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Thematic and chronological introduction

Statistical physics, stochastic processes, Brownian motion:

position dX = −2∇f (X )dt +
√

2β−1dWt , β =
1

kBT
=

1

h

phase-space

Langevin
dq = pdt , dp = −∇qf (q)dt − γ0pdt +

√
γ0m

β
dWt

Invariant measure: e−2f (x)/hdx∫
e−2f (x)/h dx

concentrated at global minimum of f .

Metastability: Escape rate from a local minimum ∝ A(h)e−
C
h .

Arrhenius (1886, 1910)law : C = energy gap to pass (activity)

Eyring-Kramers(1935) law: leading term of A(h) in some examples.

Simulated annealing (1980’s)

Freidlin-Wentzell (1990’s): limh→0 h log(E(τ(X (t)
∣∣X (0) = x0))) = C , x0 local

minimum, τ = exit time from the corresponding valley.

Bovier-Eckhoff-Gayrard-Klein (2004): Eyring-Kramers type law up to
O(h1/2 log(h))-relative error.

Review: Berglund(2011)
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Thematic and chronological introduction

PDE and spectral theory point of view: Witten Laplacian

−Lh = (−h∂x + 2∂x f (x)).(h∂x ) on L2(M, e−2
f (x)
h dx)

e−
f (x)
h (−Lh)e

f (x)
h = (−h∂x + ∂x f (x)).(h∂x + ∂x f (x)) on L2(M, dx) .

Witten (1982): (M, g) (compact) riemannian manifold
d differential on C∞(M; ΛT∗M) codifferential d∗ .

df ,h = e−
f
h (hd)e

f
h = hd + df ∧ d∗f ,h = e

f
h (hd∗)e−

f
h = hd∗ + i∇f .

Witten Laplacian

∆f ,h = (df ,h + d∗f ,h)2 = d∗f ,hdf ,h + df ,hd
∗
f ,h =

dim M⊕
p=0

∆
(p)
f ,h

]
{
O(h3/2)− eigenvalues of∆

(p)
f ,h

}
=

mp︷ ︸︸ ︷
] {critical point with indexp}

mp −mp−1 + · · ·+ (−1)pm0 ≥
= for p= dim M

βp − βp−1 + · · ·+ (−1)pβ0 .
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Thematic and chronological introduction

PDE and spectral theory point of view: Witten Laplacian

Witten (1982), Cycon-Froese-Kirch-Simon (1987). O(h3/2) .

Helffer-Sjöstrand (1986): WKB and muliple wells techniques O(h3/2)-eigenvalues
are actually exponentially small.

W. Zhang(2001), Bismut-Zhang(1994) : Index theorem, Chern-Weil theory, top.
invariants in riem. geom.

Helffer-Klein-N. (2004): Eyring-Kramers law + asymptotic expansion of the
prefactor for functions.

Chang-Liu (1995) : Witten Laplacians with Dirichlet (resp. Neumann) B.C.:
]
{
O(h6/5)− eigenvalues

}
related to relative (resp. absolute) Betti numbers.

Helffer-N. (2006): Eyring-Kramers+as.exp. for Dirichlet B.C..

Le Peutrec(2010): Eyring-Kramers+as.exp. for Neumann B.C.

Le-Peutrec-N.-Viterbo (2013): Eyring-Kramers+as.exp. for p-forms.

L. Michel (2016p): Eyring-Kramers in some degenerate cases.
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PDE and spectral theory point of view: KFP, Hypoelliptic Laplacian:

KFP in kinetic theory: ∂tv + p∂qv − λ∂qf .∂pv + γ
−∆p+p2

2
v = 0

Hypoelliptic Laplacian (Bismut 2005): extension à la Witten to p-forms as a
hypoelliptic Hodge-type Laplacian.

Physics: Risken(1989), Tailleur-Tanase-Kurchan (2006)

Desvillettes-Villani(2001), Eckmann-Pillet-Rey-Bellet (1999): rate of return to
the equibrium (spectral gap ) for KFP-type equations (perturbed quadratic
potential)

Hérau-N. (2004) Helffer-N.(2005): KFP for elliptic polynomial potentials.

