Wigner measure

# Phase-space approach to the bosonic mean field dynamics: review, new developments

Francis Nier,
LAGA, Univ. Paris 13
Joint works with Z. Ammari
cont'd with S. Breteaux, M. Falconi, Q. Liard, B. Pawilowski, M. Zerzeri

Porquerolles, may 25th 2016

# Outline

space approach to the bosonic mean field dynamics: review, new developments

Phase-

Francis
Nier,
LAGA,
Univ.
Paris 13
Joint
orks with

Z. Ammari cont'd with S. Breteau M. Fal-

Q. Liaro B. Paw ilowski, M. Zerze

Semiclassical and mean field asymptotics

Wigner measur

- Semiclassical and mean field asymptotics
- Wigner (semiclassical) measures
- Wick quantization, (PI)-condition, BBGKY hierarchy
- Propagation results
- Order of convergence
- Other developments

Semiclassica and mean field asymptotics

Wigner measur Reconsider the old program: Bosonic QFT=infinite dimensional microlocal analysis (see e.g. Kree's seminar in the 70's). Mean field=Semiclassical (easier).

Check the mean field convergence for dynamical problems with general initial data.

While doing so find assumptions and results which are invariant by the N-body and mean-field dynamics (when defined).

In the spirit of (semiclassical) propagation of singularities.

Nier, LAGA, Univ. Paris 13 Joint works wi Z. Amma

cont'd with S. Breteau M. Falconi,

B. Pawilowski, M. Zerzeri

Semiclassica and mean field asymptotics

Wigner measure Reconsider the old program: Bosonic QFT=infinite dimensional microlocal analysis (see e.g. Kree's seminar in the 70's). Mean field=Semiclassical (easier).

Check the mean field convergence for dynamical problems with general initial data.

While doing so find assumptions and results which are invariant by the N-body and mean-field dynamics (when defined).

In the spirit of (semiclassical) propagation of singularities.

Reconsider the old program: Bosonic QFT=infinite dimensional microlocal analysis (see e.g. Kree's seminar in the 70's). Mean field=Semiclassical (easier).

Check the mean field convergence for dynamical problems with general initial data.

While doing so find assumptions and results which are invariant by the *N*-body and mean-field dynamics (when defined).

In the spirit of (semiclassical) propagation of singularities.

For 
$$w \in \mathcal{Z} = \mathbb{C}^d$$
 set  $a(w) = \sum_j \overline{w}_j a_j$  ,  $a^*(w) = \sum_j w_j a_j^*$  ,

The Wick (resp. anti-Wick) quantization associates with the polynomial

 $[a(w), a^*(w')] = 2h\langle w, w' \rangle_{\mathcal{Z}} = \varepsilon \langle w, w' \rangle_{\mathcal{Z}}, \quad \varepsilon = 2h$ 

$$b(z) = \sum_{\substack{|\beta| = p \\ |\alpha| = q}} b_{\alpha,\beta} \overline{z}^{\alpha} z^{\beta} = \langle z^{\otimes q}, \tilde{b} z^{\otimes p} \rangle , \quad \tilde{b} = \frac{1}{q! p!} \partial_{\overline{z}}^{q} \partial_{z}^{p} b$$

the operator 
$$b^{Wick} = \sum_{\alpha,\beta} b_{\alpha,\beta} a^{*\alpha} a^{\beta}$$
, (Wick)

$$\Phi(f) = \frac{a(f) + a^*(f)}{\sqrt{2}} = \sqrt{2} \operatorname{Re} \langle f, z \rangle^{Wick} \quad , \quad W(f) = e^{i\Phi(f)} \, .$$

Semiclassical annihilation-creation operators:

(PDE) 
$$a_j = \frac{h}{\partial \nu_j} + \nu_j$$
 ,  $a_j^* = -\frac{h}{\partial \nu_j} + \nu_j$  ,  $\nu \in \mathbb{R}^d$ 

For 
$$w \in \mathcal{Z} = \mathbb{C}^d$$
 set  $a(w) = \sum_j \overline{w}_j a_j$  ,  $a^*(w) = \sum_j w_j a_j^*$  ,

$$[a(w), a^*(w')] = 2h\langle w, w' \rangle_{\mathcal{Z}} = \varepsilon \langle w, w' \rangle_{\mathcal{Z}} \quad , \quad \varepsilon = 2h$$

The Wick (resp. anti-Wick) quantization associates with the polynomial

$$b(z) = \sum_{\substack{|\beta| = p \\ |\alpha| = q}} b_{\alpha,\beta} \overline{z}^{\alpha} z^{\beta} = \langle z^{\otimes q} , \tilde{b} z^{\otimes p} \rangle \quad , \quad \tilde{b} = \frac{1}{q! \rho!} \partial_{\overline{z}}^{q} \partial_{z}^{p} b$$

the operator 
$$b^{Wick} = \sum_{\alpha,\beta} b_{\alpha,\beta} a^{*\alpha} a^{\beta}$$
, (Wick)

$$\Phi(f) = \frac{a(f) + a^*(f)}{\sqrt{2}} = \sqrt{2} \operatorname{Re} \langle f, z \rangle^{Wick} \quad , \quad W(f) = e^{i\Phi(f)} \, .$$

# Wigner measure

Semiclassical annihilation-creation operators:

Unit.eq. 
$$a_j = \sqrt{h}(\partial_{\nu_j} + \nu_j)$$
 ,  $a_j^* = \sqrt{h}(-\partial_{\nu_j} + \nu_j)$  ,  $\nu \in \mathbb{R}^d$ 

For 
$$w \in \mathcal{Z} = \mathbb{C}^d$$
 set  $a(w) = \sum_j \overline{w}_j a_j$  ,  $a^*(w) = \sum_j w_j a_j^*$  ,

$$\left[a(w),a^*(w')\right]=2h\langle w\,,\,w'\rangle_{\mathcal{Z}}=\varepsilon\langle w\,,\,w'\rangle_{\mathcal{Z}}\quad,\quad\varepsilon=2h$$

The Wick (resp. anti-Wick) quantization associates with the polynomial

$$b(z) = \sum_{\substack{|\beta| = p \\ |\alpha| = q}} b_{\alpha,\beta} \overline{z}^{\alpha} z^{\beta} = \langle z^{\otimes q}, \tilde{b} z^{\otimes p} \rangle , \quad \tilde{b} = \frac{1}{q!p!} \partial_{\overline{z}}^{q} \partial_{z}^{p} b$$

the operator  $b^{Wick} = \sum_{\alpha,\beta} b_{\alpha,\beta} a^{*\alpha} a^{\beta}$ , (Wick)

$$\Phi(f) = \frac{a(f) + a^*(f)}{\sqrt{2}} = \sqrt{2} \operatorname{Re} \langle f, z \rangle^{Wick} \quad , \quad W(f) = e^{i\Phi(f)} \, .$$

#### totics Wigner measure

Semiclassical annihilation-creation operators:

Unit.eq. 
$$a_j = \sqrt{h}(\partial_{\nu_j} + \nu_j)$$
 ,  $a_j^* = \sqrt{h}(-\partial_{\nu_j} + \nu_j)$  ,  $\nu \in \mathbb{R}^d$ 

For 
$$w \in \mathcal{Z} = \mathbb{C}^d$$
 set  $a(w) = \sum_j \overline{w}_j a_j$  ,  $a^*(w) = \sum_j w_j a_j^*$  ,

$$\left[a(w), a^*(w')\right] = 2h\langle w, w'\rangle_{\mathcal{Z}} = \varepsilon\langle w, w'\rangle_{\mathcal{Z}} \quad , \quad \varepsilon = 2h$$

The Wick (resp. anti-Wick) quantization associates with the polynomial

$$b(z) = \sum_{\substack{|\beta| = p \\ |\alpha| = q}} b_{\alpha,\beta} \overline{z}^{\alpha} z^{\beta} = \langle z^{\otimes q}, \tilde{b} z^{\otimes p} \rangle \quad , \quad \tilde{b} = \frac{1}{q!p!} \partial_{\overline{z}}^{q} \partial_{z}^{p} b$$

the operator 
$$b^{Wick} = \sum_{\alpha,\beta} b_{\alpha,\beta} a^{*\alpha} a^{\beta}$$
, (Wick)

$$\Phi(f) = \frac{a(f) + a^*(f)}{\sqrt{2}} = \sqrt{2} \operatorname{Re} \left\langle f, z \right\rangle^{Wick} \quad , \quad W(f) = e^{i\Phi(f)} \, .$$

(QFT) 
$$a_j = \sqrt{\varepsilon} \frac{\partial_{\nu_j} + \nu_j}{\sqrt{2}}$$
 ,  $a_j^* = \sqrt{\varepsilon} \frac{-\partial_{\nu_j} + \nu_j}{\sqrt{2}}$  ,  $\nu \in \mathbb{R}^d$ 

For 
$$w \in \mathcal{Z} = \mathbb{C}^d$$
 set  $a(w) = \sum_j \overline{w}_j a_j$  ,  $a^*(w) = \sum_j w_j a_j^*$  ,

$$\left[a(w), a^*(w')\right] = 2h\langle w, w'\rangle_{\mathcal{Z}} = \varepsilon\langle w, w'\rangle_{\mathcal{Z}} \quad , \quad \varepsilon = 2h$$

The Wick (resp. anti-Wick) quantization associates with the polynomial

$$b(z) = \sum_{\substack{|\beta| = p \\ |\alpha| = q}} b_{\alpha,\beta} \overline{z}^{\alpha} z^{\beta} = \langle z^{\otimes q}, \tilde{b} z^{\otimes p} \rangle , \quad \tilde{b} = \frac{1}{q! p!} \partial_{\overline{z}}^{q} \partial_{z}^{p} b$$

the operator 
$$b^{Wick} = \sum_{\alpha,\beta} b_{\alpha,\beta} a^{*\alpha} a^{\beta}$$
, (Wick)

$$\Phi(f) = \frac{a(f) + a^*(f)}{\sqrt{2}} = \sqrt{2} \operatorname{Re} \langle f, z \rangle^{Wick} \quad , \quad W(f) = e^{i\Phi(f)} \, .$$

Semiclassical annihilation-creation operators:

(QFT) 
$$a_j = \sqrt{\varepsilon} \frac{\partial \nu_j + \nu_j}{\sqrt{2}}$$
 ,  $a_j^* = \sqrt{\varepsilon} \frac{-\partial \nu_j + \nu_j}{\sqrt{2}}$  ,  $\nu \in \mathbb{R}^d$ 

For 
$$w \in \mathcal{Z} = \mathbb{C}^d$$
 set  $a(w) = \sum_j \overline{w}_j a_j$  ,  $a^*(w) = \sum_j w_j a_j^*$  ,

$$\left[a(w), a^*(w')\right] = 2h\langle w, w'\rangle_{\mathcal{Z}} = \varepsilon\langle w, w'\rangle_{\mathcal{Z}} \quad , \quad \varepsilon = 2h$$

The Wick (resp. anti-Wick) quantization associates with the polynomial

$$b(z) = \sum_{\substack{|\beta| = p \\ |\alpha| = q}} b_{\alpha,\beta} \overline{z}^{\alpha} z^{\beta} = \langle z^{\otimes q}, \tilde{b} z^{\otimes p} \rangle , \quad \tilde{b} = \frac{1}{q! p!} \partial_{\overline{z}}^{q} \partial_{z}^{p} b$$

the operator 
$$b^{Wick} = \sum_{\alpha,\beta} b_{\alpha,\beta} a^{*\alpha} a^{\beta}$$
, (Wick)

$$\Phi(f) = \frac{a(f) + a^*(f)}{\sqrt{2}} = \sqrt{2} \operatorname{Re} \left\langle f , z \right\rangle^{Wick} \quad , \quad W(f) = e^{i\Phi(f)} \, .$$

Semiclassical annihilation-creation operators:

(QFT) 
$$a_j = \sqrt{\varepsilon} \frac{\partial_{\nu_j} + \nu_j}{\sqrt{2}}$$
 ,  $a_j^* = \sqrt{\varepsilon} \frac{-\partial_{\nu_j} + \nu_j}{\sqrt{2}}$  ,  $\nu \in \mathbb{R}^d$ 

For 
$$w \in \mathcal{Z} = \mathbb{C}^d$$
 set  $a(w) = \sum_j \overline{w}_j a_j$ ,  $a^*(w) = \sum_j w_j a_j^*$ , 
$$[a(w), a^*(w')] = 2h\langle w, w' \rangle_{\mathcal{Z}} = \varepsilon \langle w, w' \rangle_{\mathcal{Z}}, \quad \varepsilon = 2h$$

The Wick (resp. anti-Wick) quantization associates with the polynomial

$$b(z) = \sum_{\substack{|\beta| = p \\ |\alpha| = q}} b_{\alpha,\beta} \overline{z}^{\alpha} z^{\beta} = \langle z^{\otimes q}, \tilde{b} z^{\otimes p} \rangle , \quad \tilde{b} = \frac{1}{q!p!} \partial_{\overline{z}}^q \partial_z^p b$$

the operator  $b^{Wick} = \sum_{\alpha,\beta} b_{\alpha,\beta} a^{*\alpha} a^{\beta}$ , (Wick)

$$b^{A-Wick} = \sum_{\alpha,\beta} b_{\alpha,\beta} a^{\beta} a^{*\alpha},$$
 (anti-Wick)

$$\Phi(f) = \frac{a(f) + a^*(f)}{\sqrt{2}} = \sqrt{2} \operatorname{Re} \langle f, z \rangle^{Wick} \quad , \quad W(f) = e^{i\Phi(f)} \, .$$

Semiclassical annihilation-creation operators:

(QFT) 
$$a_j = \sqrt{\varepsilon} \frac{\partial_{\nu_j} + \nu_j}{\sqrt{2}}$$
 ,  $a_j^* = \sqrt{\varepsilon} \frac{-\partial_{\nu_j} + \nu_j}{\sqrt{2}}$  ,  $\nu \in \mathbb{R}^d$ 

For 
$$w \in \mathcal{Z} = \mathbb{C}^d$$
 set  $a(w) = \sum_j \overline{w}_j a_j$ ,  $a^*(w) = \sum_j w_j a_j^*$ , 
$$[a(w), a^*(w')] = 2h\langle w, w' \rangle_{\mathcal{Z}} = \varepsilon \langle w, w' \rangle_{\mathcal{Z}}, \quad \varepsilon = 2h$$

The Wick (resp. anti-Wick) quantization associates with the polynomial

$$b(z) = \sum_{\substack{|\beta| = p \\ |\alpha| = q}} b_{\alpha,\beta} \overline{z}^{\alpha} z^{\beta} = \langle z^{\otimes q}, \tilde{b} z^{\otimes p} \rangle , \quad \tilde{b} = \frac{1}{q! p!} \partial_{\overline{z}}^{q} \partial_{z}^{p} b$$

the operator  $b^{Wick} = \sum_{lpha,eta} b_{lpha,eta} a^{*lpha} a^{eta}$  , (Wick)

