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Wick observables

Z complex separable Hilbert space.

Γ±(Z) = ⊕n∈NSn±Z⊗n

Sn±(f1 ⊗ · · · ⊗ fn) =
1

n!

∑
σ∈Sn

s±(σ)fσ(1) ⊗ · · · ⊗ fσ(n) .

s+(σ) = +1 (bosons) s−(σ) =signature of σ (fermions).

Definition

For b̃ ∈ L(Sp±Z⊗p;Sq±Z⊗q) ,

b̃Wick
∣∣
Sn+p
± Z⊗n+p = ε

p+q
2

√
(n + p)!(n + q)!

n!
Sn+q
± (b̃ ⊗ IdZ⊗n)Sn+p

± .
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Wick observables

Examples:

a±(f ) = (〈f | : Z → C)Wick ; a∗±(f ) = (|f 〉 : C→ Z)Wick ;

[a±(f1), a±(f2)]± = [a∗±(f1), a∗±(f2)]± = 0

[a±(f1), a∗±(f2)]± = ε〈f1, f2〉 .

A ∈ L(Z) , dΓ±(A) = AWick .

dΓ±(A) = i
d

dt
Γ±(−iεtA) when A = A∗

N± = (IdZ)Wick = dΓ(IdZ) N±
∣∣
Sn
±Z⊗n = εn .
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Wick observables

Examples:

a±(f ) = (〈f | : Z → C)Wick ; a∗±(f ) = (|f 〉 : C→ Z)Wick ;

[a±(f1), a±(f2)]± = [a∗±(f1), a∗±(f2)]± = 0

[a±(f1), a∗±(f2)]± = ε〈f1, f2〉 .

A ∈ L(Z) , dΓ±(A) = AWick .

dΓ±(A) = i
d

dt
Γ±(−iεtA) when A = A∗

N± = (IdZ)Wick = dΓ(IdZ) N±
∣∣
Sn
±Z⊗n = εn .

Consequences:

Mean field asymptotics n→∞ same as considering N± = O(1)
and ε→ 0 .

In the bosonic setting, mean field asymptotics = infinite
semiclassical analysis with small parameter ”h” = ε

2 .
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Wick observables

Some properties when p = q , b̃ ∈ L(Sp±Z⊗p) , b̃1 ∈ L(Z) .

(b̃ = b̃∗)⇒ (b̃Wick symmetric)

(b̃ ≥ 0)⇒ (b̃Wick ≥ 0)

Number estimates, m + m′ ≥ p

‖(1 + N±)−mb̃Wick(1 + N±)−m
′
‖ ≤ Cm,m′‖b̃‖

‖(1 + N±)−m[dΓ±(b̃1)p − (b̃⊗p1 )]Wick(1 + N±)−m
′
‖ ≤ εBp‖b̃1‖p

finite ε-expansion for composition formulas.
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Reduced density matrices

Non normalized reduced density matrices

Definition

Assume %ε ∈ L1(Γ±(Z)) , Tr [%ε] = 1 and Tr
[
%εe

cN±)
]
< +∞ .

For p ∈ N , γ
(p)
ε is defined by

∀b̃ ∈ L(S±Z⊗p) , Tr
[
γ(p)
ε b̃

]
= Tr

[
%εb̃

Wick
]
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Reduced density matrices

Non normalized reduced density matrices

Definition

Assume %ε ∈ L1(Γ±(Z)) , Tr [%ε] = 1 and Tr
[
%εe

cN±)
]
< +∞ .

For p ∈ N , γ
(p)
ε is defined by

∀b̃ ∈ L(S±Z⊗p) , Tr
[
γ(p)
ε b̃

]
= Tr

[
%εb̃

Wick
]

Properties:

In the bosonic case, if %ε = |ϕ⊗n〉〈ϕ⊗n| , ‖ϕ‖ = 1 ,

γ
(p)
ε = 1[0:n](p)εp n!

(n−p)! |ϕ
⊗p〉〈ϕ⊗p| .

