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Abstract

Let G be a complex reductive group. The spherical Hecke category of G can be presented as the
category of GO-equivariant constructible sheaves on the affine Grassmannian GrG . This category
admits a convolution product, extending the convolution product of equivariant perverse sheaves. In
this paper, we upgrade the mentioned convolution product to a left t-exact E3-monoidal structure
in∞-categories. The construction is intrinsic to the automorphic side. Our main tools are the
Beilinson–Drinfeld Grassmannian, Lurie’s characterization of Ek -algebras via the topological Ran
space, the homotopy theory of stratified spaces and the formalism of correspondences.
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1 Introduction

1.1 Main results

Let G be a complex reductive group, and R a commutative ring of coefficients. The aim of this paper is
to provide an extension of the convolution product in the Satake category of equivariant perverse sheaves
on the affine Grassmannian ([MV07, §4]) to the spherical Hecke category, and endow this extension with
an E3-algebra structure in∞-categories. This upgrade is the derived avatar of Mirkovic and Vilonen’s
commutativity constraint [MV07, §5]. We briefly illustrate the main results of the paper below.

Definition 1.1 (Affine Grassmannian). Let G be a reductive group. The arc group GO (also denoted by
GJtK or L+G) is defined as the functor

Affop
C →Grp

R 7→G(RJtK) =Hom(RJtK,G).

The loop group GK (also denoted by G((t)) or LG) is defined as the ind-representable functor

Affop
C →Grp

R 7→G(((t))) =Hom(R((t)),G).

The affine Grassmannian GrG is the fpqc quotient stack

GrG =
�

GK/GO

�

.

When there is no ambiguity, we usually denote GrG by just Gr.

Remark 1.2. The stack Gr is actually ind-representable. As such, it admits an underlying complex-analytic
space Gran.
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1.1 MAIN RESULTS

Notation 1.3. Let E be a symmetric monoidal presentable stable∞-category, and Eω its stable subcate-
gory of compact objects. Let PrL,⊗

E
be the symmetric monoidal∞-category of E-linear presentable∞-

categories and left adjoint functors between them; let also PrR,⊗
E

be the symmetric monoidal∞-category
with the same objects but with right adjoint functors as morphisms (see Notation B.50, Remark B.51). Let
also Cat×∞,Eω be the∞-category of Eω-linear small∞-categories (see Notation B.52) with its cartesian
symmetric monoidal structure.

When R is a commutative ring and E=ModR is the∞-category of R-modules, we use the notations
PrL,⊗

R ,PrR,⊗
R ,Cat∞,R.

Theorem 1.4 (Main result, Theorem 4.13). Let G be a complex reductive group and E a symmetric monoidal
presentable stable∞-category. Then there exists an object

Sph(G;E)⊗ ∈AlgE3
(PrR,⊗

E
)

whose underlying∞-category is
ConsGan

O
(Gran;E),

i.e. the unbounded derived∞-category of topological Gan
O

-equivariant constructible sheaves over Gran, with
coefficients in E.

Corollary 1.5 (Corollary 4.14, Remark 4.17). In the same setting as Theorem 1.4, there exists an object

Sph(G;E)loc.c,⊗ ∈AlgE3
(Cat×∞,Eω )

whose underlying∞-category is the small spherical Hecke category of G (see Definition A.22).
Let R be a discrete ring. For E=ModR, this E3-structure is left t-exact for the perverse t-structure (and

exact if R is a field). It canonically induces a symmetric monoidal structure on the abelian subcategory of
equivariant perverse sheaves, coinciding with the classical convolution product of [MV07, §4].

Remark 1.6. Let R be a ring. As explained in Section A.3, the category Sph(G; R)loc.c = Sph(G;ModωR )
has several presentations.

One is the one that we use as definition, namely the∞-category of Gan
O

-equivariant constructible
sheaves over Gran

G with values in R, with bounded finitely presented stalks.
When R=C, then the Riemann-Hilbert correspondence implies that Sph(G; R)loc.c can be presented

as the subcategory of DModGO
(GrG) spanned by objects whose underlying D-module is compact (i.e.

which become compact after forgetting the equivariant structure), which agrees with [AG15, 12.2.3], see
Remark A.25.

If R is finite, profinite or ℓ-adic (i.e. an algebraic extension ofQℓ), then Sph(G; R)loc.c can be presented
as a category of étale sheaves over the algebro-geometric object GrG , see Remark A.24.

Another direct corollary of Theorem 1.4 regards the renormalized spherical Hecke category:

Corollary 1.7 (Corollary 4.15). In the same setting as Corollary 1.5, there is also an object

Sph(G;E)ren,⊗ ∈AlgE3
(PrL,⊗

E
)

whose underlying∞-category is the renormalized spherical∞-category

Sph(G;E)ren = Ind(Sph(G;E)loc.c)

appearing e.g. in [AG15, §12].

We are now going to provide some context and motivation for these results (Section 1.2) and an
outline of the paper (Section 1.3).
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1 INTRODUCTION

1.2 Motivation: the Derived Satake Theorem

A classical problem in representation theory is the study of a reductive group G over a local field (e.g.
GLn , SLn , PGLn) and its Langlands dual Ǧ (e.g. ǦLn =GLn , ŠLn = PGLn).

A celebrated result in the study of the Langlands duality is the Satake theorem [Sat63] which, given a
reductive group G over Fp , establishes an isomorphism between the C-algebra of complex compactly
supported G(Zp)-biinvariant functions on G(Qp), called the (spherical) Hecke algebra of G, and the

(complexified) Grothendieck ring of finite-dimensional representations of Ǧ. Ginzburg [Gin95] and later
Mirkovic and Vilonen [MV07, (13.1)] provided a “sheaf theoretic” analogue (actually a categorification)
of this theorem, called the Geometric Satake Equivalence: here G is a complex reductive group, and the
statement has the form of an equivalence of symmetric monoidal abelian categories between the category
of equivariant perverse sheaves PervGO

(GrG) and the category of finite dimensional representations

of Ǧ. The key new object here is the affine Grassmannian GrG , whose definition we recalled above
(Definition 1.1). This is an infinite dimensional algebro-geometric object with the property that GrG(C) =
G(C((t )))/G(CJtK). The Grothendieck group of PervGO

(GrG) is the analogue of the Hecke algebra
appearing in the original Satake theorem, but now for a reductive group over C.1

Theorem 1.8 (Geometric Satake Equivalence, [MV07, (1.1)]). Fix a reductive algebraic group G over C,
and a discrete commutative ring R, noetherian and of finite global dimension. There exists a symmetric
monoidal structure ⋆ on PervGO

(GrG ; R), called convolution, and an equivalence of symmetric monoidal
abelian categories

(PervGO
(GrG ; R),⋆)≃ (Repfd(ǦR, R),⊗) (1.1)

where ǦR is the Langlands dual of G over R [MV07, Beginning of Sec. 12] and ⊗ denotes the standard tensor
product of finite-dimensional ǦR-representations with coefficients in R.

We recall the meaning of this statement, together with various theoretical recollections necessary for
this paper, in Appendix A. We refer the reader seeking for a complete survey to [Zhu16] and [BR18].

Theorem 1.9 (Derived Satake Theorem, [BF07, Theorem 5]). Let G be a complex reductive group and k a
field of coefficients of characteristic zero. There is a monoidal equivalence of triangulated categories2

hConsfd
GO
(GrG ; k)≃ hPerfǦk

(Sym(ǧk[−2])) (1.2)

where Ǧk is the Langlands dual of G over k and ǧk is its Lie algebra.

Remark 1.10. Here Consfd
GO
(Gr; k) is the bounded derived∞-category of GO-equivariant constructible

sheaves over Gr with coefficients in k and finitely presentable stalks. The category PervGO
(GrG , k) is the

heart of a t-structure on Consfd
GO
(GrG , k) (and hence on the homotopy category). Indeed, this t-stucture

is inherited from the presentation of the equivariant constructible category à la Bernstein-Lunts, see
Remark 4.17. As explained in Remark 4.17, the Geometric Satake Theorem can be formally recovered
from the Derived Satake Theorem by passing to the heart, up to a detail: a priori, the induced statement

1A closer analogue to the original Satake isomorphism is given by the geometric Satake theorem in mixed characteristic, see
[Zhu17].

2For the sake of coherence with the rest of the work, we adopt the notation h− in order to refer to “the homotopy category
of a stable∞-category”. Of course, in the original paper both sides are defined directly as triangulated categories.
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1.2 MOTIVATION: THE DERIVED SATAKE THEOREM

will only be a monoidal equivalence of monoidal abelian categories, and not a symmetric monoidal
equivalence.

Both the left and right-hand side, as triangulated categories, carry a symmetric monoidal structure
(for the left-hand-side, see [AR23, Section 3.3]; on the right-hand-side, it is the tensor product described in
[BF07, 2.7]). However, the equivalence is not symmetric (or even braided) monoidal (cf. [AG15, Remark
12.4.3]).

In the following, the notion ofEk -center of anEk -∞-category we are referring to is [Lur17, Definition
5.3.1.6, Example 5.3.1.13], and generalizes the notion of Drinfeld center.

Theorem 1.11. There is a monoidal equivalence of∞-categories

ModǦk
(Sym(ǧk[−2]))≃ ZE2

(DRep(Ǧ; k))

where ZE2
stays for “E2-center” and DRep(Ǧ; k) is the derived∞-category of representations seen as an

E2-∞-category by forgetting its E∞-monoidal structure ⊗ along the map of operads E2→E∞.

One can make this result follow from [AG15, Proposition 12.4.2] combined with work of Ben-Zvi,
Francis, Nadler and Preygel on centers [BZFN10], [BZNP17]: see [BZSV23, (17.1.2)] for a discussion
on this matter. We stress that also this latter equivalence is only monoidal and not symmetric monoidal.

Note that the left-hand-side of Theorem 1.11 is the Ind-completion of the PerfǦk
(Sym(ǧk[−2])), i.e.

of the∞-category whose homotopy category appears in the right-hand-side of Theorem 1.9.

Remark 1.12. In recent work appeared after during the revision of the present paper, Campbell and
Raskin proved the following result [CR23, Theorem 6.6.1]. Assume k =C (or more generally, that G
is a reductive group over a field k of characteristic zero). Then there is an equivalence of factorizable
monoidal∞-categories

Sph(G; k)ren ≃ Sph(Ǧ; k)spec, (1.3)

where the right-hand-side is a suitable renormalization of the right-hand-side of Theorem 1.11.
This is the correct statement of a result announced by Gaitsgory and Lurie several years ago, and

originally conjectured by Drinfeld (see e.g. [AG15, footnote 19]).

Remark 1.13 (Role of the present paper). The right-hand side of (1.3) has a naturalE3-monoidal structure
coming from the fact that it is a renormalization of the E2-center of DRep(Ǧk ; k).

What we do in this paper is rather to endow the left-hand-side of (1.3) (which is also the left-hand-side
of Theorem 1.9) with an E3-monoidal structure: see Corollary 1.7. Our construction is intrinsic to the
automorphic side, i.e. it does not use (1.3). In contrast to [CR23], we need to assume that G is defined
over C (and not over an arbitrary field of characteristic zero): the reason for this will be evident from
Remark 1.14. However, this also gives us freedom in the choice of coefficients, see Remark 1.6.

Remark 1.14. Note that an E3-monoidal structure is a slightly stronger notion than being factorizable
monoidal. More precisely, by the Dunn–Lurie Additivity Theorem [Lur17, Theorem 5.1.2.2] an E3-
monoidal structure decomposes into an E1-monoidal and an E2-monoidal structure on the same∞-
category, which distribute with one another (a higher avatar of the Eckmann-Hilton principle). An
E1-monoidal structure is just a monoidal structure. An E2-structure is the same as a braided monoidal
structure. In the expression “factorizable monoidal”, the “monoidal” part corresponds to theE1-monoidal
structure mentioned above. The “factorizable” part is related to the mentioned E2-monoidal structure as
follows: the existence of an E2-monoidal structure implies the existence of a structure of factorizable
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1 INTRODUCTION

category, but not vice-versa: the gap lies precisely in a notion of “local constancy”: a “locally constant”
factorizable structure induces an E2-monoidal structure. Formally, this is exactly the constructibility
property appearing in Recall 1.17 below.

Remark 1.15. Our result is somehow in the same spirit of the Tannakian reconstruction principle used in
the proof of the Geometric Satake Theorem (Theorem 1.8), where the existence of a symmetric monoidal
structure on PervGO

(Gr; R) is a part of the structure needed to apply the reconstruction machinery, and

only a posteriori it is interpreted as corresponding to the tensor product in Repfd(ǦR; R).

Remark 1.16. In the light of Remark 1.13, it is natural to expect an E3-monoidal equivalence between
the two sides of (1.3), refining the factorizable monoidal equivalence proved by Campbell and Raskin.

1.3 Outline of the work

Let G be complex reductive group. Recall Definition 1.1.
In Section 2 we recall that, for any choice of a smooth complex curve X , there exists a presheaf Ran(X ),

defined as the colimit in PSh(SchC) of the diagram

Finop
≥1,surj→ IndSchC

I 7→X I

where Fin≥1,surj is the category of nonempty finite sets with surjections between them, and the diagram
sends a surjection I ↠ J to the corresponding diagonal X J →X I .

We also recall that there exists a presheaf GrRan called the Ran Grassmannian, living over Ran(X )
and such that for any choice of x0 ∈X (C) the singleton map {x0} : SpecC→Ran(X ) induces a pullback
square

Gr GrRan

SpecC Ran(X )
{x0}

. (1.4)

Such a presheaf arises as the colimit in I ∈ Finop
≥1,surj of the Beilinson-Drinfeld Grassmannians

GrI = {xI ∈X I ,F ∈ BunG(X ),α : F|X \xI

∼−→ T|X \xI
}. (1.5)

Here T is the trivial G-bundle, see Definition 2.3. The so-called “moduli interpretation” of the affine
Grassmannian (Proposition A.10) implies the existence of the pullback diagram (1.4).

The point of view involving Ran(X ) is already used for instance in [Zhu16], [GL] and [Tao20]. We
consider an equivariant version of this phenomenon: first of all, recall that Gr admits an action of GO by
left multiplication (see Recall A.1). We define

Hck

as an ind-pro-stack whose realization is the fpqc quotient

[GO\Gr],
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1.3 OUTLINE OF THE WORK

see Definition A.11, Definition A.17. Just like in the case of GrRan in (1.4), there is an object HckRan
fitting in a pullback square

Hck HckRan

SpecC Ran(X )
{x0}

. (1.6)

Here Hck and HckRan are objects of the category
{

StrStklft
C , a suitable pro-completion and free cocom-

pletion of the category of stratified stacks (see Definition B.5): this is the right environment for our
constructions since we want to keep track of the fact that our objects can be approximated by finite-
dimensional objects at various levels. In particular, this will allow later to define categories of constructible
sheaves in the right way (e.g. as a colimit along the coweight filtration on the affine Grassmannian). Also,
all objects in sight have natural stratifications, ultimately coming from the fact that the classical stratifica-
tion in Schubert cells of the affine Grassmannian (Recall A.1) can be extended to the Beilinson-Drinfeld
Grassmannian. Stratifications are crucial in this work because of the stratified-homotopy-invariance
features enjoyed by the procedure of taking constructible sheaves with respect to a given stratification (as
opposed to some stratification, cf. Recall B.7, Recall B.37 for the distinction). For this reason, we always
work with stratified stacks and variations thereof.

There exists a span
Hck2

Hck×Hck Hck

p m (1.7)

which we call “convolution diagram”. This span admits a “Ran version” of the form

HckRan,2

HckRan×HckRan HckRan

pRan mRan . (1.8)

The main reason for the existence of this Ran version of the convolution diagram is the fact that the
so-called convolution Grassmannian admits a Ran version (see Section 2.3), allowing to define the upper
vertex of this diagram. From this, we prove that HckRan carries a nonunital E1-algebra structure in
correspondences, i.e. there exists an object

Hck⊗Ran ∈Algnu
E1
(Corr( {

StrStklft
C )
×) (1.9)

whose underlying object is HckRan. The target it the 1-category of correspondences on
{

StrStklft
C in the

sense of [GR17], [Man22], together with the monoidal structure induced by the Cartesian monoidal

structure on
{

StrStklft
C . Associativity (E1) here is a consequence of the existence of n-fold convolution

Grassmannians, see Section 2.3.
The reason we are interested in extending (1.7) to (1.8) is the following. Informally, push-and-pull of

perverse (or, in our case, constructible) sheaves along (1.7) induces the convolution product of [MV07,
§4], which corresponds to an E1-algebra structure on the chosen category of sheaves over Hck. As we
will see, the existence of the Ran version (1.8) allows to add an additional “E2-direction”, corresponding
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1 INTRODUCTION

to the commutativity constraint appearing in [MV07, §5] (which itself uses the existence of the Beilinson-
Drinfeld Grassmannian). However, in order to carry out the latter step, we choose to pass to the
complex-analytic world: this allows to use Lurie’s characterization of factorization algebras [Lur17,
Theorem 5.5.4.10]. Note that this latter ingredient is absent in [MV07], where the properties of perverse
sheaves allow to establish the commutativity constraint “on the nose”.

More precisely, in §3.1 we apply the stratified analytification functor (−)an of Corollary B.46 to the
objects constructed in the previous section, with the goal of deducing the existence of an E3-algebra
structure on the category of topological constructible sheaves over the resulting complex-analytic objects.3

The functor appearing in Corollary B.46 is an upgraded version of Raynaud’s original analytification
functor [Ray71], which takes into account stratifications and the formation of pro-objects and free
colimits. In particular, the analytification of the object

HckRan ∈
{

StrStklft
C

belongs to the category {StrTStk, which arises in a totally similar way to
{

StrStklft
C as a pro-completion and

free cocompletion of the category of topological stratified stacks, see Definition B.25.
The algebra structure in correspondences (1.9) is transferred via this procedure to an object

Hckan,⊗
Ran ∈Algnu

E1
(Corr( {StrTStk)). (1.10)

Additionally, we are able to build a factorization algebra structure on Hckan
Ran, in the sense that there is a

map of operads (Theorem 3.13)

Hckfact : Fact(R2)→Algnu
E1
(Corr( {StrTStk))×. (1.11)

Recall 1.17. Here Fact(R2) is a certain operad whose algebras correspond include nonunital E2-algebras
under Lurie’s criterion [Lur17, Theorem 5.5.4.10]; the needed conditions in order to obtain a nonunital
E2-algebra are essentially three (see [Lur17, Theorem 5.5.4.10] for the meaning of the words in italic):

• factorizability, corresponding to the factorization property of the Beilinson-Drinfeld Grassmannian
Proposition 2.11;

• constructibility up to stratified homotopy, corresponding to the fact that the analytification of
GrRan is homotopy invariant under dilation of coordinates of A1

C ([NP24b]);

• codescent with respect to the euclidean topology of R2 (i.e. wrt the complex-analytic topology
on A1

C). This condition is “almost” satisfied: the defect is due to the presence of pro-objects in the
story, an issue which is completely solved after taking constructible sheaves: see Remark 3.11.

Let now E be a presentable stable stable∞-category, which will be our category of coefficients. We
want to give a meaning to the expression

Cons(Hckan
Ran;E).

3“Topological” here is to be understood as opposed to “algebraic”. It is actually an interesting question whether an E3-
structure can be established on a category of constructible étale sheaves over Hck without using the theory of topological
factorization algebras. One should however keep in mind that this would only make sense for finite or ℓ-adic coefficients, since
we would be looking at étale sheaves. In this case, the category of algebraic constructible sheaves on Hck and the category
of topological constructible sheaves on Hckan coincide (see (A.8)), so it is really a matter of techniques used, not of the result.
For other coefficients, the topological model is less replaceable: in the case of complex coefficients, for instance, one looks at
Cons(Hckan;C), which corresponds to DMod(Hck), see Remark 1.6.

This point of view is also underlined in [MV07, end of page 2].
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1.3 OUTLINE OF THE WORK

The idea is to define this by colimits and limits from the finite-dimensional terms involved in the
construction of HckRan. To this end, we ideally would like to build a symmetric monoidal functor

Cons(−;E) : Corr( {StrTStk)→zCat∞,

the target being the category of large categories. Such a functor would transfer all the desired properties
in one go. However, the functorialities needed to build such a functor are somehow only understood for a
strict subcategory of {StrTStk, built out of what are known as conically stratified spaces (Definition B.14):
these are spaces with some mild topological conditions and the crucial requirement that the stratifica-
tion satisfies a certain equisingularity condition (called the conical stratification condition). Whitney
stratifications are a standard example of such, and indeed we use the fact that the analytification of the
Beilinson-Drinfeld Grassmannian (1.5) is Whitney (due to David Nadler in his PhD thesis) to prove that
it is conical.

This construction is performed in Appendix B. More precisely, there is a functor

StrTopcon→ PrL
E

(X , s) 7→Cons(X , s ;E)
(1.12)

where StrTopcon is the category of conically stratified spaces, PrL
E

is the category of E-linear presentable
stable categories, and Cons(X , s ;E) is the category of E-valued constructible sheaves on (X , s). This
functor also carries a symmetric monoidal structure, see Corollary B.56. The existence of (1.12) relies on
the formalism of exit paths as developed in [Lur17, Appendix A] and later in [PT22].

This functor can then be extended to {StrTStkcon, which is the subcategory of {StrTStk built out of
StrTopcon instead of StrTop (Definition B.25). The resulting functor further extends to a category of
correspondences via the formalism of [GR17, Part III] and [Man22]. Again, the category of correspon-
dences appearing in the result is a strict subcategory of Corr( {StrTStkcon), in that it has less morphisms:
we are looking at

Corr( {StrTStkcon)all,subm,

whose morphisms are spans

Y

X Z

h v

of morphisms in {StrTStkcon where the arrow h belongs to a certain class of “smooth submersions”
(Definition B.28). This restriction is necessary in order to have the necessary base change properties
(also known as Beck-Chevalley conditions) for the extension to correspondences. The final output is a
symmetric monoidal functor

Corr( {StrTStkcon)
×
all,subm→ PrR,⊗

E
,

see Theorem B.66. Here PrR,⊗
E

is the symmetric monoidal ∞-category of E-linear presentable ∞-
categories with right adjoint functors (Remark B.51).

In Section 3.2 we prove that the analytification of the HckRan and its variations do belong to {StrTStkcon,
and that the analytification of the left leg in (1.8) belongs to subm. This implies that the functor Hckfact

from (1.11) factors via the subcategory Algnu
E1
(Corr( {StrTStkcon)

×
all,subm), as desired.
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1 INTRODUCTION

In Section 4 we study the categories of sheaves Cons(HckRan;E) and Cons(Hck;E). By composing
Hckfact with Cons(−;E), we can apply Lurie’s criterion [Lur17, Theorem 5.5.4.10] mentioned above
(whose conditions are now completely satisfied) and obtain a map of operads Enu

2 → (Algnu
E1
(PrR,⊗

E
))

whose underlying category is Cons(Hckan
Ran;E) : see Construction 4.7. In other words, there are two

nonunital monoidal structures on Cons(Hckan
Ran;E), one of which is braided, which distribute one with

the other.
Section 4.2 is devoted to transfer these two structures from

Cons(Hckan
Ran;E)

to
Cons(Hckan;E),

which is done by specializing to any chosen point x0 ∈ A1
C (cf. (1.6)). This procedure amounts to

some base change verifications, enabled by the fact that the right leg of the convolution diagram (1.8) is
ind-proper and the left leg is pro-smooth.

We prove that, after this specialization, both the Enu
1 - and Enu

2 -structures gain units, and therefore
the Dunn-Lurie Additivity Theorem [Lur17, Theorem 5.1.2.2] can be applied, thus combining the two
algebra structures into an E3-structure on Cons(Hckan;E).

The latter category is precisely Sph(G;E), i.e. the∞-category of Gan
O

-equivariant constructible
sheaves on Gran with coefficients in E. We obtain obtain Theorem 1.4. When E=ModR for a discrete
ring R, this structure is left t-exact (t-exact if R is a field) and therefore restricts canonically to a symmetric
monoidal structure on perverse sheaves, which is the classical one used in [MV07]: see Remark 4.17.

Remark 1.18. Note that Gran is homotopy equivalent to the loop space ΩGan ≃Ω2B(Gan), which carries
a standard E2-algebra structure in spaces. This is not sufficient to derive the E2-algebra structure on the
spherical category though (at least not with our techniques), because the functor taking constructible
sheaves is stratified homotopy invariant but not homotopy invariant (for example, constructible sheaves
on R and on the point are not the same). For recent developments on the loop space perspective, see
[CN18, CN24], which also take stratifications into account.

The application of Lurie’s [Lur17, Theorem 5.5.4.10] to the affine Grassmannian also appears in
[HY19], though in that paper the authors are interested in a purely topological problem and do not
take constructible sheaves. Up to our knowledge, the formalism of constructible sheaves via exit paths
and exodromy has never been applied to the study of the affine Grassmannian and the spherical Hecke
category.
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2 Convolution over the Ran space

Throughout this whole work, G will be a complex reductive group and X a complex smooth curve.

Notation 2.1. When defining a presheaf over the category of complex affine schemes, we will usually
drop the dependance on Spec R when it does not cause confusion. A point x ∈X (R) will just be denoted
by x ∈X , and its graph in X × Spec R by Γx .

Two R-points of X will be declared “equal” if they coincide as maps Spec R→X , “distinct” if they
do not coincide (but their graphs may intersect nontrivially inside XR), and “disjoint” if their graphs do
not intersect.

