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Introduction



Introduction

p > 2 prime number.

D : a set of local EL or PEL datum.

Two p-adic groups G (Qp) and J(Qp) determined by D.

Rapoport-Zink space = moduli space M over Spf(OE )

classifying the deformations of a p-divisible group X with

additional structures determined by D.

J(Qp) y M a natural action.
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Introduction

Man : the Berkovich generic fiber of M, an analytic space over E .

K0 ⊂ G (Qp) maximal open compact subgroup.

∀K ⊂ K0 open compact, MK →Man finite étale map.

In particular MK0 = Man.

Projective system M∞ := (MK )K .

G (Qp)× J(Qp) y M∞ action via Hecke correspondences.
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Introduction

` 6= p prime number.

W : the Weil group of E .

Goal: study H•c(M∞ ⊗̂Cp,Q`) as a

(G (Qp)× J(Qp)×W )-representation, expected to realize a

geometric version of the local Langlands correspondence.

Remark: the W -action on the cohomology is given by

Rapoport-Zink’s (non effective) descent datum on M⊗OĔ .
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Introduction

Known results:

� H•c(M∞) entirely understood in the Lubin-Tate and Drinfeld

cases by Dat (2006) and Boyer (2009). Both are EL type.

� Kottwitz’s conjecture to describe the
(G (Qp)× J(Qp))-supercuspidal part. Known for

X basic unramified RZ spaces of EL type by Fargues (2004) and

Shin (2012),

X basic unramified PEL unitary RZ space with signature

(r , n − r) and n odd by Nguyen (2019) and Bertoloni

Meli-Nguyen (2021).
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Introduction

In this talk: consider the basic unramified PEL unitary RZ space

with signature (1, n − 1) and study

H•c(Man) = H•c(M∞)K0

as a (J(Qp)×W )-representation, with K0 hyperspecial.

Use the geometric description of the special fiber Mred given by

Vollaard (2010) and Vollaard-Wedhorn (2011).
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The Rapoport-Zink space M



The Rapoport-Zink space M

Notations:

� p > 2 prime number.

� Zp2 := W (Fp2) the ring of Witt vectors of Fp2 .

� Qp2 := Frac(Zp2) the quadratic unramified extension of Qp.

� σ ∈ Gal(Qp2/Qp) the non-trivial element.

� K : a field isomorphic to Qp2 .

� OK : the ring of integers.

� ϕ0 : K
∼−→ Qp2 a field isomorphism.

� ϕ1 := σ ◦ ϕ0.
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The Rapoport-Zink space M

Nilp : the category of Zp2-schemes S where p is locally nilpotent.

Definition

Let S ∈ Nilp. An OK -unitary p-divisible group of signature

(1, n − 1) over S is a triple (X , ιX , λX ) where

1. X is a p-divisible group over S ,

2. ιX : OK → End(X ) is an OK -action,

3. λX : X
∼−→ X∨ is an OK -linear polarization,

satisfying the signature condition for all a ∈ OK

det (T − ιX (a),Lie(X )) = (T − ϕ0(a))1(T − ϕ1(a))n−1 ∈ Zp2 [T ].
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The Rapoport-Zink space M

Fix (X, ιX, λX) an OK -unitary p-divisible group of signature

(1, n − 1) over Fp2 such that X is superspecial. This is the

framing object.

Definition

Let S ∈ Nilp and S := S × Fp2 . Define M(S) =

{(X , ιX , λX , ρX )}/ ' where

� (X , ιX , λX ) is an OK -unitary p-divisible group of signature

(1, n − 1) over S ,

� ρX : X ×S S → X×Fp2 S is an OK -linear quasi-isogeny such

that ρ∨X ◦ λX ◦ ρX = cλX for some c ∈ Q×p .
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The Rapoport-Zink space M

Theorem (Rapoport, Zink, 1996)

The functor M is represented by a formal scheme over Spf(Zp2)

formally smooth and locally formally of finite type.

It is called the basic unramified PEL unitary Rapoport-Zink

space with signature (1, n − 1).

Mred : the reduced special fiber of M, a scheme over Spec(Fp2).

The geometry of Mred has been described by Vollaard and

Wedhorn (2010, 2011).
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The Rapoport-Zink space M

Here, G (Qp) ' GUn(Qp) quasi-split group of unitary similitudes in

n variables, and

J(Qp) '

G (Qp) if n is odd,

the non quasi-split inner form of G (Qp) if n is even.

BT(J) : the polysimplicial complex of the Bruhat-Tits building

of J(Qp).
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The Rapoport-Zink space M

Vollaard-Wedhorn’s results:

The Bruhat-Tits stratification of Mred is {M◦
Λ} where

Λ ∈ BT(J) is a vertex.

