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Abstract

In this note we review some properties of the sheaves-functions dictionary for algebraic
varieties, in particular proving that it is an injective map of vector spaces and that commutes
with tensor product, pullback and proper pushforward of sheave/functions. We also illustrate
a generalization to algebraic stacks of finite type, and to general algebraic stacks via pro-objects.
We apply this theory to show that for an algebraic variety X , the Hall product of constructible
sheaves on Coh(X ) agrees with the convolution product of functions via the generalized
sheaves-functions dictionary.
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1 Injectivity

The sheaves-functions correspondence is the function (not actually a correspondence, i.e. it is
not bijective) described by

χ : K0(D
b
c (X ))⊗Qℓ→HomSet(

∐

X (Fqn ),Qℓ),

[F ] 7→ χF

where χF sends x ∈X (Fqn ) to

2dimX
∑

i=0

(−1)i Tr(Frx ,Hi (F)).

We assume that C andQℓ are identified by means of a chosen isomorphism. Let us explain
the above expression.
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1 INJECTIVITY

The complex being constructible, the cohomology sheaves Hi (F) are constructible on X
by definition. Therefore there exists a stratification { jα : Xα → X } of X by locally closed
subschemes such that j ∗α (H

i (F)) is locally constant.
The monodromy action (see [Lov12]) establishes a correspondence between local systems on
Xα and ℓ-adic representations of the fundamental group π1(Xα, xα) for any basepoint x and
any choice of a geometric point x over x. We denote the representation associated to j ∗αH

i (F)
by ρα :π1(Xα, xα)→GLn(Qℓ).
For every x ∈ Xα(Fqn ), n arbitrary, we have an induced map π1(x, x) = Gal(Fq/Fqn ) →
GLn(Qℓ). Note that Gal(Fq/Fqn ) is topologically generated by the Frobenius element Frn .
Call σx the conjugacy class induced by Frn in π1(Xα, xα) and ρα(σx ) the conjugacy class in
GLn(Qℓ).
We define

Tr(Frx ,Hi (F)) :=Tr(ρα(σx ))

(this is well defined because the trace is conjugacy-invariant).

Remark 1.1. We will prove in a moment that the functionχ is well-defined on the Grothendieck
group. Before, it is important to note that the Grothendieck group above can be identified
with the Grothendieck group of Pe r v(X ): this is because Pe r v(X ) is, by definition, the heart
of the perverse t-structure on Db

c (X ,Qℓ), hence by Quillen’s heart theorem the two groups
coincide.
Moreover, since Pe r v(X ) is an abelian category, the Grothendieck group is (abelian) freely gen-
erated by the isomorphism classes of simple perverse sheaves. More precisely, since we are in
the Grothendieck group we can assume that our perverse objects are semisimple (every object
is equivalent to its semisimplification), and write [pHi (F)] =

∑

j [S j ], where the S j are simple
perverse sheaves. By [BBDG83, Theorem 4.3.1 (ii)] these are of the form i∗ j!∗L

i
j [dimZ i ] for

some irreducible local systems Li
j on an open set j : U i → Z i in a closed irreducible subscheme

i : Z i →X .

Theorem 1.2. The function χ is well-defined, and it is injective.

Proof. The function is well-defined on the Grothendieck group. Indeed, for an exact sequence
0→ F′ → F → F′′ → 0 of perverse sheaves, we consider the long exact sequence induced
on the cohomology sheaves, and then we take stalks at the point x; now we can apply the
additivity of the trace of a morphism on exact sequences of vector spaces.
Let us prove now that the function is injective. Suppose by contradiction that χF = χG for
two different objects in the derived category Db

c (X ). By Remark 1.1 we can suppose that F
and G are perverse and semisimple.

Now, in the Grothendieck group we have that for any perverse sheaf F0,

[F0] =
∑

i

(−1)i [Hi (F0)]

and also
[F0] =
∑

i

(−1)i [ pHi (F0)].

