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Reconsider the old program: Bosonic QFT=infinite dimensional microlocal
analysis (see e.g. Kree's seminar in the 70’s).

Mean field=Semiclassical (easier).
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Aims and inspirations

Reconsider the old program: Bosonic QFT=infinite dimensional microlocal
analysis (see e.g. Kree's seminar in the 70’s).

Mean field=Semiclassical (easier).

Check the mean field convergence for dynamical problems with general initial
data.

While doing so find assumptions and results which are invariant by the N-body
and mean-field dynamics (when defined).

In the spirit of (semiclassical) propagation of singularities.
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Semiclassical annihilation-creation operators:
Unit.eq. a; = \/E(Bl,j ‘) o, &= \/E(—&,,j +v) , veR?
For w € Z = CY set aw)=3,wja; , a*(w)=3wa;,

[a(w), a*(W')] =2h{w, W)z =e{w,w)z , e=2h
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Semiclassical annihilation-creation operators:
8}/]- + vj _auj + vj

) j 5 I/ERd
V2 ! V2

(QFT) aj=+/¢

ForWGZ:Cdseta(w):Ejoaj ,oat(w) =3 war,

[a(w), a*(W')] =2h{w, W)z =e{w,w)z , e=2h
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Semiclassical annihilation-creation operators:
E)l,j + v _ —0y,; i

(QFT) aj=+e 7

, veR?

The Wick (resp. anti-Wick) quantization associates with the polynomial

_ . .1
b(z) = > bapzt2’ =(z®9,b2%F) | b= mazﬂa b
1Bl =p
lal =q
the operator bVick  — Z by pga**aP (Wick)
o,B
Example: N = (|z2)V = 37, a*aj = eNeei |, Nea = elalpa when ¢q is

the a-th Hermite function o € N9, |a| = 2. N=0(1) < |af = O(%)

P
z
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Semiclassical annihilation-creation operators:
auj + vj
V2

(QFT) aj=+e , a=ve——2 , veRr?

Weyl operator W (f):

O(F) = Lf;(ﬂ =V2Re (f, )Mk | w(f) =N,
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Weyl operator W(f):
o(r) = XNLTTE) _ fope (r, Wik w(f) = ).
and mean \/i
s If B(¢) = [ b(z)e 2™ Re (G:2) dI z(z) then b(z) = [ b(¢)e?™ Re (62) dLz(C)

and bW = pW&(\/hy, \/ED,,):/ b(O)W(V2r¢) dLz(¢).
zZ
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Bosonic mean field asymptotics

Bosonic Fock space: Consider now the one particle (separable) complex Hilbert
space Z = L2(RP, dx; C).

n
H=To(2) = 03205027 =00\ 2 . /2= Lnl(®O)C)
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Bosonic mean field asymptotics

Bosonic Fock space:

Consider now the one particle (separable) complex Hilbert

space Z = L2(RP, dx; C).

H=TH2)

Energy: &(z,Z) =

n
=S 2" =2, \/ 2, \/szgym (RPY; C)

Jeo 1Vx2()1? dx + 5 [frap V(x = y)|z(x)P|z(y) [ dxdy
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Bosonic mean field asymptotics

Bosonic Fock space: Consider now the one particle (separable) complex Hilbert
space Z = L2(RP, dx; C).

n
H=THZ) =020 Z%" =d2,\/ 2 \/ Z=12,(R")"C)

Energy: &(z,Z) = (z, —Az) + % JJgao V(x = y)|z(x)|z(y)I? dxdy

V(—x) = V(x)
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Definition of infinite dimensional Wigner measures

Remember: Z is a separable complex Hilbert space (1 part. space)

H=Tp2Z)=&2 0\/2 , Nz®" =enz®n
a(f)z®" = Ven(f, 2)z%"71 | a*(£)z®" = /e(n + 1)Snpa[f ® 7],

a(f) + a*(f) W(f) = &)

o(f) = T2
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Definition of infinite dimensional Wigner measures

Remember: Z is a separable complex Hilbert space (1 part. space)

