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Result

Exponential

_5’"3” REF: Le Peutrec-N.-Viterbo(13)
ey (M, g) compact (oriented) manifold without boundary.
RO Consider £ = {x € M, f(x) <A} and fy = {x € M, f(x) > A}.
4: the
case of dim M
e Apy = (drp+df )2 = df ydp o+ drwdi = €D AY).
p=0

There is a one to one correspondance j, between UP) and the set of eigenvalues
(counted with multiplicities) of A(fpz lying in [0, h3/2) such that

Jp(UP) =0 if UP cuP
) AT Hessr(ute)) 12
™ ‘)\g!’) L )\E)P)| |[Hessf (U(P+1))[1/2

fuP+)y_fculP)
(1+O(h))e 2"

Jp(UP)y = 2 (Ul

if O yle+1) — ylp)

, Ao AP AP HessF(UP-D)|1/2 -
(P)y — 2P 1 p

) = U)o 6] Hessf(umyz O
w

5 F(uP)y—rulP—1))
Likia S Cliiin)

if O ulP) = ylp=1)

Here the \'s denote the negative eigenvalues of the Hessf at the corresponding points.



Extending the strategy used for p =

Exponentiall

e_‘;’e’:‘av”a‘r Witten Laplacnans We know that the number of O(h3/2)-eigenvalues of A(pzls
L@?;;; mp = fUP) = §C0) . Set FP) = Ranlyy 30 (AF)), F =115 43/2)(B¢ ) and
e BYE) = dr | poy - FP — FPHD | Then

case of

p-forms Af h|F ﬁf h+ Bf h)2 Bf hﬁf n+ Br h/8f h*

Singular values: When A&(iu = Au, u € F(P) there are three possibilities:
m A=0and Brpu=0, Aﬁ;_hll =0
m A #0and 87 ,u#0. Then 8} ,u € FP~Y and
D (B7 pu) = A(BF pu) = (B7 wBr.) (B pu).
LD 7£ 0 and Bf pu=0. Then Au = Af yu = B , B nu

In all cases A is the square of a singular value of Bf .

The pairing of critical points is given by Barannikov complex: dgUP) = y(p—1)

ulP) ¢ M((f), ulp=1 ¢ M{'Fl). Homological critical points U € Z/{)(_/p) will be

associated with eigenvalues 0 of A(f‘?})j and harmonic forms (dim = 8, = U p)).

In order to extend the strategy used for p = 0 with singular values, we need to
construct local quasimodes around upper critical points (WKB following
Helffer-Sjostrand) and global quasimodes for lower critical points. The explicit

(0)
form ’ufr,ﬂo)(h) = Xk exp[— %] which is no more possible for U € Z/[£p>0)
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ei;::wav”a\— Witten Laplacians: We know that the number of O(h3/2)-eigenvalues of A(f’?,{is
\x/ei;:‘ mp = ju(") = :c(p) . Set FlP) = Ranl[o‘ha/z)(Agf‘jz), F = 1[0‘h3’/2)(Af‘h) and
Laplacians
f-thef BYP) = df p| piey - F®) — FPHD) . Then
p-forms Af_h‘F = (Agr"h + ﬂ;f‘h)Q = 3;‘/73&}7 + ﬂf.hﬂ;“h
(p)

Singular values: When Af pU = Au, u € F(P) there are three possibilities:
m A=0and Brpu=0, B ,u=0
m A#0and 37 ,u#0. Then 37 ,u € FP~V and
APV (B7 pu) = AB7 pu) = (B74Br.n) (B7 ) -
L] >\ ;é 0and B7 ,u=0. Then Au= Af pu = Bf ,ff,nu.
In all cases X is the square of a singular value of B¢ p,.

The pairing of critical points is given by Barannikov complex: dgUP) = y(p—1)

ulP) ¢ M((f), ulk=1 ¢ M{'Fl). Homological critical points U € Z/{)(_/p) will be

associated with eigenvalues 0 of A(f‘?})j and harmonic forms (dim = 8, = U p)).