Eckmann-Hairer(2003): Chains of anharmonic oscillators.

Villani (2010):hypocoercivity → developments in nonlinear kinetic theory.

Pavliotis-Pravda-Starov(2012): Chains of harmonic oscillators accurate estimates.

Bismut-Lebeau (2008), Lebeau(2005-07): Analysis of hypoelliptic Laplacian →
development of Bismut program.

Hérau-Hitrik-Sjöstrand (2008): Exponentially small eigenvalues for KFP
(functions).

N. (2013p): B.C. for KFP and hypoelliptic Laplacians.

W. Li (2015): Return to the equilibrium for elliptically degenerate polynomial
potentials.

Hitrik-Pravda-Starov-Viola (2016): Subelliptic estimates for general maximal
accretive differential operators with quadratic symbols.

S. Shen (2016, recent): Direct interpolation between hypoelliptic Laplacian and
Morse inequalities. Fried conjecture (zeta dyn. function)
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Hérau-N. (2004) Helffer-N.(2005): KFP for elliptic polynomial potentials.

Eckmann-Hairer(2003): Chains of anharmonic oscillators.

Villani (2010):hypocoercivity → developments in nonlinear kinetic theory.

Pavliotis-Pravda-Starov(2012): Chains of harmonic oscillators accurate estimates.

Bismut-Lebeau (2008), Lebeau(2005-07): Analysis of hypoelliptic Laplacian →
development of Bismut program.
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Hérau-Hitrik-Sjöstrand (2008): Exponentially small eigenvalues for KFP
(functions).

N. (2013p): B.C. for KFP and hypoelliptic Laplacians.

W. Li (2015): Return to the equilibrium for elliptically degenerate polynomial
potentials.

Hitrik-Pravda-Starov-Viola (2016): Subelliptic estimates for general maximal
accretive differential operators with quadratic symbols.

S. Shen (2016, recent): Direct interpolation between hypoelliptic Laplacian and
Morse inequalities. Fried conjecture (zeta dyn. function)



Exponentially
small

eigenval-
ues of
Witten

Laplacians
1: Results

Francis
Nier,

LAGA,
Univ.

Paris 13

PDE and spectral theory point of view: KFP, Hypoelliptic Laplacian:

KFP in kinetic theory: ∂tv + p∂qv − λ∂qf .∂pv + γ
−∆p+p2

2
v = 0

Hypoelliptic Laplacian (Bismut 2005): extension à la Witten to p-forms as a
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Thematic and chronological introduction

Quasi-stationary distributions and applications:
Ω open domain of M .

dX = −2∇f (X )dt +
√

2hdWt .

τx = τ(X (t)|X (0) = x) = min {t ,X (t, x) ∈ ∂Ω} exit time process; Xτ exit
position process.

Definition: µ probability measure on Ω is a QSD if

E(u(X (t))|t < τ) =

∫
Ω
u(x) dµ(x)

for all t > 0 when the law of X (0) is µ .

Link with PDE: Here the QSD is unique and related with the Dirichlet Witten
Laplacian. If x = X (t = 0) is distributed according to the QSD µ , the exit time
follows a exponential law with parameter λ1 and the density of Xτ on ∂Ω is
given by the normal derivative ∂nu1 , where (u1, λ1) firts eigenpair of the
Dirichlet Witten Laplacian.

Barlett (1960): “Quasi-stationary distributions”.

Voter (1997): Algorithms for state to state reduced dynamics.

Lebris-Lelièvre-Luskin-Perez(2012)

Lelièvre-N.(2015): Asymptotic analysis in the low temperature limit.

Di Gesu-Lellèvre-Le Peutrec-Nectoux (recent): refined analysis with multiple exit
points.
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follows a exponential law with parameter λ1 and the density of Xτ on ∂Ω is
given by the normal derivative ∂nu1 , where (u1, λ1) firts eigenpair of the
Dirichlet Witten Laplacian.