Example:  $\mathbf{N} = (|z|^2)^{Wick} = \sum_j a_j^* a_j = \varepsilon \mathbf{N}_{\varepsilon=1}$  ,  $\mathbf{N} \varphi_\alpha = \varepsilon |\alpha| \varphi_\alpha$  when  $\varphi_\alpha$  is the  $\alpha$ -th Hermite function  $\alpha \in \mathbb{N}^d$ ,  $|\alpha| = \sum_j \alpha_j$ .  $\mathbf{N} = \mathcal{O}(1) \leftrightarrow |\alpha| = \mathcal{O}(\frac{1}{\varepsilon})$ . Weyl operator W(f):

$$\Phi(f) = \frac{a(f) + a^*(f)}{\sqrt{2}} = \sqrt{2} \operatorname{Re} \langle f, z \rangle^{Wick} \quad , \quad W(f) = e^{i\Phi(f)} \, .$$

# Semiclassical annihilation-creation operators:

(QFT) 
$$\mathbf{a}_{j} = \sqrt{\varepsilon} \frac{\partial \nu_{j} + \nu_{j}}{\sqrt{2}}$$
 ,  $\mathbf{a}_{j}^{*} = \sqrt{\varepsilon} \frac{-\partial \nu_{j} + \nu_{j}}{\sqrt{2}}$  ,  $\nu \in \mathbb{R}^{d}$ 

For 
$$w \in \mathcal{Z} = \mathbb{C}^d$$
 set  $a(w) = \sum_j \overline{w}_j a_j$  ,  $a^*(w) = \sum_j w_j a_j^*$  ,

$$\left[a(w),a^*(w')\right]=2h\langle w\,,\,w'\rangle_{\mathcal{Z}}=\varepsilon\langle w\,,\,w'\rangle_{\mathcal{Z}}\quad,\quad\varepsilon=2h$$

The Wick (resp. anti-Wick) quantization associates with the polynomial

$$b(z) = \sum_{\substack{|\beta| = p \\ |\alpha| = q}} b_{\alpha,\beta} \overline{z}^{\alpha} z^{\beta} = \langle z^{\otimes q}, \tilde{b} z^{\otimes p} \rangle , \quad \tilde{b} = \frac{1}{q!p!} \partial_{\overline{z}}^{q} \partial_{z}^{p} b$$

the operator 
$$b^{Wick} = \sum_{\alpha,\beta} b_{\alpha,\beta} a^{*\alpha} a^{\beta}$$
, (Wick)

$$\Phi(f) = \frac{a(f) + a^*(f)}{\sqrt{2}} = \sqrt{2} \operatorname{Re} \left\langle f, z \right\rangle^{Wick} \quad , \quad W(f) = e^{i\Phi(f)} \, .$$

Semiclassical annihilation-creation operators:

$$(\mathit{QFT}) \quad \mathit{a}_j = \sqrt{\varepsilon} \frac{\partial_{\nu_j} + \nu_j}{\sqrt{2}} \quad , \quad \mathit{a}_j^* = \sqrt{\varepsilon} \frac{-\partial_{\nu_j} + \nu_j}{\sqrt{2}} \quad , \quad \nu \in \mathbb{R}^d$$

For  $w \in \mathcal{Z} = \mathbb{C}^d$  set  $a(w) = \sum_i \overline{w}_i a_i$ ,  $a^*(w) = \sum_i w_i a_i^*$ ,

$$[a(w), a^*(w')] = 2h\langle w, w' \rangle_{\mathcal{Z}} = \varepsilon \langle w, w' \rangle_{\mathcal{Z}} \quad , \quad \varepsilon = 2h$$

The Wick (resp. anti-Wick) quantization associates with the polynomial

$$b(z) = \sum_{\substack{|\beta| = p \\ |\alpha| = q}} b_{\alpha,\beta} \overline{z}^{\alpha} z^{\beta} = \langle z^{\otimes q}, \tilde{b} z^{\otimes p} \rangle , \quad \tilde{b} = \frac{1}{q! p!} \partial_{\overline{z}}^{q} \partial_{z}^{p} b$$

the operator  $b^{Wick} = \sum b_{\alpha,\beta} a^{*\alpha} a^{\beta}$ , (Wick)

$$\Phi(f) = \frac{a(f) + a^*(f)}{\sqrt{2}} = \sqrt{2} \operatorname{Re} \left\langle f, z \right\rangle^{Wick} \quad , \quad W(f) = e^{i\Phi(f)} \, .$$

If 
$$\hat{b}(\zeta) = \int_{\mathcal{Z}} b(z) e^{-2i\pi \operatorname{Re} \langle \zeta, z \rangle} \ dL_{\mathcal{Z}}(z)$$
 then  $b(z) = \int_{\mathcal{Z}} \hat{b}(\zeta) e^{2i\pi \operatorname{Re} \langle \zeta, z \rangle} \ dL_{\mathcal{Z}}(\zeta)$ 

and 
$$b^{W\!eyl} = b^{W\!eyl} (\sqrt{h} \nu, \sqrt{h} D_{\nu}) = \int_{\mathcal{Z}} \hat{b}(\zeta) W(\sqrt{2}\pi \zeta) \ dL_{\mathcal{Z}}(\zeta) \,.$$

new developments

Wigner measure Bosonic Fock space: Consider now the one particle (separable) complex Hilbert space  $\mathcal{Z}=L^2(\mathbb{R}^D,dx;\mathbb{C})$ .

$$\mathcal{H} = \Gamma_b(\mathcal{Z}) = \oplus_{n=0}^\infty \mathcal{S}_n \mathcal{Z}^{\otimes n} = \oplus_{n=0}^\infty \bigvee^n \mathcal{Z} \quad , \quad \bigvee^n \mathcal{Z} = L^2_{sym}((\mathbb{R}^D)^n;\mathbb{C})$$

Energy:  $\mathcal{E}(z,\overline{z}) = \langle z\,,\, -\Delta z \rangle + \frac{1}{2} \iint_{\mathbb{R}^{2D}} V(x-y)|z(x)|^2 |z(y)|^2 \, dxdy$ 

Nonlinear Hamiltonian dynamics:  $i\partial_t z = \partial_{\overline{z}} \mathcal{E}$ 

Wick quantized Hamiltonian : Take  $a=\sqrt{\varepsilon}a_{\varepsilon=1}$  with  $\varepsilon>0$  and set

$$H_{\varepsilon} = \mathcal{E}(z)^{Wick} = \langle z, -\Delta z \rangle^{Wick} + \frac{1}{2} \langle z^{\otimes 2}, V(x-y)z^{\otimes 2} \rangle^{Wick}$$

n-body evolution: For  $\Psi_0 \in L^2_{sym}((\mathbb{R}^D)^n;\mathbb{C}) = \bigvee^n \mathcal{Z}$ 

$$\Psi(t) = e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\Psi_0 = \Psi(x_1,\ldots,x_n,t)$$
 solves

Wigner measure Bosonic Fock space: Consider now the one particle (separable) complex Hilbert space  $\mathcal{Z}=L^2(\mathbb{R}^D,dx;\mathbb{C})$ .

$$\mathcal{H} = \Gamma_b(\mathcal{Z}) = \oplus_{n=0}^\infty \mathcal{S}_n \mathcal{Z}^{\otimes n} = \oplus_{n=0}^\infty \bigvee^n \mathcal{Z} \quad , \quad \bigvee^n \mathcal{Z} = L^2_{sym}((\mathbb{R}^D)^n;\mathbb{C})$$

Energy:  $\mathcal{E}(z, \overline{z}) = \langle z, -\Delta z \rangle + \frac{1}{2} \iint_{\mathbb{R}^{2D}} V(x - y) |z(x)|^2 |z(y)|^2 dxdy$ Nonlinear Hamiltonian dynamics:  $i\partial_t z = \partial_{\overline{z}} \mathcal{E}$ 

Wick quantized Hamiltonian : Take  $a = \sqrt{\varepsilon} a_{\varepsilon=1}$  with  $\varepsilon > 0$  and set

$$H_{\varepsilon} = \mathcal{E}(z)^{Wick} = \langle z, -\Delta z \rangle^{Wick} + \frac{1}{2} \langle z^{\otimes 2}, V(x-y)z^{\otimes 2} \rangle^{Wick}$$

n-body evolution: For  $\Psi_0 \in L^2_{sym}((\mathbb{R}^D)^n;\mathbb{C}) = \bigvee^n \mathcal{Z}$ 

 $\Psi(t) = e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\Psi_0 = \Psi(x_1, \dots, x_n, t)$  solves

Bosonic Fock space: Consider now the one particle (separable) complex Hilbert space  $\mathcal{Z}=L^2(\mathbb{R}^D,dx;\mathbb{C})$ .

$$\mathcal{H} = \Gamma_b(\mathcal{Z}) = \oplus_{n=0}^\infty \mathcal{S}_n \mathcal{Z}^{\otimes n} = \oplus_{n=0}^\infty \bigvee^n \mathcal{Z} \quad , \quad \bigvee^n \mathcal{Z} = L^2_{sym}((\mathbb{R}^D)^n;\mathbb{C})$$

$$S_n(f_1 \otimes \cdots f_n) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} f_{\sigma(1)} \otimes \cdots \otimes f_{\sigma(n)}.$$

Energy: 
$$\mathcal{E}(z,\overline{z}) = \langle z\,,\, -\Delta z \rangle + \frac{1}{2} \iint_{\mathbb{R}^{2D}} V(x-y)|z(x)|^2|z(y)|^2 \ dxdy$$

Nonlinear Hamiltonian dynamics:  $i\partial_t z = \partial_{\overline{z}} \mathcal{E}$ 

Wick quantized Hamiltonian : Take  $a=\sqrt{\varepsilon}a_{\varepsilon=1}$  with  $\varepsilon>0$  and set

$$H_{\epsilon} = \mathcal{E}(z)^{\text{Wick}} = \langle z, -\Delta z \rangle^{\text{Wick}} + \frac{1}{2} \langle z^{\otimes 2}, V(x-y)z^{\otimes 2} \rangle^{\text{Wick}}$$

n-body evolution: For 
$$\Psi_0 \in L^2_{sym}((\mathbb{R}^D)^n;\mathbb{C}) = \bigvee^n \mathcal{Z}$$

$$\Psi(t) = e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\Psi_0 = \Psi(x_1,\ldots,x_n,t)$$
 solves

Wigner measur Bosonic Fock space: Consider now the one particle (separable) complex Hilbert space  $\mathcal{Z}=L^2(\mathbb{R}^D,dx;\mathbb{C})$ .

$$\mathcal{H} = \Gamma_b(\mathcal{Z}) = \oplus_{n=0}^\infty \mathcal{S}_n \mathcal{Z}^{\otimes n} = \oplus_{n=0}^\infty \bigvee^n \mathcal{Z} \quad , \quad \bigvee^n \mathcal{Z} = L^2_{sym}((\mathbb{R}^D)^n;\mathbb{C})$$

Energy:  $\mathcal{E}(z,\overline{z}) = \int_{\mathbb{R}^D} |\nabla_x z(x)|^2 dx + \frac{1}{2} \iint_{\mathbb{R}^{2D}} V(x-y)|z(x)|^2 |z(y)|^2 dxdy$ Nonlinear Hamiltonian dynamics:  $i\partial_{\overline{z}}z = \partial_{\overline{z}}\mathcal{E}$ 

Wisk quantized Hamiltonian + Take a - Van - with a >

Wick quantized Hamiltonian : Take  $a=\sqrt{\varepsilon}a_{\varepsilon=1}$  with  $\varepsilon>0$  and set

$$H_{\varepsilon} = \mathcal{E}(z)^{Wick} = \langle z, -\Delta z \rangle^{Wick} + \frac{1}{2} \langle z^{\otimes 2}, V(x-y)z^{\otimes 2} \rangle^{Wick}$$

n-body evolution: For  $\Psi_0 \in L^2_{sym}((\mathbb{R}^D)^n; \mathbb{C}) = \bigvee^n \mathbb{Z}$ 

 $\Psi(t) = e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\Psi_0 = \Psi(x_1,\ldots,x_n,t)$  solves

Bosonic Fock space: Consider now the one particle (separable) complex Hilbert space  $\mathcal{Z} = L^2(\mathbb{R}^D, dx; \mathbb{C})$ .

$$\mathcal{H} = \Gamma_b(\mathcal{Z}) = \oplus_{n=0}^\infty \mathcal{S}_n \mathcal{Z}^{\otimes n} = \oplus_{n=0}^\infty \bigvee^n \mathcal{Z} \quad , \quad \bigvee^n \mathcal{Z} = L^2_{sym}((\mathbb{R}^D)^n;\mathbb{C})$$

Energy: 
$$\mathcal{E}(z,\overline{z}) = \langle z\,,\, -\Delta z \rangle + \frac{1}{2} \iint_{\mathbb{R}^{2D}} V(x-y) |z(x)|^2 |z(y)|^2 \ dxdy$$

$$V(-x)=V(x)$$

Nonlinear Hamiltonian dynamics:  $i\partial_t z = \partial_{\overline{z}} \mathcal{E}$ 

Wick quantized Hamiltonian : Take  $a = \sqrt{\varepsilon} a_{\varepsilon=1}$  with  $\varepsilon > 0$  and set

$$H_{\varepsilon} = \mathcal{E}(z)^{\textit{Wick}} = \langle z, -\Delta z \rangle^{\textit{Wick}} + \frac{1}{2} \langle z^{\otimes 2}, V(x-y)z^{\otimes 2} \rangle^{\textit{Wick}}$$

n-body evolution: For 
$$\Psi_0 \in L^2_{sym}((\mathbb{R}^D)^n;\mathbb{C}) = \bigvee^n \mathcal{Z}$$

$$\Psi(t)=e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\Psi_{0}=\Psi(x_{1},\ldots,x_{n},t)$$
 solves

totics Wigner Bosonic Fock space: Consider now the one particle (separable) complex Hilbert space  $\mathcal{Z}=L^2(\mathbb{R}^D,dx;\mathbb{C})$ .

$$\mathcal{H} = \Gamma_b(\mathcal{Z}) = \oplus_{n=0}^\infty \mathcal{S}_n \mathcal{Z}^{\otimes n} = \oplus_{n=0}^\infty \bigvee^n \mathcal{Z} \quad , \quad \bigvee^n \mathcal{Z} = L^2_{sym}((\mathbb{R}^D)^n;\mathbb{C})$$

Energy:  $\mathcal{E}(z,\overline{z}) = \langle z\,,\, -\Delta z \rangle + \frac{1}{2} \iint_{\mathbb{R}^{2D}} V(x-y) |z(x)|^2 |z(y)|^2 \, dxdy$ Nonlinear Hamiltonian dynamics:  $i\partial_t z = \partial_{\overline{z}} \mathcal{E}$ 

Wick quantized Hamiltonian : Take  $a=\sqrt{\varepsilon}a_{\varepsilon=1}$  with  $\varepsilon>0$  and set

$$H_{\varepsilon} = \mathcal{E}(z)^{Wick} = \langle z, -\Delta z \rangle^{Wick} + \frac{1}{2} \langle z^{\otimes 2}, V(x-y)z^{\otimes 2} \rangle^{Wick}$$

n-body evolution: For  $\Psi_0 \in L^2_{sym}((\mathbb{R}^D)^n; \mathbb{C}) = \bigvee^n \mathbb{Z}$ 

