Exemple \[u_2 = \delta_0', \quad u_1 \in \mathcal{H}, \quad u_3 = 1 \]
\(\sigma^+ \\supp u_1 = \mathbb{R}_+^d \quad \supp u_3 = \mathbb{R} \)

\[
\begin{align*}
(u_1 * u_2) & = (H * \delta_0') = \delta_0 * H = \delta_0 \in \mathcal{E}' \\
(u_1 * u_2)' & = u_3 = 1 \\
(u_2 * u_3) & = \delta_0' \end{align*}
\]

Définition 3.1 On dit que \(E \in \mathcal{D}'(\mathbb{R}^d) \) est une solution élémentaire de \(P = \sum_{|\alpha| \leq m} a_\alpha \partial^\alpha \) si

\[PE = \delta_0. \]

Théorème 3.2 Si \(E \) est une solution élémentaire de \(P \) alors :

- (Existence) Pour tout \(f \in \mathcal{E}'(\mathbb{R}^d) \), \(E * f \) est une solution de \(Pu = f \).

- (Unicité) Si \(u \in \mathcal{E}'(\mathbb{R}^d) \) vérifie \(Pu = f \) alors \(u = E * f \).

Proposition 2.7 \((\mathcal{E}'(\mathbb{R}^d), +, \lambda, \ast)\) est une algèbre commutative avec unité \(\delta_0 \).

Si \(F \) est un fermé de \(\mathbb{R}^d \) tel que \((F, F)\) soit convolutive et \(F + F \subset F \) alors \(\mathcal{D}'_F = \{ u \in \mathcal{D}'(\mathbb{R}^d), \supp u \subset F \} \) est une algèbre de convolution (avec unité si \(0 \in F \)).

3 Solution élémentaire

On travaille sur \(\Omega = \mathbb{R}^d \) et \(P = \sum_{|\alpha| \leq m} a_\alpha \partial^\alpha \), \(a_\alpha \in \mathbb{R} \) ou \(\mathbb{C} \), est un opérateur différentiel à coefficients constants.
Démonstration :\[\mathcal{P} u = \sum_{a \leq m} a \delta_a \ast u \equiv (\delta_a \ast u) \]

\[\mathcal{P} u = \left(\sum_{a \leq m} a \delta_a \right) \ast u \]

\[Supp \left(\sum_{a \leq m} a \delta_a \right) = \emptyset \]

Si \(f \in \mathcal{E}'(\mathbb{R}^d) \), alors \(\mathcal{E} \mathcal{F} \mathcal{F} \mathcal{F} \mathcal{D}'(\mathbb{R}^d) \)

\[(\sum_{a \leq m} a \delta_a \ast E, \mathcal{P} u) \] convolables

\[0 - E \ast (\mathcal{P} u) = (E \ast \sum_{a \leq m} a \delta_a \ast u) = \delta \ast u = u \]

3.2 Exemples

3.2.1 Calcul de Heaviside

\[(\mathcal{D}'(\mathbb{R}^d), +, \cdot, \lambda, \psi) \] algèbre de convolution commutative.

On travaille sur l’algèbre de convolution \(\mathcal{D}'_{\mathbb{R}^+}(\mathbb{R}) \). Si \(P(X) = \sum_{|a| \leq m} a \alpha X^a = \prod_{j=1}^n (X - \lambda_j) \) alors

\[P = P(\partial) = (\delta_{\partial} - \lambda_1 \delta_0) \ast \cdots \ast ((\delta_{\partial} - \lambda_m \delta_0)) \ast \]

Théorème 3.3 Malgrange-Ehrenpreiss (cf Hörmander par ex)) Tout opérateur différentiel à coefficients constants admet une solution élémentaire.
On a une solution élémentaire de
\[\partial_z - \lambda = (\partial_x - \lambda \partial_y) e^{\lambda z} \]
\[\partial_z - \lambda = e^{\lambda z} (\partial_x e^{-\lambda z}) \]
\[\left(\frac{\partial}{\partial x} \right) e^{\lambda z} H(x) = \delta_0 \]
une solution élémentaire de P est
\[E = (e^{\lambda x} H)^\# (e^{\lambda y} H)^\# * e^{\lambda z} H \]
\[\text{III} \quad (C \subset \mathbb{R}^2, C) \]