Let I ∈ Fin≥1,surj and xI ∈ X I (R). Let pri : X I → X be the projection on the i -th coordinate and
denote by xi the composite pri ◦xI . We denote by Γxi

⊂XR the closed subscheme given by the graph of xi .
We denote by ΓxI

the closed (possibly nonreduced) subscheme of XR corresponding to the composition

Spec R→X I → Sym|I |X ≃Hilb|I |X

where the last isomorphisms comes from the fact that X is a curve. This subscheme is supported at the
union of the graphs Γxi

. For instance, if R=C, I = {1,2} and x1 = x2 is a closed point of X , then ΓxI
is

the only closed subscheme supported at the point and of length 2.
The definition of the affine and punctured formal neighbours of a closed subscheme Γ of a scheme S ,

denoted by eSΓ and �SΓ respectively, is recalled in Recall A.4. When there is no risk of confusion about the
ambient scheme, we will also denote them by eΓ and�Γ respectively.

A G-torsor F ∈ BunG(XR) will just be denoted by F ∈ BunG(X ), and the trivial G-torsor over a
scheme S will be denoted by TS .

Finally, the symbol PSh(−) denotes groupoid-valued presheaves, whereas P(−) denotes space-valued
presheaves.

2.1 The Beilinson–Drinfeld setting

The following definitions also appear, in various forms, in [Rei12], [Ric14] and [CvdHS22], and are
natural generalizations of the characterizations recalled in Proposition A.10.

Definition 2.2. Let I , I1, I2 be nonempty finite sets. We recall the following definitions.

• The Beilinson–Drinfeld arc group

GO,I = {xI ∈X I , g ∈G( eXxI
)}.

Note that G( eXxI
)≃Aut(T
eXxI
).

• The Beilinson–Drinfeld loop group

GK,I = {xI ∈X I ,F ∈ BunG(X ),α trivialization of F on X \ xI ,µ trivialization of F on eXxI
}

11



2 CONVOLUTION OVER THE RAN SPACE

with its “decoupled version”

GK,I1,I2
= {xI1

∈X I1 , xI2
∈X I2 ,F ∈ BunG(X ),

α trivialization of F on X \ xI1
,µ trivialization of F on eXxI2

},

Definition 2.3. The Beilinson–Drinfeld Grassmannian is defined as

GrI = {xI ∈X I ,F ∈ BunG(X ),α trivialization of F on X \ xI }.

Remark 2.4. The objects GK,I ,GK,I1,I2
,GrI are ind-schemes over X I by [Zhu16, Theorem 3.1.3, Propo-

sition 3.1.9 and variations thereof]. The object GO,I is representable [Zhu16, Proposition 3.1.6], and has
the structure of an infinite-dimensional group scheme relative to X I . The object GrI is often denoted
by GrG,X I ,GrG,I ,GrX I . The notations GO,X ,GK,X ,GrX , respectively for GO,{1},GK,{1},Gr{1}, are also
common and we will use them often.

The group scheme GO,I acts on GK,I relatively to X I by modification ofµ, and there is an equivalence

GrI ≃GK,I/GO,I

where the right-hand-side is the fpqc quotient relative to X I . Analogously, there is an action of GO,I2
on

GK,I1,I2
relative to X I2 , and the quotient is GrI1

×X I2 .

Notation 2.5. We denote Let x : SpecC→X be a closed point. We denote by

Grx =GrX ×X ,x SpecC

and similarly GK,x ,GO,x .

Proposition 2.6 (Translational invariance). Let X =A1
C. Then any choice of a closed point x ∈A1

C induces
splittings

GrA1
C
≃Grx ×A

1
C

GO,A1
C
≃GO,x ×A

1
C.

Proof. The case of Gr is proven as follows. The definition of GrX is functorial in X , and hence the
translation action on A1

C lifts to GrA1 as a map

GrA1
C
×CA

1
C→GrA1

C
.

The choice of any point x induces a map

Grx ×CA
1
C→GrA1

C
×CA

1
C→GrA1

C

which provides the splitting.
The case of GO is straightforward from the definition.

Warning 2.7. Such splittings only hold for I = {1}.

Definition 2.8. We denote by Fin≥1,surj the category of nonempty finite sets and surjections between
them.

12



2.1 THE BEILINSON–DRINFELD SETTING

Remark 2.9. Fix I ∈ Fin≥1,surj. The group GO,I acts on GrI over X I as follows:

(xI , g ).(xI ,F,α) := (xI ,F, g |�XxI
◦α|�XxI

).

This is definition is well-posed thanks to the Beuville-Laszlo theorem (cf. Construction A.7), which
implies that the datum of a trivialization on the punctured affine formal neighbourhood is equivalent to
one on the complement of the point. We will implicitly use this argument in the rest of the paper while
writing similar expressions.

Suppose I = I1 ⊔ I2. The relative group scheme GO,I acts on GK,I1,I2
relatively over X I again by

modification of α. Note that α is a trivialization away from xI1
, and we are modifying it at all points of

xI (not just those of xI1
).

Let now I1, I2, I3 be nonempty finite sets. The relative group scheme GO,I2
acts on GK,I1,I2

×X I2 GK,I2,I3

by simultaneous modification of µ in the first component and α in the second one, respectively over
eXΓxI2

and �XΓxI2

. The same relative group scheme acts on GK,I1,I2
×X I2 GrI2

in a similar way.

Construction 2.10. Let I , J ∈ Fin≥1,surj and [φ : I ↠ J ] a J -partition of I , i.e. the equivalence class of a
surjection φ : I ↠ J modulo autobijections of J . Following [Nad05, §4.2] and [CvdHS22, (4.2)], let

Xφ = {xI = (x1, . . . , x|I |) ∈X I |φ(i) =φ(i ′)⇒ xi = xi ′ ,

φ(i) ̸=φ(i ′)⇒ Γxi
∩ Γxi ′

=∅, i , i ′ ∈ I } ⊂X I .

This partition of X I forms a stratification which is called the incidence stratification of X I ([Nad05,
§4.2]).

Proposition 2.11 (Factorization property). With the above notation, there is an isomorphism

GrI ×X I Xφ ≃
�
∏

J
GrX
�

×X I Xφ

where the map
∏

J GrX → X I is induced by the diagonal X J → X I associated to φ. Note that the right-
hand-side is also isomorphic to

�
∏

J GrX
�

×X J X id, id being the partition induced by the identity of J and
X id ⊂X J being the associated stratum, i.e. the open stratum of pairwise distinct coordinates in X J .

Proof. See [Nad05, Proposition 4.2.1] or [CvdHS22, Proposition 4.6] (which refers directly to [Zhu16,
Proposition 3.1.13]). To be precise, the proof in [Zhu16] is performed for X =A1

C (see Corollary 2.45),
but it is literally the same in the general case.

Proposition 2.12. With the above notations, there is an isomorphism

GO,I ×X I Xφ ≃
∏

J
GO,X ×X I Xφ

and the right-hand side is in turn isomorphic to
∏

J GO,X ×X J X id as above.

Proof. Straightforward from the definition.
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2 CONVOLUTION OVER THE RAN SPACE

Remark 2.13. Under the identifications of Proposition 2.11, we note the following. Let x ∈X (C). Then

we can perform pullbacks along SpecC
(x,...,x)
,−−−→X ,→X I and obtain isomorphisms

SpecC×X I GrI ≃Gr
SpecC×X I GO,I ≃GO

SpecC×X I GK,I ≃GK

and the actions appearing in Remark 2.9 become the ones from Recall A.1 and Construction A.9.

Remark 2.14. The stratification in Schubert cells of Gr (Recall A.1) naturally induces a stratification on
GrX with the same stratifying poset X•(T )+, as showed in [Zhu16, (3.1.11)]. If (x,F,α) ∈GrX (C), we
denote by

Invx (F,α) ∈X•(T )
+

the associated coweight (we will often abbreviate this by Invx(α)). We also denote the stratum with
coweight µ by

GrX ,µ,

and set
GrX ,≤µ =
⋃

ν≤µ
GrX ,ν .

Remark 2.15. The notion of Invx(α) admits the following generalization. Let x ∈ X (C),F0,F1 ∈
BunG(X )(C), and let η : F1|X \x ≃ F0|X \x . Fix a trivialization λ of F0 on the formal neighbourhood of x.
Such a trivialization always exists because all G-torsors are trivial on SpecCJtK. Then one can compute

Invx (λ|�Xx
◦η|�Xx

) ∈X•(T )
+

and check, by uniqueness of the Cartan decomposition, that this coweight is independent of the choice
of λ. We denote it by

Invx (η).

Recall 2.16. There is a well-defined stratification on GrI whose explicit description is provided in [Nad05,
§4.2] or also [CvdHS22, Definition 4.18]. We recall it here, just to fix notations for the generalization to
the convolution Grassmannian. The indexing poset of the stratification is

{[φ : I ↠ J ] partition of I ,µJ = (µ1, . . . ,µ|J |) ∈ (X•(T )
+)J }

where the order relation is given by:
(φ,µJ )≤ (φ

′,µ′J ′)

if and only if there exists a refinement [ψ : J ′↠ J ] such that for every h ∈ J

µh ≤
∑

h ′∈J ′,ψ(h ′)=h

µ′h ′ .

The stratification is then defined by setting

GrI ,φ,µJ
=
∏

h∈J

GrX ,µh
×X J Xφ ,→GrI

14



2.1 THE BEILINSON–DRINFELD SETTING

where the embedding is induced by Proposition 2.11.
For [φ : I ↠ J ] partition of I , µJ ∈ (X•(T )+)J , we consider the Zariski closure

GrI ,φ,µJ
.

By [CvdHS22, Lemma 4.20], this is a union of strata.
Let (φ,µJ )≤ (φ′,µ′J ′) as above. Then we have a natural closed embedding

GrI ,φ,µJ
,→GrI ,φ′,µ′

J ′
.

Recall 2.17. We recall the definition of the standard filtration of the Beilinson-Drinfeld Grassmannian
([Zhu16, Theorem 3.1.2], [Ric14, Lemma 3.4]). Let I ∈ Fin≥1,surj, n,N ∈N. Define

Gr(N )GLn ,I = {(xI ,F,α) ∈GrGLn ,I |O
n
X (−NΓxI

)⊂ F⊂On
X (NΓxI

)}

(here we are implicitly identifying GLn -torsors with locally free sheaves of rank n). Then this is a
projective scheme relative to X I , and GrGLn ,I is filtered by the Gr(N )GLn ,I ’s. For the case of a general G,

one chooses a faithful representation ρ : G→GLn and defines Gr(N )G,I via the closed embedding between
Beilinson-Drinfeld Grassmannians induced by ρ (cf. [Zhu16, Propositions 1.2.5, 1.2.6]). Finally, one
checks that the ind-scheme structure of GrG,I does not does not depend on ρ.

Remark 2.18. Note that Gr(N )G,I is a union of strata of GrG,I by a principle similar to Remark A.8.
For instance, let G = GLn , I ∈ Fin≥1,surj and N ∈ N. Choose T = (Gm)

n given by the diagonal
matrices inGm. This induces an embedding of posets X•(T )+ ,→Nn whose image is spanned by those
n-uples (µ1, . . . ,µn) where µ1 ≥ · · · ≥ µn and νI ∈ (X•(T )+)I given by ν in all components. Via this
identification, it makes sense to define ν = (N , . . . ,N ) ∈X•(T )+. Then

Gr(N )I =GrI ,id:I→I ,νI
.

Remark 2.19. Let I ∈ Fin≥1,surj. Then the pullback X ×X I Gr(N )I along the principal diagonal X →X I

is isomorphic to GrN ·|I |
X .

Recall 2.20. Recall now from Recall A.1 that the action of GO on Gr restricts to Gr≤µ for eachµ ∈X•(T )+

and that this restriction factors through a quotient

GO↠G
( jµ)
O

for a sufficiently large natural number jµ, where

G
( jµ)
O

:=G(CJtK/t jµ)≃G(C[t ]/t jµ)

is now a group scheme of finite type. In a totally similar way, the action of GO on Gr restricts to Gr(N )

for each N ∈N and that this restriction factors through the quotient

GO↠G( jN )
O

for a sufficiently large jN . In what follows, we will privilege the filtration by Gr(N )’s in that it extends in
a slightly simpler way to the Beilinson-Drinfeld Grassmannian.
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2 CONVOLUTION OVER THE RAN SPACE

For j a natural number, and Z ⊂X a closed subscheme, let Z( j ) denote the j -thickening of Z , i.e. the

scheme (Z ,OX /I
j
Z ).

Definition 2.21. Let j be a natural number, and I ∈ Fin≥1,surj. We define

G( j )
O,I

as the group scheme, relative to X I , classifying

{xI ∈X I , g ∈G((ΓxI
)( j ))}.

Remark 2.22. Let I ∈ Fin≥1,surj, X → X I be the diagonal morphism, and j ∈ N. Then we have
isomorphisms

G( j )
O,I ×X I X ≃G(|I |· j )

O,X

G( j )
O,I ×X I X id ≃
�

G( j )
O,X

�I ×X I X id.

Proof. The first part follows from the fact that, if xI = (x, . . . , x) ∈X I for some x ∈X , the subscheme ΓxI

is defined as the sum of |I | copies of the divisor {x} ⊂X . Hence, its ideal of definition is I|I |x , and thus
Γ ( j )xI

is the closed subscheme supported at x and with structure sheaf

(x,OX /I
|I |· j
x ).

The second part is straightforward from Proposition 2.12.

Remark 2.23. It is easy to see that
GO,I ≃ lim

j
G( j )

O,I .

The functor G( j )
O,I is a smooth group scheme of finite type over X I (by [Ras18, Lemma 2.5.1]). Smoothness

may seem a bit counter-intuitive, since the fiber of GO,I (say I = {1,2}) over a point in the diagonal
X ⊂X 2 is given by a copy of GO, while for instance the fiber over a point in the disjoint locus of X 2 is
given by GO×GO. However, one cannot argue that this contradicts flatness, because we are dealing with
infinite-dimensional objects. And in fact, when one truncates to G( j )

O,I , the following happens. The fiber

of G( j )
O,I at a point (x, x) on the diagonal is

G(C[t ]/(t 2 j ))

by Remark 2.22. On the other hand, the fiber at a point (x1, x2) outside the diagonal is

G( j )
O
×G( j )

O
.

Therefore, the dimensions of these fibers are

dimG(C[t ]/(t 2 j )) = (dimG)2 j

and
dim(G(C[t ]/t j ))2 = (dimG)2 j .
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2.1 THE BEILINSON–DRINFELD SETTING

Remark 2.24. Let I ∈ Fin≥1,surj,N ∈ N. The action of GO,I on GrI over X I described in Remark 2.9

restricts to each Gr(N )I . By the same proof of [Ric14, Corollary 3.7], the restriction factors through a

quotient G( jN )
O,I for a sufficiently large natural number jN . Note also, again by the same proof, that jN is

independent of I .

The following definitions are inspired by [AR23, 2.4.3]:

Definition 2.25. Let I ∈ Fin≥1,surj,N ∈N, j ≥ jN . We define

Hck(N , j )
I =G( j )

O,I\Gr(N )I .

as the fpqc quotient stack in the category Stk/X I .

Since the action of G( j )
O,I respects the stratification of Gr(N )I , each Hck(N , j )

I is a stratified étale stack
over X I , locally of finite type, in the sense of (B.1). Also, its structure map to X I is stratified when we
endow X I with the incidence stratification. Therefore, for j ≥ jN , we obtain a well-defined object

Hck(N , j )
I ∈ StrStklft

C /X I .

Note 2.26. From now on, we will fix a function N→N,N 7→ jN , witnessing a choice of index such that
the action of GO,I on Gr(N )I factors through G( jN )

O,I . As remarked above, we can fix a uniform choice which
works for every I .

Definition 2.27. We define, for j ≥ j1,

Hck( j )I =Hck(1, j )
I

and
HckI = “ lim

j≥ j1
” Hck(1, j )

I ∈ Pro(StrStklft
C ).

Proposition 2.28. For j ′ ≤ j , the transition maps Hck(1, j )
I →Hck(1, j ′)

I belong to the class uni defined in
Definition B.3.

Proof. First of all, the maps are smooth by [SPA, Tag 02K5] (see also [Wed22, 2.3], [Ras18, Lemma 2.5]).
More precisely, they are smooth quotients relative to X I , in particular they are representable.

Note then that that the kernel K j , j ′ of the map of group schemes G( j )
O
→G( j

′)
O

is unipotent. Moreover,

the Beilinson-Drinfeld version of Ki j , i.e. the relative kernel of G( j )
O,I → G( j

′)
O,I , splits as K |J |j , j ′ ×X I Xφ

over each stratum Xφ of X I . Hence, by factorization Proposition 2.12, over each stratum Xφ the map
G( j )

O,I →G( j
′)

O,I is a quotient map with fiber K |J |j , j ′ , which achieves the proof. Note that the pullbacks of G( j )
O,I

and G( j
′)

O,I to strata of X I are themselves strata inside G( j )
O,I and G( j

′)
O,I respectively (i.e. their stratification is

trivial).

Hence, the object HckI belongs to the full subcategory

Prouni(StrStklft
C )⊂ Pro(StrStklft

C )

from Definition B.3.
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2 CONVOLUTION OVER THE RAN SPACE

2.2 The Hecke stack over the Ran space

Definition 2.29. The Ran presheaf of X is the colimit

Ran(X ) = colim
I∈Finop

≥1,surj

X I

in the category Fun(Affop
C , Set), where the diagram is the one that associates to a map I → J the induced

diagonal map X J →X I .

The formation of this colimit loses any kind of descent, see e.g. [GL, Warning 2.4.4].

Remark 2.30. The functor of points of Ran(X ) can be described as

Ran(X )(Spec R) = {S ⊂X (R) nonempty unordered finite subset}.

Notation 2.31. For S ∈Ran(X )(R), we denote by ΓS the divisor
∑

xi∈S Γxi
.

We now want to promote the association I 7→HckI to a functor Finop
≥1,surj→ Pro(StrStklft

C ).

Lemma 2.32. A surjection τ : I → J in Fin≥1,surj induces a closed immersion Gr(1)J ,→ Gr(1)I , and this
determines a functor

Finop
≥1,surj→ StrSchlft

C

I 7→Gr(1)I

whose colimit
GrRan = colim

I∈Finop
≥1,surj

Gr(1)I ∈ PSh(StrSchlft
C )

lives over the algebraic Ran space of X and classifies the datum of

(S ⊂X (R),F ∈ BunG(XR),α : F|XR\ΓS
∼−→ T|XR\ΓS ).

Proof. Let τ̃ be the diagonal X J →X I induced by τ. We define the sought-after closed embedding as

(xJ ,F,α) 7→ (τ̃ ◦ xJ ,F,α). (2.1)

One can easily see that this is stratified. To prove the functor-of-points description, let us define the
following category J:

J= {I ∈ Fin≥1,surj,N ∈NI }

Hom((I ,N ), (J , M )) = {φ : J ↠ I |Ni ≤
∑

j∈J |φ( j )=i

M j ∀i ∈ I }

For (I ,N ) ∈ J, let Gr(N )I be the closed subscheme of the ind-scheme GrI defined by setting

Gr(N )I = {xI ∈X I ,F,α |On
X (−
∑

i∈I

NiΓxi
)⊂ F⊂On

X (
∑

i∈I

NiΓxi
)}
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2.2 THE HECKE STACK OVER THE RAN SPACE

for GLn and then proceeding as in Recall 2.17. There is a functor

Jop→ StrSchlft
C

I 7→Gr(N )I

sending a map in J to the restriction of (2.1) to Gr(N )I (the condition that Ni ≤
∑

j∈J |φ( j )=i M j ensures that

this restrictions takes values in Gr(M )I ). One can see that the functor of points appearing in the statement
is equivalent to the colimit

colim
(I ,N )∈Jop

Gr(N )I .

Now, the functor

F : Fin≥1,surj→ J

I 7→ (I , const1)

is initial. Indeed, for any (I ,N ) ∈ J we can consider the object J = ⊔i∈I Ni and the canonical surjection
J → I induced by the definition of J . This induces a morphism in J between (J , const1) and (I ,N ), hence
the overcategory F /(I ,N ) is nonempty. For any other morphism τ̃ : (J ′, const1)→ (I ,N ) in J with
underlying surjection τ : J ′ → I , we have that for every i ∈ I then Ni ≤

∑

j∈J ′|τ( j )=i 1. Hence there
exist surjections νi : τ−1(i)→ Ni for each i ∈ I , which assemble to a surjection ν : J ′ → ⊔i∈I Ni . By
construction, τ̃ factors through the image of ν under F .

Therefore, we have an induced isomorphism at the level of colimits, which concludes the proof.

Construction 2.33. Observe now that, given a surjection I → J , for any j ∈N there exists j ′ and a map
of relative group schemes

G( j
′)

O,J →G( j )
O,I

over the diagonal X J →X I . The index j ′ need not be the same as j : for instance, take I = {1,2}, J = {1}.
Then we are looking at the map

G(2 j )
O,X ≃G( j )

O,X 2 ×X 2,∆X ,→G( j )
O,X 2 .

We thus obtain a map of pro-relative group schemes

“ lim
j∈N

”G( j )
O,J → “ lim

j∈N
”G( j )

O,I (2.2)

over the diagonal X J → X I . This, together with Lemma 2.32 and the fact that the map Gr(1)J →Gr(1)I
from Lemma 2.32 is equivariant relatively to the map (2.2), induces a map

“ lim
j≥ j1

”Hck( j )J → “ lim
j≥ j1

”Hck( j )I

in Pro(StrStklft
C ). We therefore have a well-defined functor

Finop
≥1,surj→ Pro(StrStklft

C )

I 7→ “ lim
j≥ j1

”Hck( j )I .
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2 CONVOLUTION OVER THE RAN SPACE

We can now consider the colimit

HckRan = colim
I∈Fin≥1,surj

“ lim
j≥ j1

”Hck( j )I

in the category PSh(Prouni(StrStklft
C )), which we denote by

{

StrStklft
C (Definition B.5). We have a natural

map HckRan→Ran(X ) in
{

StrStklft
C .

2.3 The convolution Beilinson-Drinfeld Grassmannian

Our goal now is to transfer the convolution diagram from Remark A.13 to the “Beilinson–Drinfeld”
setting.

Definition 2.34. Given I1, I2 ∈ Fin≥1,surj, [φ : I1↠ J ] a partition, µJ ∈ (X•(T )+)J ,N , j ∈N. We define

G(∞, j )
K,I1,I2

= {xI1
∈X I1 , xI2

∈X I2 ,F ∈ BunG(X ),α : F|X \ΓxJ

∼−→ T|X \ΓxJ
,µ : F|(ΓxI2

)( j )
∼−→ T|(ΓxI2

)( j )
}

G( j )
K,I1,I2,φ,µJ

=G(∞, j )
K,I1,I2
×GrI1

GrI1,φ,µJ

G(N , j )
K,I1,I2

=G(∞, j )
K,I1,I2
×GrI1

Gr(N )I1
,

where the map G( j )
K,I1,I2
→GrI1

is the one that only remembers (xI1
,F,α). We also define

GK,I1,I2,φ,µJ
=GK,I1,I2

×GrI1
GrI1,φ,µJ

G(N )
K,I1,I2

=GK,I1,I2
×GrI1

Gr(N )I1
.

Definition 2.35. Let k ≥ 1, I1, . . . , Ik ∈ Fin≥1,surj,N ≥ 0. We define the scheme

Conv(N )I1,...,Ik
=G(N )

K,I1,I2
×GO,I2 G(N )

K,I2,I3
×GO,I3 · · · ×GO,Ik Gr(N )Ik

as the quotient of
G(N )

K,I1,I2
×X I2 · · · ×X Ik Gr(N )Ik

with respect to the action of
∏

i=2,...,k GO,Ii
described as follows. For i = 2, . . . , k − 1, each GO,Ii

acts on

G(N )
K,Ii−1,Ii

×X Ii G(N )
K,Ii ,Ii+1

, relatively to X Ii , as in Remark 2.9. For i = k, GO,Ik
acts on G(N )

K,Ik−1,Ik
×X Ik Gr(N )Ik

again like in Remark 2.9.
In particular, this is an fpqc quotient, but it is also a schematic quotient.

Remark 2.36. For any j ≥ j1, the expression above can be rewritten as

G(N , j )
K,I1,I2
×G( j )

O,I2 G(N , j )
K,I2,I3
×G( j )

O,I3 · · · ×G( j )
O,Ik Gr(N )Ik

(cf. [Zhu16, Discussion after Lemma 5.2.3]).

Definition 2.37. We define the convolution Grassmannian as

ConvI1,...,Ik
=GK,I1,I2

×GO,I2 GK,I2,I3
×GO,I3 · · · ×GO,Ik GrIk

where the notation with the superscripts has the same meaning as in Definition 2.35.
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2.3 THE CONVOLUTION BEILINSON-DRINFELD GRASSMANNIAN

Remark 2.38. This object is filtered by the Conv(N )I1,...,Ik
’s, hence the convolution Grassmannian is an

ind-scheme.

Remark 2.39. The convolution Grassmannian classifies the datum

{(xI1
, . . . , xIk

), xI j
∈X I j for each j = 1, . . . , k ,F1, . . . ,Fk ,

α : F1|X \xI1
≃ T|X \xI1

,η j : F j |X \xI j
≃ F j−1|X \xI j

, j = 2, . . . , k}.

Notation 2.40. Let us fix the following notation. A general element of ConvI1,...,Ik
will be denoted by

�

T F1 F2 . . . FkX \xI1

α

X \xI2

η2

X \xI2

η3

X \xIk

ηk
�

.

Of course this is just a symbolic notation, in that each of the arrows drawn here is defined over a
(potentially) different open set.

Let now k ≥ 1, I1, . . . , Ik , I = I1 ⊔ · · · ⊔ Ik , J ∈ Fin≥1,surj, and [φ : I ↠ J ] a partition. Define Xφ as in
Construction 2.10.

