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91405 Orsay, France

e-mail: thanh.pham ngoc@math.u-psud.fr

Abstract: We consider X1, . . . , Xn a sample of data on the circle S1,
whose distribution is a two-component mixture. Denoting R and Q two
rotations on S1, the density of the Xi’s is assumed to be g(x) = pf(R−1x)+
(1 − p)f(Q−1x), where p ∈ (0, 1) and f is an unknown density on the
circle. In this paper we estimate both the parametric part θ = (p,R,Q)
and the nonparametric part f . The specific problems of identifiability on
the circle are studied. A consistent estimator of θ is introduced and its
asymptotic normality is proved. We propose a Fourier-based estimator of f
with a penalized criterion to choose the resolution level. We show that our
adaptive estimator is optimal from the oracle and minimax points of view
when the density belongs to a Sobolev ball. Our method is illustrated by
numerical simulations.
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1. Introduction

Circular data are collected when the topic of interest is a direction or a time
of day. These particular data appear in many applications: earth sciences (e.g.
wind directions), medicine (e.g. circadian rhythm), ecology (e.g. animal move-
ments), forensics (crime incidence). Different surveys on statistical methods for
circular data can be found: Mardia and Jupp (2000), Jammalamadaka and Sen-
Gupta (2001), Ley and Verdebout (2017) or more recently Pewsey and Garćıa-
Portugués (2021). In the present work, we consider a mixture model with two
components equal up to a rotation. We observe X1, . . . , Xn a sample of data on
S1 with probability distribution function:

g(x) = p0f(R−1
0 x) + (1− p0)f(Q−1

0 x) = p0f(x− α0) + (1− p0)f(x− β0). (1)

In the right hand side we have identified f : S1 → R and its periodized version
on R. Here R0 and Q0 are two unknown rotations of the circle. R0 is a rotation
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with angle α0 and Q0 is a rotation with angle β0. The aim is to estimate both
θ0 = (p0, α0, β0) and the nonparametric part f .

Bimodal circular data are commonly encountered in many scientific fields,
for instance in climatology, animal orientations or in earth sciences. For the
analysis of wind directions, see Hernández-Sánchez and Scarpa (2012) and for
animal orientations, the dragonflies data set presented in Batschelet (1981).
In geosciences, one can cite the cross-bed orientations data set obtained in the
middle Mississipian Salem Limestone of central Indiana and which was presented
by the Seminar Sedimentation (Seminar (1966)). Last but not least, the paper of
Lark, Clifford and Waters (2014) analyzes some geological data sets and clearly
favours for some of them a two component mixture of von Mises distributions.

Mixture models for describing multimodal circular data date back to Pearson
(1894) and have been largely used since then. An important case in the liter-
ature is the mixture of two von Mises distributions which has been explored
in numerous works. Let us cite among others papers by Bartels (1984), Spurr
(1981) or Chen, Li and Fu (2008). From a practical point of view, algorithms
have also been proposed to deal with mixture of two von Mises distributions,
including maximum likelihood algorithms by Jones and James (1969) or a char-
acteristic function based procedure by Spurr and Koutbeiy (1991). Note that
on the unit hypersphere, Banerjee et al. (2005) investigated clustering methods
for mixtures of von Mises Fisher distributions. In our framework, we shall not
assume any parametric form of the density and hence the model is said to be
semiparametric. To the best of our knowledge, this is the first work devoted
to the study of the semiparametric mixture model for circular data. This semi-
parametric model is more complex and intricate than the usual parametric one
encountered in the circular literature. In the spherical case, Kim and Koo (2000)
studied the general mixture framework for a location parameter but assuming
that the nonparametric part f is known. On the real line, this semiparametric
model has been studied by Bordes, Mottelet and Vandekerkhove (2006), Hunter,
Wang and Hettmansperger (2007), Butucea and Vandekerkhove (2014) or Gas-
siat and Rousseau (2016) for dependent latent variables. For the multivariate
case, see for instance Hall and Zhou (2003), Hall et al. (2005), Gassiat, Rousseau
and Vernet (2018), Hohmann and Holzmann (2013). When dealing with the spe-
cific case of one of the two components being parametric, one refers to work by
Ma and Yao (2015) and references therein.

Note that we can rewrite model (1) as

Xi = Yi + εi (mod 2π), i = 1, . . . , n (2)

where Yi has density f and εi is a Bernoulli angle, which is equal to α0 with
probability p0 and β0 otherwise. Accordingly, model (1) can be viewed as a
circular convolution model with unknown noise operator ε. The circular convo-
lution model has been studied by Goldenshluger (2002) in the case of known
noise operator whereas Johannes and Schwarz (2013) dealt with unknown er-
ror distribution but have at their disposal an independent sample of the noise
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to estimate this latter. It is worth pointing out that Goldenshluger (2002) and
Johannes and Schwarz (2013) made the usual assumptions on the decay of the
Fourier coefficients of the density of ε, whereas in model (1) the Fourier coeffi-
cients are not decreasing.

Identifiability questions are at the heart of the theory of mixture models
and the circular context is no exception. Thus, our first task is to study the
identifiability of the model. From a mathematical point of view, the topology
of the circle makes the problem very different from the linear case. In the cir-
cular parametric case, Fraser, Hsu and Walker (1981) obtained identifiability
results for the von Mises distributions, which were extended in Kent (1983)
to generalized von Mises distributions while Holzmann, Munk and Stratmann
(2004)) focused on wrapped distributions, basing their analysis on the Fourier
coefficients. Here, the Fourier coefficients turn out to be very useful as well but
the nonparametric paradigm makes the study quite different and intricate. Our
identifiability results are obtained under mild assumptions on the Fourier coeffi-
cients. We require that the coefficients are real which can be related to the usual
symmetry assumption in mixture models (see for instance Hunter, Wang and
Hettmansperger (2007)) and we impose that only the first 4 coefficients do not
vanish. Interestingly enough, some not intuitive phenomena appear. A striking
case occurs when the angles α0 and β0 are distant from 2π/3, model (1) is then
nonidentifiable which is quite surprising at first sight.

Once the identifiability of the model is obtained, we resort to a contrast func-
tion in the line of Butucea and Vandekerkhove (2014) to estimate the Euclidian
parameter θ0. In that regard, we prove the consistency of our estimator and an
asymptotic normality result. Thereafter, for the estimation of the nonparametric
part, a penalized empirical risk estimation method is used. The estimator of the
density turns out to be adaptive (meaning that it does not require the specifica-
tion of the unknown smoothness parameter), a property which was not reached
so far for this semiparametric model even in the linear case. The procedure
devised is hence relevant for practical purposes. We prove an oracle inequality
and minimax rates are achieved by our estimator for Sobolev regularity classes.
Eventually, a numerical section shows the good performances of the whole esti-
mation procedure.

The paper is organized as follows. Section 2 is devoted to the identifiability of
the model. Section 3 tackles the estimation of the parameter θ0 whereas Section
4 focuses on the estimation of the nonparametric part. Finally Section 5 presents
numerical implementations of our procedure. Proofs are gathered in Section 6.

2. Identifiability

In this section, to keep the notation as light and clear as possible, we drop
the subscript 0 in the parameters. For any function g and any angle α, denote
gα(x) := g(x − α). For any complex number a, a is the complex conjugate of
a. For any integrable function φ : S1 → R, we denote for any l ∈ Z, φ?l =
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S1 φ(x)e−ilx dx2π , the Fourier coefficients. Note also that we use notation f and
f ′ for two densities, where f ′ is not the derivative of f .

Let us now study the identifiability of model (1). First, it is obvious that
if p = 0, α is not identifiable, and if p = 1, β is not identifiable. In the same
way, p is not identifiable if α = β. Moreover, as explained in Hunter, Wang
and Hettmansperger (2007) for a translation mixture on the real line, the case
p = 1/2 has to be avoided. Indeed, denoting g a density and for instance f =
1
2g1 + 1

2g−1 and f ′ = 1
2g2 + 1

2g−2 we have

f1 + f5 = f ′2 + f ′4.

In addition, it is well known that, in such a mixture model, (p, α, β) cannot be
distinguished from (1 − p, β, α): it is the so-called label switching problem. So
we will assume that p ∈ (0, 1/2) (for mixtures on R it is assumed alternatively
that α < β but ordering angles is less relevant).

Now let us study the specific problems of identifiability on the circle, that
do not appear on R. First, if f is the uniform probability, the model is not
identifiable, so we have to exclude this case. Another case to exclude is the case
of δ-periodic functions. Indeed in this case fα = fα+δ. These functions have the
property that f?l = 0 for all l /∈ (2π/δ)Z. So we will require that the Fourier
coefficients of f do not cancel out too much. Here we will assume

for all l ∈ {1, 2, 3, 4}, f?l 6= 0, and f?l = f?l.

This last assumption can be related to the symmetry of f . Indeed if f is zero-
symmetric then all its Fourier coefficients are real. Symmetry is a usual assump-
tion in this mixture context, to distinguish between the translations of f : for
any δ ∈ R,

pf(x− α) + (1− p)f(x− β) = pfδ(x− α+ δ) + (1− p)fδ(x− β + δ)

More precisely, Hunter, Wang and Hettmansperger (2007) show that symmetry
is a sufficient and necessary condition for identifiability of the model mixture on
R. In the circle framework, it is natural to work with Fourier coefficients rather
than Fourier transform as on R. A lot of circular densities have their Fourier
coefficients real, provided that their location parameter is µ = 0: for example the
Jones-Pewsey density, which includes the cardioid, the wrapped Cauchy density,
and the von Mises density. Here we require the assumption only for the first 4
Fourier coefficients of f (due to our proof), which is milder than symmetry.

Let us now state our identifiability result under these assumptions. Note that
Holzmann, Munk and Stratmann (2004) have studied the identifiability of this
model when f belongs to a parametric scale-family of densities, but here we face
a nonparametric problem concerning f .

Theorem 1. Assume that θ = (p, α, β) and θ′ = (p′, α′, β′) belong to{
(p, α, β) ∈ (0, 1/2)× S1 × S1, α 6= β (mod 2π)

}
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and that f, f ′ belongs to{
f : S1 → R density such that, for all l ∈ {1, 2, 3, 4}, f?l ∈ R\{0}

}
.

Suppose pfα + (1− p)fβ = p′f ′α′ + (1− p′)f ′β′ . Then

1. either (p′, α′, β′)=(p, α, β) and f ′ = f ,
2. or (p′, α′, β′) = (p, α+ π, β + π) and f ′ = fπ
3. or if β − α = π (mod 2π) then f ′ is a linear combination of f and fπ,

and either (α′, β′) = (α, β), or (α′, β′) = (β, α).
4. or if β−α = ±2π/3 (mod 2π) then f ′ is a linear combination of fπ/3, f−π/3, fπ

and p′ = (1− 2p)/(2− 3p) and
(a) if β−α = 2π/3, (α′, β′) = (α+π, β−π/3) or (α′, β′) = (α, β+2π/3),
(b) if β−α = −2π/3, (α′, β′) = (α+π, β+π/3) or (α′, β′) = (α, β−2π/3).