H=TpZ)= no\/Z , Nz®"=enz®m,

a(f)z®" = en(f, 2)z®""1 | a*(£)z®" = \/e(n + 1)Spa[f @ 227,
a(f) + a*(f) W) = e

V2
Consider a normal state in H, o € LY(H), 0 >0, Tr [p:] =1.
Example: g = |V )(Ve|, Ve €H,
Mean field coherent state W, = E(f) = W(%2 )|Q)
Mean field Hermite (atomic coherent) state: W, = o®" with & = % .

o(f) =




Definition of infinite dimensional Wigner measures

Phase-

space
aripr?:ch Remember: Z is a separable complex Hilbert space (1 part. space)

bosonic
mean field
R H=TpZ) = \/Z , Nz®" =enz®n
new devel-

opments a(f)z®" = Ven(f, 2)z%"71 | a*(£)z®" = /e(n + 1)Snpa[f ® 7],

f *(f .
<1>(f): a( )+a ( ) , W(f):e’d)(f).
V2
Par 3
Joint Consider a normal state in H, o € LY(H), 0 >0, Tr [p:] =1.
vith

LBk For £ € (0,+0), 0 € E, and a family (0c).cg of normal states in H, M(o:, e € E)
@), e is the set of Borel probability measures p on Z for which there exists E’ C E such that
B. Pa
H“ e OGE,

VfeZ, lim Tr [QEW(\@wf)] :/ A e (7 2) du(z)
e—0,e€E’ Z

When € M(ge,e € E), pis called a Wigner measure of (0¢).ce -

Wigner
measures
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ee I Th. (Ammari-N. AHP 08)
approach

Lo the If there exists § > 0 and C5 > 0 s.t.
mean field
vee £, Tr [0:(N)’] <G
new devel-

opments A A

: then M(os ,e € E) # 0 and every u € M(o , € € E) satisfies

\]

A
[+ dut) < G
a z
J
vith
oy o Main ideas of the proof:
~ with Separation of variables:
v L
zZ = 2 o 2

Q. Lia H = Ha ® Ho, Ha =Th(Zx)

s Wher) = WH) & W) = W(f) ® Idn,

M. Z Z is separable — > Borel o-set and diagonal extraction.
Condition (2.1) is a tightness condition (see Prokhorov criterion)

Wigner
measures

(21)

iffh=0.
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Th. (Ammari-N. AHP 08)

If there exists § > 0 and C5 > 0 s.t.

vee B, Tr [QE<N)6] <G (2.1)
then M(oc ,e € E) # () and every i € M(o- , e € E) satisfies

[+ dut) < G
Z

Remark: After a subsequence extraction we can assume M(p. , e € E) = {u}.



Wigner measures:Existence

Phase-
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apbrosct Th. (Ammari-N. AHP 08)

to th.e
oosonic If there exists § > 0 and C5 > 0 s.t.
dynamics:
et Vee £, Tr [ga<N>5] < G (2.1)
opments.

then M(pe ,e € E) # () and every p € M(o- , € € E) satisfies

(W

[a+1zPy dutz) < G

orks with Z
Z. Ammari

|

v
o b € S(Z) if there exist a finite rank orth. proj. pand a € S(pZ) s.t. b=aop.

B

M, ey Corollary

Under the condition (2.1) with M(ge , € € E) = {u},

VbESe(2), lim Tr [ob] = / b(z) du(z).
e—0,e€E zZ
Wigner
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Wigner measures: Examples

Phase-
space Il
et Assume M(oe , € € E) = {u} and
mean field
VkEN, 3G >0, Ve € £, Tr [N < i,
new devel-
opments
- then for any cylindrical polynomial and with Q =Weyl, Wick or anti-Wick
[ i Q
U lim N Tr |:Q5b ] = b(z) du(z)
B 18 e—0,e€ckE z
int
vith
ntd
_ with
M. ol

Wigner
measures



Wigner measures: Examples

Phase-
sbace Corollary
approach

oo the Assume M(ge , € € E) = {u} and
mean field
v VkEN, 3G >0, Ve € £, Tr [o:N*] < G,
new devel-
opments
:’” then for any cylindrical polynomial and with Q =Weyl, Wick or anti-Wick
;
G lim Tr [gng] = / b(z) du(z) .
Paris 13 e—0,e€E z
int
ith
7 Examples
s [,‘u‘"r‘\‘"m NG a*(f)—a(f)
Vi Coherent states: f € Z,[f|z =1, E(f) = W(¥=1)IQ) = = |Q),

o€ (F) = [E(NIE(A)], Tr [oE(FBYWH] = b(F), M(eS(F),e € E) = {5r}.