Barlett (1960): “Quasi-stationary distributions”.

Voter (1997): Algorithms for state to state reduced dynamics.

Lebris-Lelièvre-Luskin-Perez(2012)

Lelièvre-N.(2015): Asymptotic analysis in the low temperature limit.

Di Gesu-Lellèvre-Le Peutrec-Nectoux (recent): refined analysis with multiple exit
points.
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Thematic and chronological introduction

Algebraic topology and applications:

Morse theory: Thom-Smale , Milnor(1963), Laudenbach (1992)

Barannikov (1994): Another presentation of Morse theory introducing some bar
codes, βp = dim Hp(M,K) , K a field.

Laudenbach (2011): Inspired by Chang-Liu (1995), complete description of
Morse inequalities, works with βp = dim Hp(M,Z) .

Le Peutrec-N.-Viterbo (2013): Use of Barannikov presentation for
Eyring-Kramers law for p-forms.

Carlsson-Zomorodian(2005), Carlsson(2009): Motivated by previous works in
statistical data analysis, introduced “persistent homology” (general framework
which includes Barannikov’s approach to Morse theory and usually presented
within a Cech cohomology approach).

Cohen-Steiner, Edelsbrunner, Harer (2007): Stability of persistent diagram (or
bar codes), presentation with Morse theory.

Polterovich-Shelukhin(2016), Usher-Zhang (2016),
Bihovsky-Humilière-Seyfaddini (2017): Relation between Ref-LNV, Barannikov to
persistent homology. Applications to dynamical system problems. Arnold
conjecture. Floer homology.



Exponentially
small

eigenval-
ues of
Witten

Laplacians
1: Results

Francis
Nier,

LAGA,
Univ.

Paris 13

Thematic and chronological introduction

Algebraic topology and applications:

Morse theory: Thom-Smale , Milnor(1963), Laudenbach (1992)

Barannikov (1994): Another presentation of Morse theory introducing some bar
codes, βp = dim Hp(M,K) , K a field.

Laudenbach (2011): Inspired by Chang-Liu (1995), complete description of
Morse inequalities, works with βp = dim Hp(M,Z) .

Le Peutrec-N.-Viterbo (2013): Use of Barannikov presentation for
Eyring-Kramers law for p-forms.

Carlsson-Zomorodian(2005), Carlsson(2009): Motivated by previous works in
statistical data analysis, introduced “persistent homology” (general framework
which includes Barannikov’s approach to Morse theory and usually presented
within a Cech cohomology approach).

Cohen-Steiner, Edelsbrunner, Harer (2007): Stability of persistent diagram (or
bar codes), presentation with Morse theory.

Polterovich-Shelukhin(2016), Usher-Zhang (2016),
Bihovsky-Humilière-Seyfaddini (2017): Relation between Ref-LNV, Barannikov to
persistent homology. Applications to dynamical system problems. Arnold
conjecture. Floer homology.



Exponentially
small

eigenval-
ues of
Witten

Laplacians
1: Results

Francis
Nier,

LAGA,
Univ.

Paris 13

Thematic and chronological introduction

Algebraic topology and applications:

Morse theory: Thom-Smale , Milnor(1963), Laudenbach (1992)

Barannikov (1994): Another presentation of Morse theory introducing some bar
codes, βp = dim Hp(M,K) , K a field.

Laudenbach (2011): Inspired by Chang-Liu (1995), complete description of
Morse inequalities, works with βp = dim Hp(M,Z) .

Le Peutrec-N.-Viterbo (2013): Use of Barannikov presentation for
Eyring-Kramers law for p-forms.

Carlsson-Zomorodian(2005), Carlsson(2009): Motivated by previous works in
statistical data analysis, introduced “persistent homology” (general framework
which includes Barannikov’s approach to Morse theory and usually presented
within a Cech cohomology approach).

Cohen-Steiner, Edelsbrunner, Harer (2007): Stability of persistent diagram (or
bar codes), presentation with Morse theory.