 $\Psi(t) = e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\Psi_0 = \Psi(x_1,\ldots,x_n,t)$  solves

Wigner measure Bosonic Fock space: Consider now the one particle (separable) complex Hilbert space  $\mathcal{Z}=L^2(\mathbb{R}^D,dx;\mathbb{C})$ .

$$\mathcal{H} = \Gamma_b(\mathcal{Z}) = \oplus_{n=0}^\infty \mathcal{S}_n \mathcal{Z}^{\otimes n} = \oplus_{n=0}^\infty \bigvee^n \mathcal{Z} \quad , \quad \bigvee^n \mathcal{Z} = L^2_{sym}((\mathbb{R}^D)^n;\mathbb{C})$$

Energy:  $\mathcal{E}(z,\overline{z}) = \langle z\,,\, -\Delta z \rangle + \frac{1}{2} \iint_{\mathbb{R}^{2D}} V(x-y) |z(x)|^2 |z(y)|^2 \ dxdy$ 

Nonlinear Hamiltonian dynamics:  $i\partial_t z = \partial_{\overline{z}} \mathcal{E}$ 

Hartree (NLS) equation:  $i\partial_t z = -\Delta z + (V*|z|^2)z$ 

Wick quantized Hamiltonian : Take  $a=\sqrt{\varepsilon}a_{\varepsilon=1}$  with  $\varepsilon>0$  and set

$$H_{\varepsilon} = \mathcal{E}(z)^{Wick} = \langle z, -\Delta z \rangle^{Wick} + \frac{1}{2} \langle z^{\otimes 2}, V(x-y)z^{\otimes 2} \rangle^{Wick}$$

n-body evolution: For  $\Psi_0 \in L^2_{sym}((\mathbb{R}^D)^n;\mathbb{C}) = \bigvee^n \mathcal{Z}$ 

 $\Psi(t) = e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\Psi_0 = \Psi(x_1,\ldots,x_n,t)$  solves

Bosonic Fock space: Consider now the one particle (separable) complex Hilbert space  $\mathcal{Z} = L^2(\mathbb{R}^D, dx; \mathbb{C})$ .

$$\mathcal{H} = \Gamma_b(\mathcal{Z}) = \oplus_{n=0}^\infty \mathcal{S}_n \mathcal{Z}^{\otimes n} = \oplus_{n=0}^\infty \bigvee^n \mathcal{Z} \quad , \quad \bigvee^n \mathcal{Z} = \mathit{L}^2_{sym}((\mathbb{R}^D)^n; \mathbb{C})$$

Energy: 
$$\mathcal{E}(z, \overline{z}) = \langle z, -\Delta z \rangle + \frac{1}{2} \iint_{\mathbb{R}^{2D}} V(x - y) |z(x)|^2 |z(y)|^2 dxdy$$

Nonlinear Hamiltonian dynamics:  $i\partial_t z = \partial_{\overline{z}} \mathcal{E}$ 

Wick quantized Hamiltonian : Take  $a = \sqrt{\varepsilon} a_{\varepsilon=1}$  with  $\varepsilon > 0$  and set

$$H_{\varepsilon} = \mathcal{E}(z)^{Wick} = \langle z, -\Delta z \rangle^{Wick} + \frac{1}{2} \langle z^{\otimes 2}, V(x-y)z^{\otimes 2} \rangle^{Wick}$$

n-body evolution: For 
$$\Psi_0 \in L^2_{sym}((\mathbb{R}^D)^n; \mathbb{C}) = \bigvee^n \mathbb{Z}$$

$$\Psi(t) = e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\Psi_0 = \Psi(x_1,\ldots,x_n,t)$$
 solves

Bosonic Fock space: Consider now the one particle (separable) complex Hilbert space  $\mathcal{Z}=L^2(\mathbb{R}^D,dx;\mathbb{C})$  .

$$\mathcal{H} = \Gamma_b(\mathcal{Z}) = \oplus_{n=0}^\infty \mathcal{S}_n \mathcal{Z}^{\otimes n} = \oplus_{n=0}^\infty \bigvee^n \mathcal{Z} \quad , \quad \bigvee^n \mathcal{Z} = L^2_{sym}((\mathbb{R}^D)^n;\mathbb{C})$$

Energy:  $\mathcal{E}(z,\overline{z}) = \langle z\,,\, -\Delta z \rangle + \frac{1}{2} \iint_{\mathbb{R}^{2D}} V(x-y) |z(x)|^2 |z(y)|^2 \ dxdy$ 

Nonlinear Hamiltonian dynamics:  $i\partial_t z = \partial_{\overline{z}} \mathcal{E}$ 

Wick quantized Hamiltonian : Take  $a=\sqrt{\varepsilon}a_{\varepsilon=1}$  with  $\varepsilon>0$  and set

$$\textit{H}_{\epsilon} = \mathcal{E}(z)^{\textit{Wick}} = \langle z, -\Delta z \rangle^{\textit{Wick}} + \frac{1}{2} \langle z^{\otimes 2}, \textit{V}(x-y)z^{\otimes 2} \rangle^{\textit{Wick}}$$

$$H_{\varepsilon} = \underbrace{\int_{\mathbb{R}^{D}} \nabla a^{*}(x) \nabla a(x) \, dx}_{d\Gamma(-\Delta)} + \frac{1}{2} \int_{\mathbb{R}^{2D}} V(x - y) a^{*}(x) a^{*}(y) a(x) a(y) \, dx dy.$$

$$d\Gamma(A) = \varepsilon d\Gamma_{\varepsilon=1}(A) \quad , \quad d\Gamma(\mathrm{Id}) = \mathbf{N} = \varepsilon \mathbf{N}_{\varepsilon=1}.$$

$$a_1(A) = \varepsilon a_1 \varepsilon a_1(A)$$
 ,  $a_1(1a) = \mathbf{N} = \varepsilon \mathbf{N}$ , n-body evolution: For  $\Psi_0 \in L^2_{svm}((\mathbb{R}^D)^n; \mathbb{C}) = \bigvee^n \mathcal{Z}$ 

 $\Psi(t) = e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\Psi_0 = \Psi(x_1, \dots, x_n, t)$  solves

Bosonic Fock space: Consider now the one particle (separable) complex Hilbert space  $\mathcal{Z}=L^2(\mathbb{R}^D,dx;\mathbb{C})$ .

$$\mathcal{H} = \Gamma_b(\mathcal{Z}) = \oplus_{n=0}^\infty \mathcal{S}_n \mathcal{Z}^{\otimes n} = \oplus_{n=0}^\infty \bigvee^n \mathcal{Z} \quad , \quad \bigvee^n \mathcal{Z} = \mathit{L}^2_{sym}((\mathbb{R}^D)^n; \mathbb{C})$$

Energy:  $\mathcal{E}(z, \overline{z}) = \langle z, -\Delta z \rangle + \frac{1}{2} \iint_{\mathbb{R}^{2D}} V(x-y)|z(x)|^2 |z(y)|^2 dxdy$ Nonlinear Hamiltonian dynamics:  $i\partial_t z = \partial_{\overline{z}} \mathcal{E}$ 

Wick quantized Hamiltonian : Take  $a = \sqrt{\varepsilon} a_{\varepsilon=1}$  with  $\varepsilon > 0$  and set

antized Hamiltonian . Take  $a=\sqrt{\varepsilon a_{\varepsilon=1}}$  with  $\varepsilon>0$  and se

$$H_{\varepsilon} = \mathcal{E}(z)^{Wick} = \langle z, -\Delta z \rangle^{Wick} + \frac{1}{2} \langle z^{\otimes 2}, V(x-y)z^{\otimes 2} \rangle^{Wick}$$

n-body evolution: For  $\Psi_0 \in L^2_{sym}((\mathbb{R}^D)^n; \mathbb{C}) = \bigvee^n \mathcal{Z}$  $\Psi(t) = e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\Psi_0 = \Psi(x_1, \dots, x_n, t)$  solves

$$iarepsilon\partial_t\Psi=-arepsilon\sum_{j=1}^n\Delta_{x_j}\Psi+rac{arepsilon^2}{2}\sum_{1\leq i,j\leq n}V(x_i-x_j)\Psi$$

Bosonic Fock space: Consider now the one particle (separable) complex Hilbert space  $\mathcal{Z}=L^2(\mathbb{R}^D,dx;\mathbb{C})$  .

$$\mathcal{H} = \Gamma_b(\mathcal{Z}) = \bigoplus_{n=0}^{\infty} \mathcal{S}_n \mathcal{Z}^{\otimes n} = \bigoplus_{n=0}^{\infty} \bigvee^n \mathcal{Z} \quad , \quad \bigvee^n \mathcal{Z} = L^2_{sym}((\mathbb{R}^D)^n; \mathbb{C})$$

Energy:  $\mathcal{E}(z,\overline{z}) = \langle z, -\Delta z \rangle + \frac{1}{2} \iint_{\mathbb{R}^{2D}} V(x-y)|z(x)|^2 |z(y)|^2 dxdy$ 

Nonlinear Hamiltonian dynamics:  $i\partial_t z = \partial_{\overline{z}} \mathcal{E}$ 

Wick quantized Hamiltonian : Take  $a=\sqrt{\varepsilon}a_{\varepsilon=1}$  with  $\varepsilon>0$  and set

$$H_{\varepsilon} = \mathcal{E}(z)^{Wick} = \langle z, -\Delta z \rangle^{Wick} + \frac{1}{2} \langle z^{\otimes 2}, V(x-y)z^{\otimes 2} \rangle^{Wick}$$

n-body evolution: For  $\Psi_0 \in L^2_{\text{sym}}((\mathbb{R}^D)^n; \mathbb{C}) = \bigvee^n \mathcal{Z}$  $\Psi(t) = e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\Psi_0 = \Psi(x_1, \dots, x_n, t)$  solves

$$i\partial_t \Psi = -\sum_{j=1}^n \Delta_{x_j} \Psi + \frac{\varepsilon}{2} \sum_{1 \leq i,j \leq n} V(x_i - x_j) \Psi$$

Bosonic Fock space: Consider now the one particle (separable) complex Hilbert space  $\mathcal{Z}=L^2(\mathbb{R}^D,dx;\mathbb{C})$ .

$$\mathcal{H} = \Gamma_b(\mathcal{Z}) = \oplus_{n=0}^\infty \mathcal{S}_n \mathcal{Z}^{\otimes n} = \oplus_{n=0}^\infty \bigvee^n \mathcal{Z} \quad , \quad \bigvee^n \mathcal{Z} = L^2_{sym}((\mathbb{R}^D)^n;\mathbb{C})$$

Energy:  $\mathcal{E}(z,\overline{z}) = \langle z, -\Delta z \rangle + \frac{1}{2} \iint_{\mathbb{R}^{2D}} V(x-y)|z(x)|^2 |z(y)|^2 dxdy$ 

Nonlinear Hamiltonian dynamics:  $i\partial_t z = \partial_{\overline{z}} \mathcal{E}$ 

Wick quantized Hamiltonian : Take  $a=\sqrt{\varepsilon}a_{\varepsilon=1}$  with  $\varepsilon>0$  and set

$$H_{\varepsilon} = \mathcal{E}(z)^{Wick} = \langle z, -\Delta z \rangle^{Wick} + \frac{1}{2} \langle z^{\otimes 2}, V(x-y)z^{\otimes 2} \rangle^{Wick}$$

n-body evolution: For  $\Psi_0 \in L^2_{sym}((\mathbb{R}^D)^n;\mathbb{C}) = \bigvee^n \mathcal{Z}$   $\Psi(t) = e^{-i\frac{t}{\varepsilon}H_\varepsilon}\Psi_0 = \Psi(x_1,\ldots,x_n,t) \text{ solves}$ 

$$i\partial_t \Psi = -\sum_{j=1}^n \Delta_{x_j} \Psi + \frac{1}{2n} \sum_{1 \le i,j \le n} V(x_i - x_j) \Psi \quad \text{if } \varepsilon = \frac{1}{n}$$

totics
Wigner
measures

Remember:  $\mathcal{Z}$  is a separable complex Hilbert space (1 part. space)

$$\begin{split} \mathcal{H} &= \Gamma_b(\mathcal{Z}) = \oplus_{n=0}^\infty \bigvee^n \mathcal{Z} \quad , \quad Nz^{\otimes n} = \varepsilon nz^{\otimes n} \, , \\ a(f)z^{\otimes n} &= \sqrt{\varepsilon n} \langle f \, , \, z \rangle z^{\otimes n-1} \quad , \quad a^*(f)z^{\otimes n} = \sqrt{\varepsilon (n+1)} \mathcal{S}_{n+1}[f \otimes z^{\otimes n}] \, , \\ \Phi(f) &= \frac{a(f) + a^*(f)}{\sqrt{2}} \quad , \quad W(f) = e^{i\Phi(f)} \, . \end{split}$$

Consider a normal state in  $\mathcal{H}$ ,  $\varrho_{\varepsilon}\in\mathcal{L}^{1}(\mathcal{H})$ ,  $\varrho_{\varepsilon}\geq0$ ,  $\mathrm{Tr}\ [\varrho_{\varepsilon}]=1$ .

#### Definition

For  $\hat{E} \in (0, +\infty)$ ,  $0 \in \hat{E}$ , and a family  $(\varrho_{\varepsilon})_{\varepsilon \in \hat{E}}$  of normal states in  $\mathcal{H}$ ,  $\mathcal{M}(\varrho_{\varepsilon}, \varepsilon \in \hat{E})$  is the set of Borel probability measures  $\mu$  on  $\mathcal{Z}$  for which there exists  $\hat{E}' \subset \hat{E}$  such that

$$0 \in \overline{\hat{E}'},$$

$$\forall f \in \mathcal{Z}, \lim_{\varepsilon \to 0, \varepsilon \in \hat{E}'} \operatorname{Tr} \left[ \varrho_{\varepsilon} W(\sqrt{2}\pi f) \right] = \int_{\mathcal{Z}} e^{2i\pi \operatorname{Re} \langle f, z \rangle} d\mu(z)$$

When  $\mu \in \mathcal{M}(\varrho_{\varepsilon}, \varepsilon \in \hat{E})$ ,  $\mu$  is called a Wigner measure of  $(\varrho_{\varepsilon})_{\varepsilon \in \hat{E}}$ .

Remember:  $\mathcal{Z}$  is a separable complex Hilbert space (1 part. space)

$$\begin{split} \mathcal{H} &= \Gamma_b(\mathcal{Z}) = \oplus_{n=0}^\infty \bigvee^n \mathcal{Z} \quad , \quad \textbf{N} z^{\otimes n} = \varepsilon n z^{\otimes n} \, , \\ a(f) z^{\otimes n} &= \sqrt{\varepsilon n} \langle f \,, \, z \rangle z^{\otimes n-1} \quad , \quad a^*(f) z^{\otimes n} = \sqrt{\varepsilon (n+1)} \mathcal{S}_{n+1} [f \otimes z^{\otimes n}] \, , \\ \Phi(f) &= \frac{a(f) + a^*(f)}{\sqrt{2}} \quad , \quad W(f) = e^{i \Phi(f)} \, . \end{split}$$

Consider a normal state in  $\mathcal{H}$ ,  $\varrho_{\varepsilon}\in\mathcal{L}^{1}(\mathcal{H})$ ,  $\varrho_{\varepsilon}\geq0$ ,  $\mathrm{Tr}\ [\varrho_{\varepsilon}]=1$ .