Symmetrization: γ
(p)
ε is completely determined by the quantities

Tr
[
%ε(b̃

⊗p
1 )Wick

]
, b̃1 ∈ L(Z) (or b̃1 ∈ L∞(Z)) .

The sequence (γ
(p)
ε )p∈N is determined by the family of

generating functions z 7→ Tr
[
%εΓ±(eεzb̃1 )

]
, |z | < c

‖b̃1‖
.
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Reduced density matrices
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Reduced density matrices

Asymptotics of γ
(p)
ε as ε→ 0: Assume limε→0 Tr

[
%εN

(p)
±

]
= cp .

1) Bosonic case: Wigner measure= probability measure µ on Z such
that after extraction ε ∈ E , 0 ∈ E ,

∀f ∈ Z , lim
ε→0
ε∈E

Tr
[
W (
√

2πf )%ε
]

=

∫
e2iπRe〈f ,z〉 dµ(z) .

Then the weak∗-limit of γ
(p)
ε is

γ
(p)
0 =

∫
Z
|z⊗p〉〈z⊗p| dµ(z) .
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Reduced density matrices
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Reduced density matrices

Asymptotics of γ
(p)
ε as ε→ 0: Assume limε→0 Tr

[
%εN

(p)
±

]
= cp .

1) Bosonic case: Wigner measure= probability measure µ on Z such
that after extraction ε ∈ E , 0 ∈ E ,

∀f ∈ Z , lim
ε→0
ε∈E

Tr
[
W (
√

2πf )%ε
]

=

∫
e2iπRe〈f ,z〉 dµ(z) .

Then the weak∗-limit of γ
(p)
ε is

γ
(p)
0 =

∫
Z
|z⊗p〉〈z⊗p| dµ(z) .

But Tr
[
γ

(p)
0

]
=
∫
Z dµ < cp = limε→ Tr

[
%εN

p
+

]
may happen.
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Reduced density matrices

Asymptotics of γ
(p)
ε as ε→ 0: Assume limε→0 Tr

[
%εN

(p)
±

]
= cp .

1) Bosonic case: Wigner measure= probability measure µ on Z such
that after extraction ε ∈ E , 0 ∈ E ,

∀f ∈ Z , lim
ε→0
ε∈E

Tr
[
W (
√

2πf )%ε
]

=

∫
e2iπRe〈f ,z〉 dµ(z) .

Then the weak∗-limit of γ
(p)
ε is

γ
(p)
0 =

∫
Z
|z⊗p〉〈z⊗p| dµ(z) .

But Tr
[
γ

(p)
0

]
=
∫
Z dµ < cp = limε→ Tr

[
%εN

p
+

]
may happen.

Example: %ε = |ϕ⊗nεε 〉〈ϕ⊗nεε | with ‖ϕε‖ = 1 , limε→0 εnε = 1 ,
w-limε→0 ϕε = 0 . Then µ = δ0 while limε→0 Tr

[
%εN

p
+

]
= 1 .
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Reduced density matrices

Asymptotics of γ
(p)
ε as ε→ 0: Assume limε→0 Tr

[
%εN

(p)
±

]
= cp .

2) Fermionic case:

For any fixed p ∈ N , the weak∗ limit of γ
(p)
ε is always 0 while

limε→0 Tr
[
γ

(p)
ε

]
= cp .
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Multiscale measures

γh ∈ L1(L2(Rd)) ,

x ∈ RD , X = (x , ξ) ∈ R2D , used with D = pd when γh = γ
(p)
ε(h) .
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Multiscale measures

γh ∈ L1(L2(Rd)) ,

x ∈ RD , X = (x , ξ) ∈ R2D , used with D = pd when γh = γ
(p)
ε(h) .

Double scale class of symbols a ∈ S(2): a ∈ C∞(R2D × R2D) ,

∃Ca > 0 ,∀Y ∈ R2D , a(.,Y ) ∈ C∞0 (B(0,Ca)) .

There exists a∞ ∈ C∞(R2D × S2D−1) such that

a(X ,Rω)
R→∞→ a∞(X , ω) in C∞(R2D × S2D−1) .
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Multiscale measures

γh ∈ L1(L2(Rd)) ,

x ∈ RD , X = (x , ξ) ∈ R2D , used with D = pd when γh = γ
(p)
ε(h) .