Polterovich-Shelukhin(2016), Usher-Zhang (2016),
Bihovsky-Humilière-Seyfaddini (2017): Relation between Ref-LNV, Barannikov to
persistent homology. Applications to dynamical system problems. Arnold
conjecture. Floer homology.



Exponentially
small

eigenval-
ues of
Witten

Laplacians
1: Results

Francis
Nier,

LAGA,
Univ.

Paris 13

Thematic and chronological introduction

Algebraic topology and applications:

Morse theory: Thom-Smale , Milnor(1963), Laudenbach (1992)

Barannikov (1994): Another presentation of Morse theory introducing some bar
codes, βp = dim Hp(M,K) , K a field.

Laudenbach (2011): Inspired by Chang-Liu (1995), complete description of
Morse inequalities, works with βp = dim Hp(M,Z) .

Le Peutrec-N.-Viterbo (2013): Use of Barannikov presentation for
Eyring-Kramers law for p-forms.

Carlsson-Zomorodian(2005), Carlsson(2009): Motivated by previous works in
statistical data analysis, introduced “persistent homology” (general framework
which includes Barannikov’s approach to Morse theory and usually presented
within a Cech cohomology approach).

Cohen-Steiner, Edelsbrunner, Harer (2007): Stability of persistent diagram (or
bar codes), presentation with Morse theory.

Polterovich-Shelukhin(2016), Usher-Zhang (2016),
Bihovsky-Humilière-Seyfaddini (2017): Relation between Ref-LNV, Barannikov to
persistent homology. Applications to dynamical system problems. Arnold
conjecture. Floer homology.



Exponentially
small

eigenval-
ues of
Witten

Laplacians
1: Results

Francis
Nier,

LAGA,
Univ.

Paris 13

Thematic and chronological introduction

Algebraic topology and applications:

Morse theory: Thom-Smale , Milnor(1963), Laudenbach (1992)

Barannikov (1994): Another presentation of Morse theory introducing some bar
codes, βp = dim Hp(M,K) , K a field.

Laudenbach (2011): Inspired by Chang-Liu (1995), complete description of
Morse inequalities, works with βp = dim Hp(M,Z) .

Le Peutrec-N.-Viterbo (2013): Use of Barannikov presentation for
Eyring-Kramers law for p-forms.

Carlsson-Zomorodian(2005), Carlsson(2009): Motivated by previous works in
statistical data analysis, introduced “persistent homology” (general framework
which includes Barannikov’s approach to Morse theory and usually presented
within a Cech cohomology approach).

Cohen-Steiner, Edelsbrunner, Harer (2007): Stability of persistent diagram (or
bar codes), presentation with Morse theory.

Polterovich-Shelukhin(2016), Usher-Zhang (2016),
Bihovsky-Humilière-Seyfaddini (2017): Relation between Ref-LNV, Barannikov to
persistent homology. Applications to dynamical system problems. Arnold
conjecture. Floer homology.



Exponentially
small

eigenval-
ues of
Witten

Laplacians
1: Results

Francis
Nier,

LAGA,
Univ.

Paris 13

Thematic and chronological introduction

Algebraic topology and applications:

Morse theory: Thom-Smale , Milnor(1963), Laudenbach (1992)

Barannikov (1994): Another presentation of Morse theory introducing some bar
codes, βp = dim Hp(M,K) , K a field.

Laudenbach (2011): Inspired by Chang-Liu (1995), complete description of
Morse inequalities, works with βp = dim Hp(M,Z) .

Le Peutrec-N.-Viterbo (2013): Use of Barannikov presentation for
Eyring-Kramers law for p-forms.

Carlsson-Zomorodian(2005), Carlsson(2009): Motivated by previous works in
statistical data analysis, introduced “persistent homology” (general framework
which includes Barannikov’s approach to Morse theory and usually presented
within a Cech cohomology approach).

Cohen-Steiner, Edelsbrunner, Harer (2007): Stability of persistent diagram (or
bar codes), presentation with Morse theory.

