On the cohomology of the unramified PEL unitary Rapoport-Zink space of signature (1, n-1)

RIMS conference - Algebraic Number Theory and Related Topics 2022

> Joseph Muller December 13th 2022

Université Sorbonne Paris Nord

Introduction

The Rapoport-Zink space ${\mathcal M}$

Step 1: the cohomology of a BT stratum \mathcal{M}_Λ

Step 2: on the cohomology of the generic fiber $\mathcal{M}^{\mathrm{an}}$

Cohomology of the basic locus of the GU(1, n-1) Shimura variety for n = 3, 4

References

Introduction

p > 2 prime number.

 \mathcal{D} : a set of local EL or PEL datum (Polarization, Endomorphism action, Level structure).

The datum ${\mathcal D}$ determines

- a *p*-divisible group X with extra structures (the framing object),
- two *p*-adic groups $G(\mathbb{Q}_p)$ and $J(\mathbb{Q}_p) = \operatorname{Aut}(\mathbb{X})$,
- a *p*-adic field *E* (the reflex field), $\breve{E} := \widehat{E^{un}}$.
- $K_0 \subset G(\mathbb{Q}_p)$ a parahoric subgroup.

Rapoport-Zink space: the moduli space $\mathcal{M} = \mathcal{M}_{\mathcal{D}}$ over $\operatorname{Spf}(\mathcal{O}_{\breve{E}})$ classifying the deformations of \mathbb{X} by quasi-isogenies. $J(\mathbb{Q}_p) \curvearrowright \mathcal{M}$ a natural action.

 $\mathcal{M}^{\mathrm{an}}$: the Berkovich generic fiber of \mathcal{M} , an analytic space over \check{E} .

 $\forall K \subset K_0$ open compact, $\mathcal{M}_K \to \mathcal{M}^{\mathrm{an}}$ finite étale cover. In particular $\mathcal{M}_{K_0} = \mathcal{M}^{\mathrm{an}}$. Projective system $\mathcal{M}_{\infty} := (\mathcal{M}_K)_K$ called **the Rapoport-Zink tower**.

 $G(\mathbb{Q}_p) imes J(\mathbb{Q}_p) \curvearrowright \mathcal{M}_\infty$ via Hecke correspondences.

 $\ell \neq p$ prime number. W : the Weil group of E.

Goal: study $\operatorname{H}^{\bullet}_{c}(\mathcal{M}_{\infty} \widehat{\otimes} \mathbb{C}_{p}, \overline{\mathbb{Q}_{\ell}})$ as a $(G(\mathbb{Q}_{p}) \times J(\mathbb{Q}_{p}) \times W)$ -representation, expected to have applications to local Langlands program.

Remark: the W-action on the cohomology is given by **Rapoport-Zink's (non effective) descent datum** on M.

Known results:

- H[•]_c(M_∞) entirely understood in the Lubin-Tate and Drinfeld cases by Dat (2006), Fargues-Genestier-Lafforgue (2006), Boyer (2009), etc. Both are EL type.
- Kottwitz's conjecture to describe the $(G(\mathbb{Q}_p) \times J(\mathbb{Q}_p))$ -supercuspidal part. Known for
 - $\checkmark\,$ Lubin-Tate case by Boyer (1999) and Harris-Taylor (2001),
 - $\checkmark\,$ basic unramified RZ spaces of EL type by Fargues (2004) and Shin (2012),
 - ✓ basic unramified PEL unitary RZ space with signature (r, n r) and n odd by Nguyen (2019) and Bertoloni Meli-Nguyen (2021).

In this talk: consider the basic unramified unitary PEL datum $\mathcal{D}_{(1,n-1)}$ with signature (1, n-1), and the associated RZ space $\mathcal{M} = \mathcal{M}_{\mathcal{D}_{(1,n-1)}}$. We study

$$\mathrm{H}^{\bullet}_{c}(\mathcal{M}^{\mathrm{an}}) = \mathrm{H}^{\bullet}_{c}(\mathcal{M}_{\infty})^{K_{0}}$$

as a $(J(\mathbb{Q}_p) \times W)$ -representation, with K_0 hyperspecial.

