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Abstract

In this note we explain the construction of an n-dimensional topological manifold, for
n ≥ 4, with following two properties: πi (M ) = 0 for i ≥ 2 but whose universal covering is not
homeomorphic to Rn . The sketch of this proof has been provided to us by Roberto Frigerio
during our masters.
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1 Introduction

Definition 1.1. A topological manifold is closed if it is compact and without boundary.

Definition 1.2. A connected topological manifolds X is aspherical if πn(X ) = 0 for every
n ≥ 2.

Definition 1.3. A topological manifold is piecewise linear (PL) if there exists a choice of
charts such that the changes of charts are piacewise linear.

We recall that every topological manifold is semilocally simply connected, hence it admits
a universal covering.

Definition 1.4. An aspherical closed topological manifold of dimension n is exotic if its
universal covering is not homeomorphic to Rn .
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2 CAT(0) AND CAT(1) SPACES

Remark 1.5. If X is a topological manifold whose universal covering is homotopy equivalent
to Rn , then X is aspherical, since coverings induce isomorphisms on πi ’s with i ≥ 2.

The existence of exotic manifolds is not guaranteed in every dimension: in particular,
there are none in dimensions 1,2 and 3.

In contrast:

Theorem 1.6 (Main result). For every n ≥ 4 there exists an aspherical closed topological n-
manifold whose universal covering is not homeomorphic to the euclidean space Rn .

One proof of this theorem is due to Michael Davis [Dav01, Theorem 9.5], and therefore
such manifolds are sometimes referred to as Davis manifolds. We illustrate a somehow different
proof, which involves the theory of CAT(0) and CAT(1) spaces and cubical complexes Both
proofs, however, start from the existence of non-simply connected homology spheres.

Definition 1.7. A homology sphere of dimension m is a topological m-manifold X such
that, abstractly, H•(X )≃H•(Sm).

Non-simply connected homology spheres only exist in dimension ≥ 4: their existence is a
nontrivial result, proven separately in dimension ≥ 5 and 4 (see [Maz61], [Ker69]).

2 CAT(0) and CAT(1) spaces

Definition 2.1. Let (X , dX ) be a metric space. A triangle in X is a set of three vertices which
are pairwise connected by a geodesic path.

We denote triangles by their vertices, with the expression [ab c].

Definition 2.2. Let (X , dX ) be a metric space, and [p xy] a triangle. Its euclidean model
triangle E([p xy]) = [p ′x ′y ′] is the triangle in the euclidean plane having edges of length
respectively dX (p, x), dX (x, y) and dX (p, y).

The existence of the euclidean model triangle is guaranteed by the fact that the edges of
the original triangle, being geodesic, satisfy the triangle inequality. It is well-defined up to an
isometry of the euclidean plane.

Definition 2.3. We let E[p xy] : [p xy]→ [p ′x ′y ′] denote the map sending p to p ′, x to x ′, y
to y ′, and a point x e.g. in [p x] in the unique point in the edge [p ′x ′] at distance dX (p, z)
from p (and analgously for points lying in other edges).

Definition 2.4. A triangle [p xy] is thin if the map E does not decrease distances, i.e. for
every z, w ∈ [p xy]

dX (z, w)≤ dR2(E(z),E(w)).

(see picture).
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Definition 2.5. A metric space (X , dX ) is CAT(0) if every triangle is thin.

Construction 2.6. Let us consider the sphere S2 and the distance d (p, q) = arccos(〈p〉).
Given a geodetic triangle [p xy] with respect to this distance, if the sum of the length of the
edges is less than 2π, we define the spherical model triangle of [p xy] as the only triangle in
S2, up to isometries, having geodesic sides of the corresponding lenghts. Without the given
condition, such a triangle does not exists or, in the limit case, it is not unique.