#### Definition

For  $\hat{E} \in (0, +\infty)$ ,  $0 \in \hat{E}$ , and a family  $(\varrho_{\varepsilon})_{\varepsilon \in \hat{E}}$  of normal states in  $\mathcal{H}$ ,  $\mathcal{M}(\varrho_{\varepsilon}, \varepsilon \in \hat{E})$  is the set of Borel probability measures  $\mu$  on  $\mathcal{Z}$  for which there exists  $\hat{E}' \subset \hat{E}$  such that

$$0 \in \overline{\hat{E}'},$$

$$\forall f \in \mathcal{Z}, \lim_{\varepsilon \to 0, \varepsilon \in \hat{E}'} \operatorname{Tr} \left[ \varrho_{\varepsilon} W(\sqrt{2}\pi f) \right] = \int_{\mathcal{Z}} e^{2i\pi \operatorname{Re} \langle f, z \rangle} d\mu(z)$$

When  $\mu \in \mathcal{M}(\varrho_{\varepsilon}, \varepsilon \in \hat{E})$ ,  $\mu$  is called a Wigner measure of  $(\varrho_{\varepsilon})_{\varepsilon \in \hat{E}}$ .

new devel-

opments

Remember:  ${\mathcal Z}$  is a separable complex Hilbert space (1 part. space)

$$\begin{split} \mathcal{H} &= \Gamma_b(\mathcal{Z}) = \oplus_{n=0}^{\infty} \bigvee^n \mathcal{Z} \quad , \quad \mathbf{N} z^{\otimes n} = \varepsilon n z^{\otimes n} \, , \\ a(f) z^{\otimes n} &= \sqrt{\varepsilon n} \langle f \,, \, z \rangle z^{\otimes n-1} \quad , \quad a^*(f) z^{\otimes n} = \sqrt{\varepsilon (n+1)} \mathcal{S}_{n+1} [f \otimes z^{\otimes n}] \, , \\ \Phi(f) &= \frac{a(f) + a^*(f)}{\sqrt{2}} \quad , \quad W(f) = e^{i\Phi(f)} \, . \end{split}$$

Consider a normal state in  $\mathcal{H}$  ,  $\varrho_{\varepsilon}\in\mathcal{L}^{1}(\mathcal{H})$  ,  $\varrho_{\varepsilon}\geq0$  ,  $\mathrm{Tr}\ [\varrho_{\varepsilon}]=1$  .

Example:  $arrho_arepsilon = |\Psi_arepsilon
angle\langle\Psi_arepsilon|$  ,  $\Psi_arepsilon \in \mathcal{H}$  ,

Mean field coherent state  $\Psi_{\varepsilon} = E(f) = W(\frac{\sqrt{2}}{i\varepsilon}f)|\Omega\rangle$ 

Mean field Hermite (atomic coherent) state:  $\Psi_{\varepsilon}=\varphi^{\otimes n}$  with  $\varepsilon=\frac{1}{n}$ .

#### Definition

For  $\hat{\mathcal{E}} \in (0, +\infty)$ ,  $0 \in \hat{\mathcal{E}}$ , and a family  $(\varrho_{\varepsilon})_{\varepsilon \in \hat{\mathcal{E}}}$  of normal states in  $\mathcal{H}$ ,  $\mathcal{M}(\varrho_{\varepsilon}, \varepsilon \in \hat{\mathcal{E}})$  is the set of Borel probability measures  $\mu$  on  $\mathcal{Z}$  for which there exists  $\hat{\mathcal{E}}' \subset \hat{\mathcal{E}}$  such that

$$\begin{aligned} &0 \in \widehat{E}'\,, \\ &\forall f \in \mathcal{Z}\,, \quad \lim_{\varepsilon \to 0\,, \varepsilon \in \widehat{E}'} \text{Tr } \left[\varrho_\varepsilon W(\sqrt{2}\pi f)\right] = \int_{\mathcal{Z}} e^{2i\pi\,\operatorname{Re}\,\langle f\,,\,z\rangle} \,\,d\mu(z) \end{aligned}$$

When  $\mu \in \mathcal{M}(\varrho_{\varepsilon}, \varepsilon \in \hat{E})$ ,  $\mu$  is called a Wigner measure of  $(\varrho_{\varepsilon})_{\varepsilon \in \hat{E}}$ .

Remember:  $\mathcal{Z}$  is a separable complex Hilbert space (1 part. space)

$$\begin{split} \mathcal{H} &= \Gamma_b(\mathcal{Z}) = \oplus_{n=0}^{\infty} \bigvee^n \mathcal{Z} \quad , \quad \textbf{N} z^{\otimes n} = \varepsilon n z^{\otimes n} \, , \\ a(f) z^{\otimes n} &= \sqrt{\varepsilon n} \langle f \,, \, z \rangle z^{\otimes n-1} \quad , \quad a^*(f) z^{\otimes n} = \sqrt{\varepsilon (n+1)} \mathcal{S}_{n+1} [f \otimes z^{\otimes n}] \, , \\ \Phi(f) &= \frac{a(f) + a^*(f)}{\sqrt{2}} \quad , \quad W(f) = e^{i \Phi(f)} \, . \end{split}$$

Consider a normal state in  $\mathcal H$  ,  $arrho_arepsilon\in\mathcal L^1(\mathcal H)$  ,  $arrho_arepsilon\geq 0$  ,  $\mathrm{Tr}\ [arrho_arepsilon]=1$  .

### Definition

For  $\hat{E} \in (0, +\infty)$ ,  $0 \in \hat{E}$ , and a family  $(\varrho_{\varepsilon})_{\varepsilon \in \hat{E}}$  of normal states in  $\mathcal{H}$ ,  $\mathcal{M}(\varrho_{\varepsilon}, \varepsilon \in \hat{E})$  is the set of Borel probability measures  $\mu$  on  $\mathcal{Z}$  for which there exists  $\hat{E}' \subset \hat{E}$  such that

$$0 \in \overline{\hat{E}'},$$

$$\forall f \in \mathcal{Z}, \lim_{\varepsilon \to 0, \varepsilon \in \hat{E}'} \operatorname{Tr} \left[ \varrho_{\varepsilon} W(\sqrt{2}\pi f) \right] = \int_{\mathcal{Z}} e^{2i\pi \operatorname{Re} \langle f, z \rangle} d\mu(z)$$

When  $\mu\in\mathcal{M}(\varrho_{\varepsilon},\varepsilon\in\hat{\mathcal{E}})$ ,  $\mu$  is called a Wigner measure of  $(\varrho_{\varepsilon})_{\varepsilon\in\hat{\mathcal{E}}}$ .

### Th. (Ammari-N. AHP 08)

If there exists  $\delta > 0$  and  $C_{\delta} > 0$  s.t.

$$\forall \varepsilon \in \hat{E}, \quad \text{Tr} \left[\varrho_{\varepsilon} \langle \mathbf{N} \rangle^{\delta}\right] \leq C_{\delta}$$
 (2.1)

then  $\mathcal{M}(\varrho_{\varepsilon}, \varepsilon \in \hat{E}) \neq \emptyset$  and every  $\mu \in \mathcal{M}(\varrho_{\varepsilon}, \varepsilon \in \hat{E})$  satisfies

$$\int_{\mathbb{R}} (1+|z|^2)^{\delta} d\mu(z) \leq C_{\delta}.$$

### Definition

 $b \in \mathcal{S}_{cyl}(\mathcal{Z})$  if there exist a finite rank orth. proj. p and  $a \in \mathcal{S}(p\mathcal{Z})$  s.t.  $b = a \circ p$ .

### Corollar

Under the condition (2.1) with  $\mathcal{M}(\varrho_{\varepsilon}, \varepsilon \in \hat{E}) = \{\mu\}$ ,

$$\forall b \in \mathcal{S}_{\operatorname{cyl}}(\mathcal{Z})\,, \quad \lim_{arepsilon o 0\,,\, arepsilon \in \hat{\mathcal{F}}} \operatorname{Tr}\,\left[arrho_arepsilon b^{\operatorname{Weyl}}
ight] = \int_{\mathcal{Z}} b(z)\,\,d\mu(z)\,.$$

# Th. (Ammari-N. AHP 08)

If there exists  $\delta > 0$  and  $C_{\delta} > 0$  s.t.

$$\forall \varepsilon \in \hat{E}, \quad \operatorname{Tr} \left[ \varrho_{\varepsilon} \langle \mathbf{N} \rangle^{\delta} \right] \leq C_{\delta}$$
 (2.1)

then  $\mathcal{M}(\varrho_{\varepsilon}\,,\varepsilon\in\hat{\mathcal{E}})
eq\emptyset$  and every  $\mu\in\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{\mathcal{E}})$  satisfies

$$\int_{\mathcal{Z}} (1+|z|^2)^{\delta} \ d\mu(z) \leq C_{\delta}.$$

#### Definition

 $b \in \mathcal{S}_{cyl}(\mathcal{Z})$  if there exist a finite rank orth. proj. p and  $a \in \mathcal{S}(p\mathcal{Z})$  s.t.  $b = a \circ p$ .

## Corollar

Under the condition (2.1) with  $\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{E})=\{\mu\}$ ,

$$\forall b \in \mathcal{S}_{\mathit{cyl}}(\mathcal{Z}) \,, \quad \lim_{\varepsilon \to 0 \,, \varepsilon \in \hat{E}} \, \mathrm{Tr} \, \left[ \varrho_{\varepsilon} b^{\mathit{Weyl}} \right] = \int_{\mathcal{Z}} b(z) \, \, d\mu(z) \,.$$

measures

If there exists  $\delta > 0$  and  $C_{\delta} > 0$  s.t.

$$\forall \varepsilon \in \hat{\mathcal{E}}, \quad \operatorname{Tr}\left[\varrho_{\varepsilon}\langle \mathbf{N}\rangle^{\delta}\right] \leq C_{\delta}$$
 (2.1)

then  $\mathcal{M}(\rho_{\varepsilon}, \varepsilon \in \hat{E}) \neq \emptyset$  and every  $\mu \in \mathcal{M}(\rho_{\varepsilon}, \varepsilon \in \hat{E})$  satisfies

$$\int_{\mathcal{Z}} (1+|z|^2)^{\delta} \ d\mu(z) \leq C_{\delta} \ .$$

# Main ideas of the proof:

Separation of variables:

$$\begin{array}{ccccc} \mathcal{Z} & = & \mathcal{Z}_1 & \stackrel{\perp}{\oplus} & \mathcal{Z}_2 \\ \mathcal{H} & = & \mathcal{H}_1 & \otimes & \mathcal{H}_2 \,, & \mathcal{H}_* = \Gamma_b(\mathcal{Z}_*) \\ W(f_1 \oplus f_2) & = & W(f_1) & \otimes & W(f_2) & = W(f_1) \otimes \operatorname{Id}_{\mathcal{H}_2} & \text{if } f_2 = 0 \,. \end{array}$$

- **2**  $\mathcal{Z}$  is separable -> Borel  $\sigma$ -set and diagonal extraction.
- 3 Condition (2.1) is a tightness condition (see Prokhorov criterion)

 $b \in \mathcal{S}_{cvl}(\mathcal{Z})$  if there exist a finite rank orth. proj. p and  $a \in \mathcal{S}(p\mathcal{Z})$  s.t.  $b = a \circ p$ .

Under the condition (2.1) with  $\mathcal{M}(\rho_{\varepsilon}, \varepsilon \in \hat{E}) = \{\mu\}$ ,

# Th. (Ammari-N. AHP 08)

If there exists  $\delta > 0$  and  $C_{\delta} > 0$  s.t.

$$\forall \varepsilon \in \hat{E}, \quad \text{Tr} \left[\varrho_{\varepsilon} \langle \mathbf{N} \rangle^{\delta}\right] \leq C_{\delta}$$
 (2.1)

then  $\mathcal{M}(\rho_{\varepsilon}, \varepsilon \in \hat{E}) \neq \emptyset$  and every  $\mu \in \mathcal{M}(\varrho_{\varepsilon}, \varepsilon \in \hat{E})$  satisfies

$$\int_{\mathcal{Z}} (1+|z|^2)^{\delta} \ d\mu(z) \leq C_{\delta} \ .$$

Remark: After a subsequence extraction we can assume  $\mathcal{M}(\varrho_{\varepsilon}, \varepsilon \in \hat{\mathcal{E}}) = \{\mu\}$ .

 $b \in \mathcal{S}_{cvl}(\mathcal{Z})$  if there exist a finite rank orth. proj. p and  $a \in \mathcal{S}(p\mathcal{Z})$  s.t.  $b = a \circ p$ .

Under the condition (2.1) with  $\mathcal{M}(\varrho_{\varepsilon}, \varepsilon \in \hat{E}) = \{\mu\}$ ,

$$\forall b \in \mathcal{S}_{\mathrm{cyl}}(\mathcal{Z})\,, \quad \lim_{\varepsilon \to 0\,, \varepsilon \in \hat{\mathcal{E}}} \mathrm{Tr}\, \left[\varrho_\varepsilon \, b^{\mathrm{Weyl}}\right] = \int_{\mathcal{Z}} b(z) \,\, d\mu(z)\,.$$

# Th. (Ammari-N. AHP 08)

If there exists  $\delta > 0$  and  $C_{\delta} > 0$  s.t.

$$\forall \varepsilon \in \hat{\mathcal{E}}, \quad \operatorname{Tr} \left[ \varrho_{\varepsilon} \langle \mathbf{N} \rangle^{\delta} \right] \leq C_{\delta}$$
 (2.1)

then  $\mathcal{M}(\varrho_{\varepsilon}\,,\varepsilon\in\hat{E})\neq\emptyset$  and every  $\mu\in\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{E})$  satisfies

$$\int_{\mathcal{Z}} (1+|z|^2)^{\delta} \ d\mu(z) \leq C_{\delta}.$$

#### Definition

 $b \in \mathcal{S}_{cyl}(\mathcal{Z})$  if there exist a finite rank orth. proj. p and  $a \in \mathcal{S}(p\mathcal{Z})$  s.t.  $b = a \circ p$ .