Lié à la formule de Cauchy,
\[\frac{1}{\pi i} \frac{1}{z} \text{ holomorphe sur } C \setminus \{0\} \]
\[z \left(\frac{1}{\pi i} \right) = 0 \quad \text{dans } \quad C \setminus \{0\} \]
\[\left\langle \frac{1}{z}, \frac{1}{\pi i} \right\rangle = - \left\langle \frac{1}{\pi i}, \frac{1}{z} \right\rangle \]
\[\frac{1}{\pi i} \oint \frac{1}{z} \frac{1}{\pi i} = \frac{1}{\pi i} \oint \frac{1}{z} \frac{1}{\pi i} \text{ d}x \text{ d}y \]
\[= \frac{1}{\pi i} \int_{\partial \Omega} \frac{h(z)}{z} \frac{1}{\pi i} \text{ d}x \text{ d}y \]
\[= \frac{1}{\pi i} \int_{\partial \Omega} h(z) \frac{1}{z} \frac{1}{\pi i} \text{ d}x \text{ d}y \]
\[= \frac{1}{\pi i} \int_{\partial \Omega} h(z) \frac{1}{z} \frac{1}{\pi i} \text{ d}x \text{ d}y \]
\[\text{et un autre sol élémentaire.} \]
3.2.3 Laplacien dans \mathbb{R}^n

La distribution

$$E_n = \begin{cases} \frac{1}{2} |x| & \text{si } n = 1 \\ \frac{1}{2\pi} \log |x| & \text{si } n = 2 \\ \frac{1}{(n-2)(n-1)|x|^{n-2}} & \text{si } n = 3 \end{cases}$$

est une solution élémentaire du Laplacien $\Delta = \sum_{j=1}^{n} \partial_{x_j}^2$.

Une méthode en polaire

$$\Delta = \frac{1}{r^{n-1}} \left(\frac{\partial}{\partial r} \right)^2 + \frac{1}{r^2} \Delta$$

Pour $n > 2$,

$$E_n \in L^1_{\text{loc}}(\mathbb{R}^n)$$

$$\int_{|x|=\varepsilon} r^{n-1} \, dr \, dw = \frac{1}{n-2} \int_{r=\varepsilon}^{1} r^{n-2} \, dr \, dw = \frac{\varepsilon^{n-1}}{n-2}$$

Pour $n = 2$,

$$\int_{|x|=\varepsilon} r \, dr \, dw = \frac{1}{2} \int_{x=\varepsilon}^{2} r \, dr \, dw$$

$$E_n \xrightarrow{\varepsilon \to 0} E_n \in L^1_{\text{loc}}$$

$$\Delta E_n \xrightarrow{\varepsilon \to 0} $$

03/10/2010
\[\Delta u = f \]
\[\text{équation de Poisson} \]
\[E_n^\varepsilon = E_n^\varepsilon(t) = \int \frac{1}{(n-2)\pi^{(n-1)/2}} \frac{s \cdot x}{r^{n-1}} \, d\varepsilon \]
\[\text{si } r \leq \varepsilon \]
\[\frac{1}{m-1} \sum_{i=1}^{m} \frac{E_n^\varepsilon}{r_i} = \varepsilon \]
\[E_n^\varepsilon(\varepsilon^-) = -E_n^\varepsilon(\varepsilon^+) \]
\[\partial \varepsilon E_n^\varepsilon(\varepsilon^-) = E_n^\varepsilon(\varepsilon^+) \]

3.2.4 Équation de la chaleur

Une solution élémentaire dans \(\mathbb{R}^n \times \mathbb{R}_+ \) de \(\partial_t - \Delta_x \) est

\[\frac{1}{(4\pi t)^{d/2}} e^{-\frac{|x|^2}{4t}} 1_{(0,\infty)}(t). \]

On passe en Fourier en \(x \)
\[e^{-|t|^2} \]
Calcul du Heaviside en \(t \).
Supposons \(E(x, y) = \{ (0, 0) \} \)

