Worksheet 3 - Homotopy II

Guglielmo Nocera

February 6, 2024

Exercise 1 Loops and Suspensions (by Victor Saunier)

Let \mathcal{C} be a model category with a zero objects. For $X \in \mathcal{C}$, we denote ΣX the homotopy colimit of the following diagram $0 \longleftarrow X \longrightarrow 0$ and ΩX the homotopy limit of $0 \longrightarrow X \longleftarrow 0$.

- 1. Compute ΩX in sSet_{*}, Top_{*}, Ch(\mathbb{Z}).
- 2. Compute ΣX in sSet_{*}, Top_{*}, Ch(\mathbb{Z}).
- 3. Show that $\Sigma : \operatorname{Ho}(\mathcal{C}) \to \operatorname{Ho}(\mathcal{C})$ is adjoint to $\Omega : \operatorname{Ho}(\mathcal{C}) \to \operatorname{Ho}(\mathcal{C})$. In which of the previous cases is this adjunction an equivalence?

Exercise 2 Right properness and cartesian squares (by Victor Saunier)

Let C be a right proper model category. Let $Z \twoheadrightarrow T$ be a fibration, T a fibrant object and suppose we have a cartesian square as follows:

$$\begin{array}{ccc} X & \longrightarrow & Y \\ \downarrow & & \downarrow \\ Z & \longrightarrow & T \end{array}$$

- 1. Show that the above square is also homotopy cartesian.
- 2. Recall the model structure on Cat of Exercise 4 of TD sheet A.
 - a) Show that this model structure is right proper. (Use Exercise 2 of TD sheet B)
 - b) Deduce that the loop functor Ω : Cat \rightarrow Cat is (equivalent to) the constant functor \emptyset . (You can also work in Cat_{*}, the category of pointed categories and reduced functor¹, to avoid a set-theoretic headache and show that the loop is also 0).
 - c) Deduce that the suspension Σ is also constant equal to * everywhere.

Exercise 3 Segal's Γ-spaces (by Victor Saunier)

Let Γ^{op} be the category of finite sets and partially defined maps between them, that is, maps defined only on a (possibly empty) subset of the source. We write Γ^{op} to follow the historical conventions, but following the more modern point of view, we will never use the category Γ in the following, and work only with its opposite.

- 1. Show that Γ^{op} is equivalent to the category of pointed finite sets. For the rest of the exercise, we adopt this point of view.
- 2. Let A be an abelian monoid. If S is a finite pointed set, define $F_A(S) = A^S$ (the set of pointed maps, where A is canonically pointed by 0) and if $f: S \to T$ is a pointed map, then $F_A(f)$ maps (a_s) to $(\sum_{f(\sigma)=t} a_{\sigma})_t$.
 - a) Show that F_A is a functor $\Gamma^{op} \to \text{Set}$ which sends coproducts to products and * to the point.
 - b) Show that the functor AbMon \rightarrow Fun(Γ^{op} , Set) which maps A to F_A is fully-faithful.
 - c) Reciprocally, let $F : \Gamma^{op} \to \text{Set}$ be a functor sending disjoint unions to products and \emptyset to the point. Show that F(*) is an abelian monoid A such that $F \simeq F_A$.

 $^{^{1}}$ A pointed category is a category with a zero object, and a reduced functor sends zero to zero. Assume the model structure of Exercise 4 in TD sheet A still applies.

A special Γ -space is a functor $F : \Gamma^{op} \to \text{sSet}$ such that F(*) is contractible and $F(X \coprod Y) \to F(X) \times F(Y)$ is a weak homotopy equivalence. More generally if \mathcal{C} is a model category, a special Γ^{op} -object in \mathcal{C} is a functor $F : \Gamma^{op} \to \mathcal{C}$ such that F(*) is weakly equivalent to * and $F(X \coprod Y) \to F(X) \times F(Y)$ is a weak homotopy equivalence.

3. (Segal condition) Let $F: \Gamma^{op} \to \mathcal{C}$ be a special Γ -object, show that there is a weak equivalence

$$F([n]) \longrightarrow \prod_{i=1}^{n} F([1])$$

- 4. a) Suppose \mathcal{C}^{\otimes} is a special Γ -category. Show that $\mathcal{C}^{\otimes}([1])$ is endowed with the structure of a symmetric monoidal category.
 - b) Reciprocally, if (\mathcal{C}, \otimes) is a symmetric monoidal category, show that there exists a special Γ category such that the evaluation at [1] endowed with the monoidal structure of the above
 question is monoidally-equivalent to (\mathcal{C}, \otimes)
 - c) (Segal) Let (\mathcal{C}, \otimes) be a symmetric monoidal category and denote $\iota \mathcal{C}$ its maximal subgroupoid. Show that the nerve $N(\iota \mathcal{C})$ acquires the structure of a special Γ -space.

