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Abstract: In this paper, we deal with nonparametric regression for cir-
cular data, meaning that observations are represented by points lying on
the unit circle. We propose a kernel estimation procedure with data-driven
selection of the bandwidth parameter. For this purpose, we use a warping
strategy combined with a Goldenshluger-Lepski type estimator. To study
optimality of our methodology, we consider the minimax setting and prove,
by establishing upper and lower bounds, that our procedure is nearly op-
timal on anisotropic Hölder classes of functions for pointwise estimation.
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responses. Finally, a numerical study is conducted, illustrating the good
performances of our approach.
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1. Introduction

Directional statistics is the branch of statistics which deals with observations
that are directions. In this paper, we will consider more specifically circular data
which arises whenever using a periodic scale to measure observations. These
data are represented by points lying on the unit circle of R2 denoted in the
sequel by S1. Circular data are collected in many research fields, for example
in ecology (animal orientations), earth sciences (wind, ocean current directions,
cross-bed orientations to name a few), medicine (circadian rhythm), forensics
(crime incidence) or social science (clock or calendar effects). Various compre-
hensive surveys on statistical methods for circular data can be found in Mardia
and Jupp [19], Jammalamadaka and SenGupta [13], Ley and Verdebout [18] and
recent advances are collected in Pewsey and García-Portugués [23]. Note that
the term circular data is also used to distinguish them from data supported on
the real line R (or some subset of it), which henceforth are referred to as linear
data.

In the present work, we focus on a nonparametric regression model with
a circular response and linear predictor. A real example of such a statistical
problem is given for instance by data provided by Table 1 of Fisher and Lee [9]
and which contains distances and directions moved by small blue periwinkles
after relocation. The objective is to predict the angles given the distance moved.
To model such a problem, it is fundamental to take into account the circular
geometry of the directions taken by the snails. From a formal point of view, we
then assume that we have an independent identically distributed (i.i.d. in the
sequel) sample {(Xi,Θi)}ni=1 distributed as (X,Θ), where Θ is a circular random
variable, i.e. Θ ∈ S1, and X is a random variable with density fX supported on
R. We assume that the cumulative distribution function of X, denoted FX , is
known. We also assume that FX is invertible on R meaning that fX is positive
on R and FX(R) = (0, 1). We aim at estimating a function m which contains
the dependence structure between the predictors Xi and the observations Θi.
For our setting, described in Section 2.1, the regression function m is derived in
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Equation (3). Note that in practice, FX , which is usually unknown, is replaced
by its empirical counterpart. See Remark 3.7 for more details about such a
plug-in.

Because of the circular response, it is natural to wonder what statistical
challenges are posed by the circular regression problem compared to classical
regression with a real response which has been widely studied in the literature.
At first, to what extent does circular regression require suitable methodologies
adapted to the underlying geometry? Secondly, in order to measure the difficulty
of this specific statistical problem, can we derive associated rates of convergence
in the minimax setting and can we propose optimal estimators? These devised
estimators should be data driven to be implemented. Accordingly, we strive to
respond to these various statistical difficulties in this work: in a minimax point
of view, we propose an original nearly optimal data-driven kernel estimator
adapted to the circular geometry based on the Goldenshluger-Lepski bandwidth
selection rule.

Regression with circular response and linear covariates has been first and
mostly explored from a parametric point of view. Pioneered contributions are
due to Gould [12], Johnson and Wehlry [14] or Fisher and Lee [9]. The latter
proposed the most popular link-based function (namely the function 2 arctan) to
model the conditional mean. Major difficulties, among others of such link-based
models involve computational drawbacks to estimate parameters as identified
by Presnell et al. [26]. Presnell et al. [26] in turn suggested alternatively a spher-
ically projected multivariate linear model. Since then, numerous parametric ap-
proaches have been proposed, we refer the reader to all the references in Pewsey
and García-Portugués [23]. In order to get a more flexible approach, nonpara-
metric paradigm has been considered, first in the pioneering work by Di Marzio
et al. [20] and more recently in Meilán-Vila et al. [22] for the multivariate setting.
Surprisingly enough, the nonparametric point of view has only been considered
in very few papers. Note that contrary to all works aforementioned which clas-
sically focus on the conditional mean (which is our goal as well) Alonso-Pena
and Crujeiras [1] proposed a nonparametric multimodal regression method for
estimating the conditional density when for instance the latter is highly skewed
or multimodal. Estimation procedures developed in [20] or [22] consist in es-
timating the arctangent function of the ratio of the trigonometric moments of
Θ (more details about this approach are given in the next section as it is the
starting point of our procedure). More precisely, in the case of pointwise esti-
mation and covariates supported on [0, 1], Di Marzio et al. [20] investigated the
performances of a Nadaraya-Watson and a local linear polynomial estimators.
Theoretically, for regression functions being twice continuously differentiable,
they obtained expressions for asymptotic bias and variance. Their proofs are
based on linearization of the function arctangent by using Taylor expansions,
but no sharp controls of the remainder terms in the expansions are obtained.
Actually obtaining such controls would be very tedious with such an approach
based on Taylor expansions. As for the more recent work of Meilán-Vila et
al. [22], they studied the multivariate setting [0, 1]d with the same estimators
and proofs technics. In both papers, neither rates of convergence nor adapta-
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tion are obtained and cross-validation is used to select the kernel bandwidth
in practice. By adaptation, we mean that the estimators do not require the
specification of the regularity of the regression function which is crucial from a
practical point of view. In view of this, we were motivated to fill the gap in the
literature. Our goal is twofold: obtaining optimal rates of convergence for pre-
dictors supported on R and adaptation for estimating m the regression function.
To achieve this, we propose a new strategy based on concentration inequalities
along with warping methods.

Our contributions. Under the assumption that the cumulative distribution
function (c.d.f.) of the design X is known and invertible, warping methods used
in this paper consist in introducing the auxiliary function g := m◦F<−1>

X , with
F<−1>
X the inverse of FX . We then use classical kernel rules to estimate the

function g in the specific framework of circular data. Our procedure needs to
select two bandwidths. Fully data-driven selection of bandwidths is performed
by using a Goldenshluger-Lepski type procedure [11]. Then, theoretical perfor-
mances are studied. We consider the minimax setting and prove by establishing
upper and lower bounds that our procedure is nearly optimal on anisotropic
Hölder classes of functions for pointwise estimation. These results are stated in
Theorems 3.6 and 3.11 respectively. Then, we conduct a numerical study whose
goal is twofold. We first investigate the best tuning parameters of our proce-
dure. Once tuned, our estimates are used on artificial data and compared to
other classical methods. The numerical study reveals the good performances of
our methodology.

Plan. In section 2, we explain how to take into account the circular nature
of the response and then propose our data-driven kernel estimator of the re-
gression function m based on warping strategy and the Goldenshluger-Lepski
bandwidth selection rule. Section 3 contains the theoretical results. Section 4
presents numerical results including simulations. Finally, all the proofs are de-
ferred to Section 5.

Notations. It is necessary to equip the reader with some notations. In the
sequel, a point on S1 will not be represented as a two-dimensional vector w =
(w2, w1)⊤ with unit Euclidean norm but as an angle θ = atan2(w1, w2) defined
as follows:

Definition 1.1. The function atan2 : R2 \ (0, 0) 7→ [−π;π] is defined for any
(w1, w2) ∈ R2 \ (0, 0) by

atan2(w1, w2) :=


arctan

(
w1
w2

)
if w2 ≥ 0, w1 ̸= 0

0 if w2 > 0, w1 = 0
arctan

(
w1
w2

)
+ π if w2 < 0, w1 > 0

arctan
(
w1
w2

)
− π if w2 < 0, w1 ≤ 0,

with arctan taking values in [−π/2, π/2]. In particular, for w1 > 0, atan2(w1, 0) =
arctan(+∞) = π/2 and atan2(−w1, 0) = arctan(−∞) = −π/2.
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In this definition, one has arbitrarily fixed the origin of S1 at (1, 0)⊤ and uses
the anti-clockwise direction as positive. Thus, a circular random variable can
be represented as angle over [−π, π). Observe that atan2(0, 0) is not defined.
Hereafter, ∥·∥L1(R) and ∥·∥L2(R) respectively denote the L1 and L2 norm on R
with respect to the Lebesgue measure:

∥f∥L1(R) =
∫
R

|f(y)|dy, ∥f∥L2(R) =
(∫

R
|f(y)|2dy

)1/2
.

The L∞ norm is defined by ∥f∥∞ = supy∈R |f(y)|. Moreover, we denote ∗ the
classical convolution product defined for functions f, g by f ∗ g(x) :=

∫
R f(x −

y).g(y)dy, for x ∈ R. Finally, for α ∈ R, [α]+ := max {α; 0}, and for β > 0, ⌊β⌋
denotes the largest integer strictly smaller than β.

2. The estimation procedure

After recalling the framework of circular data in Section 2.1, Section 2.2 is de-
voted to the construction of an estimator for m(x), at a given point x ∈ R
which will be fixed along this paper, using warped kernel methods. Then, Sec-
tion 2.3 presents a data-driven procedure for bandwidth selection by using the
Goldenshluger-Lepski methodology.

2.1. The framework of circular data

There is no doubt that, due to their periodic nature, circular data are funda-
mentally different from linear ones, and thus need specific tools. To measure the
closeness between two angles θ1 and θ2, we do not consider the natural distance

d(θ1, θ2) := min
{∣∣θ1 − θ2 + 2kπ

∣∣ : k ∈ Z
}
, θ1, θ2 ∈ [−π, π),

but we focus on dc with

dc(θ1, θ2) := 1 − cos(θ1 − θ2), θ1, θ2 ∈ [−π, π),

which is extensively used in the literature of directional statistics (see for in-
stance Section 2 in the seminal monograph by Mardia and Jupp [19], Section
3.2.1 of [18], [20] or [22]). Note that the divergence dc corresponds to the usual
squared Euclidean norm in R2. Indeed, the angles θ1 and θ2 determine the corre-
sponding points (cos θ1, sin θ1) and (cos θ2, sin θ2) respectively on the unit circle
S1. Then, the usual squared Euclidean norm in R2 reads(

cos θ1 − cos θ2
)2 +

(
sin θ1 − sin θ2

)2 = 2.
[
1 − cos(θ1 − θ2)

]
= 2.dc(θ1, θ2).

Hence,
√
dc is a distance on [−π, π) and we naturally look for a measurable

function m such that:

E
[
dc(Θ,m(X))

]
= min
f : R→[−π,π)

E
[
dc(Θ, f(X))

]
, (1)
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where the minimum is taken over [−π, π)-valued functions f that are measurable
with respect to the σ-algebra generated by X. It is interesting to notice that
the minimization problem (1) is directly linked to the definition of the Frechet
mean on the circle (see Charlier [6]). Furthermore, in the literature of directional
statistics, the problem of finding such a regression function m(X) as defined in
(1) has been already considered to solve the circular regression problem (see [10]
and [22]).
Now let us work conditionally to X. For x ∈ R let

m1(x) := E
(

sin(Θ)|X = x
)

and m2(x) := E
(

cos(Θ)|X = x
)
. (2)

Moreover, write for an arbitrary function f : R → [−π, π)

E
[

cos(Θ − f(X))|X
]

= cos(f(X)).m2(X) + sin(f(X)).m1(X)

=
√

(m2(X))2 + (m1(X))2. cos(f(X) − γ(X)),

where γ : R → [−π, π) is defined for x ∈ R by

cos(γ(x)) := m2(x)√
(m2(x))2 + (m1(x))2

, and sin(γ(x)) := m1(x)√
(m2(x))2 + (m1(x))2

.

