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Our problem

eigenval- . . . ..
S Solution(to be explained): pairs encoded by colors, black — no pairing.
Witten

Laplacians 2

3: Morse

theory and

persistent

homology
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2 exp small eigenvalues for Afcoi, among which 0 with multiplicity 1.

7 exp small eigenvalues for Aﬁ, , among which 0 with multiplicity 4.

3 exp small eigenvalue for A(le, among which 0 with multiplicity 1.



Persistent homology

eigenval-
s of REF: Carlsson(05), Carlsson-Zomorodian(05)
itten
ey The most robust and concise global information that we can get about the shape
theoryta"? of an object in large dimension, is about its topology.
persisten
ety In statistical data analysis, such object are usually given as a cloud of points.

F . . . .
‘ Question: What suggest that the picture below is a circle ?



Persistent homology

eEina:‘\ REF: Carlsson(05), Carlsson-Zomorodian(05)
';”mfsf The most robust and concise global information that we can get about the shape
theory and of an object in large dimension, is about its topology.
:Z:ilt:g; In statistical data analysis, such object are usually given as a cloud of points.
rf Question: What suggest that the picture below is a circle ?

Answer: Replace poiﬁt’s 'by-ball“’sl\:/vith varying radius.
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Persistent homology

REF: Carlsson(05), Carlsson-Zomorodian(05)
The most robust and concise global information that we can get about the shape
of an object in large dimension, is about its topology.

In statistical data analysis, such object are usually given as a cloud of points.

Question: What suggest that the picture below is a circle ?

For a wide range (persistence) of radius, thé homology groups of the grey area are the
one of the circle.
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Persistent homology

REF: Carlsson(05), Carlsson-Zomorodian(05)
The most robust and concise global information that we can get about the shape
of an object in large dimension, is about its topology.

In statistical data analysis, such object are usually given as a cloud of points.

Question: What suggest that the picture below is a circle ?

For a wide range (persistence) of radius, the homology groups of the grey area are the
one of the circle.
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Persistent homology

REF: Carlsson(05), Carlsson-Zomorodian(05)
The most robust and concise global information that we can get about the shape
of an object in large dimension, is about its topology.

In statistical data analysis, such object are usually given as a cloud of points.

Question: What suggest that the picture below is a circle ?

For a wide range (persistence) of radius, the homology groups of the grey area are the
one of the circle.
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Persistent homology

REF: Carlsson(05), Carlsson-Zomorodian(05)
The most robust and concise global information that we can get about the shape
of an object in large dimension, is about its topology.

In statistical data analysis, such object are usually given as a cloud of points.

Question: What suggest that the picture below is a circle ?

For a wide range (persistence) of radius, the homology groups of the grey area are the
one of the circle.



Persistent homology

EE%:Z? REF: Carlsson(05), Carlsson-Zomorodian(05)
";"'hjlijfsf The most robust and concise global information that we can get about the shape
theory and of an object in large dimension, is about its topology.
:Zvrilzltsg In statistical data analysis, such object are usually given as a cloud of points.
o Question: What suggest that the picture below is a circle ?

The structure eventually disappear.
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Persistent homology

REF: Carlsson(05), Carlsson-Zomorodian(05)

The most robust and concise global information that we can get about the shape
of an object in large dimension, is about its topology.
In statistical data analysis, such object are usually given as a cloud of points.

Question: What suggest that the picture below is a circle ?

Note that intermittently small irrelevant structure may appear (for a small range of
parameter).



Persistent homology

Exponential
ei;:i/”af\— Idea: For a set of point S € RP, find the p-cycles which persist in UyesB(y,r)
e for a wide range of r.

P Moae Carlsson(05) and Carlson-Zomorodian(05) follow this presentation based on Cech

‘:::;th"f cohomology (cohomology of ball coverings, dual to some singular homology) and
homology introduce the general algebraic setting.

Another point of view consist in studying the homology groups of the sublevel set
of x — d(x,S) with e.g. d(.,.) given by the euclidean distance.

When d(.S) is replaced f a Morse function, studying the homology of sublevel
sets fA = {x € M, f(x) < A} amounts to Morse theory.

