> Francis Nier, LAGA, Univ. Paris 13

Exponentially small eigenvalues of Witten Laplacians 1: Results

Francis Nier, LAGA, Univ. Paris 13

Beijing 25/05/2017

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

Exponentiall small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

- Thematic and chronological introduction
- Results for functions on manifolds without boundary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Results for functions on manifolds with boundary
- Results for p-forms
- Open problems

Exponential small eigenvalues of Witten Laplacians 1: Results

Francis Nier, LAGA, Univ. Paris 13

position
$$dX = -2\nabla f(X)dt + \sqrt{2\beta^{-1}}dW_t$$
, $\beta = \frac{1}{k_BT} = \frac{1}{h}$

phase-space Langevin

$$dq=pdt$$
 , $dp=-
abla_q f(q)dt-\gamma_0 pdt+\sqrt{rac{\gamma_0 m}{eta}}dW_{
m s}$

Invariant measure: $\frac{e^{-2f(x)/h}dx}{\int e^{-2f(x)/h}dx}$ concentrated at <u>global</u> minimum of f.

Metastability: Escape rate from a local minimum $\propto A(h)e^{-\frac{C}{h}}$.

Arrhenius (1886, 1910) law : C = energy gap to pass (activity)

Eyring-Kramers(1935) law: leading term of A(h) in some examples.

Simulated annealing (1980's)

Freidlin-Wentzell (1990's): $\lim_{h\to 0} h \log(E(\tau(X(t)|X(0) = x_0))) = C$, x_0 local minimum, $\tau = exit$ time from the corresponding valley.

Bovier-Eckhoff-Gayrard-Klein (2004): Eyring-Kramers type law up to $\mathcal{O}(h^{1/2}\log(h))$ -relative error.

Statistical physics, stochastic processes, Brownian motion:

Exponential small eigenvalues of Witten Laplacians 1: Results

Francis Nier, LAGA, Univ. Paris 13

position
$$dX = -2\nabla f(X)dt + \sqrt{2\beta^{-1}}dW_t$$
, $\beta = \frac{1}{k_BT} = \frac{1}{h}$
phase-space
Langevin $dq = pdt$, $dp = -\nabla_q f(q)dt - \gamma_0 pdt + \sqrt{\frac{\gamma_0 m}{\beta}}dW_t$

Invariant measure: $\frac{e^{-2f(x)/h}dx}{\int e^{-2f(x)/h}dx}$ concentrated at <u>global</u> minimum of f.

Metastability: Escape rate from a local minimum $\propto A(h)e^{-\frac{C}{h}}$.

Arrhenius (1886, 1910)law : C = energy gap to pass (activity)

Eyring-Kramers(1935) law: leading term of A(h) in some examples.

Simulated annealing (1980's)

Freidlin-Wentzell (1990's): $\lim_{h\to 0} h \log(E(\tau(X(t)|X(0) = x_0))) = C$, x_0 local minimum, $\tau =$ exit time from the corresponding valley.

Bovier-Eckhoff-Gayrard-Klein (2004): Eyring-Kramers type law up to $\mathcal{O}(h^{1/2}\log(h))\text{-relative error}.$

Statistical physics, stochastic processes, Brownian motion:

Exponential small eigenvalues of Witten Laplacians 1: Results

Francis Nier, LAGA, Univ. Paris 13

position
$$dX = -2\nabla f(X)dt + \sqrt{2\beta^{-1}}dW_t$$
, $\beta = \frac{1}{k_BT} = \frac{1}{k_BT}$
phase-space
Langevin $dq = pdt$, $dp = -\nabla_q f(q)dt - \gamma_0 pdt + \sqrt{\frac{\gamma_0 m}{\beta}}dW_t$

Invariant measure: $\frac{e^{-2f(x)/h}dx}{\int e^{-2f(x)/h}dx}$ concentrated at <u>global</u> minimum of f.

Metastability: Escape rate from a local minimum $\propto A(h)e^{-\frac{C}{h}}$.

Arrhenius (1886, 1910) law : C = energy gap to pass (activity)

Eyring-Kramers(1935) law: leading term of A(h) in some examples.

Simulated annealing (1980's)

Freidlin-Wentzell (1990's): $\lim_{h\to 0} h \log(E(\tau(X(t)|X(0) = x_0))) = C$, x_0 local minimum, $\tau = exit$ time from the corresponding valley.

Bovier-Eckhoff-Gayrard-Klein (2004): Eyring-Kramers type law up to $\mathcal{O}(h^{1/2}\log(h))$ -relative error.

Exponential small eigenvalues of Witten Laplacians 1: Results

Francis Nier, LAGA, Univ. Paris 13

position
$$dX = -2\nabla f(X)dt + \sqrt{2\beta^{-1}}dW_t$$
, $\beta = \frac{1}{k_BT} = \frac{1}{h}$

phase-space Langevin

$$dq=pdt$$
 , $dp=-
abla_q f(q)dt-\gamma_0 pdt+\sqrt{rac{\gamma_0 m}{eta}}dW_t$

Invariant measure: $\frac{e^{-2f(x)/h}dx}{\int e^{-2f(x)/h}dx}$ concentrated at <u>global</u> minimum of f.

Metastability: Escape rate from a local minimum $\propto A(h)e^{-\frac{C}{h}}$.

Arrhenius (1886, 1910) law : C = energy gap to pass (activity)

Eyring-Kramers(1935) law: leading term of A(h) in some examples.

Simulated annealing (1980's)

Freidlin-Wentzell (1990's): $\lim_{h\to 0} h \log(E(\tau(X(t)|X(0) = x_0))) = C$, x_0 local minimum, $\tau = exit$ time from the corresponding valley.

Bovier-Eckhoff-Gayrard-Klein (2004): Eyring-Kramers type law up to $\mathcal{O}(h^{1/2}\log(h))$ -relative error.

Review: Berglund(2011)

-

Exponential small eigenvalues of Witten Laplacians 1: Results

Francis Nier, LAGA, Univ. Paris 13

position
$$dX = -2\nabla f(X)dt + \sqrt{2\beta^{-1}}dW_t$$
, $\beta = \frac{1}{k_BT} = \frac{1}{h}$

phase-space Langevin

$$dq=pdt$$
 , $dp=-
abla_q f(q)dt-\gamma_0 pdt+\sqrt{rac{\gamma_0 m}{eta}}dW_t$

Invariant measure: $\frac{e^{-2f(x)/h}dx}{\int e^{-2f(x)/h}dx}$ concentrated at <u>global</u> minimum of f.

Metastability: Escape rate from a local minimum $\propto A(h)e^{-\frac{C}{h}}$.

Arrhenius (1886, 1910) law : C = energy gap to pass (activity)

Eyring-Kramers(1935) law: leading term of A(h) in some examples.

Simulated annealing (1980's)

Freidlin-Wentzell (1990's): $\lim_{h\to 0} h \log(E(\tau(X(t)|X(0) = x_0))) = C$, x_0 local minimum, τ = exit time from the corresponding valley.

Bovier-Eckhoff-Gayrard-Klein (2004): Eyring-Kramers type law up to $\mathcal{O}(h^{1/2}\log(h))$ -relative error.

Review: Berglund(2011)

-

Exponential small eigenvalues of Witten Laplacians 1: Results

Francis Nier, LAGA, Univ. Paris 13

position
$$dX = -2\nabla f(X)dt + \sqrt{2\beta^{-1}}dW_t$$
, $\beta = \frac{1}{k_BT} = \frac{1}{h}$

phase-space Langevin

r

$$dq=pdt$$
 , $dp=-
abla_q f(q)dt-\gamma_0 pdt+\sqrt{rac{\gamma_0 m}{eta}}dW_{
m s}$

Invariant measure: $\frac{e^{-2f(x)/h}dx}{\int e^{-2f(x)/h}dx}$ concentrated at <u>global</u> minimum of f.

Metastability: Escape rate from a local minimum $\propto A(h)e^{-\frac{C}{h}}$.

Arrhenius (1886, 1910) law : C = energy gap to pass (activity)

Eyring-Kramers(1935) law: leading term of A(h) in some examples.

Simulated annealing (1980's)

Freidlin-Wentzell (1990's): $\lim_{h\to 0} h \log(E(\tau(X(t)|X(0) = x_0))) = C$, x_0 local minimum, $\tau =$ exit time from the corresponding valley.

Bovier-Eckhoff-Gayrard-Klein (2004): Eyring-Kramers type law up to $\mathcal{O}(h^{1/2}\log(h))$ -relative error.

```
Review: Berglund(2011)
```

Exponential small eigenvalues of Witten Laplacians 1: Results

Francis Nier, LAGA, Univ. Paris 13

position
$$dX = -2\nabla f(X)dt + \sqrt{2\beta^{-1}}dW_t$$
, $\beta = \frac{1}{k_BT} = \frac{1}{h}$

phase-space Langevin

r

$$dq=pdt$$
 , $dp=-
abla_q f(q)dt-\gamma_0 pdt+\sqrt{rac{\gamma_0 m}{eta}}dW_t$

Invariant measure: $\frac{e^{-2f(x)/h}dx}{\int e^{-2f(x)/h}dx}$ concentrated at <u>global</u> minimum of f.

Metastability: Escape rate from a local minimum $\propto A(h)e^{-\frac{C}{h}}$.

Arrhenius (1886, 1910) law : C = energy gap to pass (activity)

Eyring-Kramers(1935) law: leading term of A(h) in some examples.

Simulated annealing (1980's)

Freidlin-Wentzell (1990's): $\lim_{h\to 0} h \log(E(\tau(X(t)|X(0) = x_0))) = C$, x_0 local minimum, $\tau = exit$ time from the corresponding valley.