The non-injectivity hypothesis tells us that the local traces of the first expression (the one
with the ordinary cohomology sheaves) coincide for F and G; therefore, the same holds for
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the second one, if we write it in a way such that the trace of the Frobenius makes sense, i.e. if
we decompose the perverse cohomologies into summands related to local systems, which we
will do immediatly.
Let us call Li =⊕ j L

i
j the semisimple local systems corresponding to F and N i =⊕ j N

i
j the

local systems corresponding to G as in Remark 1.1.
One can now follow the proof in [MSV18] and proceed by noetherian induction, separating
the supports. We are thus dealing with two irreducible local systems Li and N i , defined over
a common open set U i inside a closed irreducible set Z i . By restricting to U i , we can deduce
from our noninjectivity hypothesis that for every x ∈U i

∑

i

(−1)i Tr(Frn
x , Li ) =
∑

i

(−1)i Tr(Frn
x ,N i ).

By linearity of the trace, we can rewrite the equalities as

Tr(Frn
x ,
∑

i

(−1)i Li ) =Tr(Frn
x ,
∑

i

(−1)i N i ),

where the algebraic sum is meant to be seen as an algebraic sum of representations.
Let us just call the two local systems of which we are taking the trace L and N . They correspond
to two continuous representations ρ1,ρ2 : G :=π1(U , u)→GLn(Qℓ). We want to prove that
the morphisms

tr1, tr2 : G→Qℓ

g 7→Tr(ρ1(g )),Tr(ρ2(g ))

are the same. By the Brauer-Nesbitt theorem ([CR62]) this implies that the two representations
have the same semisimplification. But since we are dealing with simple (i.e. irreducible) local
systems, we can conclude that they are isomorphic.
Now, we know that if we consider a closed point x : SpecFqn →U and its fundamental group
π1(x, x) = Gal(k(x)/k), we have a conjugacy class in π1(U , u) induced by the Frobenius
element σx ∈Gal(k(x)/k(x)). The Chebotarev theorem (as stated in [Pin97, Theorem B.9])
asserts precisely that these conjugacy classes are dense inπ1(U , u)when x varies over the closed
points of U . On the other hand, for every closed point x, Tr(Frn

x ,Lx ) is the same as Tr(ρ1x (σx ))
as trace of a matrix, where ρ1x is the continuous representation Gal(k(x)/k(x))→GLn(Qℓ)
induced by L on x (and the same for N ). This follows from the correspondence between local
systems and continuous representations.
Since the representations are continuous and the non-injectivity assumption tells us that the
two traces tr1, tr2 coincide on these conjugacy classes, we conclude.

Remark 1.3. It can be proved that

Tr(Frx ,Hi (F)) =Tr(FrX ,x ,Hi
x (F))

where FrX = FrX ⊗ i dFq
is the automorphism of X = X ×Fq

Fq induced by the Frobenius

element of Gal(Fq/Fq ), F is the pullback of F to X , and the action on the cohomology vector
space is induced by functoriality. This slightly different version will be useful later.
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2 COMMUTATION WITH PROPER PUSHFORWARD

Definition 1.4 (External product of constructible complexes on schemes). Define the external
product of two constructible complexes sheaves F and G on two (possibly different) schemes
X and Y as F⊠G := p∗1F⊗ p∗2G, referring to the diagram

X ×Y

X Y.

p1 p2

Note that the tensor product is the derived tensor product in the derived category of con-
structible sheaves.

Observe now the following two facts:

Proposition 1.5. The correspondence sends the tensor product of simple perverse sheaves to the
product of functions.

Proof. This follows from the fact that the tensor product of simple perverse sheaves corre-
sponds to the product of representations.

Theorem 1.6. The correspondence commutes with the pullback.

Proof. Let f : X → Y be a morphism of schemes and F a constructible complex on Y . We
write f ∗ for the pullback on both sides. We have that (χ f ∗(F))(x) =

∑

(−1)i Tr(Frn
X

,Hi
x ( f

∗F)),
while

f ∗χF = f ∗(y 7→
∑

(−1)i Tr(Frn
Y

,Hi
y (F)))(x) =
∑

(−1)i Tr(Frn
Y

,Hi
f (x)(F))

but Hi (F) = Ke r iF

I m iF
and Hi

f (x)(F) =
Ke r i (F f (x))
I m i (F f (x))

= (Ke r i ( f ∗F))x
(I m i ( f ∗F))x

=Hi
x ( f

∗F).

In the next section, we will prove that χ “preserves” the derived direct image with proper
support R f! in a suitable sense.

