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Abstract

Let G be a complex reductive group. In this note we recall the proof of ind-properness of
its affine Grassmannian GrG , and apply this result to the study of the Hecke endofunctors
of the category of coherent sheaves over GrG . We also study two naïve versions of the
affine Grassmannian for a surface S: one parametrizes G-torsors over S with a trivialization
away from a point x, and is isomorphic to the group G itself (hence “trivial”). The second
one parametrizes G-torsors over S with a trivialization away from a divisor, and is ind-
quasiprojective.

Contents

1 Ind-properness of the affine Grassmannian of GLk 1

2 Hecke functors 3

3 Naïve affine Grassmannians for surfaces 6

1 Ind-properness of the affine Grassmannian of GLk

Throughout the whole note, G will be equal to some GLk ,C for simplicity. In general, this
should be replaced with an arbitrary complex reductive group.

Definition 1.1. Let C be a smooth complex curve, and x a closed point. Define the Hecke
stack HeckeBunG

x (C ) as the functor
Sch→ Grpd

sending

T 7→ {(F,G,φ) | F,G ∈ BunG(C ×T ),φ : F|(C\{x})×T → G|(C\{x})×T an isomorphism}

where morphisms on the right are isomorphisms of pairs of G-torsors compatible with the
isomorphisms on the open set. Alternatively, this can be written as BunG(C )×BunG (C\{x})
{Ok}.
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1 IND-PROPERNESS OF THE AFFINE GRASSMANNIAN OF GLk

Theorem 1.2. Let C be a smooth projective curve. The fibers of any of the two projection maps
HeckeBunG

x (C )→ BunG(C ) are representable by ind-proper schemes.

The fiber at the trivial bundle is isomorphic to the so-called the affine Grassmannian of
G (hence the title of this section), see [Zhu16, 1.2].

Proof. This proof is essentially the same as the one of [Zhu16, Theorem 1.2]. We recall it to
fix the arguments and notations for the proof of Theorem 3.5.

Let T be a scheme, and consider a fixed V 0 ∈ BunG((C \ x)×T ). We want to parametrize
all pairs (F,τ) where F ∈ BunG(C × T ) and τ : F|(C\{x})×T → V 0 is an isomorphism. Let
X =C ×T ,Y = {x}×T , U =X \Y .
In this setting, the following lemma holds:

Lemma 1.3. If I is the sheaf of ideals defining {x}×T inside C ×T , then we have the following
correspondence: a triple F,G ∈ BunG(X ), τ : F|U

∼−→ G|U corresponds to a quadruple F,G ∈
BunG(X ), i1 : InF ,→ G, i2 : InG ,→ F for some n.

This is in some way a generalization of the known result [GD71] saying that if a coherent
sheaf F over a scheme X is 0 outside some closed subscheme Y defined by a sheaf of ideals
I, then there is a natural number n such that InF is 0 everywhere. It is a direct consequence
of [GD71, Prop. 6.9.17], when one looks at the proof and keeps in mind that our sheaves,
being locally free, are in particular torsion free. Note also that the cited result from EGA 1
regards noetherian schemes, but an argument analogous to [Vis07, Prop. 4.37] shows that we
can assume to live in that setting.
The groupoid {(F,τ),F ∈ BunG(C × T ),τ : F|U

∼−→ V 0} is equivalent to the groupoid
colimn{(i1 : InF ,→ G0, i2 : InG0 ,→ F)} where G0 is any fixed locally free sheaf extending
V 0 in x (if there is none, the thesis is trivial).
Since the ideal I is invertible, we can rewrite this as InG0 ⊂ F⊂ I−nG0. The following lemma
and its proof have been suggested to us by Angelo Vistoli.

Lemma 1.4. Il F is locally free, then the quotient I−nG0/F is flat over T .

Proof. Since I−nG0 and InG0 are locally free as well, the local expression for our couple of
inclusions takes the form

Ok
X ,x

j1
,−→Ok

X ,x

j2
,−→Ok

X ,x

for some k. These two inclusions are represented by two matrices A(s , t ) and B(s , t ) with
values in OC×T ,(s ,t ). To say that the quotient of the two copies of Ok on the right is flat is
equivalent to say that the sequence

0→Ok j2
,−→Ok → cokerB(s , t )

remains exact while tensoring by k(t ) for every t ∈ T , by symmetry of the Tor functors.
This is equivalent to say that the rank of the matrix B(s , t ) remains unaltered while tensoring
by k(t ). Notice however that the cokernel of the product A(s , t )B(s , t ) is supported on Y ,
since this product of matrices corresponds the inclusion InG0 ,→ I−nG0. Therefore for every
t0 the rank of A(s , t0)B(s , t0) remains generically the same while tensoring by k(t0), since for
s ̸= x we have A(s , t0)B(s , t0) = i d .
Therefore, since the rank can only decrease, also rk B remains unaltered, as desired.
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Thus we have an inclusion of functors between the functor we are studying and the Quot
functor