Proposition 2.41. There is an isomorphism

ConvI1,...,Ik
×X I Xφ ≃
∏

j∈J

Conv∆,m j
×X I Xφ

where:

• m j = #{h | 1≤ h ≤ k ,φ−1( j )∩ Ih ̸=∅}

• Conv∆,m j
:=Conv{∗},... m j times ...,{∗}×X m j X (the map from X to X m j being the diagonal)

• the map
∏

j∈J Conv∆,m j
→X I1⊔···⊔Ik is induced by the diagonal map X J →X I1⊔···⊔Ik associated to φ.

Proof. (Sketch). This proof has been suggested to us by Robert Cass. We treat the case k = 3, I1 = I2 =
I3 = 1. We have three essentially distinct cases:

• J = {1,2,3}, φ= id. The isomorphism (adopting Notation 2.40) is given by

ConvI1,I2,I3
×X 3 Xφ ≃ (GrX ×GrX ×GrX )×X 3 Xφ

( T F1 F2 F3X \x1

α

X \x2

η2

X \x3

η3 ) 7→

( T F1X \x1

α , T F2X \x2

α|�Xx2
◦η2|�Xx2 , T F3)X \x3

α|�Xx3
◦η2|�Xx3

◦η3|�Xx3

whose inverse is given by gluing sheaves (which can be done since the points are distinct).

21



2 CONVOLUTION OVER THE RAN SPACE

• J = {1,2},φ(1) =φ(3) = 1,φ(2) = 2 (we treat this case and not the case φ(1) =φ(2) = 1,φ(3) = 3
since we want to show that our argument works even when the two equal coordinates are not
adjacent to one another). The isomorphism is given by

ConvI1,I2,I3
×X 3 Xφ ≃ (Conv∆,2×GrX )×X 3 Xφ

( T F1 F2 F3X \x1

α

X \x2

η2

X \x1

η3 ) 7→

( T F1 F3X \x1

α

X \x1

η2|�X |x1
◦η3|�Xx1 , T F2X \x2

α|�Xx2
◦η2|�Xx2 )

with inverse

( T F1 F3X \x1

α

X \x1

η
, T F2X \x2

β
) 7→

( T F1 F2 F3X \x1

α

X \x2

α|−1
�Xx2
◦β|�Xx2

X \x1

η|�Xx1
◦α|−1
�Xx1
◦β|�Xx1

)

• J = {1}. The isomorphism is the identity.

Definition 2.42. Let x ∈X be a closed point. We define

Convx,k =Conv∆,k ×X {x}.

Remark 2.43. The object Convx,k is isomorphic to

Convk =

k−1
︷ ︸︸ ︷

GK×
GO · · · ×GO GK×

GOGr

(notation as in Construction A.9).

In a similar fashion as Proposition 2.6, one can prove:

Proposition 2.44. Let X =A1
C, k ≥ 1. With the notations of Proposition 2.41, the choice of a point x ∈X

induces a splitting
Conv∆,k ≃Convx,k ×A

1
C.

Corollary 2.45. In the case when X =A1
C, Proposition 2.41 specializes to

GrI |Xφ ≃
�
∏

J
Gr
�

×Xφ

ConvI1,...,Ik
|Xφ ≃ (
∏

j∈J

Convm j
)×Xφ

for any chosen point x ∈X .

Proof. It suffices to apply Proposition 2.6 and Proposition 2.44 respectively.
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2.3 THE CONVOLUTION BEILINSON-DRINFELD GRASSMANNIAN

Construction 2.46. One can define a stratification of Conv∆,k (the case k = 1 being GrX ), as follows. The
stratifying poset is (X•(T )+)k . First of all, GK,∆ :=GK,{∗},{∗}×Gr{∗},{∗}

Gr{∗} (the map Gr{∗}→Gr{∗},{∗}
being induced by the diagonal of X 2) inherits a stratification over X•(T )+ from Gr{∗} = GrX . This
induces a stratification on the product

GK,∆×X · · · ×GK,∆×X GrX

and one can check that this stratification passes to the multiple quotient

GK,∆×
GO,X GK,∆×

GO,X · · · ×GO,X GrX .

In other words, let µ1, . . . ,µk ∈X•(T )+. The set

Conv∆,k ,µ1,...,µk
(C)

is the subset of Conv∆,k(C) where one imposes the condition that (with the notations of Remark 2.39)
Invx (α) =µ1, Invx (ηi ) =µi for every i ≥ 2.

Let x ∈ X be a closed point. Then each stratum of Convx,k can be identified with GK,µ1
×GO

· · · ×GO Grµk
, where GK,µi

is the preimage of Grµi
along the quotient map. This definition is the direct

generalization from k = 2 to arbitrary k of [MV07, after Lemma 4.3].

These strata are not orbits for a group action, but they are smooth.

Proposition 2.47. Each stratum

GK,µ1
×GO · · · ×GO GK,µk−1

×GO Grµk

is a smooth locally closed subscheme of Convk .

Proof. The following proof has been suggested to us by Mark Macerato. First of all, we note that for j
sufficiently large, then

GK,µ1
×GO · · · ×GO GK,µk−1

×GO Grµk
≃G( j )

K,µ1
×G( j )

O · · · ×G( j )
O G( j )

K,µk−1
×G( j )

O Grµk

(with the same argument as Remark 2.36). Now,

G( j )
K,µ1
×G( j )

K,µ2
× · · ·×G( j )

K,µk−1
×Grµk

→Grµ1
×Grµ2

× · · ·×Grµk−1
×Grµk

is a torsor with fiber (G( j )
O
)×k−1, which is a smooth group scheme. Since the base is smooth ([Zhu16,

Proposition 2.1.5 (1)]), the total space is smooth as well. Now, the map G( j )
K,µ1
×G( j )

K,µ2
× · · ·×Grµk

→

G( j )
K,µ1
×G( j )

O G( j )
K,µ2
×G( j )

O · · · ×G( j )
O Grµk

is the fpqc schematic quotient of a smooth scheme with respect

to the group (G( j )
O
)×k−1. In particular, it is an fpqc covering, and therefore by [SPA, Tag 02VL] we

conclude.

Construction 2.48. We can now define a stratification for ConvI1,...,Ik
. Recall the notation in Proposi-

tion 2.41. The stratifying poset will be

CwI1,...,Ik
= {[φ : I1 ⊔ · · · ⊔ Ik ↠ J ],µJ = (µ

h j
1

j , . . . ,µ
h j

m j

j ) ∈
∏

j∈J

(X•(T )
+)m j }
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2 CONVOLUTION OVER THE RAN SPACE

where “Cw” stays for “coweight” and, for each j ∈ J , the h j
i ’s are those indexes for whichφ−1( j )∩ Ihi

̸=∅.
The stratification for ConvI1,...,Ik

is then defined as

ConvI1,...,Ik ,φ,µJ
=
∏

j∈J

Conv
∆,m j ,µ

h j
1

j ,...,µ
h j

m j
j

×X I Xφ ,→ConvI1,...,Ik

where the embedding is induced by Proposition 2.41.

Remark 2.49. Let I1, . . . , Ik ∈ Fin≥1,surj, I = I1 ⊔ · · · ⊔ Ik ,N ∈N, j ≥ jN . There is an action of GO,I over
ConvI1,...,Ik

, relative to X I , which modifies the first trivialization at all points xI1
, . . . , xIk

.

This factors as an action of G( j )
O,I on Conv(N )I1,...,Ik

relative over X I .

Remark 2.50. Let us inspect the behaviour on different strata of the action of G( j )
O,I on Conv(N )I1,...,Ik

defined
above. For simplicity, we look at k = 2, I1 = I2 = {∗}, and we distinguish the two cases of equal points
x1 = x2 = x and of two distinct points x, y. In the first case, the action is just the action of G(2 j )

O
on

the first component of G(2N )
K
×GO Gr(2N ). In the second case, with the notations of Remark 2.39, the

modification of α at y propagates to η= η2 through factorization: more precisely, up to the isomorphism
Convx,y ≃Grx ×Gry induced by Proposition 2.41 the action splits as the canonical componentwise left
action

G( j )
O,x ×G( j )

O,y ⟳Gr(N )x ×Gr(N )y .

This follows directly from inspecting the proof of Proposition 2.41.
In particular, the action at y is not trivial: this may seem in contradiction with the principle applied

for instance in the proof of Lemma 2.57, where it is said that modifying a trivialization away from its
“critical points” (x in this case) does not change the datum up to some isomorphism Φ. The point here
is that this isomorphism Φ need not be compatible with the rest of the datum, specifically with the
isomorphism η2 in the notations of Remark 2.39, which is defined on X \ {y}.

Definition 2.51. Let k ≥ 1, I1, . . . , Ik ∈ Fin≥1,surj, I = I1 ⊔ · · · ⊔ Ik , j ≥ j1. We define

Hck( j )I1,...,Ik
=G( j )

O,I\Conv(1)I1,...,Ik

Remark 2.52. Definition 2.51 is functorial in (I1, . . . , Ik) ∈ Finop
≥1,surj, in the sense that given surjections

I1→ J1, . . . Ik → Jk we have a map of pro-objects “ lim j≥ j1
”Hck( j )J1,...,Jk

→ “ lim j≥ j1
”Hck( j )I1,...,Ik

, exactly as in
Construction 2.33.

This yields a functor

(Finop
≥1,surj)

×k → Prouni(StrStklft
C )

(I1, . . . , Ik ) 7→ “ lim
j≥ j1

”Hck( j )I1,...,Ik
.

Definition 2.53. For k ≥ 1, we define

HckRan,k = colim
I1,...,Ik∈Finop

≥1,surj

“ lim
j≥ j1

”Hck( j )I1,...,Ik

as the colimit in the category PSh(Prouni(StrStklft
C )) =

{

StrStklft
C .

We also define HckRan,0 = SpecC.
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2.3 THE CONVOLUTION BEILINSON-DRINFELD GRASSMANNIAN

Let k ∈N, x ∈X . We define Hck∆,k and Hckx,k in a similar way to Definition 2.42.

Notation 2.54. Let k ≥ 1. We denote by (Ran(X )×k)disj the subfunctor of (Ran(X )×k) spanned by
k-uples of systems of points S1, . . . , Sk ⊂X such that ΓSi

∩ ΓS j
=∅ for all 1≤ i ̸= j ≤ k.

The results regarding the convolution Grassmannian imply the following:

Proposition 2.55. In the notation of Proposition 2.41, we have stratified equivalences

HckI1,...,Ik
×X I Xφ ≃
∏

j∈J

Hck∆,m j
×X I Xφ.

If X =A1
C we also have

Hck∆,k ≃Hckx,k ×A
1
C

HckI1,...,Ik
×X I Xφ ≃ (
∏

j∈J

Hckx,m j
)× (A1

C)
φ.

Finally,

HckRan×Ran(X ) (Ran(X )×k )disj ≃HckRan,k ×Ran(X )×k (Ran(X )×k )disj ≃Hck×k
Ran×Ran(X )×k (Ran(X )×k )disj

where in the first fiber product the map (Ran(X )×k )disj→Ran(X ) is the union map.

Proof. The first three points are straightforward from Proposition 2.41. The third point follows by
passing to the colimit in the other ones and in Proposition 2.11, Proposition 2.12, but not immediately,
since Finop

≥1,surj is not filtered. The following argument, suggested by Emanuele Pavia, circumvents this
problem (we explain it with k = 2 for simplicity). Let I1, I2 ∈ Fin≥1,surj, I = I1 ⊔ I2, and denote by
(X I1 ×X I2)disj the open subscheme {(xI1

, xI2
) ∈X I1 ×X I2 | Γxa

∩ Γxb
=∅ ∀a ∈ I1, b ∈ I2}. Note that

colim
I1,I2∈Finop

≥1,surj

(X I1 ×X I2)disj = (Ran(X )×Ran(X ))disj.

Now, in the diagram

HckI1,I2
×X I1⊔I2 (X I1 ×X I2)disj HckI1

×HckI2

(X I1 ×X I2)disj X I1 ×X I2

(Ran(X )×Ran(X ))disj Ran(X )×Ran(X )

the top square is Cartesian by the first part of the proposition (one has to assemble the statements
for various partitions of φ of I ), whereas the bottom square is Cartesian by straightforward verification.
Therefore, the outer square is Cartesian for every I1, I2 ∈ Fin≥1,surj, and by universality of colimits we get

(HckRan×HckRan)×Ran(X )×Ran(X ) (Ran(X )×Ran(X ))disj ≃
HckRan,2×Ran(X )×Ran(X ) (Ran(X )×Ran(X ))disj.

The other equivalence is proven in the same way.
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2 CONVOLUTION OVER THE RAN SPACE

2.4 The BD-convolution diagram as a 2-Segal object

Remark 2.56. Let k ,N ∈N, I1, . . . , Ik ∈ Fin≥1,surj, I = I1 ⊔ · · · ⊔ Ik , j ≥ jN . We have a diagram

G(N , j )
K,I1,I2
×X I2 · · · ×X Ik−1 G(N , j )

K,Ik−1,Ik
×X Ik Gr(N )Ik

G(N , jN )
K,I1,I2
×G( j )

O,I2 · · · ×
G( jN )
O,Ik−1 G(N , jN )

K,Ik−1,Ik
×G( jN )

O,Ik Gr(N )Ik

∏k
I=1 Gr(N )Ii

Gr(N )I

q (N , j )
I1,...,Ik

p(N , j )
I1,...,Ik

m(N )I1,...,I2

(2.3)
where:

• the left vertical map is the projection to the quotient of the action of
∏k

i=2 GO,Ii
(relative to

X I2⊔···⊔Ik ) induced by Remark 2.4;

• the horizontal map is the quotient map by the actions defined in Remark 2.9 (see also the definition
of Definition 2.35);

• the right vertical map arises as follows. Let I1, I2, I3 ∈ Fin≥1,surj, I = I1 ⊔ I2 ⊔ I3, j ≥ j1. Then there
is a map

GK,I1,I2
×X I2 GK,I2,I3

→GK,I1⊔I2,I3
(2.4)

which sends the datum

(xI1
, xI2

, xI3
,F,G ∈ BunG(X ),α : F|X \ΓxI1

∼−→ T|X \ΓxI1

,β : F|X \ΓxI2

∼−→ T|X \ΓxI2

,

µ : F|
eXΓxI2

∼−→ T|
eXΓxI2

, ν : F|
eXΓxI3

∼−→ T|
eXΓxI3

)

to the datum

(xI1
+ xI2

, xI3
,H,γ : H|X \ΓxI1

+ΓxI2

∼−→ T|X \ΓxI1
+ΓxI2

, ν)

where H is the G-bundle obtained by gluing F and G along α|�XΓxI2

◦µ−1|�XΓxI2

(this makes use of the

Beauville-Laszlo theorem, cf. Proposition A.6), and γ is the trivialization inherited from α via the
gluing procedure.

It is easy to see that this map passes to the quotient

GK,I1,I2
×GO,I2 GK,I2,I3

.

Analogously, there is a map GK,I1,I2
×GrI2

which also passes to the quotient GK,I1,I2
×GrI2

. These
maps induce a map

mI1,...,Ik
: GK,I1,I2

×GO,I2 · · · ×GO,Ik GrIk
→GrI1⊔···⊔Ik

.

It is easy to check that this restricts to a map m(N )I1,...,Ik
like in (2.3).
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Note that q (N )I1,...,Ik
and m(N )I1,...Ik

do not depend on j . Note that, for x ∈X , the pullback of this whole

diagram along the diagonal SpecC
x
,−→X

∆−→X I is isomorphic to a diagram

G(|I1|·N , j )
K

× · · ·×G(|Ik−1|·N , j )
K

×Gr(N ) G(|I1|·N ,|I2| j )
K

×G(|I2 | j )
O · · · ×G

(|Ik−1 | j )
O G(|Ik−1|N ,|Ik | j )

K
×G

(|Ik | j )
O Gr(|Ik |N )

∏k
i=1 Gr(|Ii |N ) Gr(|I |N )

q (N )I1,...,Ik

p(N )I1,...,Ik
m(N )I1,...,I2

(2.5)
naturally generalizing (A.2).
We also have a diagram of groups, relative to X I ,

G( j )
O,I ×∏k

i=2 X Ii

∏k
i=2 G( j )

O,Ii
G( j )

O,I

∏k
i=1 G( j )

O,Ii
G( j )

O,I

(2.6)

where the left map is induced by the map G( j )
O,I →G( j )

O,I1
×X I1 X I associated to the embedding ΓxI1

,→ ΓxI
,

and the horizontal map is the projection.

Lemma 2.57. The vertices of (2.6) act respectively on the vertices of (2.3), and the maps in (2.3) are equivariant
with respect to the maps in (2.6).

Proof. The only part that requires some work is equivariance of the leftmost vertical arrow. The proof is
an application of the Bauville-Laszlo theorem: in a few words, modifying a trivialization α defined on
X \ ΓxI1

around some points not included in xI1
produces an equivalent datum in GrI . We provide all the

details of the proof here below.
First of all, by definition of the various actions, it suffices to prove the claim for N =∞ and without

the index j . Equivariance in the last k−1 components is straightforward, and witnesses the phenomenon
that allows to “shift” the right multiplication action of GO on GK to the “antidiagonal” action of GO on
GK×GK.

We are left to check equivariance of the quotient map GK,I1,I2
→ GrI1

×X I1 X I with respect to the

restriction map GO,I →GO,I1
×X I1 X I . Let thus xI ∈ X (R)I , g ∈G(eΓxI

),F ∈ BunG(XR),α : F|XR\ΓxI

∼−→
T|XR\ΓxI

. We want to compare the modification of the datum (F,α) by g and the modification of the same

datum by g |
eΓxI

. Equivalently, let us assume that g restricts to the identity element on eΓxI1
, so that the

second modification is trivial.
Let thus G be the first modification, arising as the gluing of the data

F|
eΓxI

, TX \ΓxI

along the isomorphism g |
eΓxI
◦α|
eΓxI

. Let β be the inherited trivialization on XR \ ΓxI1
. Let also |can be the

canonical isomorphism between G|XR\ΓxI
and TXR\ΓxI

, and xcan be the canonical isomorphism between
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2 CONVOLUTION OVER THE RAN SPACE

G|
eΓxI

and F|
eΓxI

. Note that by construction

|can|�ΓxI
≃ g |�ΓxI

α|�ΓxI
◦ xcan|�ΓxI

. (2.7)

We want to exhibit an isomorphism Φ between F and G, commuting with α and β on XR \ ΓxI1
. We

define it bia the Beauville-Laszlo theorem, by assigning isomorphisms φ,ψ,ξ between the restrictions of
F and G to the schemes

eΓxI1
, eΓxI

\ ΓxI1
, XR \ ΓxI

respectively, and by checking that they are pairwise compatible.
We define

φ : F|
eΓxI1

xcan|−1
eΓxI1−−−→ G|
eΓxI1

ψ : F|
eΓxI
\ΓxI1

xcan|−1
eΓxI
\ΓxI1

◦α|−1
eΓxI
\ΓxI1

◦g−1|
eΓxI
\ΓxI1
◦α|
eΓxI
\ΓxI1

−−−−−−−−−−−−−−−−−−−−−−−→ G|
eΓxI
\ΓxI1

ξ : F|XR\ΓxI

α|XR\ΓxI−−−−→ T|XR\ΓxI

|can|−1
XR\ΓxI−−−−−→ G|XR\ΓxI

Note that, in the definition of ψ, we have used that α is defined outside of ΓxI1
and not just outside of

ΓxI
.
By using that g |

eΓxI1

is the identity by assumption, and the identity (2.7), one checks that these three

isomorphisms are pairwise compatible.
The verification that the resulting Φ commutes with α and β can be done along the same lines.

Lemma 2.58. In the notations of (2.3), the map q (N , j )
I1,...,Ik

induces an equivalence after passing to the quotient
by the actions of (2.6).

Proof. It suffices to check this after pulling back to the strata of X I1 × · · · × X Ik , and therefore by
factorization it is sufficient to prove it over the diagonal, hence over a single point x ∈ X . But in that
setting, q (N , j )

I1,...,Ik
restricts to the map

G(|I1|N ,|I2| j )
K

×· · ·×G(|Ik−1|N ,|Ik | j )
K

×Gr(|Ik |N )→G(|I1|N ,|I2| j )
K

×G(|I2 | j )
O · · ·×G

(|Ik−1 | j )
O G(|Ik−1|N ,|Ik | j )

K
×G

(|Ik | j )
O Gr(|Ik |N )

(2.8)
which exhibits the target as the quotient of the source with respect to the action of

∏k
i=2 G(|Ii | j )

O
inducing

the twisted product on the right-hand-side. The map (2.8) is therefore equivariant with respect to the
morphism of groups G(|I | j )

O
×
∏k

i=2 G(|Ii | j )
O
→G(|I | j )

O
given by projection on the first component, which

concludes the proof.

Remark 2.59. Let N ≥ 0, j ≥ jN , I1, . . . , Ik ∈ Fin≥1,surj. As a consequence of the observations made in
Remark 2.56, by passing to the quotient in (2.3) with respect to the actions listed in Remark 2.56, we
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2.4 THE BD-CONVOLUTION DIAGRAM AS A 2-SEGAL OBJECT

obtain a diagram of quotient stacks

Hck(N , j )
I1,...,Ik

Hck(N , j )
I1
× · · ·×Hck(N , j )

Ik
Hck(N , j )

I1⊔···⊔I2
.

p(N , j )
I1,...,Ik

m(N )I1,...,Ik

Definition 2.60. We define (Ran(X )×Ran(X ))disj as the open subfunctor of Ran(X )×Ran(X ) parametriz-
ing

{(S,T ) ∈Ran(X )×Ran(X ) | ΓS ∩ ΓT =∅}.

More generally, we define Ran(X )2k
disj = {S1, . . . , Sk ,T1, . . . ,Tk ∈ Ran(X ) | ΓSi

∩ ΓTi
=∅ ∀i = 1, . . . , k} ⊂

Ran(X )2k .

Remark 2.61. Recall that we have a natural map in
{

StrStklft
C from HckRan,k to Ran(X )k (the one that

only “remember” the systems of points).

We will now establish a semisimplicial structure on the collection of the HckRan,k ’s.

Construction 2.62. Let k ≥ 1,0≤ i ≤ k, and let di be the injective ordered map [k − 1]→ [k]missing
the index i . For each I1, . . . , Ik ∈ Fin≥1,surj, j ≥ j1, we have maps

i = 0) δ ( j )0,I1,...,Ik
: Hck( j )I1,...,Ik

→Hck( j )I2,...,Ik
induced by the projection

G( j )
K,I1,I2
×X I2 G( j )

K,I2,I3
×X I3 · · · ×X Ik Gr(1)Ik

→G( j )
K,I2,I3
×X I3 · · · ×X Ik Gr(1)Ik

that forgets the first component.

i = k) δ ( j )
k ,I1,...,Ik

: Hck( j )I1,...,Ik
→Hck( j )I1,...,Ik−1

induced by the composition of the projection

G( j )
K,I1,I2
×X I2 G( j )

K,I2,I3
×X I3 · · · ×X Ik Gr(1)Ik

→G( j )
K,I1,I2
×X I3 · · · ×X Ik−1 G( j )

K,Ik−1,Ik

with the map induced by the quotient G( j )
K,Ik−1,Ik

→Gr(1)Ik
(recall that, as usual, G( j )

K,Ik−1,Ik
stays for

G(1, j )
K,Ik−1,Ik

).

i ̸= 0, k) δ ( j )i ,I1,...,Ik
: Hck( j )I1,...,Ik

→Hck( j )I1,...,Ii⊔Ii+1,...,Ik
induced by the maps

G( j )
K,Ii ,Ii+1

×GK,Ii+1,Ii+2
→G( j )

K,Ii⊔Ii+1

(for i < k − 1) or
G( j )

K,Ik−1,Ik
×GrK,Ik

→Gr(1)
K,Ik−1⊔Ik

(for i = k − 1) defined in (2.4) and following.

We can thus define a map

δi = colim
I1,...,Ik∈Finop

≥1,surj

“ lim
j≥ j1

”δ ( j )i ,I1,...,Ik
: HckRan,k →HckRan,k−1.
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2 CONVOLUTION OVER THE RAN SPACE

Remark 2.63. The maps defined in Construction 2.62 are stratified. Ultimately, this can be reduced to
the following statement: for any point x ∈X , the map

δi ,x,m j
: Hckx,m j

→Hckx,m j−1

which glues the data in the places i , i + 1 is stratified. This is implied by [MV07, Lemma 4.4].

Proposition 2.64. Construction 2.62 defines a semisimplicial object, i.e. the given maps satisfy the simplicial
identities.

Proof. We need to prove that, for every k ≥ 1,0≤ i < h ≤ k, there are isomorphisms

δiδh ≃ δh−1δi .

Equivalently, we prove that the statement is true for the δ ( j )i ,I1,...,Ik
’s, and moreover, it suffices to prove

it after pulling back to strata of X I , where I = I1 ⊔ · · · ⊔ Ik . This last reduction step is not completely
obvious, since for instance, the equality of two morphism of schemes which are not reduced cannot, in
general, be checked on strata. However, by [Tao20, Theorem 1.2.1], GrRan can be written ad

colim
I∈Finop

≥1,surj

Grred
I

and therefore passing to reductions does not change the object at the Ran level. The same argument
holds for the HckRan,k , because we have a map HckRan,k →Gr×k

Ran which is a relative GO,Ran torsor, in
particular a smooth map. In other words,

• For I ∈ Fin≥1,surj, GO,I is smooth by Remark 2.23, hence reduced.

• For I1, I2 ∈ Fin≥1,surj, GK,I1,I2
is a GO,I2

-torsor over GrI1
× X I2 , relative to X I2 . If we pull this

torsor back along Grred
I1
→ GrI1

, we obtain another GO,I2
-torsor, whose source is now reduced

by étale-localness [SPA, Tag 06QM], smoothness of the fiber and reducedness of the base. By the
universal property of the reduction, we get that

GK,I1,I2
×GrI1

Grred
I1
≃Gred

K,I1,I2
.