2 Commutation with proper pushforward

Definition 2.1. Let X be a scheme of finite type over Fq . Let F be a constructible complex
over X , i.e. an object of the category Db

c (X ,Qℓ). Define the function

χX (F) : X (Fqn )→Qℓ

χX (F)(x) :=
∑

i

(−1)i Tr(Frn
X

,Hi
x (F))

where an algebraic closure of Fq is chosen, so that X is the fiber product X ×Fq
Spec Fq and

x is a geometric point corresponding to x. Recall that Fr is the geometric Frobenius acting on
X and therefore on Hi

x (F), the cohomology stalks of F, where for simplicity we write F for
the pullback to the algebraic closure. The whole construction is independent of the choice of
x.
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Proposition 2.2 ([Lau87, 1.1.1.3], without proof). Let f : X → Y be a morphism of schemes of
finite type over Fq . Then the diagram

Db
c (X ) HomSet(X (Fqn ),C)

Db
c (Y ) HomSet(Y (Fqn ),C)

χX

R f! f!

χY

commutes. Here f! is the following operator:

f! : HomSet(X (Fqn ),C)→HomSet(Y (Fqn ),C)

f!(φ)(y) :=
∑

x∈X (Fqn ), f (x)=y

φ(x).

Recall that the sets X (Fqn ) and Y (Fqn ) are finite, hence the above sum makes sense.

Proof. We want to prove that, for any y ∈ Y ,

∑

i

(−1)i Tr(Frn
Y
|Hi

y (R f!F)) =
∑

x∈X (Fqn )∩ f −1(y)

∑

i

(−1)i Tr(Frn
X
|Hi

x (F)).

We begin by exchanging the two sums in the right-hand side (for brevity, from now on, RHS)
and applying the Grothendieck-Lefschetz trace formula to Z := SpecFq × f −1(y):

Proposition 2.3 (Grothendieck-Lefschetz trace formula). Let G be a constructible complex over
a scheme Z/Fq . Then

∑

z∈Z(Fqn )

Tr(Frn
Z | Gz ) =
∑

k

(−1)kTr(Frn
Z |H

k
c (Z ,G)).

Note that on the right we have the compact support (étale) cohomology group of the
sheaf (not the stalk of the cohomology sheaf of the complex): this is defined using a Nagata
compactification j : Z → Z̃ (see e.g. [Tam, Definition 2.2]); in that setting, if F is a torsion
sheaf1 on f : Z→ S is a morphism and S the spectrum of a separably closed field (in our case,
S = y and f is the restriction to the geometric fiber Z of the pullback of our original f to the
algebraic closure) one can define

H n
c (Z ,F) =H n(Z , j!F)

RΓc (X ,F) = Γ (S, R f!F),

check that this is independent from f , S and also see that

H n
c (Z ,F) =H n(RΓc (Z ,F)) = Γ (S, Rn f!F). (1)

Note that the Frobenius automorphism is well behaved with respect to morphisms of schemes
over Fq (see [G+66], XV, no. 1-2), hence we can interchange Frn

X
and Frn

Z while looking at

1The case of ℓ-adic sheaves is dealt with by taking the relevant limits.
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3 EXTENSION TO ALGEBRAIC STACKS

the action on cohomology stalks at points of Z : i.e., Tr(Frn
X
|Hi

x (F)) = Tr(Frn
Z |H

i
x (F|Z )).

We then get

RH S =
∑

i

∑

k

(−1)i+kTr(Frn
Z |H

k
c (Z ,HiF|Z )).

We now use the existence of a spectral sequence for hypercohomology with compact support

E i k
2 =H k

c (Z ,Hi (F|Z ))→H i+k
c (F|Z ).

Although we do not know if the spectral sequence degenerates at its second leaf (and in general
it will not) we can use the fact that the differential of the spectral sequence, whose kernels and
images give us the iterated leaves of the sequence, has always degree 1 (hence odd); so taking
our alternate sum of traces is independent of the leaf of the spectral sequence: more precisely,

∑

i ,k

(−1)i+kTr(Frn
Z |H

k
c (H

i
x (F|Z ))) =
∑

n
(−1)n
∑

i+k=n

Tr(Frn
Z | E

i k
2 ) =

=
∑

n
(−1)nTr(Frn

Z | ⊕i+k=n E i k
∞) =
∑

n
(−1)nTr(Frn

Z |H
n
c (F|Z )).