This presentation is detailed by Cohen Steiner-Edelsberg-Harer (07) who also
prove the stability of bar codes or persistence diagrams (see also

Chazal-Cohen Steiner-et al. (09-12))

Remember that when X C Y there is a natural mapping of H.(X) — H.(Y)
(homology vector spaces, the ring of coefficients is a field K, K = R for Witten
Lapl.). Applying this with X = f* and Y = ! with s < t, the persistent
homology groups in degree p are defined as the ranges of Fs = Hp(f*) in

F: = Hp(f*) via the natural mapping ¢% : H.(f%) — H.(f?),

Fs = @sHo(F?) ,t>s,

and one studies all the family (Ff)s<:.
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P Moae Carlsson(05) and Carlson-Zomorodian(05) follow this presentation based on Cech

‘:::th:f cohomology (cohomology of ball coverings, dual to some singular homology) and
homology introduce the general algebraic setting.

Another point of view consist in studying the homology groups of the sublevel set
of x — d(x,S) with e.g. d(.,.) given by the euclidean distance.

When d(.S) is replaced f a Morse function, studying the homology of sublevel
sets f* = {x € M, f(x) < A} amounts to Morse theory.

This presentation is detailed by Cohen Steiner-Edelsberg-Harer (07) who also
prove the stability of bar codes or persistence diagrams (see also

Chazal-Cohen Steiner-et al. (09-12))
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Barannikov presentation of Morse theory

Exponentiall
oot REF: Barannikov(94), Le Peutrec-N.-Viterbo(13)
\X/e.;:‘ Generic Assumption: #U = #{f(U),U e U} (=C).
ey U e U and c = f(U) € C are identified.
ey ane fa={f<a}, f~®°=0and fr>° =M.
ersistent
:omo\ogy For ¢ € C the basis of Morse theory says (under the Generic Assumption)

Hp(f€te, f¢=%) = K when c is critical value (point) with index p and
Hp(fete, f€=¢) = 0 otherwise (e is a small positive number)

It means the alternative (long exact sequence)
Hp(f€=¢) == H,(f<t¢)  and
0 —= Hp(fere,f7°) — Hp_1(f<7°) — Hp_1(f°*¢) = 0,
0 —> Hp(f7°) —> Hp(fte) — Hp(fte,f<7¢) —0
and  Hp_1(f<7%) — = Hp_1(f<*) .

Duality: U is a critical point of index dim M — p of —f and use
fr = {x, f(x) > A} = (=F)~* with now feye C fo_c
Note also that Hy_(fy, f2) is the dual of H.(f2, fb) (Alexander duality).
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ey UeU and c = f(U) € C are identified.
theory and fa={f<a}, f~° =0and fr>° =M.
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[ For ¢ € C the basis of Morse theory says (under the Generic Assumption)

Hp(fete,f¢=¢) = K when c is critical value (point) with index p and
Hp(fete, f€=2) = 0 otherwise (¢ is a small positive number)

It means the alternative (long exact sequence)
Hp(f€=¢) 5= H,(f<t¢)  and
0 —= Hp(fere,f7°) — Hp_1(f<7°) — Hp_1(f°t¢) = 0,
0 —> Hp(f7°) — Hp(fte) — Hp(fte,f¢) —0
and  Hp_1(f¢7°) — = Hp_1(f°te) .

Duality: U is a critical point of index dim M — p of —f and use

fr = {x,f(x) > A} = (=F)~* with now feye C fo_c
Note also that Hy_(fy, f2) is the dual of H.(f2, fb) (Alexander duality).
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It means the alternative (long exact sequence)
Hp(fe=¢) 5= Hp(fet€)  and
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Duality: U is a critical point of index dim M — p of —f and use

fr = {x,f(x) > A} = (=F)~* with now feye C fo_c
Note also that Hy_(fy, f2) is the dual of H.(f2, fb) (Alexander duality).
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v“f,itiﬂ Generic Assumption: #U = #{f(U),U e U} (=C).

ey U €U and c = f(U) € C are identified.
theory and fa={f<a}, f~° =0and fr>° =M.
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:omo\ogy For ¢ € C the basis of Morse theory says (under the Generic Assumption)
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Note also that Hy_(fy, f2) is the dual of H.(f2, fb) (Alexander duality).