Use the geometric description of the special fiber $\mathcal{M}_{\rm red}$ given by Vollaard (2010) and Vollaard-Wedhorn (2011).

The Rapoport-Zink space \mathcal{M}

Notations:

- p > 2 prime number.
- $\mathbb{Z}_{p^2} := W(\mathbb{F}_{p^2})$ the ring of Witt vectors of \mathbb{F}_{p^2} .
- $E = \mathbb{Q}_{p^2} := \operatorname{Frac}(\mathbb{Z}_{p^2})$ the quadratic unramified extension of \mathbb{Q}_p .

 \mathbb{X} is a **superspecial** *p*-divisible group over \mathbb{F}_{p^2} with polarization $\lambda_{\mathbb{X}} : \mathbb{X} \xrightarrow{\sim} \mathbb{X}^{\vee}$ and action $\iota_{\mathbb{X}} : \mathbb{Z}_{p^2} \to \operatorname{End}(\mathbb{X})$ satisfying the signature (1, n - 1) condition.

Nilp : the category of \mathbb{Z}_{p^2} -schemes S where p is locally nilpotent.

Definition Let $S \in \text{Nilp}$ and $\overline{S} := S \times \mathbb{F}_{p^2}$. Define $\mathcal{M}(S) = \{(X, \iota_X, \lambda_X, \rho_X)\}/\simeq$ where

- (X, ι_X, λ_X) is a p-divisible group over S with polarization λ_X and ℤ_{p²}-action ι_X of signature (1, n − 1),
- $\rho_X : X \times_S \overline{S} \to \mathbb{X} \times_{\mathbb{F}_{p^2}} \overline{S}$ is a quasi-isogeny compatible with the extra structures.

Theorem (Rapoport, Zink, 1996)

 \mathcal{M} is a formal scheme over $\operatorname{Spf}(\mathbb{Z}_{p^2})$ formally smooth and locally formally of finite type, called the **basic unramified PEL unitary Rapoport-Zink space with signature** (1, n - 1).

Remark: \mathcal{M} can be defined over \mathbb{Z}_{p^2} in this case.

 $\mathcal{M}_{\mathrm{red}}$: the reduced special fiber of \mathcal{M} , a scheme over $\mathrm{Spec}(\mathbb{F}_{p^2})$.

The geometry of $\mathcal{M}_{\rm red}$ has been described by Vollaard and Wedhorn (2010, 2011).

Here, $G(\mathbb{Q}_p) \simeq \operatorname{GU}_n(\mathbb{Q}_p)$ quasi-split group of unitary similitudes in n variables, and

$$J(\mathbb{Q}_p) \simeq \begin{cases} G(\mathbb{Q}_p) & \text{if } n \text{ is odd,} \\ \text{the non quasi-split inner form of } G(\mathbb{Q}_p) & \text{if } n \text{ is even.} \end{cases}$$

BT(J) : set of vertices of the **Bruhat-Tits building** of $J(\mathbb{Q}_p)$.

Vollaard-Wedhorn's results (2010,2011):

The Bruhat-Tits stratification $\mathcal{M}_{\mathrm{red}} = \bigsqcup_{\Lambda} \mathcal{M}^{\circ}_{\Lambda}$ where $\Lambda \in \mathrm{BT}(J)$ and $\mathcal{M}^{\circ}_{\Lambda} \hookrightarrow \mathcal{M}_{\mathrm{red}}$ locally closed subscheme. $\mathcal{M}_{\Lambda} := \overline{\mathcal{M}^{\circ}_{\Lambda}}$ a closed Bruhat-Tits stratum.

Two main features:

1) The incidence relations of the \mathcal{M}_{Λ} 's are described by the combinatorics of BT(J).