Polterovich-Shelukhin(2016), Usher-Zhang (2016),
Bihovsky-Humilière-Seyfaddini (2017): Relation between Ref-LNV, Barannikov to
persistent homology. Applications to dynamical system problems. Arnold
conjecture. Floer homology.



Exponentially
small

eigenval-
ues of
Witten

Laplacians
1: Results

Francis
Nier,

LAGA,
Univ.

Paris 13

Thematic and chronological introduction

Algebraic topology and applications:

Morse theory: Thom-Smale , Milnor(1963), Laudenbach (1992)

Barannikov (1994): Another presentation of Morse theory introducing some bar
codes, βp = dim Hp(M,K) , K a field.

Laudenbach (2011): Inspired by Chang-Liu (1995), complete description of
Morse inequalities, works with βp = dim Hp(M,Z) .

Le Peutrec-N.-Viterbo (2013): Use of Barannikov presentation for
Eyring-Kramers law for p-forms.

Carlsson-Zomorodian(2005), Carlsson(2009): Motivated by previous works in
statistical data analysis, introduced “persistent homology” (general framework
which includes Barannikov’s approach to Morse theory and usually presented
within a Cech cohomology approach).

Cohen-Steiner, Edelsbrunner, Harer (2007): Stability of persistent diagram (or
bar codes), presentation with Morse theory.

Polterovich-Shelukhin(2016), Usher-Zhang (2016),
Bihovsky-Humilière-Seyfaddini (2017): Relation between Ref-LNV, Barannikov to
persistent homology. Applications to dynamical system problems. Arnold
conjecture. Floer homology.



Exponentially
small

eigenval-
ues of
Witten

Laplacians
1: Results

Francis
Nier,

LAGA,
Univ.

Paris 13

Result for functions on manifolds without boundary

REF: Helffer-Klein-N.(04). Bovier-Eckhoff-Gayrard-Klein(04), Hérau-Hitrik-Sjöstrand(08), Michel(16)

(M, g) (compact oriented) riemannian manifold.

∆
(0)
f ,h = d∗f ,hdf ,h restrictied to degree p = 0 .

Generic Assumption;

f is a Morse function

All critical values of index 0 and 1 are distinct

All difference f (U
(1)
j(k)

)− f (U
(0)
k ) are distinct and ordered in the decreasing order

(with j(1) = +∞)

Pairing k → j(k): Consider f λ = {x ∈ M , f (x) < λ} . Decrease λ from +∞ to min f . When

the number of connected components of f λ increases, λ must be a critical value with

λ = f (U
(1)
j ) . The new global minimum of an appearing connected component is U

(0)
k and

j = j(k) .

The k-th, m0 ≥ k ≥ 2, eigenvalue of ∆
(0)
f ,h (λ1(h) = 0) equals

λk≥2(h) =
h

π
|λ̂1(U

(1)
j(k)

)|

√√√√√
∣∣∣det(Hess f (U

(0)
k ))

∣∣∣∣∣∣det(Hess f (U
(1)
j(k)

))
∣∣∣ (1 + ck (h)) exp

−2(f (U
(1)
j(k)

)− f (U
(0)
k ))

h


with ck (h) ∼

∑∞
`=1 c`h

` , λ̂1(U
(1)
j ) negative eigenvalue of Hessf (U

(1)
j ) .
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Results for functions on manifolds with boundary

Eyring-Kramers law for exp. small eigenvalues:
REF: Chang-Liu(95), Helffer-N.(06), Le Peutrec(10) (M, g) (compact oriented) manifold with regular
boundary ∂M .
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Results for functions on manifolds with boundary

Eyring-Kramers law for exp. small eigenvalues:
REF: Chang-Liu(95), Helffer-N.(06), Le Peutrec(10) (M, g) (compact oriented) manifold with regular

boundary ∂M . Dirichlet and Neumann realizations of ∆
(p)
f ,h:

D(∆
D,(p)
f ,h ) =

{
ω ∈W 2,2(M; ΛpT∗M) , tω = 0 , td∗f ,hω = 0

}
,

D(∆
N,(p)
f ,h ) =

{
ω ∈W 2,2(M; ΛpT∗M) , nω = 0 , ndf ,hω = 0

}
,
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Results for functions on manifolds with boundary

Eyring-Kramers law for exp. small eigenvalues:
REF: Chang-Liu(95), Helffer-N.(06), Le Peutrec(10) (M, g) (compact oriented) manifold with regular
boundary ∂M .