There are a priori 2 X 2 cases.
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Barannikov presentation of Morse theory

Actually there are only 3 cases:
Definition
m A critical value (resp. point) c of f is called an
natural mapping

critical value (resp. point), if the

Hy (FC7) ———= H,(f°T¢,f°7°)  vanishes.
m A critical value (resp. point) c of f is called a critical value (resp. point), if the
natural mapping

Ho(FT5,FC7°) ——= H.(M, %)  vanishes.

m In all other cases the critical value (resp. point) c, is called an critical
value (resp. point).
This makes a partition of U (see next slide)
U=Uy U LUy

u® =uP v LyP
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Barannikov presentation of Morse theory

Definition
m A critical value (resp. point) c of f is called an upper critical value (resp. point), if the

natural mapping
H*(f”s) ——> H.(ft%,f°7°)  vanishes.
m A critical value (resp. point) c of f is called a lower critical value (resp. point), if the
natural mapping

H.(f78,f7¢) —— H.(M, f°"%) vanishes.

m In all other cases the critical value (resp. point) c, is called an homological critical
value (resp. point).
This makes a partition of U (see next slide)
U=Uy U UUy
_ 24P (p) (p)
ue) =y, uu” oy
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Barannikov presentation of Morse theory

Definition
m A critical value (resp. point) c of f is called an upper critical value (resp. point), if the

natural mapping
Hy(FETE, F7°) ——= H.(f°"%,f°"°)  vanishes.
m A critical value (resp. point) c of f is called a lower critical value (resp. point), if the
natural mapping

H, (FEF8, F€75) —— H,.(f**°,f°7%)  vanishes.

lower=dual notion of upper
m In all other cases the critical value (resp. point) c, is called an homological critical

value (resp. point).
This makes a partition of U (see next slide)
U =Uy WU UUY
— 24P (p) (p)
ue) =y uu” uuy
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Barannikov presentation of Morse theory

Definition
m A critical value (resp. point) c of f is called an upper critical value (resp. point), if the

natural mapping
Hy(FETE, F7°) ——= H.(f°"%,f°"°)  vanishes.
m A critical value (resp. point) c of f is called a lower critical value (resp. point), if the
natural mapping

H, (FEF8, F€75) —— H,.(f**°,f°7%)  vanishes.

lower=dual notion of upper
m In all other cases the critical value (resp. point) c, is called an homological critical

value (resp. point).
This makes a partition of U/ (see next slide)
U=Uy U UUy
— 74P (p) (p)
uP =u v uuy



Barannikov presentation of Morse theory

(Spaneiiit] Remember that if BC AC X and B’ C A’ C X’ and
ei;’:‘av"a‘r ¢ : X(resp.A, B) — X'(resp.A’, B') continuous, then
ues of
o .
Laplacians Ha (A, B) Ha (X, B) Ha (X, A) Hy_1(A, B) —>

3: Morse
theory and
persistent ©x P Px Px
homology
> Hy (A, B') ——> Hy (X', B') ——— Hi (X", A") *a> Hy_1(A,B') ———>
Apply it with
(X,A,B) = (f“i, f7,0) and (X' A, B')= (M, ¢ 0)

with the mapping i°¢te : fete 5 M = 70 ;

Hy(F=%) —— > Hy (M) ——> H (M, F—=) — 2 5 H,_i(F*)

If ;29T =0 (U €Uy), the d-map in the first line cannot be one to one

(U € Uy) and conversely U € Uy = (U €U,).
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(U € Uy) and conversely U € Uy = (U €U,).



Barannikov presentation of Morse theory

xponentia emember that i CAC an C C an
E tial R ber that if BC AC X and B’ C A’ C X’ and

ei;;av"a‘, o : X(resp.A, B) — X’(resp.A’, B’) continuous, then

ues of

Witten P
Laplacians Hy (A, B) Hy (X, B) Ha (X, A) - Hy 1(A, B) —>

3: Morse
theory and

persistent Px ©x 7y Px
homology

———— Hs (A, B) ———= H (X!, B") ———= H.(X", A) H() Hy _1(A",B') ——>
Apply it with
(X,A,B) = (f°"¢,f7=.0) and (X',A,B')=(M,f=,0)
with the mapping i°¢te ; fete 5 M = 70 ;

Hy(FE5) ——> H,(FF°) — > Ho(Fete feme) — 2 ol _i(Fee) .

ild li:"v”f i,gom lld

Ho(F6=8) ——> Ho(M) —— Ho (M, fo==) — 2 > H,_1(F9)

If ig>°T =0 (U €U,), the &-map in the first line cannot be one to one
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FUCTE Remember: U € I/IL(}P) (cecy)if
theory and
ﬁzz:‘t:g; Hp(fﬁ»g7 f->\) $ ’_IP('(H»s7 f-cfe) $ prl(fC7E7 f-)\) SN prl(chrE, f-/\) — >0
(0.1)
holds for A = —oo . It is clearly not true for A =c —¢.
By diagram chasing (a bit more involved than before) one can prove:
m ¢’ =sup{\ < c,(0.1) true} is a lower critical value.