Action $J(\mathbb{Q}_p) \curvearrowright \mathcal{M}$ compatible with BT stratification: for $g \in J(\mathbb{Q}_p)$,

$$g: \mathcal{M}_{\Lambda} \xrightarrow{\sim} \mathcal{M}_{g \cdot \Lambda}.$$

$$\begin{split} J_{\Lambda} &:= \operatorname{Fix}_{J}(\Lambda) \text{ maximal parahoric subgroup of } J(\mathbb{Q}_{p}). \\ J_{\Lambda}^{+} : \text{ pro-unipotent radical.} \\ \mathcal{J}_{\Lambda} &:= J_{\Lambda}/J_{\Lambda}^{+} \text{ maximal reductive quotient.} \\ \text{We have } \mathcal{J}_{\Lambda} &\simeq \operatorname{G}(\operatorname{GU}_{2\theta+1}(\mathbb{F}_{p}) \times \operatorname{GU}_{n-2\theta-1}(\mathbb{F}_{p})). \\ t(\Lambda) &:= 2\theta + 1 \text{ is the } \mathbf{type} \text{ of } \Lambda. \text{ We have } 1 \leq t(\Lambda) \leq n. \end{split}$$

Then $J_{\Lambda} \curvearrowright \mathcal{M}_{\Lambda}$ factors through \mathcal{J}_{Λ} , and then to an action of $\operatorname{GU}_{2\theta+1}(\mathbb{F}_p)$.

2) \mathcal{M}_{Λ} is isomorphic to a generalized Deligne-Lusztig variety for $\operatorname{GU}_{2\theta+1}(\mathbb{F}_p)$.

Our strategy:

- 1. Compute $\operatorname{H}^{\bullet}_{c}(\mathcal{M}_{\Lambda} \otimes \overline{\mathbb{F}_{p}}, \overline{\mathbb{Q}_{\ell}})$ the cohomology of one stratum using Deligne-Lusztig theory.
- Use the Bruhat-Tits stratification and its combinatorics to study H[●]_c(M^{an} ⊗ C_p, Q_ℓ).

Step 1: the cohomology of a BT stratum \mathcal{M}_{Λ}

q: a power of p.

- $\mathbb H$: connected reductive group over $\overline{\mathbb F_p}$ with an $\mathbb F_q$ -structure.
- $F:\mathbb{H}\to\mathbb{H}$ the associated geometric Frobenius.
- $H := \mathbb{H}(\mathbb{F}_q) \simeq \mathbb{H}^F$ finite group of Lie type.
- $\mathbb{P} \subset \mathbb{H}$ any parabolic subgroup.

Definition

The associated generalized Deligne-Lusztig variety is

$$X_{\mathbb{P}}:=\left\{h\mathbb{P}\in\mathbb{H}/\mathbb{P}\,|\,h^{-1}F(h)\in\mathbb{P}F(\mathbb{P})
ight\}.$$

Defined over $\mathbb{F}_{q^{\delta}}$ where $\delta \geq 1$ smallest integer such that $F^{\delta}(\mathbb{P}) = \mathbb{P}$. We have $H \curvearrowright X_{\mathbb{P}}$ by left translations. **Remark:** The variety $X_{\mathbb{P}}$ is **classical** if in addition

" $\exists \mathbb{L} \subset \mathbb{P}$ a Levi complement such that $F(\mathbb{L}) = \mathbb{L}$." (*)

Then we have $H \curvearrowright X_{\mathbb{P}} \curvearrowleft L := \mathbb{L}^{F}$.

The cohomology $\operatorname{H}^{\bullet}_{c}(X_{\mathbb{P}} \otimes \overline{\mathbb{F}}_{p}, \overline{\mathbb{Q}_{\ell}})$ gives the **Deligne-Lusztig's** induction and restriction functors R^{H}_{L} and $^{*}\operatorname{R}^{H}_{L}$ between the categories of representations of L and of H.

 \implies Classification of irreducible representations of finite groups of Lie type.

