Homotopy II 2023-2024 - TD sheet B

Guglielmo Nocera

January 25, 2024

Exercise 1 Quillen adjunctions (by Victor Saunier)

Let $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{E}$ be two left Quillen functors.

- 1. Show that $G \circ F$ is a left Quillen functor.
- 2. Show that there is a natural equivalence $\mathbb{L}(G \circ F) \simeq (\mathbb{L}G) \circ (\mathbb{L}F)$.
- 3. Let (L, R) be an adjoint pair. Show that L is left Quillen if and only if R is right Quillen.
- 4. Suppose the restriction of a functor F to cofibrant objects preserves trivial cofibrations, show that F is left derivable. (Hint: Ken Brown's lemma).

Exercise 2 Slice model structure II (by Victor Saunier)

Let $(\mathcal{C}, \mathcal{F}, \mathcal{W})$ be a model structure on \mathcal{A} . Let $f : X \to Y$ be a morphism. Recall that we defined in the last exercise sheet a model structure on every slice category $\mathcal{A}_{/X}$.

- 1. Show that the functor $f_! : \mathcal{A}_{/X} \to \mathcal{A}_{/Y}$ which postcomposes by f admits a right adjoint f^* and describe it.
- 2. Show that the pair (f_1, f^*) is a Quillen pair of adjoints.
- 3. Suppose \mathcal{A} is right proper, i.e. weak equivalences are stable under pullback by fibrations, and that $f \in \mathcal{W}$. Show that the pair $(f_!, f^*)$ is a Quillen equivalence.
- 4. (Rezk) Suppose that for every weak equivalence f, the pair (f_1, f^*) is a Quillen equivalence. Show that \mathcal{A} is right proper.

Exercise 3 A Lifting Criterion (HTT A.2.3)

Let \mathcal{C} be a model category, and denote $\overline{\cdot} : \mathcal{C} \to h\mathcal{C}$ the localisation functor. Suppose we have $i : A \to B$ a cofibration between cofibrant objects, and $f : A \to X$ a map with X fibrant. Suppose there is a commutative diagram in $h\mathcal{C}$

Show that there exists $g: B \to X$ such that f = gi (in particular, we have $\overline{g} = h$).

Exercise 4 Monoidal model structures (*HTT A.3.1*)

Let $\mathcal{M}, \mathcal{N}, \mathcal{P}$ be three model categories and $F : \mathcal{M} \times \mathcal{N} \to \mathcal{P}$ a functor. F is a *left Quillen bifunctor* if it preserves small colimits in each variable and for every cofibration $i : \mathcal{M} \to \mathcal{M}'$ in \mathcal{M} and $j : \mathcal{N} \to \mathcal{N}'$ in \mathcal{N} , the induced map

$$i \wedge j : F(M, N') \prod_{F(M,N)} F(M', N) \longrightarrow F(M', N')$$

is a cofibration, which is trivial as soon as either i or j is.

A monoidal model category is a closed¹ monoidal category (S, \otimes) equipped with a model structure $(C, \mathcal{F}, \mathcal{W})$ with the following compatibility axioms:

- $\bullet~\otimes$ is a left Quillen bifunctor
- The unit $\mathbbm{1}$ is cofibrant
- 1. Show that the cartesian product of simplicial sets equipped with the Kan model structure is a left Quillen bifunctor. Deduce that the Kan model structure endows sSet with a monoidal model structure.
- 2. Let (\mathcal{A}, \otimes) be a monoidal model category. Let $X \in \mathcal{A}$, show that $\otimes X$ is a left Quillen functor.
- 3. Let (\mathcal{A}, \otimes) be a monoidal model category.
 - a) Show that the left derived tensor product \otimes^L exists. (Hint: use Question 1.4)
 - b) Show that $(h\mathcal{A}, \otimes^L)$ is a monoidal category.
 - c) Show that the localization functor $\mathcal{A} \to h\mathcal{A}$ acquires a lax-monoidal structure which is strong monoidal on the restriction to cofibrant objects.
- 4. Show that the category of chain complexes with the usual tensor product:

$$(C_{\bullet} \otimes D_{\bullet})_n := \bigoplus_{i+j=n} C_i \otimes D_j$$

is a monoidal model category when equipped with the projective model structure.

