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Our problem

Pairing of critical points ? e.g. f (x) =height of x on a surface.
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Our problem

Solution(to be explained): pairs encoded by colors, black → no pairing.
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2 exp small eigenvalues for ∆
(0)
f ,h , among which 0 with multiplicity 1.

7 exp small eigenvalues for ∆
(1)
f ,h , among which 0 with multiplicity 4.

3 exp small eigenvalue for ∆
(2)
f ,h , among which 0 with multiplicity 1.
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Persistent homology

REF: Carlsson(05), Carlsson-Zomorodian(05)

The most robust and concise global information that we can get about the shape
of an object in large dimension, is about its topology.

In statistical data analysis, such object are usually given as a cloud of points.

Question: What suggest that the picture below is a circle ?
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Answer: Replace points by balls with varying radius.
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Persistent homology

REF: Carlsson(05), Carlsson-Zomorodian(05)

The most robust and concise global information that we can get about the shape
of an object in large dimension, is about its topology.

In statistical data analysis, such object are usually given as a cloud of points.

Question: What suggest that the picture below is a circle ?
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For a wide range (persistence) of radius, the homology groups of the grey area are the
one of the circle.
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Persistent homology

REF: Carlsson(05), Carlsson-Zomorodian(05)

The most robust and concise global information that we can get about the shape
of an object in large dimension, is about its topology.

In statistical data analysis, such object are usually given as a cloud of points.

Question: What suggest that the picture below is a circle ?
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For a wide range (persistence) of radius, the homology groups of the grey area are the
one of the circle.
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REF: Carlsson(05), Carlsson-Zomorodian(05)

The most robust and concise global information that we can get about the shape
of an object in large dimension, is about its topology.

In statistical data analysis, such object are usually given as a cloud of points.

Question: What suggest that the picture below is a circle ?
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For a wide range (persistence) of radius, the homology groups of the grey area are the
one of the circle.
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Persistent homology

REF: Carlsson(05), Carlsson-Zomorodian(05)

The most robust and concise global information that we can get about the shape
of an object in large dimension, is about its topology.

In statistical data analysis, such object are usually given as a cloud of points.

Question: What suggest that the picture below is a circle ?
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For a wide range (persistence) of radius, the homology groups of the grey area are the
one of the circle.
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Persistent homology

REF: Carlsson(05), Carlsson-Zomorodian(05)

The most robust and concise global information that we can get about the shape
of an object in large dimension, is about its topology.

In statistical data analysis, such object are usually given as a cloud of points.

Question: What suggest that the picture below is a circle ?
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The structure eventually disappear.
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Persistent homology

REF: Carlsson(05), Carlsson-Zomorodian(05)

The most robust and concise global information that we can get about the shape
of an object in large dimension, is about its topology.

In statistical data analysis, such object are usually given as a cloud of points.

Question: What suggest that the picture below is a circle ?
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Note that intermittently small irrelevant structure may appear (for a small range of
parameter).
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Persistent homology

Idea: For a set of point S ∈ RD , find the p-cycles which persist in ∪y∈SB(y , r)
for a wide range of r .

Carlsson(05) and Carlson-Zomorodian(05) follow this presentation based on Cech
cohomology (cohomology of ball coverings, dual to some singular homology) and
introduce the general algebraic setting.

Another point of view consist in studying the homology groups of the sublevel set
of x 7→ d(x ,S) with e.g. d(., .) given by the euclidean distance .
When d(.S) is replaced f a Morse function, studying the homology of sublevel
sets f λ = {x ∈ M , f (x) < λ} amounts to Morse theory.
This presentation is detailed by Cohen Steiner-Edelsberg-Harer (07) who also
prove the stability of bar codes or persistence diagrams (see also
Chazal-Cohen Steiner-et al. (09-12))

Remember that when X ⊂ Y there is a natural mapping of H∗(X )→ H∗(Y )
(homology vector spaces, the ring of coefficients is a field K, K = R for Witten
Lapl.) . Applying this with X = f s and Y = f t with s < t, the persistent
homology groups in degree p are defined as the ranges of Fs = Hp(f s) in
Ft = Hp(f t) via the natural mapping ϕt

s : H∗(f s)→ H∗(f t) ,

F t
s = ϕt

sH∗(f
s) , t > s ,

and one studies all the family (F t
s )s<t .