Observe that
γ(x) = atan2(m1(x),m2(x)).

Thus, we have

min
f : R→[−π,π)

E
[
dc(Θ, f(X))

]
= 1 − max

f : R→[−π,π)
E
[
E
[

cos(Θ − f(X))|X
]]

= 1 − max
f : R→[−π,π)

E
[√

m2
1(X) +m2

2(X) cos(f(X) − γ(X))
]
.

Finally the minimizer of the minimization problem (1) is achieved for

f(x) = γ(x) = atan2
(
m1(x),m2(x)

)
.

In conclusion, the circular nature of the response is taken into account by
the arctangent of the ratio of the conditional expectation of sine and cosine
components of Θ given X and we tackle the problem by estimating the function

m(x) = atan2(m1(x),m2(x)), x ∈ R, (3)

with m1 and m2 defined in (2).

Remark 2.1. Observe that if m1(x) = m2(x) = 0, then m(x) is not defined.
This occurs if and only if

ϕ1(f(·|x)) :=
∫ π

−π
eiθf(θ|x)dθ = 0,
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where f(·|x) denotes the conditional density of Θ|X = x. Note that ϕ1(f(·|x))
plays a specific role in the literature of directional statistics. See for instance
Section 3.4.2 of [19].

In the sequel, we estimate the circular regression function m as defined in (3)
under the condition

ϕ1(f(·|x)) ̸= 0. (4)
We set ζ := (ζi)i=1,...,n the vector of errors so that

Θi = m(Xi) + ζi (mod 2π), i = 1, . . . , n. (5)

Our estimation methodology is based on a warping strategy.

2.2. Warping strategy

The popular Nadaraya-Watson (NW) methodology provides a natural estimator
of m of the form

m̂NW
h : x 7−→

1
n

∑n
j=1 Θj .Kh(x−Xj)

1
n

∑n
j=1 Kh(x−Xj)

,

with K : R → R such that
∫
RK(y)dy = 1 and Kh(·) := 1

hK( ·
h ), for some

bandwidth h > 0. However, on the one hand, the denominator which can be
small may lead to some instability. On the other hand, as adaptive estimation
requires the data-driven selection of the bandwidth, the ratio form of the NW
estimate indicates that we should select two bandwidths: one for the numerator
and one for the denominator. Consequently, considering NW estimators for m1
and m2 involve four bandwidths. This makes the study of these estimators quite
intricate.

Recalling that g = m◦F<−1>
X with F<−1>

X the inverse of FX , warping meth-
ods then boil down to first estimating g by say ĝ and then estimating the re-
gression function of interest m by ĝ ◦FX . To deal with regression with random
design, the warping strategy has been applied for instance by Kerkyacharian and
Picard [15], Pham Ngoc [24], Chagny [3] and Chagny et al. [5]. Among the ad-
vantages of this method, let us mention that a warped kernel estimator does not
involve a ratio, which strengthens its stability whatever the design distribution,
even when the design is inhomogeneous. In our framework, in order to construct
an estimator for the regression function m, we first estimate m1 and m2 (see (3)).
Consequently, we introduce two auxiliary functions g1, g2 : (0, 1) 7−→ R defined
by

g1 := m1 ◦ F<−1>
X , and g2 := m2 ◦ F<−1>

X ,

so that m1 = g1 ◦ FX and m2 = g2 ◦ FX ; we then have for u ∈ (0, 1)

g(u) = atan2
(
g1(u), g2(u)

)
.

Our fully data-driven approach is based on the selection of two bandwidths
that adapt automatically to the unknown smoothness of functions g1 and g2.
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Now, we propose to adapt the strategy developed in the linear case by Chagny
et al. in [5]. The warping device is based on the transformation FX(Xi) of the
data Xi, i = 1, . . . , n. We first define kernels considered in our framework as
follows.

Definition 2.2. Let K : R → R be an integrable function such that K is
compactly supported, K ∈ L∞(R) ∩ L1(R) ∩ L2(R). We say that K is a kernel
if it satisfies

∫
RK(y)dy = 1.

Then, for u ∈ (0, 1), we estimate g1(u) and g2(u) by

ĝ1,h1(u) := 1
n

n∑
i=1

sin(Θi).Kh1(u− FX(Xi)), (6)

ĝ2,h2(u) := 1
n

n∑
i=1

cos(Θi).Kh2(u− FX(Xi))

respectively, where h1, h2 > 0 are bandwidths of kernels Kh1(·) and Kh2(·)
respectively.
Thus, we estimate g by

ĝh(u) := atan2
(
ĝ1,h1(u), ĝ2,h2(u)

)
, u ∈ (0, 1), (7)

where we denote h := (h1, h2). Moreover, as a consequence, for x ∈ R, the
estimators for m1 and m2 are

m̂1,h1(x) := ĝ1,h1

(
FX(x)

)
= 1
n

n∑
i=1

sin(Θi).Kh1

(
FX(x) − FX(Xi)

)
, (8)

and

m̂2,h2(x) := ĝ2,h2

(
FX(x)

)
= 1
n

n∑
i=1

cos(Θi).Kh2

(
FX(x) − FX(Xi)

)
. (9)

Using m = g ◦ FX = atan2
(
m1,m2

)
, we then obtain an estimator of m(x) at

x ∈ R by setting

m̂h(x) := atan2
(
m̂1,h1(x), m̂2,h2(x)

)
= ĝh

(
FX(x)

)
.

2.3. Bandwidth selection

We study the pointwise risk of the estimator m̂h(x) associated to the divergence
dc. The expression of the risk is then

E
[
dc(m̂h(x),m(x))

]
= E

[
dc
(
ĝh(FX(x)), g(FX(x))

)]
.

We first focus on the estimator ĝh of g by studying the adaptive choice of
bandwidths belonging to a convenient grid Hn. To define the latter, we assume
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that the kernel K satisfies supp(K) ⊆ [−A,A] for some A > 0 and we take hmax
a constant such that FX(x) − A.hmax > 0 and FX(x) + A.hmax < 1. Then, we
set

Hn :=
{
h = k−1 : k ∈ N∗, h ≤ hmax, n.h > max

(∥K∥2
L2(R)

∥K∥2
∞

; 1
)
. log(n)

}
.

(10)

Remark 2.3. Observe that the condition

FX(x) −A.hmax > 0, FX(x) +A.hmax < 1

is satisfied for n large enough if hmax depends on n and goes to 0 (even slowly)
when n → +∞.

We have Card
(
Hn

)
≲ n/ logn. In the sequel, we apply the method proposed

by Goldenshluger and Lepski in [11] to select an optimal value for bandwidths
h1 and h2 automatically. Let j ∈ {1, 2}. For hj ∈ Hn and v ∈ (0, 1) we set

Aj(hj , v) := sup
h′

j∈Hn

{∣∣ĝj,hj ,h′
j
(v) − ĝj,h′

j
(v)
∣∣−
√
Ṽj(n, h′

j)
}

+
, (11)

with Ṽj(n, h′
j) := c0,j .

log(n). ∥K∥2
L2(R)

n.h′
j

, c0,j > 0 a tuning parameter and

ĝj,hj ,h′
j
(v) :=

(
Kh′

j
∗ ĝj,hj

)
(v),

so that ĝj,hj ,h′
j
(v) = ĝj,h′

j ,hj
(v). Then, a data-driven choice of bandwidth hj is

performed as follows:

ĥj = argmin
hj∈Hn

{
Aj(hj , v) +

√
Ṽj(n, hj)

}
. (12)

Observe that our bandwidth selection rule depends on x. The criterion (12) is
inspired from [11], in order to mimic the optimal "bias-variance" trade-off in the
pointwise quadratic decomposition:

E[|ĝj,hj (v) − gj(v)|2] = |E[ĝj,hj (v)] − gj(v)|2 + E[|ĝj,hj (v) − E[ĝj,hj (v)]|2]
=: b2(hj , v) + V (hj , v).

It is common to use Ṽj(n, h′
j) to provide an upper bound for the variance term

V (hj , v) (see Section 5.2), whereas the more involved task of the Goldenshluger-
Lepski method is to provide an estimate for the bias term by comparing pair-
by-pair several estimators. In our framework, the bias term corresponds to

b(hj , v) = |E[ĝj,hj
(v)] − gj(v)| =

∣∣(Khj
∗ gj

)
(v) − gj(v)

∣∣,
(see (23)), so it is natural to estimate it by an estimator of the form

∣∣(Khj ∗
ĝj,h′

j

)
(v) − ĝj,h′

j
(v)
∣∣. Thus, the estimator of the bias term is Aj(hj , v), defined
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in (11), where the second term
√
Ṽj(n, h′

j) controls the fluctuations of the first
term. Now, we define the kernel estimator of g(v) with data-driven bandwidths
as follows:

ĝĥ(v) := atan2
(
ĝ1,ĥ1

(v), ĝ2,ĥ2
(v)
)
, (13)

where we denote ĥ := (ĥ1, ĥ2). We finally define the adaptive estimator for m(x)
by

m̂ĥ(x) := atan2
(
m̂1,ĥ1

(x), m̂2,ĥ2
(x)
)
. (14)

3. Theoretical results

3.1. Minimax rates of convergence

The minimax approach is a framework that shows the optimality of an estimate
among all possible estimates. The minimax pointwise quadratic risk for the
estimator ĝĥ = atan2

(
ĝ1,ĥ1

, ĝ2,ĥ2

)
will be derived from the following control of

the pointwise quadratic risks of ĝ1,ĥ1
and ĝ2,ĥ2

.

Proposition 3.1. Consider the collection of bandwidths Hn defined in (10).
Let j ∈ {1, 2} and q ≥ 1 and assume that min {c0,1; c0,2} ≥ 16

(
2 + q

)2
.
(
1 +

∥K∥L1(R)
)2. Then, with probability larger than 1 − 4.n−q,

∣∣ĝj,ĥj
(FX(x)) − gj(FX(x))

∣∣ ≤ inf
hj∈Hn

{(
1 + 2. ∥K∥L1(R)

)
.
∥∥gj −Khj

∗ gj
∥∥

∞

+ 3.
√
Ṽj(n, hj)

}
.

The proof of Proposition 3.1 is given in Section 5.4.1. Roughly speaking, in view
of results of Section 5.1, the right hand side of the inequality stated in Propo-
sition 3.1 may be viewed as the bias-variance decomposition of the pointwise
quadratic-risk of the best warped-kernel estimate, up to a logarithmic term.

Remark 3.2. Examining the proof of Proposition 3.1, the "uniform bias" comes
from Inequality (33). This control can be refined and the term

∥∥gj −Khj
∗ gj

∥∥
∞

can be replaced by
sup

t∈V (ux)

∣∣gj(t) −
(
Khj

∗ gj
)
(t)
∣∣,

with V (ux) := {t : |t−ux| ≤ Ahmax}. Observe that the size of this neighborhood
of ux goes to 0 if hmax → 0.

Since the function atan2(w1, w2) is undefined when w1 = w2 = 0, it is rea-
sonable to consider the following assumption:

Assumption 3.3. We have

m1(x) ̸= 0 or m2(x) ̸= 0.
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Then, we define δ > 0 such that

δ =

 min
(
|m1(x)|, |m2(x)|

)
if m1(x) ̸= 0 and m2(x) ̸= 0,

|m1(x)| if m2(x) = 0,
|m2(x)| if m1(x) = 0.