Bovier-Eckhoff-Gayrard-Klein (2004): Eyring-Kramers type law up to $\mathcal{O}(h^{1/2}\log(h))$ -relative error.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: Witten Laplacian

$$\begin{aligned} -L_h &= (-h\partial_x + 2\partial_x f(x)).(h\partial_x) \quad \text{on} \quad L^2(M, e^{-2\frac{I(X)}{h}}dx) \\ e^{-\frac{f(X)}{h}}(-L_h)e^{\frac{f(X)}{h}} &= (-h\partial_x + \partial_x f(x)).(h\partial_x + \partial_x f(x)) \quad \text{on} \quad L^2(M, dx). \end{aligned}$$

~ >

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Witten (1982): (M, g) (compact) riemannian manifold d differential on $\mathcal{C}^{\infty}(M; \Lambda T^*M)$ codifferential d^* .

$$d_{f,h}=e^{-\frac{f}{h}}(hd)e^{\frac{f}{h}}=hd+df\wedge \quad d^*_{f,h}=e^{\frac{f}{h}}(hd^*)e^{-\frac{f}{h}}=hd^*+\mathbf{i}_{\nabla f}.$$

Witten Laplacian

$$\Delta_{f,h} = (d_{f,h} + d_{f,h}^*)^2 = d_{f,h}^* d_{f,h} + d_{f,h} d_{f,h}^* = \bigoplus_{p=0}^{\dim M} \Delta_{f,h}^{(p)}$$

$$\sharp \left\{ \mathcal{O}(h^{3/2}) - \text{eigenvalues of} \Delta_{f,h}^{(p)} \right\} = \underbrace{\sharp \left\{ \text{critical point with index} p \right\}}_{m_p - m_{p-1} + \dots + (-1)^p m_0} \geq \beta_p - \beta_{p-1} + \dots + (-1)^p \beta_0.$$

$$= \inf_{p \in \dim M} p = \dim M$$

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: Witten Laplacian

Witten (1982), Cycon-Froese-Kirch-Simon (1987). $\mathcal{O}(h^{3/2})$.

Helffer-Sjöstrand (1986): WKB and muliple wells techniques $\mathcal{O}(h^{3/2})$ -eigenvalues are actually exponentially small.

W. Zhang(2001), Bismut-Zhang(1994) : Index theorem, Chern-Weil theory, top. invariants in riem. geom.

Helffer-Klein-N. (2004): Eyring-Kramers law + asymptotic expansion of the prefactor for functions.

Chang-Liu (1995) : Witten Laplacians with Dirichlet (resp. Neumann) B.C.: $\sharp \{ \mathcal{O}(h^{6/5}) - \text{eigenvalues} \}$ related to relative (resp. absolute) Betti numbers. Helffer-N. (2006): Eyring-Kramers+as.exp. for Dirichlet B.C.. Le Peutrec(2010): Eyring-Kramers+as.exp. for Neumann B.C. Le-Peutrec-N.-Viterbo (2013): Eyring-Kramers+as.exp. for *p*-forms.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: Witten Laplacian

Witten (1982), Cycon-Froese-Kirch-Simon (1987). $\mathcal{O}(h^{3/2})$.

Helffer-Sjöstrand (1986): WKB and muliple wells techniques $\mathcal{O}(h^{3/2})$ -eigenvalues are actually exponentially small.

W. Zhang(2001), Bismut-Zhang(1994) : Index theorem, Chern-Weil theory, top. invariants in riem. geom.

Helffer-Klein-N. (2004): Eyring-Kramers law + asymptotic expansion of the prefactor for functions.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: Witten Laplacian

Witten (1982), Cycon-Froese-Kirch-Simon (1987). $\mathcal{O}(h^{3/2})$.

Helffer-Sjöstrand (1986): WKB and muliple wells techniques $\mathcal{O}(h^{3/2})$ -eigenvalues are actually exponentially small.

W. Zhang(2001), Bismut-Zhang(1994) : Index theorem, Chern-Weil theory, top. invariants in riem. geom.

Helffer-Klein-N. (2004): Eyring-Kramers law + asymptotic expansion of the prefactor for functions.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: Witten Laplacian

Witten (1982), Cycon-Froese-Kirch-Simon (1987). $\mathcal{O}(h^{3/2})$.

Helffer-Sjöstrand (1986): WKB and muliple wells techniques $\mathcal{O}(h^{3/2})$ -eigenvalues are actually exponentially small.

W. Zhang(2001), Bismut-Zhang(1994) : Index theorem, Chern-Weil theory, top. invariants in riem. geom.

Helffer-Klein-N. (2004): Eyring-Kramers law + asymptotic expansion of the prefactor for functions.

Chang-Liu (1995) : Witten Laplacians with Dirichlet (resp. Neumann) B.C.: $\sharp \{ \mathcal{O}(h^{6/5}) - \text{eigenvalues} \}$ related to relative (resp. absolute) Betti numbers. Helffer-N. (2006): Eyring-Kramers+as.exp. for Dirichlet B.C.. Le Peutrec(2010): Eyring-Kramers+as.exp. for Neumann B.C.

Le-Peutrec-N.-Viterbo (2013): Eyring-Kramers+as.exp. for *p*-forms.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: Witten Laplacian

Witten (1982), Cycon-Froese-Kirch-Simon (1987). $\mathcal{O}(h^{3/2})$.

Helffer-Sjöstrand (1986): WKB and muliple wells techniques $\mathcal{O}(h^{3/2})$ -eigenvalues are actually exponentially small.

W. Zhang(2001), Bismut-Zhang(1994) : Index theorem, Chern-Weil theory, top. invariants in riem. geom.

Helffer-Klein-N. (2004): Eyring-Kramers law + asymptotic expansion of the prefactor for functions.

Chang-Liu (1995) : Witten Laplacians with Dirichlet (resp. Neumann) B.C.: $\sharp \{ \mathcal{O}(h^{6/5}) - \text{eigenvalues} \}$ related to relative (resp. absolute) Betti numbers.

Helffer-N. (2006): Eyring-Kramers+as.exp. for Dirichlet B.C..

Le Peutrec(2010): Eyring-Kramers+as.exp. for Neumann B.C.

Le-Peutrec-N.-Viterbo (2013): Eyring-Kramers+as.exp. for *p*-forms.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: Witten Laplacian

Witten (1982), Cycon-Froese-Kirch-Simon (1987). $\mathcal{O}(h^{3/2})$.

Helffer-Sjöstrand (1986): WKB and muliple wells techniques $\mathcal{O}(h^{3/2})$ -eigenvalues are actually exponentially small.

W. Zhang(2001), Bismut-Zhang(1994) : Index theorem, Chern-Weil theory, top. invariants in riem. geom.

Helffer-Klein-N. (2004): Eyring-Kramers law + asymptotic expansion of the prefactor for functions.

Chang-Liu (1995) : Witten Laplacians with Dirichlet (resp. Neumann) B.C.: $\sharp \{ \mathcal{O}(h^{6/5}) - \text{eigenvalues} \}$ related to relative (resp. absolute) Betti numbers.

Helffer-N. (2006): Eyring-Kramers+as.exp. for Dirichlet B.C..

Le Peutrec(2010): Eyring-Kramers+as.exp. for Neumann B.C.

Le-Peutrec-N.-Viterbo (2013): Eyring-Kramers+as.exp. for *p*-forms.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: Witten Laplacian

Witten (1982), Cycon-Froese-Kirch-Simon (1987). $\mathcal{O}(h^{3/2})$.

Helffer-Sjöstrand (1986): WKB and muliple wells techniques $\mathcal{O}(h^{3/2})$ -eigenvalues are actually exponentially small.

W. Zhang(2001), Bismut-Zhang(1994) : Index theorem, Chern-Weil theory, top. invariants in riem. geom.

Helffer-Klein-N. (2004): Eyring-Kramers law + asymptotic expansion of the prefactor for functions.

Chang-Liu (1995) : Witten Laplacians with Dirichlet (resp. Neumann) B.C.: $\sharp \{ \mathcal{O}(h^{6/5}) - \text{eigenvalues} \}$ related to relative (resp. absolute) Betti numbers. Helffer-N. (2006): Evring-Kramers+as.exp. for Dirichlet B.C..

Le Peutrec(2010): Eyring-Kramers+as.exp. for Neumann B.C.

Le-Peutrec-N.-Viterbo (2013): Eyring-Kramers+as.exp. for *p*-forms.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: Witten Laplacian

Witten (1982), Cycon-Froese-Kirch-Simon (1987). $\mathcal{O}(h^{3/2})$.

Helffer-Sjöstrand (1986): WKB and muliple wells techniques $\mathcal{O}(h^{3/2})$ -eigenvalues are actually exponentially small.

W. Zhang(2001), Bismut-Zhang(1994) : Index theorem, Chern-Weil theory, top. invariants in riem. geom.

Helffer-Klein-N. (2004): Eyring-Kramers law + asymptotic expansion of the prefactor for functions.

Chang-Liu (1995) : Witten Laplacians with Dirichlet (resp. Neumann) B.C.: $\sharp \{ \mathcal{O}(h^{6/5}) - \text{eigenvalues} \}$ related to relative (resp. absolute) Betti numbers.

Helffer-N. (2006): Eyring-Kramers+as.exp. for Dirichlet B.C..

Le Peutrec(2010): Eyring-Kramers+as.exp. for Neumann B.C.

Le-Peutrec-N.-Viterbo (2013): Eyring-Kramers+as.exp. for *p*-forms.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: Witten Laplacian

Witten (1982), Cycon-Froese-Kirch-Simon (1987). $\mathcal{O}(h^{3/2})$.

Helffer-Sjöstrand (1986): WKB and muliple wells techniques $\mathcal{O}(h^{3/2})$ -eigenvalues are actually exponentially small.

W. Zhang(2001), Bismut-Zhang(1994) : Index theorem, Chern-Weil theory, top. invariants in riem. geom.

Helffer-Klein-N. (2004): Eyring-Kramers law + asymptotic expansion of the prefactor for functions.

Chang-Liu (1995) : Witten Laplacians with Dirichlet (resp. Neumann) B.C.: $\sharp \{ \mathcal{O}(h^{6/5}) - \text{eigenvalues} \}$ related to relative (resp. absolute) Betti numbers.

Helffer-N. (2006): Eyring-Kramers+as.exp. for Dirichlet B.C..

Le Peutrec(2010): Eyring-Kramers+as.exp. for Neumann B.C.

Le-Peutrec-N.-Viterbo (2013): Eyring-Kramers+as.exp. for *p*-forms.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: KFP, Hypoelliptic Laplacian: KFP in kinetic theory: $\partial_t v + p \partial_q v - \lambda \partial_q f \cdot \partial_p v + \gamma \frac{-\Delta_p + p^2}{2} v = 0$ Hypoelliptic Laplacian (Bismut 2005): extension à la Witten to *p*-forms as a hypoelliptic Hodge-type Laplacian.

Physics: Risken(1989), Tailleur-Tanase-Kurchan (2006)

Desvillettes-Villani(2001), Eckmann-Pillet-Rey-Bellet (1999): rate of return to the equibrium (spectral gap) for KFP-type equations (perturbed quadratic potential)

Hérau-N. (2004) Helffer-N.(2005): KFP for elliptic polynomial potentials.