Double scale class of symbols a ∈ S(2): a ∈ C∞(R2D × R2D) ,

∃Ca > 0 ,∀Y ∈ R2D , a(.,Y ) ∈ C∞0 (B(0,Ca)) .

There exists a∞ ∈ C∞(R2D × S2D−1) such that

a(X ,Rω)
R→∞→ a∞(X , ω) in C∞(R2D × S2D−1) .

Quantization:
a(2),h = aWeyl(

√
hx ,
√
hDx , x ,Dx) = [a(., h−1/2.)]Weyl(

√
hx ,
√
hDx) .
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Multiscale measures

γh ∈ L1(L2(Rd)) ,

x ∈ RD , X = (x , ξ) ∈ R2D , used with D = pd when γh = γ
(p)
ε(h) .

Double scale class of symbols a ∈ S(2): a ∈ C∞(R2D × R2D) ,

∃Ca > 0 ,∀Y ∈ R2D , a(.,Y ) ∈ C∞0 (B(0,Ca)) .

There exists a∞ ∈ C∞(R2D × S2D−1) such that

a(X ,Rω)
R→∞→ a∞(X , ω) in C∞(R2D × S2D−1) .

Quantization:
a(2),h = aWeyl(

√
hx ,
√
hDx , x ,Dx) = [a(., h−1/2.)]Weyl(

√
hx ,
√
hDx) .

Multiscale measures: Assume Tr [γh] = 1 there exists a subset E ,
0 ∈ E , two non negative measures ν on R2D , νI on S2D−1 and a
trace class operator γ0 such that

lim
h→0
h∈E

Tr
[
γha

(2),h
]

=

∫
R2D\{0}

a(X ,
X

|X |
) dν(X )

+

∫
S2D−1

a∞(0, ω) dνI (ω) + Tr
[
γ0a

Weyl(0, x ,Dx)
]
.
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Multiscale measures

Notations: Wigner measures ν ∈M(γh, h ∈ E) .
Multiscale measures (ν, νI , γ0) ∈M(2)(γh, h ∈ E) .

Definition

The scaling aWeyl(
√
hx ,
√
hDx) , h→ 0 , is said adapted to the family

(γh)h∈E ,, γh ∈ L1(L2(RD)) , γh ≥ 0 , if for some χ ∈ C∞0 (R2D) ,
0 ≤ χ ≤ 1 , χ(0) = 1 ,

lim
R→∞

lim sup
h→0
h∈E

Tr
[
(1− χ(R−1.))Weyl,hγh

]
= 0 .

After extraction one can assume c = limh→0 Tr [γh] and if the scale
is adapted all Wigner measures have the total mass c .

Definition

The scale h→ 0 is said separating if for all
(ν, νI , γ0) ∈M(2)(γh, h ∈ E) , νI = 0 .
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Multiscale measures

When the scale is adapted, the separating property can be checked
by a simple mass argument: After extraction assume that γ0 is the
weak∗ limit of γh and M(γh, h ∈ E) = {ν} . Then the scale h is
separating iff ν({0}) = Tr [γ0] and then
M(2)(γh, h ∈ E) = {(ν, 0, γ0)} .
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Multiscale analysis of reduced density matrices

We shall consider ε = ε(h) with limh→0 ε(h)) = 0 and ε(h)-Wick
quantization of h-dependent semiclassical observables,
b̃ = aWeyl(

√
hx ,
√
hDx) , a ∈ C∞0 (R2d) or b̃ = a(2) , when a ∈ S(2) .
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Multiscale analysis of reduced density matrices

We shall consider ε = ε(h) with limh→0 ε(h)) = 0 and ε(h)-Wick
quantization of h-dependent semiclassical observables,
b̃ = aWeyl(

√
hx ,
√
hDx) , a ∈ C∞0 (R2d) or b̃ = a(2) , when a ∈ S(2) .

Assumptions: %ε(h) ∈ L1(Γ±(Z)) , %ε(h) ≥ 0 .

