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asymptotics Z complex separable Hilbert space.
F+(Z) = ®nenSLZ®"

1
Sih @ @f)=— > se(0)fo)® @ fyn)-
" 0EG,

si(0) = 41 (bosons) s_(c) =signature of o (fermions).

Definition
For b € £(S? 2®P; 85 2®9),

pie (n+ p)l(n+ qg)!

B Wick
n!

STT(b®Idzen)ST™.

syrzems = €
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Frencis Mie Examples:
m ai(f) = ((f| : 2 = C)Wick: a1.(f) = (|f) : C — Z)Wiek;

[ax (), ax(f)]+ = [a5(A), ak(R)]+ =0
[a+(f), a1 (R)]+ = e(f, o) -
mAcL(Z), dT 4 (A) = AWick

d .
drL(A) = iari(f'gm) when A = A*

Ni = (IdZ)WiCk = dr(Idz) Ni =€n.

SpZ®n
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Examples:
syt m ai(f) = ((F] : 2 = C)Vik; a1 () = (If) : C — Z)Wiek;

[ (), ax (R)]x = [a2.(A). a%(A)]2 = 0
[ (), 2% (A)]« = <(f f)

m Ac L(Z), dTi(A) = AWick

drL(A) = i%Fi(_"“A) when A = A*

Ni = (Idz)"ek = dI(Idz) Ni

sy zen =N

Consequences:

m Mean field asymptotics n — oo same as considering N.. = O(1)
and e = 0.

m In the bosonic setting, mean field asymptotics = infinite
semiclassical analysis with small parameter "h" = 5.
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Some properties when p = q, b € L(SE2%P), by € L(Z).
m (b= b*) = (b™ick symmetric)
m (b>0)= (bW > 0)
m Number estimates, m+m’' > p
(1 + N ) =Bk (14 N1) ™™ || < Cpn ||
(1 4+ N) ™™ [dT = (By)P — (BFP)™ (1 + N ) ™™ || < eBy by|?

m finite e-expansion for composition formulas.
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Non normalized reduced density matrices

Definition

Assume g, € LY(T+(Z)), Tr o] =1and Tr [p.eN+)] < +o0.
For p € N, ") is defined by

Vb e L(SLZ®P), Tr Mm ,;] - Ty [QE ,;w,-ck}
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Assume o. € LY(T+(Z)), Tr [o:] =1 and Tr [0.eN*)]| < +o0.
For p € N, 7?) is defined by

Vb e L(SLZ®P), Tr [ng)g} - Ty [QEBVVick]

Properties:

m In the bosonic case, if 0. = |p®") (%], |
AP 10 (P)eP o2y [5P) (57

~(P)

Symmetrization: 72"’ is completely determined by the quantities
Tr {&)g(BfP)WiCk} by e £(2) (or by € £2(Z)).

The sequence (",gp))pg; is determined by the family of

ol =1,

£
ll 5]l

generating functions z — Tr {gsri(efzgl)] 2] <
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Definition

Assume o. € LY(T+(Z)), Tr [o:] =1 and Tr [0.eN*)]| < +o0.
For p € N, 7?) is defined by

Vb e L(SLZ®P), Tr [ng)g} - Ty [QEBVVick]

Properties:
m In the bosonic case, if 0. = |p®") (%], |
1) = 1y (PP o 0P (0%

m Symmetrization: yép) is completely determined by the quantities

Tr [QE(B?P)W"“] by € L(Z) (or by € £2(2)).

ol =1,

The sequence (ﬁép))p@; is determined by the family of
b -

generating functions z — Tr {gsri(efzgl)] 2] <
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Definition

Assume o. € LY(T+(Z)), Tr [o:] =1 and Tr [0.eN*)]| < +o0.
For p € N, 7?) is defined by

Vb e L(SLZ®P), Tr [ng)g} - Ty [QEBVVick]

Properties:
m In the bosonic case, if 0. = |p®") (%], |
7§P) = 1[0:n](p)5p(nﬁ!p)! |(p®p><@®p| .

m Symmetrization: yép) is completely determined by the quantities

Tr [QE(B?P)W"“] by € L(Z) (or by € £2(2)).

ol =1,

m The sequence (yép’)peN is determined by the family of

o}

(VN

generating functions z — Tr {Qari(eezgl)} 2| <
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Lo e Asymptotics of ’yép) as € — 0: Assume lim._,o Tr [QENEE)] =cp.