Eckmann-Hairer(2003): Chains of anharmonic oscillators.

Villani (2010):hypocoercivity \rightarrow developments in nonlinear kinetic theory.

Pavliotis-Pravda-Starov(2012): Chains of harmonic oscillators accurate estimates.

Bismut-Lebeau (2008), Lebeau(2005-07): Analysis of hypoelliptic Laplacian \rightarrow development of Bismut program.

Hérau-Hitrik-Sjöstrand (2008): Exponentially small eigenvalues for KFP (functions).

N. (2013p): B.C. for KFP and hypoelliptic Laplacians.

W. Li (2015): Return to the equilibrium for elliptically degenerate polynomial potentials.

Hitrik-Pravda-Starov-Viola (2016): Subelliptic estimates for general maximal accretive differential operators with quadratic symbols.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: KFP, Hypoelliptic Laplacian: $-\Delta + n^2$

KFP in kinetic theory: $\partial_t v + p \partial_q v - \lambda \partial_q f \cdot \partial_p v + \gamma \frac{-\Delta_p + p^2}{2} v = 0$ Hypoelliptic Laplacian (Bismut 2005): extension à la Witten to *p*-forms as a hypoelliptic Hodge-type Laplacian.

Physics: Risken(1989), Tailleur-Tanase-Kurchan (2006)

Desvillettes-Villani(2001), Eckmann-Pillet-Rey-Bellet (1999): rate of return to the equibrium (spectral gap) for KFP-type equations (perturbed quadratic potential)

Hérau-N. (2004) Helffer-N.(2005): KFP for elliptic polynomial potentials.

Eckmann-Hairer(2003): Chains of anharmonic oscillators.

Villani (2010):hypocoercivity \rightarrow developments in nonlinear kinetic theory.

Pavliotis-Pravda-Starov(2012): Chains of harmonic oscillators accurate estimates.

Bismut-Lebeau (2008), Lebeau(2005-07): Analysis of hypoelliptic Laplacian \rightarrow development of Bismut program.

Hérau-Hitrik-Sjöstrand (2008): Exponentially small eigenvalues for KFP (functions).

N. (2013p): B.C. for KFP and hypoelliptic Laplacians.

W. Li (2015): Return to the equilibrium for elliptically degenerate polynomial potentials.

Hitrik-Pravda-Starov-Viola (2016): Subelliptic estimates for general maximal accretive differential operators with quadratic symbols.

S. Shen (2016, recent): Direct interpolation between hypoelliptic Laplacian and Morse inequalities. Fried conjecture (zeta dyn. function) \mathbb{R}

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: KFP, Hypoelliptic Laplacian: KFP in kinetic theory: $\partial_t v + p \partial_q v - \lambda \partial_q f \partial_p v + \gamma \frac{-\Delta_p + p^2}{2} v = 0$ Hypoelliptic Laplacian (Bismut 2005): extension à la Witten to *p*-forms as a hypoelliptic Hodge-type Laplacian.

Physics: Risken(1989), Tailleur-Tanase-Kurchan (2006)

Desvillettes-Villani(2001), Eckmann-Pillet-Rey-Bellet (1999): rate of return to the equibrium (spectral gap) for KFP-type equations (perturbed quadratic potential)

Hérau-N. (2004) Helffer-N.(2005): KFP for elliptic polynomial potentials.

Eckmann-Hairer(2003): Chains of anharmonic oscillators.

Villani (2010):hypocoercivity \rightarrow developments in nonlinear kinetic theory.

Pavliotis-Pravda-Starov(2012): Chains of harmonic oscillators accurate estimates.

Bismut-Lebeau (2008), Lebeau(2005-07): Analysis of hypoelliptic Laplacian \rightarrow development of Bismut program.

Hérau-Hitrik-Sjöstrand (2008): Exponentially small eigenvalues for KFP (functions).

N. (2013p): B.C. for KFP and hypoelliptic Laplacians.

W. Li (2015): Return to the equilibrium for elliptically degenerate polynomial potentials.

Hitrik-Pravda-Starov-Viola (2016): Subelliptic estimates for general maximal accretive differential operators with quadratic symbols.

S. Shen (2016, recent): Direct interpolation between hypoelliptic Laplacian and Morse inequalities. Fried conjecture (zeta dyn. function)

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: KFP, Hypoelliptic Laplacian: KFP in kinetic theory: $\partial_t v + p \partial_q v - \lambda \partial_q f . \partial_p v + \gamma \frac{-\Delta_p + p^2}{2} v = 0$ Hypoelliptic Laplacian (Bismut 2005): extension à la Witten to *p*-forms as a hypoelliptic Hodge-type Laplacian.

Physics: Risken(1989), Tailleur-Tanase-Kurchan (2006)

Desvillettes-Villani(2001), Eckmann-Pillet-Rey-Bellet (1999): rate of return to the equibrium (spectral gap) for KFP-type equations (perturbed quadratic potential)

Hérau-N. (2004) Helffer-N.(2005): KFP for elliptic polynomial potentials.

Eckmann-Hairer(2003): Chains of anharmonic oscillators.

Villani (2010):hypocoercivity \rightarrow developments in nonlinear kinetic theory.

Pavliotis-Pravda-Starov(2012): Chains of harmonic oscillators accurate estimates.

Bismut-Lebeau (2008), Lebeau(2005-07): Analysis of hypoelliptic Laplacian \rightarrow development of Bismut program.

Hérau-Hitrik-Sjöstrand (2008): Exponentially small eigenvalues for KFP (functions).

N. (2013p): B.C. for KFP and hypoelliptic Laplacians.

W. Li (2015): Return to the equilibrium for elliptically degenerate polynomial potentials.

Hitrik-Pravda-Starov-Viola (2016): Subelliptic estimates for general maximal accretive differential operators with quadratic symbols.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: KFP, Hypoelliptic Laplacian: KFP in kinetic theory: $\partial_t v + p \partial_q v - \lambda \partial_q f \cdot \partial_p v + \gamma \frac{-\Delta_p + p^2}{2} v = 0$ Hypoelliptic Laplacian (Bismut 2005): extension à la Witten to *p*-forms as a hypoelliptic Hodge-type Laplacian.

Physics: Risken(1989), Tailleur-Tanase-Kurchan (2006)

Desvillettes-Villani(2001), Eckmann-Pillet-Rey-Bellet (1999): rate of return to the equibrium (spectral gap) for KFP-type equations (perturbed quadratic potential)

Hérau-N. (2004) Helffer-N.(2005): KFP for elliptic polynomial potentials.

Eckmann-Hairer(2003): Chains of anharmonic oscillators.

Villani (2010):hypocoercivity \rightarrow developments in nonlinear kinetic theory.

Pavliotis-Pravda-Starov(2012): Chains of harmonic oscillators accurate estimates.

Bismut-Lebeau (2008), Lebeau(2005-07): Analysis of hypoelliptic Laplacian \rightarrow development of Bismut program.

Hérau-Hitrik-Sjöstrand (2008): Exponentially small eigenvalues for KFP (functions).

N. (2013p): B.C. for KFP and hypoelliptic Laplacians.

W. Li (2015): Return to the equilibrium for elliptically degenerate polynomial potentials.

Hitrik-Pravda-Starov-Viola (2016): Subelliptic estimates for general maximal accretive differential operators with quadratic symbols.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: KFP, Hypoelliptic Laplacian: KFP in kinetic theory: $\partial_t v + p \partial_q v - \lambda \partial_q f \cdot \partial_p v + \gamma \frac{-\Delta_p + p^2}{2} v = 0$ Hypoelliptic Laplacian (Bismut 2005): extension à la Witten to *p*-forms as a hypoelliptic Hodge-type Laplacian.

Physics: Risken(1989), Tailleur-Tanase-Kurchan (2006)

Desvillettes-Villani(2001), Eckmann-Pillet-Rey-Bellet (1999): rate of return to the equibrium (spectral gap) for KFP-type equations (perturbed quadratic potential)

Hérau-N. (2004) Helffer-N.(2005): KFP for elliptic polynomial potentials. Eckmann-Hairer(2003): Chains of anharmonic oscillators.

Villani (2010):hypocoercivity \rightarrow developments in nonlinear kinetic theory.

Pavliotis-Pravda-Starov(2012): Chains of harmonic oscillators accurate estimates. Bismut-Lebeau (2008), Lebeau(2005-07): Analysis of hypoelliptic Laplacian \rightarrow development of Bismut program.

Hérau-Hitrik-Sjöstrand (2008): Exponentially small eigenvalues for KFP (functions).

N. (2013p): B.C. for KFP and hypoelliptic Laplacians.

W. Li (2015): Return to the equilibrium for elliptically degenerate polynomial potentials.

Hitrik-Pravda-Starov-Viola (2016): Subelliptic estimates for general maximal accretive differential operators with quadratic symbols.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: KFP, Hypoelliptic Laplacian: KFP in kinetic theory: $\partial_t v + p \partial_q v - \lambda \partial_q f . \partial_p v + \gamma \frac{-\Delta_p + p^2}{2} v = 0$ Hypoelliptic Laplacian (Bismut 2005): extension à la Witten to *p*-forms as a hypoelliptic Hodge-type Laplacian.

Physics: Risken(1989), Tailleur-Tanase-Kurchan (2006)

Desvillettes-Villani(2001), Eckmann-Pillet-Rey-Bellet (1999): rate of return to the equibrium (spectral gap) for KFP-type equations (perturbed quadratic potential)

Hérau-N. (2004) Helffer-N.(2005): KFP for elliptic polynomial potentials.

Eckmann-Hairer(2003): Chains of anharmonic oscillators.

Villani (2010):hypocoercivity \rightarrow developments in nonlinear kinetic theory.

Pavliotis-Pravda-Starov(2012): Chains of harmonic oscillators accurate estimates.

Bismut-Lebeau (2008), Lebeau(2005-07): Analysis of hypoelliptic Laplacian \rightarrow development of Bismut program.

Hérau-Hitrik-Sjöstrand (2008): Exponentially small eigenvalues for KFP (functions).

N. (2013p): B.C. for KFP and hypoelliptic Laplacians.

W. Li (2015): Return to the equilibrium for elliptically degenerate polynomial potentials.

Hitrik-Pravda-Starov-Viola (2016): Subelliptic estimates for general maximal accretive differential operators with quadratic symbols.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: KFP, Hypoelliptic Laplacian: KFP in kinetic theory: $\partial_t v + p \partial_q v - \lambda \partial_q f \partial_p v + \gamma \frac{-\Delta_p + p^2}{2} v = 0$ Hypoelliptic Laplacian (Bismut 2005): extension à la Witten to *p*-forms as a hypoelliptic Hodge-type Laplacian.