Case 2. arises from a specific feature of circular distributions: if f is symmetric
with respect to 0 then it is symmetric with respect to π. Unlike the real case, a
symmetry assumption does not exclude the case f ′(x) = f(x−π). To bypass this
we could assume for instance f?1 > 0. Indeed for each l ∈ Z, (fπ)?l = f?l(−1)l,
so the Fourier coefficients of f and fπ have opposite sign for any odd l. With
our assumption, we recover among f and fπ the one with positive first Fourier
coefficient, i.e. with positive mean resultant length. Neverthless our estimation
procedure begins with the parametric part so that this assumption concerning
only the nonparametric part will not allow us to distinguish α from α + π in
this first parametric estimation step. That is why we rather choose to assume
that α and β belong to [0, π) (mod π).

Case 3. concerns bipolar data since α and β are diametrically opposed (sep-
arated by π radians). In this case α and β are identifiable, but p and f not.
Indeed, for any density f and any 0 < p′ ≤ p < 1/2, we can find q ∈ (0, 1] such
that f ′ = qf + (1− q)fπ verifies pfα + (1− p)fβ = p′f ′α′ + (1− p′)f ′β′ .

Let us now discuss the case 4., which is the most curious (we shall only
comment the first case (a), the other is similar). Let us set

f ′(x) = (1− p)f
(
x− π

3

)
+ (1− p)f

(
x+

π

3

)
+ (2p− 1)f(x− π).

This function is symmetric if f is symmetric, verifies
∫
S1 f
′ = 1 and may be

positive for some values of p (depending on f): see Figure 1. Then we can write
f ′π/3:

f ′
(
x− π

3

)
= (1− p)f

(
x− 2π

3

)
+ (1− p)f (x) + (2p− 1)f

(
x− 4π

3

)
,

as well as f ′π:

f ′(x− π) = (1− p)f
(
x− 4π

3

)
+ (1− p)f

(
x− 2π

3

)
+ (2p− 1)f(x).
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Fig 1. Plot of a circular density f (dashed blue), and of f ′ = (1−p)fπ
3

+(1−p)f−π
3

+(2p−1)fπ

(solid red). Here f is the von Mises density with mean 0 and concentration 1. In this case,
f ′ is positive as soon as p ≥ 0.36, here p = 0.4.

Hence a mixture of f ′π and f ′π/3 gives a mixture of f(x), f(x− 2π
3 ), f(x− 4π

3 ):

p′f ′(x− π) + (1− p′)f ′
(
x− π

3

)
= [p′(2p− 1) + (1− p′)(1− p)]f(x)

+[p′(1− p) + (1− p′)(1− p)]f
(
x− 2π

3

)
+[p′(1− p) + (1− p′)(2p− 1)]f

(
x− 4π

3

)
If now p′ = (1− 2p)/(2− 3p), then p′(1− p) + (1− p′)(2p− 1) = 0 and the third
component f(x− 4π

3 ) vanishes. Thus

p′f ′(x− π) + (1− p′)f ′
(
x− π

3

)
= pf(x) + (1− p)f

(
x− 2π

3

)
.

In such a particular case, we cannot identify θ nor f . However this happens
only when β−α = ±2π/3. So, to exclude these case, we will now assume β 6= α
(mod 2π/3).
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Finally, we shall assume that f ∈ F with some assumptions for F :

Assumption 1.

F ⊂
{
f : S1 → R density s.t. for all l ∈ {1, 2, 3, 4}, f?l ∈ R\{0}

}
or

Assumption 2.

F ⊂
{
f : S1 → R density s.t. for all l ∈ {1, 2, 3, 4}, f?l ∈ R\{0}, f?1 > 0

}
and we shall assume that θ ∈ Θ with some assumptions for Θ:

Assumption 3.

Θ ⊂
{

(p, α, β) ∈
(

0,
1

2

)
× S1 × S1, α 6= β (mod π, 2π/3)

}
where α 6= β (mod 2π/3, π) means β − α /∈ {− 2π

3 , 0,
2π
3 , π}+ 2πZ, or

Assumption 4.

Θ ⊂
{

(p, α, β) ∈
(

0,
1

2

)
× [0, π)× [0, π), α 6= β (mod 2π/3)

}
Note that Assumption 4 implies Assumption 3, and Assumption 2 implies

Assumption 1. We can write the following result.

Corollary 2. Under Assumptions 1 and 4, or under Assumptions 2 and 3,
model (1) is identifiable. Under Assumptions 1 and 3, model (1) is identifiable
modulo π, that is to say that if pfα + (1− p)fβ = p′f ′α′ + (1− p′)f ′β′ then p′ = p
and either (α′, β′)=(α, β) and f ′ = f , or (α′, β′) = (α+ π, β + π) and f ′ = fπ.

Moreover, the proof of Theorem 1 provides the following statement.

Lemma 3. Under Assumption 3, denoting M l(θ) := pe−iαl + (1− p)e−iβl, for
all θ, θ′ ∈ Θ,

∀1 ≤ l ≤ 4, =
(
M l(θ′)M l(θ)

)
= 0⇔ θ′ = θ or θ′=θ + π.

where θ′=θ + π means (p′, α′, β′) = (p, α+ π, β + π).

3. Estimation for the parametric part

Now, let us denote for all l ∈ Z

M l(θ) := pe−iαl + (1− p)e−iβl.

In model (1) the Fourier coefficients of g satisfy for any l:

g?l = (p0e
−iα0l + (1− p0)e−iβ0l)f?l.
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Thus g?l = M l(θ0)f?l and the previous lemma gives that θ = θ0 (or θ0 + π)
if and only if, for each l ∈ {1, . . . , 4},

=
(
M l(θ0)M l(θ)

)
= 0⇔ =

(
g?lM l(θ)

)
= 0

using that f?l are non-zero real numbers. This invites us to consider

S(θ) :=

4∑
l=−4

(
=
(
g?lM l(θ)

))2

=

4∑
l=−4

(
=
(
g?l{peiαl + (1− p)eiβl}

))2
.

Note that g?0M0(θ) = 1/(2π) and that =
(
g?(−l)M−l(θ)

)
= =

(
g?lM l(θ)

)
=

−=
(
g?lM l(θ)

)
so that we can also write

S(θ) = 2

4∑
l=1

(
=
(
g?lM l(θ)

))2

.

The empirical counterpart of S(θ) is

S̃n(θ) =

4∑
l=−4

(
=
(
ĝ?lM l(θ)

))2

=

4∑
l=−4

(
=

(
1

2πn

n∑
k=1

e−ilXkM l(θ)

))2

=
1

4π2n2

4∑
l=−4

∑
1≤k,j≤n

=
(
eilXkM l(θ)

)
=
(
eilXjM l(θ)

)
.

Next, we consider a slightly modified version of S̃n(θ) by removing the diagonal
terms

Sn(θ) =
1

4π2n(n− 1)

4∑
l=−4

∑
1≤k 6=j≤n

=
(
eilXkM l(θ)

)
=
(
eilXjM l(θ)

)
. (3)

Let us denote

Zlk(θ) := =
(
eilXk

2π
M l(θ)

)
and J l(θ) := =

(
g?lM l(θ)

)
.

Hence

Sn(θ) =
1

n(n− 1)

4∑
l=−4

∑
1≤k 6=j≤n

Zlk(θ)Zlj(θ).

Note that we have E(Zlk(θ)) = J l(θ), and Sn(θ) is an unbiased estimator of
S(θ).
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Let the estimator of θ0 be

θ̂n = argmin θ∈Θ Sn(θ). (4)

For this estimator we can prove the following consistency result.

Theorem 4. Consider Θ a compact set included in{
(p, α, β) ∈ (0, 1/2)× S1 × S1, α 6= β (mod 2π/3, π)

}
and the estimator θ̂n = argmin θ∈Θ Sn(θ). We have θ̂n → θ0 (mod π) in proba-
bility.

The last convergence means that for all ε > 0, the probability P(‖θ̂n − θ0‖ ≤
ε or ‖θ̂n − θ0 − π‖ ≤ ε) tends to 1 when n goes to +∞, where ‖.‖ denotes the
Euclidean norm.

Proof. Θ is a compact set and S is continuous. Lemma 12 ensures that Sn is
Lipschitz hence uniformly continuous, and Proposition 13 ensures that for all θ,
|Sn(θ)−S(θ)| tends to 0 in probability. Then it is sufficient to apply a classical
Lemma to conclude. See the details in Section 6.2

From now on, we assume that Θ is a compact set included in
(
0, 1

2

)
× [0, π)×

[0, π), as in Assumption 4. Then, θ0 + π is excluded and under Assumption 4,

θ̂n → θ0 in probability. Moreover this estimator is asymptotically normal. We
denote φ̇(θ) the gradient of any function φ with respect to θ = (p, α, β), φ̈(θ)
the Hessian matrix and for any matrix A, we denote A> its transpose.

Theorem 5. Consider Θ a compact set included in

{(p, α, β) ∈ (0, 1/2)× [0, π)× [0, π), α 6= β (mod 2π/3)}

and the estimator θ̂n = argmin θ∈Θ Sn(θ). Let A be the Hessian matrix of S in

θ0: A = S̈(θ0) = 2
∑4
l=−4 J̇

l(θ0)J̇ l(θ0)>. Then, if A is invertible,

√
n(θ̂n − θ0)

d−→ N (0,Σ),

where Σ = A−1VA−1, V = 4E(UU>) and U =
∑4
l=−4 J̇

l(θ0)Zl1(θ0).

The proof can be found in Section 6.3. Note that A can be estimated by
S̈(θ̂n) and V by

4

n3

∑
1≤k,j,j′≤n

∑
−4≤l,l′≤4

Zlk(θ̂n)Zl
′

k (θ̂n)Żlj(θ̂n)(Żl
′

j′(θ̂n))>

(see details in Section 6.4). Thus we can estimate the covariance matrix Σ and
deduce an asymptotic confidence region.
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4. Nonparametric part

Let us now estimate the nonparametric part. We shall use the following norm:

for any function φ, we denote ‖φ‖2 =
(

1
2π

∫
S1 φ

2(x)dx
)1/2

. Recall that for all

l ∈ Z, g?l = M l(θ0)f?l where g is the density of the observations Xk and g?l

its Fourier coefficient. Then f?l = g?l/M l(θ0). We can verify that M l(θ0) 6= 0.
Indeed, for any θ ∈ Θ,

|M l(θ)|2 = p2 + (1− p)2 + 2p(1− p) cos[l(β − α)] ≥ (1− 2p)2 > 0.