(Schwede-Shipley) A monoidal model category \mathcal{A} satisfies the *monoid axiom* if, for every acyclic cofibration j, the class of arrows generated by cobase change and transfinite composition by the $j \wedge \mathrm{id}_X$ for every $X \in \mathcal{A}$ is contained in \mathcal{W} , the class of weak equivalences.

- 5. Let \mathcal{A} be a monoidal model category where every object is cofibrant. Show that \mathcal{A} satisfies the monoid axiom.
- 6. Suppose \mathcal{A} is cofibrantly generated, with \mathcal{J} a set of generating acyclic cofibrations. Show that if for every $j \in \mathcal{J}$, the monoid axiom holds for j, then \mathcal{A} satisfies the monoid axiom for every acyclic cofibration.

Exercise 5 Enriched model categories (by Victor Saunier)

Recall that a \mathcal{V} -enriched category \mathcal{C} is tensored and cotensored over a closed monoidal \mathcal{V} , if there are two functors $\otimes : \mathcal{C} \times \mathcal{V} \to \mathcal{C}$ and $[-, -] : \mathcal{V}^{op} \times \mathcal{C} \to \mathcal{V}$ such that there are natural equivalences:

$$\underline{\operatorname{Hom}}_{\mathcal{C}}(X_1 \otimes V, X_2) \simeq \underline{\operatorname{Hom}}_{\mathcal{V}}(V, \underline{\operatorname{Hom}}_{\mathcal{C}}(X_1, X_2))$$
$$\underline{\operatorname{Hom}}_{\mathcal{C}}(X_1, [V, X_2]) \simeq \underline{\operatorname{Hom}}_{\mathcal{V}}(V, \underline{\operatorname{Hom}}_{\mathcal{C}}(X_1, X_2))$$

of objects in \mathcal{V} .

- 1. Let $V \in \mathcal{V}$, show that [V, -] is right adjoint to $V \otimes -$.
- Let \mathcal{V} be a monoidal model category (see above). Let \mathcal{A} be a \mathcal{V} -enriched category, cotensored and tensored over \mathcal{V} , and equipped with a model structure.
- 2. (HTT A.3.1.6) Show that the following propositions are equivalent:
 - (i) $\otimes : \mathcal{C} \otimes \mathcal{V} \to \mathcal{C}$ is a left Quillen bifunctor
 - (ii) For any cofibration $i: D \to D'$ and any fibration $j: X \to Y$ in \mathcal{A} , the induced

$$h: \underline{\operatorname{Hom}}_{\mathcal{C}}(C', X) \longrightarrow \underline{\operatorname{Hom}}_{\mathcal{C}}(C, X) \times_{\underline{\operatorname{Hom}}_{\mathcal{C}}(C, Y)} \operatorname{Hom}(C', Y)$$

is a fibration in \mathcal{V} , trivial as soon as *i* or *j* is.

(iii) For any cofibration $i: V \to V'$ in \mathcal{V} and any fibration $j: X \to Y$ in \mathcal{A} , the induced

$$k: [V', X] \longrightarrow [V, X] \times_{[V,Y]} [V', Y]$$

is a fibration in \mathcal{A} , trivial as soon as i or j is.

¹I.e. the one variable tensor $- \otimes X$ has a right adjoint $\underline{\operatorname{Hom}}(X, -)$

A \mathcal{A} satisfying the above is called a \mathcal{V} -enriched model category. In particular, every monoidal model category is enriched over itself.

3. Show that $h\mathcal{A}$ inherits a \mathcal{V} -enriched structure, such that $\mathcal{A} \to h\mathcal{A}$ is a $h\mathcal{V}$ -enriched functor, and where the mapping objects are given by

 $\underline{\operatorname{Hom}}_{h\mathcal{A}}(X,Y)\simeq \overline{\operatorname{Hom}}_{\mathcal{A}}(X,Y)$