Physics: Risken(1989), Tailleur-Tanase-Kurchan (2006)

Desvillettes-Villani(2001), Eckmann-Pillet-Rey-Bellet (1999): rate of return to the equibrium (spectral gap) for KFP-type equations (perturbed quadratic potential)

Hérau-N. (2004) Helffer-N.(2005): KFP for elliptic polynomial potentials.

Eckmann-Hairer(2003): Chains of anharmonic oscillators.

Villani (2010):hypocoercivity \rightarrow developments in nonlinear kinetic theory.

Pavliotis-Pravda-Starov(2012): Chains of harmonic oscillators accurate estimates.

Bismut-Lebeau (2008), Lebeau (2005-07): Analysis of hypoelliptic Laplacian \rightarrow development of Bismut program.

Hérau-Hitrik-Sjöstrand (2008): Exponentially small eigenvalues for KFP (functions).

N. (2013p): B.C. for KFP and hypoelliptic Laplacians.

W. Li (2015): Return to the equilibrium for elliptically degenerate polynomial potentials.

Hitrik-Pravda-Starov-Viola (2016): Subelliptic estimates for general maximal accretive differential operators with quadratic symbols.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: KFP, Hypoelliptic Laplacian: KFP in kinetic theory: $\partial_t v + p \partial_q v - \lambda \partial_q f \cdot \partial_p v + \gamma \frac{-\Delta_p + p^2}{2} v = 0$ Hypoelliptic Laplacian (Bismut 2005): extension à la Witten to *p*-forms as a hypoelliptic Hodge-type Laplacian.

Physics: Risken(1989), Tailleur-Tanase-Kurchan (2006)

Desvillettes-Villani(2001), Eckmann-Pillet-Rey-Bellet (1999): rate of return to the equibrium (spectral gap) for KFP-type equations (perturbed quadratic potential)

Hérau-N. (2004) Helffer-N.(2005): KFP for elliptic polynomial potentials.

Eckmann-Hairer(2003): Chains of anharmonic oscillators.

Villani (2010):hypocoercivity \rightarrow developments in nonlinear kinetic theory.

Pavliotis-Pravda-Starov(2012): Chains of harmonic oscillators accurate estimates.

Bismut-Lebeau (2008), Lebeau (2005-07): Analysis of hypoelliptic Laplacian \rightarrow development of Bismut program.

Hérau-Hitrik-Sjöstrand (2008): Exponentially small eigenvalues for KFP (functions).

N. (2013p): B.C. for KFP and hypoelliptic Laplacians.

W. Li (2015): Return to the equilibrium for elliptically degenerate polynomial potentials.

Hitrik-Pravda-Starov-Viola (2016): Subelliptic estimates for general maximal accretive differential operators with quadratic symbols.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: KFP, Hypoelliptic Laplacian: KFP in kinetic theory: $\partial_t v + p \partial_q v - \lambda \partial_q f \cdot \partial_p v + \gamma \frac{-\Delta_p + p^2}{2} v = 0$ Hypoelliptic Laplacian (Bismut 2005): extension à la Witten to *p*-forms as a hypoelliptic Hodge-type Laplacian.

Physics: Risken(1989), Tailleur-Tanase-Kurchan (2006)

Desvillettes-Villani(2001), Eckmann-Pillet-Rey-Bellet (1999): rate of return to the equibrium (spectral gap) for KFP-type equations (perturbed quadratic potential)

Hérau-N. (2004) Helffer-N.(2005): KFP for elliptic polynomial potentials.

Eckmann-Hairer(2003): Chains of anharmonic oscillators.

Villani (2010):hypocoercivity \rightarrow developments in nonlinear kinetic theory.

Pavliotis-Pravda-Starov(2012): Chains of harmonic oscillators accurate estimates.

Bismut-Lebeau (2008), Lebeau(2005-07): Analysis of hypoelliptic Laplacian \rightarrow development of Bismut program.

Hérau-Hitrik-Sjöstrand (2008): Exponentially small eigenvalues for KFP (functions).

N. (2013p): B.C. for KFP and hypoelliptic Laplacians.

W. Li (2015): Return to the equilibrium for elliptically degenerate polynomial potentials.

Hitrik-Pravda-Starov-Viola (2016): Subelliptic estimates for general maximal accretive differential operators with quadratic symbols.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: KFP, Hypoelliptic Laplacian: KFP in kinetic theory: $\partial_t v + p \partial_q v - \lambda \partial_q f \partial_p v + \gamma \frac{-\Delta_p + p^2}{2} v = 0$ Hypoelliptic Laplacian (Bismut 2005): extension à la Witten to *p*-forms as a hypoelliptic Hodge-type Laplacian.

Physics: Risken(1989), Tailleur-Tanase-Kurchan (2006)

Desvillettes-Villani(2001), Eckmann-Pillet-Rey-Bellet (1999): rate of return to the equibrium (spectral gap) for KFP-type equations (perturbed quadratic potential)

Hérau-N. (2004) Helffer-N.(2005): KFP for elliptic polynomial potentials.

Eckmann-Hairer(2003): Chains of anharmonic oscillators.

Villani (2010):hypocoercivity \rightarrow developments in nonlinear kinetic theory.

Pavliotis-Pravda-Starov(2012): Chains of harmonic oscillators accurate estimates.

Bismut-Lebeau (2008), Lebeau(2005-07): Analysis of hypoelliptic Laplacian \rightarrow development of Bismut program.

Hérau-Hitrik-Sjöstrand (2008): Exponentially small eigenvalues for KFP (functions).

N. (2013p): B.C. for KFP and hypoelliptic Laplacians.

W. Li (2015): Return to the equilibrium for elliptically degenerate polynomial potentials.

Hitrik-Pravda-Starov-Viola (2016): Subelliptic estimates for general maximal accretive differential operators with quadratic symbols.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: KFP, Hypoelliptic Laplacian: KFP in kinetic theory: $\partial_t v + p \partial_q v - \lambda \partial_q f \cdot \partial_p v + \gamma \frac{-\Delta_p + p^2}{2} v = 0$ Hypoelliptic Laplacian (Bismut 2005): extension à la Witten to *p*-forms as a hypoelliptic Hodge-type Laplacian.

Physics: Risken(1989), Tailleur-Tanase-Kurchan (2006)

Desvillettes-Villani(2001), Eckmann-Pillet-Rey-Bellet (1999): rate of return to the equibrium (spectral gap) for KFP-type equations (perturbed quadratic potential)

Hérau-N. (2004) Helffer-N.(2005): KFP for elliptic polynomial potentials.

Eckmann-Hairer(2003): Chains of anharmonic oscillators.

Villani (2010):hypocoercivity \rightarrow developments in nonlinear kinetic theory.

Pavliotis-Pravda-Starov(2012): Chains of harmonic oscillators accurate estimates.

Bismut-Lebeau (2008), Lebeau(2005-07): Analysis of hypoelliptic Laplacian \rightarrow development of Bismut program.

Hérau-Hitrik-Sjöstrand (2008): Exponentially small eigenvalues for KFP (functions).

N. (2013p): B.C. for KFP and hypoelliptic Laplacians.

W. Li (2015): Return to the equilibrium for elliptically degenerate polynomial potentials.

Hitrik-Pravda-Starov-Viola (2016): Subelliptic estimates for general maximal accretive differential operators with quadratic symbols.

> Francis Nier, LAGA, Univ. Paris 13

PDE and spectral theory point of view: KFP, Hypoelliptic Laplacian: KFP in kinetic theory: $\partial_t v + p \partial_q v - \lambda \partial_q f \cdot \partial_p v + \gamma \frac{-\Delta_p + p^2}{2} v = 0$ Hypoelliptic Laplacian (Bismut 2005): extension à la Witten to *p*-forms as a hypoelliptic Hodge-type Laplacian.

Physics: Risken(1989), Tailleur-Tanase-Kurchan (2006)

Desvillettes-Villani(2001), Eckmann-Pillet-Rey-Bellet (1999): rate of return to the equibrium (spectral gap) for KFP-type equations (perturbed quadratic potential)

Hérau-N. (2004) Helffer-N.(2005): KFP for elliptic polynomial potentials.

Eckmann-Hairer(2003): Chains of anharmonic oscillators.

Villani (2010):hypocoercivity \rightarrow developments in nonlinear kinetic theory.

Pavliotis-Pravda-Starov(2012): Chains of harmonic oscillators accurate estimates.

Bismut-Lebeau (2008), Lebeau(2005-07): Analysis of hypoelliptic Laplacian \rightarrow development of Bismut program.

Hérau-Hitrik-Sjöstrand (2008): Exponentially small eigenvalues for KFP (functions).

N. (2013p): B.C. for KFP and hypoelliptic Laplacians.

W. Li (2015): Return to the equilibrium for elliptically degenerate polynomial potentials.

Hitrik-Pravda-Starov-Viola (2016): Subelliptic estimates for general maximal accretive differential operators with quadratic symbols.

Exponential small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

Quasi-stationary distributions and applications: Ω open domain of ${\it M}$.

$$dX = -2\nabla f(X)dt + \sqrt{2h}dW_t$$
.

 $\tau_x = \tau(X(t)|X(0) = x) = \min \{t, X(t, x) \in \partial\Omega\}$ exit time process; X_{τ} exit position process.

Definition: μ probability measure on Ω is a QSD if

$$E(u(X(t))|t < \tau) = \int_{\Omega} u(x) \ d\mu(x)$$

for all t > 0 when the law of X(0) is μ .

Link with PDE: Here the QSD is unique and related with the Dirichlet Witten Laplacian. If x = X(t = 0) is distributed according to the QSD μ , the exit time follows a exponential law with parameter λ_1 and the density of X_{τ} on $\partial\Omega$ is given by the normal derivative $\partial_n u_1$, where (u_1, λ_1) firts eigenpair of the Dirichlet Witten Laplacian.

Barlett (1960): "Quasi-stationary distributions".

Voter (1997): Algorithms for state to state reduced dynamics.

Lebris-Lelièvre-Luskin-Perez(2012)

Lelièvre-N.(2015): Asymptotic analysis in the low temperature limit.