m #CP) = B,(M) = dim Hy(M).
Definition: On @ o Kec = @pﬁg' M Vect (C(P)) we define Op by:
m Ogc = c’ when ¢ € Cy and ¢’ = sup {\ < ¢, (0.1) true} € C, .
m Ogc = 0 otherwise.
Clearly 9g 0 9g = 0 and dim Hp(Vect(C)|0g) = #C;f) = Bp. (Morse
inequalities)
Its also provides the pairing ¢ € C(P) is associated with ¢’ € C(P~1) if dgc = ¢’ .
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Its also provides the pairing ¢ € C(P) is associated with ¢/ € C(P~1) if fgc = ¢’



Barannikov presentation of Morse theory

Exponential cée Cg’) if
small
eigenval- —o )
KOG H,(F7, ) —— Hp(F, F7%) —— Hp 1 (F75, FY) —— Hpoa (F75, F) ——>0
Itten
ey holds for A < Ogc, and fails for ¢ > A\ > Ogc.
"‘e(’(yta"f For p = 1, this means that a new connected component of f* appears when A
persisten

decreases from ¢ + € to ¢ — ¢ and because dgc & Uy this connected component
disapears when X\ < dgc (see later bar code) .
Let us look at the case p = 2 on an example

Hz(fc'g, f'c’ff) _ H2(fc\5) — {0
by retraction to an
8-curve.

homology

Ho(FEFe, F€'72) = Ha(T?) ~ Ha(S?)

o _ HZ(f‘C‘Ff‘C*E)‘
relative _ reduced homology
homology ~—  of the suspension

One can also notice that dim H; (') is increased by 1 (from 2 to 3) when t goes
fromc+etoc—e.

Duality: Alternatively for the case (p =2,p — 1 = 1), take the picture upside
down and look at (p=1,p—1=0).
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cec?if
Ho(FEH, £2) 2 Hy(F4e, £ 9) — T Hy 1 (F975, FY) ——> Hp 1 (F15, F2) ——> 0

holds for A < dgc, and fails for ¢ > A > Ogc.

For p = 1, this means that a new connected component of f* appears when A
decreases from ¢ + ¢ to ¢ — € and because dgc & Uy this connected component
disapears when A < 9gc (see later bar code).

Let us look at the case p = 2 on an example

H2(fc.g’ fc’f;:) _ H2(fc\5) — {0
by retraction to an
8-curve.

Ho(FEFe, F€'72) = Ha(T?) ~ Ha(S?)

o _ HZ(f‘C‘Ff‘C*E)‘
relative _ reduced homology
homology ~—  of the suspension

One can also notice that dim H; (') is increased by 1 (from 2 to 3) when t goes

fromc+etoc—ce.
Duality: Alternatively for the case (p =2,p — 1 = 1), take the picture upside
down and look at (p=1,p—1=0).



Barannikov presentation of Morse theory

A -(p) -

Exponential

ool cecy i

eigenval- _ P

\;fi;:‘ Hp(fﬂrs. f’\) OE Hp(chrf;_ fc—':) S Hp l(fc—': . fA) > Hp l(fc—f_ fk) >0
FUCTE holds for A < dgc, and fails for ¢ > A\ > dgc.
"‘e(’fyta"f For p = 1, this means that a new connected component of f* appears when A
persisten

decreases from ¢ + € to ¢ — ¢ and because dgc & Uy this connected component
disapears when X\ < dgc (see later bar code) .
Let us look at the case p = 2 on an example

H2(fc+a’ fc/—s) — H2(f'C+E) — {0}
by retraction to an
8-curve.

homology

H2(fc+5, fc’+g) — H2(T2) ~ H2(S2)
— H2(fc+5,c75) .

relative reduced homology

homology ~—  of the suspension

One can also notice that dim H;(f?) is increased by 1 (from 2 to 3) when t goes
fromc+ectoc—e.

Duality: Alternatively for the case (p =2,p — 1 = 1), take the picture upside
down and look at (p=1,p—1=0).
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Barannikov presentation of Morse theory

cecl)if

Ho(FEH, £2) 2 Hy(F4e, £ 9) — T Hy 1 (F975, FY) ——> Hp 1 (F15, F2) ——> 0
holds for A < dgc, and fails for ¢ > A > Ogc.
For p = 1, this means that a new connected component of f* appears when A
decreases from ¢ + € to ¢ — ¢ and because dgc & Uy this connected component
disapears when X\ < dgc (see later bar code) .
Let us look at the case p = 2 on an example

Hz(fc'g, f'c’ff) _ H2(fc\5) — {0
by retraction to an
8-curve.