Fix $\Lambda \in BT(J)$, write $t(\Lambda) = 2\theta + 1$. Consider $\mathbb{H} = GL_{2\theta+1} \times GL_1$. Let $F : \mathbb{H} \to \mathbb{H}$ the *twisted* Frobenius. Then $H = \mathbb{H}^F = GU_{2\theta+1}(\mathbb{F}_p)$. Define

$$\mathbb{P} := \left\{ \left(\left\lfloor \overset{*}{\underset{\theta+1}{\overset{*}{_{\theta}}}} \right\rfloor, * \right) \in \mathrm{GL}_{2\theta+1} \times \mathrm{GL}_1 \right\}.$$

Remark: Condition (*) is not satisfied for $X_{\mathbb{P}}$, thus it is **not** classical.

Theorem (Vollaard, Wedhorn, 2011)

There is a $\operatorname{GU}_{2\theta+1}(\mathbb{F}_p)$ -equivariant isomorphism

$$\mathcal{M}_{\Lambda} \xrightarrow{\sim} X_{\mathbb{P}}.$$

In particular \mathcal{M}_{Λ} is smooth, irreducible, projective of dimension θ .

An irreducible representation ρ of a finite group of Lie type $H = \mathbb{H}^F$ is **unipotent** if it occurs in $\mathbb{R}^H_T 1$ for some maximal rational torus $T \subset H$ (Deligne-Lusztig induction).

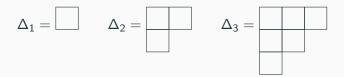
Theorem (Lusztig, Srinivasan, 1977)

The unipotent irreducible representations ρ_{λ} of $\operatorname{GU}_{2\theta+1}(\mathbb{F}_p)$ are classified by partitions λ of $2\theta+1$ (or Young diagrams of size $2\theta+1$).

Example:
$$\rho_{(2\theta+1)} = \rho_{\square} = 1$$
 and $\rho_{(1^{2\theta+1})} = \rho_{\square} =$ St.

Remark: ρ_{Λ} is cuspidal iff $2\theta + 1 = \frac{t(t+1)}{2}$ for some $t \ge 1$ and $\lambda = \Delta_t = (t, t - 1, ..., 1)$.

Step 1: the cohomology of a BT stratum \mathcal{M}_{Λ}



 Δ_t has the shape of a staircase.

Theorem (M.)

Let
$$\Lambda \in BT(J)$$
 and write $t(\Lambda) = 2\theta + 1$.

- 1. $\operatorname{H}^{i}_{c}(\mathcal{M}_{\Lambda}) \neq 0$ iff $0 \leq i \leq 2\theta$.
- 2. The Frobenius F^2 acts like $(-p)^i \cdot \mathrm{id}$ on $\mathrm{H}^i_c(\mathcal{M}_{\Lambda})$.
- 3. For $0 \le i \le \theta$ we have

$$\mathrm{H}^{2i}_{c}(\mathcal{M}_{\Lambda}) \simeq \bigoplus_{s=0}^{\min(i,\theta-i)} \rho_{(2\theta+1-2s,2s)}.$$

4. For $0 \le i \le \theta - 1$ we have

$$\mathrm{H}^{2i+1}_{c}(\mathcal{M}_{\Lambda})\simeq \bigoplus_{s=0}^{\min(i,\theta-1-i)}
ho_{(2\theta-2s,2s+1)}.$$

Remarks:

 All representations associated to a Young diagram λ with at most 2 rows appear in H[●]_c(M_Λ).



- In H²ⁱ_c(M_Λ) the representations belong to the unipotent principal series.
- In H²ⁱ⁺¹_c(M_Λ) belong to the cuspidal series given by ρ_{Δ2}, cuspidal representation of GU₃(𝔽_p).

Idea of proof: Ekedahl-Oort stratification

$$\mathcal{M}_{\Lambda} = \bigsqcup_{0 \leq \theta' \leq \theta} \mathcal{M}_{\Lambda}(\theta').$$

The EO stratum $\mathcal{M}_{\Lambda}(\theta')$ is related to a classical Deligne-Lusztig variety of Coxeter type for $\operatorname{GU}_{2\theta'+1}(\mathbb{F}_p)$.