• By a similar argument,

ConvI1,...,Ik
≃ConvI1,...,Ik

×GrI1
×···×GrIk

Grred
I1
× · · ·×Grred

Ik
.

More precisely, we use the previous point to deduce the statement for

GK,I1,I2
×X I2 · · · ×X Ik GrIk

,

and then again étale descent for reducedness to obtain the statement for the convolution Grassman-
nian.

• We have

Hck( j )I1,...,Ik
)red ≃G( j )

O,I1⊔···⊔Ik
\Convred

I1,...,Ik
≃G( j )

O,I1,...,Ik
\(ConvI1,...,Ik

×GrI1
×···×GrIk

Grred
I1
× · · ·×Grred

Ik

≃Hck( j )I1,...,Ik
×GrI1

×···×GrIk
Grred

I1
× · · ·×Grred

Ik

where we used étale descent for reducedness for the first equivalence, the previous point for the
second equivalence, and universality of quotients for the last equivalence.
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2.4 THE BD-CONVOLUTION DIAGRAM AS A 2-SEGAL OBJECT

• Finally, we apply the previous point, the fact that the functor C→ Pro(C) preserves finite limits,
that limits commute with limits, and again universality of colimits to obtain

HckRan,k = colim
I1,...,Ik∈Finop

≥1,surj

“ lim
j≥ j1

”(Hck( j )I1,...,Ik
)red.

We can thus prove that the statement is true for the reduction of the δ ( j )i ,I1,...,Ik
’s, and this statement can be

checked on strata. Moreover, by [Tao20, Lemma 4.2.2], the factorization property holds for Grred
Ran as

well (and with a similar proof for its variations), which allows us to use factorization also in the reduced
setting.

By factorization, we reduce to two cases:

• proving the statement over the stratum

SI1,...,Ik ,disj = {xI | ∀i ′, h ′ ≤ k , xa ̸= xb∀a ∈ Ii ′ , b ∈ Ih ′}.

This case follows again by factorization.

• proving the statement after pullback to the diagonal X →X I . This case follows from [NP24a].

Definition 2.65. We denote the semisimplicial object established in Proposition 2.64 by

HckRan,• :∆op
inj→

{

StrStklft
C .

The crucial property of this structure, in order to encode the associativity of the convolution product,
is the following:

Proposition 2.66. The semisimplicial object HckRan,• enjoys the 2-Segal property, that is the equivalent
conditions of [DK19, Proposition 2.3.2].

Proof. We will prove the case k = 3, for simplicity. First of all, we prove that we can reduce to proving
that we can reduce to proving that the map

Hck( j )I1,I2,I3
→Hck( j )I2,I3

×
Hck( j )I2⊔I3

Hck( j )I1,I2⊔I3
(2.9)

is an equivalence for every I1, I2, I3, j ≥ j1, where the maps in the pullback are respectively (δ ( j )1,I2,I3
◦

δ ( j )0,I1,I2,I3
) and δ ( j )2,I1,I2,I3

. Indeed, since limits commute with limits, we only need to prove that we can

check the statement at the level of pro-objects (i.e. before passing to colimits in I1, I2, I2 ∈ Finop
≥1,surj).

Consider the square

HckRan,I2,I3
HckRan,I2⊔I3

HckRan,2

HckI2,I3
HckI2⊔I3

HckRan

(2.10)
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2 CONVOLUTION OVER THE RAN SPACE

where HckRan,I2,I3
= colimI1∈Finop

≥1,surj
HckI1,I2,I3

and similarly for HckRan,I2⊔I3
. If we assume the statement

about (2.9), then the left-hand square is Cartesian by universality of colimits. The right-hand square is
also Cartesian, because front, bottom and back faces of the commutative cube

HckRan,I2⊔I3
HckRan,2

HckI2⊔I3
HckRan

Ran(X )×X I2⊔I3 Ran(X )×Ran(X )

X I2⊔I3 Ran(X )
pr2 pr2

are Cartesian. Hence the outer square in (2.10) is Cartesian, and by universality of colimits in a
category of presheaves we conclude.

Let us thus prove the statement for the δ ( j )I1,...,Ik
’s. By factorization (and the workaround including

passing to reductions explained in the proof of Proposition 2.64), it suffices to:

• prove the statement after restricting to the stratum

SI1,I2,I3,disj = {xI1
, xI2

, xI3
| xa ̸= xb∀a ∈ I2, b ∈ I2 or a ∈ I2, b ∈ I3or a ∈ I1, b ∈ I3}.

There, by Proposition 2.11, Proposition 2.12 and Proposition 2.55, the statement is equivalent to
proving that the square

(Hck( j )I1
×Hck( j )I2

×Hck( j )I3
)|SI1,I2,I3,disj

(Hck( j )I1
×Hck( j )I2

×Hck( j )I3
)|SI1,I2,I3,disj

(Hck( j )I2
×Hck( j )I3

)|SI2,I3,disj
(Hck( j )I2

×Hck( j )I3
)|SI2,I3,disj

is Cartesian, which is of course true.

• prove the statement after restriction to the diagonal. We can as well assume |I1| = |I2| = |I3|,
up to considering suitable surjections I ′i → Ii , i = 1,2,3. Then we need to prove that, for any
N ∈N, j ≥ jN , the diagram

G( j )
O
\G(N , j )

K
×G( j )

O G(N , j )
K
×G( j )

O Gr(N ) G( j )
O
\G(N , j )

K
×G( j )

O Gr(2N )

G( j )
O
\G(N , j )

K
×G( j )

O Gr(N ) GO, j\Gr(2N )

m23

p23 p2

m

is Cartesian (note that here we do need N to be arbitrary, since pulling back to diagonals takes into
account the cardinalities of the Ii ’s). This latter claim is true by [NP24a, Proposition 2.3] with
H =GK,K =GO.
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Theorem 2.67. Let G be a complex reductive group and X a complex smooth curve. The object

HckRan ∈
{

StrStklft
C

from Construction 2.33 carries a nonunital associative algebra structure in Corr( {

StrStklft
C )
×, extending the

convolution diagram (2.59).
The fiber of this algebra structure at any singleton {x} ∈Ran(X ) encodes the convolution diagram for the

Hecke stack (Remark A.13) and its associativity.

Proof. It suffices to apply [DK19, Proposition 8.1.5] to the 2-Segal semisimplicial object HckRan,• (Con-
struction 2.62, Proposition 2.66).

3 Topological factorization of the Hecke stack

3.1 Consequences of analytification

Definition 3.1. Let M be a topological manifold of dimension m. The Ran space of M is the set of
nonempty finite subsets of M , endowed with its so-called metric topology, i.e. the topology induced by
the following base:

{
k
∏

i=1

Ran(Di ) | {Di} finite family of pairwise disjoint disks in M}.

Note that the given family is actually a family of subsets of Ran(M ), in the sense that the union map
∏k

i=1 Ran(Di )→Ran(M ) is injective whenever the disks are pairwise disjoint. We denote by ⋆i Ran(Di )
the image of this map.

Remark 3.2. The set Ran(M ) can be equivalently presented as the colimI∈Fin≥1,surj
M I in Set. This carries

a natural colimit topology, which is finer than the one presented above. For a thorough comparison
between those, and many further considerations, see [CL21] and [DL23]. When unspecified, by Ran(M )
we will always mean the Ran space with its metric topology.

One of the main features of the Ran space is to encode the notion of factorization algebra in a
particularly efficient way. Actually, a theorem by Jacob Lurie says even more, showing that a family over
the Ran space with some conditions induces a “sheaf of Em -algebras” over M (m being the dimension of
M ).

Theorem 3.3 (part of [Lur17, Theorem 5.5.4.10]). Let M be a topological manifold of dimension m, and
C⊗ a symmetric monoidal∞-category where the tensor product preserves colimits separately in both variables.
Any constructible factorizable cosheaf over Ran(M ) with values in C induces a nonunital Em -algebra
structure on its stalk at any singleton {x} ∈Ran(M ).

Recall 3.4. We refer to [Lur17, Section 5.5.4] for the definitions. Here we just recall that:

• two open subsets U ,V of Ran(M ) are declared to be independent if for every S ∈ U ,T ∈ V ,
then S ∩ T = ∅. For example, for any two open subsets D , D ′ of M , Ran(D) and Ran(D ′) are
independent if and only if D∩D ′ =∅. For U ,V independent open subsets of Ran(M ), one denotes
U ⋆V = {S ⊔T | S ∈U ,T ∈V }. Again, this is homeomorphic to U ×V .
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3 TOPOLOGICAL FACTORIZATION OF THE HECKE STACK

• there is an operadic structure Fact(M )⊗ over the category of open subsets of Ran(M ), encoding the
“partial operation” U ⋆V for independent U ,V .

• a factorizable cosheaf over Ran(M ) is a map of operads

A⊗ : Fact(M )⊗→ C⊗

satisfying the following conditions:

– the underlying functor A : Open(Ran(M ))→ C is a cosheaf;

– for any two independent open subsets U ,V of Ran(M ), the map A(U )⊗C A(V )→A(U ⋆V )
induced by the fact that A is a map of operads is an equivalence in C.

• such a functor is constructible if, as a cosheaf over Ran(M ) with values in C, it is hypercomplete and
satisfies the following (cf. [Lur17, Proposition 5.5.1.14]). Let {Di}i∈I , {D ′i}i∈I be finite sequences
of disks in M such that Di ∩D j =D ′i ∩D ′j =∅ for i ̸= j and Di ⊂D ′i . Then A sends the induced
map

⋆i Ran(Di ) ,→ ⋆i Ran(D ′i ) (3.1)

into an equivalence in C.

Recall the definition of the functor

(−)an :
{

StrStklft
C → {StrTStk,

from Corollary B.46. By construction, this functor preserves finite limits. By composing the semisimpli-
cial object HckRan,• from Definition 2.65 with (−)an we obtain a semisimplicial object Hckan

Ran,•, which
is again 2-Segal because (−)an preserves finite limits. This object comes with a natural map towards
Ran(X )an with the colimit topology (by functoriality) and therefore towards Ran(X an) with the metric
topology described in Definition 3.1. For instance, if we consider Hckan

Ran,1, this is given by

colim
I∈Finop

≥1,surj

“ lim” j≥ j1
(G( j )

O,I )
an\(Gr(1)G,I )

an.

Note that the single terms appearing in this formula are quotients in the category of stratified topological
stacks (Notation B.16).

From now on, when proving a property for Hckan
Ran,k we will always argue as “we prove the property

for each term and the property is stable under the relevant colimits and formal limits”.

Definition 3.5. For any U ⊂Ran(X an) open subset, and k ≥ 1, let

ConvU ,k =Convan
Ran,k ×Ran(X an)k U k ∈ {StrTStk

HckU ,k =Hckan
Ran,k ×Ran(X an)k U k ∈ {StrTStk.

We define functors

Open(Ran(M ))×∆op
inj→

{StrTStk

(U , [k]) 7→ConvU ,k
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3.1 CONSEQUENCES OF ANALYTIFICATION

and

Open(Ran(M ))×∆op
inj→

{StrTStk

(U , [k]) 7→HckU ,k

on objects, and in the natural way on morphisms.

Indeed, an inclusion U ⊂V naturally induces embeddings

ConvU ,k ,→ConvV ,k

HckU ,k ,→HckV ,k

which are clearly natural in k.

Remark 3.6. Note that by universality of colimits

ConvU ,k ≃ colim
I1,...,Ik

Convan
I1,...,Ik
×Ran(X an)k U k .

resp.
HckU ,k ≃ colim

I1,...,Ik

Hckan
I1,...,Ik
×Ran(X an)k U k .

We denote the terms appearing in the colimit by ConvU ,II ,...,Ik
resp. HckU ,I1,...,Ik

or, when U =Ran(D)
for a disk D , by ConvD I1 ,...,D Ik resp. HckD I1 ,...,D Ik , to stress the fact that each of them is equivalent to

Convan
I1,...,Ik
×X I1⊔···⊔Ik D I1⊔···⊔Ik

resp.
Hckan

I1,...,Ik
×X I1⊔···⊔Ik D I1⊔···⊔Ik .

Definition 3.5 is the first step in the direction of building a factorization algebra out of Hckan
Ran,•. The

following step is to upgrade Hckfact
• to a functor

Fact(M )⊗×∆op
inj→

{StrTStk
×

suitably encoding the “factorization property” of the Beilinson–Drinfeld Grassmannian.

Notation 3.7. Let M be a topological manifold. We denote by

(Ran(M )k ×Ran(M )k )disj

the topological space

{S1, . . . , Sk ,T1 . . . ,Tk | Si ∩Ti =∅, i = 1, . . . , k} ⊂Ran(M )k ×Ran(M )k .

Remark 3.8. Consider two independent open subsets U and V of Ran(X an). We have the following
diagram

HckU ,k ×HckV ,k (HckRan,k ×HckRan,k )
an
disj Hckan

Ran,k

U k ×V k (Ran(X an)k ×Ran(X an)k )disj Ran(X an)k ,

π

⊂ union

(3.2)
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3 TOPOLOGICAL FACTORIZATION OF THE HECKE STACK

where the left hand square is by definition a pullback in {StrTStk, and the right top horizontal map is
induced by Construction 2.62 and factorization with k = 2, and then by applying (−)an. In concrete, this
map is induced by the maps

GrI1
×GrI2

|(X I1×X I2 )disj
→GrI1⊔I2

(xI1
,F,α, xI2

,G,β) 7→ (xI1
+ xI2

,H,γ )

where H is the gluing of F and G along the isomorphism β−1|X \ΓxI1
+xI2

◦α|X \ΓxI1
+xI2

and γ is the trivial-

ization inherited from α and β via the gluing procedure.
Note also that the bottom composition in (3.2) coincides with U ×V → U ⋆V ,→ Ran(X an), the

first map being the one taking unions of systems of points; hence, by the universal property of the fibered
product, HckU ,k ×HckV ,k admits a map towards HckU⋆V ,k , which we call χU ,V ,k .

Proposition 3.9. Let k ∈N. There is a well-defined map of operads

Hckfact
k : Fact(M )⊗→ {StrTStk

×

assigning
(U1, . . . , Um) 7→HckU1,k × · · ·×HckUm ,k .

(U ⊂V ) 7→ [HckU ,k ,→HckV ,k]

((U ,V )→ (U ⋆V )) 7→ χU ,V ,k : HckU ,k ×HckV ,k →HckU⋆V ,k .

Proof. To prove that this is this association is functorial, it suffices to prove that the diagram

ConvU⋆V ,k ×ConvW ,k

ConvU ,k ×ConvV ,k ×ConvW ,k ConvU⋆V ⋆W ,k

ConvU ,k ×ConvV ⋆W ,k

χU⋆V ,W ,k

id×χV ,W ,k

χU ,V ,k×id

χU ,V ⋆W ,k

(notations as in Definition 3.5) commutes in {StrTStk. Now this is true because the operation of gluing is
associative, as it is easily checked by means of the defining property of the gluing of sheaves.
Finally, to prove that the functor Hckfact

k is a map of operads, we use the characterization of inert
morphisms in a Cartesian structure provided by [Lur17, Proposition 2.4.1.5]. Note that:

• An inert morphism in Fact(M )⊗ is a morphism of the form

(U1, . . . , Um)→ (Uφ−1(1), . . . Uφ−1(n))

covering some inert arrow φ : 〈m〉→ 〈n〉 where every i ∈ 〈n〉◦ has exactly one preimage φ−1(i).

• An inert morphism in {StrTStk
×

is a morphism of functors α between f :P (〈m〉◦)op→ {StrTStk
and g :P (〈n〉◦)op→ {StrTStk, covering some α : 〈m〉 → 〈n〉, and such that, for any S ⊂ 〈n〉, the
map induced by α from f (α−1S)→ g (S) is an equivalence in {StrTStk.
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3.1 CONSEQUENCES OF ANALYTIFICATION

By definition, Hckfact
k (U1, . . . , Um) is the functor f assigning

T ⊂ 〈m〉◦ 7→
∏

j∈T

HckUj ,k
,

and analogously Hckfact
k (Uφ−1(1), . . . , Uφ−1(m)) is the functor g assigning

S ⊂ 〈n〉◦ 7→
∏

i∈S

HckUφ−1(i),k
.

But now, if α=φ and T =φ−1(S), we have the desired equivalence.

For the following result, we specialize to the case X =A1
C. Consider the class Ball(C) of metric balls

in A1
C, i.e. open subspaces of the form

{z ∈ (A1
C)

an | |z − z0|< r }

for z0 ∈ (A1
C)

an, r ∈ R>0. Let D ′i ⊂ Di , i ∈ I nonempty finite set, be elements in Ball(C). There is an
inclusion

⋆i∈I Ran(D ′i )⊂ ⋆i∈I Ran(Di ) (3.3)

which in turn induces a map
HckRan(D ′)→HckRan(D)

in {StrTStk.
Recall the notion of stratified homotopy equivalence (she and xshe) from Definition B.28.

Proposition 3.10. Let X =A1
C, k ∈N. The functor Hckfact

k from Proposition 3.9 satisfies the factorization

property (see Recall 3.4) and sends maps of the form (3.3) to xshe in Mor( {StrTStk).

Proof. The fact that the analytification functor preserves finite limits, together with Proposition 2.55 for
k = 2 and the consideration that the diagram

(Ran(X )an×Ran(X )an)disj Ran(X )an

(Ran(X an)×Ran(X an))disj Ran(X an)

(where in the first row we are considering the colimit topology and in the second row we are considering
the metric topology) is Cartesian, achieves the factorization property by pulling back everything along
U k ×V k → (Ran(X an)k ×Ran(X an)k )disj.

As for the second property, by using factorization we reduce to the case of a single inclusion of disks
i : D ′ ⊂D . That is, we need to prove that the induced map

HckRan(D ′),k →HckRan(D),k

is a stratified homotopy equivalence in {StrTStk. This amounts to proving that for each I1, . . . , Ik ∈
Fin≥1,surj,N ∈N, the maps

Conv(N )
(D ′)I1 ,...,(D ′)Ik

→Conv(N )
D I1 ,...,D Ik

GO,(D ′)I1 →GO,D I1
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3 TOPOLOGICAL FACTORIZATION OF THE HECKE STACK

are resp. stratified homotopy equivalences and homotopy equivalences, and in a compatible way (i.e. the
homotopy inverse of the first map is equivariant with respect to the second one, and one can choose
homotopies which are compatible with respect to the actions on source and target). A sketch of the proof
for the first one, in the case k = 1, is given in [HY19, Proposition 3.17]. The full statement is proven in
[NP24b].

Remark 3.11. From the properties of Recall 3.4, we did not prove that the association U 7→HckU ,k is a
hypercomplete cosheaf. This property becomes true after taking categories of constructible sheaves, that
is after applying the functor Cons from Theorem B.66: see Proposition 4.5. Note that for I1, . . . , Ik ∈
Fin≥1,surj, j ≥ j1, the functor U 7→Hck( j )I1,...,Ik

is indeed a hypercomplete cosheaf by Lemma 4.4. However,
this does not trivially extend to the functor U 7→HckI1,...,Ik

, because cofiltered limits do not commute
with sifted colimits and hence one cannot formally transfer descent to the level of pro-objects.

Note as well that we only proved that maps of the form (3.3) are sent to stratified homotopy equiv-
alences, which are not equivalences in {StrTStk. However, stratified homotopy equivalences are sent
to equivalences of∞-categories under Cons(−;E), the functor which takes constructible sheaves with
coefficients in a symmetric monoidal presentable stable∞-category E (Proposition B.57). Also, proving
the property for maps of the form (3.3) instead of (3.1) is sufficient for our purposes, as we will see in the
proof of Theorem 4.6.

Remark 3.12. The constructions performed in the proof of Proposition 3.9 are compatible with the face
maps of Hckan

Ran,• defined in Construction 2.62, since for any k ∈∆op
inj, i = 1, . . . k, the square

(HckRan,k ×HckRan,k )disj HckRan,k

(HckRan,k−1×HckRan,k−1)disj HckRan,k−1.

δi×δi δi

commutes.

Therefore:

Theorem 3.13. Let G be a reductive complex group and X =A1
C. Proposition 3.9 induces a well-defined

map of operads
Hckfact : Fact(M )⊗×Enu

1 →Corr( {StrTStk)×

such that:

• in the first variable, it satisfies the factorization property in the sense of Recall 3.4, and sends maps of the
form (3.3) to stratified homotopy equivalences;

• for every open U ⊂ Ran(X an), the restriction to {U } × Enu
1 yields the map of operads defined in

Theorem 2.67, analytified and pulled back from Ran(X an) to U .

Proof. Remark 3.12 yields a functor

Fact(M )⊗×∆op
inj→

{StrTStk
×

which is a map of operads in the first variable. This in turn induces a functor4

∆op
inj→MapOp∞

(Fact(M )⊗, {StrTStk
×
).

4The notation MapOp∞
follows [Lur17] and stays for “maps of∞-operads”.
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3.2 SETUP FOR TAKING CONSTRUCTIBLE SHEAVES

By invoking [DK19, Proposition 8.1.5] we obtain a map of operads

Enu
1 →Corr(MapOp∞

(Fact(M )⊗, {StrTStk
×
))×.

Note that the target admits a map of operads to

MapOp∞
(Fact(M )⊗,Corr( {StrTStk)×)×

(it is easy to provide a map towards the category of functors, and then one can check that it actually takes
values in the full subcategory spanned by maps of operads). Finally, we get a functor

Fact(M )⊗×Enu
1 →Corr( {StrTStk)×

which is a map of operads separately in both variables. The verification that the claimed properties hold
is straightforward by restricting to the two separate variables.

3.2 Setup for taking constructible sheaves

In the next section we will take constructible sheaves over the geometric objects introduced up to now
and prove that this induces the sought-after E3-algebra structure on Sph(G). The first step, carried out in
the present subsection, will be to check that the mentioned geometric objects (and maps between them)
indeed belong to the source category of Theorem B.66.

Remark 3.14. For G =GLn , k ≥ 1, I1, . . . , Ik ∈ Fin≥1,surj,N ∈N fixed, the stratifying poset of Conv(N )I1,...,Ik

is given, with the notations of Construction 2.48, by

§

J , [φ : I1⊔· · ·⊔ Ik ↠ J ], (ν
h j

i
j ) j∈J ,i=1,...,m j

∈
∏

j∈J

(X•(T )
+)m j |
∑

j ,φ−1( j )∩Ih ̸=∅
ν h

j ≤ (N , . . . ,N ) ∀h = 1, . . . , k
ª

which is finite, the bounds being induced by N and the cardinality of I1⊔· · ·⊔ Ik . For the case of a general
G, choose a faithful representation G→GLn : the bounds on coweights will be induced by the bounds
inherited from the case of GLn .

Proposition 3.15. Let I ∈ Fin≥1,surj,N ∈N. The stratified space (Gr(N )I )
an belongs to StrTopcon.

Proof. It suffices to prove that the stratification is Whitney. Indeed, this implies that the stratification
is conical, since strata are smooth manifolds and possess tubular neighbourhoods. From this, we also
obtain that the conical neighbourhoods of each point can be chosen to be contractible: hence, the space is
locally of singular shape. The existence of tubular neighbourhoods has been proven by Mather [Mat70].
Together with Marco Volpe, we provided an explicit reformulation in the language of conically stratified
spaces [NV23, Construction 3.4].

The fact that (Gr(N )I )
an is Whitney is proven in [Nad05, Proposition 4.5.1].

Lemma 3.16. Let (X , s )→ (Y, t ) be a map of stratified spaces embedded in RN for some N . Suppose that the
map is surjective, and that it is a smooth stratified submersion in the sense of Definition B.21. Then (X , s)
satisfies the Whitney conditions if an only if (Y, t ) does.
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3 TOPOLOGICAL FACTORIZATION OF THE HECKE STACK

Proof. Since the Whitney condition is local, and the map is surjective (hence any point in y admits a
neighbourhood which is the image of a trivializable neighbourhood in X ) we can reduce the problem to
the case of a product of a space Y ⊂RN with a stratification s and a euclidean space Rn (considered with
its trivial stratification), with projection π : Y ×Rn→ Y . If (Y, s ) is Whitney, then the product Y ×Rn

with the trivial stratification on Rn is Whitney. Conversely, suppose that Y ×Rn is Whitney with the
trivial stratification on Rn . Pick two strata W ,Z ⊂ Y , and two sequences (wi )⊂W ⊂ Y, (yi )⊂ Z ⊂ Y
both converging to some y ∈ Z , such that also wi yi → v,Twi

W → τ for some line v and some vector
space τ. We can define liftings of the wi , yi ’s by (wi , 0), (yi , 0), where 0 is the origin of Rn . The sequences
of the secants and of the tangent spaces of these new points converge respectively to v × 0 and τ× 0:
therefore, we obtain that v ⊂ τ by applying the hypothesis that Y ×Rn is Whitney.

Lemma 3.17. Let I ∈ Fin≥1,surj, j ∈N. The stratified space (G( j )
O,I )

an belongs to StrTopcon.

Proof. Since the structure map G( j )
O,I → X I is smooth (Remark 2.23) and surjective, by Example B.43

the map (G( j )
O,I )

an→ (X an)I is a stratified smooth submersion. Since the incidence stratification on X I is
Whitney, we can apply Lemma 3.16.

Proposition 3.18. The stratified space (Conv(N )I1,...,Ik
)an belongs to StrTopcon.

Proof. The following proof has been suggested to us by Robert Cass.
First of all, strata are smooth by factorization (Proposition 2.41) and Proposition 2.47. Note then

that (Gr(N )I1
)an× · · ·× (Gr(N )Ik

)an and (Conv(N )I1,...,Ik
)an admit a common smooth cover

G(N , jN )
K,I1,I2
×X I2 · · · ×X Ik−1 G(N , jN )

K,Ik−1,Ik
×X Ik Gr(N )Ik

,

which projects onto each of them as a smooth bundle having as fiber the smooth unstratified relative
group scheme G( jN )

O,I2
×· · ·×G( jN )

O,Ik
. If we pass to analytifications, (Gr(N )I1

)an×· · ·× (Gr(N )Ik
)an is Whitney by

Proposition 3.15, and by Example B.44 the two covers become surjective topological submersions. It
now suffices to apply Lemma 3.16 twice, one in each direction.