Nevertheless this division by M l(θ0) lead us to impose a new assumption. We
assume that there exists P ∈ (0, 1/2) such that 0 < p < P for any p, ie.

Assumption 5. Θ is a compact set included in

{(p, α, β) ∈ (0, P )× [0, π)× [0, π), α 6= β (mod 2π/3)}

Under this assumption, |M l(θ)| is always bounded from below by 1 − 2P .
Now, to estimate g?l =

∫
S1 e
−ilxg(x)dx/(2π), it is natural to define

ĝ?l =
1

2πn

n∑
k=1

e−ilXk .

If θ̂ = θ̂n is the previous estimator of the parametric part, we set the plugin
estimator of the Fourier coefficient:

f̂?l =
1

2πn

n∑
k=1

M l(θ̂)−1e−ilXk .

Finally, for L an integer, set

f̂L(x) =

L∑
l=−L

f̂?leilx.

To measure the performance of this estimator, we use Parseval equality to
write

‖f − f̂L‖22 =
∑
|l|>L

|f?l|2 +

L∑
l=−L

|f?l − f̂?l|2

which is the classical bias variance decomposition. Moreover it is possible to

prove that the variance term satisfy
∑L
l=−L E|f?l−f̂?l|2 = O( 2L+1

n ) (see Lemma 17
below). To control the bias term we recall the definition of the Sobolev ellipsoid:

W (s,R) = {f : S1 → R,
∑
l∈Z

(1 + l2)s|f?l|2 ≤ R2}.
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For such a smooth f , the risk of estimator f̂L is then bounded in the following
way:

E‖f − f̂L‖22 ≤ R2
(
1 + L2

)−s
+ C

2L+ 1

n
.

It is clear that an optimal value for L is of order n1/(2s+1) but this value is
unknown. We rather choose a data-driven method to select L. We introduce a
classical minimization of a penalized empirical risk. Set

L̂ = argmin
L∈L

{
−

L∑
l=−L

|f̂?l|2 + λ
2L+ 1

n

}
(5)

where L is a finite set of resolution level, and λ a constant to be specified later.
The next theorem states an oracle inequality which highlights the bias variance
decomposition of the quadratic risk and justifies our estimation procedure.

Theorem 6. Assume Assumption 5 and Assumption 1. Assume that f belongs
to the Sobolev ellipsoid W (s,R) with s > 1/2. Let L = {0, 1, . . . , b(n − 1)/2c}
and ε > 0. If the penalty constant verifies λ > (1 + ε−1)(1− 2P )−2 then,

E‖f̂L̂ − f‖
2
2 ≤ (1 + 2ε)Emin

L∈L

{
‖f̂L − f‖22 + 2λ

2L+ 1

n

}
+
C

n

where C is a positive constant depending on ε, ‖f‖2, P, θ0, R, s. Moreover

E‖f̂L̂ − f‖
2
2 = O

(
n−2s/(2s+1)

)
.

In consequence our estimator has a quadratic risk in n−2s/(2s+1) which is
known to be the optimal rate of convergence for estimating a density with
smoothness s (see for instance Tsybakov (2009)).

Remark 1. The proof of the oracle inequality stated in Theorem 6 works for
any L ⊂ N with ]L not larger than a power of n and max(L) → ∞. The rate
of convergence is obtained if L contains cn1/(2s+1). Note that the penalty only
depends on P which is some safety margin around 1/2, that can be chosen by
the statistician. For the practical choice of the penalty, see Section 5.

Eventually, note that some densities may be supersmooth, in the following
sense: ∑

l∈Z
exp(2b|l|r)|f?l|2 ≤ R2.

In this case, the quadratic bias is bounded by R2 exp(−2bLr) which gives the
following fast rate of convergence:

E‖f̂L̂ − f‖
2
2 = O

(
(log n)1/r

n

)
.
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5. Numerical results

All computations are performed with Matlab software and the Optimization
Toolbox.

We shall implement our statistical procedure to both estimate the parameter
θ0 and the density f . We consider three popular circular densities, namely the
von Mises density, the wrapped Cauchy and the wrapped normal densities. We
remind their expression (see Ley and Verdebout (2017)). The von Mises density
is given by:

fVM (x) =
1

2πI0(κ)
eκ cos(x−µ),

with κ ≥ 0, I0(κ) the modified Bessel function of the first kind and of order 0.
The wrapped Cauchy distribution has density:

fWC(x) =
1

2π

1− γ2

1 + γ2 − 2γ cos(x− µ)
,

with 0 ≤ γ ≤ 1. The wrapped normal density expression is:

fWN (x) =
1

σ
√

2π

∞∑
k=−∞

e−
(x−µ+2kπ)2

2σ2 ,

σ > 0. For more clarity, we set σ2 =: −2 log(ρ). Hence, we have 0 ≤ ρ ≤ 1.
All these densities are characterized by a concentration parameter κ, γ or

ρ and a location parameter µ. Remind that values κ = 0, γ = 0 and ρ = 0
correspond to the uniform density on the circle. To meet symmetry assumptions
of Theorem 1, we consider in the sequel that the location parameter is set to
µ = 0.

First, let us focus on the parametric part. We set θ0 = (p0, α0, β0) = ( 1
4 ,

π
8 ,

2π
3 ).

Obtaining the estimate θ̂n of θ0 (see (4)) requires to solve a nonlinear minimiza-
tion problem. To this end, we resort to the function fmincon of the Matlab
Optimization toolbox. The function fmincon finds a constrained minimum of a
function of several variables. Two parameters are to be specified: the domain
over which the minimum is searched and an initial value. We consider the do-
main {(0, 1

2 ) × [0, π) × [0, π)}. For more stability and to avoid possible local
minimums, we perform the procedure over 10 initials values uniformly drawn
on {(0, 1

2 )× [0, π)× [0, π)}. The final estimator θ̂n corresponds to the minimum
value of the empirical contrast Sn(θ) given in (3) over the 10 trials.

Table 1 gathers mean squared errors for our estimation procedure. When
analyzing Table 1, one clearly sees that increasing the number of observations
improves noticeably the performances. As expected, von Mises densities with
smaller concentration parameter are more difficult to estimate. Nonetheless, the
overall performances are satisfying. Table 2 displays the performances of the
method-of-moments estimation procedure developed by Spurr and Koutbeiy
(1991) to handle the problem of estimating the parameters in mixtures of von
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Mises distributions. To fairly compare the two methods, Table 3 gives the Spurr
and Koutbeiy (1991) performances but this time when estimating on the same
domain than ours e.g {(0, 1

2 ) × [0, π) × [0, π)}. At closer inspection, the Spurr
and Koutbeiy (1991) method seems to behave better to estimate angles α0

and β0 while our method may appear more competitive for estimating p0. It
is worth noticing that the method by Spurr and Koutbeiy (1991) is completely
parametric and takes advantage of the knowledge of the distributions. In this
regard, our procedure which is semiparametric is competitive with a parametric
method.

Figure 2 illustrates the asymptotic normality of our estimator θ̂n stated in
Theorem 5.

density n = 100 n = 1000
p α β p α β

fVM , κ = 2 0.0121 0.6848 0.1131 0.0017 0.1919 0.0238
fVM , κ = 5 0.0030 0.0285 0.0049 1.4632e-04 0.0017 4.4861e-04
fVM , κ = 7 0.0033 0.0133 0.0031 1.6721e-04 0.0013 3.0102e-04
fWC , ρ = 0.8 0.0029 0.0124 0.0024 2.0788e-04 8.5435e-04 1.8942e-04
fWN , ρ = 0.8 0.0077 0.1679 0.0457 0.0020 0.0238 0.0037

Table 1
Mean squarred errors for estimating parameter θ0 over 50 Monte Carlo replications.

density n = 100 n = 1000
p α β p α β

fVM , κ = 2 0.0938 0.4212 0.1171 0.0116 0.0685 0.0062
fVM , κ = 5 0.0031 0.0360 0.0049 2.9965e-04 0.0025 6.6273e-04
fVM , κ = 7 0.0031 0.0084 0.0029 2.4553e-04 0.0014 3.5541e-04

Table 2
Spurr and Koutbeiy procedure: mean squared errors for estimating parameter θ0 over 50

Monte Carlo replications on {(0, 1)× [0, 2π)× [0, 2π)}

density n = 100 n = 1000
p α β p α β

fVM , κ = 2 0.0231 0.2117 0.0351 0.0112 0.0635 0.0081
fVM , κ = 5 0.0032 0.0409 0.0042 4.1489e-04 0.0022 6.3122e-04
fVM , κ = 7 0.0026 0.0094 0.0029 2.3197e-04 0.0010 2.8350e-04

Table 3
Spurr and Koutbeiy procedure: mean squared errors for estimating parameter θ0 over 50

Monte Carlo replications on {(0, 1
2

)× [0, π)× [0, π)}

Now, let us turn to the nonparametric estimation part namely the estimation
of the density f . The estimator of f is given by f̂L̂ (see Theorem 6). It requires

the computation of a data-driven resolution level choice L̂ (given in (5)) which
implies a tuning parameter λ. To select the proper λ, we follow the data-driven
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α β

p

Fig 2. Histograms of the centered and standardized statistics θ̂n for the von Mises density
fVM with κ = 5, n = 1000 observations and 100 Monte Carlo replications

slope estimation approach due to Birgé and Massart (see Birgé and Massart
(2001) and Birgé and Massart (2007)). An overview in practice is presented in
Baudry, Maugis and Michel (2012). To implement the slope heuristics method,

one has to plot for L = 0 to Lmax the couples of points ( 2L+1
n ,

∑L
l=−L |f̂?l|2).

For L ≥ L0, one should observe a linear behaviour (see Figure 3). Then, once
the slope is estimated, say a, by a linear regression method, one eventually takes
λ̂ = 2a and the final resolution level is:

L̂ = argmin
L∈L

{
−

L∑
l=−L

|f̂?l|2 + λ̂
2L+ 1

n

}
.

Finally, Figure 4 shows reconstructions of the density f and the mixture
density g as well. The estimates are good.

Remark 2. Note that for the two exceptional cases, when p0 = 0 or f is the
uniform density, our procedure performs well. Indeed, if p0 = 0, our method
yields that α = β and retrieves that there is only one component in the mixture.
When f is the uniform density, our algorithm selects L̂ = 0 which yields the
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Fig 3. For the wrapped Cauchy density fWC with γ = 0.8 and n = 1000: plot of couples

( 2L+1
n

,
∑L
l=−L |f̂?l|2) for L = {1, . . . , 50}.

uniform distribution.