Exercise 4 Quillen's Theorem A (After Akhil Matthew)

Let $F : \mathcal{C} \to \mathcal{D}$ be a functor. We denote $N : Cat \to sSet$ the nerve functor.

- 1. a) Suppose there exists a natural transformation $\eta: F \implies G$ where $G: \mathcal{C} \to \mathcal{D}$ is another functor. Show that NF is homotopic to NG.
 - b) Show that if F is a functor admitting an adjoint G, then NF is a homotopy equivalence and NG a homotopy inverse to NF.

Our goal is to show that if $\mathcal{C} \times_{\mathcal{D}} \mathcal{D}_{Y/}$ is contractible (i.e. its nerve is) for every $Y \in \mathcal{D}$, then NF is a homotopy equivalence. This fact is usually known as Quillen's Theorem A.

- 2. Show that there is a functor $\mathcal{D}^{op} \to \operatorname{Cat}$ who maps Y to the category $\mathcal{C} \times_{\mathcal{D}} \mathcal{D}_{Y/}$.
- 3. a) Show that there is a map

$$\operatorname{colim}_{Y \in \mathcal{D}^{op}} N(\mathcal{C} \times_{\mathcal{D}} \mathcal{D}_{Y/}) \to N(\mathcal{C})$$

- b) Show that the *n*-simplices of $N(\mathcal{C} \times_{\mathcal{D}} \mathcal{D}_{Y/})$ are given by the data of a composable chain $X_0 \to \dots \to X_n$ in \mathcal{C} and a map $Y \to F(X_n)$ in \mathcal{D} . Deduce that the above map is a surjection in all degrees.
- c) Show that the above map is also injective in all degrees.
- 4. Suppose $\mathcal{C} \times_{\mathcal{D}} \mathcal{D}_{Y/}$ is contractible for every $Y \in \mathcal{D}$.
 - a) Show that the maps $N(\mathcal{C} \times_{\mathcal{D}} \mathcal{D}_{Y/}) \to N(\mathcal{D} \times_{\mathcal{D}} \mathcal{D}_{Y/})$ induced by F are equivalences.
 - b) Deduce that to have Quillen's Theorem A, it suffices to show that there is an isomorphism:

 $\operatorname{hocolim}_{Y \in \mathcal{D}^{op}} N(\mathcal{C} \times_{\mathcal{D}} \mathcal{D}_{Y/}) \simeq \operatorname{colim}_{Y \in \mathcal{D}^{op}} N(\mathcal{C} \times_{\mathcal{D}} \mathcal{D}_{Y/})$

- 5. a) Recall the generating cofibrations in the projective model structure of $\operatorname{Fun}(\mathcal{D}^{op}, \operatorname{sSet})$.
 - b) Denote F_i the (pointwise) *i*-skeleton of $Y \mapsto N(\mathcal{C} \times_{\mathcal{D}} \mathcal{D}_{Y/})$. Compute the *n*-simplices of the following pushout:

Deduce that if F_{n-1} was cofibrant in the projective model structure of Fun(\mathcal{D}^{op} , sSet), then so is F_n .

- c) Deduce that the functor $Y \mapsto N(\mathcal{C} \times_{\mathcal{D}} \mathcal{D}_{Y/})$ is cofibrant in the projective model structure of Fun $(\mathcal{D}^{op}, \mathrm{sSet})$.
- 6. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor satisfying the above hypothesis. Show that there is a Quillen-equivalence of the projective model structures model $\mathrm{sSet}^{N\mathcal{D}^{op}} \simeq \mathrm{sSet}^{N\mathcal{C}^{op}}$ induced by precomposition by F^{op} . Deduce that:

hocolim
$$K \simeq \operatorname{hocolim} K \circ NF$$

for every $K : N\mathcal{D}^{op} \to \mathrm{sSet}$.

Exercise 5 More on cofinality (by Victor Saunier)

A functor $F : \mathcal{C} \to \mathcal{D}$ is said to be cofinal if, for every $Y \in \mathcal{D}$, the category $\mathcal{C} \times_{\mathcal{D}} \mathcal{D}_{/Y}$ is contractible. From the preceding exercise, we have seen that a cofinal functor $F : \mathcal{C} \to \mathcal{D}$ induces a homotopy equivalence $NF : \mathcal{C} \to \mathcal{D}$.

- 1. Let $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{E}$ be functors and suppose F is cofinal. Show that G is cofinal if and only if $G \circ F$ is.
- 2. Show that the map $\Delta^{op} \to \Delta^{op} \times \Delta^{op}$ is cofinal. (Hint: it might be easier to work with $\Delta \to \Delta \times \Delta$ and to show the dual result).
- 3. Denote Δ_{inj} the subcategory of Δ where we only keep injective maps. Show that $\Delta_{inj}^{op} \to \Delta^{op}$ is cofinal.