Corollary 3.19. For any k, the object Hckan
Ran,k lies in {StrTStkcon.

Proof. We need to prove that each term in the formula

colim
I1,...,Ik∈Fin≥1,surj

“ lim” j≥ j1
colim
[n]∈∆op

(Gan
O,I ,( j ))

×X I n ×X I (Conv(1)I1,...,Ik
)an

(where the inner colimit is the colimit along the usual simplicial diagram encoding the action, and is taken
in StrTStk) belongs to StrTopcon. This statement is a formal consequence of the previous ones: the map
G( j )

O,I ×X I Conv(1)I1,...,Ik
→Conv(1)I1,...,Ik

is a smooth stratified submersion, hence the source is Whitney.

Recall now Definition B.21. We need to prove that:

Proposition 3.20. The functor Hckfact from Theorem 3.13 takes values in the subcategory

Corr( {StrTStkcon)
×
all,subm,

that is, that we have the right class of horizontal morphisms in order to apply Theorem B.66.
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3.2 SETUP FOR TAKING CONSTRUCTIBLE SHEAVES

Proof. We need to describe the image of an arbitrary morphism (α,φ) : (U1, . . . , Um , 〈k〉)→ (V1, . . . ,Vn , 〈h〉)
in Fact(M )⊗×Enu

1 under the functor Hckfact. Suppose first that φ is of the form φ : 〈2〉 → 〈1〉 (either
one of the two “projections” or the “multiplication” map). Since the image of (α,φ) can be factored, by
definition, as the composition of the image of (α, id) under Hckfact(−, 〈2〉) and the image of (id,φ) under
Hckfact((V1, . . . ,Vn),−), let us inspect what happens on each component.

• any pair (α, id) will be sent to a vertical morphism.

• suppose that φ is inert. Then the pair (id(U1,...,Um)
,φ) is sent to a vertical morphism, namely one of

the two projections

(HckU1
× · · ·×HckUm

)× (HckU1
× · · ·×HckUm

)→HckU1
× · · ·×HckUm

.

• suppose finally that φ is the active morphism. There is the following list of progressive simplifica-
tions:

– We can assume that m = 1. Indeed, since the object HckRan,• is 2-Segal, any other case can
be recovered via pullback from the cases treated above (in the same spirit, see the definition
before [DK19, Proposition 8.1.7 of the arXiv version]), and since our classes of vertical and
horizontal morphisms are stable under pullbacks we conclude.
We are thus dealing with the correspondence

HckU ,2

HckU ×HckU HckU

and we want to prove that the left leg belongs to subm.
– It suffices to prove the claim for U =Ran(X an).
– It suffices to prove that the map

HckRan,2→HckRan×HckRan

is representable and smooth, i.e. its pullback to any X ∈ Pro(StrStklft
C ) is a pro-smooth

map of pro-stacks, in the sense of algebraic geometry. By definition (Definition B.28), the
combination of this and Corollary 3.19 will ensure that its analytification is in subm.

– It is sufficient to prove that for every I1, I2 ∈ Fin≥1,surj, I = I1 ⊔ I2, j ≥ j1

p ( j )I1,I2
: Hck( j )I1,I2

→Hck( j )I1
×Hck( j )I2

(3.4)

(notations as in Section 2.3) is smooth. Indeed, let X be any object in Pro(StrStklft
C ) together

with a map X→HckRan×HckRan in
{

StrStklft
C . Then there is a map

X→Ran(X )×Ran(X ),

which will factor via some X I1 ×X I2 , I1, I2 ∈ Fin≥1,surj, because any representable object in a
category of presheaves is atomic. Hence, the map X→HckRan×HckRan factors as

X→HckI1
×HckI2
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4 THE E3-STRUCTURE

and therefore we have an equivalence

X×HckRan×HckRan
HckRan,2 ≃X×HckI1

×HckI2
HckI1,I2

.

Note that this fiber product belongs to Pro(StrStklft
C ) as wanted, and the projection from it to

X is pro-smooth whenever the map (3.4) is a smooth map of stacks for every j .

– Recall that there is a morphism of schemes

p ( j )I1,I2
: G(1, j )

K,I1,I2
×X I2 Gr(1)I2

→Gr(1)I1
×Gr(1)I2

which takes the right G( j )
O,I2

-quotient in the first component and is the identity in the second
one. This fits into a commutative square of stacks

G(1, j )
K,I1,I2
×X I2 Gr(1)I2

Gr(1)I1
×Gr(1)I2

Hck( j )I1,I2
Hck( j )I1

×Hck( j )I2

p( j )I1,I2

p( j )I1,I2

where the leftmost vertical arrow exhibits the target as the quotient of the source, relative to
X I , with respect to the action of G( j )

O,I from Remark 2.56), and the rightmost vertical arrow
exhibits the target as the quotient of the source, relative to X I , with respect to the action of
G( j )

O,I1
×G( j )

O,I2
Now, the map p ( j )I1,I2

is a GO,I2,( j )-torsor, which implies that p̄ ( j )I1,I2
is smooth in

the sense of [SPA, Tag 075U]. We need the topological version of this: namely, by applying
Remark 2.23 and Example B.43 to p ( j )I1,I2

, we obtain that
�

p̄ ( j )I1,I2

�an belongs to subm′ in the sense
of Definition B.28.

4 The E3-structure

4.1 Spherical Hecke category over the Ran space

Construction 4.1. Let E a presentable stable symmetric monoidal∞-category. We consider the compo-
sition

Sph(G;E)fact : Fact(M )⊗×Enu
1

Hckfact

−−−→Corr( {StrTStkcon)
×
all,subm

Cons⊗,corr
E−−−−→ PrR,⊗

E

where the first functor is the one from Proposition 3.20 and the second functor is the one constructed in
Theorem B.66. Note that Sph(G;E)fact sends a morphism of the form (α, id〈k〉), where α is of the form
Eq. (3.3), to an equivalence of∞-categories by Theorem 3.13 and Theorem B.66. Moreover, it satisfies
the factorization property from Recall 3.4 since Hckfact does (Proposition 3.10) and Cons⊗

E
is symmetric

monoidal: in other words, by Theorem B.66 the functor

Cons(HckU ;E)⊗E Cons(HckV ;E)→Cons(HckU ×HckV ;E)

is an equivalence for each independent U ,V ⊂Ran(X an).
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4.1 SPHERICAL HECKE CATEGORY OVER THE RAN SPACE

We now want to prove that the functor Sph(G;E)fact is a hypercomplete cosheaf when restricted to
Open(Ran(M )).

Proposition 4.2. Fix I1, . . . , Ik ∈ Fin≥1,surj, and j ≥ j ′ ≥ j1. Let f : Hck( j )I1,...,Ik
→Hck( j

′)
I1,...,Ik

be the transition
map. Then the functor

f ∗ : Cons((Hck( j
′)

I1,...,Ik
)an;E)→Cons((Hck( j )I1,...,Ik

)an;E)

is an equivalence.

Proof. This follows from the fact that the transition maps are in uni (Proposition 2.28), hence their
analytification is in tri, and Proposition B.58.

Remark 4.3. The∞-category (4.3) is, by the construction in Theorem B.66, equivalent to

colim
I∈Finop

≥1,surj

PrR
ECons(Hck( j )

D I ;E) (4.1)

where j is any number greater than j1. The transition functors, up to a change of index j (which induces an
equivalence on the categories of constructible sheaves by Proposition 4.2) in I are given by ∗-pushforward
along the closed embeddings5 HckD I → HckD J induced by J ↠ I . This colimit is not filtered. As a
consequence of [Lur09, Theorem 5.5.3.13], it corresponds to the limit in xCat∞,E

6 taken with ∗-pullback
functoriality.

This means that (4.1) can be rewritten as

lim
I∈Fin≥1,surj

(−)∗Cons(Hck( j )
D I ;E). (4.2)

Here Cons(HckD I ;E) coincides with Cons(Hck( j )
D I ;E) for any j ≥ j1. The reason we chose to adopt

the pro-object perspective is that, without the possibility of increasing j , some maps are impossible to
define (notably, the ones associated to surjections I → J in Construction 2.33).

Finally, each term Cons(Hck( j )
D I ;E) is computed, again by construction, à la Bernstein-Lunts, i.e. as

PrR
R,−⊢

colim
[n]∈∆

Cons((G( j )
O,D I )

×DI n ×D I Gr(1)
D I ;E)≃ lim

xCat∞,E,−∗

[n]∈∆ Cons((G( j )
O,D I )

×DI n ×D I Gr(1)
D I ;E)

where the limit is taken along the simplicial diagram encoding the action of G( j )
O,D I on Gr(1)

D I , with pullback
functoriality.

Lemma 4.4. Let p : Y → Z be a map of topological spaces, and let F be the functor

Open(Z)→Top

U 7→ p−1(U ).

Then F is a hypercomplete cosheaf on Z.
5Recall that these are closed embeddings of unions of strata, hence ∗-pushforward preserves constructible sheaves.
6This is the∞-category of large E-linear∞-categories, defined similarly to Notation B.52.
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4 THE E3-STRUCTURE

Proof. The claim amounts to the fact that, for every U ∈Open(Z) and any hypercovering U :∆op
inj→

Open(Z) of U , the map
colim
n∈∆op

inj

p−1(Un)→ p−1(U )

between open subsets of Y is a homeomorphism, which is true.

Proposition 4.5. The restriction of the functor Sph(G;E)fact from Construction 4.1 to Open(Ran(M ))×{<
k >} is a hypercomplete cosheaf for every < k >∈Enu

1 .

Proof. Note that, for each I1, . . . , Ik ∈ Fin≥1,surj,N ∈ N, j ≥ j1, the functors U 7→ Conv(N )U ,I1,...,Ik
and

U 7→G( j )
O,U ,I are of the form appearing in Lemma 4.4, and hence hypercomplete cosheaves. Therefore,

the functor U 7→G( j )
O,U ,I\Conv(1)U ,I1,...,Ik

(for j ≥ jN ) is again hypercomplete, since it arises as a colimit of
hypercomplete cosheaves.

Therefore, by Proposition B.59, the functor U 7→Cons(Hck( j )U ,I1,...,Ik
;E) is a hypercomplete cosheaf

as well.
By the discussion in Remark 4.3, this functor coincides with U 7→Cons(HckU ,I1,...,Ik

;E). Finally, the
functor U 7→Cons(HckRan,k ;E) is a hypercomplete cosheaf because it arises as a colimit of hypercomplete
cosheaves.

Summing up:

Theorem 4.6. Let G be a complex reductive group, X = A1
C, M = X an = C, and E a presentable stable

symmetric monoidal∞-category.
The functor

Sph(G;E)fact : Fact(M )⊗×Enu
1 → PrL,⊗

E

from Construction 4.1 has the following properties:

• It is a hypercomplete cosheaf in the first variable, satisfying constructibility and the factorization property
in the sense of [Lur17, Definition 5.5.4.1], [Lur17, Theorem 5.5.4.10].

• It is a map of operads in the second variable.

Proof. The only part that requires justification is the constructibility property. We know that the functor
sends maps of the form (3.3) to equivalences of∞-categories, by Proposition 3.10 and Proposition B.57,
and that it is a hypercomplete cosheaf by Proposition 4.5. Note that this is sufficient to apply [Lur17,
Proposition 5.5.1.14] and conclude that Sph(G;E)fact is constructible in the first variable, in the sense
of [Lur17, Definition 5.5.4.1]. Indeed, the proof of the “if” direction of [Lur17, Proposition 5.5.1.14]
works in the same way if one restricts to a subclass of Disk(M ) forming a base of M , which is the case for
Ball(C)⊂Disk(C).

Construction 4.7. We can now apply [Lur17, Theorem 5.5.4.10] to Sph(G;E)fact and obtain anEnu
M ×E

nu
1 -

algebra with values in PrL,⊗
E

, where M =C, therefore a 2-dimensional real manifold. Its restriction to any
disk D ⊂C has the same value for different D’s (up to equivalence in PrR,⊗

E
), since an Enu

M -algebra is in
particular locally constant, and by [Lur17, Example 5.4.5.3], this restriction is naturally an Enu

2 -algebra.
This means that the stalk of Sph(G;E)fact in the first variable at any point {x} ∈Ran(X an), which is just
its value at any disk D containing x, induces a map of operads

Enu
2 ×E

nu
1 → PrR,⊗

E
.
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4.2 SPECIALIZATION TO A POINT

Its underlying∞-category is
Cons(HckRan(D);E) (4.3)

for any (irrelevant) choice of a disk D around x. Also the choice of x is irrelevant, in the sense that
different choices give noncanonically equivalent∞-categories with equivalent algebra structures (this is
easily seen by choosing a path between any two points in X an a finite number of disks covering the image
of this path).

We will refer to the operation implicit in the Enu
2 -component as fusion and to the one implicit in the

Enu
1 -component as convolution.

4.2 Specialization to a point

Recall that we denote by Hckx or just Hck the fiber of Hck{1} at any point x ∈X (C). Our goal in this
subsection is to transfer the algebra structure established in Construction 4.7 to the∞-category

Cons(Hckan;E),

i.e. ConsGan
O
(Gran;E) with the notation of Definition B.38.

Remark 4.8. Let j ≥ j1,N ∈N. Let D ,→Ran(D) denote the closed embedding corresponding to the
cardinality 1 stratum. Recall that we have defined Gr(N )D =Gran

{1}×X an D ≃Gran×D , G( j )
O,D =Gan

O,{1}×X

D ≃Gan
O
×D and HckD =Hckan

{1}×X an D ∈ {StrTStkcon (the equivalences follow from Proposition 2.6).
First of all, notice that for any choice of a disk D in X an there is an equivalence of∞-categories

ConsGan
O
(Gran;E)≃ConsGan

O,D
(Gran

D ;E) (4.4)

induced by pulling back along the projection Gran
D →Gran (the inverse functor is given by pulling back

along the embedding Gran × {x0} → Gran × D (for any choice of a point x0 in D). This is true by
Proposition B.57. Therefore, to give an E3-algebra structure on ConsGan

O
(Gran;E) is the same as giving an

E3-algebra structure on ConsGO,D
(GrD ;E). By the very nature of this identification, the equivalence does

not actually depend on the choice of x and D .
Now, there is a pullback diagram in {StrTStkcon

HckD HckRan(D)

D Ran(D)

i

and an adjunction

Cons(HckD ;E) Cons(HckRan(D);E)
i∗

i∗

⊣ (4.5)

where i∗ is fully faithful because i is an equivariant closed embedding of a union of strata.

Theorem 4.9. There is a canonical Enu
2 ×E

nu
1 -algebra structure on Cons(HckD ;E) such that the functor i∗

becomes lax-monoidal.
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4 THE E3-STRUCTURE

Proof. The idea is to transfer the Enu
2 ×E

nu
1 -algebra structure to ConsGO,D

(GrD ;E) by applying [Lur17,
Proposition 2.2.1.9] with C⊗ =Cons(HckRan(D);E) and each LX induced by i∗.

Recall from Construction 4.7 that there are two compatible product structures on Cons(HckRan(D);E),
which we call ⋆ (convolution, the one parametrized by theEnu

1 -variable) and⊙ (fusion, the one parametrized
by the Enu

2 -variable). In order to apply Lurie’s result, we need to verify that for any

A,A′,B ∈Cons(HckRan(D);E),

and a morphism
f : A→A′

such that i∗ f is an equivalence in Cons(HckD ;E), the natural maps

i∗(A ⋆B)→ i∗(A′ ⋆B)

and
i∗(A⊙B)→ i∗(A⊙B)

are equivalences.
First of all, by the description in Construction 4.7, we can fix I1, I2 and assume that A,A′ ∈

Cons(HckD I1 ;E),B ∈ Cons(HckD I2 ;E) (actually, we could even assume I1 = I2, but it is instructive
to see what happens in the general case).

We need to prove two things:

⋆ For the convolution case, we need to prove that

i∗(mI1,I2∗ p
∗
I1,I2
(A⊠B))→ i∗(mI1,I2∗ p

∗
I1,I2
(A′⊠B))

is an equivalence, where the notations are as in the following diagram:

HckD ×HckD HckD ,D HckD2 HckD

HckD I1 ×HckD I2 HckD I1 ,D I2 HckD I2⊔I2

j ′

pI1,I2

ej

p m

mI1,I2

j

d

i

Here i stays for the map i read at the I1⊔ I2-level, and d for the map pulled back from the diagonal
of D2. Note that both squares and the triangle commute, the second square is a pullback and the
map mI1,I2

is proper7. Moreover, we have equivalences m∗ ≃ m⊢, mI1,I2∗ ≃ mI1,I2⊢. To see this,
it suffices to see that m∗ and mI1,I2∗ preserve constructible sheaves. By properness of m, mI1,I2

and proper base change for sheaves (not necessarily constructible), it suffices to check this after
pullback to each stratum of X I1⊔I2 . There, the map can be realized as a product of copies of the
multiplication map m : Hckx,2→Hckx for some point x. This latter map descends from a GO-
equivariant map Convx,2→ Grx ; therefore, pushforward along it preserves equivariant sheaves
which are constructible with respect to some stratification. But equivariant constructible sheaves
over Grx with respect to some stratification are automatically constructible with respect with to
the stratification by Schubert cells by Proposition A.20.

7In the sense that each m( j )
I1 ,I2

is proper.
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Therefore, we can apply proper base change and conclude that

i∗(mI1,I2∗ p
∗
I1,I2
(A⊠B))≃ d ∗ j ∗mI1,I2∗ p

∗
I1,I2
(A⊠B)

≃ d ∗m∗ej
∗ p∗I1,I2

(A⊠B)≃ d ∗m∗ p
∗ j ′∗(A⊠B).

Note now that j ′ corresponds to the map i × i read at the (I1, I2)-level, and therefore the last
expression equals

d ∗m∗ p
∗(i∗A⊠ i∗B).

If we read this construction functorially in A, we conclude that the map i∗(A⊙B)→ i∗(A⊙B)
induced by f is an equivalence.

⊙ For the fusion product, the product law is depicted by the diagram

HckD ×HckD HckD1
×HckD2

HckD2 HckD

HckD I1 ×HckD I2 HckD1
I1 ×HckD2

I2 HckD I1⊔I2

u1,1 d

j ′
dI1⊔I2

j
uI1,I2∼

∼

(4.6)

Note first of all that dI1⊔I2
= d j corresponds to the map i read at the I1⊔ I2-level. Up to identifying

the first column with the second one, A⊙B corresponds to (uI1,I2
)⊢(A⊠B) and

i∗(A⊙B)≃ d ∗ j ∗(uI1,I2
)⊢(A⊠B).

Therefore, it suffices to show that the base-change map

j ∗(uI1,I2
)⊢→ u⊢ j ′∗ (4.7)

induces an equivalence

d ∗I1⊔I2
(uI1,I2

)⊢(A⊠B)≃ d ∗ j ∗(uI1,I2
)⊢(A⊠B)≃ d ∗u⊢ j ′∗(A⊠B).

Let us consider the diagram
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4 THE E3-STRUCTURE

HckD1
×HckD2

HckD2 HckD

HckD1
×HckD2

HckD ,D HckD ,D ×D2 D

HckD1
×HckD2

HckD ×HckD HckD ×D HckD

Hck
D I1

1
×Hck

D I2
2

HckD I1 ×HckD I2 HckD ×D HckD

Hck
D I1

1
×Hck

D I2
2

HckD I1 ,D I2 HckD I1 ,D I2 ×D I1⊔I2 D

Hck
D I1

1
×Hck

D I2
2

HckD I1⊔I2 HckD

s.h.e.

u ′1,1

mI1,I2

p I1,I2

s.h.e.

u ′I1,I2

euI1,I2

uI1,I2

δ
d ′I1,I2

dI1,I2

edI1,I2

p∆

m∆

d ′

p

m

u1,1

eu1,1

d

m∆

p∆

ed

j ′ (4.8)

where the maps are defined as follows:

– u1,1, uI1,I2
are defined in (4.6) and come from the factorization property for HckI1⊔I2

.

– eu1,1, euI1,I2
come from Proposition 2.41 and Remark 2.50.

– u ′1,1, u ′I1,I2
are the open embeddings induced by the inclusions D1 ⊂D , D2 ⊂D .

– d , dI1,I2
are defined in (4.6).

– d ′, d ′I1,I2
are the maps induced by the diagonal inclusion D ⊂D2, D ⊂D I1 ×D I2 .

– ed , edI1,I2
are the maps induced by the diagonal inclusion D ⊂ D2, D ⊂ D I1 × D I2 and by

Proposition 2.41.

– j ′ comes from (4.6).

– δ is the map induced by the diagonal inclusions D ⊂D I1 , D I2 .

– p, m, p∆, m∆, p I1,I2
, mI1,I2

are (or are induced by) the maps in (A.7).

The goal is to prove that if we start with a sheaf A⊠B over Hck
D I1

1
×Hck

D I2
2

, then pulling back

along the first column and performing push-pull along the first row is the same as performing
push-pull along the last row. Note that all squares are pullback squares. By properness of the maps
m∆, mI1,I2

, we have equivalences

d ∗I1,I2
(uI1,I2

)⊢ ≃ d ∗I1,I2
(mI1,I2

)⊢(euI1,I2
)⊢ ≃ (m∆)⊢ ed

∗
I1,I2
(euI1,I2

)⊢

(the second one is implied by proper base change. Note that m⊢ = m∗ by the discussion in the
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convolution case). Then, by smoothness8 of p I1,I2
, we have

(m∆)∗ ed
∗
I1,I2
(euI1,I2

)⊢ ≃ (m∆)∗ p
∗
∆d ′∗I1,I2

(u ′I1,I2
)⊢ ≃ (m∆)∗ p

∗
∆d ′∗δ∗(u ′I1,I2

)⊢.

But now, since u ′1,1 and u ′I1,I2
are stratified homotopy equivalences, the last expression is equivalent

to
(m∆)∗ p

∗
∆(d
′)∗(u ′1,1)⊢ j ′∗.

Then by applying again smooth and then proper base change on the squares on the top half of the
diagram we conclude that the original expression is equivalent to

d ∗(u1,1)⊢ j ′∗(A⊠B).

Like in the convolution case, we can deduce from this that the map f induces an equivalence as
desired.

Notation 4.10. We denote the algebra structure inherited by Cons(Hckan
x ;E) by means of (4.4) as

Sph(G)⊗x ∈Algnu
E2
(Algnu
E1
(PrR,⊗

E
)).

4.3 Main result and t-exactness

By convenience, given three∞-operads O,O′,O′′, we will call “bilinear maps” those maps O×O′→O′′

which are maps of operads separately in each variable.

Proposition 4.11. Let x be any point in X an. The bilinear map Sph(G;E)⊗x :Enu
2 ×E

nu
1 → PrR,⊗

E
extends

to a bilinear map E2×Enu
1 → PrR,⊗

E
, which we again denote by Sph(G;E)⊗x .

Proof. We can apply [Lur17, Theorem 5.4.4.5]: that is, it suffices to exhibit a quasi-unit for any

Sph(G;E)⊗x (−, 〈k〉)

functorial in 〈k〉 ∈Enu
1 . Consider the map (natural in k) SpecC→Hckx,k represented by the sequence

(T, . . . ,T, id|X \{x}, . . . , idX \{x}) ∈Hckx,k . Note now that this induces a map

ek : ∗→Hckan
x,k .

We want to check that the map ek is a quasi-unit in the sense of [Lur17, Definition 5.4.3.1.] for any
k, functorially in k. But both maps Hckan

x,k →Hckan
x,k ×Hckan

x,k →Hckan
x,k induced by ek (by targeting

respectively the first or the second factor of the product) are the identity, since gluing with the trivial G-
torsor along with its trivial trivialization does not change the original torsor. At the level of constructible
sheaves, the unit is given by the pushforward of the constant sheaf 1E along ek .

Proposition 4.12. The bilinear map Sph(G;E)⊗x :E2×Enu
1 → PrR,⊗

R extends to a bilinear map Sph(G;E)⊗x :
E2×E1→ PrR,⊗

R .
8Here, as usual, we take advantage of the definition of our categories of constructible sheaves as colimits of categories of

sheaves over “truncated” objects of the form Hck( j )I , which allows us to work with smooth maps instead of pro-smooth, cf.
Proposition 3.20.
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Proof. Again, it suffices to exhibit a quasi-unit. Let us denote by 1 the pushforward along the trivial
section t : ∗→Hckan

x,1, t (∗) = (T,T, id|X \x ), of the constant sheaf with value 1E.
The proof is given in [Rei12, Proposition IV.3.5]. We just rewrite it in our notation. We drop the
superscript (−)an everywhere for simplicity. Let us assume that the entry in the variable E2 is 〈1〉 by
simplicity (the general case is just “a direct power” of this one). We denote by ⋆ the E1-product of
equivariant constructible sheaves on Grx described by Sph(G;E)⊗x (〈1〉,−). For any F ∈ConsGO

(Gr, R)
we can compute the product via the convolution diagram

GK×Gr GK×GO Gr

Gr×Gr Gr.

p

q

m

This diagram extends to

GK×Gr GK×GO Gr

∗×Gr Gr×Gr Gr,

p

q

m

t×id

j

where j is the closed embedding (F,α) 7→ (T, id|X \x ,F,α) whose image is canonically identified with Gr.
Let F ∈ConsGO

(Gr;E). We want to prove that 1e⊠F ≃ j∗(1E⊠ F ), i.e. that

q∗ j∗(1E⊠ F )≃ p∗(t × id)∗(1E⊠ F ).