Ho(FEFe, F€'72) = Hy(T?) ~ Ha(S?)

o _ HZ(f‘C‘Ff‘C*E)‘
relative _ reduced homology
homology ~—  of the suspension

One can also notice that dim H;(f!) is increased by 1 (from 2 to 3) when t goes

fromc+etoc—ce.
Duality: Alternatively for the case (p = 2,p — 1 = 1), take the picture upside
down and look at (p=1,p—1=0).
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] Example of bar code for p = 1:

eigenval-
ues of
Witten
Laplacians
3: Morse
theory and
persistent
homology
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Bar codes, persistence diagrams

i
£ Z?,::r“al Example of bar code for p = 2:
eigenval-

ues of

Witten

Laplacians

3: Morse

theory and

persistent

homology




Bar codes, persistence diagrams

EXZO’:FHEI When ¢ € 083) and Ogc=c’ € Cip_l) =c ¢ C{f_l) , we know

eigenval- . 5

Wi Hp(FE5) 3 Hp (£, £5) — s Hy (F77) ——> Hpoa(F547) ——= 0
Laplacians

3: Morse e e e e
theory and and 0 —— H,_4(f ) ——> Hp_1 (£ %) > Hp_y(FS+5 ) 0.
persistent >
homology

By further diagram chasing, one can prove that the range of
Hp(fete, fe—e) L H,_1(f<~¢) defines a non nul element of
Hp,l(fc/+5. fc/*f): namely let e, (resp. e,_1) denote the stable manifold of
Vf at UP) (resp. UP—1) and let [ep] (resp [e,—1]) denotes its class in
Hp(FE+e, FE€) (resp. Hp_1(F< 1<, F€'=)) | then d[ep] = r[ep_1] with K # 0.
Because the coefficient ring is a field K, H. are vector spaces and
’ ~ /7(: .

Hp1(F€ %) = Hyp_1(F€'=%) & Klep_1]

Ho1(FS%) = Hp1(F*) @ Klep1]
Playing with the maps ¢! : Hp_1(f%) — Hp_1(f') with range F}, we obtain

Foe=Fa L oKlenl  FIL=FI7.

C £
With ¢ o ¢f, we deduce

1 ifd<t<c
0 ift<corc<t.

c

Ft,Jrg = F§,75 @ K(at[ep—1]) with o = {



Bar codes, persistence diagrams

Exponentia When ¢ € C,Lp) and Ogc =’ € C,(_p_l) =c ¢ Cﬁjp_l) , we know
smal
eigenval- -0 5
s of Hy(FEHe) —— Hp(F7F, F°7%) — " Hyp1(F°%) ——> Hyp_1(F°F%) —— 0
Laplacians
3: Morse o —e  te ! +e,c/ —¢
theory and and 0 ———= H,_1(f€ 7°) ——= Hp_1(f* %) ——— Hp1 (< 75° 7°) ——= 0.
ersistent
Sy

( ¢’ cannot satisfy the condition for ¢’ € Cgf_l) and dim H,,_l(fcl*'f7 Flmey=1)
By further diagram chasing, one can prove that the range of
Hp(fete, fe=¢) 9. Hp_1(f<7¢) defines a non nul element of
Hp,l(fc/+5, fc/’f): namely let e, (resp. e,—1) denote the stable manifold of
Vf at UP) (resp. UP=1) and let [ep] (resp [ep—1]) denotes its class in
Hp(FE+e, FE€) (resp. Hp_ 1(F' <, =) | then d[ey] = r[ep_1] with K £ 0.
Because the coefficient ring is a field K, H. are vector spaces and
Hp—1(F< %) = Hpo1(F9 %) @ Klep-1],
Hoo1(F<%) = Hp1(F4) & Klep1]
Playing with the maps @£ : Ho_1(f*) — Hp—1(f*) with range F}, we obtain
FSS=F5° @Klep 1] , FS'S =F5™

c/+e c’+e —e

With ¢! o ¢S, we deduce

Ft 1 ifd<t<c
0 ift<c orc<t.

G e = Fh_  ®K(atlep—1]) with ar = {



Bar codes, persistence diagrams

Exponential When ¢ € Cép) and Ogc =’ € C(Lpil) =c ¢ ngil) . we know

small
eigenval-
ues of =0

5 e 5 9 c—e cte

Witten Hp(F72) ——— Hp(F=, F97%) ——> Hp 1 (F7°) ——> Hpa (f7°) ——>0
Laplacians
e and 0 —— Hy_y(F %) ——> Hp_1(F+5) ——> H,_(Fr ¢ ~5) — > 0.
persistent
homology By further diagram chasing, one can prove that the range of

1] .