In order to extend the strategy used for p = 0 with singular values, we need to
construct local quasimodes around upper critical points (WKB following
Helffer-Sjostrand) and global quasimodes for lower critical points. The explicit

(0)
form ’ufr,ﬂo)(h) = Xk exp[— %] which is no more possible for U € Z/[£p>0)



Extending the strategy used for p =

EXZ:’T:‘:-”"HE' Witten Laplacians: We know that the number of O(h3/2)-eigenvalues of A(ff_),),is
sigenval mp = UP) = £CP) . Set FP) = Ranlyy 32 (AY)), F =145 43/2)(Ar,) and
Witten
Lazl::c'izns 3;’?}7 = df_h‘F(p) - F(P) — F(p+1) | Then
caseof At onl e = (Be,n+ BF.p)* = BF yBron + BronBf -
p-forms ’

Singular values: When Afcp)u = Au, u € FP) there are three possibilities:

m A=0and Brpu=0, B ,u=0
m A #£0and B7,u+#0. Then g} ,u € FP~Y and
AFD(B7 yu) = MB7 pu) = (7,48r.1)(BF 1)
L] /\ 75 0and 37 ,u=0. Then A\u = Ar hu = Bf ,Br,pu.
In all cases X is the square of a singular value of B¢ p,.

1 i
FP) = Ran(ﬁgph_l)) & ker(A(pr) =) Ran(ﬁfpr’*) Hodge decomposition .

The pairing of critical points is given by Barannikov complex: dgU(P) = y(P—1)
U@ eulP, ur-1 e PV . Homological critical points U € U will be
associated with eigenvalues 0 of A&pz and harmonic forms (dim = 8, = :tM‘E,p)).
In order to extend the strategy used for p = 0 with singular values, we need to
construct local quasimodes around upper critical points (WKB following
Helffer-Sjostrand) and global quasimodes for lower critical points. The explicit

F(x) f( ) (p>0)

form ’LYLO)(h) = xk exp[— Y )] which is no more possible for U € U, ,



Extending the strategy used for p =

Exponential

ei;::wav”a\— Witten Laplacians: We know that the number of O(h3/2)-eigenvalues of A(f’?,{is
\x/ei;:‘ mp = ju(") = :c(p) . Set FlP) = Ranl[o‘ha/z)(Agf‘jz), F = 1[0‘h3’/2)(Af‘h) and
Laplacians

f-thef BYP) = df p| piey - F®) — FPHD) . Then

p-forms Af_h‘F = (Agr"h + ﬂ;f‘h)Q = 3;‘/73&}7 + ﬂf.hﬂ;“h

Singular values: When A&'?iu = Au, u € F(P) there are three possibilities:
m A=0and Brpu=0, Aﬁ;_hll =0
m A #0and 87 ,u#0. Then 8} ,u € FP~Y and
D (B7 pu) = A(BF pu) = (B7 4Br.) (B pu).
LD 7£ 0 and Bf pu=0. Then Au = Af yu = B7 B nu

In all cases A is the square of a singular value of Bf .

The pairing of critical points is given by Barannikov complex: dg U = ylp=1)
U ¢ Z/{E,p), ule-1) ¢ U{P_l). Homological critical points U € U}_,P) will be
()

associated with eigenvalues 0 of A}", and harmonic forms (dim = 8, = ﬁl/{l(_lp)).

In order to extend the strategy used for p = 0 with singular values, we need to
construct local quasimodes around upper critical points (WKB following
Helffer-Sjostrand) and global quasimodes for lower critical points. The explicit
) —F(UD) (p>0)
Tk u;

form ’ufr,ﬂo)(h) = xk exp[— ] which is no more possible for U €



Extending the strategy used for p =

Exponential

ei;::wav”a\— Witten Laplacians: We know that the number of O(h3/2)-eigenvalues of A(f’?,{is
\x/ei;;:‘ mp = ju(") = :c(p) . Set Flp) = Ranl[o‘ha/2)(A§(!‘jz), F = 1[0‘h3’/2)(Af‘h) and
e BY) = df, ,,\ cip : FP) = F(P+1) | Then

case of

p-forms Af h‘F ‘3fh+A3f h) = 3r’l 3fh+ 3{;,'3

Singular values: When A&(iu =Au, uc€ F(P) there are three possibilities:
m A=0and Brpu=0, Aﬁ;_hll =0
m A #0and 87 ,u#0. Then 8} ,u € FP~Y and
D (B7 pu) = A(BF pu) = (B7 4Br.) (B pu).
LD 7£ 0 and Bf,u=0. Then Au = Af pu = Bf ,BF nu
In all cases A is the square of a singular value of Bf .