6. Proofs

6.1. Proof of Theorem 1 (identifiability)

Denote
M l(θ) := pe−iαl + (1− p)e−iβl.

Suppose pf(x−α) + (1−p)f(x−β) = p′f ′(x−α′) + (1−p′)f ′(x−β′). The cal-
culation of the Fourier coefficients gives, for all l ∈ Z, f?lM l(θ) = (f ′)?lM l(θ′)
which implies

f?l|M l(θ)|2 = (f ′)?lM l(θ′)M l(θ).

Then, our assumptions on f and f ′ entail

M l(θ′)M l(θ) is real ∀l ∈ {1, 2, 3, 4}.

Let us now study the consequence of this fact. Denote

γ1 = α′ − β, γ2 = α′ − α, γ3 = β′ − β, γ4 = β′ − α

the 4 angles. Denote also the associated weights in (0, 1):

λ1 = p′(1− p), λ2 = p′p, λ3 = (1− p′)(1− p), λ4 = p(1− p′).

With this notation

M l(θ′)M l(θ) = λ1e
−iγ1l + λ2e

−iγ2l + λ3e
−iγ3l + λ4e

−iγ4l.
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Fig 4. Estimation of the density f and the mixture density g for n = 1000. In red, the
density, in dotted lines its estimate. From top to bottom: the von Mises density with κ = 5,
the wrapped Cauchy with γ = 0.8 and the wrapped normal density with ρ = 0.8.

Then M l(θ′)M l(θ) is real if and only if
∑4
k=1 λk sin(lγk) = 0 and we have to

solve the equations

∀l = 1, 2, 3, 4,

4∑
k=1

λk sin(lγk) = 0. (6)

This system of equations is studied in Lemmas 7 and 8 below.
Let us now reason with the representatives of the γk in (−π, π]. Lemma 8

says that the possible values for the γk’s are 0, π, γ,−γ, for some γ ∈ (0, π).
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Note that here

γ1 − γ2 = γ3 − γ4 = α− β 6= 0 and γ1 − γ3 = γ2 − γ4 = α′ − β′ 6= 0 (7)

and then the γk’s take at least 2 different values: either 4 different values; or
γ2 = γ3 and the other distinct; or γ1 = γ4 and the other distinct; or γ2 = γ3

and γ1 = γ4.
• Let us first study the case where all the γk’s are distinct. There are 4!=24

ways of having (γi1 , γi2 , γi3 , γi4) = (−γ, 0, γ, π). But 16 combinations lead to
p = 1/2 or p′ = 1/2. For example, if (γ1, γ2, γ3, γ4) = (−γ, 0, γ, π) then (6)
becomes

λ1 sin(−lγ) + λ2 sin(0) + λ3 sin(lγ) + λ4 sin(lπ) = 0.

Thus λ1 = λ3, which gives p′ = 1/2. In the same way, there are 4 possibilities
giving λ1 = λ3, 4 possibilities giving λ1 = λ2, 4 possibilities giving λ2 = λ4, 4
possibilities giving λ3 = λ4. All of this is impossible, since p, p′ ∈ (0, 1)\{1/2}.
In addition, in the 4 cases where γ1 = −γ4, we obtain via (7) γ3 = −γ2 which
is impossible if {γ2, γ3} = {0, π}. Idem if γ2 = −γ3 and {γ1, γ4} = {0, π}. Thus
it is finally impossible that all the γk’s are distinct.
• Let us now study the case where the γk’s take 3 distinct values (γ2 = γ3

or γ1 = γ4) and belong to {0, π, γ} or {0, π,−γ}. In the case where γ2 = γ3,
coming back to equation (6), we understand that all the rearrangements lead
to λ4 = 0 or λ1 = 0 or λ2 + λ3 = 0, which is impossible. In the same way,
if γ1 = γ4, equation (6) leads to λ2 = 0 or λ3 = 0 or λ1 + λ4 = 0, which is
impossible.
• The next case is when the γk’s take 3 distinct values and belong to {0, γ,−γ}

or {π, γ,−γ}. If γ2 = γ3, we can then list the 6 cases:

γ1 γ2 = γ3 γ4 consequence
−γ 0/π γ p = p′, α′ − α = β′ − β = 0 (mod π)
γ 0/π −γ p = p′, α′ − α = β′ − β = 0 (mod π)
−γ γ 0/π λ1 = λ2 + λ3

γ −γ 0/π λ1 = λ2 + λ3

0/π γ −γ λ4 = λ2 + λ3

0/π −γ γ λ4 = λ2 + λ3

Note that λ1 = λ2 + λ3 ⇔ p′(2− 3p) = 1− p, which is possible only if p < 1/2
and p′ > 1/2 (recall that we suppose p < 1/2 and p′ < 1/2). In the same way
λ4 = λ2 + λ3 ⇔ p′(1 − 3p) = 1 − 2p, which is possible only if p > 1/2 and
p′ < 1/2.
Finally, if γ1 = γ4, we have the 6 last cases:

γ2 γ1 = γ4 γ3 consequence
−γ 0/π γ p′ = 1− p
γ 0/π −γ p′ = 1− p,
−γ γ 0/π p′ = p

3p−1

γ −γ 0/π p′ = p
3p−1

0/π γ −γ p′ = 1−2p
2−3p , β − α = ±2π/3

0/π −γ γ p′ = 1−2p
2−3p , β − α = ±2π/3
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Note that the 4 first lines of this table are impossible since p, p′ ∈ (0, 1/2) and
p′ = p/(3p− 1) /∈ (0, 1) if 0 < p < 1/2. Let us detail the lines 5 and 6. In these
cases, λ1 + λ4 − λ3 = 0 which provides p′ = (1 − 2p)/(3 − 2p). Moreover (7)
implies that 3γ1 = γ2 = 0 (mod π) and 2γ1 = β − α = α′ − β′. According to
the values of γ1 and γ2, there are 4 possibilities
� β − α = 2π/3 and (α′, β′) = (α, β + 2π/3),
� β − α = 2π/3 and (α′, β′) = (α+ π, β − π/3)
� β − α = −2π/3 and (α′, β′) = (α, β − 2π/3)
� β − α = −2π/3 and (α′, β′) = (α+ π, β + π/3)
• The last case occurs when the γk’s take 2 distinct values. If the γk’s take

exactly 2 different values, using (7), necessarily

γ1 = γ4 and γ2 = γ3 (mod 2π)⇒ 0 = γ1−γ4 +γ3−γ2 = 2(α−β) (mod 2π)

which is possible only if α−β = π (mod 2π) (recall that α−β is always assumed
6= 0). And in the same way α′ − β′ = π (mod 2π). Then γ1 − γ2 = α − β = π
(mod 2π). Thus the two different values of the γk’s are at a distant of π.

The first possibility is that these two values are 0 and π, which corresponds
to the first case of Lemma 8. There are two subcases: 1a. (γ1, γ2, γ3, γ4) =
(π, 0, 0, π) or 1b. (γ1, γ2, γ3, γ4) = (0, π, π, 0). In the subcase 1a. (α′, β′) = (α, β).
Equations {

pf + (1− p)fπ = p′f ′ + (1− p′)f ′π
pfπ + (1− p)f = p′f ′π + (1− p′)f ′

entails that f ′ is a linear combination of f and fπ. In the subcase 1b. (α′, β′) =
(α+ π, β + π) = (β, α).

The second possibility is that the two distinct values γ1 = γ4 and γ2 = γ3

are not multiples of π, which corresponds to the fourth case of Lemma 8. Then
(γ1, γ2, γ3, γ4) = (γ1,−γ1,−γ1, γ1) and

γ1 − (−γ1) = γ1 − γ2 = π (mod 2π)

which entails γ1 = π/2 (mod π). Equation (6) becomes

(λ1 − λ2 − λ3 + λ4) sin(lπ/2) = 0

so that λ1 + λ4 = λ2 + λ3, which gives

p′(1− p) + p(1− p′) = p′p+ (1− p′)(1− p)⇒ p′ + p− 2pp′ = 1/2⇒ p′ = 1/2

which is impossible.
• Let us recap the only possible cases that we have obtained:
. p = p′, α′ − α = β′ − β = 0 (mod π),
. p′ = 1−2p

2−3p , β − α = ±2π/3, with the four possibilities described above,

. β − α = π, (α′, β′) = (α, β) or (α′, β′) = (β, α).
This completes the proof of the theorem.
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Lemma 7. Let γ1, . . . , γ4 be four reals. Let A be the matrix (sin(iγj))1≤i,j≤4.
Then

detA = 64

4∏
k=1

sin(γk)
∏

1≤i<j≤4

(cos(γi)− cos(γj)).

Proof. From matrix A, doing line modification L3 ← L3 − L1, and L4 ←
L4 − L2, we obtain (recall that sin(2p) = 2 sin(p) cos(p) and sin(p) − sin(q) =
2 sin(p−q2 ) cos(p+q2 ))

detA =

∣∣∣∣∣∣∣∣
sin(γ1) sin(γ2) sin(γ3) sin(γ4)

2 sin(γ1) cos(γ1) 2 sin(γ2) cos(γ2) 2 sin(γ3) cos(γ3) 2 sin(γ4) cos(γ4)
2 sin(γ1) cos(2γ1) 2 sin(γ2) cos(2γ2) 2 sin(γ3) cos(2γ3) 2 sin(γ4) cos(2γ4)
2 sin(γ1) cos(3γ1) 2 sin(γ2) cos(3γ2) 2 sin(γ3) cos(3γ3) 2 sin(γ4) cos(3γ4)

∣∣∣∣∣∣∣∣ .
Using 4-linearity of the determinant:

detA = 8

 4∏
j=1

sin(γj)


∣∣∣∣∣∣∣∣

1 1 1 1
cos(γ1) cos(γ2) cos(γ3) cos(γ4)
cos(2γ1) cos(2γ2) cos(2γ3) cos(2γ4)
cos(3γ1) cos(3γ2) cos(3γ3) cos(3γ4)

∣∣∣∣∣∣∣∣ .
Now, denote xk = cos(γk) and remark that cos(iγk) = Ti(cos γk) = Ti(xk) where
Ti is the ith Chebyshev polynomial: T0 = 1, T1 = X,T2 = 2X2 − 1, T3 = 4X3 −
3X. We have T2 + T0 = 2X2 and T3 + 3T1 = 4X3. Then, doing L3 ← L3 + L1,
and L4 ← L4 + 3L2:

detA = 8

 4∏
j=1

sin(γj)


∣∣∣∣∣∣∣∣

1 1 1 1
x1 x2 x3 x4

2x2
1 2x2

2 2x2
3 2x2

4

4x3
1 4x3

2 4x3
3 4x3

4

∣∣∣∣∣∣∣∣ = 64

 4∏
j=1

sin(γj)


∣∣∣∣∣∣∣∣

1 1 1 1
x1 x2 x3 x4

x2
1 x2

2 x2
3 x2

4

x3
1 x3

2 x3
3 x3

4

∣∣∣∣∣∣∣∣
This is a Vandermonde matrix, hence

detA = 64

 4∏
j=1

sin(γj)

 ∏
1≤i<j≤4

(xi−xj) = 64

4∏
k=1

sin(γk)
∏

1≤i<j≤4

(cos(γi)−cos(γj)).