Soit \(\vec{u} - \Delta_x \vec{u} = \vec{f} \)

Supposons \(\vec{u} \in \text{suppsing} \vec{f} \)

Le symbole de \(\vec{u} - \Delta_x \) en Fourier

\[
i \xi + |\xi|^2
\]

Dénition 3.4 On dit qu'un opérateur différentiel \(P \) (pas forcément à coefficients constants) est hypoelliptique si

\[
(Pu = f) \Rightarrow (\text{suppsing} \vec{u} \subset \text{suppsing} \vec{f})
\]

Souvent on résout

\[
\begin{aligned}
\left\{ \begin{array}{l}
\vec{u} = \Delta \vec{u} \\
\vec{u}_{|t=0} = \vec{u}_0
\end{array} \right.
\end{aligned}
\]

sur \(\mathbb{R}_+ \times \mathbb{R}^d \)

On pose \(v = \vec{u}_0(x) \cdot \frac{1}{|\vec{y}|} \)

\(\vec{u} - v \in \mathcal{D}'(\mathbb{R}^d) \) en prolongeant \(u \) par \(0 \) sur \(\mathbb{R}_+ \times \mathbb{R}^d \)

\[
(\vec{u} - \Delta_x)(\vec{u} - v) = 0 - \Delta \vec{v} + \left[\vec{u} - v \right] \delta_0(t)
\]

\[
= 0
\]

\[
= -\Delta_x \vec{u}_0(x) \cdot \frac{1}{|\vec{y}|} \delta_0(t)
\]

Résoudre \((1)\) équivalent à

Résoudre

\[
\begin{aligned}
(\vec{u} - \Delta_x) \vec{u}' = -\Delta_x \vec{u}(x) \cdot \frac{1}{\mathbb{R}_+}
\end{aligned}
\]

dans \(\mathcal{D}'\left(\mathbb{R}^d \times \mathbb{R}^d \right) \)

\[
\begin{aligned}
\left\{ \begin{array}{l}
t > 0 \\
\vec{x}, \vec{y} \in \mathbb{R}^d
\end{array} \right.
\end{aligned}
\]

\[
\vec{u}' = \vec{u} - v
\]
3.2.5 Équation des ondes

On cherche à résoudre le problème de Cauchy
\[
\begin{aligned}
\Box u &= \partial_t^2 u - \Delta_x u = 0 \\
u(t=0) = u_0 &\quad \partial_t u(t=0) = u_1.
\end{aligned}
\]

Pour \(u_0, u_1 \in \mathcal{E}'(\mathbb{R}_d^d)\) (en fait \(\mathcal{D}'(\mathbb{R}^d)\)) une solution est donnée par
\[
u(t) = (\partial_t \Phi_t) *_x u_0 + \Phi_t *_x u_1 \quad \text{avec} \quad \Phi_t = \mathcal{F}^{-1}\left(\frac{\sin(|\xi|)}{|\xi|}\right),
\]
où \(\mathcal{F}\) est la transformée de Fourier en \(x\) (cf plus loin).

A l’aide du théorème de Paley-Wiener-Schwartz rappelé ci-dessous on peut démontrer que \(\text{supp} \Phi_g \subseteq B(0, |t|)\).

Théorème 3.5 (Principe de Huyghens faible) Si \(u(t, x)\) résout l’équation des ondes avec données de Cauchy \(u_0, u_1 \in \mathcal{D}'(\mathbb{R}^d)\) alors
\[
\text{supp } u(t) \subseteq \left(\text{supp } u_0 \cup \text{supp } u_1\right) + B(0, |t|).
\]
Théorème 3.6 (Paley-Wiener-Schwartz) Une distribution $u \in \mathcal{S}'(\mathbb{R}^d)$ (voir plus loin) est à support dans K compact convexe de \mathbb{R}^d ssi sa transformée de Fourier est analytique sur \mathbb{C}^d et s’il existe $N \in \mathbb{N}$ et $C > 0$ tq

$$\forall \zeta \in \mathbb{C}^d, \quad |Fu(\zeta)| \leq C(|\zeta|^N e^{k|\eta|})$$

avec $\zeta = \xi + i\eta$ et $I_K(\eta) = \sup_{x \in K} x \cdot \eta$.