The pairing of critical points is given by Barannikov complex: dgUP) = y(p—1)

Ul ¢ Z/{(p) ulp—1) ¢ Z/{(pil). Homological critical points U € Z/{)(_/p) will be

associated with eigenvalues 0 of A(pl and harmonic forms (dim = 8, = U p))

In order to extend the strategy used for p = 0 with singular values, we need to
construct local quasimodes around upper critical points (WKB following
Helffer-Sjéstrand) and global quasimodes for lower critical points. The explicit

O F(U©
form 1/;,((0)(h) = Xk exp[—%] which is no more possible for U € M£p>0) ,

but df p(xw) = (hdx) A w holds for any w which satisifies A¢ pw = 0.



Restriction to 2

e

e.‘f::ff" The persistent homology (classification and pairing of critical points via dg) for
L!Vmi;?:ns the Morse function f on M is a way to understand the homology groups

4: the Hi (M) = Hy(f+°°,f=°°). Actually it is a particular case of the H.(f?, f?),
;f;e”:fs a<b,ab¢gU, and those constructions have natural restriction properties.

When a < a’ < b’ < b, the definitions of ¢ € Cy ; y and dgc = ¢’ yield:

if ¢ € Cu(f®, £7) then c € Cu(F?, 7).

if (¢’, ) is a bar code for H, (f?, f?) such that (¢’, c) C (a’,b’), (¢, c) is a bar code

for H, (F*, f7).

m if (¢, c) is a bar code for H. (f°, f?) such that (c’,c) ¢ (a’, b’) the possible
remaining c, ¢’ in (a’, b") belongs to CH(fb/ . fﬁl).

Translation in terms of Witten Laplacians on f? = {x € M,a < f(x) < b}: The
Neumann boundary condition corresponds to the absolute homology and the
Dirichlet boundary condition to the relative homology. So the BC realization of
Ar p to £2 which encodes H.(f, £2) is the one with Dirichlet boundary
condtions on {f = a} (f < a is replaced by f = —o0) and Neumann boundary
conditions on {f = b} (f > b is replaced by f = +00), denoted by A?’,\,’.

Since Onf < 0 on {f = a} and O,f > 0 on {f = b} there will be no generalized
critical points on the boundary 9f2 and the critical points involved in the
asymptotic analysis of A?'X are the critical points of f belonging to (a, b) .
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Lawmiatz?:ns the Morse function f on M is a way to understand the homology groups
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;f;e”:fs a< b, a,bgU, and those constructions have natural restriction properties.

When a < a’ < b’ < b, the definitions of ¢ € Cy ;1 and dgc = ¢’ yield:
m if ¢ € Cy(FP, F7) then c € Cu(Ff*, F).
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Restriction to 2
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_Sma"‘ The persistent homology (classification and pairing of critical points via dg) for
Coof the Morse function f on M is a way to understand the homology groups
Lawmi;?:ns Ho (M) = H. (%, f=°°). Actually it is a particular case of the H.(f?, f?),
4: the a<b, a,bgU, and those constructions have natural restriction properties.
f . .
orms When a < a’ < b’ < b, the definitions of ¢ € Cy 1,1y and dgc = ¢’ yield:

m if ¢ € Cu(f®, f*) then c € Cu(f?, F).

m if (¢/,c) is a bar code for H.(f®, £7) such that (¢’, c) C (a’, b'), (¢/,c) is a bar code
for H.(FY, F).

if (¢/, ) is a bar code for H, (f®, f*) such that (c’,c) ¢ (a’, b’) the possible
remaining c, ¢’ in (a’, b") belongs to CH(fb/, 7).

This can be formulated by saying that the sheaf | — H*(fs”‘”7 fi““) of vector
spaces is a sum of one dimensional sheaves (bar codes).

Translation in terms of Witten Laplacians on £ = {x € M,a < f(x) < b}: The
Neumann boundary condition corresponds to the absolute homology and the
Dirichlet boundary condition to the relative homology. So the BC realization of

Af p to fab which encodes H.(f?, £2) is the one with Dirichlet boundary

condtions on {f = a} (f < a is replaced by f = —00) and Neumann boundary
conditions on {f = b} (f > b is replaced by f = +00), denoted by AfD_’,Y.