Exponentially
small

eigenval-
ues of
Witten

Laplacians
3: Morse

theory and
persistent
homology

Francis
Nier,

LAGA,
Univ.

Paris 13

Persistent homology

Idea: For a set of point S ∈ RD , find the p-cycles which persist in ∪y∈SB(y , r)
for a wide range of r .

Carlsson(05) and Carlson-Zomorodian(05) follow this presentation based on Cech
cohomology (cohomology of ball coverings, dual to some singular homology) and
introduce the general algebraic setting.

Another point of view consist in studying the homology groups of the sublevel set
of x 7→ d(x ,S) with e.g. d(., .) given by the euclidean distance .
When d(.S) is replaced f a Morse function, studying the homology of sublevel
sets f λ = {x ∈ M , f (x) < λ} amounts to Morse theory.
This presentation is detailed by Cohen Steiner-Edelsberg-Harer (07) who also
prove the stability of bar codes or persistence diagrams (see also
Chazal-Cohen Steiner-et al. (09-12))

Remember that when X ⊂ Y there is a natural mapping of H∗(X )→ H∗(Y )
(homology vector spaces, the ring of coefficients is a field K, K = R for Witten
Lapl.) . Applying this with X = f s and Y = f t with s < t, the persistent
homology groups in degree p are defined as the ranges of Fs = Hp(f s) in
Ft = Hp(f t) via the natural mapping ϕt

s : H∗(f s)→ H∗(f t) ,

F t
s = ϕt

sH∗(f
s) , t > s ,

and one studies all the family (F t
s )s<t .



Exponentially
small

eigenval-
ues of
Witten

Laplacians
3: Morse

theory and
persistent
homology

Francis
Nier,

LAGA,
Univ.

Paris 13

Persistent homology

Idea: For a set of point S ∈ RD , find the p-cycles which persist in ∪y∈SB(y , r)
for a wide range of r .

Carlsson(05) and Carlson-Zomorodian(05) follow this presentation based on Cech
cohomology (cohomology of ball coverings, dual to some singular homology) and
introduce the general algebraic setting.

Another point of view consist in studying the homology groups of the sublevel set
of x 7→ d(x ,S) with e.g. d(., .) given by the euclidean distance .
When d(.S) is replaced f a Morse function, studying the homology of sublevel
sets f λ = {x ∈ M , f (x) < λ} amounts to Morse theory.
This presentation is detailed by Cohen Steiner-Edelsberg-Harer (07) who also
prove the stability of bar codes or persistence diagrams (see also
Chazal-Cohen Steiner-et al. (09-12))

Remember that when X ⊂ Y there is a natural mapping of H∗(X )→ H∗(Y )
(homology vector spaces, the ring of coefficients is a field K, K = R for Witten
Lapl.) . Applying this with X = f s and Y = f t with s < t, the persistent
homology groups in degree p are defined as the ranges of Fs = Hp(f s) in
Ft = Hp(f t) via the natural mapping ϕt

s : H∗(f s)→ H∗(f t) ,

F t
s = ϕt

sH∗(f
s) , t > s ,

and one studies all the family (F t
s )s<t .



Exponentially
small

eigenval-
ues of
Witten

Laplacians
3: Morse

theory and
persistent
homology

Francis
Nier,

LAGA,
Univ.

Paris 13

Persistent homology

Idea: For a set of point S ∈ RD , find the p-cycles which persist in ∪y∈SB(y , r)
for a wide range of r .