Hp(fete, f€€) — = Hp_1(f<7°) defines a non nul element of
Hp_l(r’cure7 £ =): namely let ep (resp. ep—1) denote the stable manifold of
VFf at UP) (resp. UP—D) and let [ep] (resp [ep—1]) denotes its class in
Hp(feTe, f¢¢) (resp. Hp_l(fc/+5, f‘:/_s)) , then 9[ep] = Kklep—1] with K # 0.
Because the coefficient ring is a field K, H. are vector spaces and

Hop1(F€+9) = Hp 1 (F€ %) @ K[ep1]
Hy—1(F%) = Hp1(F%) @ Klep 1]
Playing with the maps ¢! : Hp_1(f%) — Hp_1(f") with range F}, we obtain
Fe—c _ F¢

c/+e

S ®Klep-1] , FSE = FSte .

c/—e

With ¢! o ¢f, we deduce

. 1 ifd<t<c
t ot oo ! —
Forye = Fo_. ®K(ai[ep—1])  with a { 0 ift<corc<t.



Bar codes, persistence diagrams

Exponential When ¢ € CEJP) and dgc = ¢’ € C(Lp N o ¢ CEJP 1) we know

small

eigenval- . ;

f c+e - e - é . .

Witten Hp(FT8) ——= Hp(f75,f7°) ———= H,_1(f*7°) — H,_1(f7°) ——=0
Laplacians

3 M ;o L L
theoryofned and 0 ———= H, 1(f° %) ———= H,_1(f° ™) ———= H,_1(f ™5 7¢) ———=0.
persistent

homology

By further diagram chasing, one can prove that the range of
Hp(fete, fe=¢) LA H,_1(f<~¢) defines a non nul element of

Lo prl(fc/‘*'s, fc,_E): namely let e, (resp. e,—1) denote the stable manifold of
Vf at UP) (resp. UP—1) and let [ep] (resp [ep—1]) denotes its class in
Hp(fere, £€=¢) (resp. Hp,1(f5,+5, £'=<)) , then d[ep] = k[ep—1] with k # 0.

e



Bar codes, persistence diagrams

Exponential When ¢ € ¢P and 8gc = ¢/ € ¢P7Y = ¢ =4 P | we know
small u L U
eigenval- 0 5
ues of - cre pomey ¢
Witten Hp(f ‘ ) > Hp(f o f ) ——> Hpa(f ) ——> Hp_1(fFF7°) ——=10
Laplacians
3: Morse
theory and and 00— H,_(f€
persistent
homology

) prl(fC/‘:) prl(fC/‘:.C/ig) 0.

By further diagram chasing, one can prove that the range of
Hp(fere, feme) L Hp_1(f<~¢) defines a non nul element of
Hp,l(fc/+5. fc/*f): namely let e, (resp. e,_1) denote the stable manifold of
Vf at UP) (resp. UP—1) and let [ep] (resp [e,—1]) denotes its class in
Hp(FE+e, FE€) (resp. Hp_1(F< 1<, F€'=)) | then d[ey] = r[ep_1] with K # 0.
Because the coefficient ring is a field K, H, are vector spaces and
’ ’

Hp-1(f< %) = Hp1(F© %) & K[ep-al,

Ho-1(F<%) = Hpo1(F4%) @ Klep1]
Playing with the maps ¢! : Hp_1(f®) — Hp_1(f") with range F}, we obtain

s
Foie=FoLoKlen] , FIL=FIT,.

c'+e

With ¢! o ¢f, we deduce

. 1 ifd<t<c
t -t ’ —
Foye = Fo_. ®K(ai[ep—1]) with a { 0 ift<corc<t.



Bar codes, persistence diagrams

EXZO":”"“a' When ¢ € Cép) and Ogc =’ € C(Lpil) =c ¢ ngil) . we know
e'\gen\va\— 0 5

ues of cte - cte gc—e ¢ c—e cte

Witten Hp(F72) ——— Hp(F=, F97%) ——> Hp 1 (F7°) ——> Hpa (f7°) ——>0
Laplacians

3; Morse . e el e
theory and and 0 —— H, 1(f¢ %) ——> Hp_1(f+°) —— H,_1(f¢ ¢ ~¢) ——>0.
persistent
homology By further diagram chasing, one can prove that the range of

Hp(fere, feme) L Hp_1(f<~¢) defines a non nul element of
Hp,l(fc/+5. fc/*f): namely let e, (resp. e,_1) denote the stable manifold of
Vf at UP) (resp. UP—1) and let [ep] (resp [e,—1]) denotes its class in
Hp(FE+e, FE€) (resp. Hp_1(F< 1<, F€'=)) | then d[ey] = r[ep_1] with K # 0.