Exponential small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

Quasi-stationary distributions and applications: Ω open domain of $M\,.$

$$dX = -2\nabla f(X)dt + \sqrt{2h}dW_t.$$

 $\tau_x = \tau(X(t)|X(0) = x) = \min \{t, X(t, x) \in \partial\Omega\}$ exit time process; X_{τ} exit position process.

Definition: μ probability measure on Ω is a QSD if

$$E(u(X(t))|t < \tau) = \int_{\Omega} u(x) d\mu(x)$$

for all t > 0 when the law of X(0) is μ .

Link with PDE: Here the QSD is unique and related with the Dirichlet Witten Laplacian. If x = X(t = 0) is distributed according to the QSD μ , the exit time follows a exponential law with parameter λ_1 and the density of X_{τ} on $\partial\Omega$ is given by the normal derivative $\partial_n u_1$, where (u_1, λ_1) firts eigenpair of the Dirichlet Witten Laplacian.

Barlett (1960): "Quasi-stationary distributions".

Voter (1997): Algorithms for state to state reduced dynamics.

Lebris-Lelièvre-Luskin-Perez(2012)

Lelièvre-N.(2015): Asymptotic analysis in the low temperature limit.

Exponential small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

Quasi-stationary distributions and applications: Ω open domain of M .

$$dX = -2\nabla f(X)dt + \sqrt{2h}dW_t.$$

 $\tau_x = \tau(X(t)|X(0) = x) = \min \{t, X(t, x) \in \partial\Omega\}$ exit time process; X_{τ} exit position process.

Definition: μ probability measure on Ω is a QSD if

$$E(u(X(t))|t < \tau) = \int_{\Omega} u(x) \ d\mu(x)$$

for all t > 0 when the law of X(0) is μ .

Link with PDE: Here the QSD is unique and related with the Dirichlet Witten Laplacian. If x = X(t = 0) is distributed according to the QSD μ , the exit time follows a exponential law with parameter λ_1 and the density of X_{τ} on $\partial\Omega$ is given by the normal derivative $\partial_n u_1$, where (u_1, λ_1) firts eigenpair of the Dirichlet Witten Laplacian.

Barlett (1960): "Quasi-stationary distributions".

Voter (1997): Algorithms for state to state reduced dynamics.

Lebris-Lelièvre-Luskin-Perez(2012)

Lelièvre-N.(2015): Asymptotic analysis in the low temperature limit.

Exponential small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

Quasi-stationary distributions and applications: Ω open domain of M .

$$dX = -2\nabla f(X)dt + \sqrt{2h}dW_t.$$

 $\tau_x = \tau(X(t)|X(0) = x) = \min \{t, X(t, x) \in \partial\Omega\}$ exit time process; X_{τ} exit position process.

Definition: μ probability measure on Ω is a QSD if

$$E(u(X(t))|t < \tau) = \int_{\Omega} u(x) \ d\mu(x)$$

for all t > 0 when the law of X(0) is μ .

Link with PDE: Here the QSD is unique and related with the Dirichlet Witten Laplacian. If x = X(t = 0) is distributed according to the QSD μ , the exit time follows a exponential law with parameter λ_1 and the density of X_{τ} on $\partial\Omega$ is given by the normal derivative $\partial_n u_1$, where (u_1, λ_1) firts eigenpair of the Dirichlet Witten Laplacian.

Barlett (1960): "Quasi-stationary distributions".

Voter (1997): Algorithms for state to state reduced dynamics.

Lebris-Lelièvre-Luskin-Perez(2012)

Lelièvre-N.(2015): Asymptotic analysis in the low temperature limit.

Exponential small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

Quasi-stationary distributions and applications: Ω open domain of $M\,.$

$$dX = -2\nabla f(X)dt + \sqrt{2h}dW_t.$$

 $\tau_x = \tau(X(t)|X(0) = x) = \min \{t, X(t, x) \in \partial\Omega\}$ exit time process; X_{τ} exit position process.

Definition: μ probability measure on Ω is a QSD if

$$E(u(X(t))|t < \tau) = \int_{\Omega} u(x) \ d\mu(x)$$

for all t > 0 when the law of X(0) is μ .

Link with PDE: Here the QSD is unique and related with the Dirichlet Witten Laplacian. If x = X(t = 0) is distributed according to the QSD μ , the exit time follows a exponential law with parameter λ_1 and the density of X_{τ} on $\partial\Omega$ is given by the normal derivative $\partial_n u_1$, where (u_1, λ_1) firts eigenpair of the Dirichlet Witten Laplacian.

Barlett (1960): "Quasi-stationary distributions".

Voter (1997): Algorithms for state to state reduced dynamics.

Lebris-Lelièvre-Luskin-Perez(2012)

Lelièvre-N.(2015): Asymptotic analysis in the low temperature limit.

Exponential small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

Quasi-stationary distributions and applications: Ω open domain of M .

$$dX = -2\nabla f(X)dt + \sqrt{2h}dW_t.$$

 $\tau_x = \tau(X(t)|X(0) = x) = \min \{t, X(t, x) \in \partial\Omega\}$ exit time process; X_{τ} exit position process.

Definition: μ probability measure on Ω is a QSD if

$$E(u(X(t))|t < \tau) = \int_{\Omega} u(x) \ d\mu(x)$$

for all t > 0 when the law of X(0) is μ .

Link with PDE: Here the QSD is unique and related with the Dirichlet Witten Laplacian. If x = X(t = 0) is distributed according to the QSD μ , the exit time follows a exponential law with parameter λ_1 and the density of X_{τ} on $\partial\Omega$ is given by the normal derivative $\partial_n u_1$, where (u_1, λ_1) firts eigenpair of the Dirichlet Witten Laplacian.

Barlett (1960): "Quasi-stationary distributions".

Voter (1997): Algorithms for state to state reduced dynamics.

Lebris-Lelièvre-Luskin-Perez(2012)

Lelièvre-N.(2015): Asymptotic analysis in the low temperature limit.

Exponential small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

Quasi-stationary distributions and applications: Ω open domain of M .

$$dX = -2\nabla f(X)dt + \sqrt{2h}dW_t.$$

 $\tau_x = \tau(X(t)|X(0) = x) = \min \{t, X(t, x) \in \partial\Omega\}$ exit time process; X_{τ} exit position process.

Definition: μ probability measure on Ω is a QSD if

$$E(u(X(t))|t < \tau) = \int_{\Omega} u(x) \ d\mu(x)$$

for all t > 0 when the law of X(0) is μ .

Link with PDE: Here the QSD is unique and related with the Dirichlet Witten Laplacian. If x = X(t = 0) is distributed according to the QSD μ , the exit time follows a exponential law with parameter λ_1 and the density of X_{τ} on $\partial\Omega$ is given by the normal derivative $\partial_n u_1$, where (u_1, λ_1) firts eigenpair of the Dirichlet Witten Laplacian.

Barlett (1960): "Quasi-stationary distributions".

Voter (1997): Algorithms for state to state reduced dynamics.

Lebris-Lelièvre-Luskin-Perez(2012)

Lelièvre-N.(2015): Asymptotic analysis in the low temperature limit.

Exponential small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

Quasi-stationary distributions and applications: Ω open domain of M .

$$dX = -2\nabla f(X)dt + \sqrt{2h}dW_t.$$

 $\tau_x = \tau(X(t)|X(0) = x) = \min \{t, X(t, x) \in \partial\Omega\}$ exit time process; X_{τ} exit position process.

Definition: μ probability measure on Ω is a QSD if

$$E(u(X(t))|t < \tau) = \int_{\Omega} u(x) \ d\mu(x)$$

for all t > 0 when the law of X(0) is μ .

Link with PDE: Here the QSD is unique and related with the Dirichlet Witten Laplacian. If x = X(t = 0) is distributed according to the QSD μ , the exit time follows a exponential law with parameter λ_1 and the density of X_{τ} on $\partial\Omega$ is given by the normal derivative $\partial_n u_1$, where (u_1, λ_1) firts eigenpair of the Dirichlet Witten Laplacian.

Barlett (1960): "Quasi-stationary distributions".

Voter (1997): Algorithms for state to state reduced dynamics.

Lebris-Lelièvre-Luskin-Perez(2012)

Lelièvre-N.(2015): Asymptotic analysis in the low temperature limit.

> Francis Nier, LAGA, Univ. Paris 13

Algebraic topology and applications:

Morse theory: Thom-Smale , Milnor(1963), Laudenbach (1992)

Barannikov (1994): Another presentation of Morse theory introducing some bar codes, $\beta_p = \dim H_p(M, \mathbb{K})$, \mathbb{K} a field.

Laudenbach (2011): Inspired by Chang-Liu (1995), complete description of Morse inequalities, works with $\beta_p = \dim H_p(M, \mathbb{Z})$.

Le Peutrec-N.-Viterbo (2013): Use of Barannikov presentation for Eyring-Kramers law for p-forms.

Carlsson-Zomorodian(2005), Carlsson(2009): Motivated by previous works in statistical data analysis, introduced "persistent homology" (general framework which includes Barannikov's approach to Morse theory and usually presented within a Cech cohomology approach).

Cohen-Steiner, Edelsbrunner, Harer (2007): Stability of persistent diagram (or bar codes), presentation with Morse theory.

Polterovich-Shelukhin(2016), Usher-Zhang (2016),

> Francis Nier, LAGA, Univ. Paris 13

Algebraic topology and applications:

Morse theory: Thom-Smale , Milnor(1963), Laudenbach (1992)

Barannikov (1994): Another presentation of Morse theory introducing some bar codes, $\beta_p = \dim H_p(M, \mathbb{K})$, \mathbb{K} a field.

Laudenbach (2011): Inspired by Chang-Liu (1995), complete description of Morse inequalities, works with $\beta_p = \dim H_p(M, \mathbb{Z})$.

Le Peutrec-N.-Viterbo (2013): Use of Barannikov presentation for Eyring-Kramers law for p-forms.

Carlsson-Zomorodian(2005), Carlsson(2009): Motivated by previous works in statistical data analysis, introduced "persistent homology" (general framework which includes Barannikov's approach to Morse theory and usually presented within a Cech cohomology approach).

Cohen-Steiner, Edelsbrunner, Harer (2007): Stability of persistent diagram (or bar codes), presentation with Morse theory.

Polterovich-Shelukhin(2016), Usher-Zhang (2016),

> Francis Nier, LAGA, Univ. Paris 13

Algebraic topology and applications:

Morse theory: Thom-Smale , Milnor(1963), Laudenbach (1992)

Barannikov (1994): Another presentation of Morse theory introducing some bar codes, $\beta_{\rho} = \dim H_{\rho}(M, \mathbb{K})$, \mathbb{K} a field.