Lemma 8. Let γ1, . . . , γ4 be four reals. Let λ1, . . . , λ4 ∈ R\{0} such that

4∑
k=1

λk sin(lγk) = 0, l = 1, . . . , 4. (8)

Then, one of the following cases holds:

1. All γk are multiples of π.
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2. Exactly two γk are multiples of π: γi1 = γi2 = 0 (mod π) and γi3 = ±γi4
(mod 2π).

3. Only one γk is multiple of π: γi1 = 0 (mod π) and γi2 = ±γi3 = ±γi4
(mod 2π).

4. No γk is multiple of π and γ1 = ±γ2 = ±γ3 = ±γ4 (mod 2π).

Proof. First observe that, since
∑4
k=1 λk sin(lγk) = 0 with λ 6= 0R4 , necessarily

det(A)=0 where A = (sin(iγj))1≤i,j≤4. Using Lemma 7

4∏
k=1

sin(γk)
∏

1≤i<j≤4

(cos(γi)− cos(γj)) = 0. (9)

Now, let us study the various cases that make this quantity vanish.

For the first case, note that if three γk are multiples of π: γi1 = γi2 = γi3 = 0
(mod π) then equation (8) becomes λi4 sin(lγi4) = 0 and the last angle is also
null modulo π.

In case 2., equation (8) entails

λi3 sin(lγi3) + λi4 sin(lγi4) = 0, l = 1, 2

with γi3 6= 0 (mod π), γi4 6= 0 (mod π). Then, since (λi3 , λi4) 6= (0, 0),

0 =

∣∣∣∣ sin(γi3) sin(γi4)
sin(2γi3) sin(2γi4)

∣∣∣∣ = 2 sin(γi3) sin(γi4)(cos(γi4)− cos(γi3)).

Then cos(γi3) = cos(γi4). Either γi3 = γi4 (mod 2π), or γi3 = −γi4 (mod 2π).

Let us now study case 3. For the sake of simplicity we assume that γ4 = 0
(mod π) and γk 6= 0 (mod π) for k = 1, 2, 3. Equation (8) gives

λ1 sin(lγ1) + λ2 sin(lγ2) + λ3 sin(lγ3) = 0, l = 1, 2, 3.

With the same proof as Lemma 7, we obtain

3∏
k=1

sin(γk)
∏

1≤i<j≤3

(cos(γi)− cos(γj)) = 0.

Then γ1 = ±γ2 (mod 2π) or γ1 = ±γ3 (mod 2π) or γ2 = ±γ3 (mod 2π). More-
over, if, for example, γ1 = ±γ2 (mod 2π) then

(λ1 ± λ2) sin(lγ1) + λ3 sin(lγ3) = 0, l = 1, 2

We are reduced to the previous case, then γ1 = ±γ3 (mod 2π).
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In the case 4., equation (9) becomes
∏

1≤i<j≤4(cos(γi)− cos(γj)) = 0, which
provides 6 possible equalities. Assume, for example, cos(γ1) − cos(γ2) = 0 and
consequently γ1 = ±γ2 (mod 2π). Then

(λ1 ± λ2) sin(lγ1) + λ3 sin(lγ3) + λ4 sin(lγ4) = 0, l = 1, 2, 3.

Reasoning as in previous case, γ1 = ±γ3 = ±γ4 (mod 2π).

6.2. Proof of Theorem 4 (consistency)

This proof and the following are inspired from Butucea and Vandekerkhove
(2014). Let us denote Θ̃ = (0, 1/2) × S1 × S1. Denote φ̇(θ) the gradient of any
function φ with respect to θ = (p, α, β), and φ̈(θ) the Hessian matrix.

The proof of Theorem 4 relies on some preliminary results, given in the sequel.

Proposition 9. Under Assumption 3 the contrast function S verifies the fol-
lowing properties: S(θ) ≥ 0, and S(θ) = 0 if and only if θ = θ0 or θ = θ0 + π.

Proof. It is clear that S(θ) ≥ 0 and that

S(θ0) =

4∑
l=−4

(
=
(
g?lM l(θ0)

))2

=

4∑
l=−4

(
=
(
f?l|M l(θ0)|2

))2
= 0.

By Lemma 3, if θ 6= θ0 (mod π), there exists l1 ∈ {1, . . . , 4} such that

=
(
M l1(θ0)M l1(θ)

)
6= 0 so that S(θ) ≥

(
=
(
g?l1M l1(θ)

))2

> 0.

Lemma 10. 1. For all θ in Θ̃, |M l(θ)| ≤ 1.
2. For all 1 ≤ k ≤ n, for all l in Z,

sup
θ∈Θ̃

|Zlk(θ)| ≤ 1

2π
, sup

θ∈Θ̃

|J l(θ)| ≤ 1

2π
.

3. For all 1 ≤ k ≤ n, for all l in Z,

sup
θ∈Θ̃

‖Żlk(θ)‖ ≤ 1 + |l|√
2π

, sup
θ∈Θ̃

‖J̇ l(θ)‖ ≤ 1 + |l|√
2π

.

where ‖.‖ is the Euclidean norm.
4. For all 1 ≤ k ≤ n, for all l in Z,

sup
θ∈Θ̃

‖Z̈lk(θ)‖F ≤
|l|+ l2

π
, sup

θ∈Θ̃

‖J̈ l(θ)‖F ≤
|l|+ l2

π
.

where ‖.‖F is the Frobenius norm.
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Proof. Point 1 is straightforward.

2. Let us start with Zlk(θ). We recall that Zlk(θ) = =
(
eilXk

2π M l(θ)
)
. Then

|Zlk(θ)| ≤ 1

2π
|M l(θ)| ≤ 1

2π
.

Furthermore

|J l(θ)| ≤ |g?l||M l(θ)| ≤ 1

2π

∫
S1
g ≤ 1

2π
.

3. We have

Żlk(θ) =
1

2π
=
(
eilXkṀ l(θ)

)
=

1

2π
=

eilXk
 e−ilα − e−ilβ

−ilpe−iαl
−il(1− p)e−iβl


and

J̇ l(θ) = =
(
g?lṀ l(θ)

)
= =

g?l
 e−ilα − e−ilβ

−ilpe−iαl
−il(1− p)e−iβl

 .

We get

‖Żlk(θ)‖ ≤ 1

2π

(
2 + p2l2 + (1− p)2l2

)1/2 ≤ 1 + |l|√
2π

and we have the same bound for ‖J̇ l(θ)‖.
4. We have

Z̈lk(θ) = =
(
eilXk

2π
M̈ l(θ)

)

= =

eilXk
2π

 0 −ile−ilα ile−ilβ

−ile−ilα −l2pe−ilα 0
ile−ilβ 0 −l2(1− p)e−iβl

 .

Thus

‖Z̈lk(θ)‖F ≤
1

2π

(
4l2 + l4p2 + l4(1− p)2

)1/2 ≤ |l|+ l2

π
.

We bound ‖J̈ l(θ)‖F in the same way. This ends the proof of the lemma.

Lemma 11. There exists a numerical positive constant C such that the follow-
ing inequalities hold.

1. For all 1 ≤ k ≤ n, for all l in Z

∀θ, θ′ ∈ Θ̃ ‖Żlk(θ)− Żlk(θ′)‖ ≤ C‖θ − θ′‖(1 + |l|+ l2).

2. We also have

‖Z̈lk(θ)− Z̈lk(θ′)‖F ≤ C‖θ − θ′‖(1 + |l|+ l2 + |l|3).

Proof. We use Taylor expansions at first order and then apply same bounding
techniques as in Lemma 10.
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Lemma 12. 1. The function S is Lipschitz continuous over Θ̃.
2. The function Sn(θ) is Lipschitz continuous over Θ̃.
3. The function S̈n(θ) is Lipschitz continuous over Θ̃ with respect to Frobe-

nius norm.

Proof. We will write C for a constant that may change from line to line but is
numerical.

Let us start with point 1. We recall that S(θ) =
∑
l J

l(θ)2. Let θ and θ′ in

Θ̃. As Θ̃ is a convex set, we get, thanks to the mean value theorem

|S(θ)− S(θ′)| =

∣∣∣∣∣
4∑

l=−4

J l(θ)2 − J l(θ′)2

∣∣∣∣∣ =

∣∣∣∣∣2(θ − θ′)>
4∑

l=−4

J l(θu)J̇ l(θu)

∣∣∣∣∣
≤ C‖θ − θ′‖

4∑
l=−4

(1 + |l|) ≤ C‖θ − θ′‖

with θu lying on the line connecting θ to θ′, and using Lemma 10.
Let us shift to point 2. Due to the mean value theorem, we have

|Sn(θ)− Sn(θ′)| =

∣∣∣∣∣∣ 1

n(n− 1)

∑
k 6=j

4∑
l=−4

(
Zlk(θ)Zlj(θ)− Zlk(θ′)Zlj(θ

′)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣ 1

n(n− 1)

∑
k 6=j

4∑
l=−4

(
(θ − θ′)>∇[Zlk(θ)Zlj(θ)]|θ=θu

)∣∣∣∣∣∣
=

∣∣∣∣∣∣2(θ − θ′)>

n(n− 1)

∑
k 6=j

4∑
l=−4

Żlk(θu)Zlj(θu)

∣∣∣∣∣∣ ,
with θu lying on the line connecting θ to θ′. Then using 1. and 2. of Lemma 10
we get

|Sn(θ)− Sn(θ′)| ≤ C‖θ − θ′‖
n(n− 1)

∑
k 6=j

4∑
l=−4

(1 + |l|) ≤ C‖θ − θ′‖

which ends the proof of the second point.
Concerning point 3. we have that

S̈n(θ) =
2

n(n− 1)

∑
k 6=j

4∑
l=4

(Z̈lk(θ)Zlj(θ) + Żlk(θ)Żlj(θ)
>).

Hence

‖S̈n(θ)− S̈n(θ′)‖F ≤ 2

n(n− 1)

∑
k 6=j

4∑
l=−4

(
‖(Z̈lk(θ)− Z̈lk(θ′))Zlj(θ)‖F

+‖Z̈lk(θ′)(Zlj(θ)− Zlj(θ′))‖F + ‖Żlk(θ′)(Żlj(θ)− Żlj(θ′)>)‖F

+‖(Żlk(θ′)− Żlk(θ))Żlj(θ)
>‖F

)
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Using Taylor expansions and Lemma 10 and 11, we get that

‖S̈n(θ)− S̈n(θ′)‖F ≤ C‖θ − θ′‖
4∑

l=−4

(1 + |l|+ l2 + |l|3).