Because the coefficient ring is a field K, H. are vector spaces and
/ ~ /7': .
Hpo1(F+2) = Hy o1 (F9 %) @ Klep1],
Hp1(F<%) = Hpo1 (FF) @ K[ep—1]
Playing with the maps ¢} : Hp_1(f®) — Hp—_1(f*) with range F!, we obtain

,_-c € _Fc € @K[ep 1] , ,_-c+5 7FC+€ .

c'+e c’ c’+e c/—¢
With ¢! o ¢, we deduce

. 1 ifd<t<c
Fct+e—Fc—e@K(0‘t[ep—1]) W'tho‘t:{ 0 ift<corc<t.
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When ¢ € ijp) and Ogc = ¢’ , we have

. 1 ifd<t<c
Fct’+s = Fct’—s © K(at[ep-1]) with ar = { 0 ift<corc<t.

Meanwhile when ¢’ € Cﬁfﬁl) , the proof of f Cl(_ffl) =dim H,_1(M) = Bp
contains Ff,, = F},__ & K(at[ep—1]) with ar =1if t > ¢’ and ar = 0 for

t<c.

DEF: The of (M, f) is the set of intervals (dgc, c) with ¢ € Cy, or
(¢’, cr) with ¢’ € Cy and ¢ any number > max f (possibly +00) .

The is the corresponding set in R2 made of the pairs (a,b),

a < b the extremities of the above intervals to which we add the diagonal
A= {(x,x)}.

Stability: If f, g are two continuous functions such that H,(f*) and H.(g")
always have finite dimensions, the Hausdorff distance between persistence

diagrams satisfies

dn(Dg, Dr) < llg — oo
Alternatively it can be stated with the following distance between two bar codes:
The distance between {(a;, b;),i € I} and {(a}, b!),i € I} is
max {|a; — ay|, |bj — bl|,i € I}, with the convention that (o, 3) =0 if 8 < «.
For a presentation of bar codes, persistent diagrams for Morse functions in the

algebraic framework of persistence homology see Cohen Steiner-Edelsberg-Harer
(07) (stability result proved there), Zhang-Usher (16).



Bar codes, persistence diagrams

I When ¢ € Cg’) and Ogc = ¢’, we have
eigenval-
ue.sof R . 1 if C/ <t<c
Witten t = t [an) =
Laplatzians Fop. = Fo_. ®K(atlep—1]) with o { 0 ift<corc<t.
3: Morse
theory and . , (p—1) (r—1) )
persitent Meanwhile when ¢’ € C;y ™7, the proof of § C}y =dim H,—1(M) =B,
¥ contains F}, = F},__ & K(ai[ep—1]) with ar =1if t > ¢’ and a;x = 0 for
t<c.
DEF: The of (M, f) is the set of intervals (dgc, c) with ¢ € Cy, or
(¢’, cr) with ¢’ € Cy and ¢ any number > max f (possibly +00) .
The is the corresponding set in R2 made of the pairs (a,b),
a < b the extremities of the above intervals to which we add the diagonal
A= {(x,x)}.

Stability: If f, g are two continuous functions such that H,(f*) and H.(g")
always have finite dimensions, the Hausdorff distance between persistence
diagrams satisfies

dn(Dg, Dr) < llg — oo
Alternatively it can be stated with the following distance between two bar codes:
The distance between {(a;, b;),i € I} and {(a}, b!),i € I} is
max {|a; — ay|, |bj — bl|,i € I}, with the convention that (o, 3) =0 if 8 < «.
For a presentation of bar codes, persistent diagrams for Morse functions in the

algebraic framework of persistence homology see Cohen Steiner-Edelsberg-Harer
(07) (stability result proved there), Zhang-Usher (16).



Bar codes, persistence diagrams

I When c € Cgf) and dgc = ¢, we have
eigenval-
ues of 1 if ¢’ <t<c
Witts t = F! D i =
Lapllac?:ns Fo,.=Fo_. & K(at[ep—1]) with o { 0 iftec orc<t
3: Morse
theory and . _
persistent Meanwhile when ¢’ € C(: D the proof of # C‘(Lf Y = dim Hp—1(M) = Bp
e contains Fl,, = Fl,__ & K(at[ep—1]) with ar =1if t > ¢’ and ar = 0 for
t<c.