(15)

In the minimax setting, we need some assumptions on the regularity of g1
and g2. Thus, we introduce the following Hölder classes that are adapted to
local estimation.

Definition 3.4. Let β > 0 and L > 0. The Hölder class H(β, L) is the set of
functions f : (0, 1) 7−→ R, such that f admits derivatives up to the order ⌊β⌋,
and for any (y, ỹ) ∈ (0, 1)2,∣∣∣∣ d⌊β⌋f

(dy)⌊β⌋ (ỹ) − d⌊β⌋f

(dy)⌊β⌋ (y)
∣∣∣∣ ≤ L.

∣∣ỹ − y
∣∣β−⌊β⌋

.

We also consider the following assumption on the kernel K:

Assumption 3.5. The kernel K is of order L ∈ R+, i.e.

(i) CK,L :=
∫
R(1 + |y|)L.|K(y)|dy < ∞ ;

(ii) ∀k ∈ {1, ..., ⌊L⌋},
∫
R y

k.K(y)dy = 0.

Now, we obtain an upper bound for the pointwise risk of our final estimator
m̂ĥ at x defined in (14):

Theorem 3.6. Let β1, β2, L1, L2 > 0. Suppose that g1 belongs to H(β1, L1), g2
belongs to H(β2, L2), the kernel K satisfies Assumption 3.5 with an index L ∈ R+
such that L ≥ max(β1, β2). Let q ≥ 1, and suppose that min {c0,1; c0,2} ≥ 16

(
2+

q
)2
.
(
1 + ∥K∥L1(R)

)2. Then, by taking hmax = (logn)−1, under Assumption 3.3,
for n sufficiently large,

E
[
dc(m̂ĥ(x),m(x))

]
≤ C

δ2 .max
{
ψ2
n(β1), ψ2

n(β2)
}
,

where
ψn(β1) =

(
log(n)/n

) β1
2β1+1 , ψn(β2) =

(
log(n)/n

) β2
2β2+1 ,

δ is defined in (15) and C is a constant depending on β1, β2, L1, L2, c0,1, c0,2
and K.

A proof of Theorem 3.6 is given in Section 5.4.2. Observe that if β1 = β2 = β,
then we obtain the rate ψn(β) = (logn/n)β/(2β+1), which is the optimal rate
for adaptive univariate regression function estimation and pointwise risk (see
e.g. Section 2 in [2]). Note that the logarithmic term appearing in the rate of
convergence is expected since we deal with pointwise adaptive estimation. For
further details, we refer the reader to Lepski [16] and Lepski and Spokoiny [17]
who have highlighted and discussed this fact for the Gaussian white noise model.
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Remark 3.7. Eventually, to obtain a fully computable estimator, we replace
the c.d.f. FX by its natural estimate y ∈ R 7−→ F̂n(y) := n−1∑n

i=1 1{Xi≤y}. The
theoretical justification of this plug-in lies on the use of the Dvoretzky-Kiefer-
Wolfowitz inequality [21] which states that, roughly speaking, the function F̂n
converges uniformly to FX at the parametric rate

√
n. This has been proposed

and fully detailed in [15] and [4] in which tedious calculations show that rates
are not deteriorated by this replacement.

3.2. Minimax lower bounds

To establish minimax lower bounds, we assume that the ζi’s are i.i.d. random
angles with zero mean direction, finite concentration and independent of the
Xi’s. We also assume that Model (5) satisfies the following assumption.

Assumption 3.8. The design points Xi’s are i.i.d. random variables with den-
sity fX(.) on [0, 1] such that there exists µ0 < ∞ and fX(t) ≤ µ0 ∀t ∈ [0, 1]
and the errors ζi have common density pζ(.) on S1 with respect to the Lebesgue
measure on S1, verifying

∃ p∗ > 0, ∃ θ0 > 0 :
∫
pζ(t) log pζ(t)

pζ(t+ θ)dt ≤ p∗θ
2, ∀|θ| ≤ θ0. (16)

The subsequent minimax lower bound is based on a reduction scheme based
on some well-chosen probability distributions. The closeness between the as-
sociated models is measured by using the Kullback-Leibler divergence and is
controlled by using Assumption 3.8. In the sequel, the function m belongs to
the class Σ̃(β, L) defined as the set of functions f : [0, 1] 7−→ S1 such that the
derivative f (l), l = ⌊β⌋ exists and verifies√

dc(f (l)(t), f (l)(t′)) ≤ L|t− t′|β−l, ∀t, t′ ∈ [0, 1].

Remark 3.9. For two classes of functions D and D′ such that D ⊂ D′, a lower
bound for the minimax rate of convergence for D will also be a lower bound for
the minimax rate for D′. Hence, this justifies the restriction of the study of the
lower bound to circular functions m defined on [0, 1].

Remark 3.10. The classical von Mises distribution with location parameter
µ ∈ [−π, π) and concentration parameter κ > 0 whose density fvM(µ,κ) is defined
for any θ ∈ [−π, π) by

fvM(µ,κ)(θ) = c(κ). exp
(
κ. cos(θ − µ)

)
, (17)

with c(κ) the normalizing constant, satisfies condition (16). This is proved in
Lemma 5.7. Note that apart from the most popular von Mises distribution,
two other classical circular distributions namely the cardioid and the wrapped
Cauchy distributions, respectively defined by (see [18])

θ ∈ [−π, π) 7−→ 1
2π
(
1 + 2ρ cos(θ − µ)

)
, ρ ∈ [0, 1

2), µ ∈ [−π, π)
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and

θ ∈ [−π, π) 7−→ 1
2π

1 − ℓ2

1 + ℓ2 − 2ℓ cos(θ − µ) , ℓ ∈ [0, 1), µ ∈ [−π, π)

also satisfy (16). Proofs are very similar to the von Mises case.

We obtain the following lower bound:

Theorem 3.11. Let β > 0 and L > 0. Under Assumptions 3.8, we have

lim inf
n→∞

inf
Tn

sup
m∈Σ̃(β,L)

E
[
n

2β
2β+1 dc(Tn(x),m(x))

]
≥ c̃,

where c̃ depends only on β, L, p∗ and µ0 and the infimum is taken over all
possible estimates based on observations (Θi, Xi)i=1,...,n.

According to Remark 3.9, Theorem 3.11 entails that the lower bound for the
minimax risk for functions m : R 7−→ S1 such that m ∈ Σ̃(β, L) is n− 2β

2β+1 . Now
let us connect this result to the upper bound obtained in Theorem 3.6. As the
function atan2 is infinitely differentiable on R∗ ×R∗, and if FX is smoother than
g1 and g2, then if one writes m(x) = atan2(g1(FX(x)), g2(FX(x)), the smooth-
ness β of m will be the minimum of the smoothness of g1 and the smoothness
of g2. Hence, the result of Theorem 3.6 guarantees the near optimal rate of our
adaptive estimator provided that FX is known.

4. Numerical simulations

In this section, we implement some simulations to study the numerical perfor-
mances of our procedure. We consider three different regression models:

M1. Θ = atan2
(
2X − 1, X2 + 2

)
+ ζ (mod 2π), (18)

M2. Θ = atan2
(

− 2X + 1, X2 − 1
)

+ ζ (mod 2π), (19)
M3. Θ = arccos

(
X5 − 1

)
+ 3. arcsin

(
X3 −X + 1

)
+ ζ (mod 2π), (20)

where the circular error, ζ, is distributed according to a von Mises distribution
fvM(0,10) (see (17) and is independent from X.

In the sequel, for models M1 and M2, we consider two cases: X ∼ U([−5, 5])
and X ∼ N (0, 1.5). For model M3, we consider X ∼ U([0, 1]). Then, for differ-
ent values of n, we draw a sample

(
Θi, Xi

)
i=1,...,n with the same distribution

as (Θ, X). To implement the Goldenshluger-Lepski methodology, we shall con-
sider either the Gaussian kernel defined by y 7−→ K(y) = 1√

2π
.e− y2

2 , or the

Epanechnikov kernel K defined by y 7−→ K(y) = 3
4 .(1 − y2).1|y|≤1. Moreover,

we consider the following collection of bandwidths Hn defined as

Hn :=
{
k−1 : k ∈ N, 1 ≤ k ≤ n

log(n)

}
.
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Finally, as explained in Remark 3.7, the final estimators are computed using
y ∈ R 7−→ F̂n(y) := 1

n

∑n
j=1 1Xj≤y instead of FX .

4.1. Practical calibration of tuning parameters

In the bandwidth selection procedure described in Section 2.3, we need to tune
two parameters c0,1 and c0,2 in order to find an optimal value of the pointwise
risk

R := 1 − cos
(
m̂ĥ(x),m(x)

)
, (21)

with m̂ĥ(x) = atan2
(
ĝ1,ĥ1

(F̂n(x)), ĝ2,ĥ2
(F̂n(x))

)
. To do this, we implement

preliminary simulations to calibrate c0,1 and c0,2 by only considering model M1.
Figure 1 displays an illustration of our setting.
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(a) Model M1 : Xi ∼ U([−5, 5])
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(b) Model M1 : Xi ∼ N (0, 1.5)

Fig 1: Illustration of model M1 with n = 200 for two different density functions
of the design. Simulated data (Θi)ni=1 are displayed in green points. The red
curve represents the regression function m, while the blue vertical line displays
the point x = −2 and the orange vertical line displays the point x = 1.25 where
we aim at estimating m(x).

4.1.1. The case c0,1 = c0,2

To select ĥ1 and ĥ2, we first consider the case c0,1 = c0,2 = c0. For different
sample sizes n ∈ {100; 200; 500; 1000}, we compute the risk R defined in (21) as
a function of c0 on the following discretization grid

Gc0 := {0.001; 0.0025; 0.005; 0.0075; 0.01; 0.025; 0.05; 0.075; 0.1; 0.2; 0.3; 0.4} .

We denote R ≡ R(c0). The numerical illustrations are displayed in Figure 2 for
x = −2 and in Figure 3 for x = 1.25, respectively.

To further study an influence of the kernel rule, we consider the Gaussian kernel.
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Fig 2: Model M1. Plot of the Monte Carlo estimation of the function c0 ∈
Gc0 7−→ R(c0), based on 50 runs, for x = −2, the Gaussian and the uniform
designs and by using the Epanechnikov kernel for n ∈ {100; 200; 500; 1000}
corresponding to the line in blue, green, violet and orange, respectively. The red
vertical line displays the point c0 = 0.04.
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Fig 3: Model M1. Plot of the Monte Carlo estimation of the function c0 ∈
Gc0 7−→ R(c0), based on 50 runs, for x = 1.25, the Gaussian and the uniform
designs and by using the Epanechnikov kernel for n ∈ {100; 200; 500; 1000}
corresponding to the line in blue, green, violet and orange, respectively. The red
vertical line displays the point c0 = 0.04.

The associated numerical illustrations are provided in Figure 4 forX ∼ U([−5, 5])
and for X ∼ N (0, 1.5). This brief numerical study shows that the choice
c0,1 = c0,2 = 0.04 is convenient for each numerical scheme.
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Fig 4: Model M1. Plot of the Monte Carlo estimation of the function c0 ∈
Gc0 7−→ R(c0), based on 50 runs, for x = −2, the Gaussian and the uniform
designs and by using the Gaussian kernel for n ∈ {100; 200; 500; 1000} corre-
sponding to the line in color of blue, green, violet and orange, respectively.