# Corollary

Under the condition (2.1) with  $\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{\mathcal{E}})=\{\mu\}$  ,

$$orall b \in \mathcal{S}_{\mathit{cyl}}(\mathcal{Z})\,, \quad \lim_{arepsilon o 0\,,\, arepsilon \in \hat{\mathcal{E}}} \mathrm{Tr}\,\left[arrho_{arepsilon} b^{\mathit{Weyl}}
ight] = \int_{\mathcal{Z}} b(z)\,\,d\mu(z)\,.$$

#### Corollary

Assume  $\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{E})=\{\mu\}$  and

$$\forall k \in \mathbb{N}, \exists C_k > 0, \forall \varepsilon \in \hat{E}, \operatorname{Tr} \left[\varrho_{\varepsilon} \mathbf{N}^k\right] \leq C_k,$$

then for any cylindrical polynomial and with Q = Weyl, Wick or anti-Wick

$$\lim_{\varepsilon \to 0, \, \varepsilon \in \hat{\mathcal{E}}} \operatorname{Tr} \, \left[ \varrho_\varepsilon b^Q \right] = \int_{\mathcal{Z}} b(z) \, \, d\mu(z) \, .$$

# Example

Coherent states: 
$$f \in \mathcal{Z}$$
,  $|f|_{\mathcal{Z}} = 1$ ,  $E(f) = W(\frac{\sqrt{2}}{i\varepsilon}f)|\Omega\rangle = e^{\frac{a^*(f) - a(f)}{\varepsilon}}|\Omega\rangle$ ,  $\varrho_{\varepsilon}^{C}(f) = |E(f)\rangle\langle E(f)|$ ,  $\operatorname{Tr}\left[\varrho_{\varepsilon}^{C}(f)b^{Wick}\right] = b(f)$ ,  $\mathcal{M}(\varrho_{\varepsilon}^{C}(f), \varepsilon \in \hat{E}) = \{\delta_{f}\}$ .

Hermite (atomic coherent) states:  $f \in \mathcal{Z}$ ,  $|f|_{\mathcal{Z}} = 1$ ,  $\varrho_{\varepsilon}^{H}(f) = |f^{\otimes n}\rangle\langle f^{\otimes n}|$ ,  $\varepsilon = \frac{1}{n}$ ,  $\hat{E} = \left\{\frac{1}{n}, n \in \mathbb{N}^{*}\right\}$ ,

$$\mathcal{M}(\varrho_{arepsilon}^{H}(f), arepsilon \in \hat{\mathcal{E}}) = \left\{ \delta_{f}^{\mathbb{S}^{1}} = rac{1}{2\pi} \int_{0}^{2\pi} \delta_{e^{i heta}f} \ d heta 
ight\}$$

mixed Hermite (twin Fock) states:  $f_1, f_2 \in \mathcal{Z}$ ,  $\langle f_i, f_j \rangle = \delta_{ij}$ ,  $\varrho_{\varepsilon}^{\mu}(f_1, f_2) = |f_1^{\otimes n}\rangle\langle f_1^{\otimes n}| \otimes |f_2^{\otimes n}\rangle\langle f_2^{\otimes n}|$ ,  $\varepsilon = \frac{1}{2n}$ ,  $\hat{E} = \left\{\frac{1}{2n}, n \in \mathbb{N}^*\right\}$ ,

$$\mathcal{M}\left\{\varrho_{\varepsilon}^{H}(f_{1},f_{2}),\varepsilon\in\hat{E}\right\} = \left\{\delta_{2^{-1/2}f_{1}}^{\mathbb{S}^{1}} \otimes \delta_{2^{-1/2}f_{2}}^{\mathbb{S}^{1}}\right\}.$$

review. new developments

Corollary

Assume  $\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{E})=\{\mu\}$  and

$$\forall k \in \mathbb{N} \,,\, \exists C_k > 0 \,,\, , \forall \varepsilon \in \hat{E} \,,\, \operatorname{Tr} \, \left[ \varrho_{\varepsilon} \mathbf{N}^k \right] \leq C_k \,,$$

then for any cylindrical polynomial and with Q = Weyl, Wick or anti-Wick

$$\lim_{\varepsilon \to 0, \, \varepsilon \in \hat{\mathcal{E}}} \, \mathrm{Tr} \, \left[ \varrho_\varepsilon b^Q \right] = \int_{\mathcal{Z}} b(z) \, \, d\mu(z) \, .$$

Coherent states: 
$$f \in \mathcal{Z}$$
,  $|f|_{\mathcal{Z}} = 1$ ,  $E(f) = W(\frac{\sqrt{2}}{i\varepsilon}f)|\Omega\rangle = e^{\frac{a^*(f) - a(f)}{\varepsilon}}|\Omega\rangle$ ,  $\varrho_{\varepsilon}^{C}(f) = |E(f)\rangle\langle E(f)|$ ,  $\operatorname{Tr}\left[\varrho_{\varepsilon}^{C}(f)b^{Wick}\right] = b(f)$ ,  $\mathcal{M}(\varrho_{\varepsilon}^{C}(f), \varepsilon \in \hat{E}) = \{\delta_{f}\}$ . Hermite (atomic coherent) states:  $f \in \mathcal{Z}$ ,  $|f|_{\mathcal{Z}} = 1$ ,  $\varrho_{\varepsilon}^{H}(f) = |f^{\otimes n}\rangle\langle f^{\otimes n}|$ ,  $\varepsilon = \frac{1}{n}$ ,  $\hat{E} = \left\{\frac{1}{n}, n \in \mathbb{N}^{*}\right\}$ ,

$$\mathcal{M}(arrho_arepsilon^H(f)\,,arepsilon\in\hat{E})=\left\{\delta_f^{\mathbb{S}^1}=rac{1}{2\pi}\int_0^{2\pi}\delta_{e^{i heta}f}\;d heta
ight\}$$

mixed Hermite (twin Fock) states:  $f_1, f_2 \in \mathcal{Z}$ ,  $\langle f_i, f_i \rangle = \delta_{ii}$ ,  $\varrho_{\varepsilon}^{H}(f_{1},f_{2})=|f_{1}^{\otimes n}\rangle\langle f_{1}^{\otimes n}|\otimes|f_{2}^{\otimes n}\rangle\langle f_{2}^{\otimes n}|, \varepsilon=\frac{1}{2n}, \ \hat{E}=\left\{\frac{1}{2n}, n\in\mathbb{N}^{*}\right\},$ 

$$\mathcal{M}\left\{\varrho_{\varepsilon}^{H}(f_{1},f_{2}),\varepsilon\in\hat{E}\right\} = \left\{\delta_{2^{-1/2}f_{1}}^{\mathbb{S}^{1}} \otimes \delta_{2^{-1/2}f_{2}}^{\mathbb{S}^{1}}\right\}.$$

# Corollary

Assume  $\mathcal{M}(\varrho_{arepsilon}\,,\,arepsilon\in\hat{\mathcal{E}})=\{\mu\}$  and

$$\forall k \in \mathbb{N} \,,\, \exists C_k > 0 \,,\, , \forall arepsilon \in \hat{E} \,,\, \operatorname{Tr} \, \left[ arrho_{arepsilon} \mathbf{N}^k 
ight] \leq C_k \,,$$

then for any cylindrical polynomial and with Q = Weyl, Wick or anti-Wick

$$\lim_{\varepsilon \to 0, \, \varepsilon \in \hat{\mathcal{E}}} \, \mathrm{Tr} \, \left[ \varrho_{\varepsilon} b^Q \right] = \int_{\mathcal{Z}} b(z) \, \, d\mu(z) \, .$$

# Examples

Coherent states: 
$$f \in \mathcal{Z}$$
,  $|f|_{\mathcal{Z}} = 1$ ,  $E(f) = W(\frac{\sqrt{2}}{i\varepsilon}f)|\Omega\rangle = e^{\frac{a^*(f) - a|f|}{\varepsilon}}|\Omega\rangle$ ,  $\varrho_{\varepsilon}^{C}(f) = |E(f)\rangle\langle E(f)|$ ,  $\operatorname{Tr}\left[\varrho_{\varepsilon}^{C}(f)b^{Wick}\right] = b(f)$ ,  $\mathcal{M}(\varrho_{\varepsilon}^{C}(f), \varepsilon \in \hat{E}) = \{\delta_{f}\}$ . Hermite (atomic coherent) states:  $f \in \mathcal{Z}$ ,  $|f|_{\mathcal{Z}} = 1$ ,  $\varrho_{\varepsilon}^{H}(f) = |f^{\otimes n}\rangle\langle f^{\otimes n}|$ ,  $\varepsilon = \frac{1}{n}$ ,  $\hat{E} = \{\frac{1}{n}, n \in \mathbb{N}^{*}\}$ ,

$$\mathcal{M}(\varrho_{arepsilon}^{H}(f),arepsilon\in\hat{E})=\left\{\delta_{f}^{\mathbb{S}^{1}}=rac{1}{2\pi}\int_{0}^{2\pi}\delta_{e^{i heta}f}\ d heta
ight\}$$

$$\begin{array}{l} \text{mixed Hermite (twin Fock) states: } f_1,f_2 \in \mathcal{Z} \text{ , } \langle f_i \text{ , } f_j \rangle = \delta_{ij} \text{ ,} \\ \varrho_\varepsilon^H(f_1,f_2) = |f_1^{\otimes n}\rangle\langle f_1^{\otimes n}| \otimes |f_2^{\otimes n}\rangle\langle f_2^{\otimes n}| \text{ , } \varepsilon = \frac{1}{2n} \text{ , } \hat{E} = \left\{\frac{1}{2n} \text{ , } n \in \mathbb{N}^*\right\} \text{ ,} \end{array}$$

$$\mathcal{M}\left\{\varrho_{\varepsilon}^{H}(f_{1},f_{2}),\varepsilon\in\hat{E}\right\} = \left\{\delta_{2^{-1/2}f_{1}}^{\mathbb{S}^{1}} \otimes \delta_{2^{-1/2}f_{2}}^{\mathbb{S}^{1}}\right\}.$$

# Corollary

Assume  $\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{\mathcal{E}})=\{\mu\}$  and

$$\forall k \in \mathbb{N} \,,\, \exists C_k > 0 \,,\, , \forall arepsilon \in \hat{E} \,,\, \operatorname{Tr} \, \left[ arrho_{arepsilon} \mathbf{N}^k 
ight] \leq C_k \,,$$

then for any cylindrical polynomial and with Q = Weyl, Wick or anti-Wick

$$\lim_{\varepsilon \to 0, \, \varepsilon \in \hat{\mathcal{E}}} \, \mathrm{Tr} \, \left[ \varrho_{\varepsilon} b^Q \right] = \int_{\mathcal{Z}} b(z) \, \, d\mu(z) \, .$$

# Examples

Coherent states: 
$$f \in \mathcal{Z}$$
,  $|f|_{\mathcal{Z}} = 1$ ,  $E(f) = W(\frac{\sqrt{2}}{i\varepsilon}f)|\Omega\rangle = e^{\frac{s^n(f) - a(f)}{\varepsilon}}|\Omega\rangle$ ,  $\varrho_{\varepsilon}^{\mathcal{C}}(f) = |E(f)\rangle\langle E(f)|$ ,  $\operatorname{Tr}\left[\varrho_{\varepsilon}^{\mathcal{C}}(f)b^{Wick}\right] = b(f)$ ,  $\mathcal{M}(\varrho_{\varepsilon}^{\mathcal{C}}(f), \varepsilon \in \hat{E}) = \{\delta_f\}$ . Hermite (atomic coherent) states:  $f \in \mathcal{Z}$ ,  $|f|_{\mathcal{Z}} = 1$ ,  $\varrho_{\varepsilon}^{\mathcal{H}}(f) = |f^{\otimes n}\rangle\langle f^{\otimes n}|$ ,  $\varepsilon = \frac{1}{n}$ ,  $\hat{E} = \left\{\frac{1}{n}, n \in \mathbb{N}^*\right\}$ ,

$$\mathcal{M}(arrho_arepsilon^H(f)\,,arepsilon\in\hat{E})=\left\{\delta_f^{\mathbb{S}^1}=rac{1}{2\pi}\int_0^{2\pi}\delta_{e^{i heta}f}\;d heta
ight\}.$$

mixed Hermite (twin Fock) states: 
$$f_1, f_2 \in \mathcal{Z}$$
,  $\langle f_i, f_j \rangle = \delta_{ij}$ ,  $\varrho_{\varepsilon}^H(f_1, f_2) = |f_1^{\otimes n}\rangle\langle f_1^{\otimes n}| \otimes |f_2^{\otimes n}\rangle\langle f_2^{\otimes n}|$ ,  $\varepsilon = \frac{1}{2n}$ ,  $\hat{E} = \left\{\frac{1}{2n}, n \in \mathbb{N}^*\right\}$ ,

# Corollary

Assume  $\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{\mathcal{E}})=\{\mu\}$  and

$$\forall k \in \mathbb{N} \,,\, \exists C_k > 0 \,,\, , \forall \varepsilon \in \hat{E} \,,\, \operatorname{Tr} \left[ \varrho_{\varepsilon} \mathbf{N}^k \right] \leq C_k \,,$$

then for any cylindrical polynomial and with Q = Weyl, Wick or anti-Wick

$$\lim_{\varepsilon \to 0, \ \varepsilon \in \hat{\mathcal{E}}} \operatorname{Tr} \left[ \varrho_{\varepsilon} b^{Q} \right] = \int_{\mathcal{Z}} b(z) \ d\mu(z).$$

# Examples

Coherent states: 
$$f \in \mathcal{Z}$$
,  $|f|_{\mathcal{Z}} = 1$ ,  $E(f) = W(\frac{\sqrt{2}}{i\varepsilon}f)|\Omega\rangle = e^{\frac{s^*(f) - s(f)}{\varepsilon}}|\Omega\rangle$ ,  $\varrho_{\varepsilon}^C(f) = |E(f)\rangle\langle E(f)|$ ,  $\operatorname{Tr}\left[\varrho_{\varepsilon}^C(f)b^{Wick}\right] = b(f)$ ,  $\mathcal{M}(\varrho_{\varepsilon}^C(f), \varepsilon \in \hat{E}) = \{\delta_f\}$ . Hermite (atomic coherent) states:  $f \in \mathcal{Z}$ ,  $|f|_{\mathcal{Z}} = 1$ ,  $\varrho_{\varepsilon}^H(f) = |f^{\otimes n}\rangle\langle f^{\otimes n}|$ ,  $\varepsilon = \frac{1}{n}$ ,  $\hat{E} = \{\frac{1}{n}, n \in \mathbb{N}^*\}$ ,

$$\mathcal{M}(arrho_{arepsilon}^{\mathsf{H}}(f),arepsilon\in\hat{E})=\left\{\delta_{f}^{\mathbb{S}^{1}}=rac{1}{2\pi}\int_{0}^{2\pi}\delta_{e^{i heta}f}\;d heta
ight\}.$$

mixed Hermite (twin Fock) states:  $f_1, f_2 \in \mathcal{Z}$ ,  $\langle f_i, f_j \rangle = \delta_{ij}$ ,  $\varrho_{\varepsilon}^H(f_1, f_2) = |f_1^{\otimes n}\rangle\langle f_1^{\otimes n}| \otimes |f_2^{\otimes n}\rangle\langle f_2^{\otimes n}|$ ,  $\varepsilon = \frac{1}{2n}$ ,  $\hat{E} = \left\{\frac{1}{2n}, n \in \mathbb{N}^*\right\}$ ,

$$\mathcal{M}\left\{\varrho_{\varepsilon}^{H}(f_{1},f_{2}),\,\varepsilon\in\hat{\mathcal{E}}\right\} = \left\{\delta_{2^{-1/2}f_{1}}^{\mathbb{S}^{1}}\otimes\delta_{2^{-1/2}f_{2}}^{\mathbb{S}^{2}}\right\}.$$

Nigner neasure

#### Definition

Fixed degrees: we say that  $b(z)=\langle z^{\otimes q}\,,\,\tilde{b}z^{\otimes p}\rangle$  belongs to  $\mathcal{P}_{p,q}(\mathcal{Z})$ , if

$$\tilde{b} = \frac{1}{q!} \frac{1}{p!} \partial_{\overline{z}}^{q} \partial_{z}^{p} b \in \mathcal{L}(\bigvee^{p} \mathcal{Z}; \bigvee^{q} \mathcal{Z}),$$

Polynomials:  $\mathcal{P}(\mathcal{Z}) = \oplus_{p,q \in \mathbb{N}}^{alg} \mathcal{P}_{p,q}(\mathcal{Z})$ 

For 
$$b \in \mathcal{P}_{p,q}(\mathcal{Z})$$
, and  $n \ge 0$ ,  

$$b^{\textit{Wick}}|_{\bigvee^{n+p}\mathcal{Z}} = \frac{\sqrt{(n+p)!(n+q)!}}{n!} \varepsilon^{\frac{p+q}{2}} \mathcal{S}_{n+q}(\tilde{b} \otimes \operatorname{Id}_{\bigvee^{n}\mathcal{Z}}).$$

Polynomial-Identity: The failure of the convergence when  $\tilde{b} = \operatorname{Id}_{\sqrt{P} \ Z}$  is the sole obstruction to the convergence with a general  $\tilde{b} \in \mathcal{P}(\mathcal{Z})$ .