Note that because of the consideration about the image of j the support of both sides lies in GO×Gr⊂
GK×Gr, and this yields a restricted diagram

GO×Gr Gr

Gr Gr.

eq

ep em∼
j

This proves the claim. By applying m∗ we obtain

1 ⋆ F ≃ m∗( j∗(1E⊠ F )) = 1E⊠ F = F

since m j = id.

Thanks to these results, our functor Sph(G;E)⊗x from Notation 4.10 is finally promoted to a bilinear
map E2×E1→ PrR,⊗

R . By the Additivity Theorem ([Lur17, Theorem 5.1.2.2]), this is the same as an
E3-algebra object in PrR,⊗

R .
Note also that, by the convolution presentation of the monoidal law, the functor Sph(G,E)⊗x takes

values in PrLR,⊗
E

: indeed, by the same argument as in the first part of the proof of Theorem 4.9 and by
properness, the functor m⊢ coincides both with m∗ and with m!, and hence it is a right and left adjoint.
For convenience, we will say that our algebra takes values in PrL,⊗

E
from now on.

Summing up:
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Theorem 4.13 (Main theorem). Let G be a complex reductive group and E be a presentable stable symmetric
monoidal ∞-category. There is an object Sph(G;E)⊗ ∈ AlgE3

(PrL,⊗
E
) having as underlying object the

topological spherical Hecke category

Sph(G;E)top =ConsGan
O
(Gran

G ;E)

(see Definition A.22).

Note that, when R is a commutative ring, either discrete, prodiscrete or ℓ-adic (i.e. an algebraic
extension ofQℓ), this specializes to Theorem 1.4 for E=Modcont

R in the sense of Definition B.35.

Corollary 4.14 (Small spherical Hecke category). In the same setting as Theorem 4.13, there is an induced
E3-monoidal structure in Cat×∞,Eω on

ConsGan
O
(Gran

G ;Eω).

Let R be a commutative ring, noetherian and of finite global dimension, and E = ModR. Then, on
objects, the restriction of this product to equivariant perverse sheaves coincides with the classical (commutative)
convolution product of perverse sheaves [MV07], up to the perverse truncation of the derived tensor product
appearing in the definition of the latter (cf. also Remark 4.17).

Proof. The (not full) inclusion PrR,⊗
E
→ xCat

×
∞,E (the∞-category of large E-linear∞-categories) is lax

monoidal, i.e. it is a map of operads. Therefore, ConsGan
O
(Gran;E) has an induced E3-algebra struc-

ture in xCat
×
∞,E. By using the convolution formula, one sees that the convolution product restricts to

ConsGan
O
(Gran,Eω): again, this follows from the fact that p∗ preserves Eω-valued sheaves (since it is

induced by restriction along functors between categories of exit paths), and that the same is true for m∗
9.

Since the inclusion10 Cat×∞,Eω ⊂ xCat
×
∞,Eω is strong symmetric monoidal, we obtain the first part of the

statement. The claim regarding perverse sheaves follows from what observed in Remark A.13.

Corollary 4.15 (Renormalization). Let us assume that we are in the same setting of Corollary 4.14, and that
E is compactly generated. Then there is an induced E3-monoidal structure on

Sph(G;E)ren = Ind(Consfd
GO
(Gr;E))

(see Definition A.23) as an object of PrL,⊗
E

.

Proof. Since E is compactly generated, we have that Ind(Eω)≃ E. Recall first of all that the functor

Ind : Catex
∞→ PrL

st

is symmetric monoidal: this follows from [Lur17, Proposition 4.8.1.8]) with K=∅ and

K′ = {κ-filtered simplicial sets, for some regular cardinal κ}
9Indeed, let f : X → Y be a map between topological spaces, E an∞-category. If F ∈ Shv(X ;E) and U is open in Y , then

( f∗F)(U ) = F( f −1(U ))

which belongs to Eω if F takes values in Eω.
10Here we mean the functor sending a small category to itself.
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and the fact that colimits are generated by filtered colimits and finite colimits. Therefore, there is an
induced symmetric monoidal functor

ModEω (Catex
∞)→ModE(PrL

st).

This functor factors through PrL
E
, because Ind of an exact functor F is strongly continuous, i.e. its right

adjoint G preserves colimits, and hence by [Lur11, Remark 6.6] G is automatically E-linear.

Again, the latter results specialize to Corollary 1.5 and Corollary 1.7 in the ring case.

Remark 4.16. Let C⊗ be anEk -algebra in Catex
∞, the∞-category of stable∞-categories and exact functors

between them. Suppose given a t-structure on C which is compatible with the algebra structure, in the
sense of [Lur17, Example 2.2.1.3] (intuitively, the subcategory C≥0 should be closed under tensor). Then
by [Lur17, Proposition 2.2.1.8, Proposition 2.2.1.9] the heart C♥ of the t-structure canonically inherits
an Ek -algebra structure (the proof goes along the same lines of [Lur17, Example 2.2.1.10], which deals
with the case E∞).

Note that this “induced Ek -structure” procedure is functorial: given a stable-exact and t-left exact (in
the sense of [Lur17, Definition 1.3.3.1]) Ek -monoidal functor C⊗→D⊗, one obtains an additive functor
C♥ → D♥ between abelian categories, which can be viewed as the composition of the Ek -monoidal
functors

C♥ ,→ C≤0

F |C≤0−−→D≤0
τ≤0−→D♥

(notice that F restricts to the coconnective parts by left-t-exactness).

Remark 4.17. Let R be a commutative discrete ring. The small spherical Hecke category carries a
canonical t-structure inherited from the perverse t-structure on bounded categories of (finite-dimensional)
constructible sheaves. Indeed, the Bernstein-Lunts presentation

Sph(G; R)loc.c ≃ lim
n

Dfd
c (G
×n
O
×Gr; R)

of Recall B.9 establishes a canonical t-structure on the limit by [BL94, Section 2.5].
The convolution product on Sph(G; R)loc.c is perverse left t-exact, and t-exact when R is a field. This

follows from the considerations recalled in Construction A.9 ,
Thus, one can apply Remark 4.16 to Sph(G; R)loc.c with k = 3 and recover the convolution product

of perverse sheaves and its commutativity constraint, as mentioned in Remark 1.10. Indeed, although in
the original formula the perverse truncation appears right after performing the derived tensor product
(and not at the end of the process), there is no actual difference with our formula in this respect, since the
rest of the procedure defining the convolution product is perverse t-exact.

A Recollections and complements in Geometric Langlands

A.1 The Satake category

Let us resume from the definition of affine Grassmannian, recalled in Definition 1.1.

Recall A.1 (see [Zhu16, Theorem 1.1.3]). There is a natural action of GO on GrG by left multiplication,
whose orbits define an algebraic stratification of GrG over the poset X•(T )+ of dominant coweights
of the Cartan group T of G. When viewed from the point of view of the complex-analytic topology
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on GrG , this stratification satisfies the so-called Whitney conditions (for a proof, see [MO14]). One can
characterize the stratification as follows. The Cartan decomposition11

GK =
⊔

µ∈X•(T )+
GO tµGO

induces a partition
GrG =
⊔

µ∈X•(T )+
GO tµ.

For an element g of GK, the associated µ is denoted by

Inv(g )

and is the same for every g ′ in the same right GO-class, i.e. Inv(−) factors through GK→GrG .
If G =GLn , X•(T )+ can be realized (noncanonically) as the set

{(µ1, . . . ,µn) |µ1 ≥ · · · ≥µn}

and via this identification tµ is exactly the diagonal matrix diag(t−µi ).
For µ ∈X•(T )+, one defines

Grµ = {Λ ∈Gr | Inv(Λ) =µ}.

There is a natural filtration of Gr by finite-dimensional projective schemes Gr≤µ =
⋃

ν≤µGrν . More-
over, the action GO ⟳GrG preserves Gr≤µ, and actually each GO ⟳Gr≤µ factors through the quotient

GO↠G( j )
O
=G(CJtK/t jCJtK) for any j larger than some jµ ([Rei12, Lemma IV.1.4]). This is actually

the reason why the orbits form a stratification in the first place ([MO14]).

Definition A.2. Let j ≥ 1. We define

G( j )
O
=G(CJtK/t jCJtK).

Definition A.3. Let R be a ring. The category of GO-equivariant perverse sheaves on GrG (or Satake
category) with values in R-modules is

PervGO
(Gr; R) := colim

µ∈X•(T )+
Perv

G
( jµ)
O

(Gr≤µ; R)

(see [Zhu16, 5.1 and A.1]).

The definition of each term is independent of jµ because of [Zhu16, Lemma A.1.4].

Recall A.4 (cf. [Zhu16, Lemma 3.1.7]). Let X be a smooth complex curve, R a complex ring, and
x ∈X (R) an R-point. There is a well-defined formal completion of Γx , the graph of x in XR, which is a
formal scheme whose (discrete) ring of functions is pOΓx

. We consider the affine formal neighbourhood of
x, defined as the map

ß(XR)Γx = Spec pOΓx
→XR

11The symbol
⊔

should only be understood as a set-theoretical decomposition, not a topological or scheme-theoretic one.
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coming from [Zhu16, Lemma 3.1.7], [BD05, Proposition 2.12.6]. Note that the source of this map is
always isomorphic, étale-locally on R (and noncanonically, since the isomorphism depends on the map
x), to Spec RJtK. In particular, each closed point x of X admits an affine formal neighbourhood

eXx ≃ SpecCJtK→X .

In general, for a R a commutative ring and x ∈X (R), consider the square

�(XR)Γx
ß(XR)Γx

XR \ Γx XR

where the upper left vertex is by definition the pullback of the span. This pullback is again an affine
scheme, called the punctured affine formal neighbourhood of x. If R=C and x is a closed point of X , we
obtain

�Xx ≃ SpecC((t))→X .

Definition A.5. Let BunG be the moduli stack of G-torsors over C. If a scheme Z over C is given, we
define the relative version

BunZ
G : AlgC→Grpd

R 7→ {G-torsors over Z × Spec R}= BunG(ZR).

In the language of mapping stacks, we can write

BunZ
G ≃MapStkC

(Z ,BunG).

Proposition A.6. For any closed point x of a smooth projective complex curve X , the functor GrG is
equivalent to the following:

Grloc
G : R→{F ∈ BunG((ÝXR)x×Spec R),α : F| �(XR)x×Spec R

∼−→ T �(XR){x}×Spec R
}. (A.1)

Proof. The proof is explained for instance in [Zhu16, Proposition 1.3.6].

We will need the following version of the affine Grassmannian as well.

Construction A.7. Let G =GLn . Define Grglob
G as the fiber of the restriction map BunX

G → BunX \{x}
G

at the trivial G-torsor, i.e. as the functor

R→{F ∈ BunG(XR),α : F|XR\({x}×Spec R)
∼−→ TXR\({x}×Spec R)}.

Indeed, in the diagram of groupoids

Grglob
G (R) BunG(XR) BunG((ÝXR){x}×Spec R)

{T|X \{x}} BunG(XR \ ({x}× Spec R)) BunG(( �XR){x}×Spec R)
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the right-hand square is Cartesian by the Beauville-Laszlo Theorem [BL95], more precisely in the form
of [BD05, Remark 2.3.7]. Since the left-hand square is Cartesian by definition, the outer square is
Cartesian. Therefore, Grglob

G (R) is isomorphic to the fiber of the restriction map BunG((ÝXR){x}×Spec R)→
BunG(( �XR){x}×Spec R) at the trivial bundle, and this is exactly Grloc

G (R). For more details, and for the case
of an arbitrary reductive G, see [Zhu16, Theorem 1.4.2].

Remark A.8. Let G be a complex reductive group, X a smooth complex curve, x ∈X (C). In the case
G =GLn , one can filter Gr by

Gr(N ) = {F ∈ BunG(X ),α : F|X \{x}
∼−→ T|X \{x} |O

n
X (−N )⊂ F⊂On

X (N )},

N ∈N. This filtration is compatible with the stratification and the filtration appearing in Recall A.1: see
e.g. [KMW18, §2.3]. In the case of a general G, a similar filtration is achieved by means of the choice
of a faithful representation G→GLn for some n (see [Zhu16, Propositions 1.2.5, 1.2.6]), and a similar
compatibility result holds (see again [KMW18, §2.3]).

Construction A.9. Let R be a commutative discrete ring. We recall now the tensor structure given
by convolution product on PervGO

(GrG ; R). A more detailed account is given in [Zhu16, Section 1,
Section 5.1, 5.4]. Consider the diagram

GK×GrG GK×GO GrG

GrG ×GrG GrG

p

q

m
(A.2)

where GK ×GO GrG (or ConvG) is the stack quotient of the product GK ×GrG with respect to the
“anti-diagonal” left action of GO defined by γ · (g , [h]) = (gγ , [γ−1h]). The map p is the projection to
the quotient on the first factor and the identity on the second one, the map q is the projection to the
quotient by the mentioned action of GO.

Note that the left multiplication action of GO on GK and on GrG induces a left action of GO×GO

on GrG ×GrG . It also induces an action of GO on GK ×GrG given by (left multiplication, id) which
canonically projects to an action of GO on GK ×GO GrG . Note that p, q and m are equivariant with
respect to these actions (more precisely, p is GO×GO-eqivariant, whereas q and m are GO-equivariant).

Now if A1,A2 are two GO-equivariant perverse sheaves on GrG , one can define a convolution product

A1 ⋆A2 = m∗ eA (A.3)

where m∗ is the derived direct image functor, and eA is a perverse sheaf on GK×GOGrG which is equivariant
with respect to the left action of GO and such that q∗ eA = p∗(pH0(A1⊠A2)).

12 Note that such an eA
exists because q is the projection to the quotient and A2 is GO-equivariant, and one can prove that eA is
again perverse.

Note that m∗ carries perverse sheaves to perverse sheaves: indeed, it can be proven that m is ind-
proper, i.e. it can be represented by a filtered colimit of proper maps of schemes, and also semi-small. By
[KW01, Lemma III.7.5], and the definition of PervGO

(GrG ; R) as a filtered colimit, this ensures that m∗
carries perverse sheaves to perverse sheaves.

12The tensor product denotes the derived tensor product in the derived category. If the stalks of the two sheaves are flat, e.g.
when the ring of coefficients is a field, the external tensor product is already perverse, see [MV07, Lemma 4.1]. In general, one
needs to consider the perverse truncation, as in the formula.
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It is important to stress that, at every step, we are implicitly assuming our sheaves to be supported on

some Gr≤µ, and we are considering equivariant structures with respect to the truncations G
( jµ)
O

.
Observations similar to Construction A.7 prove the following:

Proposition A.10. We have the following equivalences of groupoids:

GO(R)≃Aut((ÝXR)x×Spec R,T)

GK(R)≃ {F ∈ BunG(XR),α : F|(X \{x})×Spec R ≃ T|(X \{x})×Spec R,

µ : F|(ÝXR)x×Spec R
≃ T|(ÝXR)x×Spec R

}

(GK×
GO Gr)(R)≃ {F ∈ BunG(XR),α : F|(X \{x})×Spec R ≃ T|(X \{x})×Spec R,

G ∈ BunG(XR),η : F|(X \{x})×Spec R ≃ G(X \{x})×Spec R}

A.2 The convolution product via quotient stacks

Definition A.11. We define the complex stack

GO\Gr

as the fpqc quotient stack of Gr by the left action of GO. We also define

GO\(GK×
GO Gr)

as the fpqc quotient stack of GK×GO Gr by the left action of GO on the first factor GK.

Proposition A.12. There is an equivalence of stacks between GO\Gr and the functor

Affop
C →Grpd

{F0,F1 ∈ BunG(Spec RJtK),η : F0|Spec R((t))
∼−→ F1|Spec R((t))}.

Proof. There is a mapπ from Gr to the moduli space appearing in the statement, described as follows. Let
T be the trivial G-bundle on Spec RJtK; thenπ(F,α) := (T,F,α−1). Let us show that this map is essentially
surjective. Since any G-torsor on Spec RJtK is trivializable locally in Spec R, for any triple (F0,F1,η) as in
the statement one can find, locally in Spec R, µ : F0

∼−→ T and consequently α : F1|Spec R((t))
∼−→ T|Spec R((t))

such that η= α−1 ◦µ|�D . The fact that this is local in Spec R is not a problem, since we are considering the
quotient stack on the left-hand-side. Thus, the triple (T,F1,α−1) is isomorphic to (F0,F1,η) by means of
the isomorphism (µ, id) : (F0,F1,η)→ (T,F1,α−1).

To conclude the proof, it suffices to prove that the fiber of π at each R-point of the right-hand side is
GO×CSpec R. But the fiber at (F0,F1,η) is the set of those (α,µ), α : F1|Spec R((t))

∼−→ T|Spec R((t)),µ : F0
∼−→ T

such that α−1 ◦µ|Spec R((t)) = η, which in turn amounts to the set (in particular a 0-truncated groupoid)
of µ’s since α is completely determined by η and µ. But this is GO, since any two trivializations on
Spec RJtK are connected by a unique automorphism of T on Spec RJtK.

In a similar way, one can prove that

GO\(GK×
GO Gr)≃ {F0,F1,F2 ∈ BunG(D̂),η1 : F0|�D ≃ F1|�D ,η2 : F0|�D ≃ F2|�D}.
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Remark A.13. Consider the diagram of stacks

(GO×GO)\(GK×Gr) GO\(GK×GO Gr)

GO\Gr×GO\Gr GO\Gr
r

p

∼

m (A.4)

where the action of the second copy of GO on GK×GO is the antidiagonal one described in (A.2), all
other actions are induced by the left multiplication action of GO on GK. Then:

• the horizontal map is an equivalence (and therefore a map r as above is defined such that the
diagram commutes);

• a GO-equivariant perverse sheaf on Gr is the same thing as a perverse sheaf on GO\Gr, in the
following sense. Note that the latter is an ind-stack of finite type, hence we can define

Perv(GO\Gr) := colim
µ

Perv(G
( jµ)
O
\Gr≤µ),

where the expression in the colimit is meant in the sense of [LO06, Section 4]. Finally, the claimed
equivalence follows from [LO06, Remark 5.5]. Similar considerations can be done for the other
vertices of the diagram (A.4);

• under the identification at the previous point, the convolution product is equivalently described
(up to the perverse truncations of the derived tensor product) by

A1 ⋆A2 = m∗(r
∗(A1⊠A2)). (A.5)

Note that pullbacks and pushforwards are defined, at the level of the terms in the colimit at the
previous point, as pullback and pushforwards of elements of the derived category.

In particular, we can say that the diagram of stacks

GO\(GK×GO Gr)

GO\Gr×GO\Gr Hck
r m

(A.6)

“correctly models” the convolution product of GO-equivariant perverse sheaves over the affine
Grassmannian (up to the perverse truncation of the derived tensor product appearing in the
original definition).

Lemma A.14. The map r can be described as

r (F0,F1,F2,η1,η2) = ((F0,F1,η1), (F1,F2,η2)).

Proof. A priori, r works as follows: choose

µ0 : F0
∼−→ T

µ1 : F1
∼−→ T
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α1 : F1|SpecC((t))
∼−→ T|SpecC((t))

α2 : F2|SpecC((t))
∼−→ T|SpecC((t))

such that α−1
1 µ0|SpecC((t)) = η1,α−1

2 ◦µ1|SpecC((t)) ≃ η2.
Then by definition

r (F0,F1,F2,η1,η2) = ((T,F1,α−1
1 ), (T,F2,α−1

2 )).

But now, there are squares of isomorphisms on SpecC((t))

T F1

F0 F1

α−1
1

µ0|SpecC((t))

η1

id

T F2

F1 F2

α−1
2

µ1|SpecC((t))

η2

id

where the vertical maps are induced by the isomorphisms on SpecCJtK, and we conclude.

Remark A.15. Note that this map does not coincide with the map induced by the isomorphism (id, m) :
GK×GO Gr→Gr×Gr (cf. [Zhu16, (1.2.14)]), which is instead described by

(F0,F1,F2,η1,η2) 7→ ((F0,F1,η1), (F0,F2,η1 ◦η2)).

Indeed, to prove that this is the same map we would need to build a commuting square

T F2

F0 F2

α−1
2

η2η1

id

but here there is no reason why α2η2η1 would extend to the complete disk: we know that there exist
eµ,eα such that η2η1 = eα

−1
eµ|�D , which in general lies in GK and not in GO.

Remark A.16. Let N ∈ N, j ≥ jN . Let G(N , j )
K

= GK×GO G( j )
O

. The diagram (A.6) admits a truncated
version

Hck(N , j )
2

Hck(N , j )×Hck(N , j ) Hck(2N ,2 j )

r m
(A.7)

where

Hck(N , j ) =G( j )
O
\Gr(N )

Hck(N , j )
2 =G( j )

O
\(G(N , j )

K
×G( j )

O Gr(N )).

and similar.
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We can assemble these objects into the following:

Definition A.17. The ind-pro-stack

“colim
N∈N

”“ lim
j≥ jN

”Hck(N , j )

is denoted by
Hck,

and similarly
Hck2 = “colim

N∈N
”“ lim

j≥ jN
”Hck(N , j )

2 .

One can check that the convolution formula arising from push-pull along this diagram and (A.5)
agree. In particular, the choice of jN , j does not change the formula.

To see this, it suffices to note the following. First of all, by definition of the categories of perverse
sheaves, the original formula for the convolution product is actually the one arising from the diagram

Hck(N )2

Hck(N )×Hck(N ) Hck(2N )

r m

where

Hck(N ) =GO\Gr(N )

Hck(N )2 =GO\(G
(N )
K
×GO Gr(N )).

and similar.
If j ≥ j2N , we can further truncate the diagram to (A.7), and the convolution formula is again the

same because

• PervGO
(Gr(N ); R)≃ Perv

G( j )
O

(Gr(N ); R).

• G(N )
K
×GO Gr(N ) ≃G(N , j )

K
×G( j )

O Gr(N ) by definition.

Notice that the same arguments work at the level of equivariant constructible sheaves (see e.g. [AR23,
2.4.3]).

A.3 Models for the spherical Hecke category

The main result of this paper Corollary 4.14 is about Sph(G;E)loc.c, a category of equivariant constructible
sheaves on Gran, the analytification of the affine Grassmannian, with very general coefficients: namely,
any presentable stable∞-category E works. In the present subsection, we will remark how that category
specializes to familiar ones in two special cases: with coefficients in finite/profinite/ℓ-adic rings, or with
complex coefficients. In the first case, there is an interpretation of the mentioned category in terms of
algebraic constructible sheaves over the affine Grassmannian. Hence, let us gather a couple observations
about those.

Let S be the stratification by Schubert cells of the affine Grassmannian (Recall A.1). For N ∈N, let
S (N ) be its restriction to Gr(N ).
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Definition A.18. Let G be a reductive group over C, and R a finite ring. We define

Consfd
GO
(Gr(N ),S (N ); R) =Consfd

G( jN )
O

(Gr(N ),S (N ); R)

with the notation of Definition B.8.

By Corollary B.49, this category is equivalent to its counterparts defined in the complex-analytic
world

Consfd
(G( jN )

O
)an
((Gr(N ))an, (S (N ))an; R)

(Remark B.36).
As a consequence, by the same proof of Proposition 4.2, the definition is independent of jN . One

could also reach the same conclusion directly on the algebro-geometric side ([AR23, Proposition 10.2.8
with K = (0)]).

We can thus define

Consfd
GO
(GrG ,S ; R) = colim

N≥0
Consfd

GO
(Gr(N ),S (N ); R)

Dfd
c,GO
(Gr(N ); R) =Dfd

c,G( jN )
O

(Gr(N ); R)

Dfd
c,GO
(Gr; R) = colim

N≥0
Dfd

c,GO
(Gr(N ); R).

which again will agree with their complex-analytic counterparts (by definition):

Consfd
GO
(GrG ,S ; R)≃Consfd

Gan
O

(Gran,S an; R)

Dfd
c,GO
(Gr; R)≃Dfd

c,Gan
O

(Gran; R).
(A.8)

Remark A.19. Note that the forgetful functor

PervGO
(Gr,S ; R)→ Perv(Gr,S ; R)

is an equivalence (see for example [BR18, Section 4.4]), but

Consfd
GO
(Gr,S ; R)→Consfd(Gr,S ; R)

is not.

On the other hand:

Proposition A.20. The map
Consfd

GO
(Gr,S ; R)→Dfd

c,GO
(Gr; R)

is an equivalence.

Proof. By definition, the claim can be checked on each Gr(N ), where it is true by Lemma B.11.

Remark A.21. All these results, with the right definitions, are true for profinite and ℓ-adic coefficients (cf.
Remark B.10, Remark B.48) as well. We will only mention such coefficients in the following Remark A.24,
which serves as a connection with other definitions of the small spherical Hecke category appearing in
the literature and only uses the contents of this subsection. Hence, we will not delve into further details
about profinite and ℓ-adic coefficients. The interested reader is encouraged to look at the references
mentioned in Remark B.10.
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Definition A.22. Let G be a complex reductive group and R a discrete, prodiscrete or ℓ-adic ring. The
topological spherical Hecke category of G with coefficients in R is

Sph(G; R)top =ConsGan
O
(Gran; R).

The small spherical Hecke category of G with coefficients in R as

Sph(G; R)loc.c. =Consfd
Gan
O

(Gran; R).

Usually, in the Geometric Langlands Program, a renormalization of Sph(G) is used:

Definition A.23. Let G be a complex reductive group and R be a discrete, prodiscrete ring or ℓ-adic ring.
The renormalized spherical Hecke category of G with coefficients in R is

Sph(G; R)ren = Ind(Sph(G; R)loc.c).

Remark A.24. Let R be finite, profinite or ℓ-adic. By (A.8) and Proposition A.20,

Sph(G; R)loc.c ≃Consfd
GO
(Gr; R)≃Dfd

c,GO
(Gr; R)

(and same for its Ind-completion). In particular, with these coefficients, the small and the renormalized
spherical Hecke category do not distinguish between the algebraic and the analytic setting. Therefore,
the same is true for the main result of our paper (Corollary 4.14), although the proof uses features of the
analytic setting.