Wigner
measures
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Wigner measures: Examples

Corollary

Assume M(ge , € € E) = {u} and

VkeN,3C >0,,Vec £, Tr [QENk] < G,

then for any cylindrical polynomial and with Q =Weyl, Wick or anti-Wick

i o] 0

Examples
V3 a* (1) =alr)
Coherent states: f € Z,|f|z =1, E(f) = W(¥=1)|Q) = < 1),
of () = |[E(ONE(F)], Tr [of (F)BYK] = b(f), M(of(f).c € E) = {5r} .
Hermite (atomic coherent) states: f € Z, |f|z =1,
oH(F) = |FEm(ren),e = 1, E= {1, ne N},

M(H(f),e € E) = {551 — %(ohéeif)f dé’}.
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Phase-
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W Assume Mo, e € £) = {u} and
mean field
i VkeN,3C >0, Vec £, Tr [QENk] <G,
new devel-
opments
:’” then for any cylindrical polynomial and with Q =Weyl, Wick or anti-Wick
;
G lim Tr [gng] = / b(z) du(z) .
Paris 13 e—0,ec€E =z
int
ith
“m Examples
A a* (f)=al(f)
‘[[‘“""‘"j“ Coherent states: f € Z,|f|z =1, E(f) = W(I—‘/Ef)m) =e ¢ |Q),
of () = |E(OE(F)], Tr [0S (F)DYK] = b(f), M(oE(f).c € E) = {5} .
Pa Hermite (atomic coherent) states: f € Z, |f|z =1,
M. Zerzer of(f) = |FO)(f®r| e =L, E={}.neN"},
M(H(f),e € E) = {551 =L 02Tr S0, d6’} .
mixed Hermite (twin Fock) states: fi,, € Z, (f;, f;) = §j;,
Wi ot (fi, ) = R NEE" @ B2 (67" e = 55 E= {5, neN"},
igner

~ 1 ol
M {Qg(fl, AN E} - {65*1/21‘1 ® 55*1/2@} _
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o Fixed degrees: we say that b(z) = (z®9, bz®P) belongs to P; ,(Z), if

opments

b

11 P q
—'—Ia;afb € E'(\/ Z; \/ Z),1 < r < oo Schatten classes
q! p!

Joint
UM  Polynomials: P(Z) = 2% Ppq(Z) PX(2) = @28 P5(2)
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S 11, P q
4 b==—alokbe £(\/ 2\ 2),
Pars 1 q! p!
Joint
o Polynomials: P(Z) = @:Ifqu Pp,q(Z)
nt'd
N For b € Ppq(Z),and n >0,
M. Fal- ) T 1 pta .
bierd Wk o = LD B s (B @ Tdyn 2).

Wick
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Wick calculus, (Pl)-condition, reduced density matrices

Fixed degrees: we say that b(z) = (z®9, bz®P) belongs to P, ,(Z), if
b=1Losorne c(\/z \/2)
q! p!

Polynomials: P(Z) = p qu Pp,q(2)

Proposition
Assume M(ge , € € E) = {u} and

VkeN,3C>0,Vec £, Tr [QEN"] < G,

then lim._,q, cce Tr [0cb"ik] = [ b(z) du(z) for all b € P2(Z).
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Wick calculus, (Pl)-condition, reduced density matrices

Fixed degrees: we say that b(z) = (z%9, bz®P) belongs to P, ,(Z), if

b

11 P q
aEagagb eci\/z:\2),

Polynomials: P(Z) = EBZ{%GN Pp,q(2)

A counter-example with b not compact: Take € = % JE= {% ,n € N*} and
consider a normalized sequence (f,),en+ converging weakly to 0. Then

M (n), € € E) = {do} ,
T [of (5)(1=P)] = 16 =17 0= [ 122 bo(z).
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Wick calculus, (Pl)-condition, reduced density matrices

Fixed degrees: we say that b(z) = (z®9, bz®P) belongs to P, ,(Z), if

b

11 ap P q
aaa;azbec(\/z;\/Z),

. y
Polynomials: P(Z) = @;gqu Pp,q(Z)