Quot(I−nG0/InG0)/X /C

that associates to an affine scheme T the set of flat finitely presented sheaves over C ×C T
which are a quotient of I−nG0/I

nG0. Note that this (more precisely, the arguments above) also
imply that the fiber appearing in the statement of Theorem 1.2 is set-valued. The mentioned
inclusion is actually an equivalence: indeed, if we have a flat quotient I−nG0/I

nG0→H, the
kernel F of this quotient is locally a submodule of a free module; we would like to use the
fact that C is a curve and that a submodule of a free module over a PID is free. The following
lemma allows us to use this argument:

Claim 1.5. In the above notations, if H is flat over T , then F is locally free if and only if it is
locally free over each t -fiber, t ∈ T .

Proof. Consider the exact sequence 0→ F→ I−nG0 →H→ 0 (for simplicity, we identify
the above sheaves with the ones obtained without quotienting by InG0). Locally, the claim
reduces to the following problem:

Lemma 1.6. Let R→A be a map of local rings,

0→ F →M →H → 0

an exact sequence of finitely generated modules, H flat over R and M free over A. Then F is free
over A if and only if M ⊗A/mA) is free over A/mA.

This latter lemma is a direct consequence of Nakayama’s lemma and the flatness of H over
R (one tensors the exact sequence over R by A/m...).

After this discussion, we can verify the local freeness of F on the T -fibers of C ×T , where
the structure sheaf is isomorphic to OC . But there, locally, we are looking to a submodule of
a free module over a PID, as wanted.

Now, the Quot functor is representable by the Quot scheme, which is a proper scheme if
there are finitely many Hilbert polynomials. This is true for projective varieties, hence in our
setting.
Theorem 1.2 then follows by observing that, because of the above discussion, the fiber at V 0

of the Hecke stack can be expressed as a colimit colimnQuot(I−nG0/InG0)/C/C. This colimit is
filtered and the transition maps are easily seen to be closed immersions.

2 Hecke functors

We recall the definition of (quasi)coherent sheaves on algebraic stacks from [Ols16, Section 9.1].
The stack BunG(C ) is algebraic because it can be written as the mapping stack between C and
BG. This latter is an algebraic stack (see [Ols16, Example 8.1.12]) and therefore the mapping
stack is (see [Ols06, Theorem 1.1] or [Lur12, Proposition 3.3.8] for a derived version).

A general three-functor-formalism (pullback, pushforward, tensor product) for sheaves on
algebraic stacks can be given. However, in our case we will usually deal with ind-representable
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2 HECKE FUNCTORS

maps, and therefore pushforwards can be presented as colimits of pushforwards along repre-
sentable maps. This implies for example that the projection formula holds verbatim as in the
schematic case. Moreover, these maps will be ind-proper, and therefore a base-change theorem
holds as well.

Definition 2.1. If x, x ′ are closed points in a smooth projective curve C , andL,L′ are coherent
sheaves over Heckex (C ), Heckex ′(C

′), respectively, then consider the diagram

Hecke{x,x ′}(C )

T

L L′

Heckex (C ) Heckex ′(C )

BunG(C ) BunG(C ) BunG(C )

p̄

q̄

r
r ′

w

p
q

p ′
q ′

and the sheaf
L⊗c L′ := w∗(L⊠L

′) = w∗(r
∗L⊗ r ′∗L′)

where:

• p, q , p ′, q ′, p̄, q̄ are the different projection maps;

• T is by definition the pullback in the central square (with its canonical maps r, r ′), rep-
resented by tuples (F,G,G′,H,φψ,χ ) where F,G,G′,H ∈ BunG(C ), and φ : F|C\{x}→
G|C\{x},ψ : G′|C\{x ′}→H|C\{x ′},χ : G→ G′ are isomorphisms;

• w is the map represented by

(F,G,G′,H,φ,ψ,χ ) 7→ (F,H,ψ ◦χ |C\{x,x ′} ◦φ).

With these definitions, it is immediate to see that all triangles commute.

Definition 2.2. Define the Hecke functors of the category Cohb(BunG(C )) as

Hx,L(M) = q∗(p
∗M⊗L)

where x varies among all closed points of C andL among all coherent sheaves over Heckex (C ).

The following theorem and its proof have been suggested by Mauro Porta.

Theorem 2.3. In the above setting,

Hx ′,L′ ◦Hx,L
∼=H{x}∪{x ′},L⊗cL′ .