Proposition 13. There exist a positive constant C such that

sup
θ∈Θ̃

E[(Sn(θ)− S(θ))2] ≤ C

n
.

Proof. The definitions of Sn and S provide

Sn(θ)− S(θ) =
1

n(n− 1)

4∑
l=−4

∑
k 6=j

(
Zlk(θ)Zlj(θ)− J l(θ)2

)
= Tn + Vn

where

Tn =
2

n(n− 1)

4∑
l=−4

∑
k<j

(Zlk(θ)− J l(θ))(Zlj(θ)− J l(θ))

and

Vn =
2

n

4∑
l=−4

n∑
k=1

(Zlk(θ)− J l(θ))J l(θ).

Note that E(Zlk(θ)− J l(θ)) = 0 which entails E[TnVn] = 0. Then

E
[
(Sn(θ)− S(θ))

2
]

= E
[
(Tn + Vn)

2
]

= E
[
T 2
n

]
+ E

[
V 2
n

]
.

Now, since the variables
(∑4

l=−4(Zlk(θ)− J l(θ))(Zlj(θ)− J l(θ))
)
k<j

are uncor-

related,

E[T 2
n ] =

2

n(n− 1)
E

( 4∑
l=−4

(Zl1(θ)− J l(θ))(Zl2(θ)− J l(θ))

)2


≤ 2

n(n− 1)
E

( 4∑
l=−4

2

2π
· 2

2π

)2
 ≤ C

2n

using Lemma 10. We focus now on Vn: in the same way

E[V 2
n ] =

4

n
E

( 4∑
l=−4

(Zl1(θ)− J l(θ))J l(θ)

)2


≤ 4

n
E

( 4∑
l=−4

2

2π
· 1

2π

)2
 ≤ C

2n
,

using Lemma 10 again.
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Theorem 4 is finally proved using the following lemma, its assumptions being
ensured by Proposition 9, Lemma 12 and Proposition 13.

Lemma 14. Assume that Θ is a compact set and let S : Θ→ R be a continuous
function. Assume that

S(θ) = min
Θ

S ⇔ θ = θ0 or θ = θ′0

where θ0, θ
′
0 ∈ Θ. Let Sn : Θ → R be a function which is uniformly continuous

and such that for all θ |Sn(θ)−S(θ)| tends to 0 in probability. Let θ̂n be a point

such that Sn(θ̂n) = infΘ Sn. Then θ̂n → θ0 or θ′0 in probability.

This is a classical result in the theory of minimum contrast estimators, when
θ0 = θ′0 (see van der Vaart (1998) or Dacunha-Castelle and Duflo (1986)). We
reproduce the proof since it is slightly adapted to the case of two argmins.

Proof. Let ε > 0 and B be the union of the open ball with center θ0 and radius
ε and the open ball with center θ′0 and radius ε. Since S is continuous and
Bc ⊂ Θ is a compact set, there exists θε ∈ Bc such that S(θε) = infBc S. Using
the assumption, since θε 6= θ0, and θε 6= θ′0

δ := S(θε)− S(θ0) > 0.

Since Sn is uniformly continuous, there exists α > 0 such that

∀θ, θ′ ‖θ − θ′‖ < α⇒ |Sn(θ)− Sn(θ′)| ≤ δ/2.

Moreover Bc is a compact set then there exists a finite set (θi) such that Bc ⊂
∪Ii=1B(θi, α). Denote ∆n := max0≤i≤I |Sn(θ) − S(θ)|. The assumption ensures
that ∆n tends to 0 in probability. Let θ ∈ Bc. There exists 1 ≤ i ≤ I such that
‖θ − θi‖ < α, and then |Sn(θ)− Sn(θi)| ≤ δ/2. Thus

Sn(θ)− Sn(θ0) = (Sn(θ)− Sn(θi)) + (Sn(θi)− S(θi))

+ (S(θi)− S(θ0)) + (S(θ0)− Sn(θ0))

≥ −δ/2−∆n + δ −∆n

using that S(θi)− S(θ0) ≥ S(θε)− S(θ0) = δ. Then

inf
θ∈Bc

Sn(θ)− Sn(θ0) ≥ δ/2− 2∆n.

Now, if ‖θ̂n − θ0‖ ≥ ε and ‖θ̂n − θ′0‖ ≥ ε then θ̂n ∈ Bc and

inf
θ∈Θ

Sn(θ) = Sn(θ̂n) = inf
θ∈Bc

Sn(θ).

In particular infθ∈Bc Sn(θ) ≤ Sn(θ0) so that

P(‖θ̂n − θ0‖ ≥ ε and ‖θ̂n − θ′0‖ ≥ ε) ≤ P(0 ≥ inf
θ∈Bc

Sn(θ)− Sn(θ0) ≥ δ/2− 2∆n)

≤ P(∆n ≥ δ/4) −→ 0

since ∆n tends to 0 in probability.
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6.3. Proof of Theorem 5 (asymptotic normality)

The Taylor’s theorem and the definition of θ̂n give

Ṡn(θ̂n) = Ṡn(θ0) + S̈n(θ∗n)(θ̂n − θ0) = 0,

where θ∗n lies in the line segment with extremities θ0 and θ̂n. Equivalently we
have,

S̈n(θ∗n)(θ̂n − θ0) = −Ṡn(θ0).

We recall that

Sn(θ0) =
1

n(n− 1)

∑
k 6=j

4∑
l=−4

Zlk(θ0)Zlj(θ0)

and

Ṡn(θ0) =
2

n(n− 1)

∑
k 6=j

4∑
l=−4

Żlk(θ0)Zlj(θ0)

and

S̈n(θ0) =
2

n(n− 1)

∑
k 6=j

4∑
l=−4

Z̈lk(θ0)Zlj(θ0) + Żlk(θ0)Żlj(θ0)>.

Step 1- Let us prove that

√
nṠn(θ0)

d−→ N (0, V ).

We remind by Lemma 3 that J l(θ0) = 0. Hence

E(Ṡn(θ0)) = 2

4∑
l=−4

J̇ l(θ0)J l(θ0) = 0.

We can break down Ṡn(θ0) in the following way:

Ṡn(θ0) =
2

n(n− 1)

∑
k 6=j

4∑
l=−4

(Żlk(θ0)− J̇ l(θ0) + J̇ l(θ0))Zlj(θ0)

=
4

n(n− 1)

∑
k<j

4∑
l=−4

(Żlk(θ0)− J̇ l(θ0))Zlj(θ0) +
2

n

n∑
j=1

4∑
l=−4

J̇ l(θ0)Zlj(θ0)

=: An +Bn.

Note that An and Bn are centered variables. Let us show that
√
nAn = oP (1).

Note that the variables Wjk :=
(∑4

l=−4(Żlk(θ0)− J̇ l(θ0))Zlj(θ0)
)
k<j

are cen-

tered and uncorrelated. Then

E(‖An‖2) = E


∥∥∥∥∥∥ 4

n(n− 1)

∑
k<j

Wjk

∥∥∥∥∥∥
2
 =

8

n(n− 1)
E‖W12‖2.
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Using Lemma 10, there exists C > 0 such that

‖W12‖ ≤
4∑

l=−4

2(1 + |l|)√
2π

1

2π
≤ C

so that E(‖
√
nAn‖2) ≤ 8C2/(n− 1). Finally, invoking Markov inequality we

have that
√
nAn = oP (1). We can write

√
nBn in the following way:

√
nBn =

2√
n

n∑
k=1

Uk(θ0),

where we set Uk(θ0) :=
∑4
l=−4 J̇

l(θ0)Zlk(θ0). Note that the Uk(θ0)’s are i.i.d and
centered. Invoking the central limit theorem, we have that

1√
n

n∑
k=1

Uk(θ0)
d−→ N (0, V/4),

where V/4 is the covariance matrix of U1(θ0), equal to E(U1(θ0)U1(θ0)>).

Step 2- Let us prove that S̈n(θ∗n)
P−→ A(θ0) whereA(θ0) = 2

∑4
l=−4 J̇

l(θ0)J̇ l(θ0)>.
We have

‖S̈n(θ∗n)−A(θ0)‖F ≤ ‖S̈n(θ∗n)−S̈n(θ0)‖F+‖S̈n(θ0)−ES̈n(θ0)‖F+‖ES̈n(θ0)−A(θ0)‖F .

We get due to the Lipschitz property of S̈n stated in Lemma 12 that

P
(
‖S̈n(θ0)− S̈n(θ∗n)‖F ≥ ε

)
≤ P (K‖θ∗n − θ0‖ ≥ ε)→ 0,

because θ̂n →P θ0. Furthermore, we have

E(S̈n(θ0)) = S̈(θ0) = 2

4∑
l=−4

(J̈ l(θ0) J l(θ0)︸ ︷︷ ︸
=0

+J̇ l(θ0)J̇ l(θ0)>)

= 2

4∑
l=−4

J̇ l(θ0)J̇ l(θ0)> = A(θ0).

Last, let us focus on the term ‖S̈n(θ0)− ES̈n(θ0)‖F . We remind that

S̈n(θ0)−ES̈n(θ0) =
2

n(n− 1)

∑
k 6=j

4∑
l=−4

(
Z̈lk(θ0)Zlj(θ0) + Żlk(θ0)Żlj(θ0)> − J̇ l(θ0)J̇ l(θ0)>

)
.

From now on, we drop indices l and θ0 to simplify the notation. We center the
variables in order to find uncorrelatedness:

Z̈kZj + ŻkŻ
>
j − J̇ J̇> =

(
Z̈k − J̈

)
Zj︸ ︷︷ ︸

A

+ J̈Zj︸︷︷︸
B

+ (Żk − J̇)(Żj − J̇)>︸ ︷︷ ︸
C

+ J̇(Żj − J̇)>︸ ︷︷ ︸
D

+ (Żk − J̇)(J̇)>︸ ︷︷ ︸
E
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(remind that E(Zj) = J l(θ0) = 0). Then S̈n(θ0)−ES̈n(θ0) = 2
∑4
l=−4(A+B +

C +D + E) where

A =
2

n(n− 1)

∑
k<j

(
Z̈k − J̈

)
Zj

B =
1

n

n∑
j=1

J̈Zj

C =
2

n(n− 1)

∑
k<j

(Żk − J̇)(Żj − J̇)>

D =
1

n

n∑
j=1

J̇(Żj − J̇)>

E =
1

n

n∑
k=1

(Żk − J̇)J̇> = D>

Using the weak law of large numbers for uncorrelated centered variables, we

obtain that ‖S̈n(θ0)− ES̈n(θ0)‖F
P→ 0 which completes the step 2.