Carlsson(05) and Carlson-Zomorodian(05) follow this presentation based on Cech
cohomology (cohomology of ball coverings, dual to some singular homology) and
introduce the general algebraic setting.

Another point of view consist in studying the homology groups of the sublevel set
of x 7→ d(x ,S) with e.g. d(., .) given by the euclidean distance .
When d(.S) is replaced f a Morse function, studying the homology of sublevel
sets f λ = {x ∈ M , f (x) < λ} amounts to Morse theory.
This presentation is detailed by Cohen Steiner-Edelsberg-Harer (07) who also
prove the stability of bar codes or persistence diagrams (see also
Chazal-Cohen Steiner-et al. (09-12))

Remember that when X ⊂ Y there is a natural mapping of H∗(X )→ H∗(Y )
(homology vector spaces, the ring of coefficients is a field K, K = R for Witten
Lapl.) . Applying this with X = f s and Y = f t with s < t, the persistent
homology groups in degree p are defined as the ranges of Fs = Hp(f s) in
Ft = Hp(f t) via the natural mapping ϕt

s : H∗(f s)→ H∗(f t) ,

F t
s = ϕt

sH∗(f
s) , t > s ,

and one studies all the family (F t
s )s<t .



Exponentially
small

eigenval-
ues of
Witten

Laplacians
3: Morse

theory and
persistent
homology

Francis
Nier,

LAGA,
Univ.

Paris 13

Barannikov presentation of Morse theory

REF: Barannikov(94), Le Peutrec-N.-Viterbo(13)

Generic Assumption: #U = # {f (U),U ∈ U} (= C) .
U ∈ U and c = f (U) ∈ C are identified.
f a = {f < a}, f −∞ = ∅ and f +∞ = M .

For c ∈ C the basis of Morse theory says (under the Generic Assumption)
Hp(f c+ε, f c−ε) = K when c is critical value (point) with index p and
Hp(f c+ε, f c−ε) = 0 otherwise (ε is a small positive number)

It means the alternative (long exact sequence) Hp(f c−ε)
∼ // Hp(f c+ε) and

0 // Hp(f c+ε, f c−ε) // Hp−1(f c−ε) // Hp−1(f c+ε)→ 0 ,

xor

 0 // Hp(f c−ε) // Hp(f c+ε)→ Hp(f c+ε, f c−ε) // 0

and Hp−1(f c−ε)
∼ // Hp−1(f c+ε) .

Duality: U is a critical point of index dimM − p of −f and use
fλ = {x , f (x) > λ} = (−f )−λ with now fc+ε ⊂ fc−ε
Note also that Hd−∗(fb, fa) is the dual of H∗(f a, f b) (Alexander duality).

There are a priori 2× 2 cases.
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Hp(f c+ε, f c−ε) = K when c is critical value (point) with index p and
Hp(f c+ε, f c−ε) = 0 otherwise (ε is a small positive number)

It means the alternative (long exact sequence) Hp(f c−ε)
∼ // Hp(f c+ε) and

0 // Hp(f c+ε, f c−ε) // Hp−1(f c−ε) // Hp−1(f c+ε)→ 0 ,

xor

 0 // Hp(f c−ε) // Hp(f c+ε)→ Hp(f c+ε, f c−ε) // 0

and Hp−1(f c−ε)
∼ // Hp−1(f c+ε) .

Duality: U is a critical point of index dimM − p of −f and use
fλ = {x , f (x) > λ} = (−f )−λ with now fc+ε ⊂ fc−ε
Note also that Hd−∗(fb, fa) is the dual of H∗(f a, f b) (Alexander duality).

There are a priori 2× 2 cases.
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Actually there are only 3 cases:

Definition
A critical value (resp. point) c of f is called an upper critical value (resp. point), if the
natural mapping

H∗(f c+ε) // H∗(f c+ε, f c−ε) vanishes.