4.1.2. The case c0,1 ̸= c0,2

We do no longer assume that c0,1 = c0,2. For n = 200, we compute the risk R
defined in (21) as a function of (c0,1, c0,2) on the following discretization grid

Gc0 := {0.001; 0.005; 0.01; 0.025; 0.05; 0.075; 0.1; 0.2; 0.3; 0.4} .

We denote R ≡ R(c0,1, c0,2). The associated numerical illustrations are provided
in Figure 5 and Figure 6 for the case X ∼ N (0, 1.5) and X ∼ U([−5, 5]),
respectively.
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Fig 5: Model M1. 2D-representation of the Monte Carlo estimation of the
function (c0,1, c0,2) ∈ Gc0 × Gc0 7−→ R(c0,1, c0,2), based on 50 runs, with
Xi ∼ N (0, 1.5), n = 200 at x = −2 and x = 1.25 by using the Epanech-
nikov kernel. We display the specific point c0,1 = c0,2 = 0.04.
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Fig 6: Model M1. 2D-representation of the Monte Carlo estimation of the
function (c0,1, c0,2) ∈ Gc0 × Gc0 7−→ R(c0,1, c0,2), based on 50 runs with
Xi ∼ U([−5, 5]), n = 200 at x = −2 and x = 1.25 by using the Epanech-
nikov kernel. We display the specific point c0,1 = c0,2 = 0.04.

Even if it is not the best one, the choice of c0,1 = c0,2 = 0.04 is reasonable. For
sake of simplicity, we fix c0,1 = c0,2 = 0.04 for subsequent numerical simulations.

4.2. Numerical results

We now illustrate the numerical performances obtained by our methodology for
models M1, M2 and M3 by using the Epanechnikov kernel. They are also com-
pared to other approaches. A similar scheme is conducted by using the Gaussian
kernel. Remember that in the following numerical experiments, our estimate is
tuned with c0,1 = c0,2 = 0.04. We first display several graphs to illustrate nu-
merical performances obtained by our methodology, denoted GL, by using the
Epanechnikov kernel. More precisely, we display boxplots in Figures 7 and 8
summarizing our numerical results for model M1 in the case X ∼ U([−5, 5])
and in the case X ∼ N (0, 1.5), respectively. In both cases, for model M1, we
estimate m(x) at x = −2 and at x = 1.25. Figure 9 shows simulations for model
M2 with X ∼ N (0, 1.5) and we estimate m(x) at x = 1.05. Figure 10 shows
simulations for model M3 with X ∼ U([0, 1]) and we estimate m(x) at x = 0.95.

Moreover, to make a comparison with our adaptive estimator, as proposed
in [20], we also compute the Nadaraya-Watson (NW) estimator m̂NW

h and the
version of the local linear (LL) estimator proposed by [20, Section 4.2]) denoted
by m̂LL

h . Cross-Validation is used to select the bandwidth parameter for m̂NW
h

and m̂LL
h . Boxplots in Figures 7, 8, 9 and 10 show that the performances of

our estimator are quite satisfying.
We finally repeat the previous numerical experiments but with the use of

the Gaussian kernel: Figures 11 and 12 are the analogs of Figures 7 and 8.
Figure 13a shows the numerical simulation for model M2 with X ∼ N (0, 1.5)
and we estimate m(x) at x = 1.05. Figure 13b shows the numerical simulation
for model M3 with X ∼ U([0, 1]) and we estimate m(x) at x = 0.95. These
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Fig 7: Model M1. Boxplots of the estimated risk with 50 runs for the GL, NW
and LL methodologies (from left-hand side to right-hand side on each plot (a)
and (b) for n = 200 and X ∼ U([−5, 5]) by using the Epanechnikov kernel.
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Fig 8: Model M1. Boxplots of the estimated risk with 50 runs for the GL, NW
and LL methodologies (from left-hand side to right-hand side on each plot (a)
and (b) for n = 200 and X ∼ N (0, 1.5) by using the Epanechnikov kernel.

graphs show that the performances of our adaptive estimator associated with
the Gaussian kernel are quite satisfying as well.

5. Proofs

Along this section, we fix x in R and we set ux := FX(x).

5.1. Preliminary results

In this section, we study several preliminary results for ĝ1,h1 and ĝ2,h2 defined
in (6). First of all, via the warping method, we observe
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Fig 9: (a): Model M2. Simulated data (Θi)ni=1 of model M2 (green points) with
n = 200 and Xi ∼ N (0, 1.5). The red curve represents the true regression
function m, while the blue vertical line displays the point x = 1.05; (b): Boxplots
of the estimated risk with 50 runs for the GL, NW and LL methodologies (from
left-hand side to right-hand side by using the Epanechnikov kernel.
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(a) Xi ∼ U([0, 1])
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Fig 10: (a): Model M3. Simulated data (Θi)ni=1 of Model M3 (green points)
with n = 200 and Xi ∼ U([0, 1]). The red curve represents the true regression
function m, while the blue vertical line displays the point x = 0.95; (b): Boxplots
of the estimated risk with 50 runs for the GL, NW and LL methodologies (from
left-hand side to right-hand side) by using the Epanechnikov kernel.

E
(
ĝ1,h1(ux)

)
= E

[
1
n

n∑
k=1

sin(Θk).Kh1

(
ux − FX(Xk)

)]
= E

[
E
[

sin(Θ)|X
]
.Kh1

(
ux − FX(X)

)]
=
∫
R
E[sin(Θ)|X = y].Kh1

(
ux − FX(y)

)
.fX(y)dy

=
∫
R
m1(y).Kh1

(
ux − FX(y)

)
.fX(y)dy

=
∫
FX (R)

g1(w).Kh1

(
ux − w

)
dw.
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Fig 11: Model M1. Boxplots of the estimated risk with 50 runs for the GL, NW
and LL methodologies (from left-hand side to right-hand side on each plot (a)
and (b)) for n = 200 and X ∼ U([−5, 5]) by using the Gaussian kernel.
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Fig 12: Model M1. Boxplots of the estimated risk with 50 runs for the GL, NW
and LL methodologies (from left-hand side to right-hand side on each plot (a)
and (b)) for n = 200 and X ∼ N (0, 1.5) by using the Gaussian kernel.

Then, using the choice of hmax, since ux = FX(x) ∈ (0, 1) = FX(R) is fixed and
Kh1

(
ux − w

)
= 0 for w ∈ (0, 1) such that

∣∣ux − w
∣∣ > A.hmax, we have∫

FX (R)
g1(w).Kh1

(
ux − w

)
dw =

∫ ux+A.hmax

ux−A.hmax

g1(w).Kh1

(
ux − w

)
dw

=
(
Kh1 ∗ g1

)
(ux). (22)

Thus, we obtain
E
(
ĝ1,h1(ux)

)
=
(
Kh1 ∗ g1

)
(ux) (23)

and similarly,
E
(
ĝ2,h2(ux)

)
=
(
Kh2 ∗ g2

)
(ux). (24)

We obtain upper bounds for the bias and variance terms.
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(a) Model M2 with X ∼ N (0, 1.5): esti-
mation at x = 1.05

GL NW LL0.
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(b) Model M3 with X ∼ U([0, 1]): estima-
tion at x = 0.95

Fig 13: Model M2 (left), Model M3 (right). Boxplots of the estimated risk with
50 runs for the GL, NW and LL methodologies (from left-hand side to right-
hand side on each plot (a) and (b)) for n = 200 by using the Gaussian kernel.

Lemma 5.1. Let j ∈ {1, 2}. Suppose that gj belongs to H(βj , Lj), with Lj , βj ∈
R∗

+. Assume that the kernel K satisfies Assumption 3.5 with an index L ∈ R+
such that L ≥ βj. Then, for any hj ∈ Hn,

∣∣∣E(ĝj,hj
(ux)

)
− gj(ux)

∣∣∣ ≤ CK,L.Lj .h
βj

j , and Var
(
ĝj,hj

(ux)
)

≤
∥K∥2

L2(R)

n.hj
,

with CK,L the constant defined in Assumption 3.5.

The proof of Lemma 5.1 is given in Section 5.2.
We introduce in the sequel several events on which we will establish some con-
centration results for ĝj,hj , j ∈ {1, 2}.

Definition 5.2. For n ∈ N∗, p ≥ 1, and hj > 0, we define for an arbitrary
v ∈ FX(R) the following event

Ωj,n(v, hj) :=
{∣∣ĝj,hj

(v) − E[ĝj,hj
(v)]
∣∣ ≤ c1(p).

√
Ṽj(n, hj)

}
with c1(p) satisfying c1(p).

√
min {c0,1; c0,2} ≥ 4p.

Furthermore, for Lj , βj > 0, we also introduce

Ej,n(v, hj) :=
{∣∣ĝj,hj

(v) − gj(v)
∣∣ ≤ Φj(n, hj)

}
where

Φj(n, hj) := c1(p).
√
Ṽj(n, hj) + CK,L.Lj .h

βj

j .

Then, the following proposition gives a concentration inequality for ĝj,hj (ux).

Proposition 5.3. For p ≥ 1 and hj ∈ Hn (defined in (10)), we have:

P
((

Ωj,n(ux, hj)
)c)

≤ 2.n−p.
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Consequently, suppose further that gj belongs to H(βj , Lj) with Lj , βj ∈ R∗
+ and

the kernel K satisfies Assumption 3.5 with an index L ∈ R+ such that L ≥ βj,
then we get:

P
((
Ej,n(ux, hj)

)c)
≤ 2.n−p.

The proof of Proposition 5.3 is given in Section 5.3.

5.2. Proof of Lemma 5.1

Proof. First, for the bias of ĝj,h(ux) at ux = FX(x), using (22), we can write

E
(
ĝj,hj (ux)

)
− gj(ux) = 1

hj
.

∫ ux+A.hmax

ux−A.hmax

K
(ux − z

hj

)
.gj(z)dz − gj(ux)

=
∫ A

−A
K(w).

(
gj(ux − hj .w) − gj(ux)

)
dw. (25)

Since gj belongs to H(βj , Lj), using a Taylor expansion for gj , we get for w ∈
[−A,A], 0 ≤ τ ≤ 1,

gj(ux − hj .w) = gj(ux) + g′
j(ux).(−hj).w

+ ...+ (−hj .w)⌊βj⌋

(⌊βj⌋)! .g
(⌊βj⌋)
j (ux − τ.hj .w).

Then, under Assumption 3.5 with an index L ∈ R+ satisfying L ≥ βj , from (25)
one gets∫ A

−A
K(w).

(
gj(ux − hj .w) − gj(ux)

)
dw

=
∫ A

−A
K(w). (−hj .w)⌊βj⌋

(⌊βj⌋)! .g
(⌊βj⌋)
j (ux − τ.hj .w)dw

=
∫ A

−A
K(w). (−hj .w)⌊βj⌋

(⌊βj⌋)! .
(
g

(⌊βj⌋)
j (ux − τ.hj .w) − g

(⌊βj⌋)
j (ux)

)
dw.