Since O,f < 0 on {f = a} and 9,f > 0 on {f = b} there will be no generalized
critical points on the boundary (‘)fab and the critical points involved in the
asymptotic analysis of A?'X are the critical points of f belonging to (a, b) .
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4 the H. (M) = H.(f+°°,f=°°). Actually it is a particular case of the H.(f?, f?),
;?;e”:fs a< b, a,bgU, and those constructions have natural restriction properties.
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Translation in terms of Witten Laplacians on f? = {x € M, a < f(x) < b}: The
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Lawmiatz?:ns the Morse function f on M is a way to understand the homology groups
4: the H. (M) = H.(f+°°,f=°°). Actually it is a particular case of the H.(f?, f?),
;f;e”:fs a< b, a,bgU, and those constructions have natural restriction properties.

When a < a’ < b’ < b, the definitions of ¢ € Cy ; y and dgc = ¢’ yield:

if ¢ € Cu(f®, £7) then c € Cu(F?, 7).

if (¢/, ) is a bar code for H,(f?, f?) such that (c’,c) C (a’,b’), (¢, c) is a bar code

for H, (F*, f7).

m if (¢, c) is a bar code for H.(f°, f?) such that (c’,c) ¢ (a’, b’) the possible
remaining c, ¢’ in (a’, b") belongs to CH(fb/ . fﬁl).

Translation in terms of Witten Laplacians on f? = {x € M,a < f(x) < b}: The
Neumann boundary condition corresponds to the absolute homology and the
Dirichlet boundary condition to the relative homology. So the BC realization of
Ar p to £2 which encodes H.(f®, £2) is the one with Dirichlet boundary
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4: the If Ue L{(p), there exists Yy = Vy € ker Af,”z localized near U.

case of ’
p-forms

If Ue I/{Ejp), take ¥y = xuyVy where xy localizes in the neighborhood of U and
Uy is an eigenmode on f(U) —e < f < f(U) +¢.

If Ue L[{p) take ¥y = xyVy where xy and ¥ correspond to a local truncation
just below U’ such that 9gU’ = U.

By Helffer-Sjostrand WKB techniques, we have a local approximation of ¥y in
B(U, 1) for all U € U and therefore can compute the normalisation constants
for by as h-power asymptotic expansion by Laplace methods in term of

Hess f(U) like in the case p=0or p=1.

Nevertheless we have no explicit form of 1y near U’ € Mbp'l) when U € MEP) .
In all cases In particular when U € U, , this property valid
near U’, OgU’ = U, combined with Stokes formula allows to bypass the explicit
approximation of 1y near U’.
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4: the If UeUyy’, there exists ¢y = Vy € ker A", localized near U.
case of ’

p-forms

If Ue I/{L(f), take ¥y = xyVy where xy localizes in the neighborhood of U and
Uy is an eigenmode on f(U) —e < f < f(U) +¢.

If Ue L[{p) take ¥y = xyVy where xy and ¥ correspond to a local truncation
just below U’ such that 9gU’ = U.

By Helffer-Sjostrand WKB techniques, we have a local approximation of ¥y in
B(U, 1) for all U € U and therefore can compute the normalisation constants
for ¢y as h-power asymptotic expansion by Laplace methods in term of

Hess f(U) like in the case p=0or p=1.

Nevertheless we have no explicit form of 1y near U’ € Mbp'l) when U € MEP) .
In all cases In particular when U € U, , this property valid
near U’, OgU’ = U, combined with Stokes formula allows to bypass the explicit
approximation of 1y near U’.
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4: the If UeUyy’, there exists ¢y = Vy € ker A", localized near U.
case of ’

p-forms

If Ue I/{Ejp), take ¥y = xuVy where xy localizes in the neighborhood of U and
Uy is an eigenmode on f(U) —e < f < f(U) +¢.

If U e UEP) take ¥y = xuyVy where xy and ¥y correspond to a local truncation
just below U’ such that 9gU’ = U.

By Helffer-Sjostrand WKB techniques, we have a local approximation of ¥y in
B(U, 1) for all U € U and therefore can compute the normalisation constants
for by as h-power asymptotic expansion by Laplace methods in term of

Hess f(U) like in the case p=0or p=1.

Nevertheless we have no explicit form of 1y near U’ € Mbp'l) when U € MEP) .
In all cases In particular when U € U, , this property valid
near U’, OgU’ = U, combined with Stokes formula allows to bypass the explicit
approximation of 1y near U’.