A critical value (resp. point) c of f is called a lower critical value (resp. point), if the
natural mapping

H∗(f c+ε, f c−ε) // H∗(M, f c−ε) vanishes.

In all other cases the critical value (resp. point) c, is called an homological critical
value (resp. point).

This makes a partition of U (see next slide)

U = UU t UL t UH
U (p) = U (p)

U t U (p)
L t U (p)

H
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Remember that if B ⊂ A ⊂ X and B′ ⊂ A′ ⊂ X ′ and
ϕ : X (resp.A,B)→ X ′(resp.A′,B′) continuous, then

// H∗(A, B) //

ϕ∗

��

H∗(X, B) //

ϕ∗

��

H∗(X, A)
∂ //

ϕ∗

��

H∗−1(A, B)

ϕ∗

��

//

// H∗(A′, B′) // H∗(X ′, B′) // H∗(X ′, A′)
∂ // H∗−1(A′, B′) //

Apply it with

(X ,A,B) = (f c+ε, f c−ε, ∅) and (X ′,A′,B′) = (M, f c−ε, ∅)

with the mapping i∞,c+ε : f c+ε → M = f +∞ :

H∗(f c−ε) //

Id

��

H∗(f c+ε) //

i∞,c+ε
∗

��

H∗(f c+ε, f c−ε)
∂ //

i
∞,c+ε
∗
��

H∗−1(f c−ε)

Id

��
H∗(f c−ε) // H∗(M) // H∗(M, f c−ε)

∂′ // H∗−1(f c−ε)

.

If i∞,c+ε
∗ = 0 (U ∈ UL) , the ∂-map in the first line cannot be one to one

(U 6∈ UU) and conversely U ∈ UU ⇒ (U 6∈ UL) .
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Barannikov presentation of Morse theory

Remember: U ∈ U (p)
U (c ∈ CU) if

Hp(f c+ε, f λ)
=0 // Hp(f c+ε, f c−ε)

∂ // Hp−1(f c−ε, f λ) // Hp−1(f c+ε, f λ) // 0
(0.1)

holds for λ = −∞ . It is clearly not true for λ = c − ε .

By diagram chasing (a bit more involved than before) one can prove:
c′ = sup {λ < c, (0.1) true} is a lower critical value.

#C(p)
H = βp(M) = dim Hp(M) .

Definition: On
⊕

c∈C Kc =
⊕ dim M

p=0 Vect
(
C(p)

)
we define ∂B by:

∂Bc = c′ when c ∈ CU and c′ = sup {λ < c, (0.1) true} ∈ CL .
∂Bc = 0 otherwise.

Clearly ∂B ◦ ∂B = 0 and dim Hp(Vect(C)|∂B) = #C(p)
H = βp . (Morse

inequalities)

Its also provides the pairing c ∈ C(p) is associated with c ′ ∈ C(p−1) if ∂Bc = c ′ .
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c ∈ C(p)
U if

Hp(f c+ε, f λ)
=0 // Hp(f c+ε, f c−ε)

∂ // Hp−1(f c−ε, f λ) // Hp−1(f c+ε, f λ) // 0

holds for λ < ∂Bc , and fails for c > λ > ∂Bc .
For p = 1 , this means that a new connected component of f λ appears when λ
decreases from c + ε to c − ε and because ∂Bc 6∈ UU this connected component
disapears when λ < ∂Bc (see later bar code) .
Let us look at the case p = 2 on an example

c+ ε

c− ε

c′+ ε

c′− ε

H2(f c+ε, f c
′−ε) = H2(f c+ε) = {0}
by retraction to an
8-curve.