DEF: The bar code of (M, f) is the set of intervals (9gc, ¢) with ¢ € Cy, or
(¢’, ¢f) with ¢/ € Cy and ¢f any number > max f (possibly +00).
The persistence diagram is the corresponding set in R? made of the pairs (a, b),
a < b the extremities of the above intervals to which we add the diagonal
A ={(xx)}.
Stability: If f, g are two continuous functions such that H,(f*) and H.(g")
always have finite dimensions, the Hausdorff distance between persistence
diagrams satisfies

dn(Dg, Dr) < llg = flloo
Alternatively it can be stated with the following distance between two bar codes:
The distance between {(a;, b;),i € I} and {(a}, b!),i € I} is
max {|a; — ay|, |bj — bl|,i € I}, with the convention that (o, 3) =0 if 8 < c.
For a presentation of bar codes, persistent diagrams for Morse functions in the

algebraic framework of persistence homology see Cohen Steiner-Edelsberg-Harer
(07) (stability result proved there), Zhang-Usher (16).



Bar codes, persistence diagrams

Ex?f::r“” When ¢ € Cgf) and dgc = ¢, we have
eigenval-
ue.sof R . 1 if CI <t<c
Wi t = Ft fax) —
Lapltz?:ns Fop. = Fo_. ®K(atlep—1]) with o { 0 ift<corc<t.
3: Morse
theory and ) L 1) D=1 -
persistent Meanwhile when ¢’ € C;; "/, the proof of § C} =dim H,_1(M) = Bp
ey contains Fct, i FCI, O K(ovt[ep—1]) with ay =1 if t > ¢’ and a; = 0 for
t<c.
DEF: The of (M, f) is the set of intervals (dgc, c) with ¢ € Cy, or
(¢’, ¢f) with ¢/ € Cy and ¢f any number > max f (possibly +00).
The is the corresponding set in R2 made of the pairs (a,b),
a < b the extremities of the above intervals to which we add the diagonal
A= {(xx)}.

Stability: If f, g are two continuous functions such that H.(f*) and H.(g")
always have finite dimensions, the Hausdorff distance between persistence
diagrams satisfies

dH(Dg, Dr) < |lg — flloo
Alternatively it can be stated with the following distance between two bar codes:
The distance between {(aj, b;),i € I} and {(a},b}),i € I} is
max {|a; — ay|,|b; — bl|,i € I}, with the convention that (a,8) =0 if 3 < a.
For a presentation of bar codes, persistent diagrams for Morse functions in the
algebraic framework of persistence homology see Cohen Steiner-Edelsberg-Harer
(07) (stability result proved there), Zhang-Usher (16).



Bar codes, persistence diagrams

Ex?f::r“” When ¢ € Cgf) and dgc = ¢, we have
eigenval-
ue.sof R . 1 if CI <t<c
Witten t _ Ft o _
LapI:zians Fop. = Fo_. ®K(atlep—1]) with o { 0 ift<corc<t.
3: Morse
theory and ) , (r—1) D=1 o
persistent Meanwhile when ¢’ € C;; /, the proof of § C}; =dim H,_1(M) = Bp
ey contains Fct, i FCI, O K(ovt[ep—1]) with ay =1 if t > ¢’ and a; = 0 for
t<c.
DEF: The of (M, f) is the set of intervals (dgc, c) with ¢ € Cy, or
(¢’, cr) with ¢’ € Cy and ¢ any number > max f (possibly +00) .
The is the corresponding set in R2 made of the pairs (a,b),
a < b the extremities of the above intervals to which we add the diagonal
A= {(xx)}.

Stability: If f, g are two continuous functions such that H,(f*) and H.(g")
always have finite dimensions, the Hausdorff distance between persistence
diagrams satisfies

dr(Dg, Dr) < |lg — flleo
Alternatively it can be stated with the following distance between two bar codes:
The distance between {(a;, b;),i € I} and {(a}, b!),i € I} is
max {|a; — ay|, |bj — bl|,i € I}, with the convention that (o, 3) =0 if 8 < c.
For a presentation of bar codes, persistent diagrams for Morse functions in the

algebraic framework of persistence homology see Cohen Steiner-Edelsberg-Harer
(07) (stability result proved there), Zhang-Usher (16).
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Two periodic functions close to each other and their p = 0 bar code

Corresponding persistence diagrams