Proof. This is an application of the proper base change theorem and of the projection formula
for quasicoherent sheaves. Note that both make sense in our setting, since the relevant maps
are ind-proper.

Hx ′,L′ ◦Hx,L(M) = q ′∗(p
′∗q∗(p

∗M⊗L)⊗L′).
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By proper base change p ′∗q∗ ∼= r ′∗ r
∗, and the pullback commutes with tensor products, so we

have

. . .∼= q ′∗(r
′
∗ r
∗(p∗M⊗L)⊗L′)∼= q ′∗(r

′
∗(r
∗ p∗M⊗ r ∗L)⊗L′).

By the projection formula we have that

r ′∗(r
∗ p∗M⊗ r ∗L)⊗L′ ∼= r ′∗(r

∗ p∗M⊗ r ∗L⊗ r ′∗L′).

so the main expression becomes

. . .∼= (q ′ r ′)∗((p r )∗M⊗ (r ∗L⊗ r ′∗L′))∼= (q̄w)∗(( p̄w)∗M⊗ (r ∗L⊗ r ′∗L′)) =

= q̄∗w∗(w
∗ p̄∗M⊗ (r ∗L⊗ r ′∗L′))

which again by the projection formula becomes

...∼= q̄∗( p̄
∗M⊗w∗(r

∗L⊗ r ′∗L′)) =H{x,x ′},L⊗cL′ .

We now recall from [PS19] that for each smooth proper complex scheme X there exists a
diagram

Cohe x t (X )

Coh(X )×Coh(X ) Coh(X )

e v3×e v1 e v2

where Cohe x t (X ) is defined as the pullback

Cohe x t (X ) Perfe x t (X )

Coh(X )×Coh(X )×Coh(X ) Perf(X )×Perf(X )×Perf(X )

e v1×e v2×e v3

and Perfe x t (X ) is the stack

T 7→ {F→ G→H,F,G,H ∈ Perf(X ×T ) | the sequence is a fiber sequence}.

Let now X =C be a curve, and fix a closed point x in C . Fix the element represented by
k(x) in Coh(X ) as the third component of the fiber sequence, i.e. take the fiber of e v3. We
have the following diagram:

Heckee x t
x (C )

{k(x)}×Coh(C ) Coh(C )

where Heckee x t
x (X ) is defined as the fiber

T 7→ {F→ G→ p∗C k(x) fiber sequences of coherent sheaves over C ×T },
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3 NAÏVE AFFINE GRASSMANNIANS FOR SURFACES

pC : C ×T →C being the projection.
Let L be a sheaf in Cohb(Coh(C )). We have a diagram

Heckee x t (C )

Coh(C ) Coh(C )

p e x t q e x t

that allows us to define the endofunctor He x t
x,L of Cohb(Coh(C )) as

He x t
x,L(M) = q e x t

∗ (p
e x t∗M⊗L).

Let us now define a “coherent” counterpart for the “locally free” Hecke stack defined in Part
1:

Heckecoh
x (C )(T ) := {(F,G,φ) | F,G ∈Coh(C×T ),φ : F|(C\{x})×T → G|(C\{x})×T isomorphism}

with the analogously defined Hecke endofunctors. There is an evident map

h : Heckee x t
x (C )→Heckecoh

x (C ),

since the fiber condition for F → G is read as an isomorphism condition outside {x} × T ,
because the cokernel is supported on {x}×T .
Note that the triangles in the diagram

Heckee x t
x (C )

Heckecoh
x (C )

Coh(X ) Coh(X )

h
p e x t q e x t

p coh q coh

commute. We note that He x t
x,L
∼=Hx,h∗L

. Indeed, by the projection formula we have

q e x t
∗ (p

e x t∗M⊗L)∼= (q coh h)∗((p
coh h)∗M⊗L)∼= q coh

∗ h∗(h
∗ p coh∗M⊗L)∼= q coh

∗ (p
coh∗M⊗h∗L).

3 Naïve affine Grassmannians for surfaces

Definition 3.1. Le S be a smooth complex surface, x ∈ S(C). Let G be a reductive group
over C and, for any complex commutative algebra R, let SR = S ×C SpecR. Define

GrS,x : CAlg→ Grpd

as
R 7→ {F ∈ Bun(SR),α : F|(S\{x})×SpecR

∼−→ T(S\{x})×SpecR}

where Γx is the graph of x inside SR and T is the trivial G-bundle.

Proposition 3.2. GrS,x is strictly equivalent to G as a functor CAlg→ Grpd.
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More generally

Proposition 3.3. The functor
GrS : CAlg→ Grpd

R 7→ {x ∈ S(R),F ∈ Bun(SR),α : F|SR\Γx
∼−→ T|SR\ΓS }

is strictly equivalent to G×C S.