Quasimodes

Exponential
small
eigenval-
ues of
Witten
Laplacians (p) . e (p) .
4: the If UeUyy’, there exists ¢y = Vy € ker A", localized near U.
case of ’
p-forms

If Ue ngp), take ¥y = xuVy where xy localizes in the neighborhood of U and
Uy is an eigenmode on f(U) —e < f < f(U) +¢.

If Ue L[{p) take ¥y = xyVy where xy and ¥ correspond to a local truncation
just below U’ such that 9gU’ = U.

By Helffer-Sjostrand WKB techniques, we have a local approximation of V in
B(U, 1) for all U € U and therefore can compute the normalisation constants
for ¢y as h-power asymptotic expansion by Laplace methods in term of

Hess f(U) like in the case p=0or p=1.

Nevertheless we have no explicit form of 1y near U’ € MLP'U when U € l/{ip) .

In all cases In particular when U € U, , this property valid
near U’, OgU’ = U, combined with Stokes formula allows to bypass the explicit
approximation of 1y near U’.
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4: the If UeUyy’, there exists ¢y = Vy € ker A", localized near U.
case of ’
p-forms

If Ue I/{Ejp), take ¥y = xuVy where xy localizes in the neighborhood of U and
Uy is an eigenmode on f(U) —e < f < f(U) +¢.

If Ue M{p) take ¥y = xyVy where xy and ¥ correspond to a local truncation
just below U’ such that 9gU’ = U.

By Helffer-Sjostrand WKB techniques, we have a local approximation of ¥y in
B(U, 1) for all U € U and therefore can compute the normalisation constants
for ¢y as h-power asymptotic expansion by Laplace methods in term of

Hess f(U) like in the case p=0or p=1.

Nevertheless we have no explicit form of 1y near U’ € L{(Up+1) when U € MEP) .

In all cases In particular when U € U, , this property valid

near U’, OgU’ = U, combined with Stokes formula allows to bypass the explicit
approximation of 1y near U’.
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4: the If UeUyy’, there exists ¢y = Vy € ker A", localized near U.
case of ’
p-forms

If Ue ngp), take ¥y = xuVy where xy localizes in the neighborhood of U and
Uy is an eigenmode on f(U) —e < f < f(U) +¢.

If Ue M{p) take ¥y = xyVy where xy and ¥ correspond to a local truncation
just below U’ such that 9gU’ = U.

By Helffer-Sjostrand WKB techniques, we have a local approximation of ¥y in
B(U, 1) for all U € U and therefore can compute the normalisation constants
for ¢y as h-power asymptotic expansion by Laplace methods in term of

Hess f(U) like in the case p=0or p=1.

Nevertheless we have no explicit form of 1y near U’ € MLP'U when U € l/{ip) .

In all cases dr vy = d; 7y = 0. In particular when U € U, , this property valid

near U’, U’ = U, combined with Stokes formula allows to bypass the explicit
approximation of ¥y near U’.
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Final computation (simplified version)

The essential element to be computed is (Y , df ptpy) when 9glU’ = U € Ll{p).

This will provide like for p = 0 the singular values of 3¢, up to exponentially
small relative errors.
Remember ¢ = xyrVyr and ¥y = xyVy with

m Xy global cut-off, x s local cut-off.

[ ] df’hVU = 0, df.hvu/ =0.
Simplified version: euclidean metric around U’ in Morse coordinates
y=0"y")y =, yp)-

> (y)
Yy ~ C(U' h)e™ ~h x(dypsa A...dys) around U’

(Fly) — F(U)) = Ay = AP 4 Appayln - Ay
N 2
S0 o AP
(o _ ==
ur(y) 5
fly)—f(U)
dle n ¥y)=0.
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Final computation (simplified version)

The essential element to be computed is (¢ , df pby) when OgU’ = U e U
This will provide like for p = 0 the singular values of 3¢, up to exponentially
small relative errors.