Utiliser pour

$$\phi_t = \mathcal{F}^{-1}\left(\frac{1}{1 + \xi^2}\right)$$

Proposition 3.7 La solution du problème de Cauchy ci-dessus pour $u_0, u_1 \in \mathcal{E}'(\mathbb{R}^d_x)$ est donnée par

$-d = 1 :$

$$u(x, t) = \frac{1}{2} \left[u_0(x - t) + u_0(x + t) + \int_{x - t}^{x + t} u_1(s) \, ds \right]$$

$-d \geq 1, \text{ d impair :}$

$$u(x, t) = \frac{1}{2(2\pi)^d} \int \left[\partial_s^{d-1}(R_u)(x, \omega - t, \omega) - \partial_s^{d-2}(R_u)(x, \omega - t, \omega) \right] \, d\omega.$$

$-d \geq 1, \text{ d pair :}$

$$u(x, t) = \frac{1}{2(2\pi)^d} \int \left[\partial_s^{d-1}(R_u)(x, \omega - t, \omega) - \partial_s^{d-3}(R_u)(x, \omega - t, \omega) \right] \, d\omega.$$

Théorème 3.8 (Principe de Huyghens fort) En dimension impaire, la solution de l’équation des ondes vérifie

$$\text{supp } u(t) \subset (\text{supp } u_0 \cup \text{supp } u_1) + \{|x| = |t|\}.$$

En dimension d quelconque

$$\text{supp } u(t) \subset (\text{supp } u_0 \cup \text{supp } u_1) + \{|x| = |t|\}.$$

En dimension paire : Huyghens faible pour $\text{supp } u_0$; Huyghens fort pour $\text{supp } u_1$.

03/10/2010
4.1 Théorème des noyaux

Théorème 4.1 La relation

\[\forall \varphi, \psi \in C_0^\infty(\Omega), \quad \langle A \varphi, \psi \rangle = \langle K_A, \psi \odot \varphi \rangle \]

définit une bijection (continue) \(A \rightarrow K_A \) entre l'ensemble des applications linéaires continues de \(C_0^\infty(\Omega) \) dans \(D'(\Omega) \) et \(D'(\Omega \times \Omega) \). On appelle noyau-distribution (ou noyau de Schwartz) de \(A \) la distribution \(K_A \) et on note simplement

\[A \varphi(x) = \int K_A(x,y) \varphi(y) \, dy. \]
2) Soit A une application linéaire continue de $C^0_c(\Omega)$ dans $S' (\Omega)$. Pour $\psi \in C^0_c(\Omega)$ et $k \in \mathbb{N}$, on a :

$$\langle A_k, \psi \rangle \leq C_{k, \psi} P_N (\psi)$$

où $P_N (\psi) = \sup_{x \in \Omega} \| D^k \psi (x) \|_{L^2}$

On veut montrer que pour K, K' compacts de Ω, il existe N, N' tels que :

$$\langle A_{k'}, \psi \rangle \leq C_{k', \psi} P_{N'} (\psi)$$

On utilise Baire

$$A_k = \{ \psi \in C^0_c (\Omega), \langle A_k, \psi \rangle \leq k P_k (\psi) \}$$

A_k fermé de $C^0_c (\Omega)$

$$\bigcup_{k \in \mathbb{N}^*} A_k = C^0_c (\Omega)$$

Baire, un A_k est d'intérieur non vide

De plus $C^0_c (\Omega) \times C^0_c (\Omega)$ est dense dans $C^0_c (\Omega \times \Omega)$

$$\psi \otimes \psi \rightarrow \langle A_k, \psi \rangle$$

définit une unique forme linéaire continue sur $C^0_c (\Omega \times \Omega)$

$$\rightarrow KA \in \mathcal{D}' (\Omega \times \Omega)$$
Écriture. $\langle A\varphi, \psi \rangle = (K_A \varphi, \psi)$
\[\int (A\varphi)(x) \psi(x) dx = \iint K_A(x,y) \varphi(x) \psi(y) dy \ dx\]
\[= \iint [K_A(x,y) \varphi(x)] \psi(y) dy \ dx\]

\[(A\varphi)(x) = \int K_A(x,y) \varphi(y) dy\]

exact si $K_A \in C^\infty(\mathbb{R}^d \times \mathbb{R}^d)$ dense

$k_A \in C^\infty(\mathbb{R}^d \times \mathbb{R}^d)$

$\mathcal{A} : \mathcal{D}(\mathcal{V}) \rightarrow C^\infty(\mathcal{V})$

exemple opérateur régularisant.