Definition 2.7. A metric space (X , dX ) is said to be CAT(1) if every geodesic triangle in it is
such that the map S : [p xy]→ S2, defined analogously to the euclidean model case, does not
decrease distances (or, as we can say, every triangle is “spherical-thin”).

Note 2.8. The terminology CAT, introduced by Mikhail Gromov, is an acronym for “Cartan,
Alexandrov, Toponogov”.

A very useful connection between CAT(0) and CAT(1) is given by the metric cone.

Definition 2.9 (Metric cone). Given a metric space X , its cone Cone(X ) is the space [0,∞]×
X quotiented by the relation

(0, p)∼ (0, q)

for all p, q , and endowed with the distance

dCone(X )((p, s), (q , t )) =
p

s2+ t 2− 2s t cosα,

where α=min{π, dX (p, q)}.

Proposition 2.10. Cone(X ) is CAT(0) if and only if X is CAT(1).

Lemma 2.11 (Inheritance lemma). Let [p xy] be a geodesic triangle in a metric space, and x
a point on the edge [xy]. If the triangles [p x z] and [p y z] are both thin, then also [p xy] is.
Moreover, in case the perimeter of [p xy] is less than 2π, this is true also if we replace “thin” with

“spherical-thin”.

3 Locally CAT(0) spaces

Definition 3.1. A metric space is locally CAT(0) if every point admits a closed ball centered
at it which is CAT(0) with the subspace distance.
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4 SPHERICAL DISTANCE ON TRIANGULATIONS

In this context, one studies the properties of local geodesics, as we will see in many of the
proof that we shall examine.

Remark 3.2. The notion of being locally CAT(0) has an interpretation in terms of curvature:
indeed, it measures how geodesics exiting a point become further from one another, and
in particular ensures that they become further from one another at least as slow as in the
euclidean space: for example, this is what happens in the hyperbolic space. Locally CAT(0)
space may also be called “metric spaces of nonpositive curvature” ([Dav01]).

For the record, the analogy with Riemannian geometry also involves the following:

Theorem 3.3 (Globalization theorem, B. Bowditch, 1995). Every proper length space, locally
CAT(0) and simply connected is CAT(0).

Proposition 3.4. Every proper length space which is CAT(0) is contractible.

Indeed, the CAT(0) inequality implies that, under the given hypotheses, such a space is
uniquely geodesic with continuous dependence of the geodesics from their extremal points.
Therefore, the space can be retracted onto a point by connecting such a chosen point to every
other via geodesics and getting advantage of continuous dependance to define a retraction
along those geodesics.

In light of this last result, one can relate the Globalization Theorem to the Hadamard
Theorem.

Theorem 3.5 (Hadamard Theorem). A Riemannian m-manifold (M , g ) whose sectional curva-
ture is never positive, and which is simply connected, is diffeomorphic to Rn (hence contractible).

4 Spherical distance on triangulations

Let S be a finite simplicial complex (in our case, it will be a triangulation of a compact
manifold).

Of course, every n-simplex of it is in bijection with the standard simplex of Rn . However,
we will adopt the following variant of this representation. The euclidean simplex is homeo-
morphic to a triangle in Sn whose angles are right angles (for n = 2, we are talking about a
“quarter of dome” in S2). One can straightforwardly check that this coherently defines new
lengths of edges in the original complex. With this new lengths, edges of all simplices have
lentgh π

2 .
One can therefore define a length metric on S:

d (p, q) = inf{length(γ ) | γ connecting p and q}.

Definition 4.1. A flag complex is a complex where given {v0, . . . , vk} vertices connected
pairwise by edges, these belong to the same k-simplex.

Proposition 4.2. A complex S endowed with the distance defined above is CAT(1) if and only if
it is a flag complex.

This is an interesting criterion, in that it connects a metric property to a combinatorial
one.
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Example 4.3. The first barycentric subdivision of any triangulation is a flag complex.

Therefore, in the following we will always suppose our complexes to be CAT(1) with the
spherical distance defined above, up to taking a barycentric subdivision.