Remember ¢r = xyr Vyr and ¥y = xy vy with

" Xu " XU’
n

Simplified version: euclidean metric around U’ in Morse coordinates
y=0"y")y =W ye)-

> (y)
Yy ~ C(U' h)e™ ~h x(dypsa A...dys) around U’

(Fly) - F(U)) = Ay = AP 4 Appoyln - Ay
N 2
S A2
dyi(y) = —j=0"J7)
2
fy)—=f(Y)
d(e”h 7y)=0

(p)
P



Final computation (simplified version)

Exponential
small
eigenval- . . (p)
aes of The essential element to be computed is (1 , df pby) when OgU" = U € U;" .
itt . . . . . B .
Lapllac?anns This will provide like for p = 0 the singular values of B¢ up to exponentially

& die small relative errors.

f - L
;,a;e,,zs Remember ¢r = xyr Vyr and ¥y = xy vy with
" Xu » Xu!
n

Simplified version: euclidean metric around U’ in Morse coordinates
y=0"y")y =, )

Sy (y)
Uyr ~ C(U',h)e” —h  x(dypt2 A...dyn) around U’

(F(y) — F(U')) = A2 = AP A2y o AnyR
2
Yo Ny}
[oy _ =0y
u(y) >
fly)—f(U)

d(e h \7u) =0.



Final computation (simplified version)

I Let us compute the asymptotic expression for
eigenval- ~ ~
T lyr y(h) = Yy, deppu)  xw Vo, de n(xuvu))
Laptacins vt = =AY A
placia (U, hye= " (U, hye= "
case of
p-forms
’ _f=fU) Py f=f(U)
Iy y(h)  ~ ( /)e e h o dyppa A...dyn A(hdxy) AN(e” F Ty)
w(U

I oo MY F—F(U)
S s e Al B IY Co at)
Jly"<r b Bf/‘ll

Stokes df V=0

The last line equals

. 7 2N, f—f(U)
[, e -Eept e )
ly"|<r oB?)!

Applying again Stokes with ()Bp ~ homologous to ()Berl OePtl  ePtl the
stable cell of Vf at U’, we obtam

Iyr,u(h) ~ CL(U', h) / (e ' 7).

J 9eptl




Final computation (simplified version)

Exponentiall
small
eigenval- . .
ues of Iy u(h) = Wur s de vy xo Vo s den(xuvu))
Laptacins v, U = A=) — U —1w)
e C(U, hye= 7 C(U', hye~ 7

case of
p-forms

Let us compute the asymptotic expression for

_f=fu) Py F—f(U)
o ()~ /(U/)e L e dypn A dyn A (hdxu) A (e 52 )

ZJ P+2 JJ
~ [ e dy "|/+1(hd><u)/\(e o)
Iy I<r

Stokes df ,7y=0

The last line equals

. Py 2N, f—f(U)
[, e -Ehept T e )
ly” |<r oB%)!

Applying again Stokes with ()Bp ~ homologous to (")ngl = QePtl | ePtl the
stable cell of Vf at U’, we obtam

Iyr,u(h) ~ CL(U', h) / (e ' 7).

J 9eptl




Final computation (simplified version)

I Let us compute the asymptotic expression for
eigenval-
ues of | py— v drpbu) oV dea(xu )
Laplacians vruh) = _A0-fO) —AWH—(U)
5 oo C(U’, h)e g C(U’, h)e g
case of
p-forms
' _ =y %yt F-FU)
IU"U(h) ~ /( /)E‘ h e h dyp‘gA“.dy,,A(thU)/\(e h VU)
w(U
s Aiy2 7
—j=p+2 7J7j f—f(U)
v [T [ ) A (e )
Sy < Jei
Stokes df V=0
The last line equals
EJ pt+2 Jj f—f(U)
[ i [ e )
| ”|<r BB;)/J;I
Applying again Stokes with ()Bp ~ homologous to ()Berl AePtl  ePtl the

stable cell of Vf at U’, we obtam

F—f(U)

IU/VU(h)NCl(U/,h)/ ().
J deP




Final computation (simplified version)

I Let us compute the asymptotic expression for
eigenval- .
ues of Iy u(h) = Wur s de vy xo Vo s den(xuvu))
Laptacians v, U = A=) — U —1w)
5 oo C(U’, h)e g C(U’, h)e g
case of
p-forms
’ _f=fU) %y f—f(U)
lyr y(h)  ~ ( /)e h e h dyppo A...dyn A(hdxy) A (e h T Ty)
w(U

I oo MY F—F(U)
- / R \dy”\/ (hdxu) A (e 72 7y)
Jly"<r - Bf/‘ll

Stokes df V=0

The last line equals

. =7 2 Aj f—f(U)
/ oLz j\d ”\h/ (e W)
" |<r oB%)!

