TEST 1

NAME, First name:		

Duration : 70 minutes, Total of points : 20 pts

Exercise 1 (4 pts). For each statement, decide whether it is true of false. Justify (by a proof or a counterexample). Let $n \in \mathbb{N}^{*}$.
(1) If $(\mathbb{Z} / n \mathbb{Z})^{\times}$is cyclic, then n is prime.
(2) For all $m \in \mathbb{N}^{*}$, the rings $\mathbb{Z} / m n \mathbb{Z}$ and $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ are isomorphic.
(3) For all $a \in \mathbb{N}$, if $\left(\frac{a}{n}\right)=-1$, then a is not a square modulo n.

Exercise 2 ($\mathbf{3} \mathbf{~ p t s}$). Let p be an odd prime and n be a divisor of $p-1$. Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$. Show that a has an $n^{\text {th }}$ square root if and only if $a^{\frac{p-1}{n}}=1$.

Exercise 3 ($\mathbf{2} \mathbf{p t s}$). Is 2 a square modulo the prime number $p=241$?
Exercise 4 (4 pts$)$. Solve the equation $x^{2}=137 \bmod 323$.
Hint. One can use that $323=17 \cdot 19$ and $1=17 \cdot 9-19 \cdot 8$.

Exercise 5 ($\mathbf{3} \mathbf{~ p t s}$). (1) How many generators of $(\mathbb{Z} / 13 \mathbb{Z})^{\times}$are there? List them all.
(2) Let p be an odd prime and α a generator of $(\mathbb{Z} / p \mathbb{Z})^{\times}$. Show that all the generators are given by α^{i}, with i and $p-1$ coprime. Deduce the number of generators of $(\mathbb{Z} / p \mathbb{Z})^{\times}$.

Exercise 6 ($4 \mathbf{p t s}$). (1) What are the primes p such that $p+2$ and $p+4$ are also prime.
(2) What are the primes p such that p divide $2^{p}+1$.
(3) Let p be an odd prime. Show that there exists infinitely many n such that p divide $n 2^{n}+1$.