Note that GrS,x is the fiber of GrS at the point x. It suffices thus to prove the second result.

Proof. Let X denote SR. We use the local cohomology exact sequence for F at Z = Γx . Let
j : X \Z→X be the open embedding. Then the exact sequence has the form

0→H0
Z (F)→ F→ j∗ j

∗F→H1
Z (F).

We want to prove that Hi
Z (F) = 0 as sheaves, for i = 0,1. Since these sheaves are supported at

Z , let us choose a point p ∈ Z and compute the stalks at p.
Recalling the definition of local cohomology, we want to compute

lim
n

Exti
OX
(OX /I

n
Z ,F)p = lim

n
Exti

OX , p
(OX , p/m

n
p ,Fp )

for i = 0,1.
We use now a depth argument. OX , p is local with idealmp . SinceF is locally free, the projective
dimension of Fp over OX , p is 0, and the Auslander-Buchsbaum formula says that

depthmp
Fp = depthOX , p .

Now, OX , p = A⊗ R′, where A = OS,x is a regular local ring of dimension 2 and R is the
localization of R at the prime corresponding to p. In particular, A has depth 2. Let (x1, x2) be
a regular sequence in A, and

0→A→A⊕A→A

be the corrisponding exact sequence. Tensoring by R over C preserves left exactness, and thus
we obtain a sequence

0→A⊗R′→ (A⊗R′)⊕2→A⊗R′

where the last map is the one associated to the sequence (x1⊗ 1, x2⊗ 1), which by exactess is
again regular. We conclude that A⊗R′ has depth at least 2.

It suffices now to apply the following couple of arguments: first, by [?, Theorem 16.6]
we have that Exti

OX , p
(N ,Fp ) = 0 for i = 0,1 for every finite OX , p -module N with support

concentrated in p. This includes the case N = OX , p/mp and every quotient of the form
mn

p/m
n+1
p . As for the quotients of OX , p by higher powers of the maximal ideal, we can apply

induction using the long exact sequence of Ext groups induced by the short exact sequence

0→mn
p/m

n+1
p →OX , p/m

n+1
p →OX , p/m

n
p → 0

and thus conclude that Exti
OX , p
(OX , p/m

n
p ,Fp ) = 0, i = 0,1,∀n.

We have just proven that the most naïve generalization of the affine Grassmannian to
surfaces is “trivial”. We therefore introduce a slightly less naïve version, and prove that it is
ind-quasiprojective.
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Definition 3.4. Let S be a smooth complex surface, and C ⊂ S a closed subscheme of
dimension 1. The stack HeckeBunG

C (S) is the functor sending

T 7→ {F,G ∈ BunG(S ×Y ),φ : F|(S\C )×T
∼−→ G|(S\C )×T }

where the one on the right is a groupoid whose morphisms are isomorphisms of pairs of
torsors whose restriction to the open set commute with the given isomorphisms.

Theorem 3.5 (sketched in [Kap00, Proposition 2.2.2]). The fibers of the map HeckeBunG
C (S)→

BunG(C ) are representable by ind-quasiprojective schemes.

Definition 3.6. We call the fiber at the trivial bundle the affine Grassmannian associated to
the triple (G, S,C ) and denote it by GrC (S) (the group is omitted from the notation).

Proof of Theorem 3.5. The proof goes along the same line of the proof of Theorem 1.2, except
for the fact that we cannot extablish a bijective correspondence between {F | InG0 ⊂ F ⊂
I−nG0} and QuotI−nG0/InG0/S/C(T ), since the local rings of S are not PIDs.
So in general, the condition that the kernel

0→ F→ I−nG0→H→ 0

is locally free is a nontrivial condition, and it is open. To prove this, we can again restrict
to the t -fibers of S × T as above, and note that a sheaf which is locally free at a point is
free over an open set around the point. An alternative viewpoint, still after restricting to
fibers, is the following: provided that Coh(S) has enough locally frees, i.e. that each coherent
sheaf is a quotient of a locally free sheaf (and this is the case for quasiprojective varieties like
S : https://stacks.math.columbia.edu/tag/0F85), it is true that F ∈Coh(S) is locally
free if and only if Ext1(F,G) = 0 for every G ∈ Coh(S) ([Har77, Exercises 6.4-6.5 on page
238]). One can now invoke the so-called “semicontinuity theorem for cohomology”:

Theorem 3.7 ([BPS80, Satz 3]). Let X → W be a flat morphism of schemes, F,G coherent
sheaves on X flat over W . Then the function W → N, w 7→ dimExt1

OXw
(Fw ,Gw ) is upper

semicontinuous.

It is now possible to conclude the proof in the same way as for the case of the curve.
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