1) Bosonic case: Wigner measure= probability measure p on Z such
that after extractione € £, 0€ &,

vfeZ, limTr [W(\@ﬂ'f)ge} = /e2f’fRe<f’Z> du(z).
e—
ee&

Then the weak*-limit of 'yép) is

O /Z 122°) (22| dp(z).



Reduced density matrices

Multiscale
analysis and
mean field

asymptotics

Francis Nier Asymptotics of yép) as € — 0: Assume lim._,o Tr |:QEN(ip):| =Cp-

1) Bosonic case: Wigner measure= probability measure i on Z such
that after extractione € £,0€ &,

VfeZ, limTr [W(\fzwf)ga] = /e2fﬂRe<f7z> ).
R

Then the weak*-limit of %ﬁp) is

) = /Z 1227)(2%°] du(2).

But
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Asymptotics of v¢' as ¢ — 0: Assume lim._,o Tt [QENEE)} =cp.

Nier
1) Bosonic case: Wigner measure= probability measure 2 on Z such
that after extractione € £,0€ &,

vfeZ, limTr [W(\ﬁﬂ'f)ge} - /e2’“RE<va> du(z).
e—
eef

Then the weak*-limit of /(") is
= [ 1277 dta).

But Tr [yép)] = [, du < ¢, =lim._, Tr [0-N% | may happen.
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Asymptotics of 72’ as € — 0: Assume lim._ Tr [QENS‘:)} =Cp.

asymptotics
Nier 1) Bosonic case: Wigner measure= probability measure i on Z such
that after extractione € £,0€ €&,

VfEZ, lim Tr [W(Varfe.| = /e2i7rRe<f,z) du(z).
ee€

Then the weak*-limit of 'yép) is

(P) /|Z®p ®P| du(z).

But Tr [vép)] = [, du < ¢, =lim._, Tr [0-N% | may happen.

Example: g. = |2 )(p©"| with [|¢:]| =1, lim.oen. =1,
w-lim. 0. = 0. Then p = §y while lim._,o Tr [geNi] =1.
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Asymptotics of ,yé_p) as € — 0: Assume lim._,o Tr |:Q5N(jf)j| =Cp-

2) Fermionic case:
For any fixed p € N, the weak* limit of 7{?) is always 0 while

lim._,o Tr [’yép)} =c.
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Yh € EI(L2(Rd))'
x € RP | X = (x,¢&) € R?P | used with D = pd when 7, = 72’()’)7)'



Multiscale measures

Multiscale
analysis and
mean field
asymptotics

Nier

7 € LYL2(RY)),
x €RP X = (x,€) € R?P | used with D = pd when ~y;, = *yi?z).
Double scale class of symbols a € S@): a € C*(R?P x R?P),
= 3C, > 0,vY € R?? a(., Y) € C5°(B(0, G,)).
m There exists a,, € C>°(R?P x §20~1) such that
a(X, Rw) T2 a0 (X, w) in C(R2D x §20-1)
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v € LY(L2(RY)),
x ERP, X = (x,€) € B2, used with D = pd when 7, =) .
Double scale class of symbols a € S@): a € C=(R?P x R?P),

m 3G, >0,VY € R?P a(.,Y) € C5°(B(0, C,)) .

m There exists a,, € C*(R?P x §?P~1) such that
R—00

a(X, Rw) "= aso(X,w) in C(R2P x §2P-1).

Quantization:
a@h = aWer! (\/hx, VhDy, x, Dy) = [a(., h=1/2.)]We/ (V/hx, VhD) .



Multiscale measures

Multiscale v € [,1(L2(Rd)) !

analysis and

e x €RP X = (x,€) € R?P | used with D = pd when ~y;, = fyi’(’,)]) )
Double scale class of symbols a € S@): a € C*(R?P x R?P),

m 3G, >0,VY € R?D [a(,,Y) € C5°(B(0, G,)) .

m There exists a,, € C>°(R?P x §20~1) such that

a(X, Rw) R ano(X,w) in C(R2P x §2P-1).