(D) tω = 0, td∗f ,hω = 0 , (N) nω = 0 , ndf ,hω = 0 .

Assumption: f is a Morse function such that ∇f does not vanish on ∂M .
Generalized critical points U(p) of index p:

Dirichlet: U(p) ∈ M is a critical point of index p or U(p) ∈ ∂M is a critical point
of index p − 1 of f

∣∣
∂M

such that ∂nf (U(p)) > 0 .

Neumann: U(p) ∈ M is a critical point of index p or U(p) ∈ ∂M is a critical point
of index p of f

∣∣
∂M

such that ∂nf (U(p)) < 0 .
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Results for functions on manifolds with boundary

Eyring-Kramers law for exp. small eigenvalues:
REF: Chang-Liu(95), Helffer-N.(06), Le Peutrec(10) (M, g) (compact oriented) manifold with regular
boundary ∂M .

(D) tω = 0, td∗f ,hω = 0 , (N)nω = 0 , ndf ,hω = 0 .

Assumption: f is a Morse function such that ∇f does not vanish on ∂M .
Generalized critical points with index p on ∂M (D): p−1, ∂nf > 0 , (N): p, ∂nf < 0 .
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Results for functions on manifolds with boundary

Eyring-Kramers law for exp. small eigenvalues:
REF: Chang-Liu(95), Helffer-N.(06), Le Peutrec(10)

(D) tω = 0, td∗f ,hω = 0 , (N)nω = 0 , ndf ,hω = 0 .

Assumption: f is a Morse function such that ∇f does not vanish on ∂M .
Generalized critical points with index p on ∂M (D): p − 1, ∂nf > 0 , (N): p, ∂nf < 0 .
Then same Generic Assumption and pairing process as for the boundaryless case while
replacing critical points by generalized critical points. Result for Dirichlet:

λk (h) =
h

π
|λ̂1(U

(1)
j(k)

)|

√√√√√
∣∣∣det(Hess f (U

(0)
k ))

∣∣∣∣∣∣det(Hess f (U
(1)
j(k)

))
∣∣∣
(
1 + hc1

k (h)
)

× exp

−2
(
f (U

(1)
j(k)

)− f (U
(0)
k )
)

h

 , if U
(1)
j(k)
6∈ ∂M ,

λk (h) =
2h1/2|∇f (U

(1)
j(k)

)|

π1/2

√√√√√
∣∣∣det(Hess f (U

(0)
k ))

∣∣∣∣∣∣det(Hess f
∣∣
∂M

(U
(1)
j(k)

))
∣∣∣
(
1 + hc1

k (h)
)

× exp

−2
(
f (U

(1)
j(k)

)− f (U
(0)
k )
)

h

 , if U
(1)
j(k)
∈ ∂M ,
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Results for functions on manifolds with boundary

Quasi-stationary distribution:
REF:Lelièvre-N.(15), Di Gesu-Lelièvre-Le Peutrec-Nectoux

Generic Assumption on f1 in the boundary case (Dirichlet BC on domain Ω)
Assume that minx∈∂Ω f1 is larger than all interior critical values of f .
f2 is a C∞ perturbation of f1 around the global minimum of f1 (f2 not necessarily
Morse).

λ
(0)
1 (f2)

λ
(0)
1 (f1)

=
∫

Ω e
−2

f1(x)
h dx∫

Ω e
−2

f2(x)
h dx

(1 +O(e−
c
h )) ,

∂n

[
e
− f2

h u
(0)
1 (f2)

]∣∣
∂Ω

‖∂n

[
e
− f2

h u
(0)
1 (f2)

]
‖
L1(∂Ω)

=
∂n

[
e
− f1

h u
(0)
1 (f1)

]∣∣
∂Ω

‖∂n

[
e
− f1

h u
(0)
1 (f1)

]
‖
L1(∂Ω)

+O(e−
c
h ) in L1(∂Ω) .
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Result for p-forms

REF: Le Peutrec-N.-Viterbo(13)

(M, g) compact (oriented) manifold without boundary.