Now by (1) the latter is equal to

∑

n
(−1)nTr(Frn

Z | Γ (S, Rn f!(F|Z ))) =
∑

n
(−1)nTr(Frn

Z | Γ (S,Hn(R f!(F|Z )))).

By proper base change on

Z y

X Y

f |Z

i s

f

one gets an isomorphism in the derived category (of complexes over y)

R f!(F|Z ) = R f!i
∗F∼= s∗R f!F

hence Γ (S,Hn(R f!(F|Z ))) = Γ (S,Hn s∗R f!F) ∼= (Hn R f!F)y (because y is the spectrum of a
field). But this gives us exactly the LHS

∑

n(−1)nTr(Frn
Y
|Hn

y (R f!F)).

3 Extension to algebraic stacks

Our goal is now to extend and adapt the results of the previous two sections to the level of
algebraic stacks locally of finite type, more precisely to the algebraic stack Coh(X ),X being a
smooth proper curve over Fq . Let X be an algebraic stack of finite type over Fq . Then the
Frobenius automorphism is defined and acts by functoriality over Hi (F) for any complex of
sheaves F over X. Here by “sheaf” we mean “sheaf over the lisse-étale site”, but we will soon
change our perspective towards the context of constructible sheaves.

Remark 3.1. Let X be an Artin stack of finite type over Fq , with a smooth atlas x : X →X.
By the finite-type hypothesis, we can assume X quasicompact of finite type as well. Let Λ
be a sheaf of rings over the pro-étale site of X (see [Cho13]). A sheaf of Λ-modules F over
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the small pro-étale site of X is cartesian if for every morphism ( f , f b ) : (T ′, t ′)→ (T , t ) in
(Sch/X)pro-ét, the canonical morphism of pro-étale sheaves of Λ(T ′,t ′)-modules on T ′

f ∗F(T ,t ) = f −1F(T ,t )⊗ f −1Λ(T ,t )
Λ(T ′,t ′)→ F(T ′,t ′)

is an isomorphism. We denote by Modcart
Λ (Xpro-ét) the full subcategory of Mod(Xpro-ét,Λ)

spanned by cartesian sheaves.
Let X →X be an atlas, and X• be its Cech nerve. At the level of∞-categories, one can

alternatively define
Modcart

Λ (X) := lim←− p,

p being the functor ∆→ Cat∞ defined by p([n]) = ModΛ(Xn), p(δ : [n]→ [m]) = δ∗ :
ModΛ(Xn)→ModΛ(Xm). By [Lur09, Cor. 3.3.3.2], this definition agrees with the classical
definition.

Definition 3.2. Define

ConsΛ(X) = {F ∈Modcart
Λ (X) | F(X ,x) is constructible}.

It is very important to note that

Lemma 3.3 ([Cho13, Lemma 6.2.13]). Modcart
Λ (Xpro-ét) and ConsΛ(X) are abelian categories.

Definition 3.4. Define also Db
c (X,Λ) = {F ∈Db(ModΛ(X)) |Hn(F) ∈ConsΛ(X)}.

From now on, Λ will be the constant sheafQℓ (and omit it when clear from the context).

Definition 3.5 (Perverse t-structure on stacks). One can define a perverse t-structure on Db
c

by
pD≤0

c (X) = {F ∈Db
c (X) | x

∗F[dim x] ∈ pD≤0(X )}
pD≥0

c (X) = {F ∈Db
c (X) | x

∗F[dim x] ∈ pD≥0(X )}

where pD≤0
c (X ) and pD≥0

c (X ) refer to the usual perverse structure on schemes: a complex
F ∈Db

c (X ) is in pD≤0
c (X ) (resp. pD≥0

c (X )) if for every i ∈ Z

dimsupp(H−i (F))≤ i

(respectively dimsupp(H−i (DF))≤ i , where D is the Verdier dual).

It can be checked ([LO09, Sec. 4]) that this defines a t-structure on Db
c (X), independent of

the atlas X .

Definition 3.6. Define Perv(X) = pD≤0(X)∩ pD≥0(X) as full triangulated subcategory of
Db

c (X).