5 Cubical analogue of a finite simplicial complex

Construction 5.1. Let S be a finite simplicial complex with N vertices and of dimension n.
Let C N ⊂RN the unit cube. We now select some of its faces with the following procedure:
for everyk-simplex [vi0

, . . . , vik
] of S , we consider the (k + 1)-vector subspace of RN given by

Span(ei0
, . . . , eik

) and we select all (k + 1)-faces of C N parallel to this subspace. Letting k vary
from 0 to n and this considering all simplices of S, we obtain a subset Q of C N which we
define cubical analogue of S. This is a “cubical complex”, i.e. a union of faces of C N .

Remark 5.2. If S has dimension n, Q has dimension n+ 1 as a cubical complex. Moreover,
since each face can be decomposed in simplices, Q also admits a structure of a simpplicial
complex.

Remark 5.3. One can put a metric structure on Q, which is the length metric induced by
RN : d (p, q) will be the infimum of the length of curves (typically piecewise linear) which
conect p and q in Q.

One checks directly from the definitions that:

Lemma 5.4. Given S a finite flag complex, the link Lk(v) of each vertex of Q is isompetric to S
with the above defined distances.

Corollary 5.5. Let S be a finite flag complex. Then its cubical analogue Q is locally CAT(0).

Proof. One can cover Q by the “open stars” of its vertices, i.e. by the open subsets

st(v)≃Cone(Lk(v))≃Cone(S)

(all ≃ are isometries). This latter space is CAT(0) by the combination of Proposition 4.2 and
Proposition 2.10.

6 Universal coverings of cubical analogues

Proposition 6.1. Let S be a finite simplicial complex and Q its cubical analogue. Then Q is
locally CAT(0) and aspherical.

Proof. By Corollary 5.5, Q is CAT(0). Its universal cover Q̃ inherits a distance from Q by
pullback, as follows: one defines the lentgh of a curve in Q̃ to be the length of its image
in Q, and defines a distance from this as a length distance (i.e. d (x, y) = inf{length(γ ) |
γ curve connecting x and y}). Since a covering is a local homeomorphism, this metric struc-
ture on Q̃ is also locally CAT(0), it is a lentgh metric by construction, and the space is
proper (which one can make follow from compactness of Q). Therefore, by Theorem 3.3 and
Proposition 3.4, Q̃ is CAT(0) and contractible, and thus Q is aspherical.
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6 UNIVERSAL COVERINGS OF CUBICAL ANALOGUES

Definition 6.2. A topological space X is simply connected at infinity if for every K compact
in X there exists K ′ ⊃K compact s.t. every class in π1(X \K ′) becomes trivial in π1(X \K).

Remark 6.3. Rn is simply connnected at infinity for every n ≥ 3. Indeed, for every K one
can select as K ′ any closed ball containing K .

Proposition 6.4. Let S be a finite simplicial complex and Q its cubical analogue. Let Q̃ be the
universal covering of Q. If π1(S) ̸= 0, then Q̃ is not simply connected at infinity.

Proof. Let γ be a nontrivial loop in S. Up to deformation, we can suppose that it lies in the
1-skeleton, i.e. it is made of edges. Let us choose γ of minimal lentgh along all nontrivial
loops formed by edges of the complex. This is a one-dimensional subcomplex of S . Let G be
its cubical analogue, which is in turn a cubical subcomplex of Q, of dimension 2. Let v be
a vertex of G and Gv the connected component of G containing v. Let G̃v be a connected
component in the inverse image of Gv inside Q̃, and ṽ a point in the fiber of v lying in G̃v .

Claim: G̃v is convex in Q̃, and hencefore CAT(0) (since Q̃ is).

Proof. A standard argument tells us that every closed connected and locally convex subset of a
CAT(0) space is convex. Let us thus show that every G̃v is locally convex in Q̃, or alternatively
that G is locally convex in Q.