Polynomial-Identity: The failure of the convergence when b = Idy/e z is the sole
obstruction to the convergence with a general b € P(Z).
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Wick calculus, (PI) condition, reduced density matrices

Remember (|z|2P)Wick = ((z®P , 1d z®P))WiCk =N(N—-¢)---(N—¢e(p—1)) ~ NP

Theorem Ammari-N. (JMPA 11)
Assume M(ge , € € E) = {u}, with

VkeN, lim Tr [gst] :/ 121 du(z). (PI)
e—0,e€cE %
Then

lim Tr [0ebViK] = [ b(2) du(z) for all b € P(Z);

e—0,ecE
lim__ o ce |42 — ’76)”0(\/” 2z =0, forallp €N
with (assuming p # &)
J2 1227) (57| d(2)
[z |2 du(z)

Tr [Qe beck}

R S S P
Tr [o(|2[?P)Wick] °

) Y

Tr ['yg B] =
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Wick calculus, (PI) condition, reduced density matrices

Remember (|z|2P)Wick = ((z®P  1d z®P))Wi5k =N(N—-¢)---(N—¢g(p—1)) ~ NP

Theo Ammari-N. (JMPA 11)
Assume M(ge , € € E) = {u}, with

VkeN,  lim Tr [gENk] =/ 121 du(z). (PI)
e—0,e€E %

Then

lim__o.ce Tr [0ebWick] = [ b(z) du(z) for all b€ P(Z);

lim__ o ce |42 — fyg||£1(vp 2z =0, forallp €N
with (assuming p # &)

pr] _  Tr [ocb™eH] _ [2|2%P)(z®P] dpu(2)
Tr [wsb] =T ()] e = Zfz I

=

Remark: When oc € £1(L2,, (RPY"), e = o

Wg(xlw"uxp;ylu“wyp) :/ QE(X13~"7XP7X;.y17"‘1.yp7X) dX
(RD)N—p
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Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial
symbols) do not remain cylindrical (resp. polynomials).
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Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial
symbols) do not remain cylindrical (resp. polynomials).

Take £(z) = (z, Az) + Q(z) with A self-adjoint and Q € P(Z) and set
H. = EWick while @ is the hamiltonian flow associated with £ .
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Mean field propagation of Wigner measures

Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial
symbols) do not remain cylindrical (resp. polynomials).

Take £(z) = (z, Az) + Q(z) with A self-adjoint and Q € P(Z) and set

H. = EWick while @ is the hamiltonian flow associated with £ .

Theorem Ammari-N. (JMPA 11)
Assume M(ge , € € E) = {u} and the condition (PI), then

M(e et g it o e B) = {o(t).pu}

and the condition (PI) holds for all times.
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Mean field propagation of Wigner measures

Problem: After composition with a nonlinear flow, cylindrical (resp. polynomial
symbols) do not remain cylindrical (resp. polynomials).

Take £(z) = (z, Az) + Q(z) with A self-adjoint and Q € P(Z) and set

H. = EWick while @ is the hamiltonian flow associated with £ .

Theorem Ammari-N. (JMPA 11)
Assume M(ge , € € E) = {u} and the condition (PI), then

M(e et g eicte o e B) = {O(t)upu}
and the condition (PI) holds for all times.

Method: Truncated Dyson expansion after (Frohlich-Graffi-Schwarz 07 and
Frohlich-Knowles-Schwarz 09) combined with a priori information on p(t).
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Ammari-N. (Ann. della Sc. Norm. Pisa 15)
it WithA:—AandV(x):ﬁ,x€R3,a€R.
M Assume M(ge , € € E) = {u}, then

M(e e peelcle e € B) = {@(t)p}
and ((PI) at t =0) < ((PI) at any t)
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Mean field propagation of Wigner measures

Ammari-N. (Ann. della Sc. Norm. Pisa 15)

WithA:—AandV(x):ﬁ,XER3,aER.
Assume M(ge , € € E) = {u}, then

M(eTeegeeltMe e € B) = {0(t)up}
and ((PI) at t =0) < ((PI) at any t)

Method: Measure transportation adapted from Ambrosio-Gigli-Savaré (book 05).
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Mean field propagation of Wigner measures

Theorem Ammari-N. (Ann. della Sc. Norm. Pisa 15)

With A= —A and V(x) = &, x €R3, a € R.