Consider f λ = {x ∈ M, f (x) < λ} and fλ = {x ∈ M, f (x) > λ} .

For −∞ ≤ µ < λ ≤ +∞ , Hp(f λ
∣∣f µ) denotes the relative p-homology vector

space (here R-valued homology).

Assume that all the critical values are distinct → we identify the critical point U
with the critical value f (U) = c .

When c is a critical value with index p then dim Hp(f c+ε, f c−ε) = 1 . Playing
with long exact sequences one can partition critical points into upper,lower and
homological critical points

U (p) = U (p)
U t U (p)

L t U (p)
H

The pairing is as follows: If U (p) is an upper critical points we associate value
c ′ = sup

{
λ < c ,Hp(f c+ε, f λ)→ Hp(f c+ε, f c−ε) vanishes

}
then c ′ is a lower

critical value with index p − 1 . Then define ∂Bc = c ′ (or ∂BU
(p) = U(p−1) with

f (U(p−1)) = c ′) in this case and ∂Bc = 0 (or ∂BU
(p) = 0) in all the other cases

(U(p) a lower or homological critical points).

(Vect(U,U ∈ U), ∂B) is a chain complex and its degree p homology vector space
has the dimension βp = dim Hp(M) .
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c ′ = sup

{
λ < c ,Hp(f c+ε, f λ)→ Hp(f c+ε, f c−ε) vanishes

}
then c ′ is a lower

critical value with index p − 1 . Then define ∂Bc = c ′ (or ∂BU
(p) = U(p−1) with

f (U(p−1)) = c ′) in this case and ∂Bc = 0 (or ∂BU
(p) = 0) in all the other cases

(U(p) a lower or homological critical points).

(Vect(U,U ∈ U), ∂B) is a chain complex and its degree p homology vector space
has the dimension βp = dim Hp(M) .
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Result for p-forms

There is a one to one correspondance jp between U (p) and the set of eigenvalues

(counted with multiplicities) of ∆
(p)
f ,h lying in [0, h3/2) such that

jp(U(p)) = 0 if U(p) ∈ U (p)
H

jp(U(p)) = κ2(U(p+1))
h

π

|λ(p+1)
1 . . . λ

(p+1)
p+1 |

|λ(p)
1 . . . λ

(p)
p |

|Hessf (U(p))|1/2

|Hessf (U(p+1))|1/2
(1 +O(h))e−2

f (U(p+1))−f (U(p))
h

if ∂BU
(p+1) = U(p)

jp(U(p)) = κ2(U(p))
h

π

|λ(p)
1 . . . λ

(p)
p |

|λ(p−1)
1 . . . λ

(p−1)
p−1 |

|Hessf (U(p−1))|1/2

|Hessf (U(p))|1/2
(1 +O(h))e−2

f (U(p))−f (U(p−1))
h

if ∂BU
(p) = U(p−1)

Here the λ’s denote the negative eigenvalues of the Hessf at the corresponding points.
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Open problems

Accurate computations of exponentially small eigenvalues for p-forms in the case
with boundary under Generic Assumption.

For the result on p-forms, are the topological constants κp(k)2 equal to 1 (true
for p = 0 or p = dim M → true for all p = 0, 1, 2 when dim M = 2) ?

Accurate computations of exponentially small eigenvalues for p-forms for the
hypoelliptic Laplacian under the generic assumption (on manifolds 1-without
boundary, 2-with regular boundary).

Extend the QSD results to the Langevin case (requires refinement on the analysis
of boundary geometric Kramers-Fokker-Planck operators, parameter
dependence).

Remove as much as possible the Generic Assumption and possibly the Morse
assumption (connection with bar codes topology in persistent homology to be
better understood).
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