This implies that with 0 ≤ τ ≤ 1, with CK,L the constant defined in Assump-
tion 3.5, since gj ∈ H(βj , Lj),∣∣∣E(ĝj,hj

(ux)
)

− gj(ux)
∣∣∣

≤
∫ A

−A
|K(w)|. |hj .w|⌊βj⌋

(⌊βj⌋)! .
∣∣∣g(⌊βj⌋)
j (ux − τ.hj .w) − g

(⌊βj⌋)
j (ux)

∣∣∣dw
≤
∫ A

−A
|K(w)|. |hj .w|⌊βj⌋

(⌊βj⌋)! .Lj .
∣∣τ.hj .w∣∣βj−⌊βj⌋

dw

≤ Lj .h
βj

j .

∫ A

−A
|K(w)|.|w|βjdw

≤ Lj .h
βj

j .

∫ A

−A
|K(w)|.(1 + |w|)βjdw ≤ Lj .h

βj

j .CK,L.
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For the variance of ĝj,hj (ux), one gets, with a1(Θk) = sin(Θk) and a2(Θk) =
cos(Θk),

Var
(
ĝj,hj

(ux)
)

= E
[(
ĝj,hj

(ux) − E
(
ĝj,hj

(ux)
))2]

= Var
(

1
n
.

n∑
k=1

aj(Θk).Khj

(
ux − FX(Xk)

))

≤ 1
n
.E
[(
aj(Θ)

)2
.
[
Khj

(
ux − FX(X)

)]2]
≤ 1
n
.E
([
Khj

(
ux − FX(X)

)]2) ≤
∥K∥2

L2(R)

n.hj
.

This concludes the proof of Lemma 5.1.

5.3. Proof of Proposition 5.3

We shall use the following version of Bernstein inequality (see [8, Lemma 2]).

Lemma 5.4 (Bernstein inequality). Let T1, . . . , Tn be i.i.d. random variables
and Sn =

∑n
j=1

[
Tj − E(Tj)

]
. Then, for any η > 0,

P
(∣∣Sn∣∣ ≥ n.η

)
≤ 2.max

(
exp

(
− n.η2

4.V

)
, exp

(
− n.η

4.b

))
,

with Var(T1) ≤ V and |T1| ≤ b, where V and b are two positive deterministic
constants.

Now, we can start to prove Proposition 5.3.

Proof of Proposition 5.3. We follow the procedure proposed in [8, Proposition
6]. First of all, we define random variables Zk(ux) := aj(Θk).Khj

(
ux−FX(Xk)

)
,

for 1 ≤ k ≤ n, with a1(Θk) = sin(Θk) and a2(Θk) = cos(Θk). Hence, ĝj,hj
(ux) =

1
n

∑n
k=1 Zk(ux). Notice that E(Zk(ux)) =

(
Khj

∗ gj
)
(ux) (see (23) and (24)).

Since ∥K∥∞ < +∞, we then have for any v ∈ FX(R):

|Zk(v)| =
∣∣aj(Θk).Khj

(
v − FX(Xk)

)∣∣ ≤
∥K∥∞
hj

=: b(hj), (26)

and Var
(
Zk(v)

)
= n.Var

(
ĝj,hj

(v)
)

≤ n.
∥K∥2

L2(R)

n.hj
=: n.V0(n, hj). Now, applying
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Lemma 5.4 to the Zk(v)’s, we obtain for η(hj) > 0,

P
(∣∣∣ĝj,hj (v) − E

(
ĝj,hj (v)

)∣∣∣ ≥ η(hj)
)

= P

(∣∣∣ n∑
k=1

Zk(v) − E
(
Zk(v)

)∣∣∣ ≥ n.η(hj)
)

≤ 2.max
{

exp
(

−
n.
(
η(hj)

)2

4n.V0(n, hj)

)
; exp

(
−n.η(hj)

4b(hj)

)}
.

For p ≥ 1, choose η(hj) = c1(p).
√
Ṽj(n, hj), with

Ṽj(n, hj) = c0,j . log(n).V0(n, hj). (27)

Then,

P
(∣∣∣ĝj,hj

(v) − E
(
ĝj,hj

(v)
)∣∣∣ ≥ c1(p).

√
Ṽj(n, hj)

)

≤ 2.max

exp
(

−n.c1(p)2.Ṽj(n, hj)
4n.V0(n, hj)

)
; exp

−
n.c1(p).

√
Ṽj(n, hj)

4b(hj)

 . (28)

We then choose c1(p).
+ First, c1(p) is chosen such that

n.c1(p)2.Ṽj(n, hj)
4n.V0(n, hj)

= n.c1(p)2.c0,j . log(n).V0(n, hj)
4n.V0(n, hj)

≥ p. log(n), (29)

that is c1(p) satisfies c1(p)2.c0,j ≥ 4p.
+ Secondly, we can write

n.c1(p).
√
Ṽj(n, hj)

4b(hj)
=
c1(p).√c0,j

4 .
√

log(n).
n.
√
V0(n, hj)
b(hj)

and for hj ∈ Hn,

n.

√
V0(n, hj)
b(hj)

= n.
∥K∥L2(R)√

n.hj
.
hj

∥K∥∞
=
√
n.hj .

∥K∥L2(R)

∥K∥∞
>
√

log(n),

then, we have

n.c1(p).
√
Ṽj(n, hj)

4b(hj)
=
c1(p).√c0,j

4 .
√

log(n).
n.
√
V0(n, hj)
b(hj)

≥
c1(p).√c0,j

4 . log(n)

(30)
≥ p. log(n),
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provided that c1(p).√c0,j ≥ 4p. Note that this condition also ensures the con-
straint c1(p)2.c0,j ≥ 4p.

Now, combining (29) and (30), we get from (28) for any p ≥ 1:

P
((

Ωj,n(ux, hj)
)c)

= P
(∣∣∣ĝj,hj

(ux) − E
(
ĝj,hj

(ux)
)∣∣∣ > c1(p).

√
Ṽj(n, hj)

)
≤ 2.n−p.

This implies that with probability larger than 1 − 2.n−p, we have:∣∣ĝj,hj
(ux) − E

(
ĝj,hj

(ux)
)∣∣ ≤ c1(p).

√
Ṽj(n, hj).

Then, with probability larger than 1 − 2.n−p, we obtain∣∣ĝj,hj (ux) − gj(ux)
∣∣ ≤

∣∣ĝj,hj (ux) − E
(
ĝj,hj (ux)

)∣∣+
∣∣E(ĝj,hj (ux)

)
− gj(ux)

∣∣
≤ c1(p).

√
Ṽj(n, hj) + Lj .h

βj

j .CK,L.

Recall that Φj(n, hj) = c1(p).
√
Ṽj(n, hj) + Lj .h

βj

j .CK,L, therefore, we finally
obtain for p ≥ 1 that

P
((
Ej,n(ux, hj)

)c)
= P

(∣∣ĝj,hj
(ux) − gj(ux)

∣∣ > Φj(n, hj)
)

≤ 2.n−p. (31)

This concludes the proof of Proposition 5.3.

5.4. Proofs of main results

5.4.1. Proof of Proposition 3.1

We first have the following concentration result.

Corollary 5.5. Let j ∈ {1, 2}. Under the Assumptions of Proposition 3.1, for
all hj , h′

j ∈ Hn, for all p ≥ 1, for ux = FX(x),

P
(∣∣ĝj,hj ,h′

j
(ux) − E

[
ĝj,hj ,h′

j
(ux)

]∣∣ > c1(p). ∥K∥L1(R) .
√
Ṽj(n, h′

j)
)

≤ 2.n−p,

with c1(p) satisfying c1(p).
√

min {c0,1; c0,2} ≥ 4p.

Proof of Corollary 5.5. We define random variables Z̃k(ux) := aj(Θk).
(
Kh′

j
∗

Khj

)(
ux − FX(Xk)

)
, for 1 ≤ k ≤ n, with a1(Θk) = sin(Θk) and a2(Θk) =

cos(Θk). Hence, ĝj,hj ,h′
j
(ux) = 1

n

∑n
k=1 Z̃k(ux). Since ∥K∥∞ < +∞, we then

have:∣∣∣Z̃k(ux)
∣∣∣ =

∣∣∣aj(Θk).
(
Kh′

j
∗Khj

)(
ux − FX(Xk)

)∣∣∣ ≤
∥K∥∞ . ∥K∥L1(R)

hj
=: b̃(hj),
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and Var
(
Z̃k(ux)

)
= n.Var

(
ĝj,hj ,h′

j
(ux)

)
≤ n.

∥K∥2
L1(R) . ∥K∥2

L2(R)

n.hj
=: n.Ṽ0(n, hj).

Using similar arguments of the proof of Proposition 5.3, we obtain with a prob-
ability greater than 1 − 2.n−p that∣∣ĝj,hj ,h′

j
(ux) − E

[
ĝj,hj ,h′

j
(ux)

]∣∣ ≤ ∥K∥L1(R) .c1(p).
√
Ṽj(n, hj).

This concludes the proof of Corollary 5.5.

Now, we can start to prove Proposition 3.1.

Proof of Proposition 3.1. We follow the strategy proposed in [8, Theorem 2].
The target is to find an upper bound for

∣∣ĝj,ĥj
(ux) − gj(ux)

∣∣. Let hj ∈ Hn be
fixed. We consider the following decomposition:∣∣ĝj,ĥj

(ux) − gj(ux)
∣∣ ≤

∣∣ĝj,ĥj
(ux) − ĝj,hj ,ĥj

(ux)
∣∣︸ ︷︷ ︸

=:Igj ,1

+
∣∣ĝj,hj ,ĥj

(ux) − ĝj,hj (ux)
∣∣︸ ︷︷ ︸

=:Igj ,2

+
∣∣ĝj,hj

(ux) − gj(ux)
∣∣.

By the definition of A2(hj , ux), we have

Igj ,1 =
∣∣ĝj,ĥj

(ux) − ĝj,hj ,ĥj
(ux)

∣∣
=
∣∣ĝj,ĥj

(ux) − ĝj,hj ,ĥj
(ux)

∣∣−
√
Ṽj(n, ĥj) +

√
Ṽj(n, ĥj)

≤ sup
h′

j∈Hn

{∣∣ĝj,h′
j
(ux) − ĝj,hj ,h′

j
(ux)

∣∣−
√
Ṽj(n, h′

j)
}

+
+
√
Ṽj(n, ĥj)

= A2(hj , ux) +
√
Ṽj(n, ĥj).

And similarly, by the definition of A2(ĥj , ux),

Igj ,2 =
∣∣ĝj,hj ,ĥj

(ux) − ĝj,hj
(ux)

∣∣
≤ sup
h′

j∈Hn

{∣∣ĝj,h′
j ,ĥj

(ux) − ĝj,h′
j
(ux)

∣∣−
√
Ṽj(n, h′

j)
}

+
+
√
Ṽj(n, hj)

= A2(ĥj , ux) +
√
Ṽj(n, hj).

Therefore, by using the definition of ĥj , we get

Igj ,1 + Igj ,2 ≤ A2(hj , ux) +
√
Ṽj(n, ĥj) +A2(ĥj , ux) +

√
Ṽj(n, hj)

≤ 2.
[
A2(hj , ux) +

√
Ṽj(n, hj)

]
.