Remark 3.7. This allows us to define a Grothendieck group K0(Perv(X )). By Quillen’s Heart
theorem, we have K0(Perv(X )) = K0(D

b
c (X )) but also K0(Perv(X )) = K0(ConsΛ(X)). This

is because every object F ∈ Db
c (X ) has the same class in the Grothendieck group as both

∑

(−1)i [pHi (F)] and
∑

(−1)i [Hi (F)]. The summands in the second one are constructible
by [Cho13, Notation 6.2.15, Theorem 6.2.16], hence the above statement. Recall that we
have already used this kind of argument while dealing with schemes.
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4 THE SHEAVES-FUNCTION DICTIONARY AND THE HALL PRODUCT ON Coh(X )

Let X be again an algebraic stack of finite type over Fq . Recall that for the constructible
sheaf G=Hi (F) the χ function reduces to

χG(x) =Tr(Frn
X,Gx ).

More in general, we have a homomorphism

χ : K0(D
b
c (X))⊗Qℓ→
∏

n
HomSet(π0(X(Fqn )),Qℓ) (2)

given by the usual formula

χF(x) =
∑

(−1)i Tr(Frn
X,Hi

x (F)).

This sum converges because our complexes are bounded. A theory for trace formulas in the
unbounded setting is developed in [Sun12].

Theorem 3.8 ([Zhe18, Prop. 4.6]). The function χ is injective.

Sketch. The proof tries to go along the same lines as in the case of schemes. Given A∈Ker χ ,
we can suppose as usual that it is (the isomorphism class of) a simple perverse sheaf. We can
prove that there exists a stratification of X by geometrically unibranch substacks where A is
lisse, i.e. locally constant. From that, one can reduce straightforwardly to Deligne-Mumford
stacks and apply a version of a Chebotarev-like argument proved in [SZ16].

4 The sheaves-function dictionary and the Hall product on
Coh(X )

Let us now consider a curve X and the algebraic stackX=Coh(X ). We would like to construct
a convolution product in K0(D

b
c (X)), which should be preserved under the sheaves-functions

correspondence χ . The construction is as follows: consider the stack Cohe x t (X ) as in [PS19,
Sec. 3], and the diagram

Cohe x t (X )

Coh(X )×Coh(X ) Coh(X )

e v3×e v1 e v2

(we borrow the notations from [PS19]). Then take two simple perverse sheaves F and G over
Coh(X ), and set

F ∗G := e v2!(e v3× e v1)
∗(F⊠G) ∈Db

c (Coh(X )).

We extend this product to the whole K0(D
b
c (Coh(X )) by bilinearity.

We now define the counterpart of this convolution product on the “function” side, as in
[Toe06]. Starting from the diagram above, we want to build a diagram of the following kind:

Func(Cohe x t (X )(Fqn ),Qℓ)

Func((Coh(X )×Coh(X ))(Fqn ),Qℓ) Func(Coh(X ))(Fqn ),Qℓ)

e v2!(e v3×e v1)
∗
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and define a convolution product by f ∗ g = e v2!(e v3× e v1)
∗( f g ). The pullback is defined

easily by precomposition. But the definition of e v2!, as we will see in a moment, is not so
straightforward. Also, we need to make sense of Func(−,−), because Cohe x t (X )(Fqn ) and
(Coh(X )×Coh(X ))(Fqn ) are groupoids (not discrete sets as in the case of schemes). A sec-
ond problem is the following. In the case of schemes of finite type, we defined the “lower
shriek” functor as f!(φ)(y) :=

∑

x∈X (Fqn ), f (x)=y φ(x). There everything made sense because
the schemes were of finite type and therefore all sums were finite. But in the case of schemes
(or stacks) not necessarily of finite type, like Coh(X ) and Cohe x t (X ), the above expression is
an infinite sum, that could be divergent inQℓ.
In fact, there is no reason in general to suppose that the trace function is finitely supported.
This problem will be addressed later. For now, let us suppose that our stacks are of finite type.
In that setting, we can borrow from [Toe06] the following formula for the proper push-
forward. Let f : X → Y be morphism of algebraic stacks of finite type over Fq . Let
α ∈ Func(π0X(Fqn ),Qℓ) where Func is just “function of sets” (Fqn is an∞-groupoid). In
[Toe06] a finite support condition is required, but an algebraic stack over a finite field has a
finite number of Fqn -rational points. Let y ∈π0Y(Fqn ), and let Fy be the homotopy fiber of y,
with map i : Fy →X to X . Define f!α ∈ Func(π0Y(Fqn ),Qℓ) as

y 7→
∑

x∈π0(Fy )

α(i(x))
|π1(Fy , x)|

.