 \implies Compute $\mathrm{H}^{\bullet}_{c}(\mathcal{M}_{\Lambda}(\theta'))$ using work of Lusztig (1976), then use spectral sequence

$$E_1^{a,b} = \operatorname{H}^{a+b}_c(\mathcal{M}_{\Lambda}(a)) \implies \operatorname{H}^{a+b}_c(\mathcal{M}_{\Lambda}).$$

Step 2: on the cohomology of the generic fiber $\mathcal{M}^{\mathrm{an}}$

Step 2: on the cohomology of the generic fiber $\mathcal{M}^{\mathrm{an}}$

red : $\mathcal{M}^{\mathrm{an}} \to \mathcal{M}_{\mathrm{red}}$ anticontinuous map. $U_{\Lambda} := \mathrm{red}^{-1}(\mathcal{M}_{\Lambda})$ the analytical tube of \mathcal{M}_{Λ} . It is open in $\mathcal{M}^{\mathrm{an}}$, smooth analytical space over \mathbb{Q}_{p^2} of dimension n-1.

Recall: $1 \le t(\Lambda) \le n$ is odd. Write

$$n = egin{cases} 2m+1 & ext{if } n ext{ is odd,} \ 2(m+1) & ext{if } n ext{ is even.} \end{cases}$$

Then $t_{\max} := 2m + 1$. BT $(J)^m := \{\Lambda \in BT(J) \mid t(\Lambda) = t_{\max}\}.$

 $\implies \{U_{\Lambda}\}_{\Lambda \in \mathrm{BT}(J)^m}$ is open cover of $\mathcal{M}^{\mathrm{an}}$.

The open cover induces a Čech spectral sequence on cohomology

$$E_1^{a,b} = \bigoplus_{\gamma \in I_{-a+1}} \mathrm{H}^b_c(U(\gamma)\widehat{\otimes} \, \mathbb{C}_p, \overline{\mathbb{Q}_\ell}) \implies \mathrm{H}^{a+b}_c(\mathcal{M}^{\mathrm{an}}\widehat{\otimes} \, \mathbb{C}_p, \overline{\mathbb{Q}_\ell}),$$

where for $a \leq 0$

$$I_{-a+1} := \left\{ \gamma \subset \mathrm{BT}(J)^m \, \Big| \, \#\gamma = -a+1 \text{ and } U(\gamma) := \bigcap_{\Lambda \in \gamma} U_{\Lambda} \neq \emptyset \right\}.$$

Note that $\exists \Lambda(\gamma) \in BT(J)$ such that $U(\gamma) = U_{\Lambda(\gamma)}$.

Step 2: on the cohomology of the generic fiber $\mathcal{M}^{\mathrm{an}}$

Recall: $W = W_{\mathbb{Q}_{p^2}}$ the Weyl group. Frob $\in W$ geometric Frobenius. $\tau := (p \cdot id, Frob) \in J(\mathbb{Q}_p) \times W$.

Proposition

Let $\Lambda \in BT(J)$ with $t(\Lambda) = 2\theta + 1$ and $0 \le b \le 2(n-1)$. There is an isomorphism

$$\mathrm{H}^{b}_{c}(U_{\Lambda})\simeq\mathrm{H}^{b-2(n-1-\theta)}_{c}(\mathcal{M}_{\Lambda})(n-1-\theta)$$

compatible with the J_{Λ} and W actions. The action of τ on the LHS agrees with the action of F^2 on the RHS.

Proof: Hyperspecial level so smooth integral model. The vanishing cycles are trivial. Apply Poincaré duality.

In particular,
$$\tau$$
 acts like $(-p)^b \cdot \mathrm{id}$ on $E_1^{a,b}$.