Hence, we obtain∣∣ĝj,ĥj
(ux) − gj(ux)

∣∣ ≤ 2.A2(hj , ux) + 2.
√
Ṽj(n, hj) +

∣∣ĝj,hj
(ux) − gj(ux)

∣∣. (32)
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Now, to study A2(hj , ux), we can write:

ĝj,h′
j
(ux) − ĝj,hj ,h′

j
(ux) = ĝj,h′

j
(ux) − E

[
ĝj,h′

j
(ux)

]
−
(
ĝj,hj ,h′

j
(ux)

− E
[
ĝj,hj ,h′

j
(ux)

])
+ E

[
ĝj,h′

j
(ux)

]
− E

[
ĝj,hj ,h′

j
(ux)

]
,

and, we have E
[
ĝj,h′

j
(ux)

]
=
(
Kh′

j
∗gj
)
(ux) as well as E

[
ĝj,hj ,h′

j
(ux)

]
= E

[
Kh′

j
∗

ĝj,hj (ux)
]

=
(
Kh′

j
∗Khj ∗ gj

)
(ux).

Thus,∣∣ĝj,h′
j
(ux) − ĝj,hj ,h′

j
(ux)

∣∣−
√
Ṽj(n, h′

j) ≤
∣∣ĝj,h′

j
(ux) − E

[
ĝj,h′

j
(ux)

]∣∣
−

√
Ṽj(n, h′

j)
(1 + ∥K∥L1(R))

+
∣∣ĝj,hj ,h′

j
(ux) − E

[
ĝj,hj ,h′

j
(ux)

]∣∣
− ∥K∥L1(R) .

√
Ṽj(n, h′

j)
(1 + ∥K∥L1(R))

+
∣∣E[ĝj,h′

j
(ux)

]
− E

[
ĝj,hj ,h′

j
(ux)

]∣∣.
However, for any h′

j ∈ Hn,∣∣E[ĝj,h′
j
(ux)

]
− E

[
ĝj,hj ,h′

j
(ux)

]∣∣ =
∣∣Kh′

j
∗
(
gj −Khj

∗ gj
)
(ux)

∣∣
≤ ∥K∥L1(R) .

∥∥gj −Khj ∗ gj
∥∥

∞ . (33)

Hence, incorporating this bound in the definition of A2(hj , ux), we obtain

A2(hj , ux) (34)

= sup
h′

j∈Hn

{∣∣ĝj,h′
j
(ux) − ĝj,hj ,h′

j
(ux)

∣∣−
√
Ṽj(n, h′

j)
}

+

≤ sup
h′

j∈Hn

∣∣ĝj,h′
j
(ux) − E

[
ĝj,h′

j
(ux)

]∣∣−

√
Ṽj(n, h′

j)
(1 + ∥K∥L1(R))


+

(35)

+ sup
h′

j∈Hn

∣∣ĝj,hj ,h′
j
(ux) − E

[
ĝj,hj ,h′

j
(ux)

]∣∣− ∥K∥L1(R) .

√
Ṽj(n, h′

j)
(1 + ∥K∥L1(R))


+

+ ∥K∥L1(R) .
∥∥gj −Khj

∗ gj
∥∥

∞ .

From Corollary 5.5, for hj , h′
j ∈ Hn,

P
(∣∣ĝj,hj ,h′

j
(ux) − E

[
ĝj,hj ,h′

j
(ux)

]∣∣ > c1(p). ∥K∥L1(R) .
√
Ṽj(n, h′

j)
)

≤ 2.n−p.
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It implies that if we take c1(p) = 1
1 + ∥K∥L1(R)

and if c0,j ≥ 16p2.
(
1+∥K∥L1(R)

)2,

then

P

 sup
h′

j∈Hn

∣∣ĝj,h′
j
(ux) − E

[
ĝj,h′

j
(ux)

]∣∣−

√
Ṽj(n, h′

j)
(1 + ∥K∥L1(R))


+

> 0

 ≤ 2.
∑

hj∈Hn

n−p

≤ 2.n1−p,

as Card(Hn) ≤ n. Consequently, the following set

Ã2 :=
{

sup
h′

j∈Hn

{∣∣ĝj,h′
j
(ux) − E

[
ĝj,h′

j
(ux)

]∣∣−

√
Ṽj(n, h′

j)
(1 + ∥K∥L1(R))

}
+

= 0
}

∩
{

∀hj ∈ Hn, sup
h′

j∈Hn

{∣∣ĝj,hj ,h′
j
(ux) − E

[
ĝj,hj ,h′

j
(ux)

]∣∣
− ∥K∥L1(R) .

√
Ṽj(n, h′

j)
(1 + ∥K∥L1(R))

}
+

= 0
}

has probability greater than (1 − 4.n2−p). Now, choose p = 2 + q and then
c0,j ≥ 16

(
2 + q

)2
.
(
1 + ∥K∥L1(R)

)2. Thus, we obtain that P
(
Ã2
)
> 1 − 4.n−q.

Combining inequalities (32) and (34), we have on Ã2:∣∣ĝj,ĥj
(ux) − gj(ux)

∣∣ ≤ 2.A2(hj , ux) + 2.
√
Ṽj(n, hj) +

∣∣ĝj,hj
(ux) − gj(ux)

∣∣
≤ 2. ∥K∥L1(R) .

∥∥gj −Khj ∗ gj
∥∥

∞ + 2.
√
Ṽj(n, hj)

+
∣∣ĝj,hj

(ux) − gj(ux)
∣∣,

but still on Ã2, one gets
∣∣ĝj,hj (ux) − E

[
ĝj,hj (ux)

]∣∣−

√
Ṽj(n, hj)

(1 + ∥K∥L1(R))
≤ 0, so

∣∣ĝj,hj
(ux) − gj(ux)

∣∣ ≤
∣∣E[ĝj,hj

(ux)
]

− gj(ux)
∣∣+
∣∣ĝj,hj

(ux) − E
[
ĝj,hj

(ux)
]∣∣

−

√
Ṽj(n, hj)

(1 + ∥K∥L1(R))
+

√
Ṽj(n, hj)

(1 + ∥K∥L1(R))

≤
∥∥gj −Khj ∗ gj

∥∥
∞ +

√
Ṽj(n, hj).

Therefore, on Ã2, we finally obtain∣∣ĝj,ĥj
(ux) − gj(ux)

∣∣ ≤ (1 + 2 ∥K∥L1(R)).
∥∥gj −Khj

∗ gj
∥∥

∞ + 3.
√
Ṽj(n, hj).

This concludes the proof of Proposition 3.1.
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5.4.2. Proof of Theorem 3.6

First, we establish a concentration result for ĝ1,ĥ1
(ux) and ĝ2,ĥ2

(ux) as follows.
In the sequel, we consider j ∈ {1, 2} and we set

ψn(βj) =
(

log(n)
n

) βj
2βj +1

.

Corollary 5.6. Suppose that gj belongs to H(βj , Lj) for βj , Lj > 0. Then,
under the assumptions of Proposition 3.1, for q ≥ 1, there exists a constant Cj
depending on βj , Lj , c0,j and K such that, with

Ẽj,n(ux, ĥj)
)

:=
{∣∣ĝj,ĥj

(ux) − gj(ux)
∣∣ ≤ Cj .ψn(βj)

}
,

we have, for n large enough,

P
((
Ẽj,n(ux, ĥj)

)c) ≤ 4.n−q,

Proof of Corollary 5.6. Since gj belongs to H(βj , Lj), from Lemma 5.1, we have∥∥gj −Khj
∗ gj

∥∥
∞ ≤ Lj .h

βj

j .CK,L.

From Proposition 3.1, this implies that with a probability greater than 1−4.n−q,
one gets for any hj ∈ Hn:

∣∣ĝj,ĥj
(ux) − gj(ux)

∣∣ ≤
(
1 + 2 ∥K∥L1(R)

)
.Lj .h

βj

j .CK,L + 3.
√
Ṽj(n, hj). (36)

In (36), we take hj so that h−1
j is an integer and hj is of order

( log(n)
n

) 1
2βj +1 .

Since hmax = (logn)−1 and 1/(2βj + 1) < 1, hj ∈ Hn, for n large enough. As a
result, we obtain with probability greater than 1 − 4.n−q, that∣∣ĝj,ĥj

(ux) − gj(ux)
∣∣ ≤ Cj .ψn(βj),

with a constant Cj (depending on βj , Lj , c0,j and K). This concludes the proof
of Corollary 5.6.

Now, we start to prove Theorem 3.6.

Proof of Theorem 3.6. We have

E
[
dc
(
m̂ĥ(x),m(x)

)]
= E

[
dc
(
ĝĥ(ux), g(ux)

)]
.

We study

Rn := E
[
dc(ĝĥ(ux), g(ux)).1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
.
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We have

Rn = E
[ (

1 − cos
(
atan2(ĝ1,ĥ1

(ux), ĝ2,ĥ2
(ux))

−atan2(g1(ux), g2(ux)
)))

.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
= 2.E

[
sin2

(1
2

(
atan2(ĝ1,ĥ1

(ux), ĝ2,ĥ2
(ux))

−atan2(g1(ux), g2(ux)))
)
.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
.

We now distinguish 3 cases.
Case 1: |g1(ux)| > 0 and |g2(ux)| > 0.

We denote
δ1 = |g1(ux)| and δ2 = |g2(ux)|,

meaning that δ = min(δ1, δ2). First, on the event Ẽ2,n(ux, ĥ2) ∩ Ẽ1,n(ux, ĥ1),
for n large enough satisfying

C2.ψn(β2) < δ2/2 and C1.ψn(β1) < δ1/2.

we have ∣∣ĝ2,ĥ2
(ux) − g2(ux)

∣∣ ≤ C2.ψn(β2) <
∣∣g2(ux)

∣∣
2

and ∣∣ĝ1,ĥ1
(ux) − g1(ux)

∣∣ ≤ C1.ψn(β1) <
∣∣g1(ux)

∣∣
2 .

Thus, we get

ĝ2,ĥ2
(ux).g2(ux) > 0 and ĝ1,ĥ1

(ux).g1(ux) > 0.

Therefore,

Rn = 2.E
[

sin2
(1

2

(
arctan

( ĝ1,ĥ1
(ux)

ĝ2,ĥ2
(ux)

)
− arctan

(g1(ux)
g2(ux)

)))
.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]

≤ 1
2E

∣∣∣∣∣arctan
( ĝ1,ĥ1

(ux)
ĝ2,ĥ2

(ux)

)
− arctan

(g1(ux)
g2(ux)

)∣∣∣∣∣
2

.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)


≤ E

[∣∣∣ arctan
( ĝ1,ĥ1

(ux)
ĝ2,ĥ2

(ux)

)
− arctan

( g1(ux)
ĝ2,ĥ2

(ux)

)∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
(37)

+ E
[∣∣∣ arctan

( g1(ux)
ĝ2,ĥ2

(ux)

)
− arctan

(g1(ux)
g2(ux)

)∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
.
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For n sufficiently large,
∣∣ĝ2,ĥ2

(ux)
∣∣ ≥

∣∣g2(ux)
∣∣ −

∣∣g2(ux) − ĝ2,h(ux)
∣∣ > δ2 −

C2.ψn(β2) ≥ δ2/2 on the event Ẽ2,n(ux, ĥ2), and using the 1-Lipschitz conti-
nuity of arctan, we get for the first term in (37), since on Ẽ1,n(ux, ĥ1) one has∣∣ĝ1,ĥ1

(ux) − g1(ux)
∣∣ ≤ C1.ψn(β1), that

E
[∣∣∣ arctan

( ĝ1,ĥ1
(ux)

ĝ2,ĥ2
(ux)

)
− arctan

( g1(ux)
ĝ2,ĥ2

(ux)

)∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 4
δ2

2
.E
[∣∣∣ĝ1,ĥ1

(ux) − g1(ux)
∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 4
δ2

2
.E
[
C2

1 .ψn(β1)2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 4
δ2

2
.C2

1 .ψn(β1)2.P
(
Ẽ2,n(ux, ĥ2) ∩ Ẽ1,n(ux, ĥ1)

)
≤ 4
δ2

2
.C2

1 .ψn(β1)2 ≤ 4
δ2 .C

2
1 .ψn(β1)2.