Finally it is sufficient to apply Slutsky’s Lemma to obtain the theorem.

6.4. Estimation of the covariance

Proposition 15. Consider notation and assumptions of Theorem 5. Let V =
4E(U1U

>
1 ) where U1 =

∑4
l=−4 Z

l
1(θ0)J̇ l(θ0). Then

4

n3

∑
1≤k,j,j′≤n

∑
−4≤l,l′≤4

Zlk(θ̂n)Zl
′

k (θ̂n)Żlj(θ̂n)(Żl
′

j′(θ̂n))>.

tends almost surely toward V when n tends to +∞.

Thus we obtain a consistent estimator for V (that allows to estimate the
covariance Σ). Nevertheless this estimator is biased. Notice that the quantity

4

n(n− 1)(n− 2)

n∑
k=1

∑
j 6=k

∑
j′ /∈{k,j}

∑
−4≤l,l′≤4

Zlk(θ0)Zl
′

k (θ0)Żlj(θ0)(Żl
′

j′(θ0))>

has expectation

4
∑

−4≤l,l′≤4

E[Zl1(θ0)Zl
′

1 (θ0)]J̇ l(θ0)(J̇ l
′
(θ0))> = V

and we could also prove (with some additional technicalities in the following
proof about the uniform convergence in k) that it tends almost surely toward

V . However, we lose the ”unbiased” property when replacing θ0 by θ̂n.
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Proof of Proposition 15

Let Uk =
∑4
l=−4 Z

l
k(θ0)J̇ l(θ0). The law of large numbers give

V = E(4U1U
>
1 ) = lim

n→∞

4

n

n∑
k=1

UkU
>
k

where the convergence is almost sure. Moreover

UkU
>
k =

∑
−4≤l,l′≤4

ZlkZ
l′

k J̇
l(J̇ l

′
)> = lim

n→∞

1

n2

∑
−4≤l,l′≤4

ZlkZ
l′

k

∑
1≤j,j′≤n

Żlj(Ż
l′

j′)
>

where the convergence is almost sure and we have dropped the θ0 for the sake of
simplicity. This convergence is uniform in k in the following sense: there exists
a set with probability 1 for which for any ε > 0, there exists N ≥ 1 such that
for all n ≥ N and for all 1 ≤ k ≤ n∥∥∥∥∥∥ 1

n2

∑
−4≤l,l′≤4

ZlkZ
l′

k

∑
1≤j,j′≤n

Żlj(Ż
l′

j′)
> − UkU>k

∥∥∥∥∥∥ ≤ ε
Indeed ∥∥∥∥∥∥ 1

n2

∑
−4≤l,l′≤4

ZlkZ
l′

k

∑
1≤j,j′≤n

Żlj(Ż
l′

j′)
> − UkU>k

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

−4≤l,l′≤4

ZlkZ
l′

k

 1

n2

∑
1≤j,j′≤n

Żlj(Ż
l′

j′)
> − J̇ l(J̇ l

′
)>

∥∥∥∥∥∥
≤ 1

4π2

∑
−4≤l,l′≤4

∥∥∥∥∥∥
 1

n2

∑
1≤j,j′≤n

Żlj(Ż
l′

j′)
> − J̇ l(J̇ l

′
)>

∥∥∥∥∥∥ .
Then we use the following lemma: ”If vnk → vk uniformly, with (vnk) and (vk)
bounded, and if n−1

∑n
k=1 vk → v then n−1

∑n
k=1 vnk → v.” To prove this

lemma, notice that, for a given positive ε, for n large enough∣∣∣∣∣ 1n
n∑
k=1

vnk − v

∣∣∣∣∣ ≤ 1

n

N∑
k=1

|vnk − vk|+
1

n

n∑
k=N+1

|vnk − vk|+

∣∣∣∣∣ 1n
n∑
k=1

vk − v

∣∣∣∣∣
≤ N

n
(sup
kn
|vnk|+ sup

k
|vk|) +

n−N
n

ε+ ε ≤ 3ε.

That provides

V = lim
n→∞

4

n3

∑
1≤k,j,j′≤n

∑
−4≤l,l′≤4

ZlkZ
l′

k Ż
l
j(Ż

l′

j′)
>
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where the convergence is almost sure. Here all the Zk are depending on θ0, but
we can use the consistency of θ̂n to finally assert

V = lim
n→∞

4

n3

∑
1≤k,j,j′≤n

∑
−4≤l,l′≤4

Zlk(θ̂n)Zl
′

k (θ̂n)Żlj(θ̂n)(Żl
′

j′(θ̂n))>.

6.5. Proof of Theorem 6 (nonparametric estimation)

The proof of the oracle inequality is based on the two following lemmas. The
conclusion follows, choosing 2γ = ε/(1 + ε) and λ = γ−1κ(1− 2P )−2 = 2κ(1 +
ε−1)(1− 2P )−2, where κ ≥ 1/2 and P is defined in Assumption 5.

Lemma 16. Let λ > 0 and L be a finite set of resolution level and define

L̂ = argmin
L∈L

{
−

L∑
l=−L

|f̂?l|2 + λ
2L+ 1

n

}
.

Then, for all 0 < γ < 1/2,

(1− 2γ)‖f̂L̂ − f‖
2
2 ≤ min

L∈L

{
(1 + 2γ)‖f̂L − f‖22 + 2λ

2L+ 1

n

}
+

1

γ

∑
L∈L

(
sup
t∈BL

ν2
n(t)− λγ 2L+ 1

n

)

where BL = {t ∈ CZ,
∑
l∈Z |tl|2 = 1, tl = 0 if |l| > L} and νn(t) =

∑
l∈Z tl(f̂

?l−
f?l).

Proof. We recall that the dot product 〈f, g〉 means 1
2π

∫
f(x)g(x)dx and that

‖.‖2 is the associated norm. Usual Fourier analysis gives for any L:

‖f̂L − f‖22 = −‖f̂L‖22 + 2(‖f̂L‖22 − 〈f̂L, f〉) + ‖f‖22

= −
L∑

l=−L

|f̂?l|2 + 2

L∑
l=−L

f̂?l(f̂?l − f?l) + ‖f‖22

= −
L∑

l=−L

|f̂?l|2 + 2νn(f̂?L) + ‖f‖22

where we denote f̂?L the sequence in CZ such that (f̂?L)l = f̂?l if −L ≤ l ≤ L
and 0 otherwise.

Now let L be an arbitrary resolution level in L. Using the definition of L̂,

−
L̂∑

l=−L̂

|f̂?l|2 + λ
2L̂+ 1

n
≤ −

L∑
l=−L

|f̂?l|2 + λ
2L+ 1

n
.
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Thus

‖f̂L̂ − f‖
2
2 − 2νn(f̂?

L̂
) + λ

2L̂+ 1

n
≤ ‖f̂L − f‖22 − 2νn(f̂?L) + λ

2L+ 1

n

which leads to

‖f̂L̂ − f‖
2
2 ≤ ‖f̂L − f‖22 + 2νn(f̂?

L̂
− f̂?L)− λ2L̂+ 1

n
+ λ

2L+ 1

n
.

But, denoting ‖.‖` the natural norm of `2(CZ)

2νn(f̂?
L̂
− f̂?L) = 2νn

(
f̂?
L̂
− f̂?L

‖f̂?
L̂
− f̂?L‖`

)
‖f̂?
L̂
− f̂?L‖`

≤ γ‖f̂?
L̂
− f̂?L‖2` +

1

γ
ν2
n

(
f̂?
L̂
− f̂?L

‖f̂?
L̂
− f̂?L‖`

)

≤ 2γ(‖f̂L̂ − f‖
2
2 + ‖f − f̂L‖22) +

1

γ
sup

t∈BL∨L̂
ν2
n(t)

where L ∨ L̂ = max(L, L̂). Thus

‖f̂L̂ − f‖
2
2(1− 2γ) ≤ ‖f̂L − f‖22(1 + 2γ) +

1

γ
sup

t∈BL∨L̂
ν2
n(t)− λ2L̂+ 1

n
+ λ

2L+ 1

n

≤ ‖f̂L − f‖22(1 + 2γ) +
1

γ

(
sup

t∈BL∨L̂
ν2
n(t)− λγ 2L̂+ 2L+ 2

n

)
+ 2λ

2L+ 1

n

≤ ‖f̂L − f‖22(1 + 2γ) +
1

γ

(
sup

t∈BL∨L̂
ν2
n(t)− λγ 2(L ∨ L̂) + 1

n

)
+ 2λ

2L+ 1

n
.

Lemma 17. Assume Assumption 5 and Assumption 1. Assume that f belongs
to the Sobolev ellipsoid W (s,R) with s > 1/2. Assume that L = {0, . . . , Ln}
with Ln → ∞ such that the sequence (Lne

−c
√
n) is bounded for any c > 0.

Then, with the notation of Lemma 16, for all κ ≥ 1/2,∑
L∈L

E
(

sup
t∈BL

ν2
n(t)− κ

(1− 2P )2

2L+ 1

n

)
≤ C

n
,

where C is a positive constant depending on ‖f‖2, P, θ0, R, s.

Proof. Denote Rl = 1
M l(θ̂)

− 1
M l(θ0)

. First note that

νn(t) =
1

2πn

n∑
k=1

∑
l∈Z

tl

(
e−ilXk

M l(θ̂)
− 2πg?l

M l(θ0)

)
= νn,1(t) + νn,2(t) + νn,3(t)
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where

νn,1(t) =
1

2πn

n∑
k=1

∑
l∈Z

tl

(
e−ilXk − 2πg?l

M l(θ0)

)

νn,2(t) =
1

2πn

n∑
k=1

∑
l∈Z

tl
(
e−ilXk − 2πg?l

)
Rl

νn,3(t) =
1

n

n∑
k=1

∑
l∈Z

tlg
?lRl.

Thus, if κ/3 ≥ κ1 + κ2 + κ3,

E
(

sup
t∈BL

ν2
n(t)− κ

(1− 2P )2

2L+ 1

n

)
≤ 3E

(
sup
t∈BL

ν2
n,1(t)− κ1

(1− 2P )2

2L+ 1

n

)
+ 3E

(
sup
t∈BL

ν2
n,2(t)− κ2

(1− 2P )2

2L+ 1

n

)
+ 3E

(
sup
t∈BL

ν2
n,3(t)− κ3

(1− 2P )2

2L+ 1

n

)
.

Control of νn,2 Note that |Rl| ≤ 2/(1− 2P ), so for t ∈ BL,

ν2
n,2(t) ≤

(
2

1− 2P

L∑
l=−L

|tl(ĝ?l − g?l)|

)2

.