Laudenbach (2011): Inspired by Chang-Liu (1995), complete description of Morse inequalities, works with $\beta_p = \dim H_p(M, \mathbb{Z})$.

Le Peutrec-N.-Viterbo (2013): Use of Barannikov presentation for Eyring-Kramers law for p-forms.

Carlsson-Zomorodian(2005), Carlsson(2009): Motivated by previous works in statistical data analysis, introduced "persistent homology" (general framework which includes Barannikov's approach to Morse theory and usually presented within a Cech cohomology approach).

Cohen-Steiner, Edelsbrunner, Harer (2007): Stability of persistent diagram (or bar codes), presentation with Morse theory.

Polterovich-Shelukhin(2016), Usher-Zhang (2016),

Bihovsky-Humilière-Seyfaddini (2017): Relation between Ref-LNV, Barannikov to persistent homology. Applications to dynamical system problems. Arnold conjecture. Floer homology.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

> Francis Nier, LAGA, Univ. Paris 13

Algebraic topology and applications:

Morse theory: Thom-Smale , Milnor(1963), Laudenbach (1992)

Barannikov (1994): Another presentation of Morse theory introducing some bar codes, $\beta_p = \dim H_p(M, \mathbb{K})$, \mathbb{K} a field.

Laudenbach (2011): Inspired by Chang-Liu (1995), complete description of Morse inequalities, works with $\beta_p = \dim H_p(M, \mathbb{Z})$.

Le Peutrec-N.-Viterbo (2013): Use of Barannikov presentation for Eyring-Kramers law for *p*-forms.

Carlsson-Zomorodian(2005), Carlsson(2009): Motivated by previous works in statistical data analysis, introduced "persistent homology" (general framework which includes Barannikov's approach to Morse theory and usually presented within a Cech cohomology approach).

Cohen-Steiner, Edelsbrunner, Harer (2007): Stability of persistent diagram (or bar codes), presentation with Morse theory.

Polterovich-Shelukhin(2016), Usher-Zhang (2016),

> Francis Nier, LAGA, Univ. Paris 13

Algebraic topology and applications:

Morse theory: Thom-Smale , Milnor(1963), Laudenbach (1992)

Barannikov (1994): Another presentation of Morse theory introducing some bar codes, $\beta_p = \dim H_p(M, \mathbb{K})$, \mathbb{K} a field.

Laudenbach (2011): Inspired by Chang-Liu (1995), complete description of Morse inequalities, works with $\beta_p = \dim H_p(M, \mathbb{Z})$.

Le Peutrec-N.-Viterbo (2013): Use of Barannikov presentation for Eyring-Kramers law for p-forms.

Carlsson-Zomorodian(2005), Carlsson(2009): Motivated by previous works in statistical data analysis, introduced "persistent homology" (general framework which includes Barannikov's approach to Morse theory and usually presented within a Cech cohomology approach).

Cohen-Steiner, Edelsbrunner, Harer (2007): Stability of persistent diagram (or bar codes), presentation with Morse theory.

Polterovich-Shelukhin(2016), Usher-Zhang (2016),

> Francis Nier, LAGA, Univ. Paris 13

Algebraic topology and applications:

Morse theory: Thom-Smale , Milnor(1963), Laudenbach (1992)

Barannikov (1994): Another presentation of Morse theory introducing some bar codes, $\beta_{\rho} = \dim H_{\rho}(M, \mathbb{K})$, \mathbb{K} a field.

Laudenbach (2011): Inspired by Chang-Liu (1995), complete description of Morse inequalities, works with $\beta_p = \dim H_p(M, \mathbb{Z})$.

Le Peutrec-N.-Viterbo (2013): Use of Barannikov presentation for Eyring-Kramers law for p-forms.

Carlsson-Zomorodian(2005), Carlsson(2009): Motivated by previous works in statistical data analysis, introduced "persistent homology" (general framework which includes Barannikov's approach to Morse theory and usually presented within a Cech cohomology approach).

Cohen-Steiner, Edelsbrunner, Harer (2007): Stability of persistent diagram (or bar codes), presentation with Morse theory.

Polterovich-Shelukhin(2016), Usher-Zhang (2016),

> Francis Nier, LAGA, Univ. Paris 13

Algebraic topology and applications:

Morse theory: Thom-Smale , Milnor(1963), Laudenbach (1992)

Barannikov (1994): Another presentation of Morse theory introducing some bar codes, $\beta_{\rho} = \dim H_{\rho}(M, \mathbb{K})$, \mathbb{K} a field.

Laudenbach (2011): Inspired by Chang-Liu (1995), complete description of Morse inequalities, works with $\beta_p = \dim H_p(M, \mathbb{Z})$.

Le Peutrec-N.-Viterbo (2013): Use of Barannikov presentation for Eyring-Kramers law for p-forms.

Carlsson-Zomorodian(2005), Carlsson(2009): Motivated by previous works in statistical data analysis, introduced "persistent homology" (general framework which includes Barannikov's approach to Morse theory and usually presented within a Cech cohomology approach).

Cohen-Steiner, Edelsbrunner, Harer (2007): Stability of persistent diagram (or bar codes), presentation with Morse theory.

Polterovich-Shelukhin(2016), Usher-Zhang (2016),

Result for functions on manifolds without boundary

Exponentiall small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

REF: Helffer-Klein-N.(04). Bovier-Eckhoff-Gayrard-Klein(04), Hérau-Hitrik-Sjöstrand(08), Michel(16) (M, g) (compact oriented) riemannian manifold. $\Delta_{f,h}^{(0)} = d_{f,h}^* d_{f,h}$ restrictied to degree p = 0. Generic Assumption;

f is a Morse function

All critical values of index 0 and 1 are distinct All difference $f(U_{i(k)}^{(1)}) - f(U_k^{(0)})$ are distinct and ordered in the decreasing order

(with $j(1) = +\infty$)

Pairing $k \to j(k)$: Consider $f^{\lambda} = \{x \in M, f(x) < \lambda\}$. Decrease λ from $+\infty$ to min f. When the number of connected components of f^{λ} increases, λ must be a critical value with $\lambda = f(U_j^{(1)})$. The new global minimum of an appearing connected component is $U_k^{(0)}$ and j = j(k).

The k-th, $m_0 \ge k \ge 2$, eigenvalue of $\Delta_{f,h}^{(0)}$ $(\lambda_1(h) = 0)$ equals

$$\lambda_{k\geq 2}(h) = \frac{h}{\pi} |\hat{\lambda}_1(U_{j(k)}^{(1)})| \sqrt{\frac{\left|\det(\operatorname{Hess} f(U_k^{(0)}))\right|}{\left|\det(\operatorname{Hess} f(U_{j(k)}^{(1)}))\right|}} \left(1 + c_k(h)\right) \exp\left(-\frac{2(f(U_{j(k)}^{(1)}) - f(U_k^{(0)}))}{h}\right)$$

with $c_k(h) \sim \sum_{\ell=1}^{\infty} c_\ell h^\ell$, $\hat{\lambda}_1(U_j^{(1)})$ negative eigenvalue of $\operatorname{Hess} f(U_j^{(1)})$.

Results for functions on manifolds with boundary

Exponentiall small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

Eyring-Kramers law for exp. small eigenvalues:

REF: Chang-Liu(95), Helffer-N.(06), Le Peutrec(10) (M, g) (compact oriented) manifold with regular boundary ∂M .

> Francis Nier, LAGA, Univ. Paris 13

Eyring-Kramers law for exp. small eigenvalues:

REF: Chang-Liu(95), Helffer-N.(06), Le Peutrec(10) (M, g) (compact oriented) manifold with regular boundary ∂M . Dirichlet and Neumann realizations of $\Delta_{f,h}^{(p)}$:

$$\begin{split} D(\Delta_{f,h}^{D,(p)}) &= \left\{ \omega \in W^{2,2}(M; \Lambda^p T^*M) \,, \quad \mathbf{t}\omega = 0 \quad, \quad \mathbf{t}d_{f,h}^*\omega = 0 \right\} \,, \\ D(\Delta_{f,h}^{N,(p)}) &= \left\{ \omega \in W^{2,2}(M; \Lambda^p T^*M) \,, \quad \mathbf{n}\omega = 0 \quad, \quad \mathbf{n}d_{f,h}\omega = 0 \right\} \,, \end{split}$$

Francis Nier, LAGA, Univ. Paris 13

Eyring-Kramers law for exp. small eigenvalues:

REF: Chang-Liu(95), Helffer-N.(06), Le Peutrec(10) (M, g) (compact oriented) manifold with regular boundary ∂M .

(D) $\mathbf{t}\omega = 0, \mathbf{t}d_{f,h}^*\omega = 0$, (N) $\mathbf{n}\omega = 0, \mathbf{n}d_{f,h}\omega = 0$.

Assumption: f is a Morse function such that ∇f does not vanish on ∂M . Generalized critical points $U^{(p)}$ of index p:

Dirichlet: $U^{(p)} \in M$ is a critical point of index p or $U^{(p)} \in \partial M$ is a critical point of index p-1 of $f|_{\partial M}$ such that $\partial_n f(U^{(p)}) > 0$.

Neumann: $U^{(p)} \in M$ is a critical point of index p or $U^{(p)} \in \partial M$ is a critical point of index p of $f|_{\partial M}$ such that $\partial_n f(U^{(p)}) < 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Results for functions on manifolds with boundary

Exponential small eigenvalues of Witten Laplacians 1: Results

Francis Nier, LAGA, Univ. Paris 13

Eyring-Kramers law for exp. small eigenvalues:

REF: Chang-Liu(95), Helffer-N.(06), Le Peutrec(10) (M, g) (compact oriented) manifold with regular boundary ∂M .

(D)
$$\mathbf{t}\omega = 0, \mathbf{t}d_{f,h}^*\omega = 0$$
, (N) $\mathbf{n}\omega = 0, \mathbf{n}d_{f,h}\omega = 0$

Assumption: f is a Morse function such that ∇f does not vanish on ∂M . Generalized critical points with index p on ∂M (D): p-1, $\partial_n f > 0$, (N): p, $\partial_n f < 0$.