Ix] 1

Assume M(ge , € € E) = {u}, then

M(e et g eitte o B) = {®(t)upu}

and ((P1) at t = 0) < ((PI) at any t)

Some compactness is needed either on the interaction or on the initial data. In

the 3D-Coulombic case, we used the compactness of (1 —A)~

1/2 1
[x]

(1-A)~1/2,
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Propagation: Improvement by Q. Liard

In our last work with Z. Ammari for singular interactions, the assumptions on the
interaction potential were

V(-x)=V(x) V(1-A8)"Y2eL(? (1-2)"Y2v(1-A)"2 compact.

While the usual assumptions for —A + V/(x) are expressed in term of
V(l-2A)"t.
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With a similar strategy but significant new ideas Q. Liard is able to treat one
particle hamiltonians Hp = —A + U(x) with assumptions on the interaction
potential V/(x) similar to the one for the KLMN perturbative theorem for Hy+ V.
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Significant difference: Infinite dimensional method of characteristics.

Z. Ammari, N.: Quadratic Wasserstein distance

WP(u1, p2) = infrpu=p; [ [ Ix = y|P du(x,y), quadratic means p = 2.

Q. Liard: Use of W1(u1,p2), inspired by finite dimensional results of Maniglia.
Tightness for families of probability measures on phase-space (tightness— >
weak compactness) less obvious (coercivity replaced by Dunford-Pettis type
arguments).
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Order of convergence and numerics

Ammari-Falconi-Pawilowski: Assume ||'y£p) - ’y(()p)||ﬁ1 = C(e)CP for all pe N
with

NO Sz 129P)(2®P| duo(z)
0 Sz 1212P dpo(2)

then [V (t) — 48P (£)]| o1 = CrCPC(e) forall pe Nand all t € [~ T, T].

withC(e) > C e
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Order of convergence and numerics

Example of numerical results obtained by B. Pawilowski:
m Z = (*(Z/KZ) ~ CK, Hy periodic discrete Laplacian .

m Use of exact formula for fyép)(t) with numerical integration for the mean field flow.
m Heavy accurate computation of the quantum N-body problem N < 20
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Neo), K=10,p=1

—— LD® ERROR IN TRACE HORM

Emor135 7 SLOPE: -0.98045 10464185103 105788

Emo=0.011 T T T T d
05 10 15 20 25 20

Log(N)

Order of convergence for sup,co, 7 ||7§p)(t) - Wép)(t)Hg ,here p=1
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Order of convergence and numerics

density of particles at =0 for p=1 and mean field
density of particles at =1 for p=1 on each sites and N=20
density of particles att=1 for p=1 and mean field

o o

Particle density: red=mean field t =0,
green and purple = 20-body and mean field t =1
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Other developments

Semiclassical analysis is easier than microlocal analysis: It is possible to
reconsider classical problems of bosonic quantum field theory by introducing
scales and a semiclassical parameters.

m Z. Ammari, M. Zerzeri: P(®), and Hoegh-Krohn model.
m Z. Ammari, M. Falconi: Nelson model.
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Other developments

Work in progress with Z. Ammari and S. Breteaux: Use of multiscale (2nd
microlocalized see e.g. C. Fermanian) semiclassical analysis for a more accurate
description of all the 72") . )

Observable looking like (z®P | [K + aW:hz®P)Wick with K compact € = e(h),
h—0,e(h)—0.
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Other developments

Work in progress with Z. Ammari and S. Breteaux: Use of multiscale (2nd
microlocalized see e.g. C. Fermanian) semiclassical analysis for a more accurate

(p)

description of all the ~¢™ .

Observable looking like (z®P | [K + aW:hz®P)Wick \ith K compact ¢ = ¢(h),
h—0,e(h)—0.

Motivations:

Mixture of BEC and non condensate phase

Approach valid for the bosonic and fermionic case

Another way of refining the mean field analysis, as compared with Bogoliubov 2nd
order approximation.

Possibly combine Ammari-N. propagation result (quantum part) with the recent result
by Golse-Paul (macroscopic part).

Double scales appear in random homogenization problems (see Breteaux’ phD).
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Thank you for your attention !
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