M◦
Λ ↪→Mred locally closed subscheme.

MΛ := M◦
Λ.

Two main features:

� The incidence relations of the MΛ’s are described by the

combinatorics of BT(J).

� Each MΛ is isomorphic to a generalized Deligne-Lusztig

variety for GUt(Λ)(Fp), where 1 ≤ t(Λ) ≤ n is an odd integer

(the type of Λ).

13



The Rapoport-Zink space M

Our strategy:

1. Compute H•c(MΛ ⊗ Fp,Q`) the cohomology of a stratum.

2. Use the Bruhat-Tits stratification and its combinatorics to

study H•c(Man ⊗̂Cp,Q`).
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Step 1: the cohomology of a

stratum MΛ



Step 1: the cohomology of a stratum MΛ

q : a power of p.

H : connected reductive group over Fp with an Fq-structure.

F : H→ H the associated geometric Frobenius.

H := H(Fq) ' HF finite group of Lie type.

P ⊂ H any parabolic subgroup.

Definition

The associated generalized Deligne-Lusztig variety is

XP :=
{
gP ∈ H/P | g−1F (g) ∈ PF (P)

}
.

Defined over Fqδ where δ ≥ 1 smallest integer such that F δ(P) = P.

We have H y XP by left translations.
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Step 1: the cohomology of a stratum MΛ

Remark: The variety XP is classical if in addition

“∃L ⊂ P a Levi complement such that F (L) = L.” (∗)

Then we have H y XP x L := LF .

The cohomology H•c(XP ⊗ Fp,Q`) gives the Deligne-Lusztig’s

induction and restriction functors RH
L and ∗RH

L between the

categories of representations of L and of H.

=⇒ Classification of irreducible representations of finite groups of

Lie type.
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Step 1: the cohomology of a stratum MΛ

Fix Λ ∈ BT(J), write t(Λ) = 2θ + 1.

Consider H = GL2θ+1 ×GL1.

Define

F : H −→ H

(M, λ) 7−→
(
λΩ(M(p))−TΩ, λp

)

where M(p) = (Mp
i ,j)i ,j and Ω =


1

. .
.

1

.

Then H = HF = GU2θ+1(Fp).
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Step 1: the cohomology of a stratum MΛ

Define P :=

{([
∗
0︸︸
θ+1

∗
∗︸︸
θ

]
, ∗

)
∈ GL2θ+1 ×GL1

}
.

Remark: Condition (∗) is not satisfied for XP.

Theorem (Vollaard, Wedhorn, 2011)

There is a GU2θ+1(Fp)-equivariant isomorphism

MΛ
∼−→ XP.

In particular MΛ is smooth, irreducible, projective of dimension θ.
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Step 1: the cohomology of a stratum MΛ

Remark: Recall J(Qp) y M.

For Λ ∈ BT(J) and g ∈ J(Qp), we get g : MΛ
∼−→Mg ·Λ.

JΛ := FixJ(Λ) maximal parahoric subgroup of J(Qp).

J+
Λ : pro-unipotent radical.

JΛ := JΛ/J
+
Λ maximal finite reductive quotient.

We have JΛ ' G (GU2θ+1(Fp)×GUn−2θ−1(Fp)).

Then JΛ y MΛ factors through JΛ, and then to an action of

GU2θ+1(Fp).
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Step 1: the cohomology of a stratum MΛ

Recall: An irreducible representation ρ of a finite group of Lie type

H = HF is unipotent if it occurs in RH
T 1 for some maximal

rational torus T ⊂ H.

Theorem (Lusztig, Srinivasan, 1977)

The unipotent irreducible representations of GU2θ+1(Fp) are classi-

fied by partitions λ of 2θ+ 1 (or Young diagrams of size 2θ+ 1). It

is denoted ρλ.

Example: ρ(2θ+1) = 1 and ρ(12θ+1) = St.

Remark: ρΛ is cuspidal iff 2θ + 1 = t(t+1)
2 for some t ≥ 1 and

λ = ∆t = (t, t − 1, . . . , 1).
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Step 1: the cohomology of a stratum MΛ

∆1 = ∆2 = ∆3 =

∆t has the shape of a staircase.
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Step 1: the cohomology of a stratum MΛ

Theorem (M.)

Let Λ ∈ BT(J) and write t(Λ) = 2θ + 1.

1. Hi
c(MΛ) 6= 0 iff 0 ≤ i ≤ 2θ.

2. The Frobenius F 2 acts like (−p)i · id on Hi
c(MΛ).

3. For 0 ≤ i ≤ θ we have

H2i
c (MΛ) '

min(i ,θ−i)⊕
s=0

ρ(2θ+1−2s,2s).