Results for functions on manifolds with boundary

Exponentiall small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

> > λ

Eyring-Kramers law for exp. small eigenvalues:

REF: Chang-Liu(95), Helffer-N.(06), Le Peutrec(10)

$$(D) \quad \mathbf{t}\omega = 0, \mathbf{t}d_{f,h}^*\omega = 0 \quad , \quad (N)\mathbf{n}\omega = 0 \, , \mathbf{n}d_{f,h}\omega = 0 \, .$$

Assumption: f is a Morse function such that ∇f does not vanish on ∂M . Generalized critical points with index p on ∂M (D): p - 1, $\partial_n f > 0$, (N): p, $\partial_n f < 0$. Then same Generic Assumption and pairing process as for the boundaryless case while replacing critical points by generalized critical points. Result for Dirichlet:

$$\lambda_{k}(h) = \frac{h}{\pi} |\widehat{\lambda}_{1}(U_{j(k)}^{(1)})| \sqrt{\frac{\left|\det(\operatorname{Hess} f(U_{k}^{(0)}))\right|}{\left|\det(\operatorname{Hess} f(U_{j(k)}^{(1)}))\right|}} (1 + hc_{k}^{1}(h)) \\ \times \exp\left(-\frac{2\left(f(U_{j(k)}^{(1)}) - f(U_{k}^{(0)})\right)}{h}\right), \quad \text{if } U_{j(k)}^{(1)} \notin \partial M,$$
$$\lambda_{k}(h) = \frac{2h^{1/2} |\nabla f(U_{j(k)}^{(1)})|}{\pi^{1/2}} \sqrt{\frac{\left|\det(\operatorname{Hess} f(U_{k}^{(0)}))\right|}{\left|\det(\operatorname{Hess} f|_{\partial M}(U_{j(k)}^{(1)}))\right|}} (1 + hc_{k}^{1}(h)) \\ \times \exp\left(-\frac{2\left(f(U_{j(k)}^{(1)}) - f(U_{k}^{(0)})\right)}{h}\right), \quad \text{if } U_{j(k)}^{(1)} \in \partial M,$$

Francis Nier, LAGA, Univ. Paris 13

Quasi-stationary distribution:

REF:Lelièvre-N.(15), Di Gesu-Lelièvre-Le Peutrec-Nectoux

Generic Assumption on f_1 in the boundary case (Dirichlet BC on domain Ω) Assume that $\min_{x \in \partial \Omega} f_1$ is larger than all interior critical values of f. f_2 is a C^{∞} perturbation of f_1 around the global minimum of f_1 (f_2 not necessarily Morse).

$$\frac{\lambda_{1}^{(0)}(f_{2})}{\lambda_{1}^{(0)}(f_{2})} = \frac{\int_{\Omega} e^{-2\frac{f_{1}(x)}{\hbar}} dx}{\int_{\Omega} e^{-2\frac{f_{2}(x)}{\hbar}} dx} (1 + \mathcal{O}(e^{-\frac{c}{\hbar}})),$$

$$\frac{\partial_{n} \left[e^{-\frac{f_{2}}{\hbar}} u_{1}^{(0)}(f_{2}) \right] \Big|_{\partial\Omega}}{\|\partial_{n} \left[e^{-\frac{f_{1}}{\hbar}} u_{1}^{(0)}(f_{1}) \right] \Big|_{\partial\Omega}} + \mathcal{O}(e^{-\frac{c}{\hbar}}) \quad \text{in } L^{1}(\partial\Omega).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Exponentiall small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

REF: Le Peutrec-N.-Viterbo(13)

(M,g) compact (oriented) manifold without boundary.

Consider $f^{\lambda} = \{x \in M, f(x) < \lambda\}$ and $f_{\lambda} = \{x \in M, f(x) > \lambda\}$.

For $-\infty \leq \mu < \lambda \leq +\infty$, $H_p(f^{\lambda}|f^{\mu})$ denotes the relative *p*-homology vector space (here \mathbb{R} -valued homology).

Assume that all the critical values are distinct \to we identify the critical point U with the critical value f(U)=c .

When c is a critical value with index p then $\dim H_p(f^{c+\varepsilon}, f^{c-\varepsilon}) = 1$. Playing with long exact sequences one can partition critical points into upper, lower and homological critical points

$$\mathcal{U}^{(p)} = \mathcal{U}^{(p)}_U \sqcup \mathcal{U}^{(p)}_L \sqcup \mathcal{U}^{(p)}_H$$

The pairing is as follows: If $\mathcal{U}^{(p)}$ is an upper critical points we associate value $c' = \sup \{\lambda < c, H_p(f^{c+\varepsilon}, f^{\lambda}) \rightarrow H_p(f^{c+\varepsilon}, f^{c-\varepsilon}) \text{ vanishes}\}$ then c' is a lower critical value with index p-1. Then define $\partial_B c = c'$ (or $\partial_B U^{(p)} = U^{(p-1)}$ with $f(U^{(p-1)}) = c'$) in this case and $\partial_B c = 0$ (or $\partial_B U^{(p)} = 0$) in all the other cases $(U^{(p)})$ a lower or homological critical points).

Exponentiall small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

REF: Le Peutrec-N.-Viterbo(13)

(M,g) compact (oriented) manifold without boundary.

Consider $f^{\lambda} = \{x \in M, f(x) < \lambda\}$ and $f_{\lambda} = \{x \in M, f(x) > \lambda\}$.

For $-\infty \leq \mu < \lambda \leq +\infty$, $H_p(f^{\lambda}|f^{\mu})$ denotes the relative *p*-homology vector space (here \mathbb{R} -valued homology).

Assume that all the critical values are distinct \to we identify the critical point U with the critical value f(U)=c .

When c is a critical value with index p then $\dim H_p(f^{c+\varepsilon}, f^{c-\varepsilon}) = 1$. Playing with long exact sequences one can partition critical points into upper, lower and homological critical points

$$\mathcal{U}^{(p)} = \mathcal{U}^{(p)}_U \sqcup \mathcal{U}^{(p)}_L \sqcup \mathcal{U}^{(p)}_H$$

The pairing is as follows: If $\mathcal{U}^{(p)}$ is an upper critical points we associate value $c' = \sup \{\lambda < c, H_p(f^{c+\varepsilon}, f^{\lambda}) \rightarrow H_p(f^{c+\varepsilon}, f^{c-\varepsilon}) \text{ vanishes}\}$ then c' is a lower critical value with index p-1. Then define $\partial_B c = c'$ (or $\partial_B U^{(p)} = U^{(p-1)}$ with $f(U^{(p-1)}) = c'$) in this case and $\partial_B c = 0$ (or $\partial_B U^{(p)} = 0$) in all the other cases $(U^{(p)})$ a lower or homological critical points).

Exponentiall small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

REF: Le Peutrec-N.-Viterbo(13)

(M,g) compact (oriented) manifold without boundary.

Consider $f^{\lambda} = \{x \in M, f(x) < \lambda\}$ and $f_{\lambda} = \{x \in M, f(x) > \lambda\}$.

For $-\infty \leq \mu < \lambda \leq +\infty$, $H_p(f^{\lambda}|f^{\mu})$ denotes the relative *p*-homology vector space (here \mathbb{R} -valued homology).

Assume that all the critical values are distinct \to we identify the critical point U with the critical value f(U)=c .

When c is a critical value with index p then $\dim H_p(f^{c+\varepsilon}, f^{c-\varepsilon}) = 1$. Playing with long exact sequences one can partition critical points into upper, lower and homological critical points

$$\mathcal{U}^{(p)} = \mathcal{U}^{(p)}_U \sqcup \mathcal{U}^{(p)}_L \sqcup \mathcal{U}^{(p)}_H$$

The pairing is as follows: If $\mathcal{U}^{(p)}$ is an upper critical points we associate value $c' = \sup \{\lambda < c, H_p(f^{c+\varepsilon}, f^{\lambda}) \rightarrow H_p(f^{c+\varepsilon}, f^{c-\varepsilon}) \text{ vanishes}\}$ then c' is a lower critical value with index p-1. Then define $\partial_B c = c'$ (or $\partial_B U^{(p)} = U^{(p-1)}$ with $f(U^{(p-1)}) = c'$) in this case and $\partial_B c = 0$ (or $\partial_B U^{(p)} = 0$) in all the other cases $(U^{(p)})$ a lower or homological critical points).

Exponentiall small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

REF: Le Peutrec-N.-Viterbo(13)

(M,g) compact (oriented) manifold without boundary.

Consider $f^{\lambda} = \{x \in M, f(x) < \lambda\}$ and $f_{\lambda} = \{x \in M, f(x) > \lambda\}$.

For $-\infty \leq \mu < \lambda \leq +\infty$, $H_p(f^{\lambda}|f^{\mu})$ denotes the relative *p*-homology vector space (here \mathbb{R} -valued homology).

Assume that all the critical values are distinct o we identify the critical point U with the critical value f(U)=c .

When c is a critical value with index p then $\dim H_p(f^{c+\varepsilon}, f^{c-\varepsilon}) = 1$. Playing with long exact sequences one can partition critical points into upper, lower and homological critical points

$$\mathcal{U}^{(p)} = \mathcal{U}^{(p)}_U \sqcup \mathcal{U}^{(p)}_L \sqcup \mathcal{U}^{(p)}_H$$

The pairing is as follows: If $\mathcal{U}^{(p)}$ is an upper critical points we associate value $c' = \sup \{\lambda < c, H_p(f^{c+\varepsilon}, f^{\lambda}) \rightarrow H_p(f^{c+\varepsilon}, f^{c-\varepsilon}) \text{ vanishes}\}$ then c' is a lower critical value with index p-1. Then define $\partial_B c = c'$ (or $\partial_B U^{(p)} = U^{(p-1)}$ with $f(U^{(p-1)}) = c'$) in this case and $\partial_B c = 0$ (or $\partial_B U^{(p)} = 0$) in all the other cases $(U^{(p)})$ a lower or homological critical points).

Exponentiall small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

REF: Le Peutrec-N.-Viterbo(13)

(M,g) compact (oriented) manifold without boundary.

Consider $f^{\lambda} = \{x \in M, f(x) < \lambda\}$ and $f_{\lambda} = \{x \in M, f(x) > \lambda\}$.

For $-\infty \leq \mu < \lambda \leq +\infty$, $H_p(f^{\lambda}|f^{\mu})$ denotes the relative *p*-homology vector space (here \mathbb{R} -valued homology).

Assume that all the critical values are distinct \to we identify the critical point U with the critical value f(U)=c .

