvalues of Frob.

We now prove the statement regarding H1
cpSpb0q b F,Lξq. By the Hochschild-Serre spectral

sequence, there exists a GpAp
f q ˆW -subspace V 1 of this cohomology group such that

V 1 » F 1,0
2 and H1

cpSpb0q b F,Lξq{V 1 » F 0,1
2 .

We have

F 1,0
2 »

à

ΠPAξpIq
Ext1

J

`

H2pn´1q
c pMan,Q`qp1´ nq,Πp

˘

b Πp

»
à

ΠPAξpIq
Ext1

J

`

c´ IndJJ˝ 1p1´ nq,Πp

˘

b Πp

»
à

ΠPAξpIq
DχPXunpJq,
Πp“χ¨StJ

Πp
bQ`rδΠpp

wpξq
s,

according to 5.2.2, and with the eigenvalues of Frob being given by 5.1.4.

On the other hand, we have

F 0,1
2 »

à

ΠPAξpIq
HomJ

´

E
0,2pn´1q´1
2 p1´ nq,Πp

¯

b Πp.

By 5.1.4, Frob acts on a summand of F 0,1
2 by the scalar ´δΠpp

wpξq`1. Since Frob|V 1 has no

eigenvalue of complex modulus pwpξq`1, the quotient actually splits so that F 0,1
2 is naturally a

subspace of H1
cpSpb0q b F,Lξq. It remains to compute it.

We have

E
0,2pn´1q´1
2 » c´ IndJJ1 ρ∆2 ,

with τ acting like multiplication by ´p3 when n “ 3 and by ´p5 when n “ 4, and ∆2 “ p2, 1q

is the partition of 2m` 1 “ 3 defined in 2.7. Hence, we have an isomorphism

F 0,1
2 »

à

ΠPAξpIq
HomJ

`

c´ IndJJ1 ρ∆2p1´ nq,Πp

˘

b Πp

»
à

ΠPAξpIq
HomJ1

`

ρ∆2p1´ nq,Πp|J1

˘

b Πp.

It follows that only the automorphic representations Π P AξpIq whose p-component Πp contains

the supercuspidal representation ρ∆2 when restricted to J1, contribute to the sum. According
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to 4.2.7, such Πp are precisely those of the form χ ¨ τ1 for some χ P XunpJq. By the Mackey

formula we have

HomJ

`

c´ IndJJ1 ρ∆2 , χ ¨ τ1

˘

» HomJ1

`

ρ∆2 , τ1|J1

˘

» HomJ1

`

ρ∆2 , pc´ IndJNJ pJ1qĄρ∆2q|J1

˘

»
à

hPJ1zJ{NJ pJ1q

HomJ1XhNJ pJ1qpρ∆2 ,
h
Ąρ∆2q,

where in the last formula we omitted to write the restrictions to J1X
hNJpJ1q. We used the fact

that χ|J1 is trivial. Since Ąρ∆2 is just the inflation of ρ∆2 from J1 to NJpJ1q “ ZpJqJ1 obtained

by letting ZpJq act trivially, we have a bijection

HomJ1XhNJ pJ1qpρ∆2 ,
h
Ąρ∆2q » HomNJ pJ1qXhNJ pJ1qpĄρ∆2 ,

h
Ąρ∆2q.

Now, NJpJ1q contains the center, is compact modulo the center, and τ1 “ c´ IndJNJ pJ1qĄρ∆2 is

supercuspidal. It follows that an element h P J intertwines Ąρ∆2 if and only if h P NJpJ1q (see

for instance [BH06] 11.4 Theorem along with Remarks 1 and 2). Therefore, only the trivial

double coset contributes to the sum and we have

HomJ

`

c´ IndJJ1 ρ∆2 , χ ¨ τ1

˘

» HomJ1pρ∆2 , ρ∆2q » Q`.

To sum up, we have

F 0,1
2 »

à

ΠPAξpIq
DχPXunpJq,

Πp“χ¨τ1

Πp
bQ`r´δΠpp

wpξq`1
s.

It concludes the proof.

5.3 On the cohomology of the ordinary locus when n “ 3

5.3.1 In this section, we assume that the Shimura variety is of Kottwitz-Harris-Taylor type.

According to [HT01] I.7, it amounts to assuming that the algebra B from 3.1 is a division

algebra satisfying a few additional conditions. In particular, Bv is either split either a division

algebra for every place v of Q, and there must be at least one prime number p1 (different from

p) which splits in E and such that B splits over p1. In this situation, the Shimura variety is

compact.

According to 3.5, when n “ 3 there is a single Newton stratum other than the basic one. It

is the µ-ordinary locus SKppb1q, and it is an open dense subscheme of the special fiber of the

Shimura variety. Moreover, since the Shimura variety is compact, the ordinary locus is also an

affine scheme according to [GN17] and [KW18]. By using the spectral sequence associated to

the stratification

SKp “ SKppb0q \ SKppb1q,

we may deduce information on the cohomology of the ordinary locus. The spectral sequence is

given by

Ga,b
1 : Hb

cpSKppbaq b F,Q`q ùñ Ha`b
c pSKp b F,Q`q.
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In figure 3, we draw the first page of this sequence.

H4
cpSKppb1q b F,Q`q

H2
cpSKppb0q b F,Q`q H3

cpSKppb1q b F,Q`q

H1
cpSKppb0q b F,Q`q H2

cpSKppb1q b F,Q`q

H0
cpSKppb0q b F,Q`q

φ

ψ

Figure 3: The first page G1.

5.3.2 Let v be a place of E above p1. The cohomology of the Shimura variety ShC0Kp bE Ev

has been entirely computed in [Boy10]. Note that as GpAp
f q-representations, the cohomology of

ShC0Kp bE Ev is isomorphic to the cohomology of ShC0Kp bE Qp2 , which in turn is isomorphic

to the cohomology of the special fiber SKp using nearby cycles. In particular, we understand

perfectly the abutment of the spectral sequence Ga,b
1 . Since SKp is smooth and projective, its

cohomology admits a symmetry with respect to the middle degree 2. Moreover, by the results

of loc. cit. the groups of degree 1 and 3 are zero. It follows that φ is surjective and ψ is

injective. Combining with our computations, we deduce the following proposition.

Proposition. There is a GpAp
f q ˆW -equivariant isomorphism

H4
cpSpb1q b F,Lξq »

à

ΠPAξpIq
ΠpPXunpJq

Πp
bQ`rδΠpp

wpξq`4
s.

There is a GpAp
f q ˆW -equivariant monomorphism

H3
cpSpb1q b F,Lξq ãÑ

à

ΠPAξpIq
Π
J1
p ­“0

Πp
bQ`rδΠpp

wpξq`2
s.

There is a GpAp
f q ˆW -equivariant monomorphism

à

ΠPAξpIq
DχPXunpJq,
Πp“χ¨StJ

Πp
bQ`rδΠpp

wpξq
s ‘

à

ΠPAξpIq
DχPXunpJq,

Πp“χ¨τ1

Πp
bQ`r´δΠpp

wpξq`1
s ãÑ H2

cpSpb1q b F,Lξq.
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[Ber93] V. G. Berkovich. “Étale cohomology for non-Archimedean analytic spaces”. In: Pub-
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