Remark A.25. On the other hand, we can consider discrete infinite rings such as C. In this case,
Sph(G;C)loc.c and Sph(G;C)ren admit an interpretation in terms of D-modules. Namely, by the Riemann-
Hilbert correspondence we have that

Dfd
c (Gran;C)≃DMod(Gr)ω.

Let DModGO
(Gr)loc.c ⊂DModGO

(Gr) be the full subcategory spanned by objects which become compact
after forgetting the equivariant structure ([AG15, 12.2.3]). Then we have an equivalence

Dfd
c,GO
(Gran;C)≃DModGO

(Gr)loc.c

Combined with Lemma B.40, this provides an equivalence

Sph(G;C)loc.c ≃DModGO
(Gr)loc.c.

B Recollections and complements in stratified homotopy theory

B.1 Stratified schemes and stacks

Let us denote by SchC the category of complex schemes, and by Schlft
C the full subcategory of complex

schemes, locally of finite type.
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B RECOLLECTIONS AND COMPLEMENTS IN STRATIFIED HOMOTOPY THEORY

Definition B.1. The category of stratified complex schemes is defined as StrSchC = SchC ×Top StrTop,
where the map SchC→Top sends a scheme X to its underlying Zariski topological space, and the other
map is the evaluation at [0].

We also define the category
StrSchlft

C

as the full subcategory of StrSchC spanned by those stratified schemes such that the stratification is finite
constructible in the sense of [BGH20, Definition 1.2.1], and such that the underlying scheme is locally
of finite type.

Remark B.2. By looking at the étale topology, we can consider the site (SchC,ét) and the category

Stklft
C = Shvét(Schlft

C ;Grpd)

of étale stacks locally of finite type.
We can define strét as the topology whose coverings are étale coverings whose stratification is induced

by the one on the base. This leads to defining the category

StrStklft
C = Shstrét(StrSchlft

C ;Grpd) (B.1)

of stratified étale stacks locally of finite type (stratified stacks for short).

Definition B.3. Let uni⊂Mor(StrSchlft
C ) be the class of those morphisms f : X → Y which:

• are smooth morphisms on the underlying schemes

• when restricted to each stratum Yα of Y , can be presented as a quotient by a unipotent smooth
group scheme (trivially stratified).

By abuse of notation, we define uni ⊂ Mor(StrTStk) to be the class of morphisms X→ Y which are
representable and whose pullback to any map Z→ Y, with Z representable, belongs to tri.

We define Prouni(StrSchlft
C ) to be the full subcategory of Pro(StrSchlft

C ) spanned by those pro-objects
which can be presented as formal limits of cofiltered diagrams with transition maps belonging to uni.

Remark B.4. The class uni (both at the level of schemes and stacks) is stable under pullbacks.

Definition B.5. We define the (2,1)-category

{

StrStklft
C = Fun((Prouni(StrStklft

C ))
op,Grpd).

B.2 Constructible sheaves on stratified schemes and stacks

Definition B.6 ([BGH20, Example 13.2.9]). Let (Y, s ) be a complex stratified scheme of finite dimension,
and R a finite ring. The∞-category of constructible sheaves

Consfd(Y, s ; R)

is defined as the full subcategory of
Shvét(Y,ModR)

spanned by those objects which, after restriction to each stratum, are locally constant and lisse (in the
sense of [BGH20, Definition 13.2.6]).
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B.2 CONSTRUCTIBLE SHEAVES ON STRATIFIED SCHEMES AND STACKS

There is also the notion of constructible sheaves with respect to some stratification (instead of a fixed
one).

Recall B.7 ([BL94, 4.1], [GL18, Proposition 4.2.5]). Let Y be a complex scheme locally of finite type,
and R a finite ring. We define

Dfd
c (Y ; R) = colim

S algebraic stratification of Y
Cons(Y,S ; R)⊂ Shvét(Y ; R). (B.2)

since the colimit in the right-hand-side is filtered: indeed, one can refine two algebraic stratification by a
common one13. When Y is quasiprojective, this is the∞-category of compact objects14 in Shvét(Y ; R).

Constructible sheaves on stratified stacks can be defined by right Kan extension. However, we will
only need the special case of quotient stacks (i.e. the case of equivariant constructible shaves on schemes),
which we recall below.

Definition B.8. Let (Y, s ) be a stratified complex scheme of finite dimension, H a group scheme of finite
type acting on Y in such a way that the action sends strata to strata, and let R be a finite ring. There is a
simplicial diagram

. . . (H ×H ×Y, s2) (H ×Y, s1) (Y, s) (B.3)

where si is the stratification on
i
︷ ︸︸ ︷

H × · · ·×H ×Y which is trivial on the group factors and s on the
last factor. As usual, in the left direction are induced by the identity element of G in various ways, and
maps in the right direction are induced by combinations of the action and the projections.

The∞-category Consfd
H (Y, s ; R) of H -equivariant constructible sheaves on Y with respect to the

stratification s is defined as the limit of the cosimplicial diagram (induced by pullback of sheaves from
(B.3))

. . . Consfd(H ×H ×Y, s2; R) Consfd(H ×Y, s1; R) Consfd(Y, s ; R) (B.4)

Recall B.9. Let Y be a finite-dimensional scheme, H a group scheme of finite type acting on Y , R a
finite ring. The∞-category Dfd

c,H (Y ; R) of H -equivariant constructible sheaves on Y is the limit of the
diagram (induced by pullback of sheaves from (B.3))

. . . Dfd
c (H ×H ×Y ; R) Dfd

c (H ×Y ; R) Dfd
c (Y ; R) (B.5)

Remark B.10. One can define constructible sheaves and equivariant constructible sheaves on stratified
schemes (both with respect to a fixed stratification or not) with coefficients in profinite or ℓ-adic rings,
cf. [Beh04, §6.1], [BGH20, Recollection 13.7.7, 13.8.7]. Unlike the case of constructible sheaves on

13This is easy because we did not assume the strata to be smooth. For the smooth case, see [MSE20].
14See [GL18, Proposition 4.2.5]. To see the equivalence between constructibility and condition (1) in loc. cit., one can apply

noetherianity in order to find suitable finite stratifications of Y .
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stratified topological spaces (Definition B.35), this definition is not formal. However, in this paper we
are only interested in proving that with the correct definitions a GAGA principle holds (Remark B.48).
Since the profinite and ℓ-adic case arise via limits and filtered colimits from the finite case, it will suffice
to prove the finite case (Proposition B.47).

In the setting of Recall B.9, if one assumes that there are finitely many orbits of H , these orbits form
a stratification themselves ([MO14]), which we denote by s . Let R be a finite ring. We have a pullback
square of stable∞-categories

Consfd
H (Y, s ; R) Consfd(Y, s ; R)

Dfd
c,H (Y ; R) Dfd

c (Y ; R).

(B.6)

Note that the vertical functors are fully faithful because the transition maps in the colimit (B.2) are, and
the colimit is filtered. Now, the horizontal arrows in (B.6) are not equivalences. On the contrary:

Lemma B.11. Let R be a finite ring. Let H be a group scheme acting on a finite-dimensional scheme Y , and
suppose that there are finitely many orbits, forming a stratification s of Y . Then the functor Consfd

H (Y, s ; R)→
Dfd

c,H (Y ; R) is an equivalence.

Proof. We already remarked that the functor is fully faithful. We now argue like in [MO21]. Let us now
consider an equivariant constructible sheaf F with respect to some stratification, and let us prove that
it is constructible with respect to the orbit stratification. Let us consider the maximal open subset U
of Y where the sheaf is locally constant: this is nonempty since we know that F is constructible with
respect to some stratification, and any stratification of a finite-dimensional scheme has an open stratum.
More subtly, there is an open dense stratum in every connected component of Y , and by taking unions
of such over all the connected components of Y , we obtain an U such that its complementary is closed
of dimension strictly smaller than dimY . Also, U is unique, since the union of two open subsets where
F is locally constant has again the property that F is locally constant there. Now, U is H -stable by
equivariancy of F and maximality of U itself, and thus its complementary is H -stable as well and we can
apply Noetherian induction.

B.3 Stratified topological spaces and stacks

The following definition is a particular case of [BGH20, 8.2.1 and ff.].

Definition B.12. Let Top be the 1-category of topological spaces. The category of stratified topological
spaces is defined as

StrTopC = Fun(∆1,Top)×Top Poset,

where the map Fun(∆1,Top)→Top is the evaluation at 1, and Alex : Poset→Top assigns to each poset
P its underlying set with the so-called Alexandrov topology (see [BGH20, Definition 1.1.1]).

Note that StrTop is complete and cocomplete, because Top, Fun(∆1,Top) and Poset are.

Recall B.13. Let (X , s) be a stratified topological space. The notion of conical stratification as given in
[Lur17, Definition A.5.5] amounts to asking that around each point of X there exists a neighbourhood
which is stratified homemorphic to Z ×C(Y ) where Z is an unstratified space and C(Y ) is the stratified
open cone of a stratified space Y . Being conical is the main condition required to a stratified space in
order to make the so-called Exodromy Theorem (Recall B.30) true.
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For simplicity, in the present paper a stratified space is called conical if satisfies several conditions
altogether:

Definition B.14. The category StrTopcon is the full subcategory of StrTop spanned by those stratified
spaces (X , s : X → P ) such that:

• X is locally of singular shape in the sense of [Lur17, Definition A.4.15]

• the strata of X are locally weakly contractible;

• P satisfies the ascending chain condition;

• the stratification is conical in the sense of [Lur17, Definition A.5.5].

This category admits finite products, essentially because the product of two cones is the cone of the join
space. Therefore, there is a well-defined symmetric monoidal Cartesian structure StrTop×con.

Remark B.15 (Condition of the frontier). One consequence of the conicality assumption is the condition
of the frontier, i.e. the fact that given two strata Xp ,Xq , such that Xp is connected and such that Xq∩Xp ≠
∅, then Xp ⊂Xq . This is true locally by inspection of the conical model and is globalized by connectedness

of Xp . Notice that, whenever this happens, we automatically get that p ∈ s (Xq )⊂ {q}= P≤q , i.e. p ≤ q .

Notation B.16. Let us consider the topology of local homeomorphisms on the topological side (which
has however the same sheaves as the topology of open embeddings). We have thus the site (Top, loc) and
the category

TStk= Shvloc(Top;Grpd)

of topological stacks.
Let strloc be the topology whose coverings are jointly surjective families of local homeomorphisms

such that the stratification on the total space is induced by that on the base. This defines (2,1)−categories

StrTStk= Shstrloc(StrTop;Grpd)
StrTStkcon = Shstrloc(StrTopcon;Grpd)

of (conically) stratified topological stacks.

Definition B.17. Let α,β : (X , s)→ (Y, t ) be two stratified maps between stratified topological spaces.
Let es be the stratification of [0,1]×X induce by the projection [0,1]×X →X . A stratified homotopy
between α and β is a stratified map

H : ([0,1]×X ,es)→ (Y, t )

such that H (0,−) = f , H (1,−) = g .

Definition B.18. A stratified homotopy equivalence between stratified topological spaces is a stratified
map f : (X , s )→ (Y, t ) such that there exist a stratified map g : (Y, t )→ (X , s ) and stratified homotopies
f g ≃ idY , g f ≃ idX .

Remark B.19. Note that the class of stratified homotopy equivalences is not closed under pullbacks (just
like homotopy equivalences of topological spaces are closed under homotopy pullback but not under
pullbacks).
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Remark B.20. A stratified homotopy equivalence induces an isomorphism at the level of posets, and
homotopy equivalences on each stratum.

Definition B.21. Let f : (X , s )→ (Y, t ) be a morphism in StrTopcon. We say that f is a smooth stratified
submersion if, locally in the topology of stratified local homeomorphisms on X , it is of the form of a
projection (Y, t )×RN → (Y, t ) for some N (where RN is seen as a trivially stratified space).

We denote this class by subm. When both X and Y are unstratified, we will just speak about smooth
topological submersion.

Remark B.22. Smooth stratified submersions are closed under pullback (cf. [Vol21, Remark 3.23]). This
is of course not true for stratified homotopy equivalence (since for example homotopy equivalences of
trivially stratified manifolds are not closed under pullback).

Definition B.23. Let tri⊂Mor(StrTop) be the class of those morphisms f : X → Y which:

• are smooth stratified submersions in the sense of Definition B.21

• when restricted to each stratum Yα of Y , become trivial Serre fibrations (in particular, the stratifi-
cation on both source and target becomes trivial).

Let tri⊂Mor(StrTStk) be the class of morphisms X→ Y which are representable and whose pullback to
any map Z→ Y, with Z representable, belongs to tri.

We define Protri(StrTStk) to be the full subcategory of Pro(StrTStk) spanned by those pro-objects
which can be presented as formal limits of cofiltered diagrams with transition maps belonging to tri; we
also define Protri(StrTStkcon) to be the full subcategory of Pro(StrTStkcon) spanned by those pro-objects
which can be presented as formal limits of cofiltered diagrams with transition maps belonging to tri.

Remark B.24. The class tri (both at the level of spaces and stacks) is stable under pullback.

Definition B.25. We define the (2,1)-categories

{StrTStk= Fun((Protri(StrTStk))op,Grpd).
{StrTStkcon = Fun((Protri(StrTStkcon))

op,Grpd).

Remark B.26. Note that there is a canonical fully faithful embedding

{StrTStkcon ,→ {StrTStk.

This is defined as follows. First of all, there is a functor

StrTStkcon→ StrTStk

given by left Kan extension, which preserves colimits. Then, this can be extended to a functor

Protri(StrTStkcon)→ Protri(StrTStk)

by using right Kan extension, and the new functor preserves cofiltered limits. Finally, we can extend the
latter functor to

{StrTStkcon→ {StrTStk

by left Kan extension, and the new functor preserves all colimits.
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Definition B.27. A morphism f : X→ Y in StrTStk belongs to she′ if it is representable and it can be
presented as a colimit of maps in she.

A morphism f : X→ Y in Protri(StrTStk) belongs to she′′ if it can be presented as

“ lim
j∈J

” f j

where J is cofiltered and each f j is equivalent to a map in she′ in StrTStk.

A morphism f : X→ Y in {StrTStk belongs to xshe if it can be presented as a colimit of maps in she′′.
These classes restrict to classes of maps in the correspondent categories formed from StrTopcon instead

of StrTop, and will be denoted in the same way.

Definition B.28. A morphism f : X → Y in StrTStk belongs toàsubm if it is representable and its
pullback to any representable belongs to subm.

A morphism f : X→ Y in StrTStk belongs to subm if there is a commutative square

X Y

X Y

where X ,Y are representable, the vertical arrows belong toàsubm and the top horizontal arrow belongs
to subm.

A morphism f : X→ Y in Protri(StrTStk) belongs to subm′′ if it can be presented as

“ lim
j∈J

” f j

where J is cofiltered and each f j is equivalent to a map in subm′ in StrTStk.

A morphism f : X→ Y in {StrTStk belongs to zsubm if for every Z ∈ Protri(StrTStk) ,→ {StrTStkcon

and a map Z→ Y, the pullback in {StrTStkcon

X×Y Z

belongs to the essential image of the Yoneda embedding Protri(StrTStk) ,→ {StrTStk and the canonical
map

X×Y Z→ Z

is equivalent to a map in subm′′ in Protri(StrTStk).
These classes restrict to classes of maps in the correspondent categories formed from StrTopcon instead

of StrTop, and will be denoted in the same way.

Remark B.29. The classes of maps zsubm in {StrTStk and in {StrTStkcon are closed under pullbacks.

B.4 Constructible sheaves on stratified topological spaces and stacks

Recall B.30. Let (Y, s) ∈ StrTopcon. The∞-category

Cons(Y, s ;S)
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of space-valued constructible sheaves is defined in [Lur17, Definition A.5.2] and proven to be equivalent
(by [Lur17, Theorem A.9.3] , nowadays known as the Exodromy Theorem in topology), to the∞-category

Fun(Exit(Y, s),S).

Here Exit(Y, s ) is a small∞-category called the∞-category of exit paths on (Y, s ) (see [Lur17, Definition
A.6.2], where it is denoted by SingA(Y ), A being the poset associated to the stratification).

Remark B.31. Every space which is locally of singular shape in the sense of [Lur17, Definition A.4.15]
has the property that every locally constant sheaf is automatically hypercomplete ([Lur17, Corollary
A.1.17]).

One can consider coefficient categories different than S, namely any presentable stable∞-category.

Definition B.32. Let (Y, s) ∈ StrTopcon and E a presentable stable∞-category. We define

Cons(Y, s ;E)

as the full subcategory of Shv(Y ;E) spanned by constructible sheaves in the sense of [PT22, Definition
2.27] (hypercompleteness in loc. cit. can be ignored thanks to Remark B.31).

Theorem B.33 ([PT22]). Let (Y, s) ∈ StrTopcon, and E a presentable stable∞-category. Then

Cons(Y, s ;E)≃ Fun(Exit(Y, s),E).

Proof. This is the content of [PT22, Theorem 5.17] together with [PT22, Remark 5.18] and Remark B.31.

Remark B.34. Note that, for C any small∞-category and E presentable,

Fun(C,E)≃ Fun(C,S)⊗E. (B.7)

This follows from the fact that if C is small then Fun(C,S) is presentable and from the formula

A⊗B≃ FunR(Bop,A)

[Lur17, Proposition 4.8.1.17] for A,B presentable. As a consequence, under the hypotheses of Theo-
rem B.33, we have

Cons(Y, s ;E)≃Cons(Y, s ;S)⊗E.

Definition B.35. Let R be a discrete ring. We denote

Modcont
R =ModR

Modfd
R =Modcont,fd

R = PerfR.

Let us also denote by Modtors
R ,Modfd,tors

R the respective full subcategories of torsion modules.
Let R= limi∈I Ri be a prodiscrete ring, i.e. I is cofiltered, Ri is discrete for each i and R has the limit

topology.
Then we define

Modcont
R = lim

i∈I
ModRi
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as a limit in PrL (transition maps are given by tensor product) and

Modcont,fd
R = lim

i∈I
PerfRi

.

In the same way we define Modcont,tors = limi Modtors
Ri

and Modcont,fd,tors = limi Modfd,tors
Ri

.
Let R be a finite extension ofQℓ (from now on an “ℓ-adic ring”). We define

Modcont
R = cofib[Modcont,tors

OR
,→Modcont

OR
]

Modcont,fd
R = cofib[Modcont,fd,tors

OR
,→Modcont,fd

OR
]

where the cofibers are taken respectively in PrL
st and in Catex

∞. Finally, let R be an algebraic extension of
Qℓ. Then we define

Modcont
R = colim

Qℓ⊂E⊂R finite subextension
Modcont

E

Modcont,fd
R = colim

Qℓ⊂E⊂R finite subextension
Modcont,fd

E .

Note that since the inclusion functors PrL
st ,→ PrL and Catex

∞ ,→ Cat∞ are closed under limits and
filtered colimits, all of the above are stable∞-categories.

Remark B.36. If R is a discrete reing, we denote

Cons(Y, s ; R) =Cons(Y, s ,ModR)

Consfd(Y, s ; R) =Consfd(Y, s ;Modfd
R ).

Let R= limi Ri be a profinite ring. We can apply Theorem B.33 with C=Modcont
R and obtain

Cons(Y, s ;Modcont
R )≃ Fun(Exit(Y, s),Modcont

R )≃ lim
i

Cons(Y, s ; Ri ) (B.8)

which we denote by Cons(Y, s ; R). This equivalence restricts to an equivalence

Consfd(Y, s ; R)≃ Fun(Exit(Y, s),Modcont,fd
R )≃ lim

i
Cons(Y, s ; Ri ),

which we denote by Consfd(Y, s ; R). Note that, in general, this is not the category of compact objects of
Cons(Y, s ; R).

When R is a finite extension ofQℓ, by Remark B.34 we have

Cons(Y, s ;Modcont
R )≃ Fun(Exit(Y, s),Modcont

R )≃
Fun(Exit(Y, s),S)⊗ cofib(Modcont,tors

OR
→Modcont

OR
)≃

cofib(Constors(Y, s ;OR)→Cons(Y, s ;OR)).

When R is an algebraic extension ofQℓ, we have

Cons(Y, s ;Modcont
R )≃ colim

Qℓ⊃E⊃R finite subextension
Cons(Y, s ;Modcont

E )

which we denote by Cons(Y, s ; R). We also define, in all previous cases of R,

Consfd(Y, s ; R) =Consfd(Y, s ;Modcont,fd
R ).
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Recall B.37. Let Y be a topological space, E a stable presentable∞-category. We define

Dc(Y ;E) = colim
(Y,s) conical stratification

Cons(Y, s ;E).

As we will see in Section B.6, the functor Cons(−;E) : StrTopop
con→ PrL

E
can be right Kan extended to

StrTStkcon. We consider here the case of quotient stacks, i.e. the case of equivariant constructible sheaves
over stratified topological spaces.

Definition B.38. Let (Z , t ) be a stratified topological space and K a topological group acting on Z
compatibly with t . Let E be a presentable stable∞-category. We define the the category of K -equivariant
E-valued constructible sheaves on Z

ConsK (Z , t ;E)

as the limit of the diagram (induced by pullback of sheaves along (B.3))

. . . Cons(K ×K ×Z , t2;E) Cons(K ×Z , t1;E) Cons(Z , t ;E) (B.9)

where si is the stratification on
i

︷ ︸︸ ︷

H × · · ·×H ×Y which is trivial on the group factors and s on the last
factor, and the diagram is the simplicial diagram encoding the action of H on Y .

Definition B.39. Let (Y, s ) be a stratified topological space, H a topological group acting on Y compatibly
with s , and let a presentable stable∞-category. We define

Consfd
H (Y, s ;E) =ConsH (Y, s ;E)×Cons(Y,s ;E)Consfd(Y, s ;E)≃ lim

n∈∆
Consfd(H n ×Y, sn ;E)

Lemma B.40. Let E be a symmetric monoidal presentable stable∞-category. Let K be a topological group
acting on a topological space Z locally of singular shape, and suppose that the orbits, form a conical stratification
t of Z. Then the functor Consfd

K (Z , t ;E)→Dfd
c,K (Z ;E) is an equivalence.

Proof. As in the proof of Lemma B.11, we already know that the functor is fully faithful. Let us now
consider an equivariant constructible sheaf F with respect to some conical stratification (Z , s : Z→ P ),
and let us prove that it is constructible with respect to the orbit stratification. By the ascending chain
condition for P , there exists at least an open stratum in s . In fact, all minimal depth strata (i.e. strata
associated to a maximal p in P ) are open: indeed, let p be a maximal element of P , and consider Y \Yp .
Suppose for simplicity that Yp is connected. If this subspace intersects Yp nontrivially, in particular there

exists another stratum Yq , q ̸= p, such that Yq ∩Yp ̸=∅. By the condition of the frontier Remark B.15,

this implies that Yp ⊂ Yq and hence q ≥ p, contradiction.
We define U as the maximal open union of strata such that F is locally constant over U . It is

nonempty because F is constructible with respect to s and by the above remark about minimal depth
strata. Moreover, U is unique because the union of two open subsets where F is locally constant has
again the property that F is locally constant there. Also, the complementary of U is concentrated in
strata of non-minimal depth, again by the above remark. Now, U is K -stable by equivariancy of F and
maximality of U itself15, and thus its complementary is K -stable as well and we can apply Noetherian
induction on the maximum lenght of ascending chains of P .

15To see this, one can argue as follows: suppose U is not K -stable, and let g ∈K such that g U ̸= U . Pick a point v ∈ g U ,
and an open subset V ⊂ U such that gV ∋ v and F|V is constant with value E ∈ E. Then, by equivariance, we have that
F(gV )≃ F(V )≃ E . Hence, F is locally constant on U ∪ gV , which contradicts maximality of U .
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B.5 Stratified analytification

Theorem B.41 ([Ray71, Théorème et définition 1.1]). Let X be a scheme locally of finite type over C. Then
there exists an associated complex-analytic space X an, whose underlying set is X (C) and which represents the
functor

{complex-analytic spaces}→ Set

Y 7→Hom ringed spaces (Y,X ).

We can forget the structure sheaf of holomorphic functions and recover an underlying Hausdorff
topological space (which corresponds to the operation denoted by | − | in [Ray71]). We thus obtain a
functor which by abuse of notation we denote by

(−)an : Schlft
C →Top

(instead of |(−)an|).
This functor preserves finite limits ([Ray71, 1.2]) and sends étale coverings to coverings in the local

homeomorphism topology.

Construction B.42. There is a natural stratified version of the functor (−)an, namely the one which
accounts for the stratification induced by the map of ringed spaces u : San→ S coming with the universal
property:

StrSchlft
C → StrTop

(S, s) 7→ (San, s ◦ u).

Example B.43 (Smooth algebraic maps). Let X ,Y be complex schemes, locally of finite type, and
f : X → Y be a smooth morphism in the sense of algebraic geometry. Then f an is a smooth topological
submersion. In particular, the analytification of a smooth scheme locally of finite type is a topological
manifold.

Proof. This is [Vak22, Exercise 13.6.A].

Example B.44 (Relative stratified torsors with smooth fiber). Let X ,Y, S be complex stratified schemes,
locally of finite type, and X → S,Y → S . Suppose that f : X → Y is a torsor, relative over S , whose fiber
is a smooth unstratified scheme over S. Then f an is a smooth stratified submersion.

Proof. Such a map is, in particular, a smooth morphism in the sense of algebraic geometry, hence we can
apply Example B.43.

Proposition B.45. The stratified analytification functor (−)an : StrSchlft
C → StrTop sends stratified étale

coverings to stratified coverings in the topology of local homeomorphism. Also, it sends morphisms in uni to
morphisms in tri.
Proof. The first part follows from [Ray71, Proposition 3.1].