When c is a critical value with index p then $\dim H_p(f^{c+\varepsilon}, f^{c-\varepsilon}) = 1$. Playing with long exact sequences one can partition critical points into upper, lower and homological critical points

$$\mathcal{U}^{(p)} = \mathcal{U}^{(p)}_U \sqcup \mathcal{U}^{(p)}_L \sqcup \mathcal{U}^{(p)}_H$$

The pairing is as follows: If $\mathcal{U}^{(p)}$ is an upper critical points we associate value $c' = \sup \{\lambda < c, H_p(f^{c+\varepsilon}, f^{\lambda}) \rightarrow H_p(f^{c+\varepsilon}, f^{c-\varepsilon}) \text{ vanishes}\}$ then c' is a lower critical value with index p-1. Then define $\partial_B c = c'$ (or $\partial_B U^{(p)} = U^{(p-1)}$ with $f(U^{(p-1)}) = c'$) in this case and $\partial_B c = 0$ (or $\partial_B U^{(p)} = 0$) in all the other cases $(U^{(p)})$ a lower or homological critical points).

Exponentiall small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

REF: Le Peutrec-N.-Viterbo(13)

(M,g) compact (oriented) manifold without boundary.

Consider $f^{\lambda} = \{x \in M, f(x) < \lambda\}$ and $f_{\lambda} = \{x \in M, f(x) > \lambda\}$.

For $-\infty \leq \mu < \lambda \leq +\infty$, $H_p(f^{\lambda}|f^{\mu})$ denotes the relative *p*-homology vector space (here \mathbb{R} -valued homology).

Assume that all the critical values are distinct \to we identify the critical point U with the critical value f(U)=c .

When c is a critical value with index p then $\dim H_p(f^{c+\varepsilon}, f^{c-\varepsilon}) = 1$. Playing with long exact sequences one can partition critical points into upper, lower and homological critical points

$$\mathcal{U}^{(p)} = \mathcal{U}^{(p)}_U \sqcup \mathcal{U}^{(p)}_L \sqcup \mathcal{U}^{(p)}_H$$

The pairing is as follows: If $\mathcal{U}^{(p)}$ is an upper critical points we associate value $c' = \sup \{\lambda < c, H_p(f^{c+\varepsilon}, f^{\lambda}) \rightarrow H_p(f^{c+\varepsilon}, f^{c-\varepsilon}) \text{ vanishes}\}$ then c' is a lower critical value with index p-1. Then define $\partial_B c = c'$ (or $\partial_B U^{(p)} = U^{(p-1)}$ with $f(U^{(p-1)}) = c'$) in this case and $\partial_B c = 0$ (or $\partial_B U^{(p)} = 0$) in all the other cases $(U^{(p)})$ a lower or homological critical points).

Exponentiall small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

REF: Le Peutrec-N.-Viterbo(13)

(M,g) compact (oriented) manifold without boundary.

Consider $f^{\lambda} = \{x \in M, f(x) < \lambda\}$ and $f_{\lambda} = \{x \in M, f(x) > \lambda\}$.

For $-\infty \leq \mu < \lambda \leq +\infty$, $H_p(f^{\lambda}|f^{\mu})$ denotes the relative *p*-homology vector space (here \mathbb{R} -valued homology).

Assume that all the critical values are distinct \to we identify the critical point U with the critical value f(U)=c .

When c is a critical value with index p then $\dim H_p(f^{c+\varepsilon}, f^{c-\varepsilon}) = 1$. Playing with long exact sequences one can partition critical points into upper, lower and homological critical points

$$\mathcal{U}^{(p)} = \mathcal{U}^{(p)}_U \sqcup \mathcal{U}^{(p)}_L \sqcup \mathcal{U}^{(p)}_H$$

The pairing is as follows: If $\mathcal{U}^{(p)}$ is an upper critical points we associate value $c' = \sup \{\lambda < c, H_p(f^{c+\varepsilon}, f^{\lambda}) \rightarrow H_p(f^{c+\varepsilon}, f^{c-\varepsilon}) \text{ vanishes}\}$ then c' is a lower critical value with index p-1. Then define $\partial_B c = c'$ (or $\partial_B U^{(p)} = U^{(p-1)}$ with $f(U^{(p-1)}) = c'$) in this case and $\partial_B c = 0$ (or $\partial_B U^{(p)} = 0$) in all the other cases $(U^{(p)})$ a lower or homological critical points).

Exponentiall small eigenvalues of Witten Laplacians 1: Results

Francis Nier, LAGA, Univ. Paris 13 There is a one to one correspondance j_p between $\mathcal{U}^{(p)}$ and the set of eigenvalues (counted with multiplicities) of $\Delta_{f,h}^{(p)}$ lying in $[0, h^{3/2})$ such that

$$j_{\rho}(U^{(p)}) = 0 \quad \text{if} \quad U^{(p)} \in \mathcal{U}_{H}^{(p)}$$

$$j_{\rho}(U^{(p)}) = \kappa^{2}(U^{(p+1)}) \frac{h}{\pi} \frac{|\lambda_{1}^{(p+1)} \dots \lambda_{p+1}^{(p+1)}|}{|\lambda_{1}^{(p)} \dots \lambda_{p}^{(p)}|} \frac{|\text{Hess}f(U^{(p)})|^{1/2}}{|\text{Hess}f(U^{(p+1)})|^{1/2}} (1 + \mathcal{O}(h))e^{-2\frac{f(U^{(p+1)}) - f(U^{(p)})}{h}}$$

$$\text{if} \ \partial_{B} U^{(p+1)} = U^{(p)}$$

$$if \ \partial_{B} U^{(p+1)} = U^{(p)}$$

$$if \ \partial_{B} U^{(p)} = \kappa^{2}(U^{(p)}) \frac{h}{\pi} \frac{|\lambda_{1}^{(p)} \dots \lambda_{p-1}^{(p)}|}{|\lambda_{1}^{(p-1)} \dots \lambda_{p-1}^{(p-1)}|} \frac{|\text{Hess}f(U^{(p)})|^{1/2}}{|\text{Hess}f(U^{(p)})|^{1/2}} (1 + \mathcal{O}(h))e^{-2\frac{f(U^{(p)}) - f(U^{(p-1)})}{h}}$$

$$\text{if} \ \partial_{B} U^{(p)} = U^{(p-1)}$$

Here the λ 's denote the negative eigenvalues of the Hess f at the corresponding points.

Exponentiall small eigenvalues of Witten Laplacians 1: Results

> Francis Nier, LAGA, Univ. Paris 13

Accurate computations of exponentially small eigenvalues for p-forms in the case with boundary under Generic Assumption.

For the result on *p*-forms, are the topological constants $\kappa_p(k)^2$ equal to 1 (true for p = 0 or $p = \dim M \rightarrow$ true for all p = 0, 1, 2 when $\dim M = 2$)?

Accurate computations of exponentially small eigenvalues for p-forms for the hypoelliptic Laplacian under the generic assumption (on manifolds 1-without boundary, 2-with regular boundary).

Extend the QSD results to the Langevin case (requires refinement on the analysis of boundary geometric Kramers-Fokker-Planck operators, parameter dependence).

Remove as much as possible the Generic Assumption and possibly the Morse assumption (connection with bar codes topology in persistent homology to be better understood).

Exponentiall small eigenvalues of Witten Laplacians 1: Results

Francis Nier, LAGA, Univ. Paris 13 Accurate computations of exponentially small eigenvalues for p-forms in the case with boundary under Generic Assumption.

For the result on *p*-forms, are the topological constants $\kappa_p(k)^2$ equal to 1 (true for p = 0 or $p = \dim M \rightarrow$ true for all p = 0, 1, 2 when $\dim M = 2$)?

Accurate computations of exponentially small eigenvalues for p-forms for the hypoelliptic Laplacian under the generic assumption (on manifolds 1-without boundary, 2-with regular boundary).

Extend the QSD results to the Langevin case (requires refinement on the analysis of boundary geometric Kramers-Fokker-Planck operators, parameter dependence).

Remove as much as possible the Generic Assumption and possibly the Morse assumption (connection with bar codes topology in persistent homology to be better understood).

Exponentiall small eigenvalues of Witten Laplacians 1: Results

Francis Nier, LAGA, Univ. Paris 13 Accurate computations of exponentially small eigenvalues for p-forms in the case with boundary under Generic Assumption.

For the result on *p*-forms, are the topological constants $\kappa_p(k)^2$ equal to 1 (true for p = 0 or $p = \dim M \rightarrow$ true for all p = 0, 1, 2 when $\dim M = 2$)?

Accurate computations of exponentially small eigenvalues for p-forms for the hypoelliptic Laplacian under the generic assumption (on manifolds 1-without boundary, 2-with regular boundary).

Extend the QSD results to the Langevin case (requires refinement on the analysis of boundary geometric Kramers-Fokker-Planck operators, parameter dependence).

Remove as much as possible the Generic Assumption and possibly the Morse assumption (connection with bar codes topology in persistent homology to be better understood).

Exponentiall small eigenvalues of Witten Laplacians 1: Results

Francis Nier, LAGA, Univ. Paris 13 Accurate computations of exponentially small eigenvalues for p-forms in the case with boundary under Generic Assumption.

For the result on *p*-forms, are the topological constants $\kappa_p(k)^2$ equal to 1 (true for p = 0 or $p = \dim M \rightarrow$ true for all p = 0, 1, 2 when $\dim M = 2$)?

Accurate computations of exponentially small eigenvalues for *p*-forms for the hypoelliptic Laplacian under the generic assumption (on manifolds 1-without boundary, 2-with regular boundary).

Extend the QSD results to the Langevin case (requires refinement on the analysis of boundary geometric Kramers-Fokker-Planck operators, parameter dependence).

Remove as much as possible the Generic Assumption and possibly the Morse assumption (connection with bar codes topology in persistent homology to be better understood).

Exponentiall small eigenvalues of Witten Laplacians 1: Results

Francis Nier, LAGA, Univ. Paris 13 Accurate computations of exponentially small eigenvalues for p-forms in the case with boundary under Generic Assumption.

For the result on *p*-forms, are the topological constants $\kappa_p(k)^2$ equal to 1 (true for p = 0 or $p = \dim M \rightarrow$ true for all p = 0, 1, 2 when $\dim M = 2$)?

Accurate computations of exponentially small eigenvalues for p-forms for the hypoelliptic Laplacian under the generic assumption (on manifolds 1-without boundary, 2-with regular boundary).

Extend the QSD results to the Langevin case (requires refinement on the analysis of boundary geometric Kramers-Fokker-Planck operators, parameter dependence).

Remove as much as possible the Generic Assumption and possibly the Morse assumption (connection with bar codes topology in persistent homology to be better understood).