4. For 0 ≤ i ≤ θ − 1 we have

H2i+1
c (MΛ) '

min(i ,θ−1−i)⊕
s=0

ρ(2θ−2s,2s+1).
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Step 1: the cohomology of a stratum MΛ

Remarks:

� All representations associated to a Young diagram λ with at

most 2 rows appear in H•c(MΛ).

λ = . . .

. . .

� In H2i
c (MΛ) the representations belong to the unipotent

principal series.

� In H2i+1
c (MΛ) belong to the cuspidal series given by ρ∆2 ,

representation of GU3(Fp).
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Step 1: the cohomology of a stratum MΛ

Idea of proof: Ekedahl-Oort stratification

MΛ =
⊔

0≤θ′≤θ
MΛ(θ′).

The EO stratum MΛ(θ′) is related to a classical Deligne-Lusztig

variety of Coxeter type for GU2θ′+1(Fp).

=⇒ Compute H•c(MΛ(θ′)) using work of Lusztig (1976), then

use spectral sequence

E a,b
1 = Ha+b

c (MΛ(a)) =⇒ Ha+b
c (MΛ).
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Step 2: on the cohomology of the generic fiber Man

UΛ : the analytical tube of MΛ. It is open in Man, smooth

analytical space over Qp2 of dimension n − 1.

Recall: 1 ≤ t(Λ) ≤ n is odd. Write

n =

2m + 1 if n is odd,

2(m + 1) if n is even.

Then tmax := 2m + 1.

BT(J)(m) := {Λ ∈ BT(J) | t(Λ) = tmax}.

=⇒ {UΛ}Λ∈BT(J)(m) is open cover of Man.
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Step 2: on the cohomology of the generic fiber Man

The open cover induces a Čech spectral sequence on cohomology

E a,b
1 =

⊕
γ∈I−a+1

Hb
c (U(γ)⊗̂Cp,Q`) =⇒ Ha+b

c (Man⊗̂Cp,Q`),

where for s ≥ 1

Is :=

γ ⊂ BT(J)(m)
∣∣∣#γ = s and U(γ) :=

⋂
Λ∈γ

UΛ 6= ∅

 .

Note that ∃Λ(γ) ∈ BT(J) such that U(γ) = UΛ(γ).

26



Step 2: on the cohomology of the generic fiber Man

Recall: W = WQp2 the Weyl group.

Frob ∈W geometric Frobenius.

τ := (p · id,Frob) ∈ J(Qp)×W .

Proposition

Let Λ ∈ BT(J) with t(Λ) = 2θ + 1 and 0 ≤ b ≤ 2(n− 1). There is

an isomorphism

Hb
c (UΛ) ' H

b−2(n−1−θ)
c (MΛ)(n − 1− θ)

compatible with the JΛ and W actions.

Remark: τ on the LHS corresponds to F 2 on the RHS.

In particular, τ acts like (−p)b · id on E a,b
1 .
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Step 2: on the cohomology of the generic fiber Man

Proof: Hyperspecial level so smooth integral model. The

vanishing cycles are trivial. Apply Poincaré duality.

Corollary

The spectral sequence degenerates on E2 and splits, ie.

Hb
c (Man) '

⊕
b≤b′≤2(n−1)

Eb−b′,b′
2 .

Then Eb−b′,b′
2 (may be 0) is the eigenspace of τ attached to the

eigenvalue (−p)b
′
.

Remark: The inertia acts trivially.
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Step 2: on the cohomology of the generic fiber Man

Fix {Λ0, . . . ,Λm} an alcôve (ie. maximal simplex) in BT(J). Let

Jθ := JΛθ maximal parahoric.

Proposition

There exists k−a+1,θ ∈ Z≥0 such that

E a,b
1 '

m⊕
θ=0

(
c− IndJJθ H

b
c (UΛθ)

)k−a+1,θ

.
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Step 2: on the cohomology of the generic fiber Man

Example: When n = 3 so m = 1.

. . .
(
c− IndJJ0

1
)k3,0

(
c− IndJJ0

1
)k2,0

c− IndJJ1
1

c− IndJJ1
ρ∆2

c− IndJJ1
1

0

0
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Step 2: on the cohomology of the generic fiber Man

Proposition

We have an isomorphism of J-representations

E
0,2(n−1−m)
2 ' c− IndJJm ρ(2m+1).

If n ≥ 3 then we also have an isomorphism

E
0,2(n−1−m)+1
2 ' c− IndJJm ρ(2m,1).