For the second part, note first of all that the analytification of a smooth morphism of schemes is in
subm by Example B.43. After restriction to any stratum of Y , a map in uni is étale-locally trivial (because
it is assumed to be a torsor) and hence its analytification is a Serre fibration. Now, a unipotent group
scheme is isomorphic (as a scheme) to some affine space AN

C (see [KMT74, Theorem 8.0]). Therefore, its
analytification is contractible. This implies that the analytification of a morphism in uni, when restricted
to strata, is a trivial Serre fibration of trivially stratified spaces.

To conclude the proof, it suffices to apply [HN24, Lemma 4]. More precisely, that theorem is stated
with coefficients in spaces, but we recover our version from combining Recall B.30 and Remark B.34.
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Corollary B.46. We have an extended analytification functor

(−)an :
{

StrStklft
C → {StrTStk. (B.10)

Proof. The extension from schemes to stacks follows from the first part of Proposition B.45. The
extension from stacks to pro-uni-objects follows from the second part of Proposition B.45. The extension
from pro-uni-objects is done by left Kan extension (i.e. covariant functoriality of Fun(−,Grpd)).

Proposition B.47. Let (Y, s) be a qcqs complex stratified scheme, locally of finite type, and R a finite ring.
Then there is an equivalence of∞-categories

Consfd(Y, s ; R)≃Consfd(Y an, s an; R).

Proof. The claim follows from the proof [BGH20, Proposition 12.6.4] (in turn building upon [AGV72,
Théorème XVI. 4.1])16.

Remark B.48. This proof only relies on the Exodromy theorem both on the algebraic17 and topological
side. Hence, it extends to the profinite and ℓ-adic case (cf. Remark B.10) by [BGH20, Theorem 13.7.8]
(for the finite/profinite case) and [BGH20, Theorem 13.8.8] (for algebraic extensions ofQℓ).

By forming limits from the statement of Proposition B.47, we obtain, in the same setting, that:

Corollary B.49. Let (Y, s ) be a finite dimensional complex stratified scheme, and H a complex group scheme,
locally of finite type, acting on it in a stratified way. There is an equivalence of∞-categories

Consfd
H (Y, s ; R)≃Consfd

H an(Y an, s an; R).

B.6 Monoidality, Kan extensions and correspondences

Notation B.50. The (very large)∞-category of presentable stable∞-categories and all functors is
denoted by Prst. The (very large)∞-category of presentable stable∞-categories and left adjoint functors
is denoted by PrL

st. The∞-category of presentable stable∞-categories and right adjoint functors is
denoted by PrR

st.
Let E be a presentable stable symmetric monoidal∞-category. We denote:

• by PrL
E

the∞-sub-category of ModE(Pr⊗st) spanned by the objects belonging to ModE(PrL,⊗
st ) and

whose morphisms are E-linear functors admitting an E-linear right adjoint. This is, in particular, a
non-full subcategory of ModE(PrL,⊗

st );

• by PrR
E

the∞-sub-category of ModE(Pr⊗st) spanned by the objects belonging to ModE(PrL,⊗
st ) and

whose morphisms are E-linear functors admitting an E-linear left adjoint;

• by PrLR
E

the∞-sub-category of ModE(Pr⊗st) spanned by the objects belonging to ModE(PrL,⊗
st ) and

whose morphisms are E-linear functors admitting both an E-linear left adjoint and an E-linear right
adjoint.

16Although the statement is given for categories of constructible sheaves with respect to some algebraic stratification (and its
analytic counterpart) the proof actually proceeds by establishing the equivalence when the stratification is fixed, and then passes
to the colimit.

17By Exodromy on the algebraic side, we mean [BGH20, Corollary 13.2.12] for finite coefficients, and the references below
in this remark for profinite and ℓ-adic coefficients. Note that a “coherent scheme” in the terminology of loc.cit. is a qcqs scheme
([BGH20, 0.11.15]).
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For E =ModR, R being a discrete commutative ring, we denote this categories by PrL
R,PrR

R,PrLR
R .

For R prodiscrete or ℓ-adic, we use the same notation while taking E=Modcont
R .

Remark B.51. Let C⊗ be a symmetric monoidal∞-category. We denote by C⊗-op the “pointwise-
opposite” symmetric monoidal structure on Cop ([MO15], [BGN18]). For example, if C has finite
products, C×-op ≃ (Cop)⨿.

PrL
E

carries a natural symmetric monoidal structure inherited from PrL,⊗
st , which we denote by PrL,⊗

E
.

The monoidal law is the relative tensor product −⊗E−.
Let PrR be the∞-category of presentable∞-categories with right adjoint functors between them.

We denote by PrR,⊗ the symmetric monoidal structure induced by the equivalence

(PrL)op ≃ PrR

i.e.
PrR,⊗ = PrL,⊗-op.

As usual, for any stable presentable symmetric monoidal∞-category, we also have the E-linear variant
PrR,⊗

E
, whose objects are the same as ModE(Prst) and whose morphisms are those functors admitting a

left adjoint. Note that we also have an equivalence

(PrL
E)

op ≃ PrR
E .

This does not happen for categories of E-modules, and relies on the fact that we required the right adjoints
to be E-linear.

Finally, PrLR
E

also admits a symmetric monoidal structure, which is auto-dual and makes the inclusion
functors PrLR,⊗

E
⊂ PrL,⊗

E
and PrLR,⊗

E
⊂ PrR,⊗

E
both symmetric monoidal.

Notation B.52. Let E be a small stable symmetric monoidal∞-category. We denote by Cat∞,E =
ModE(Catex

∞) the∞-category of small stable E-linear∞-categories and exact E-linear functors. We
denote the Cartesian monoidal structure on this∞-category by Cat×∞,E.

For R a commutative ring (discrete, prodiscrete or ℓ-adic) we adopt the notationCat∞,R forCat∞,Perf(R).

Recall B.30 implies that

Corollary B.53. Let (X , s) ∈ StrTopcon, and E be presentable stable∞-category. Then Cons(X , s ;E) is a
presentable stable E-linear∞-category and Consfd(X , s ;E) is a small Eω-linear∞-category.

Lemma B.54. The functor
Exit : StrTopcon→ Cat∞
(Y, s : X → P ) 7→ Exit(Y, s)

carries a symmetric monoidal structure when we endow both source and target with the Cartesian symmetric
monoidal structure. In other words, Exit preserves finite products.

Proof. Given two stratified topological spaces Y, s : Y → P,W , t : W →Q, in the notations of [Lur17,
A.6], consider the commutative diagram of simplicial sets

SingP×Q (Y ×W ) Sing(Y ×W ) Sing(Y )× Sing(W )

N (P ×Q) Sing(P ×Q)

N (P )×N (Q) Sing(P )× Sing(Q).

∼

∼ ∼
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The inner diagram is Cartesian by definition. Therefore the outer diagram is Cartesian, and we conclude
that SingP×Q(Y ×W ) is canonically equivalent to SingP (Y )× SingQ(W ). Since SingP (Y ) models the
∞-category of exit paths of Y with respect to s , and similarly for the other spaces, we conclude.

Lemma B.55 ([Lur17, Remark 4.8.1.8 and Proposition 4.8.1.15]). Let E be a presentable symmetric
monoidal∞-category. There exist symmetric monoidal functors

P
(∗)
E

: Cat×-op
∞ → PrLR,⊗

E

PE,(⊣) : Cat×∞→ PrL,⊗
E

PE,(⊢) : Cat×∞→ PrR,⊗
E

sending an∞-category C to the∞-category of E-valued presheaves Fun(Cop,E), and a functor F : C→D

to the functor
F ∗ : Fun(Dop,E)→ Fun(Cop,E)

induced by precomposition by F , resp. to the functor

F⊣ : Fun(Cop,E)→ Fun(Dop,E)

induced by left Kan extension along F , resp. to the functor

F⊢ : Fun(Cop,E)→ Fun(Dop,E)

induced by right Kan extension along F .

Proof. The functor PE,(⊣) takes values in PrL
E

since for each F : C→D the functor F⊣ : Fun(Cop,E)→
Fun(Dop,E) admits a right adjoint given by F ∗, and both F⊣ and F ∗ are E-linear.

Let us start with the caseE= S, the∞-category of spaces. The existence of the (strong) monoidal struc-
ture onPS,(⊣) follows from [Lur17, Proposition 4.8.1.8]. Indeed, if we takeK=∅,K′ = {all simplicial sets}
in loc.cit., the functor C 7→ PK′

K
(C) is what we call PE,(⊣), since it is the functor sending F : C→D to the

left Kan extension of the Yoneda embedding C→ P(C) along C
F−→D→ P(D) (see the proof of [Lur09,

Proposition 5.3.6.2]).
In the case of a general presentable∞-category E, this follows from Remark B.34.
As for P(∗) and P(⊢), the claim follows from the fact that we have a symmetric monoidal equivalence

PrR,⊗ ≃ PrL,⊗-op.

Corollary B.56. Let E be a presentable stable∞-category. There are well-defined symmetric monoidal
functors

Cons(∗),⊗
E

: StrTop×-op
con → PrLR,⊗

E

(Y, s) 7→Cons(Y, s ;E)

f 7→ f ∗ =−◦Exit( f ).

Cons⊗(⊣),E : StrTop×con→ PrL,⊗
E
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(Y, s) 7→Cons(Y, s ;E)

f 7→ f⊣ := LanExit( f ).

Cons⊗(⊢),E : StrTop×con→ PrR,⊗
E

(Y, s) 7→Cons(Y, s ;E)

f 7→ f⊢ :=RanExit( f ).

Proof. The previous constructions provide us with a symmetric monoidal functor

StrTop×-op
con

Exit(−)
−−−→ Cat×-op

∞
(−)op

−−→ Cat×-op
∞

P
(∗)
E−→ PrLR,⊗

sending
(X , s) 7→ Fun(Exit(X , s),E),

f 7→ f ∗

and similarly for the other two cases.

Proposition B.57. The functors constructed in Corollary B.56 take stratified homotopy equivalences to
equivalences of∞-categories.

Proof. Indeed, consider a stratified homotopy H : [0,1]×Y → Y . This map has the property that the
compositions {0}×Y → [0,1]×Y → Y is f ◦ g and {1}×Y → [0,1]×Y → Y is idY . Since the functor
Exit(−) preserves products (Lemma B.54), one gets a map Exit([0,1])×Exit(Y )→ Exit(Y ) such that

Exit({0})×Exit(Y )→ Exit([0,1])×Exit(Y )→ Exit(Y )

is Exit( f ) ◦Exit(g ) and

Exit({1})×Exit(Y )→ Exit([0,1])×Exit(Y )→ Exit(Y )

is Exit(idY ). But since [0,1] is contractible and unstratified, Exit([0,1]) is equivalent to the terminal
∞-category ∗, and the two compositions are equivalent as functors Exit(Y ) → Exit(Y ). Therefore
Exit( f ) is a left inverse to Exit(g ). By repeating the argument on K one obtains that Exit(g ) is a left
inverse to Exit( f ).

Proposition B.58. The functors constructed in Corollary B.56 take maps in tri to equivalences of∞-categories.

Proof. [HN24, Lemma 4] proves this statement but with coefficients in spaces. We recover our version
by combining Recall B.30 and Remark B.34.

Proposition B.59. The functor Cons(⊣),E from Corollary B.56 satisfies hyperdescent.

Proof. This follows from the stratified Seifert-Van Kampen theorem [Lur17, Theorem A.7.1] and the fact
that

Fun(−,E) : Cat∞→ PrL
E

(with left Kan extension functoriality) preserves colimits.
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We now turn to some essential recalls of the theory of Gaitsgory and Rozenblyum’s correspondences.
Let C be an (∞, 1)-category, and vert,horiz,adm classes of morphisms with the properties [GR17,

Chapter 7, 1.1.1]. The (∞, 2)-category of correspondences Corr(C)adm
vert,horiz is defined in [GR17, Chapter

7, 1.2.5].18

Remark B.60 ([GR17, Chapter 7, 1.3.3]). If adm= isom is the class of equivalences in C, then

Corr(C)isom
vert,horiz

is an (∞, 1)-category, which we denote simply by Corr(C)vert,horiz. We will always be in this situa-
tion. However, the results from [GR17] used in the proof of Theorem B.66 rely on (∞, 2)-categorical
constructions.

Remark B.61. Let Cvert and Choriz the subcategories of C spanned by all objects and vertical or horizontal
morphisms, respectively. There are embeddings

Cvert→Corr(C)adm
vert,horiz

C
op
horiz→Corr(C)adm

vert,horiz.

Remark B.62 ([GR17, Chapter 9, 2.1.3]). If C⊗ is a symmetric monoidal∞-category and the classes
vert,horiz,adm are closed under tensor product, then there is a symmetric monoidal structure on
Corr(C)adm

vert,horiz. which we denote by

Corr(C)adm,⊗
vert,horiz.

In our specific case, we will always consider Cartesian symmetric monoidal structures. Note that the
class zsubm from Definition B.28 is closed under cartesian product and pullback (Remark B.29), hence it
is a good class for the theory of correspondences.

Notation B.63. If C is an (∞, 1)-category, we denote by all the class of all morphisms in C.

Recall B.64. When horiz= all and adm= isom, the (∞, 1)-category Corr(C)⊗vert,horiz is also treated in
[Man22] and [Sch23]. In what follows, we will sometimes use some results formulated in this context.

We will need the following lemma:

Lemma B.65. Let C× be a Cartesian symmetric monoidal∞-category. Let X ,Y ∈ C be objects. Then the
map

C/X ×C/Y → C/X×Y

is cofinal.
If F : C×→D× is a symmetric monoidal functor between symmetric monoidal structures, and X ,Y ∈D

are objects, then the map F/X × F/Y → F/X×Y is cofinal.

Proof. By Quillen’s Theorem A, it suffices to prove that fibers are contractible. This can be straightfor-
wardly checked by considering, for Z→X×Y, Z representable, the canonical factorization

Z
∆−→ Z ×Z→X×Y

and proving that it is initial amongst all factorizations

Z
∆−→X ×Y →X×Y

induced by maps X →X,Y → Y,Z→X ,Z→ Y , with X ,Y representable.
18Note that we indeed need a definition that works at least for C a (2,1)-category, since for example {StrTStkcon is such.
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Theorem B.66. LetE be a presentable stable symmetric monoidal∞-category. There is a symmetric monoidal
functor of∞-categories

Conscorr,⊗
E

: Corr( {StrTStkcon)
×
all,{subm

→ PrR,⊗
E

with the following properties:

1. its restriction along

(StrTStkcon)vert ,→Corr(StrTStkcon)all,subm′ ,→Corr( {StrTStkcon)all,{subm

left Kan extends ConsE,(⊢) from Corollary B.56, preserves colimits and sends maps in tri and she′ to
equivalences;

2. dually, its restriction along

(StrTStkcon)
op
horiz ,→Corr(StrTStkcon)all,subm′ ,→Corr( {StrTStkcon)all,{subm

right Kan extends Cons(∗)
E

from Corollary B.56, preserves limits and sends maps in tri and she′ to
equivalences;

3. its restriction along

Protri(StrTStkcon)vert ,→Corr(Protri(StrTStkcon))all,subm′′ ,→Corr( {StrTStkcon)all,{subm,

resp.

Protri(StrTStkcon)
op
horiz ,→Corr(Protri(StrTStkcon))all,subm′′ ,→Corr( {StrTStkcon)all,{subm,

extends the points (1), resp. (2), by tri-invariance, and sends maps in she′′ to equivalences;

4. its restriction along
( {StrTStkcon)vert ,→Corr( {StrTStkcon)all,{subm,

resp.
( {StrTStkcon)

op
horiz ,→Corr( {StrTStkcon)all,{subm,

left (resp. right) Kan extends the previous point, preserves colimits (resp. limits) and send morphisms in
xshe to equivalences.

Proof. Our starting datum is the functor Cons(∗) : StrTopop
con→ PrL

E
defined in Corollary B.56. Let us

prove that this functor satisfies the right Beck-Chevelley condition [GR17, Chapter 7, Definition 3.1.5]
with respect to the classes vert= subm,horiz= all,adm= isom. First for all, for each β : (Y ′, s ′)→ (Y, s )
in subm⊂Mor(StrTopcon), the functor β∗ : Cons(Y, s)→Cons(Y ′, s ′) admits a left adjoint β⊣. Then,
consider a cartesian diagram

(X ′, t ′) (X , t )

(Y ′, s ′) (Y, s)

α0

β1 β0

α1
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where α0,α1 ∈ all,β0,β′1 ∈ subm. Then we want to prove that the base-change map

β1⊣α
∗
0→ α

∗
1β0⊣ (B.11)

is an equivalence of functors Cons(X , t ;E) → Cons(Y ′, s ′;E). Note that, since all functors are left
adjoints19, this formula is local in X and X ′, and therefore we may assume that β0 is of the form
(X , t )×RN → (X , t ) for some N , and analogously for β1. But in this case β∗0 and β∗1 are stratified
homotopy equivalences, which implies that β0⊣,β1⊣ are equivalences. Note incidentally that a similar
argument (reduction to the local case and the fact that in the local caseβ∗i is an equivalence on constructible
sheaves) proves that βi⊣ coincides with βi# from [Vol21, Lemma 3.24]. So, base change also follows
from [Vol21, Lemma 3.25].

We now want to obtain an extension at the level of (∞, 2)-categories

StrTopop
con PrL

E

Corr(StrTopcon)subm,all

. (B.12)

which encodes (−∗,−⊣)-functoriality. As explained to us by Lucas Mann, one can proceed as in the
proof of [Man22, Proposition A.5.10] with I = subm, P = isom, and without the assumption that I
satisfies property (d) in loc. cit.: one does not need [LZ12b, Theorem 5.4] and instead of δ∗3,{...} one works
with δ∗2,{...}. Then the main observation is that one can invert edges in dimension 1 using [LZ12a, Lemma
1.4.4].

The extended functor (B.12) carries a canonical symmetric monoidal structure, because Cons(⊣) :
StrTop×con→ PrL,⊗

E
is symmetric monoidal (Corollary B.56) and thus we can apply20[GR17, Chapter 9,

Proposition 3.1.5] with vert= subm,horiz= adm= all,co-adm= isom. We will now perform a series of
extensions:

• Let us consider the Yoneda embedding F : StrTopcon→ StrTStkcon. We want to obtain a symmetric
monoidal extension

Corr(StrTopcon)subm,all PrL
E

Corr(StrTStkcon)àsubm,all

(B.13)

(see Definition B.28 for the notation) which preserves limits in both vert and horiz.

The functor F satisfies the conditions of [GR17, Chapter 8, 6.1.1 and Theorem 6.1.5], (with
C= StrTopcon,D= {StrTStkcon,vert= subm,àsubm respectively, horiz= all,adm= isom for both
C and D), because:

– it preserves finite limits;

– it sends subm toàsubm by definition ofàsubm⊂Mor(StrTStkcon);

19Here we use the existence of α0⊢,α1⊢ implied by Corollary B.56, i.e. that Cons(∗)R lands in PrLR
R and not just in PrR

R.
20Alternatively, from [Man22, Proposition A.5.10] we already get a lax-monoidal structure, and one can check that it is

indeed strong symmetric monoidal.
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– for each (Y, s) ∈ StrTopcon, the functor ((StrTopcon)subm)/(Y,s) → ((StrTStkcon)subm′)/F (Y,s)
is an equivalence. Indeed, since F is fully faithful, it suffices to prove that for any Y ∈
StrTStkcon,φ : Y→ F (Y, s) in StrTStkcon, then Y belongs to the essential image of F . But

this is true since any morphism inàsubm is assumed to be representable, cf. Definition B.28.

Therefore, we may apply [GR17, Theorem 6.1.5] to (B.12) and obtain a horizontal right Kan
extension (in the terminology of that theorem) as in (B.13).

In particular, when restricted to (StrTopcon)
op
horiz→ (StrTStkcon)

op
horiz, this is the right Kan extension.

Also, the extended functor preserves limits in both vert and horiz.

As for the symmetric monoidal structure, we proceed as follows. By [GR17, Chapter 9, Proposition
3.2.4], we obtain a right-lax monoidal functor

Corr(StrTStkcon)
×
subm,all→ PrL,⊗

E
.

Incidentally, the same verifications show that [Man22, Proposition A.5.16] can be applied to obtain
the same result.

Let us prove that the obtained functor is indeed strongly monoidal. It suffices to prove that, for
every X,Y ∈ StrTStkcon, the map

Cons(X;E)⊗E Cons(Y;E)→Cons(X×Y;E)

is an equivalence. But this map can be presented as the chain of equivalences

Cons(X;E)⊗E Cons(Y;E) =
PrL

colim
(StrTopcon)/X

Cons(X ;E)⊗E
PrL

colim
(StrTopcon)/Y

Cons(Y ;E)≃

PrL

colim
(StrTopcon)/X×(StrTopcon)/Y

Cons(X ;E)⊗E Cons(Y ;E)≃

PrL

colim
(StrTopcon)/X×(StrTopcon)/Y

Cons(X ×Y ;E)≃

PrL

colim
Z∈(StrTopcon)/X×Y

Cons(Z ;E)≃Cons(X×Y;E)

(B.14)

where the second-to-last equivalence holds by Lemma B.65.

• We want to extend the functor (B.13) to Corr(StrTStkcon)subm′,all, that is, we want to enlarge the
class of vertical morphisms from representable smooth submersions to all smooth submersions. To
this end, we want to apply [Man22, Proposition A.5.14] to the functor constructed in (B.13). The
target category can be upgraded from Cat∞ to PrL

E
: indeed, the upgrade to PrL is already in the

proof of loc.cit., and adding the linear structure is straightforward. Let us thus check the conditions
of [Man22, Proposition A.5.14]. In the notations of loc.cit., let E =àsubm, E ′ = subm′, S ⊂ E be the
class of smooth covers, i.e. maps in ˜subm whose source is representable and which are surjective.

a For every X ∈ StrTStkcon, Cons(X;E) is presentable.

b Cons(⊣),E : StrTStkcon→ PrL
E

satisfies S -descent by construction (it is left-Kan-extended from
stratified topological spaces).
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c By definition of subm′, every map f : X→ Y in E ′ there is a square

X Y

X Y

f ′

g g ′

f

where the top map is in E (actually in subm) and the vertical arrows are in S. Hence, the
composition f ◦ g belongs to E .

d We want to prove that pullbacks of edges in S remain smooth covers, and they are computed
in the same way in (StrTStkcon)àsubm and in (StrTStkcon). Indeed, the take a square

X Y

X Y

f ′

g ′ g

f

,

Cartesian in StrTStkcon, with f ∈ E , g ∈ S. Then g ′ ∈ S because smooth covers are stable
under pullback, and f ′ ∈ E because smooth and representable maps are as well. We are left to
prove that for any X′ ∈ StrTStkcon, equipped with maps X′→ Y,X′→X making the diagram

X′

X Y

X Y

f ′

g ′ g

f

commute, the natural map X′→X is smooth and representable (i.e. it belongs to E ). Repre-
sentability amounts to representability of X′ (since X is represetnable), which follows from
the fact that the map X′→ Y is representable with representable target. Smoothness follows
from the fact that g ′ is a smooth cover and smoothness passes to smooth covers by definition.

We can thus apply the result and obtain an extension of (B.13) to a lax-monoidal functor

Corr(StrTStkcon)subm′,all→ PrL
E. (B.15)

Symmetric monoidality is established in a similar way as in the previous point.

• Let us consider the localization functor

G : StrTStkcon→ StrTStkcon[tri
−1].

By restriction from (B.15), we get a functor

(StrTStkcon)
op
horiz→ PrL

E

satisfying the right Beck-Chevalley condition for (vert = subm,horiz = all). This functor is
right-Kan-extended from Cons(−,E)(∗) : StrTopop

con → PrL
E
, hence sends tri to equivalences by

Proposition B.58, hence factors as the composition of G and a functor

StrTStkcon[tri
−1]op→ PrL

E
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which also satisfies the right Beck-Chevalley condition with respect to (vert= subm,horiz= all)
(note that tri⊂ subm′). Hence, again by [GR17, Chapter 7, Theorem 3.2.2.(b)], it induces a functor

Corr(StrTStkcon[tri
−1])subm′,all→ PrL

E

(where we also call subm′ the class generated by subm′ in the localization), compatible with all of
the above. This functor carries a symmetric monoidal structure by the same arguments as above.

• Note that the functor StrTStkcon[tri−1]→ Protri(StrTStkcon[tri−1]) is an equivalence (since tri⊂
isom in StrTStkcon[tri−1]), symmetric monoidal with respect to the Cartesian structures. On
the other hand, there is a functor Pro(G) : Protri(StrTStkcon) → Protri(StrTStkcon[tri−1]), also
symmetric monoidal. This induces a functor

Corr(Protri(StrTStkcon))subm′′,all→Corr(StrTStkcon[tri
−1])subm′,all

which is symmetric monoidal because pro-objects are compatible with Cartesian monoidal struc-
tures. Note that we cannot argue anymore that the restriction to horizontal morphisms

Protri(StrTStkcon)
op→ StrTStkcon[tri

−1]op

preserves limits, since Pro(G) need not preserve colimits.

• Consider the Yoneda embedding H : Protri(StrTStkcon)→ {StrTStkcon. By the exact same arguments
used in the case of F above, this induces a horizontal right Kan extension

Corr(Protri(StrTStkcon))subm′′,all PrL
E

Corr( {StrTStkcon){subm,all

(B.16)

which is again symmetric monoidal.

From this, by passing to opposite categories and opposite monoidal structures as in Remark B.51, we
obtain the sought-after symmetric monoidal functor of (∞, 1)-categories

Conscorr,⊗
E

: Corr( {StrTStkcon)
×
all,subm→ PrR,⊗

E
(B.17)

which encodes (−∗,−⊢)-functoriality and satisfies the conditions of the statement.
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