Homotopie II 2023-2024 - TD sheet A

Guglielmo Nocera

Exercise 1. Prove that the construction of $L_S C$ below Definition 1.27 in prof. Horel's notes actually satisfies the universal property of a localization. Hint: prove and use that epimorphisms of categories are stable under cobase change. Note that epimorphisms "of categories" do not mean "epimorphisms in the category of categories".

Exercise 2 (by Victor Saunier). For simplicity, all rings are commutative.

- 1. Let *R* be a commutative ring. Show that $A \otimes_C B \simeq A \coprod_C B$ in the category of *R*-algebras.
- 2. Let $f, g: A \to B$ be two morphisms of a category C. The coequalizer of f, g is the map $h: B \to X$ given by the following universal property: for every $\alpha: B \to C$ such that $\alpha \circ f \simeq \alpha \circ g$, α factors through h:

$$A \xrightarrow[g]{f} B \xrightarrow{b} \operatorname{CoEq}(f,g) \longrightarrow C$$

- (a) Compute the coequalizer of two morphisms in Set. Is it different from the pushout $B \coprod_A B$ of f and g?
- (b) Suppose C admits a zero object. Show the coequalizer of f and 0 is the cokernel of f.
- (c) Let \mathcal{A} be an abelian category. Show that $\operatorname{CoEq}(f, g) \simeq \operatorname{coker}(f g)$.
- 3. Let *M* be a commutative monoid, $t \in M$, and *X* a set with an action of *M*. We denote $\phi_t : X \to X$ the morphism $x \mapsto xt$.
 - (a) Compute the colimit of the following diagram in the category of *M*-sets:

$$X \xrightarrow{\phi_t} X \xrightarrow{\phi_t} X \xrightarrow{\phi_t} X \xrightarrow{\phi_t} \dots$$

and show that it is canonically endowed with an action of $M[t^{-1}]$.

- (b) Show that the functor $M[t^{-1}]$ -Set $\rightarrow M$ -Set which forgets the underlying action admits a left adjoint L, and then show that L(X) is the above colimit endowed with its $M[t^{-1}]$ -action.
- (c) Show that L is a localisation functor.
- 4. Show that a functor *L* admitting a right adjoint preserves colimits.

Exercise 3 (by Victor Saunier). Let $X \in A$ and (C, F, W) be a model structure on A. We denote by $A_{/X}$ the category whose objects are maps $\alpha : Y \to X$ of A and whose morphisms are commutative triangles

$$\begin{array}{c} Y \xrightarrow{\alpha} X \\ f \downarrow & \swarrow \\ Y' & \swarrow \end{array}$$

Similarly, we denote $C_{/X}$ (resp. $F_{/X}$, $W_{/X}$) the morphisms of $A_{/X}$ as above where $f \in C$ (resp. F, W). Show that $(C_{/X}, F_{/X}, W_{/X})$ determines a model structure on $A_{/X}$. We call it the *slice model structure*. What are the fibrant objects on the above described model structure? The cofibrant objects ?

Exercise 4 (Rezk's model structure on Cat). Denote Cat the category of small categories. We assume that it is complete and cocomplete. We let W denote equivalences of categories and C denote functors that are injective on objects. We let F denote functors $H : A \to B$ such that for every isomorphism $g : F(a) \to b$ of B, there is a map $f : a \to a'$ with g = F(f); such functors are called *isofibrations*.

Denote * the category with one object and no non-trivial arrows, and *I* the category with two objects 0, 1 and exactly one isomorphism in each direction. Let $i : * \to I$ be the inclusion at 0. Show that $F = (\{i\})^{\perp}$. Show that *W* verifies 2-out-of-3, and that *W*, *C* and *F* are stable under retracts.

- 1. (a) Show that every functor H of $C \cap W$ has a left inverse G which is also a quasi-inverse and such that the natural transformation $FG \simeq id$ is equal to the identity on the image of F.
 - (b) Deduce that $F \subset RLP(C \cap W)$.
- 2. Show that $C \subset^{\perp} (F \cap W)$.
- 3. Let $F : \mathcal{A} \to \mathcal{B}$ be a functor. Denote $Path(F) := \mathcal{A} \times_{\mathcal{B}} \mathcal{B}^{I}$ where the map $\mathcal{B}^{I} \to \mathcal{B}$ is the source map, and $Cyl(F) := (\mathcal{A} \times I) \coprod_{\mathcal{A}} \mathcal{B}$, the functor $\mathcal{A} \to I$ being the functor sending everything to {1}. Show that *F* factors through Path(F) and Cyl(F); deduce that (C, F, W) is a model structure on Cat.
- 4. What are the fibrant objects, the cofibrant objects?