For V ∈ Rep(J(Qp)) and χ a character of Z(J(Qp)) ' Q×
p2 , write

Vχ for the largest quotient of V where Z(J(Qp)) acts like χ.
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Step 2: on the cohomology of the generic fiber Man

Using type theory, we prove the following.

Corollary (M.)

Let χ be any unramified character of Z(J(Qp)).

1. Let n ≥ 3. The representation (E
0,2(n−1−m)
2 )χ contains no

non-zero admissible subrepresentation, and is not

J-semisimple. If n ≥ 5, the same holds for (E
0,2(n−1−m)+1
2 )χ.

2. For n = 1, 2, 3, 4, let b = 0, 2, 3, 5 respectively. Then (E 0,b
2 )χ

is an irreducible supercuspidal representation of J(Qp).

In particular, H•c(Man)χ needs not be admissible as a

J(Qp)-representation. It is “pathological”.

=⇒ Different from the Lubin-Tate and Drinfeld cases!
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Cohomology of the basic locus of the GU(1, n − 1) Shimura

variety for n = 3, 4

(G,X ): Shimura datum inducing the local PEL datum at p.

=⇒ GR ' GU(1, n − 1) and GQp ' G .

Kp ⊂ G(Ap
f ) small enough open compact.

SKp : integral model of the Shimura variety, smooth

quasi-projective over Spec(Zp2).

SKp : special fiber.

SKp(b0): the basic locus.

ŜKp(b0)an: the analytical tube of SKp(b0).

I : inner form of G such that IAp
f

= GAp
f
, IQp = J and

IR ' GU(0, n).
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Cohomology of the basic locus of the GU(1, n − 1) Shimura

variety for n = 3, 4

p-adic uniformization theorem (Rapoport, Zink, 1996)

There is a natural isomorphism

I (Q)\
(
Man ×G(Ap

f )/Kp
) ∼−→ ŜKp(b0)an.

ξ: finite dimensional irreducible algebraic representation over Q`.

t(ξ) ∈ Z≥0 the weight of ξ.

Lξ: the associated local system on the Shimura variety.

A(I ): space of automorphic representations of I counted with

multiplicities.

Aξ(I ) := {Π ∈ A(I ) |Π∞ = ξ̆}.
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Cohomology of the basic locus of the GU(1, n − 1) Shimura

variety for n = 3, 4

Theorem (Fargues, 2004)

There is a W ×G(Ap
f )-equivariant spectral sequence

F a,b
2 =

⊕
Π∈Aξ(I )

ExtaJ(H
2(n−1)−b
c (Man)(1− n),Πp)⊗ Πp

=⇒ Ha+b
c (S(b0),Lξ),

where S(b0) := lim−→Kp SKp(b0).

From now assume m = 1, ie. n = 3 or 4. Then dim(S(b0)) = 1.

Let σ := c− IndJNJ(J1) ρ∆2 . It is an irreducible supercuspidal

representation of J(Qp).
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Cohomology of the basic locus of the GU(1, n − 1) Shimura

variety for n = 3, 4

Theorem (M.)

There are G (Ap
f )×W -equivariant isomorphisms

H0
c(S(b0),Lξ) '

⊕
Π∈Aξ(I )

Πp∈Xun(J)

Πp ⊗Q`[p
t(ξ)],

H2
c(S(b0),Lξ) '

⊕
Π∈Aξ(I )

Π
J1
p 6=0

Πp ⊗Q`[p
t(ξ)+2],

where Q`[x ] is the 1-dimensional representation of W with I acting

trivially and Frob acts like x · id.
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Cohomology of the basic locus of the GU(1, n − 1) Shimura

variety for n = 3, 4

Theorem (M.)

H1
c(S(b0),Lξ) '

⊕
Π∈Aξ(I )

Π
J1
p 6=0

dim(Πp)>1

(νΠ − 1)Πp ⊗Q`[p
t(ξ)] ⊕

⊕
Π∈Aξ(I )

Πp∈Xun(J)

νΠΠp ⊗Q`[p
t(ξ)]⊕

⊕
Π∈Aξ(I )
∃χ∈Xun(J),

Πp=χ·σ

Πp ⊗Q`[−pt(ξ)+1],

where νΠ ∈ Z≥0 is a multiplicity given by νΠ = p if n = 3, and

νΠ = p3 if n = 4.
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Cohomology of the basic locus of the GU(1, n − 1) Shimura

variety for n = 3, 4

Remark: The cohomology of the whole Shimura variety S has

been computed by Boyer (2010) when it is of

Kottwitz-Harris-Taylor type.

In particular, no multiplicity such as νΠ occurs.

=⇒ These multiplicities must also occur in the cohomology of

the non-basic Newton strata. Possible connections with

cohomology of Igusa varieties.
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Thank you for your attention.
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