Fixed degrees: we say that  $b(z) = \langle z^{\otimes q}, \tilde{b}z^{\otimes p} \rangle$  belongs to  $\mathcal{P}_{p,q}(\mathcal{Z})$ , if

$$\tilde{b} = \frac{1}{q!} \frac{1}{p!} \partial_{\overline{z}}^{q} \partial_{z}^{p} b \in \mathcal{L}(\bigvee^{p} \mathcal{Z}; \bigvee^{q} \mathcal{Z}),$$

Polynomials:  $\mathcal{P}(\mathcal{Z}) = \bigoplus_{p,q \in \mathbb{N}}^{alg} \mathcal{P}_{p,q}(\mathcal{Z})$ 

For 
$$b \in \mathcal{P}_{p,q}(\mathcal{Z})$$
, and  $n \ge 0$ ,  

$$b^{\textit{Wick}}|_{\bigvee^{n+p}\mathcal{Z}} = \frac{\sqrt{(n+p)!(n+q)!}}{n!} \varepsilon^{\frac{p+q}{2}} \mathcal{S}_{n+q}(\tilde{b} \otimes \operatorname{Id}_{\bigvee^{n}\mathcal{Z}}).$$

Polynomial-Identity: The failure of the convergence when  $\tilde{b} = \operatorname{Id}_{\sqrt{P} \ Z}$  is the sole obstruction to the convergence with a general  $\tilde{b} \in \mathcal{P}(\mathcal{Z})$ .

Fixed degrees: we say that  $b(z) = \langle z^{\otimes q}, \tilde{b}z^{\otimes p} \rangle$  belongs to  $\mathcal{P}_{p,q}^{r}(\mathcal{Z})$ , if

$$\tilde{b} = \frac{1}{q!} \frac{1}{p!} \partial_{\overline{z}}^q \partial_z^p b \in \mathcal{L}^r(\bigvee^p \mathcal{Z}; \bigvee^q \mathcal{Z}), 1 \leq r \leq \infty \text{ Schatten classes}$$

Polynomials: 
$$\mathcal{P}(\mathcal{Z}) = \bigoplus_{p,q \in \mathbb{N}}^{alg} \mathcal{P}_{p,q}(\mathcal{Z}) \quad \mathcal{P}^{\infty}(\mathcal{Z}) = \bigoplus_{p,q \in \mathbb{N}}^{alg} \mathcal{P}^{\infty}_{p,q}(\mathcal{Z})$$

For 
$$b \in \mathcal{P}_{p,q}(\mathcal{Z})$$
, and  $n \ge 0$ ,  

$$b^{\textit{Wick}}|_{\bigvee^{n+p}\mathcal{Z}} = \frac{\sqrt{(n+p)!(n+q)!}}{n!} \varepsilon^{\frac{p+q}{2}} \mathcal{S}_{n+q}(\tilde{b} \otimes \operatorname{Id}_{\bigvee^{n}\mathcal{Z}}).$$

Polynomial-Identity: The failure of the convergence when  $\tilde{b} = \operatorname{Id}_{\sqrt{P} \ Z}$  is the sole obstruction to the convergence with a general  $\tilde{b} \in \mathcal{P}(\mathcal{Z})$ .

Fixed degrees: we say that  $b(z) = \langle z^{\otimes q}, \tilde{b}z^{\otimes p} \rangle$  belongs to  $\mathcal{P}_{p,q}(\mathcal{Z})$ , if

$$\tilde{b} = \frac{1}{q!} \frac{1}{p!} \partial_{\overline{z}}^{q} \partial_{z}^{p} b \in \mathcal{L}(\bigvee^{p} \mathcal{Z}; \bigvee^{q} \mathcal{Z}),$$

Polynomials:  $\mathcal{P}(\mathcal{Z}) = \oplus_{p,q \in \mathbb{N}}^{alg} \mathcal{P}_{p,q}(\mathcal{Z})$ 

For 
$$b \in \mathcal{P}_{p,q}(\mathcal{Z})$$
, and  $n \ge 0$ ,  

$$b^{\textit{Wick}}|_{\bigvee^{n+p}\mathcal{Z}} = \frac{\sqrt{(n+p)!(n+q)!}}{n!} \varepsilon^{\frac{p+q}{2}} \mathcal{S}_{n+q}(\tilde{b} \otimes \operatorname{Id}_{\bigvee^{n}\mathcal{Z}}).$$

Polynomial-Identity: The failure of the convergence when  $\tilde{b}=\operatorname{Id}_{\bigvee^p\mathcal{Z}}$  is the sole obstruction to the convergence with a general  $\tilde{b}\in\mathcal{P}(\mathcal{Z})$ .

new devel-

#### Definition

Fixed degrees: we say that  $b(z)=\langle z^{\otimes q}\,,\, \tilde{b}z^{\otimes p}\rangle$  belongs to  $\mathcal{P}_{p,q}(\mathcal{Z})$  , if

$$\tilde{b} = \frac{1}{q!} \frac{1}{p!} \partial_{\overline{z}}^{q} \partial_{z}^{p} b \in \mathcal{L}(\bigvee^{p} \mathcal{Z}; \bigvee^{q} \mathcal{Z}),$$

Polynomials:  $\mathcal{P}(\mathcal{Z}) = \oplus_{p,q \in \mathbb{N}}^{alg} \mathcal{P}_{p,q}(\mathcal{Z})$ 

For 
$$b \in \mathcal{P}_{p,q}(\mathcal{Z})$$
, and  $n \geq 0$ ,  

$$b^{Wick}|_{\bigvee^{n+p}\mathcal{Z}} = \frac{\sqrt{(n+p)!(n+q)!}}{n!} \varepsilon^{\frac{p+q}{2}} \mathcal{S}_{n+q}(\tilde{b} \otimes \operatorname{Id}_{\bigvee^{n}\mathcal{Z}}).$$

# Proposition

Assume  $\mathcal{M}(\varrho_{arepsilon}\,,\,arepsilon\in\hat{\mathcal{E}})=\{\mu\}$  and

$$\forall k \in \mathbb{N} \,,\, \exists \, C_k > 0 \,,\, \forall \varepsilon \in \hat{E} \,,\, \, \mathrm{Tr} \, \, \left[ \varrho_\varepsilon \mathbf{N}^k \right] \leq C_k \,,$$

then 
$$\lim_{\varepsilon \to 0} \int_{\varepsilon \in E} \operatorname{Tr} \left[ \varrho_{\varepsilon} b^{Wick} \right] = \int_{\mathcal{Z}} b(z) \ d\mu(z)$$
 for all  $b \in \mathcal{P}^{\infty}(\mathcal{Z})$ .

Polynomial-Identity: The failure of the convergence when  $\tilde{b}=\mathrm{Id}_{\bigvee^p\mathcal{Z}}$  is the sole obstruction to the convergence with a general  $\tilde{b}\in\mathcal{P}(\mathcal{Z})$ .

Fixed degrees: we say that  $b(z)=\langle z^{\otimes q}\,,\, \tilde{b}z^{\otimes p}\rangle$  belongs to  $\mathcal{P}_{p,q}(\mathcal{Z})$ , if

$$\tilde{b} = \frac{1}{q!} \frac{1}{p!} \partial_{\overline{z}}^q \partial_z^p b \in \mathcal{L}(\bigvee^p \mathcal{Z}; \bigvee^q \mathcal{Z}) \,,$$

Polynomials:  $\mathcal{P}(\mathcal{Z}) = \oplus_{p,q \in \mathbb{N}}^{alg} \mathcal{P}_{p,q}(\mathcal{Z})$ 

For 
$$b \in \mathcal{P}_{p,q}(\mathcal{Z})$$
, and  $n \geq 0$ , 
$$b^{\textit{Wick}}|_{\bigvee^{n+p}\mathcal{Z}} = \frac{\sqrt{(n+p)!(n+q)!}}{n!} \varepsilon^{\frac{p+q}{2}} \mathcal{S}_{n+q}(\tilde{b} \otimes \operatorname{Id}_{\bigvee^{n}\mathcal{Z}}).$$

A counter-example with  $\tilde{b}$  not compact: Take  $\varepsilon=\frac{1}{n}$ ,  $\hat{E}=\left\{\frac{1}{n}, n\in\mathbb{N}^*\right\}$  and consider a normalized sequence  $(f_n)_{n\in\mathbb{N}^*}$  converging weakly to 0. Then

$$\begin{split} \mathcal{M}(\varrho_{\varepsilon}^{C}(f_{n}), \varepsilon \in \hat{E}) &= \{\delta_{0}\} \ , \\ \mathrm{Tr} \ \left[\varrho_{\varepsilon}^{C}(f_{n})(|z|^{2p})^{Wick}\right] &= |f_{n}|^{2p} = 1 \neq 0 = \int_{\mathcal{Z}} |z|^{2p} \ \delta_{0}(z) \, . \end{split}$$

Polynomial-Identity: The failure of the convergence when  $\tilde{b}=\mathrm{Id}_{\bigvee^p\mathcal{Z}}$  is the sole obstruction to the convergence with a general  $\tilde{b}\in\mathcal{P}(\mathcal{Z})$ .

Fixed degrees: we say that  $b(z)=\langle z^{\otimes q}\,,\, \tilde{b}z^{\otimes p}\rangle$  belongs to  $\mathcal{P}_{p,q}(\mathcal{Z})$ , if

$$\tilde{b} = \frac{1}{q!} \frac{1}{p!} \partial_{\overline{z}}^{q} \partial_{z}^{p} b \in \mathcal{L}(\bigvee^{p} \mathcal{Z}; \bigvee^{q} \mathcal{Z}),$$

Polynomials:  $\mathcal{P}(\mathcal{Z}) = \bigoplus_{p,q \in \mathbb{N}}^{alg} \mathcal{P}_{p,q}(\mathcal{Z})$ 

For 
$$b \in \mathcal{P}_{p,q}(\mathcal{Z})$$
, and  $n \ge 0$ ,  

$$b^{\textit{Wick}}|_{\bigvee^{n+p}\mathcal{Z}} = \frac{\sqrt{(n+p)!(n+q)!}}{n!} \varepsilon^{\frac{p+q}{2}} \mathcal{S}_{n+q}(\tilde{b} \otimes \operatorname{Id}_{\bigvee^{n}\mathcal{Z}}).$$

Polynomial-Identity: The failure of the convergence when  $\tilde{b}=\operatorname{Id}_{\bigvee^p\mathcal{Z}}$  is the sole obstruction to the convergence with a general  $\tilde{b}\in\mathcal{P}(\mathcal{Z})$ .

# Wick calculus, (PI) condition, reduced density matrices

Phasespace approach to the bosonic mean field dynamics:

review.

new developments Francis

LAGA Univ.

Joint works w

cont'd with

S. Breteau M. Falconi

> B. Pawilowski, A. Zerzeri

Semiclassica and mean field asymp-

Wigner

new devel-

Wigner measur Remember  $(|z|^{2p})^{Wick} = (\langle z^{\otimes p}, \operatorname{Id} z^{\otimes p} \rangle)^{Wick} = \mathbf{N}(\mathbf{N} - \varepsilon) \cdots (\mathbf{N} - \varepsilon(p-1)) \sim \mathbf{N}^p$ 

# Theorem Ammari-N. (JMPA 11)

Assume  $\mathcal{M}(arrho_arepsilon\,,\,arepsilon\in\hat{\mathcal{E}})=\{\mu\}$  , with

$$\forall k \in \mathbb{N} \,, \quad \lim_{\varepsilon \to 0, \varepsilon \in \hat{\mathcal{E}}} \, \mathrm{Tr} \, \left[ \varrho_{\varepsilon} \mathbf{N}^k \right] = \int_{\mathcal{Z}} |z|^{2k} \, d\mu(z) \,. \quad (PI)$$

Then

$$\lim_{\varepsilon \to 0, \varepsilon \in \hat{\mathcal{E}}} \operatorname{Tr} \left[ \varrho_{\varepsilon} b^{Wick} \right] = \int_{\mathcal{Z}} b(z) \ d\mu(z) \ \text{for all } b \in \mathcal{P}(\mathcal{Z}) ;$$

$$\lim_{\varepsilon \to 0, \varepsilon \in \hat{E}} \|\gamma^p_{\varepsilon} - \gamma^p_0\|_{\mathcal{L}^1(\bigvee^p \mathcal{Z})} = 0$$
 , for all  $p \in \mathbb{N}$ 

with (assuming  $\mu \neq \delta_0$ )

$$\operatorname{Tr} \left[ \gamma_{\varepsilon}^{\rho} \tilde{b} \right] = \frac{\operatorname{Tr} \left[ \varrho_{\varepsilon} b^{Wick} \right]}{\operatorname{Tr} \left[ \varrho_{\varepsilon} (|z|^{2\rho})^{Wick} \right]} \quad , \quad \gamma_{0}^{\rho} = \frac{\int_{\mathcal{Z}} |z^{\otimes \rho} \rangle \langle z^{\otimes \rho}| \ d\mu(z)}{\int_{\mathcal{Z}} |z|^{2\rho} \ d\mu(z)} \ .$$

review, new develRemember  $(|z|^{2p})^{Wick} = (\langle z^{\otimes p}, \operatorname{Id} z^{\otimes p} \rangle)^{Wick} = \mathbf{N}(\mathbf{N} - \varepsilon) \cdots (\mathbf{N} - \varepsilon(p-1)) \sim \mathbf{N}^p$ 