\[\mathcal{E} \subset C^\infty(\mathbb{R}^d) \quad A u = \mathcal{E} u\]

$\Omega = \mathbb{R}^d$

Exercice

Noyau de l'opérateur de multiplication par $\Theta \in C^\infty(\mathcal{V})$

\[\Omega(x) \equiv \sum_{\lambda \leq m} a_{\lambda} \frac{\partial^\lambda}{\partial x^\lambda}\]

Noyau $K_{A, \Theta} = \sum_{\lambda \leq m} a_{\lambda} \left(\delta \odot \delta^\lambda\right)$

$K_A(x,y) = \Theta(x-y) = \Theta(y) \delta(x-y)$

Noyau $K_{A, \Theta} = \sum_{\lambda \leq m} a_{\lambda} \left(\delta \odot \delta^\lambda\right)$

$K_A(x,y) = \Theta(x-y) = \Theta(y) \delta(x-y)$
Proposition 4.2 Si A et B ont pour noyaux distribution K_A et K_B et si $A : C^0_0(\Omega) \rightarrow C^\infty(\Omega)$ ou $B : D'(\Omega) \rightarrow D'(\Omega)$ alors $K_{A\circ B}(x,z) = \int K_A(x,y)K_B(y,z)\,dy$.

Proposition 4.3 Si $K_A \in C^\infty(\Omega \times \Omega)$ alors A est un opérateur régularisant (i.e. qui envoie $\mathcal{E}'(\Omega)$ dans $C^\infty(\Omega)$.)

4.2 Fonction de Green

On généralise au cas à coefficients variables la notion de solution élémentaire. Si $P = \sum_{|\alpha| \leq p} a_\alpha(x)\partial^\alpha_y$, on dit que $G \in D'(\Omega \times \Omega)$ est une fonction de Green pour P si

$$PG(\cdot,y) = \delta_y \quad \text{dans} \quad D'(\Omega \times \Omega).$$

L’application $\varphi \rightarrow \int G(x,y)\varphi(y)\,dy$ définit alors un inverse à droite sur $C^\infty_0(\Omega)$ de P.

4.3 Lemme de Schur, lemme de Cotlar

Lemme 4.A (Lemme de Schur (un des)) On se donne deux mesures μ et ν σ-finies sur M et N. On considère une fonction $\mu \otimes \nu$ mesurable A telle que

$$\text{EssSup}_x \int |A(x,y)|\,d\nu(y) < C_1 < +\infty$$

et

$$\text{EssSup}_y \int |A(x,y)|\,d\mu(x) < C_2 < +\infty.$$

Alors l’opérateur $u \rightarrow (Au)(x) = \int A(x,y)u(y)\,d\nu(y)$ appartient à $\mathcal{L}(L^p(N,\nu);L^p(M,d\mu))$.

$$\|A\|_{\mathcal{L}(L^p(N,\nu);L^p(M,d\mu))} \lesssim \frac{C_1}{C_2^{1/p}} \lesssim C_2^{-1/p}.$$
Lemme 4.5 Cotlar

Soit (N, ν) un ensemble mesuré σ-fini et H un espace de Hilbert (séparable). Si $y \rightarrow A_y$ est une application mesurable de N dans $\mathcal{L}(H)$ telle que pour $M < +\infty$

\[
\text{EssSup}_{y} \left\| A_y A_y^* \right\| \nu(z) \leq M
\]

et

\[
\text{EssSup}_{y} \left\| A_y^* A_y \right\| \nu(z) \leq M
\]

alors $Au = \int A_y u \, \nu(y)$ converge dans H pour tout $u \in H$ et $\|A\| \leq M$.