Tr
[
%ε(h)

]
= 1 .

Tr
[
%ε(h)e

cN±
]
≤ C .

There exist χ ∈ C∞0 (R2D) and 0 < c ′ < c , 0 ≤ χ ≤ 1 ,
χ(0) = 1 , such that, with χδ = χ(δ.),

lim
δ→0

lim sup
h→0

Tr
[
%ε(h)(e

c′N± − ec
′dΓ±(χδ)W ,h)

]
= 0 .
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Multiscale analysis of reduced density matrices

Proposition

The set E can be chosen such that for all p ∈ N ,

M(γ
(p)
ε(h), h ∈ E

′) =
{
ν(p)

}
with

∫
R2dp dν

(p) = limh→0 Tr
[
γ

(p)
h

]
.

Moreover for any a ∈ C∞0 (R2d) , there exists ra > 0 such that

Φa,h(s) = Tr
[
%ε(h)e

sdΓ±(aW ,h)
]
is uniformly bounded in

H∞({|s| < ra}) and

lim
h→0
h∈E′

Φa,h(s) = Φa,0(s) =
∞∑
p=0

sp

p!

∫
R2dp

a⊗p(X ) dν(p)(X ) .
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Multiscale analysis of reduced density matrices

Proposition

For all K ∈ L∞(L2(Rd)) , there exists rK > 0 such that
ΨK ,h(s) = Tr

[
%ε(h)e

sdΓ±(K)
]
is uniformly bounded in

H∞({|s| < rK}) . The pointwise convergence (or any weak
convergence) of ΨK ,h to ΨK ,0 for all K ∈ L∞(L2(Rd)) is equivalent

to w∗ − limh→0 γ
(p)
ε(h) = γ

(p)
0 with

ΨK ,0(s) =
∞∑
p=0

sp

p!
Tr
[
γ

(p)
0 K⊗p

]
.

The above convergence can always be achieved after some extraction
h ∈ E ′ , 0 ∈ E ′ , E ′ ⊂ E .
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Examples: Gibbs states

α(X ) = |X |2 = x2 + ξ2 or α(X ) like |X |2 at infinity with a non
degenerate minimum at X = 0 .

H = αWeyl(
√
hx ,
√
hDx)− λ0(αWeyl(

√
hx ,
√
hDx)) ,

ε = ε(h) = hd , µ(ε) = − ε

βνC
, νC , β > 0

%ε(h) =
Γ±(e−β(H−µ(ε)))

Tr
[
Γ±(e−β(H−µ(ε)))

] .
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Examples: Gibbs states

α(X ) = |X |2 = x2 + ξ2 or α(X ) like |X |2 at infinity with a non
degenerate minimum at X = 0 .

H = αWeyl(
√
hx ,
√
hDx)− λ0(αWeyl(

√
hx ,
√
hDx)) ,

ε = ε(h) = hd , µ(ε) = − ε

βνC
, νC , β > 0

%ε(h) =
Γ±(e−β(H−µ(ε)))

Tr
[
Γ±(e−β(H−µ(ε)))

] .
1) Fermionic case: For all p ∈ N ,

M(2)(γ
(p)
ε(h), h ∈ (0, h0)) =

{
ν(p), 0, 0

}
with

ν(p) =

(
e−βα(X )

1 + e−βα(X )

dX

(2π)d

)⊗p
.
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Examples: Gibbs states

2) Bosonic case with Bose-Einstein condensation: Assume d ≤ 2 .

Then for all p ∈ N , M(2)(γ
(p)
ε(h), h ∈ (0, h0)) =

{
(ν(p), 0, γ

(p)
0 )
}

with

γ
(p)
0 = p!npC |ψ

⊗p
0 〉〈ψ

⊗p
0 | , ψ0(x) = UT

[
e−x

2/2

πd/4

]

ν(p) =
∑
σ∈Sp

σ∗

[
p∑

k=0

p!

(p − k)!k!
νkCδ
⊗k
0 ⊗ (ν(β, .)⊗p−k)

]

dν(β,X ) =
e−βα(X )

1− e−βα(X )

dX

(2π)d