Moreover, for the second term in (37), since g1(ux)
ĝ2,ĥ2

(ux) .
g1(ux)
g2(ux) > 0 on Ẽ2,n(ux, ĥ2),

we have

E
[∣∣∣ arctan

( g1(ux)
ĝ2,ĥ2

(ux)

)
− arctan

(g1(ux)
g2(ux)

)∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
= E

[∣∣∣ arctan
( ĝ2,ĥ2

(ux)
g1(ux)

)
− arctan

(g2(ux)
g1(ux)

)∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 1∣∣g1(ux)

∣∣2 .E[∣∣∣ĝ2,ĥ2
(ux) − g2(ux)

∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 1
δ2

1
.E
[
C2

2 .ψn(β2)2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 1
δ2

1
.C2

2 .ψn(β2)2 ≤ 1
δ2 .C

2
2 .ψn(β2)2.

Therefore, on the event Ẽ2,n(ux, ĥ2) ∩ Ẽ1,n(ux, ĥ1), for n sufficiently large such
that C2.ψn(β2) ≤ δ2/2 and C1.ψn(β1) ≤ δ1/2, we obtain

E
[∣∣ĝĥ(ux) − g(ux)

∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 4
δ2 .C

2
1 .ψn(β1)2 + 1

δ2 .C
2
2 .ψn(β2)2.

On the other hand, on the complementary
(
Ẽ2,n(ux, ĥ2)

)c ∪
(
Ẽ1,n(ux, ĥ1)

)c,
using the fact that

∣∣atan2(w1, w2)
∣∣ ≤ π, ∀(w1, w2), we can simply obtain an
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upper-bound as follows:

E
[
dc(ĝĥ(ux) − g(ux)).1(

Ẽ2,n(ux,ĥ2)
)c

∪
(
Ẽ1,n(ux,ĥ1)

)c

]
≤ 1

2 .E
[∣∣∣atan2

(
ĝ1,ĥ1

(ux), ĝ2,ĥ2
(ux)

)
− atan2

(
g1(ux), g2(ux)

)∣∣∣2
.1(

Ẽ2,n(ux,ĥ2)
)c

∪
(
Ẽ1,n(ux,ĥ1)

)c

]
≤ 2π2.P

((
Ẽ2,n(ux, ĥ2)

)c)+ 2π2.P
((
Ẽ1,n(ux, ĥ1)

)c) ≤ 4π2.4.n−q,

by Corollary 5.6. For q ≥ 1, we get that n−q is negligible in comparison with

C2
1 .ψn(β1)2 = C2

1 .
( log(n)

n

) 2β1
2β1+1 and C2

2 .ψn(β2)2 = C2
2 .
( log(n)

n

) 2β2
2β2+1 .

Case 2: g1(ux) = 0 and |g2(ux)| > 0.

In this case δ = |g2(ux)|.
- If g2(ux) > 0, then, as previously, on the event Ẽ2,n(ux, ĥ2) ∩ Ẽ1,n(ux, ĥ1), for
n large enough, ĝ2,ĥ2

(ux) > 0. Then,

Rn = 2.E
[

sin2
(1

2 .
(

atan2
(
ĝ1,ĥ1

(ux), ĝ2,ĥ2
(ux)

)
− atan2

(
g1(ux), g2(ux)

)))
.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
= 2.E

[
sin2

(
1
2 .
(

atan2
(
ĝ1,ĥ1

(ux), ĝ2,ĥ2
(ux)

)
− 0
))

.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]

= 2.E
[

sin2

(
1
2 .
(

arctan
( ĝ1,ĥ1

(ux)
ĝ2,ĥ2

(ux)

)
− arctan

( g1(ux)
ĝ2,ĥ2

(ux)

)))
.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 1

2 .E
[∣∣∣ arctan

( ĝ1,ĥ1
(ux)

ĝ2,ĥ2
(ux)

)
− arctan

( g1(ux)
ĝ2,ĥ2

(ux)

)∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
,

and we conclude as for the first case.

- If g2(ux) < 0, then, as previously, on the event Ẽ2,n(ux, ĥ2) ∩ Ẽ1,n(ux, ĥ1), for
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n large enough, ĝ2,ĥ2
(ux) < 0. Then,

Rn = 2.E
[

sin2
(1

2

(
atan2

(
ĝ1,ĥ1

(ux), ĝ2,ĥ2
(ux)

)
− atan2

(
g1(ux), g2(ux)

)))
.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
= 2.E

[
sin2

(
1
2 .
(

atan2
(
ĝ1,ĥ1

(ux), ĝ2,ĥ2
(ux)

)
+ π

))
.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
= 2.E

[
sin2

(1
2 .
(

arctan
( ĝ1,ĥ1

(ux)
ĝ2,ĥ2

(ux)

)
+ 2.π.1{ĝ1,ĥ1

(ux)>0}

− arctan
( g1(ux)
ĝ2,ĥ2

(ux)

)))
.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]

= 2.E
[

sin2
(1

2 .
(

arctan
( ĝ1,ĥ1

(ux)
ĝ2,ĥ2

(ux)

)
− arctan

( g1(ux)
ĝ2,ĥ2

(ux)

)))
.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
≤ 1

2 .E
[∣∣∣ arctan

( ĝ1,ĥ1
(ux)

ĝ2,ĥ2
(ux)

)
− arctan

( g1(ux)
ĝ2,ĥ2

(ux)

)∣∣∣2.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
,

and we conclude as for the first case.

Case 3: |g1(ux)| > 0 and g2(ux) = 0.

In this case δ = |g1(ux)|.
- If g1(ux) > 0, then, as previously, on the event Ẽ2,n(ux, ĥ2) ∩ Ẽ1,n(ux, ĥ1), for
n large enough, ĝ1,ĥ1

(ux) > 0. Then,

Rn = 2.E
[

sin2
(1

2 .
(

atan2
(
ĝ1,ĥ1

(ux), ĝ2,ĥ2
(ux)

)
− atan2

(
g1(ux), g2(ux)

)))
.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
= 2.E

[
sin2

(1
2 .
(

arctan
( ĝ1,ĥ1

(ux)
ĝ2,ĥ2

(ux)

)
+ π.1{ĝ2,ĥ2

(ux)<0} − π

2

))
.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
= 2.E

[
sin2

(1
2 .
(

arctan
( ĝ2,ĥ2

(ux)
ĝ1,ĥ1

(ux)

)
− arctan

( g2(ux)
ĝ1,ĥ1

(ux)

)))
.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
,

where the last equality is obtained by using for x ∈ R∗,

arctan(x) + arctan(1/x) = π/2 × sign(x)
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and by distinguishing the cases according to the sign of ĝ2,ĥ2
(ux).

- If g1(ux) < 0, then, as previously, on the event Ẽ2,n(ux, ĥ2) ∩ Ẽ1,n(ux, ĥ1), for
n large enough, ĝ1,ĥ1

(ux) < 0. Then, similarly,

Rn = 2.E
[

sin2
(1

2 .
(

atan2
(
ĝ1,ĥ1

(ux), ĝ2,ĥ2
(ux)

)
− atan2

(
g1(ux), g2(ux)

)))
.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
= 2.E

[
sin2

(1
2 .
(

arctan
(
ĝ1,ĥ1

(ux)
ĝ2,ĥ2

(ux)

)
− π.1{ĝ2,ĥ2

(ux)<0} + π

2

))
.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
= 2.E

[
sin2

(1
2 .
(

arctan
( ĝ2,ĥ2

(ux)
ĝ1,ĥ1

(ux)

)
− arctan

( g2(ux)
ĝ1,ĥ1

(ux)

)))
.1Ẽ2,n(ux,ĥ2)∩Ẽ1,n(ux,ĥ1)

]
.

We conclude by using the second case since ĝ1,ĥ1
(ux) (resp. g1(ux)) and ĝ2,ĥ2

(ux)
(resp. g2(ux)) play a symmetric role.

Note that under Assumption 3.3, the case g1(ux) = g2(ux) = 0 cannot occur.

5.4.3. Proof of Theorem 3.11

Before tackling the proof of Theorem 3.11, the next lemma shows that the von
Mises density satisfies condition (16).

Lemma 5.7. The von Mises density with location parameter µ and concentra-
tion parameter κ satisfies condition (16).

Proof of Lemma 5.7. We recall the expression of the von Mises density with
location parameter µ ∈ [−π, π) and concentration parameter κ > 0:

fvM(µ,κ)(θ) = c(κ).eκ cos(θ−µ), θ ∈ [−π, π),

with c(κ) the normalizing constant. Let us prove that fvM(µ,κ) satisfies:

∃ p∗ > 0 :
∫ π

−π
fvM(µ,κ)(t) log

fvM(µ,κ)(t)
fvM(µ,κ)(t+ θ)dt ≤ p∗θ

2,



Adaptive warped kernel estimation for nonparametric circular regression 35

for all θ ∈ R. We have that∫ π

−π
fvM(µ,κ)(t) log

fvM(µ,κ)(t)
fvM(µ,κ)(t+ θ)dt

= c(κ).κ.
∫ π

−π
eκ cos(t−µ).

(
cos(t− µ) − cos(t+ θ − µ)

)
dt

= 2.c(κ).κ.
(

sin θ2
)
.

∫ π

−π
eκ cos(t−µ). sin

(
t− µ+ θ

2
)
dt

= 2.c(κ).κ.
(

sin θ2
) ∫ π

−π
eκ cos(t−µ).

(
sin(t− µ). cos θ2 + sin θ2 . cos(t− µ)

)
dt

= 2.c(κ).κ.
(

sin θ2

)2 ∫ π

−π
eκ cos(t−µ). cos(t− µ)dt︸ ︷︷ ︸

=:C(κ)>0

≤ 2.c(κ).κ.C(κ). θ
2

4 ,

for all θ ∈ R. Then, with

p∗ = c(κ)κC(κ)
2 ,

we have for any θ ∈ R,∫ π

−π
fvM(µ,κ)(t) log

fvM(µ,κ)(t)
fvM(µ,κ)(t+ θ)dt ≤ p∗θ

2.

Proof of Theorem 3.11. To prove the lower bound stated in Theorem 3.11, we
follow the lines of Section 2.5 in [27] for the regression at a point. The differences
with our problem lie in the circular response and the randomness of the Xi’s.
We consider m0(t) = 0 and m1(t) = LhβnK( t−xhn

) with hn = c0n
− 1

2β+1 and
K : R 7−→ S1 satisfying:

K ∈ Σ̃(β, 1/2) ∩ C∞(R), K(t) > 0 ⇐⇒ t ∈] − 1/2, 1/2[.

Such functions K exist. For instance, for a sufficiently small a > 0, one can take

K(t) = a. exp
(

− 1
1 − 4t2

)
.1[−0.5;0.5](t).

We have now to check three points which are developed in the sequel.