Then

E
(

sup
t∈BL

ν2
n,2(t)

)
≤
(

2

1− 2P

)2 L∑
l=−L

E
∣∣∣ĝ?l − g?l∣∣∣2 ≤ 1

π2(1− 2P )2

2L+ 1

n
.

Denoting κ2 = 1/π2, we obtain

E
(

sup
t∈BL

ν2
n,2(t)− κ2

(1− 2P )2

2L+ 1

n

)
≤ 0.

Control of νn,3 First note that

∣∣g?lRl∣∣ =

∣∣∣∣∣f?lM l(θ0)−M l(θ̂)

M l(θ̂)

∣∣∣∣∣ ≤ |f?l|
1− 2P

∣∣∣M l(θ0)−M l(θ̂)
∣∣∣ .

Thus, using Schwarz inequality

E
(

sup
t∈BL

ν2
n,3(t)

)
≤

L∑
l=−L

|f?l|2

(1− 2P )2
E
∣∣∣M l(θ0)−M l(θ̂)

∣∣∣2 .
Moreover

|M l(θ0)−M l(θ̂)| ≤
∣∣(p0 − p̂)e−iα0l + p̂(e−iα0l − e−iα̂l) + (1− p0 − 1 + p̂)e−iβ0l

+ (1− p̂)(e−iβ0l − e−iβ̂l)
∣∣∣

≤ |p0 − p̂|+ |e−iα0l − e−iα̂l|+ |p0 − p̂|+ |e−iβ0l − e−iβ̂l|
≤ 2|p0 − p̂|+ |l||α0 − α̂|+ |l||β0 − β̂| ≤ 2|l|‖θ0 − θ̂‖1
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(note that it is also true for l = 0 since M0(θ0) = M0(θ̂) = 1). According to the

Theorem 5, there exists a constant K(θ0) > 0 such that for all n, E(n‖θ̂−θ0‖21) ≤
K(θ0) and then E

∣∣∣M l(θ0)−M l(θ̂)
∣∣∣2 ≤ 4K(θ0)l2/n. Finally, for L ≥ 1,

E
(

sup
t∈BL

ν2
n,3(t)

)
≤ 4K(θ0)

(1− 2P )2n

L∑
l=−L

l2|f?l|2 =
4K(θ0)

(1− 2P )2n

L∑
l=−L
l6=0

|l|2−2s|l|2s|f?l|2

(and νn,3 = 0 on B0). Since in the sum |l|2−2s ≤ max(1, L2−2s) and f ∈W (s,R)

Ln∑
L=1

E
(

sup
t∈BL

ν2
n,3(t)− κ3

(1− 2P )2

2L+ 1

n

)

≤ 2

(1− 2P )2n

Ln∑
L=1

(
2K(θ0)R2 max(1, L2−2s)− κ3L

)
≤ 1

(1− 2P )2n

(
K ′(θ0, R

2, s) max(Ln, L
3−2s
n )− κ3L

2
n

)
≤ 1

(1− 2P )2n
K ′′(θ0, R

2, s, κ3)

for any κ3 > 0, since s > 1/2 and Ln = max(L)→∞.

Control of νn,1
To control νn,1 , we need Talagrand’s inequality.

Lemma 18. Let X1, . . . , Xn be i.i.d. random variables, and define νn(t) =
1
n

∑n
k=1 ψt(Xk)−E[ψt(Xk)], for t belonging to a countable class B of real-valued

measurable functions. Then, for δ > 0, there exist three constants cl, l = 1, 2, 3,
such that

E

[(
sup
t∈B

(νn (t))
2 − c(δ)H2

)
+

]
≤ c1

{
v

n
exp

(
−c2δ

nH2

v

)
(10)

+
M2

1

C2(δ)n2
exp

(
−c3C(δ)

√
δ
nH

M1

)}
,

with C(δ) = (
√

1 + δ − 1) ∧ 1, c(δ) = 2(1 + 2δ) and

sup
t∈B
‖ψt‖∞ ≤M1, E

[
sup
t∈B
|νn(ψt)|

]
≤ H, and sup

t∈B
Var (ψt (X1)) ≤ v.

Inequality (10) is a classical consequence of Talagrand’s inequality given in
Klein and Rio (2005): see for example Lemma 5 (page 812) in Lacour (2008). Us-
ing density arguments, we can apply it to the unit sphere of a finite dimensional
linear space.
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Here νn,1(t) = 1
n

∑n
k=1 ψt(Xk)− E[ψt(Xk)] with

ψt(X) =
1

2π

∑
l∈Z

tl
e−ilX

M l(θ0)
, E(ψt(X)) =

∑
l∈Z

tl
g?l

M l(θ0)

Let us compute M1, H and v.

• Using Cauchy Schwarz inequality, for t ∈ BL,

|ψt(u)|2 =

∣∣∣∣∣ 1

2π

L∑
l=−L

tl
e−ilu

M l(θ0)

∣∣∣∣∣
2

≤ 1

4π2

L∑
l=−L

|tl|2
L∑

l=−L

∣∣∣∣ e−iluM l(θ0)

∣∣∣∣2
≤ 1

4π2(1− 2p0)2
(2L+ 1),

thus M1 = 1
2π(1−2p0)

√
2L+ 1.

• Using Cauchy Schwarz inequality, for t ∈ BL,

sup
t∈BL

∣∣∣∣∣ 1

2πn

n∑
k=1

∑
l∈Z

tl

(
e−ilXk

M l(θ0)
− E

(
e−ilXk

M l(θ0)

))∣∣∣∣∣
2

≤
L∑

l=−L

∣∣∣∣∣ 1

2πn

n∑
k=1

(
e−ilXk

M l(θ0)
− E

(
e−ilXk

M l(θ0)

))∣∣∣∣∣
2

,

then

E
(

sup
t∈BL

|νn,1(ψt)|2
)
≤

L∑
l=−L

Var

(
1

2πn

n∑
k=1

e−ilXk

M l(θ0)

)
≤

L∑
l=−L

1

4π2n
Var

(
e−ilX1

M l(θ0)

)

≤ 1

4π2n

L∑
l=−L

E
∣∣∣∣ e−ilX1

M l(θ0)

∣∣∣∣2 ≤ 1

4π2(1− 2p0)2

2L+ 1

n
,

thus by Jensen’s inequality H2 = 1
4π2(1−2p0)2

2L+1
n .

• It remains to control the variance. If t ∈ BL

Var(ψt(X)) ≤ E

∣∣∣∣∣ 1

2π

L∑
l=−L

tl
e−ilX

M l(θ0)

∣∣∣∣∣
2

=
1

4π2

∑
l,l′

tltl′
E(e−ilXe−il′X)

M l(θ0)M l′(θ0)

=
1

2π

∑
l,l′

tltl′
g?(l−l

′)

M l(θ0)M l′(θ0)
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Using twice Schwarz inequality

Var(ψt(X)) ≤ 1

2π

√√√√∑
l

∣∣∣∣ tl
M l(θ0)

∣∣∣∣2∑
l

∣∣∣∣∣∑
l′

tl′

M l′(θ0)
g?(l−l′)

∣∣∣∣∣
2

≤ 1

2π(1− 2p0)

√√√√∑
l

∣∣∣∣∣∑
l′

tl′

M l′(θ0)
g?(l−l′)

∣∣∣∣∣
2

≤ 1

2π(1− 2p0)

√√√√∑
l

∑
l′

∣∣∣∣∣ tl′

M l′(θ0)

∣∣∣∣∣
2∑

l′

∣∣g?(l−l′)∣∣2
≤ 1

2π(1− 2p0)

√∑
l

1

|1− 2p0|2
∑
j∈Z
|g?j |2

≤ ‖f‖2
2π(1− 2p0)2

√
2L+ 1,

since
∑
j∈Z

∣∣g?j∣∣2 ≤∑j∈Z
∣∣f?j∣∣2 = ‖f‖22. Thus v = ‖f‖2

2π(1−2p0)2

√
2L+ 1.

Inequality (10) becomes

E

[(
sup
t∈BL

(νn,1 (t))
2 − c(δ)

4π2(1− 2p0)2

2L+ 1

n

)
+

]

≤ c1
{
‖f‖2

√
2L+ 1

2π(1− 2p0)2n
exp

(
−c2δ

√
2L+ 1

2π‖f‖2

)
+

2L+ 1

4π2(1− 2p0)2C2(δ)n2
exp

(
−c3C(δ)

√
δn
)}

≤ K

n

{√
2L+ 1 exp

(
−c
√

2L+ 1
)

+
2L+ 1

n
exp

(
−c
√
n
)}

with K and c positive constants depending on ‖f‖2, p0, c1, c2, c3, δ. This ends

the control of νn,1 with κ1 = c(δ)
4π2 since

∑
L∈L

{√
2L+ 1e−c

√
2L+1 +

2L+ 1

n
e−c
√
n

}
≤
∞∑
L=0

√
2L+ 1e−c

√
2L+1+]Le−c

√
n = O(1).

Finally it is sufficient to take

κ ≥ 3κ1 + 3κ2 + 3κ3 =
3(2 + 4δ)

4π2
+

3

π2
+ 3κ3 ≥ 0.46 +

3δ

π2
+ 3κ3

to obtain the oracle inequality. Since κ3 and δ can be chosen arbitrary small,
and we have assumed κ ≥ 1/2, this condition is satisfied.
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Let us derive the rate of convergence. Since νn(t) =
∑
l∈Z tl(f̂

?l − f?l),

L∑
l=−L

|f̂?l − f?l|2 = νn(f̂?L − f
?
L) ≤ sup

t∈BL
νn(t)‖f̂?L − f

?
L‖`

where we denote f?L the sequence in CZ such that (f?L)l = f?l if −L ≤ l ≤ L and

0 otherwise. Hence ‖f̂?L − f?L‖2` ≤ supt∈BL νn(t)‖f̂?L − f?L‖` so that ‖f̂?L − f?L‖` ≤
supt∈BL νn(t). Then, using Lemma 17

E
L∑

l=−L

|f̂?l − f?l|2 = E‖f̂?L − f
?
L‖2` ≤

κ

(1− 2P )2

2L+ 1

n
+
C

n
≤ C ′ 2L+ 1

n
.

Using Parseval’s identity,

E‖f − f̂L‖22 =
∑
|l|>L

|f?l|2 + C ′
2L+ 1

n
≤ R2(1 + L2)−s + C ′

2L+ 1

n
.

Thus, the oracle inequality gives

E‖f̂L̂−f‖
2
2 ≤ (1+2ε) min

L∈L

{
R2(1 + L2)−s + (C ′ + 2λ)

2L+ 1

n

}
+
C

n
≤ C ′′n−2s/(2s+1)

choosing L = cn1/(2s+1).
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