H2(f c+ε, f c
′+ε) = H2(T2) ∼ H2(S2)

= H2(f c+ε,c−ε) .

relative
homology

=
reduced homology
of the suspension

One can also notice that dim H1(f t) is increased by 1 (from 2 to 3) when t goes
from c + ε to c − ε .
Duality: Alternatively for the case (p = 2, p − 1 = 1) , take the picture upside
down and look at (p = 1, p − 1 = 0) .
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Bar codes, persistence diagrams

Example of bar code for p = 0:
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Bar codes, persistence diagrams

Example of bar code for p = 1:
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Bar codes, persistence diagrams

Example of bar code for p = 2:
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When c ∈ C(p)
U and ∂Bc = c ′ ∈ C(p−1)

L ⇒ c ′ 6∈ C(p−1)
U , we know

Hp(f c+ε)
=0 // Hp(f c+ε, f c−ε)

∂ // Hp−1(f c−ε) // Hp−1(f c+ε) // 0

and 0 // Hp−1(f c
′−ε) // Hp−1(f c

′+ε) // Hp−1(f c
′+ε,c′−ε) // 0 .

By further diagram chasing, one can prove that the range of

Hp(f c+ε, f c−ε)
∂ // Hp−1(f c−ε) defines a non nul element of

Hp−1(f c
′+ε, f c

′−ε): namely let ep (resp. ep−1) denote the stable manifold of

∇f at U(p) (resp. U(p−1)) and let [ep ] (resp [ep−1]) denotes its class in

Hp(f c+ε, f c−ε) (resp. Hp−1(f c
′+ε, f c

′−ε)) , then ∂[ep ] = κ[ep−1] with κ 6= 0 .
Because the coefficient ring is a field K, H∗ are vector spaces and

Hp−1(f c
′+ε) = Hp−1(f c

′−ε)⊕ K[ep−1] ,

Hp−1(f c−ε) = Hp−1(f c+ε)⊕ K[ep−1]

Playing with the maps ϕt
s : Hp−1(f s)→ Hp−1(f t) with range F t

s , we obtain

F c−ε
c′+ε = F c−ε

c′−ε ⊕ K[ep−1] , F c+ε
c′+ε = F c+ε

c′−ε .

With ϕt
s ◦ ϕs

u , we deduce

F t
c′+ε = F t

c′−ε ⊕ K(αt [ep−1]) with αt =

{
1 if c ′ < t < c
0 if t < c ′ or c < t.
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When c ∈ C(p)
U and ∂Bc = c ′ , we have

F t
c′+ε = F t

c′−ε ⊕ K(αt [ep−1]) with αt =

{
1 if c ′ < t < c
0 if t < c ′ or c < t.

Meanwhile when c ′ ∈ C(p−1)
H , the proof of ] C(p−1)

H = dim Hp−1(M) = βp
contains F t

c′+ε = F t
c′−ε ⊕ K(αt [ep−1]) with αt = 1 if t > c ′ and αt = 0 for

t < c ′ .

DEF: The bar code of (M, f ) is the set of intervals (∂Bc, c) with c ∈ CU , or
(c ′, cf ) with c ′ ∈ CH and cf any number > max f (possibly +∞) .
The persistence diagram is the corresponding set in R2 made of the pairs (a, b) ,
a < b the extremities of the above intervals to which we add the diagonal
∆ = {(x , x)} .

Stability: If f , g are two continuous functions such that H∗(f t) and H∗(g t)
always have finite dimensions , the Hausdorff distance between persistence
diagrams satisfies

dH(Dg ,Df ) ≤ ‖g − f ‖∞
Alternatively it can be stated with the following distance between two bar codes:
The distance between {(ai , bi ), i ∈ I} and

{
(a′i , b

′
i ), i ∈ I

}
is

max
{
|ai − ai′ |, |bi − b′i |, i ∈ I

}
, with the convention that (α, β) = ∅ if β ≤ α .

For a presentation of bar codes, persistent diagrams for Morse functions in the
algebraic framework of persistence homology see Cohen Steiner-Edelsberg-Harer
(07) (stability result proved there), Zhang-Usher (16).
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Two periodic functions close to each other and their p = 0 bar code

Corresponding persistence diagrams