1. Let us prove that m1 ∈ Σ̃(β, L) (the function m0 obviously belongs to
Σ̃(β, L)). For l = ⌊β⌋ we have

m
(l)
1 (t) = Lhβ−l

n K(l)
(
t− x

hn

)
,
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then, with u = t−x
hn

and u′ = t′−x
hn

,

dc(m(l)
1 (t),m(l)

1 (t′)) = 1 − cos(m(l)
1 (t) −m

(l)
1 (t′))

≤ 2 sin2((m(l)
1 (t) −m

(l)
1 (t′))/2)

≤ 1
2 |m(l)

1 (t) −m
(l)
1 (t′)|2

= L2

2 h2(β−l)
n |K(l)(u) −K(l)(u′)|2

≤ L2

8 h2(β−l)
n |u− u′|2(β−l) = L2

8 |t− t′|2(β−l).

Then, m1 ∈ Σ̃(β, L).
2. Let us show that dc(m0(x),m1(x)) ≥ 4s2

n.
We have that m1(x) = LhβnK(0) = Lcβ0K(0)n− β

2β+1 , hence for n suffi-
ciently large, m1(x) ∈ [0, π2 ]. Hence using that sin(t) ≥ 2

π t for t ∈ [0, π2 ],
we get

dc(m0(x),m1(x)) = 1 − cos(m1(x)) = 2 sin2(m1(x)/2)

≥ 2
(

2
π

)2
m2

1(x)
4

= 2
π2L

2c2β
0 K2(0)n− 2β

2β+1

then the condition is fulfilled with sn = 1√
2πLc

β
0K(0)n− β

2β+1 =: Aψn.
3. Using the classical reduction to a two test hypotheses problem for the

pointwise regression problem, we get for any estimator Tn:

sup
m∈Σ̃(β,L)

Em[ψ−2
n dc(Tn,m(x))] (38)

≥ A2 max
m∈{m0,m1}

Pm(dc(Tn,m(x)) ≥ A2ψn
2)

≥ A2

2 EX1,...,Xn

[
Pm0(dc(Tn,m0(x)) ≥ A2ψ2

n|X1, . . . , Xn)

+Pm1(dc(Tn,m1(x)) ≥ A2ψ2
n|X1, . . . , Xn)

]
≥ A2

2 EX1,...,Xn

[
inf
ψ

{
Pm0(ψ ̸= 0|X1, . . . , Xn)

+Pm1(ψ ̸= 1|X1, . . . , Xn)
}]
, (39)

where infψ denotes the infimum over all tests ψ taking values in {0, 1}.
We have used that

√
dc is a true distance on S1, so that it satisfies the

triangular inequality.
Now let us fix the Xi’s. The minimum average probability pe,1 is defined
as (see page 116 in [27]):

pe,1 := 1
2 inf

ψ

{
Pm0(ψ ̸= 0|X1, . . . , Xn) + Pm1(ψ ̸= 1|X1, . . . , Xn)

}
.
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We have for the Kullback Leibler divergence (still with the Xi’s fixed)

K(Pm0 ,Pm1) =
∫

log
(
dPm0

dPm1

)
dPm0 =

n∑
i=1

∫
log pζ(y)

pζ(y −m1(Xi))
pζ(y)dy.

(40)
There exists n0 such that ∀n > n0, LhβnKmax ≤ y0 where Kmax =
maxt |K(t)|. Using (40) and (16), we have:

K(Pm0 ,Pm1) ≤ p∗

n∑
i=1

m2
1(Xi)

≤ p∗L
2h2β
n K

2
max

n∑
i=1

1{| Xi−x
hn

|≤ 1
2 }.

Now taking the expectation and using that the density of the Xi’s is
bounded by µ0, we get:

EX1,...,XnK(Pm0 ,Pm1) ≤ p∗L
2K2

maxh
2β
n nP

(∣∣∣∣X1 − x

hn

∣∣∣∣ ≤ 1
2

)
≤ p∗L

2K2
maxµ0h

2β+1
n n.

For α < 2 log(2), since hn = c0n
− 1

2β+1 , setting

c0 =
(

α

p∗µ0L2K2
max

) 1
2β+1

,

we get that
EX1,...,Xn

K(Pm0 ,Pm1) ≤ α.

As in Lemma 2.10 of [27], we introduce the function H(t) = −t log(t) −
(1 − t) log(1 − t) for t ∈ (0, 1) and H(0) = H(1) = 0. Inequality (2.70) of
[27] with M = 1 gives

EX1,...,Xn
[H(pe,1)] ≥ log(2) − 1

2EX1,...,Xn
K(Pm0 ,Pm1) ≥ log(2) − α

2 ,

since EX1,...,Xn
K(Pm0 ,Pm1) ≤ α. Since H is concave, H(EX1,...,Xn

[pe,1)]) ≥
EX1,...,Xn

[H(pe,1)] and

EX1,...,Xn
[pe,1] ≥ H−1( log 2 − α

2
)
> 0,

with, for any t > 0, H−1(t) = min{p ∈ (0, 1
2 ] : H(p) ≥ t}. Hence we deduce

using (38)

sup
m∈Σ̃(β,L)

Em
[
ψ−2
n |dc(Tn,m(x))

]
≥ A2H−1( log 2 − α

2
)
,

where the right hand side is a positive constant. This concludes the proof
of Theorem 3.11.
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6. Conclusion

Considering nonparametric regression for circular data, we derive minimax con-
vergence rates and prove near optimal properties of our kernel estimate com-
bined with a warping strategy on anisotropic Hölder classes of functions for
pointwise estimation. The bandwidth parameter is selected by using a data-
driven Goldenshluger-Lepski type procedure. After tuning hyperparameters of
our estimate, we show that it remains very competitive with respect to existing
methods.

As a natural extension, it could be very challenging to investigate our regres-
sion problem with a response on the sphere S2 or more generally on the unit
hypersphere Sd−1. The case of predictors X ∈ Sd−1 and a response Θ ∈ Sd−1

has been tackled in [10]. The spherical context is of course more complicated
than the circular one and the arctangent function approach used here is not
easily generalizable in the spherical setting. In [10], Di Marzio et al. proposed
a local constant estimator by smoothing on each component of the response.
Once again no rates of convergence were obtained. Hence, in a future work, a
first task would be to obtain convergence rates and then investigate adaptation
issue.

Acknowledgments

The authors would like to warmly thank the Associate Editor and the anony-
mous referees for very valuable comments and suggestions. T.D.N. was sup-
ported by a public grant as part of the Investissement d’avenir project, reference
ANR-11-LABX-0056-LMH, LabEx LMH. Parts of this work were conducted
during T.D.N.’s PhD study at Laboratoire de Mathématiques d’Orsay, UMR
8628, Université Paris-Saclay, 91405 Orsay, France.

References

[1] M. Alonso-Pena and R. Crujeiras. Nonparametric multimodal regression for
circular data. submitted, arxiv:2012.09915, 2020.

[2] N. Bochkina and T. Sapatinas. Minimax rates of convergence and optimality
of Bayes factor wavelet regression estimators under pointwise risks. Statistica
Sinica, 19: 1389-1406, 2009.

[3] G. Chagny. Penalization versus Goldenshluger-Lepski strategies in warped
bases regression. ESAIM Probab. Stat., 17: 328-358, 2013.

[4] G. Chagny. Adaptive warped kernel estimators. Scandinavian Journal of
Statistics, 42(2): 336-360, 2015.

[5] G. Chagny, T. Laloë and R. Servien. Multivariate adaptive warped kernel
estimation. Electron. J. Statist., 13(1): 1759-1789, 2019.

[6] B. Charlier. Necessary and sufficient condition for the existence of a Fréchet
mean on the circle. ESAIM Probab. Stat., 17: 635-649, 2013.



Adaptive warped kernel estimation for nonparametric circular regression 39

[7] C. Chesneau and T. Willer. Estimation of a cumulative distribution function
under interval censoring "case 1" via warped wavelets. Comm. Statist. Theory
Methods, 44(17): 3680-3702, 2015.

[8] F. Comte and C. Lacour. Anisotropic adaptive kernel deconvolution. Ann.
Inst. H. Poincaré Probab. Statist., 49(2): 569-609, 2013.

[9] N.I. Fisher and A.J. Lee. Regression models for angular responses. Biomet-
rics, 48: 665-677, 1992.

[10] M. Di Marzio, A. Panzera and C.C. Taylor. Nonparametric Regression for
Spherical Data. Journal of the American Statistical Association, 109:748-
763, 2014.

[11] A. Goldenshluger and O. Lepski. Bandwidth selection in kernel density es-
timation: oracle inequalities and adaptive minimax optimality. Ann. Statist,
39(3): 1608-1632, 2011.

[12] A.L. Gould. A regression technique for angular variates. Biometrics, 25:
683-700, 1969.

[13] S.R. Jammalamadaka and A. SenGupta. Topics in Circular Statistics.
World Scientific, Singapore, 2001.

[14] R.A. Johnson and T.E. Wehlry. Some angular-linear distributions and
related regression models. Journal of the American Statistical Association,
73: 602-606, 1978.

[15] G. Kerkyacharian and D. Picard. Regression in random design and warped
wavelets. Bernoulli, 10(6):1053-1105, 2004.

[16] O.V. Lepski One problem of adaptive estimation in Gaussian white noise.
newblock Theory Probab. Appl., 35 459-470, 1990.

[17] O.V. Lepski and V. G. Spokoiny. Optimal pointwise adaptive methods in
nonparametric estimation. Ann. Statist, 25(6):2612-2546, 1997.

[18] C. Ley and T. Verdebout . Modern Directional Statistics. (1st ed.). Chap-
man and Hall/CRC, 2017.

[19] K.V. Mardia and P.E. Jupp. Directional Statistics. New York, NY: John
Wiley, 2000.

[20] M. Di Marzio, A. Panzera and C.C. Taylor. Non-parametric regression for
circular responses. Scandinavian Journal of Statistics, 40: 238-255, 2013.

[21] P. Massart. The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz In-
equality. Ann. Probab., 18(3): 1269-1283, 1990.

[22] A. Meilán-Vila, M. Francisco-Fernández, R.M. Crujeiras and A. Panzera.
Nonparametric multiple regression estimation for circular response. TEST,
30: 650-672, (2021).

[23] A. Pewsey and E. García-Portugués. Recent advances in directional statis-
tics. TEST, 30: 1-58, 2021.

[24] T.M. Pham Ngoc. Regression in random design and Bayesian warped
wavelets estimators. Electron. J. Stat, 3: 1084-1112, 2009.

[25] T.M. Pham Ngoc. Adaptive optimal kernel density estimation for direc-
tional data. J. Multivariate Anal., 173: 248-267, 2019.

[26] B. Presnell, S.P. Morrison and R.C. Littel. Projected multivariate linear
models for directional data. Journal of the American Statistical Association,
93: 1068-1077, 1998.



40 T.D. Nguyen, T.M. Pham Ngoc and V. Rivoirard

[27] A.B. Tsybakov. Introduction to nonparametric estimation. Springer Series
in Statistics. Springer, New York, 2009.


	Introduction
	The estimation procedure
	The framework of circular data
	Warping strategy
	Bandwidth selection

	Theoretical results
	Minimax rates of convergence
	Minimax lower bounds

	Numerical simulations
	Practical calibration of tuning parameters
	The case 
	The case 

	Numerical results

	Proofs
	Preliminary results
	Proof of Lemma 5.1
	Proof of Proposition 5.3
	Proofs of main results
	Proof of Proposition 3.1 
	Proof of Theorem 3.6 
	Proof of Theorem 3.11


	Conclusion
	Acknowledgments
	References