By contradiction, one assumes G not locally convex, and proves that we can reduce to a
setting of the following kind:

where γ is the external loop and e is an edge not contained in γ which connects two of the
vertices of γ ,ζ and ξ . If any of the internal loops is nontrivial, this contradicts minimality of
γ . But if both are trivial, then so is γ , contradiction.

We can thus say that G̃v is a manifold of dimension 2 without boundary and convex in
Q̃. Hence, it is contractible. By classification of surfaces, G̃v is homeomorphic to th real
euclidean plane.

Let now R be a real number, and CR the circle of radius R in G̃v (up to a fixed identification
with the real euclidean plane) cnetered at ṽ. If R varies, all CR are homotopy equivalent in
G̃v \ {ṽ} and hence in Q̃ \ {ṽ}. But now, there is a well-defined map Q̃ \ ṽ→ LkQ (v) which
associates to x ̸= ṽ the corresponding point in the link in Q. When restricted to G̃v \ {ṽ},
this maps takes values in S, and its further restriction to any CR is surjective onto LkG(v).
Now, LkG(v) is homeomorphic to γ inside LkQ (v), which is to say that the image of CR is
homeomorphic to γ inside S.

As a consequence, CR is nontrivial not only in G̃v \ {ṽ}, but also in \̃{ṽ} (otherwise its
image along the continuous map described above would be trivial as well, contradicting the
fact that γ is not trivial).

Let us now suppos, by contradiction, that Q̃ is simply connected at infinity. If we choose
K = {ṽ}, there must exist a compact K ′ containing ṽ such that each loop in Q̃ \K ′ becomes
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trivial in Q̃ \ {ṽ}. However, for R big enough, CR is contained in Q̃ \K ′, since K ′ ∩ G̃v is
compact, and is nontrivial in Q̃ \ {ṽ}.

7 Construction of an aspherical manifold

Theorem 7.1. For every n ≥ 4 there exists a piecewise linear aspherical closed n-manifold whose
universal covering is not homeomorphic to the euclidean space Rn .

Proof. Let Z ,W two smooth compact manifolds with boundary, of dimension n− 1 and n
respectively, such that

• W is contractible

• Z has no boundary, and is the boundary of W

• H•(Z)≃H•(Sn−1)

• π1(Z) ̸= 0.

The existence of such a pair is proven in [Maz61], [Ker69].
Being a smooth manifold, W admits a triangulation. Let S be the restriction of such a

triangulation to Z . Up to passing to the first barycentric subdivision S (1), we may assume that
S is a flag complex. Therefore, with its spherical metric structure, it is CAT(1). Let Q be the
cubical analogue of S endowed with the length metric induced by Rn (see Section 5). The
following hold:

• By Proposition 6.4, Q̃ is not simply connected at infinity and therefore it is not homeo-
morphic to Rn .

• Q is a homology n-manifold, i.e. for any x ∈Q H•(Q,Q \ x)≃H•(Sn−1). In particular
it is a PL-manifold away from its vertices.

Proof. The first part follows from the fact that the link of each vertex is homeomorphic
to Z , and we know by hypothesis that Z is a homology n− 1-sphere. The second part
follows from standard theory of polyhedral manifolds.

• There exists a compact PL n-manifold M homotopy equiavalent to Q.

Proof. Since the link of each vertex of Q is homeomorphic to Z , we can glue copies of
W along their boundary Z on boundaries of neighbourhoods ov vertices of Q. Such a
gluing yields a compact PL n-manifold. It is also homotopy equivalent to Q, since W is
contractible and therefore the pair (W ,Z) satisfies the Homotopy Extension Property.
One checks that the maps inducing the global homotopy equivalence can be lifted to
proper maps between the universal coverings of Q and M . Hence M is aspherical and
exotic (since proper homotopy equivalences with proper homotopy inverses preserve
(non-)simply connectedness at infinity).
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