Corollary The spectral sequence degenerates on E_2 and splits, ie. $\operatorname{H}^b_c(\mathcal{M}^{\operatorname{an}}) \simeq \bigoplus_{b \leq b' \leq 2(n-1)} E_2^{b-b',b'}.$ Then $E_2^{b-b',b'}$ (may be 0) is the eigenspace of τ attached to the eigenvalue $(-p)^{b'}.$

Remark: The inertia acts trivially.

Fix $\{\Lambda_0, \ldots, \Lambda_m\}$ an alcôve (ie. maximal simplex) in BT(J). Let $J_{\theta} := J_{\Lambda_{\theta}}$ maximal parahoric.

Proposition

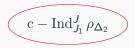
There exists $k_{-a+1,\theta} \in \mathbb{Z}_{\geq 0}$ such that

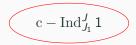
$$E_1^{a,b} \simeq \bigoplus_{\theta=0}^m \left(c - \operatorname{Ind}_{J_{\theta}}^J \operatorname{H}_c^b(U_{\Lambda_{\theta}}) \right)^{k_{-a+1,\theta}}$$

Step 2: on the cohomology of the generic fiber $\mathcal{M}^{\mathrm{an}}$

Example: When n = 3 so m = 1.

$$\ldots \, \rightarrow \, \left(\mathrm{c-Ind}_{\mathcal{J}_0}^{\mathcal{J}} \, 1\right)^{k_{3,0}} \, \rightarrow \, \left(\mathrm{c-Ind}_{\mathcal{J}_0}^{\mathcal{J}} \, 1\right)^{k_{2,0}} \, \longrightarrow \, \mathrm{c-Ind}_{\mathcal{J}_1}^{\mathcal{J}} \, 1$$





0

0

Proposition

We have an isomorphism of *J*-representations

$$\mathsf{E}_2^{0,2(n-1-m)} \simeq \mathrm{c-Ind}_{J_m}^J \rho_{(2m+1)}.$$

If $n \ge 3$ then we also have an isomorphism

$$E_2^{0,2(n-1-m)+1} \simeq \mathrm{c-Ind}_{J_m}^J \rho_{(2m,1)}.$$

For $V \in \operatorname{Rep}(J(\mathbb{Q}_p))$ and χ a character of $Z(J(\mathbb{Q}_p)) \simeq \mathbb{Q}_{p^2}^{\times}$, write V_{χ} for the largest quotient of V where $Z(J(\mathbb{Q}_p))$ acts like χ .

Using type theory, we prove the following.

Corollary (M.)

Let χ be any unramified character of $Z(J(\mathbb{Q}_p))$.

- 1. Let $n \ge 3$. The representation $(E_2^{0,2(n-1-m)})_{\chi}$ contains no non-zero admissible subrepresentation, and is not *J*-semisimple. If $n \ge 5$, the same holds for $(E_2^{0,2(n-1-m)+1})_{\chi}$.
- 2. For n = 1, 2, 3, 4, let b = 0, 2, 3, 5 respectively. Then $(E_2^{0,b})_{\chi}$ is an irreducible supercuspidal representation of $J(\mathbb{Q}_p)$.

In particular, $\mathrm{H}^{\bullet}_{c}(\mathcal{M}^{\mathrm{an}})_{\chi}$ needs not be admissible as a $J(\mathbb{Q}_{p})$ -representation.

 \implies Different from the Lubin-Tate and Drinfeld cases!

Cohomology of the basic locus of the GU(1, n - 1) Shimura variety for n = 3, 4

 (\mathbb{G}, X) : Shimura datum inducing the local PEL datum at p. $\implies \mathbb{G}_{\mathbb{R}} \simeq \mathrm{GU}(1, n-1) \text{ and } \mathbb{G}_{\mathbb{Q}_p} \simeq G.$

 $K^{p} \subset \mathbb{G}(\mathbb{A}_{f}^{p})$ small enough open compact. $S_{K^{p}}$: integral model of the Shimura variety, smooth quasi-projective over $\operatorname{Spec}(\mathbb{Z}_{p^{2}})$. $\overline{S}_{K^{p}}$: special fiber. $\overline{S}_{K^{p}}(b_{0})$: the basic locus. $\widehat{S}_{K^{p}}(b_{0})^{\operatorname{an}}$: the analytical tube of $\overline{S}_{K^{p}}(b_{0})$.