Préuve: On commence par

\[
y \rightarrow A_y \in L^1(N, \nu, \mathcal{L}(H))
\]

\[
A = \int A_y \, d\nu(y)
\]

\[
\|A\| = \left(\int \|A^* A\| \, d\nu(y) \right)^{1/2} = \lim_{n \to \infty} \left(\int \|A^* A\| \, d\nu(y) \right)^{1/2n}
\]
\[(A^* A) = \int A_y^* A_z \, d\nu(y) \, d\nu(z) \]

\[
(A^* A)^n = \int A_{y_1}^* A_{y_2} A_{y_3}^* A_{y_4} \ldots A_{y_n}^* A_{y_n} \, d\nu(y_1) \ldots d\nu(y_n) d\nu(y_1) \ldots d\nu(y_n)
\]

\[
\|A_y^* A_z\| \leq \|A_{y_1}^*\|^{1/2} \|A_{y_2}^*\|^{1/2} \ldots \|A_{y_n}^*\|^{1/2}
\]

\[
\|A_{y_1}^* A_{y_2} \ldots A_{y_n}^* A_{y_n}\| \leq M^{2n-1} \int \|A_{y_1}^*\|^{1/2} d\nu(y_1) \times \int \|A_{y_2}^*\|^{1/2} d\nu(y_2) \ldots \int \|A_{y_n}^*\|^{1/2} d\nu(y_n)
\]

\[
\|A_y^* A_z\| \leq \|A_{y_1}^*\|^{1/2} \|A_{y_2}^*\|^{1/2} \ldots \|A_{y_n}^*\|^{1/2}
\]

On suppose \(\int \|A_y\|^{1/2} d\nu(y) < \infty\)

\[
\|A_y^* A_z\| \leq \|A_{y_1}^*\|^{1/2} \|A_{y_2}^*\|^{1/2} \ldots \|A_{y_n}^*\|^{1/2}
\]

\[
\|A_{y_1}^* A_{y_2} \ldots A_{y_n}^* A_{y_n}\| \leq M^{2n-1} \int \|A_{y_1}^*\|^{1/2} d\nu(y_1) \times \int \|A_{y_2}^*\|^{1/2} d\nu(y_2) \ldots \int \|A_{y_n}^*\|^{1/2} d\nu(y_n)
\]

\[
\|A_y^* A_z\| \leq \|A_{y_1}^*\|^{1/2} \|A_{y_2}^*\|^{1/2} \ldots \|A_{y_n}^*\|^{1/2}
\]

Estimation en uniforme
Pour le cas général on approche y ↦ Ay par une fonction étayée.

Définition 4.6 Dans un espace de Hilbert H, un opérateur A ∈ ℒ(H) est de Hilbert-Schmidt si A*A est un opérateur à trace. L'ensemble des opérateurs de Hilbert-Schmidt est noté ℒ^2(H) et muni de la norme

\[\|A\|_{ℒ^2} = \sqrt{\text{Tr}[A^*A]} . \]

Opérateur à trace:

- A borné
- \(A = U |A| \)
- U unitaire
- \(|A| \geq 0 \)
- \(|A| = \sqrt{A^*A} \)

Si : A est compact alors \(|A| \) est compact

|A| diagonalisable dans une base orthonormée et ses vp

\((\mu_n)_{n \geq 1} \) vérifie \(\lim_{n \to \infty} \mu_n = 0 \)

\(\mu_n \) de \(A \)

S' : A est à trace si : \(|A| \)

\[\|A\|_{ℒ^1} = \text{Tr}[|A|] = \sum_{n=1}^{+\infty} \mu_n < +\infty \]

\(\mu_n \) nième valeur singulière
Proposition 4.7 Dans $L^2(\Omega)$, un opérateur A est de Hilbert-Schmidt si et seulement si son noyau appartient à $L^2(\Omega \times \Omega)$ et

$$\forall B, A \in \mathcal{L}^2(L^2(\Omega)), \quad \text{Tr}[B^* A] = \int_{\Omega \times \Omega} B(x,y)A(x,y) \, dx \, dy.$$