Let us now state a crucial result proved by Sun Shenghao, which generalizes the trace
formula to algebraic stacks:

Theorem 4.1 ([Sun12, Theorem 4.2, adapted]). Let f : X→ Y be a morphism of Fq -algebraic
stacks of finite type, and let K0 ∈Db

c (X,Qℓ), K its pullback to the algebraic closure. Then

cn(X) = cn(Y, R f!K0)

for every integer n ≥ 1, where

cn(X,K0) =
∑

x∈π0(X(Fqn ))

1
|AutxFqn |

Tr(Frx ,Kx ).

Applying this in the case where Y is a point yields a generalized trace formula

∑

x∈π0(X(Fqn ))

1
|AutxFqn |

Tr(Frx ,Kx ) =
∑

i

(−1)i Tr(Fr, H i
c (K0)).

This can be applied in the only argument of the proof of Proposition 2.2 that is not easily
extendable to algebraic stacks of finite type: in fact, for y ∈π0Y(Fq ),

f!χF(y) =
∑

x∈π0(Fy ), f (x)=y

χF(i(x))
|π1(Fy , x)|

which can be replaced by

∑

x∈π0(X(Fqn )), f (x)=y

1
|AutxFqn |
∑

i

(−1)i Tr(Frx ,Hi
x (F)).
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4 THE SHEAVES-FUNCTION DICTIONARY AND THE HALL PRODUCT ON Coh(X )

By the trace formula this equals
∑

i

(−1)i
∑

k

(−1)kTr(Fr f −1(y), H k
c (H

i (F)| f −1(y))).

Then the proof goes on as above. The hypercohomology spectral sequence holds for the
derived category of any abelian category, and thus we can apply it to our setting.

Recall from the previous section that, if our stacks are not assumed to be of finite type
over Fq , the proper pushforward of functions is not well defined. A possible solution to this
problem is to define a “completion” of both sides of the correspondence, which reduces the
situation to stacks of finite type. This is strongly related to a notion already considered by O.
Schiffmann in his works.
Consider the category qc(Coh(X )) having as objects all U ⊂ Coh(X ) open quasicompact
substacks of Coh(X ), and the inclusions as morphisms. Consider the pro-object

A1 : qc(Coh(X ))→{Qℓ-vector spaces}

(u : U →Coh(X )) 7→K0(D
b
c (U ))⊗Qℓ

( f : U ,→V ) 7→ f ∗ : K0(D
b
c (V ))⊗Qℓ→K0(D

b
c (U ))⊗Qℓ

This is a cofiltered diagram in Qℓ-vector spaces, because for any two U ⊂ Coh(X ),V ⊂
Coh(X ), we have that U

∐

Coh(X )V → Coh(X ) is quasicompact, and any two morphisms
U →V must coincide by definition of the category.
The algebra structure on the left is defined as follows: an algebraic stack U e x t →Coh(X ) is
defined by the cartesian diagram

U e x t Cohe x t (X )

U×2 Coh(X )×2

.

We can complete this diagram to the following

U e x t Cohe x t (X ) Coh(X )

U ×U Coh(X )×Coh(X )

p3×p1

u

e v3×e v1

e v2

and define, for any two F,G ∈Db
c (U ),

F ⋆G= r! s
∗(F⊠G). (3)

Recall from [PS19] that the right vertical map is of the form S pecSy m, hence the preimage
of the open quasicompact stack given by the image of U ×U inside Coh(X )×Coh(X ) is
an open quasicompact substack of Cohe x t . Moreover, the right horizontal map preserves
quasicompact substacks by continuity.
Hence the composition e v2 ◦ u factorizes through a quasicompact substack V ⊆ Coh(X ),
which can be embedded into an open quasicompact stack by taking a finite covering of V by
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open quasicompact substacks as follows. Take z : Z→Coh(X ) a smooth atlas; write z−1(V )
for the pullback of V to z . By definition of quasicompact substack, z−1(V ) is a quasicompact
scheme in Z . Hence it can be covered by a finite number of affine subschemes of Z , whose
union forms an open scheme Z ′ ⊂ Z containing z−1(V ). Its projection to Coh(X ) is open
and compact (a smooth morphism is open and continuous), and contains V .
Thus, for any U ∈ qc(Coh(X )) one has an induced “convolution map” Db

c (U )×Db
c (U )→

Db
c (V ) for some V given again by (3).