 $\begin{array}{ll} \text{I: inner form of } \mathbb{G} \text{ such that } I_{\mathbb{A}_{f}^{p}} = \mathbb{G}_{\mathbb{A}_{f}^{p}}, \ I_{\mathbb{Q}_{p}} = J \text{ and } \\ I_{\mathbb{R}} \simeq \mathrm{GU}(0, n). \end{array}$

p-adic uniformization theorem (Rapoport, Zink, 1996)

There is a natural isomorphism

$$I(\mathbb{Q}) \setminus \left(\mathcal{M}^{\mathrm{an}} \times \mathbb{G}(\mathbb{A}_f^p) / \mathcal{K}^p \right) \xrightarrow{\sim} \widehat{\mathrm{S}}_{\mathcal{K}^p}(b_0)^{\mathrm{an}}.$$

 ξ : finite dimensional irreducible algebraic representation over $\overline{\mathbb{Q}_{\ell}}$. $t(\xi) \in \mathbb{Z}_{\geq 0}$ the weight of ξ .

 \mathcal{L}_{ξ} : the associated local system on the Shimura variety.

 $\mathcal{A}(I)$: space of automorphic representations of I counted with multiplicities.

 $\mathcal{A}_{\xi}(I) := \{ \Pi \in \mathcal{A}(I) \, | \, \Pi_{\infty} = \breve{\xi} \}.$

Theorem (Fargues, 2004)

There is a $W \times \mathbb{G}(\mathbb{A}_f^p)$ -equivariant spectral sequence

$$\begin{split} F_2^{a,b} &= \bigoplus_{\Pi \in \mathcal{A}_{\xi}(I)} \mathrm{Ext}_J^a(\mathrm{H}_c^{2(n-1)-b}(\mathcal{M}^{\mathrm{an}})(1-n), \Pi_p) \otimes \Pi^p \\ & \Longrightarrow \, \mathrm{H}_c^{a+b}(\overline{\mathrm{S}}(b_0), \mathcal{L}_{\xi}), \end{split}$$

where
$$\overline{\mathrm{S}}(b_0) := \varprojlim_{K^p} \overline{\mathrm{S}}_{K^p}(b_0).$$

From now assume m = 1, ie. n = 3 or 4. Then dim $(\overline{S}(b_0)) = 1$. Let $\sigma := c - \operatorname{Ind}_{N_J(J_1)}^J \rho_{\Delta_2}$. It is an irreducible supercuspidal representation of $J(\mathbb{Q}_p)$.

Theorem (M.)

There are $G(\mathbb{A}_{f}^{p}) \times W$ -equivariant isomorphisms

$$\begin{split} \mathrm{H}^{0}_{c}(\overline{\mathrm{S}}(b_{0}),\overline{\mathcal{L}_{\xi}}) &\simeq \bigoplus_{\substack{\Pi \in \mathcal{A}_{\xi}(l)\\ \Pi_{p} \in X^{\mathrm{un}}(J)}} \Pi^{p} \otimes \overline{\mathbb{Q}_{\ell}}[p^{t(\xi)}], \\ \mathrm{H}^{2}_{c}(\overline{\mathrm{S}}(b_{0}),\overline{\mathcal{L}_{\xi}}) &\simeq \bigoplus_{\substack{\Pi \in \mathcal{A}_{\xi}(l)\\ \Pi^{J_{p}}_{p} \neq 0}} \Pi^{p} \otimes \overline{\mathbb{Q}_{\ell}}[p^{t(\xi)+2}] \end{split}$$

where $\overline{\mathbb{Q}}_{\ell}[x]$ is the 1-dimensional representation of W with I acting trivially and Frob acts like $x \cdot id$, and $X^{un}(J)$ is the set of unramified characters of $J(\mathbb{Q}_p)$.