# Theorem Ammari-N. (JMPA 11)

Assume  $\mathcal{M}(\varrho_{arepsilon}\,,\,arepsilon\in\hat{\mathcal{E}})=\{\mu\}$  , with

$$\forall k \in \mathbb{N} , \quad \lim_{\varepsilon \to 0, \varepsilon \in \hat{\mathcal{E}}} \operatorname{Tr} \left[ \varrho_{\varepsilon} \mathbf{N}^{k} \right] = \int_{\mathcal{Z}} |z|^{2k} \ d\mu(z) . \quad (PI)$$

Then

$$\textstyle \mathop{\mathrm{II}}\nolimits \mathop{\mathrm{lim}}\nolimits_{\varepsilon \to 0, \varepsilon \in \hat{\mathcal{E}}} \mathop{\mathrm{Tr}}\nolimits \, \left[ \varrho_\varepsilon \, b^{\mathit{Wick}} \right] = \int_{\mathcal{Z}} b(z) \, \, d\mu(z) \, \, \mathit{for all} \, \, b \in \mathcal{P}(\mathcal{Z}) \, ;$$

$$\qquad \qquad \mathbf{Iim}_{\varepsilon \to 0, \varepsilon \in \hat{E}} \, \| \gamma^p_\varepsilon - \gamma^p_0 \|_{\mathcal{L}^1(\bigvee^p \mathcal{Z})} = 0 \, , \text{ for all } p \in \mathbb{N}$$

with (assuming  $\mu \neq \delta_0$ )

$$\mathrm{Tr} \; \left[ \gamma_\varepsilon^\rho \tilde{b} \right] = \frac{\mathrm{Tr} \; \left[ \varrho_\varepsilon b^{Wick} \right]}{\mathrm{Tr} \; \left[ \varrho_\varepsilon (|z|^{2\rho})^{Wick} \right]} \quad , \quad \gamma_0^\rho = \frac{\int_{\mathcal{Z}} |z^{\otimes \rho} \rangle \langle z^{\otimes \rho}| \; d\mu(z)}{\int_{\mathcal{Z}} |z|^{2\rho} \; d\mu(z)} \; .$$

Remark: When  $\varrho_{\varepsilon} \in \mathcal{L}^1(L^2_{sym}((\mathbb{R}^D)^n))$  ,  $\varepsilon = \frac{1}{n}$  ,

$$\gamma_{\varepsilon}^{p}(x_{1},\ldots,x_{p};y_{1},\ldots,y_{p})=\int_{(\mathbb{R}^{D})^{N-p}}\varrho_{\varepsilon}(x_{1},\ldots,x_{p},X;y_{1},\ldots,y_{p},X)\ dX$$

Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial symbols) do not remain cylindrical (resp. polynomials).

Take  $\mathcal{E}(z) = \langle z \,,\, Az \rangle + Q(z)$  with A self-adjoint and  $Q \in \mathcal{P}(\mathcal{Z})$  and set  $H_{\varepsilon} = \mathcal{E}^{Wick}$  while  $\Phi$  is the hamiltonian flow associated with  $\mathcal{E}$ .

#### Theorem Ammari-N. (JMPA 11)

Assume  $\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{\mathcal{E}})=\{\mu\}$  and the condition (PI), then

$$\mathcal{M}(e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}e^{i\frac{t}{\varepsilon}H_{\varepsilon}}\,,\,\varepsilon\in\hat{E})=\{\Phi(t)_{*}\mu\}$$

and the condition (PI) holds for all times.

# Theorem Ammari-N. (Ann. della Sc. Norm. Pisa 15

With  $A=-\Delta$  and  $V(x)=rac{lpha}{|x|}$  ,  $x\in\mathbb{R}^3$  ,  $lpha\in\mathbb{R}$  .

Assume 
$$\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{E})=\{\mu\}$$
 , then

$$\mathcal{M}(\mathrm{e}^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}\mathrm{e}^{i\frac{t}{\varepsilon}H_{\varepsilon}}\,,\,\varepsilon\in\hat{E})=\{\Phi(t)_{*}\mu\}$$
 and 
$$((P\mathrm{I})\;\mathrm{at}\;t=0)\Leftrightarrow((P\mathrm{I})\;\mathrm{at}\;\mathrm{any}\;t)$$

Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial symbols) do not remain cylindrical (resp. polynomials).

Take  $\mathcal{E}(z) = \langle z \,,\, Az \rangle + Q(z)$  with A self-adjoint and  $Q \in \mathcal{P}(\mathcal{Z})$  and set  $H_{\varepsilon} = \mathcal{E}^{Wick}$  while  $\Phi$  is the hamiltonian flow associated with  $\mathcal{E}$ .

#### Theorem Ammari-N. (JMPA 11)

Assume  $\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{\mathcal{E}})=\{\mu\}$  and the condition (PI), then

$$\mathcal{M}(e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}e^{i\frac{t}{\varepsilon}H_{\varepsilon}}\,,\,\varepsilon\in\hat{E})=\{\Phi(t)_{*}\mu\}$$

and the condition (PI) holds for all times.

# Theorem Ammari-N. (Ann. della Sc. Norm. Pisa 15

With  $A = -\Delta$  and  $V(x) = \frac{\alpha}{|x|}$ ,  $x \in \mathbb{R}^3$ ,  $\alpha \in \mathbb{R}$ .

Assume 
$$\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{E})=\{\mu\}$$
 , then

$$\mathcal{M}(\mathrm{e}^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}\mathrm{e}^{i\frac{t}{\varepsilon}H_{\varepsilon}}\,,\,\varepsilon\in\hat{E})=\{\Phi(t)_{*}\mu\}$$
 and 
$$((\textit{PI})\;\mathrm{at}\;t=0)\Leftrightarrow((\textit{PI})\;\mathrm{at}\;\mathrm{any}\;t)$$

Take  $\mathcal{E}(z) = \langle z \,,\, Az \rangle + Q(z)$  with A self-adjoint and  $Q \in \mathcal{P}(\mathcal{Z})$  and set  $H_{\varepsilon} = \mathcal{E}^{Wick}$  while  $\Phi$  is the hamiltonian flow associated with  $\mathcal{E}$ .

#### Theorem Ammari-N. (JMPA 11)

Assume  $\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{\mathcal{E}})=\{\mu\}$  and the condition (PI), then

$$\mathcal{M}(e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}e^{i\frac{t}{\varepsilon}H_{\varepsilon}},\,\varepsilon\in\hat{E})=\{\Phi(t)_{*}\mu\}$$

and the condition (PI) holds for all times.

# Theorem Ammari-N. (Ann. della Sc. Norm. Pisa 15)

With  $A = -\Delta$  and  $V(x) = \frac{\alpha}{|x|}$ ,  $x \in \mathbb{R}^3$ ,  $\alpha \in \mathbb{R}$ .

Assume 
$$\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{E})=\{\mu\}$$
 , then

$$\mathcal{M}(\mathrm{e}^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}\mathrm{e}^{i\frac{t}{\varepsilon}H_{\varepsilon}}\,,\,\varepsilon\in\hat{E})=\{\Phi(t)_{*}\mu\}$$
 and 
$$((P\mathrm{I})\ \mathrm{at}\ t=0)\Leftrightarrow((P\mathrm{I})\ \mathrm{at}\ \mathrm{any}\ t)$$

Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial symbols) do not remain cylindrical (resp. polynomials).

Take  $\mathcal{E}(z) = \langle z \,,\, Az \rangle + Q(z)$  with A self-adjoint and  $Q \in \mathcal{P}(\mathcal{Z})$  and set  $H_{\varepsilon} = \mathcal{E}^{Wick}$  while  $\Phi$  is the hamiltonian flow associated with  $\mathcal{E}$ .

#### Theorem Ammari-N. (JMPA 11)

Assume  $\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{\mathcal{E}})=\{\mu\}$  and the condition (PI), then

$$\mathcal{M}(e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}e^{i\frac{t}{\varepsilon}H_{\varepsilon}},\,\varepsilon\in\hat{E})=\{\Phi(t)_{*}\mu\}$$

and the condition (PI) holds for all times.

# Theorem Ammari-N. (Ann. della Sc. Norm. Pisa 15

With  $A=-\Delta$  and  $V(x)=rac{lpha}{|x|}$  ,  $x\in\mathbb{R}^3$  ,  $lpha\in\mathbb{R}$  .

Assume 
$$\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{E})=\{\mu\}$$
 , then

$$\mathcal{M}(\mathrm{e}^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}\mathrm{e}^{i\frac{t}{\varepsilon}H_{\varepsilon}}\,,\,\varepsilon\in\hat{E})=\{\Phi(t)_{*}\mu\}$$
 and 
$$((P\mathrm{I})\ \mathrm{at}\ t=0)\Leftrightarrow((P\mathrm{I})\ \mathrm{at}\ \mathrm{any}\ t)$$

new devel-

opments

Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial symbols) do not remain cylindrical (resp. polynomials).

Take  $\mathcal{E}(z) = \langle z \,,\, Az \rangle + Q(z)$  with A self-adjoint and  $Q \in \mathcal{P}(\mathcal{Z})$  and set  $H_{\varepsilon} = \mathcal{E}^{Wick}$  while  $\Phi$  is the hamiltonian flow associated with  $\mathcal{E}$ .

#### Theorem Ammari-N. (JMPA 11)

Assume  $\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{\mathcal{E}})=\{\mu\}$  and the condition (PI), then

$$\mathcal{M}(e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}e^{i\frac{t}{\varepsilon}H_{\varepsilon}}\,,\,\varepsilon\in\hat{E})=\{\Phi(t)_{*}\mu\}$$

and the condition (PI) holds for all times.

Method: Truncated Dyson expansion after (Fröhlich-Graffi-Schwarz 07 and Fröhlich-Knowles-Schwarz 09) combined with a priori information on  $\mu(t)$ .

#### Theorem Ammari-N. (Ann. della Sc. Norm. Pisa 15

With 
$$A = -\Delta$$
 and  $V(x) = \frac{\alpha}{|x|}$ ,  $x \in \mathbb{R}^3$ ,  $\alpha \in \mathbb{R}$ .

Assume 
$$\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{E})=\{\mu\}$$
 , then

$$\mathcal{M}(\mathrm{e}^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}\mathrm{e}^{i\frac{t}{\varepsilon}H_{\varepsilon}}\,,\,\varepsilon\in\hat{E})=\{\Phi(t)_{*}\mu\}$$
 and 
$$((P\mathrm{I})\ \mathrm{at}\ t=0)\Leftrightarrow((P\mathrm{I})\ \mathrm{at}\ \mathrm{any}\ t)$$

Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial symbols) do not remain cylindrical (resp. polynomials).

Take  $\mathcal{E}(z) = \langle z \,,\, Az \rangle + Q(z)$  with A self-adjoint and  $Q \in \mathcal{P}(\mathcal{Z})$  and set  $H_{\varepsilon} = \mathcal{E}^{Wick}$  while  $\Phi$  is the hamiltonian flow associated with  $\mathcal{E}$ .

#### Theorem Ammari-N. (JMPA 11)

Assume  $\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{\mathcal{E}})=\{\mu\}$  and the condition (PI), then

$$\mathcal{M}(e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}e^{i\frac{t}{\varepsilon}H_{\varepsilon}}\,,\,\varepsilon\in\hat{E})=\{\Phi(t)_{*}\mu\}$$

and the condition (PI) holds for all times.

# Theorem Ammari-N. (Ann. della Sc. Norm. Pisa 15)

With  $A=-\Delta$  and  $V(x)=rac{lpha}{|x|}$  ,  $x\in\mathbb{R}^3$  ,  $lpha\in\mathbb{R}$  .

Assume 
$$\mathcal{M}(arrho_arepsilon\,,\,arepsilon\in\hat{\mathcal{E}})=\{\mu\}$$
 , then

$$\mathcal{M}(e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}e^{i\frac{t}{\varepsilon}H_{\varepsilon}}\,,\,\varepsilon\in\hat{E})=\{\Phi(t)_{*}\mu\}$$
 and 
$$((\textit{PI}) \text{ at } t=0)\Leftrightarrow ((\textit{PI}) \text{ at any } t)$$

new developments Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial symbols) do not remain cylindrical (resp. polynomials).

Take  $\mathcal{E}(z) = \langle z \,,\, Az \rangle + Q(z)$  with A self-adjoint and  $Q \in \mathcal{P}(\mathcal{Z})$  and set  $H_{\varepsilon} = \mathcal{E}^{Wick}$  while  $\Phi$  is the hamiltonian flow associated with  $\mathcal{E}$ .

#### Theorem Ammari-N. (JMPA 11)

Assume  $\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{E})=\{\mu\}$  and the condition (PI), then

$$\mathcal{M}(e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}e^{i\frac{t}{\varepsilon}H_{\varepsilon}}, \varepsilon\in\hat{E})=\{\Phi(t)_{*}\mu\}$$

and the condition (PI) holds for all times.

# Theorem Ammari-N. (Ann. della Sc. Norm. Pisa 15)

With  $A=-\Delta$  and  $V(x)=rac{lpha}{|x|}$  ,  $x\in\mathbb{R}^3$  ,  $lpha\in\mathbb{R}$  .

Assume 
$$\mathcal{M}(\varrho_{arepsilon}\,,\,arepsilon\in\hat{\mathcal{E}})=\{\mu\}$$
 , then

$$\mathcal{M}(\mathrm{e}^{-\mathrm{i}\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}\mathrm{e}^{\mathrm{i}\frac{t}{\varepsilon}H_{\varepsilon}}\,,\,\varepsilon\in\hat{E})=\{\Phi(t)_{*}\mu\}$$
 and 
$$((PI)\text{ at }t=0)\Leftrightarrow((PI)\text{ at any }t)$$

Method: Measure transportation adapted from Ambrosio-Gigli-Savaré (book 05).

new developments Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial symbols) do not remain cylindrical (resp. polynomials).

Take  $\mathcal{E}(z) = \langle z \,,\, Az \rangle + Q(z)$  with A self-adjoint and  $Q \in \mathcal{P}(\mathcal{Z})$  and set  $H_{\varepsilon} = \mathcal{E}^{Wick}$  while  $\Phi$  is the hamiltonian flow associated with  $\mathcal{E}$ .

#### Theorem Ammari-N. (JMPA 11)

Assume  $\mathcal{M}(\varrho_{\varepsilon}\,,\,\varepsilon\in\hat{E})=\{\mu\}$  and the condition (PI), then

$$\mathcal{M}(e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}e^{i\frac{t}{\varepsilon}H_{\varepsilon}}\,,\,\varepsilon\in\hat{E})=\{\Phi(t)_{*}\mu\}$$

and the condition (PI) holds for all times.

# Theorem Ammari-N. (Ann. della Sc. Norm. Pisa 15)

With  $A=-\Delta$  and  $V(x)=rac{lpha}{|x|}$  ,  $x\in\mathbb{R}^3$  ,  $lpha\in\mathbb{R}$  .