Consider now the pro-object limqc(Coh(X ))A1.

Theorem 4.2. The above structure makes limA1 into a pro-algebra.

Proof. The map Db
c (U )×Db

c (U )→Db
c (V ) induces a map Db

c (U )×Db
c (U )→ limW Db

c (W ).
This is because, for every open quasicompact substack W ⊂ Coh(X ), one can take the
quasicompact open substack V

∐

Coh(X )W containing both W and V and observe that the
triangle in the diagram

Db
c (V )

Db
c (U )×Db

c (U ) Db
c (V
∐

Coh(X )V )

Db
c (W )

easily commutes. (The horizontal map is defined as in (3) but with V replaced by V
∐

Coh(X )W .)
This defines a map

Db
c (U )×Db

c (U )→ limA1.

We want to lift this map to

limDb
c (U )×Db

c (U ) = limA1×A1→ limA1,

and we do this by checking that for every U , U ′ ∈ qc(Coh(X )) the maps induced by the
projections, namely

limA1×A1→A1(U )×A1(U ) =Db
c (U )×Db

c (U )→ limA1

and

limA1×A1→A1(U
′) =Db

c (U
′)→ limA1

coincide.
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This is true by commutativity of the small triangles and squares in the diagram

limW Db
c (W )×Db

c (W )

Db
c (U )

×2 Db
c (U
∐

Coh(X )U
′)×2 Db

c (U
′)×2

Db
c (V ) Db

c (V
∐

Coh(X )V
′) Db

c (V
′)

limW Db
c (W )

which implies that the two vertical trapezes commute and there is a common induced dotted
map towards the limit limA1.
This defines a multiplication on limA1.

Now we turn to the “function” side. In analogy to the above construction, we define:

A2 : qc(Coh(X ))→{Qℓ-vector spaces}

(u : U →Coh(X )) 7→
∏

n
Func(π0(U (Fqn )),Qℓ)

j : U →V over Coh(X ) 7→ j ∗ : Func(π0(V (Fq )),Qℓ)→ Func(π0(U (Fq )),Qℓ).

This is again a cofiltered diagram.
Also, we can define an algebra structure induced by

U e x t (X )

U ×U V .

s=e v3×e v1 r=e v2

More precisely, if f , g ∈ Fun(U (Fqn ),Qℓ) for some n, define

f ⋆ g := r! s
∗(F⊠G) ∈ Func(π0(V (Fqn )),Qℓ).

This induces a map

∏

n
Func(π0(U (Fqn )),Qℓ)×

∏

n
Func(π0(U (Fqn )),Qℓ)→

∏

n
Func(π0(V (Fqn )),Qℓ).

Again

Theorem 4.3. The pro-object limA2 is a pro-algebra when endowed with the structure described
above.

Proof. We can follow exactly the same proof of Theorem 4.2.
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The sheaves-functions correspondence χ defined in (2) (when X = Coh(X )) extends
naturally to a morphism of pro-algebras A1→ A2. To check this, one has to check that for
every f : U →V inclusion of quasicompact substacks of Coh(X ) the induced diagram

K0(D
b
c (V ))⊗Qℓ K0(D

b
c (U ))⊗Qℓ

∏

n Func(π0V (Fqn ),Qℓ)
∏

n Func(π0U (Fqn ),Qℓ)

commutes in Set.
But this amounts to say that χ for finite type stacks commutes with the pullback, which is
true by previous observations. Hence

Theorem 4.4. The sheaves-functions correspondence defines a morphism of pro-algebras

χ : A1→A2.

Question 4.5. The first open question that one may want to tackle is of course injectivity of
this map. One would also want to study the two sides of this correspondence and relate them
to the constructions made in Lecture 5 of [Sch12].
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