Theorem (M.)

$$\begin{aligned} \mathrm{H}_{c}^{1}(\overline{\mathrm{S}}(b_{0}),\overline{\mathcal{L}_{\xi}}) &\simeq \bigoplus_{\substack{\Pi \in \mathcal{A}_{\xi}(I) \\ \Pi_{p}^{I_{1}} \neq 0 \\ \dim(\Pi_{p}) > 1}} (\nu - 1)\Pi^{p} \otimes \overline{\mathbb{Q}_{\ell}}[p^{t(\xi)}] \oplus \\ \bigoplus_{\substack{\Pi \in \mathcal{A}_{\xi}(I) \\ \Pi_{p} \in X^{\mathrm{un}}(J)}} \mathcal{D}_{p}^{P} \otimes \overline{\mathbb{Q}_{\ell}}[p^{t(\xi)}] \oplus \\ \bigoplus_{\substack{\Pi \in \mathcal{A}_{\xi}(I) \\ \exists \chi \in X^{\mathrm{un}}(J), \\ \Pi_{p} = \chi \cdot \sigma}} \Pi^{p} \otimes \overline{\mathbb{Q}_{\ell}}[-p^{t(\xi)+1}], \end{aligned}$$
where $\nu \in \mathbb{Z}_{\geq 0}$ is a multiplicity given by $\nu = p$ if $n = 3$, and $\nu = p^{3}$

Remark: The cohomology of the whole Shimura variety \overline{S} has been computed by Boyer (2010) when it is of Kottwitz-Harris-Taylor type. In particular, no multiplicity such as ν occurs.

 \implies These multiplicities must also occur in the cohomology of the non-basic Newton strata. Expected connections with cohomology of Igusa varieties.

Thank you for your attention.

References

References i

References

- [BMN21] A. Bertoloni Meli and K. H. Nguyen. "The Kottwitz conjecture for unitary PEL-type Rapoport–Zink spaces". In: arXiv:2104.05912 (2021).
- [Boy09] P. Boyer. "Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples". In: Inventiones mathematicae (2009).
- [Boy10] P. Boyer. "Conjecture de monodromie-poids pour quelques variétés de Shimura unitaires". In: Compositio Mathematica (2010).

References ii

- [Boy99] P. Boyer. "Mauvaise réduction des variétés de Drinfeld et correspondance de Langlands locale". In: *Invent. math.* (1999).
- [Far04] L. Fargues. "Cohomologie des espaces de modules de groupes p-divisibles et correspondances de Langlands locales". In: Astérisque (2004).
- [FGL08] L. Fargues, A. Genestier, and V. Lafforgue. L'isomorphisme Entre Les Tours de Lubin-Tate et de Drinfeld. Progress in Mathematics. Birkhaüser, 2008.
- [HT01] M. Harris and R. Taylor. *The Geometry and Cohomology of Some Simple Shimura Varieties.* 2001.

References iii

- [LS77] G. Lusztig and B. Srinivasan. "The characters of the finite unitary groups". In: *Journal of Algebra* (1977).
- [Lus76] G. Lusztig. "Coxeter orbits and eigenspaces of Frobenius". In: *Inventiones mathematicae* (1976).
- [Ngu19] K. H. Nguyen. "Un cas PEL de la conjecture de Kottwitz". In: (2019). arXiv: 1903.11505.
- [Shi12] S. W. Shin. "On the cohomology of Rapoport-Zink spaces of EL-type". In: American Journal of Mathematics (2012).
- [Vol10] I. Vollaard. "The Supersingular Locus of the Shimura Variety for GU(1, s)". In: Canadian Journal of Mathematics (2010).

[VW11] I. Vollaard and T. Wedhorn. "The supersingular locus of the Shimura variety of GU(1,n-1) II". In: Inventiones mathematicae (2011).