Applying again Stokes with 8B}f’,+rl homologous to 85574;1 = gePtl | ePtl the
stable cell of Vf at U’, we obtain

F—fF(U)

lyr,u(h) ~ CI(U,JT)/ (e F  Wy).
Hept1



Final computation (simplified version)

Exponential

.small , f—f(U) .

eigenval- Iyr y(h) ~ G (U ,h)/ (e 7 Wy).

ues of ’ Dep+1

Witten
Lo eP*1 stable cell of Vf at U’, eP same for U

case of A byproduct of Barannikov says that there exists a constant x(U’) € R such that
IS dePtl — k(U')eP is a boundary (relatively to {f = f(U) —€})

We use again Stokes to get

loro(h) ~ ()G ) [ (3 )
Jep

integration localized around U

C(U,h), Gi(U’, h), Co(U, h): by Laplace method — power of h and Hessians of
f at U and U’ in the prefactor.



Final computation (simplified version)

Exponentiall

small , f—f(U) _

gk lyr,y(h) ~ G (U', h) (e ).

ues of ’ J Hep+1

Witten
La;'acria"s eP*1 stable cell of Vf at U’, eP same for U

. ¢ )

o A byproduct of Barannikov says that there exists a constant x(U’) € R such that
[T 0ePt! — k(U')eP is a boundary (relatively to {f = f(U) —¢€})

e’]

We use again Stokes to get

f—f(U)

loro(h) ~ ()G ) [ (3 )

Jep

integration localized around U

C(U,h), Gi(U’,h), Co(U, h): by Laplace method — power of h and Hessians of
f at U and U’ in the prefactor.



Final computation (simplified version)

Exponential

small , F—fU) _

gk lyr,y(h) ~ G (U', h) (e ).

ues of ’ Joer+1

Witten
Lo eP*1 stable cell of Vf at U’, eP same for U

case of A byproduct of Barannikov says that there exists a constant x(U’) € R such that
IS dePtl — k(U')eP is a boundary (relatively to {f = f(U) — €})

e’]

We use again Stokes to get

F—F(U)

IU/,U(h)NR(U’)Cl(U',h)/P(e hvy)

integration localized around U

C(U,h), Gi(U’,h), Co(U, h): by Laplace method — power of h and Hessians of
f at U and U’ in the prefactor.



Final computation (simplified version)

Exponential

small , F—fU) _

gk lyr,y(h) ~ G (U', h) (e ).

ues of ’ Joer+1

Witten
Lo eP*1 stable cell of Vf at U’, eP same for U

case of A byproduct of Barannikov says that there exists a constant x(U’) € R such that
IS dePtl — k(U')eP is a boundary (relatively to {f = f(U) — €})

We use again Stokes to get

f—f(U)

Iy, u(h) ~ k(UG (U, h)/p(e hvy) ~ k(U)CL(U, h)G(U, h)

integration localized around U — WKB approx of ¥ .

C(U,h), Gi(U’,h), Co(U, h): by Laplace method — power of h and Hessians of
f at U and U’ in the prefactor.



Final computation (simplified version)

Exponential

.small , f—f(U) B

sEer lyru(h) ~ Ci(U', h) (e ).

ues of ’ J 9ep+1

Witten
Lo eP*1 stable cell of Vf at U’, eP same for U

case of A byproduct of Barannikov says that there exists a constant x(U’) € R such that
IS dePtl — k(U')eP is a boundary (relatively to {f = f(U) — €})

We use again Stokes to get

lyr y(h) ~ k(UG (U, h)l/)p(ef vu)

integration localized around U

_fU)—f)
h

(Wyr , dr ypu) ~ k(U CL(U', h)Go(U, h)C(U', h)e

C(U,h), Gi(U’, h), Co(U, h): by Laplace method — power of h and Hessians of
f at U and U’ in the prefactor.



Final computation (simplified version)

Exponential

small , F—fU) _

gk lyr,y(h) ~ G (U', h) (e ).

ues of ’ Joer+1

Witten
Lo eP*1 stable cell of Vf at U’, eP same for U

case of A byproduct of Barannikov says that there exists a constant x(U’) € R such that
IS dePtl — k(U')eP is a boundary (relatively to {f = f(U) — €})

We use again Stokes to get

lor o) ~ ()G ) [ (3 )
Jep

integration localized around U

C(U,h), G(U’, h), C(U, h): by Laplace method — power of h and Hessians of
f at U and U’ in the prefactor.