Assume  $\mathcal{M}(\varrho_{arepsilon}\,,\,arepsilon\in\hat{E})=\{\mu\}$  , then

$$\begin{split} \mathcal{M}(e^{-i\frac{t}{\varepsilon}H_{\varepsilon}}\varrho_{\varepsilon}e^{i\frac{t}{\varepsilon}H_{\varepsilon}}\,,\,\varepsilon\in\hat{E}) &= \{\Phi(t)_{*}\mu\} \\ \text{and} &\qquad ((PI)\text{ at }t=0) \Leftrightarrow ((PI)\text{ at any }t) \end{split}$$

Some compactness is needed either on the interaction or on the initial data. In the 3D-Coulombic case, we used the compactness of  $(1-\Delta)^{-1/2}\frac{1}{|\nu|}(1-\Delta)^{-1/2}$ .

4 □ > 4 ₱ > 4 ₱ > 4 ₱ > ■ 90 €

opments

Nigner neasures In our last work with Z. Ammari for singular interactions, the assumptions on the interaction potential were

$$V(-x) = V(x)$$
  $V(1-\Delta)^{-1/2} \in \mathcal{L}(L^2)$   $(1-\Delta)^{-1/2}V(1-\Delta)^{-1/2}$  compact.

While the usual assumptions for  $-\Delta + V(x)$  are expressed in term of  $V(1-\Delta)^{-1}$  .

With a similar strategy but significant new ideas Q. Liard is able to treat one particle hamiltonians  $H_0=-\Delta+U(x)$  with assumptions on the interaction potential V(x) similar to the one for the KLMN perturbative theorem for  $H_0+V$ .

Significant difference: Infinite dimensional method of characteristics.

Z. Ammari, N.: Quadratic Wasserstein distance

$$W^p(\mu_1, \mu_2) = \inf_{\pi_j \mu = \mu_j} \int \int |x - y|^p \ d\mu(x, y)$$
, quadratic means  $p = 2$ .

Q. Liard: Use of  $W^1(\mu_1,\mu_2)$ , inspired by finite dimensional results of Maniglia. Tightness for families of probability measures on phase-space (tightness— > weak compactness) less obvious (coercivity replaced by Dunford-Pettis type arguments).

In our last work with Z. Ammari for singular interactions, the assumptions on the interaction potential were

$$V(-x) = V(x)$$
  $V(1-\Delta)^{-1/2} \in \mathcal{L}(L^2)$   $(1-\Delta)^{-1/2}V(1-\Delta)^{-1/2}$  compact.

While the usual assumptions for  $-\Delta + V(x)$  are expressed in term of  $V(1-\Delta)^{-1}$ .

With a similar strategy but significant new ideas Q. Liard is able to treat one particle hamiltonians  $H_0 = -\Delta + U(x)$  with assumptions on the interaction potential V(x) similar to the one for the KLMN perturbative theorem for  $H_0 + V$ .

Significant difference: Infinite dimensional method of characteristics.

Z. Ammari, N.: Quadratic Wasserstein distance

$$W^p(\mu_1, \mu_2) = \inf_{\pi_j \mu = \mu_j} \int \int |x - y|^p d\mu(x, y)$$
, quadratic means  $p = 2$ .

Q. Liard: Use of  $W^1(\mu_1, \mu_2)$ , inspired by finite dimensional results of Maniglia. Tightness for families of probability measures on phase-space (tightness - > weak compactness) less obvious (coercivity replaced by Dunford-Pettis type arguments).

opments

In our last work with Z. Ammari for singular interactions, the assumptions on the interaction potential were

$$V(-x) = V(x)$$
  $V(1-\Delta)^{-1/2} \in \mathcal{L}(L^2)$   $(1-\Delta)^{-1/2}V(1-\Delta)^{-1/2}$  compact.

While the usual assumptions for  $-\Delta + V(x)$  are expressed in term of  $V(1-\Delta)^{-1}$  .

With a similar strategy but significant new ideas Q. Liard is able to treat one particle hamiltonians  $H_0=-\Delta+U(x)$  with assumptions on the interaction potential V(x) similar to the one for the KLMN perturbative theorem for  $H_0+V$ .

 $Significant\ difference:\ Infinite\ dimensional\ method\ of\ characteristics.$ 

Z. Ammari, N.: Quadratic Wasserstein distance

$$W^p(\mu_1, \mu_2) = \inf_{\pi_j \mu = \mu_j} \int \int |x - y|^p \ d\mu(x, y)$$
, quadratic means  $p = 2$ .

Q. Liard: Use of  $W^1(\mu_1,\mu_2)$ , inspired by finite dimensional results of Maniglia. Tightness for families of probability measures on phase-space (tightness— > weak compactness) less obvious (coercivity replaced by Dunford-Pettis type arguments).

In our last work with Z. Ammari for singular interactions, the assumptions on the interaction potential were

$$V(-x) = V(x)$$
  $V(1-\Delta)^{-1/2} \in \mathcal{L}(L^2)$   $(1-\Delta)^{-1/2}V(1-\Delta)^{-1/2}$  compact.

While the usual assumptions for  $-\Delta + V(x)$  are expressed in term of  $V(1-\Delta)^{-1}$  .

With a similar strategy but significant new ideas Q. Liard is able to treat one particle hamiltonians  $H_0 = -\Delta + U(x)$  with assumptions on the interaction potential V(x) similar to the one for the KLMN perturbative theorem for  $H_0 + V$ .

Significant difference: Infinite dimensional method of characteristics.

- Z. Ammari, N.: Quadratic Wasserstein distance
- $W^p(\mu_1, \mu_2) = \inf_{\pi_j \mu = \mu_j} \int \int |x y|^p \ d\mu(x, y)$ , quadratic means p = 2.
- Q. Liard: Use of  $W^1(\mu_1,\mu_2)$ , inspired by finite dimensional results of Maniglia. Tightness for families of probability measures on phase-space (tightness— > weak compactness) less obvious (coercivity replaced by Dunford-Pettis type arguments).

Vigner neasures Ammari-Falconi-Pawilowski: Assume  $\|\gamma_{\varepsilon}^{(p)}-\gamma_0^{(p)}\|_{\mathcal{L}^1}=C(\varepsilon)C^p$  for all  $p\in\mathbb{N}$  with

$$\gamma_0^{(p)} = \frac{\int_{\mathcal{Z}} |z^{\otimes p}\rangle \langle z^{\otimes p}| \ d\mu_0(z)}{\int_{\mathcal{Z}} |z|^{2p} \ d\mu_0(z)} \quad \text{with} C(\varepsilon) \geq C^{-1} \varepsilon$$

 $\text{then } \|\gamma_\varepsilon^{(p)}(t) - \gamma_0^{(p)}(t)\|_{\mathcal{L}^1} = C_T C^p C(\varepsilon) \text{ for all } p \in \mathbb{N} \text{ and all } t \in [-T,T] \,.$ 

Example of numerical results obtained by B. Pawilowski:

- $\blacksquare \ \mathcal{Z} = \ell^2(\mathbb{Z}/K\mathbb{Z}) \sim \mathbb{C}^K$  ,  $\textit{H}_0$  periodic discrete Laplacian .
- Use of exact formula for  $\gamma_0^{(p)}(t)$  with numerical integration for the mean field flow.
- Heavy accurate computation of the quantum N-body problem  $N \leq 20$

opments

Wigner measure Ammari-Falconi-Pawilowski: Assume  $\|\gamma_{\varepsilon}^{(p)}-\gamma_0^{(p)}\|_{\mathcal{L}^1}=C(\varepsilon)C^p$  for all  $p\in\mathbb{N}$  with

$$\gamma_0^{(\rho)} = \frac{\int_{\mathcal{Z}} |z^{\otimes \rho}\rangle \langle z^{\otimes \rho}| \ d\mu_0(z)}{\int_{\mathcal{Z}} |z|^{2\rho} \ d\mu_0(z)} \quad \mathsf{with} \, \mathcal{C}(\varepsilon) \geq C^{-1} \varepsilon$$

 $\text{then } \|\gamma_\varepsilon^{(p)}(t)-\gamma_0^{(p)}(t)\|_{\mathcal{L}^1}=C_TC^pC(\varepsilon) \text{ for all } p\in\mathbb{N} \text{ and all } t\in[-T,T]\,.$ 

Example of numerical results obtained by B. Pawilowski:

- $\blacksquare \ \mathcal{Z} = \ell^2(\mathbb{Z}/K\mathbb{Z}) \sim \mathbb{C}^K$  ,  $\textit{H}_0$  periodic discrete Laplacian .
- Use of exact formula for  $\gamma_0^{(p)}(t)$  with numerical integration for the mean field flow.
- Heavy accurate computation of the quantum N-body problem  $N \leq 20$

Ammari-Falconi-Pawilowski: Assume  $\|\gamma_{\varepsilon}^{(p)} - \gamma_{0}^{(p)}\|_{C^{1}} = C(\varepsilon)C^{p}$  for all  $p \in \mathbb{N}$ with

$$\gamma_0^{(\rho)} = \frac{\int_{\mathcal{Z}} |z^{\otimes \rho}\rangle \langle z^{\otimes \rho}| \ d\mu_0(z)}{\int_{\mathcal{Z}} |z|^{2\rho} \ d\mu_0(z)} \quad \text{with} C(\varepsilon) \geq C^{-1} \varepsilon$$

then  $\|\gamma_{\varepsilon}^{(p)}(t) - \gamma_{0}^{(p)}(t)\|_{\mathcal{L}^{1}} = C_{T}C^{p}C(\varepsilon)$  for all  $p \in \mathbb{N}$  and all  $t \in [-T, T]$ .

Example of numerical results obtained by B. Pawilowski:

- $\mathbb{Z} = \ell^2(\mathbb{Z}/K\mathbb{Z}) \sim \mathbb{C}^K$ ,  $H_0$  periodic discrete Laplacian.
- Use of exact formula for  $\gamma_0^{(p)}(t)$  with numerical integration for the mean field flow.
- Heavy accurate computation of the quantum N-body problem N < 20

Phasespace approach to the bosonic mean field dynamics: review, new devel-

> Francis Nier, LAGA, Univ. Paris 13

opments

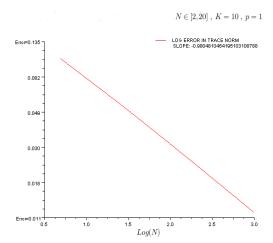
works wit
Z. Ammai
cont'd
with
S. Breteau

S. Breteau M. Falconi.

Q. Liaro B. Paw ilowski, M. Zarze

Semiclassical and mean field asymptotics

Wigner measur



Order of convergence for 
$$\sup_{t\in[0,T]}\|\gamma_{\varepsilon}^{(p)}(t)-\gamma_{0}^{(p)}(t)\|_{\mathcal{L}^{1}}$$
 , here  $p=1$ 

# Order of convergence and numerics

Phasespace approach to the bosonic mean field dynamics: review, new developments

> Francis Nier, LAGA, Univ. Paris 13 Joint

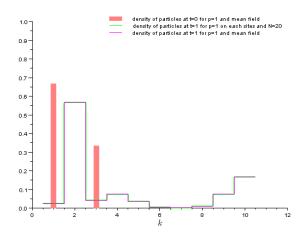
works wit Z. Ammai cont'd with

S. Breteau M. Fal-

Q. Liaro B. Paw ilowski,

Semiclassical and mean field asymp-

Nigner neasure



Particle density:  ${\rm red}{=}{\rm mean}$  field t=0 , green and purple = 20-body and mean field t=1

Semiclassical analysis is easier than microlocal analysis: It is possible to reconsider classical problems of bosonic quantum field theory by introducing scales and a semiclassical parameters.

- **Z**. Ammari, M. Zerzeri:  $P(\Phi)_2$  and Hoegh-Krohn model.
- Z. Ammari, M. Falconi: Nelson model.

Work in progress with Z. Ammari and S. Breteaux: Use of multiscale (2nd microlocalized see e.g. C. Fermanian) semiclassical analysis for a more accurate description of all the  $\gamma_{\varepsilon}^{(\rho)}$ .

Observable looking like  $\langle z^{\otimes p}, [K+a^{W,h}]z^{\otimes p}\rangle^{Wick}$  with K compact  $\varepsilon=\varepsilon(h)$ ,  $h\to 0$ ,  $\varepsilon(h)\to 0$ .

Semiclassical analysis is easier than microlocal analysis: It is possible to reconsider classical problems of bosonic quantum field theory by introducing scales and a semiclassical parameters.

- **Z.** Ammari, M. Zerzeri:  $P(\Phi)_2$  and Hoegh-Krohn model.
- Z. Ammari, M. Falconi: Nelson model.

Work in progress with Z. Ammari and S. Breteaux: Use of multiscale (2nd microlocalized see e.g. C. Fermanian) semiclassical analysis for a more accurate description of all the  $\gamma_{\varepsilon}^{(p)}$ .

Observable looking like  $\langle z^{\otimes p}, [K + a^{W,h}]z^{\otimes p} \rangle^{Wick}$  with K compact  $\varepsilon = \varepsilon(h)$ ,  $h \to 0$ ,  $\varepsilon(h) \to 0$ .

Semiclassical analysis is easier than microlocal analysis: It is possible to reconsider classical problems of bosonic quantum field theory by introducing scales and a semiclassical parameters.

- **Z.** Ammari, M. Zerzeri:  $P(\Phi)_2$  and Hoegh-Krohn model.
- Z. Ammari, M. Falconi: Nelson model.

Work in progress with Z. Ammari and S. Breteaux: Use of multiscale (2nd microlocalized see e.g. C. Fermanian) semiclassical analysis for a more accurate description of all the  $\gamma_{\varepsilon}^{(p)}$ .

Observable looking like  $\langle z^{\otimes p}, [K + a^{W,h}]z^{\otimes p} \rangle^{Wick}$  with K compact  $\varepsilon = \varepsilon(h)$ ,  $h \to 0$ ,  $\varepsilon(h) \to 0$ .

new devel-

opments

Semiclassical analysis is easier than microlocal analysis: It is possible to reconsider classical problems of bosonic quantum field theory by introducing scales and a semiclassical parameters.

- **Z**. Ammari, M. Zerzeri:  $P(\Phi)_2$  and Hoegh-Krohn model.
- Z. Ammari, M. Falconi: Nelson model.

Work in progress with Z. Ammari and S. Breteaux: Use of multiscale (2nd microlocalized see e.g. C. Fermanian) semiclassical analysis for a more accurate description of all the  $\gamma_{\varepsilon}^{(p)}$ .

Observable looking like  $\langle z^{\otimes p}, [K+a^{W,h}]z^{\otimes p}\rangle^{Wick}$  with K compact  $\varepsilon = \varepsilon(h)$ ,  $h \to 0$ ,  $\varepsilon(h) \to 0$ . Motivations:

- Mixture of BEC and non condensate phase
- Approach valid for the bosonic and fermionic case
- Another way of refining the mean field analysis, as compared with Bogoliubov 2nd order approximation.
- Possibly combine Ammari-N. propagation result (quantum part) with the recent result by Golse-Paul (macroscopic part).
- Double scales appear in random homogenization problems (see Breteaux' phD).

Phasespace approach to the bosonic mean field dynamics: review, new developments

> Nier, LAGA, Univ. Paris 13

works wit

with S. Breteaux M. Falconi,

B. Pawilowski, M. Zerzeri

Semiclassica and mean field asymp-

Wigner measur Thank you for your attention!