Quantlzatlon
a?)h = AWV (\/hx, /hDy, x, D) = [a(., h"1/2) " (V/hx, VhD,) .
Multiscale measures: Assume Tr [y5] = 1 there exists a subset £,
0€ &, two non negative measures v on R2P 1, on S?P-1 and a
trace class operator g such that

. X
i|1|m Tr ['yha(z)’h] :/ a(X, Y) dv(X)
hggo R2D\ {0} |X]

+ [ ae0.) di(w) + Tr [10a"(0,x.0)]
SQD—I
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Notations: Wigner measures v € M(y,, h € ).
Multiscale measures (v, vy, v0) € M@ (4, h € &).

Definition

The scaling a/(v/hx,vhD,), h — 0, is said adapted to the family
(Ya)hee s Th € LYLA(RP)), v, > 0, if for some x € C§°(R?P),
0<x<1,x(0)=1,

lim limsup Tr [(1— x(R™*.))"®" ;] = 0.
R—o0 h0
he&

After extraction one can assume ¢ = limy_,o Tr [y4] and if the scale
is adapted all Wigner measures have the total mass c.

Definition

The scale h — 0 is said separating if for all
(l/, V/,’)/o) S M(z)(")/h, he 5), v =0.
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When the scale is adapted, the separating property can be checked
by a simple mass argument: After extraction assume that ~q is the
weak™ limit of 4 and M(ys, h € £) = {v}. Then the scale h is
separating iff v({0}) = Tr [yo] and then

M@ (yp, h e &) = {(v,0,70)} -
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We shall consider ¢ = £(h) with lims_0e(h)) = 0 and ¢(h)-Wick
guantization of h-dependent semiclassical 9bservab|es,
b= a"(vhx,VhDy), a € Cg°(R??) or b= a®, when a € S@ .
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We shall consider € = (h) with limp_,02(h)) = 0 and e(h)-Wick
quantization of h-dependent semiclassical observables,

b= a"(vhx,vhD,), a € Cg°(R?>?) or b= a® , when a € S®) .
Assumptions: g.(n) € LY +(Z)), 0en) = 0.

Nier

m Tr [gs(h)] =1.

s Tr [Qs(h)eCNi] < C.

m There exist y € C°(R?P) and 0 < ¢’ <c,0< x <1,
x(0) =1, such that, with x5 = x(4.),

|:Qs(h)(eC/Ni _ ec'dri(x(s)w’h)] —-0.

lim limsup Tr
=0 p0
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The set £ can be chosen such that for all p € N,

M(’yifz), he &)= {vP} with . dvP) = limp_o Tr ['yﬁp)} .
Moreover for any a € C3°(R??), there exists r, > 0 such that
b, p(s) = Tr [QE(,,) eSdri("’W’h)] is uniformly bounded in
H>({|s| < ra}) and

© P
lim ®,.5(s) = Byo(s) = 5 = / 22P(X) dvP(X).
2 5o s
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Proposition

For all K € L>(L%(RY)), there exists rk > 0 such that
Vi h(s) = Tr [oeme* =] is uniformly bounded in
H>({|s| < rk}). The pointwise convergence (or any weak

convergence) of Wi  to Wi o for all K € L(L*(R?)) is equivalent

to w* — limp_o 7&()/)7) = 'y(()p) with

oo

WK,O(S) = Z SPT,: Tr {%()P)K(gp} 2
p=0 """

The above convergence can always be achieved after some extraction
hel&,0eé&, & Cét.
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a(X) = |X]? = x* + €2 or a(X) like |X|? at infinity with a non
degenerate minimum at X =0.

H = o (V/hx, VhDy) — Mo(aV¥'(Vhx, VhD,))
e=eh)=h" | M(E):—ﬂi ve,B>0

VC7
ri(e—B(H—u(E)))
) = Iy Ty (e BH-AEDY]
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e/ (Vhx, VhDy) = Ao(a"®'(v/hx, VHD,))

e=e(h)y=h | Md:*i%WQﬂ>0

[, (e AH-u(=))
) = Iy Ty (e~ BH-aeD)]

1) Fermionic case: For all p € N,
M@ he (0, hy)) = {v(P,0,0} with

e=BaX)  gx \®P
(P — .
1+ e=FaX) (2m)d
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e 2) Bosonic case with Bose- Einstein condensation: Assume d < 2.
Then for all pe N, MO(1) € (0, h)) = {(1/(”),0,7((,‘7))} with

—x2/2
W0 = pg o) (W6 de(x) = Ur w/]
- :g; T [Z (p— k lklyc(s@k (v (57.)®P‘k)1
—Ba(X)
dv(B,X) = — -

1= e-BatX (2m)d




